1
|
Stazi M, Megighian A, D'Este G, Negro S, Ivanušec A, Lonati D, Pirazzini M, Križaj I, Montecucco C. An agonist of CXCR4 induces a rapid recovery from the neurotoxic effects of Vipera ammodytes and Vipera aspis venoms. J Neurochem 2024; 168:428-440. [PMID: 36912731 DOI: 10.1111/jnc.15803] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2022] [Revised: 01/30/2023] [Accepted: 02/06/2023] [Indexed: 03/14/2023]
Abstract
People bitten by Alpine vipers are usually treated with antivenom antisera to prevent the noxious consequences caused by the injected venom. However, this treatment suffers from a number of drawbacks and additional therapies are necessary. The venoms of Vipera ammodytes and of Vipera aspis are neurotoxic and cause muscle paralysis by inducing neurodegeneration of motor axon terminals because they contain a presynaptic acting sPLA2 neurotoxin. We have recently found that any type of damage to motor axons is followed by the expression and activation of the intercellular signaling axis consisting of the CXCR4 receptor present on the membrane of the axon stump and of its ligand, the chemokine CXCL12 released by activated terminal Schwann cells. We show here that also V. ammodytes and V. aspis venoms cause the expression of the CXCL12-CXCR4 axis. We also show that a small molecule agonist of CXCR4, dubbed NUCC-390, induces a rapid regeneration of the motor axon terminal with functional recovery of the neuromuscular junction. These findings qualify NUCC-390 as a promising novel therapeutics capable of improving the recovery from the paralysis caused by the snakebite of the two neurotoxic Alpine vipers.
Collapse
Affiliation(s)
- M Stazi
- Department of Biomedical Sciences, University of Padova, Padova, Italy
| | - A Megighian
- Department of Biomedical Sciences, University of Padova, Padova, Italy
| | - G D'Este
- Department of Biomedical Sciences, University of Padova, Padova, Italy
| | - S Negro
- Department of Biomedical Sciences, University of Padova, Padova, Italy
| | - A Ivanušec
- Department of Molecular and Biomedical Sciences, Jožef Stefan Institute, Ljubljana, Slovenia
- Doctoral School, Faculty of Medicine, University of Ljubljana, Ljubljana, Slovenia
| | - D Lonati
- Pavia Poison Control Centre - National Toxicology Information Centre - Clinical and Experimental Lab, Toxicology Unit, Istituti Clinici Scientifici Maugeri SpA SB IRCCS, Pavia, Italy
| | - M Pirazzini
- Department of Biomedical Sciences, University of Padova, Padova, Italy
| | - I Križaj
- Department of Molecular and Biomedical Sciences, Jožef Stefan Institute, Ljubljana, Slovenia
| | - C Montecucco
- Department of Biomedical Sciences, University of Padova, Padova, Italy
- National Research Council, Institute of Neuroscience, Padova, Italy
| |
Collapse
|
2
|
D’Este G, Fabris F, Stazi M, Baggio C, Simonato M, Megighian A, Rigoni M, Negro S, Montecucco C. Agonists of melatonin receptors strongly promote the functional recovery from the neuroparalysis induced by neurotoxic snakes. PLoS Negl Trop Dis 2024; 18:e0011825. [PMID: 38190386 PMCID: PMC10798625 DOI: 10.1371/journal.pntd.0011825] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2023] [Revised: 01/19/2024] [Accepted: 12/22/2023] [Indexed: 01/10/2024] Open
Abstract
Snake envenoming is a major, but neglected, tropical disease. Among venomous snakes, those inducing neurotoxicity such as kraits (Bungarus genus) cause a potentially lethal peripheral neuroparalysis with respiratory deficit in a large number of people each year. In order to prevent the development of a deadly respiratory paralysis, hospitalization with pulmonary ventilation and use of antivenoms are the primary therapies currently employed. However, hospitals are frequently out of reach for envenomated patients and there is a general consensus that additional, non-expensive treatments, deliverable even long after the snake bite, are needed. Traumatic or toxic degenerations of peripheral motor neurons cause a neuroparalysis that activates a pro-regenerative intercellular signaling program taking place at the neuromuscular junction (NMJ). We recently reported that the intercellular signaling axis melatonin-melatonin receptor 1 (MT1) plays a major role in the recovery of function of the NMJs after degeneration of motor axon terminals caused by massive Ca2+ influx. Here we show that the small chemical MT1 agonists: Ramelteon and Agomelatine, already licensed for the treatment of insomnia and depression, respectively, are strong promoters of the neuroregeneration after paralysis induced by krait venoms in mice, which is also Ca2+ mediated. The venom from a Bungarus species representative of the large class of neurotoxic snakes (including taipans, coral snakes, some Alpine vipers in addition to other kraits) was chosen. The functional recovery of the NMJ was demonstrated using electrophysiological, imaging and lung ventilation detection methods. According to the present results, we propose that Ramelteon and Agomelatine should be tested in human patients bitten by neurotoxic snakes acting presynaptically to promote their recovery of health. Noticeably, these drugs are commercially available, safe, non-expensive, have a long bench life and can be administered long after a snakebite even in places far away from health facilities.
Collapse
Affiliation(s)
- Giorgia D’Este
- Department of Biomedical Sciences, University of Padova, Padova, Italy
| | - Federico Fabris
- Department of Biomedical Sciences, University of Padova, Padova, Italy
| | - Marco Stazi
- Department of Biomedical Sciences, University of Padova, Padova, Italy
| | - Chiara Baggio
- Department of Biomedical Sciences, University of Padova, Padova, Italy
| | | | - Aram Megighian
- Department of Biomedical Sciences, University of Padova, Padova, Italy
- Padua Neuroscience Center, University of Padova, Padova, Italy
| | - Michela Rigoni
- Department of Biomedical Sciences, University of Padova, Padova, Italy
- Myology Center (CIR-Myo), University of Padova, Padova, Italy
| | - Samuele Negro
- Department of Biomedical Sciences, University of Padova, Padova, Italy
- U.O.C. Clinica Neurologica, Azienda Ospedale-Università Padova, Padova, Italy
| | - Cesare Montecucco
- Department of Biomedical Sciences, University of Padova, Padova, Italy
- CNR Institute of Neuroscience, Padova, Italy
| |
Collapse
|
3
|
Recovery from the Neuroparalysis Caused by the Micrurus nigrocinctus Venom Is Accelerated by an Agonist of the CXCR4 Receptor. Toxins (Basel) 2022; 14:toxins14080531. [PMID: 36006193 PMCID: PMC9412299 DOI: 10.3390/toxins14080531] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2022] [Revised: 07/22/2022] [Accepted: 07/30/2022] [Indexed: 12/10/2022] Open
Abstract
Snake envenoming is a major but neglected human disease in tropical and subtropical regions. Among venomous snakes in the Americas, coral snakes of the genus Micrurus are particularly dangerous because they cause a peripheral neuroparalysis that can persist for many days or, in severe cases, progress to death. Ventilatory support and the use of snake species-specific antivenoms may prevent death from respiratory paralysis in most cases. However, there is a general consensus that additional and non-expensive treatments that can be delivered even long after the snake bite are needed. Neurotoxic degeneration of peripheral motor neurons activates pro-regenerative intercellular signaling programs, the greatest of which consist of the chemokine CXCL12α, produced by perisynaptic Schwann cells, which act on the CXCR4 receptor expressed on damaged neuronal axons. We recently found that the CXCR4 agonist NUCC-390 promotes axonal growth. Here, we show that the venom of the highly neurotoxic snake Micrurus nigrocinctus causes a complete degeneration of motor axon terminals of the soleus muscle, followed by functional regeneration whose time course is greatly accelerated by NUCC-390. These results suggest that NUCC-390 is a potential candidate for treating human patients envenomed by Micrurus nigrocinctus as well as other neurotoxic Micrurus spp. in order to improve the recovery of normal neuromuscular physiology, thus reducing the mortality and hospital costs of envenoming.
Collapse
|
4
|
Cell-Based Reporter Release Assay to Determine the Activity of Calcium-Dependent Neurotoxins and Neuroactive Pharmaceuticals. Toxins (Basel) 2021; 13:toxins13040247. [PMID: 33808507 PMCID: PMC8066854 DOI: 10.3390/toxins13040247] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2021] [Revised: 03/25/2021] [Accepted: 03/29/2021] [Indexed: 11/26/2022] Open
Abstract
The suitability of a newly developed cell-based functional assay was tested for the detection of the activity of a range of neurotoxins and neuroactive pharmaceuticals which act by stimulation or inhibition of calcium-dependent neurotransmitter release. In this functional assay, a reporter enzyme is released concomitantly with the neurotransmitter from neurosecretory vesicles. The current study showed that the release of a luciferase from a differentiated human neuroblastoma-based reporter cell line (SIMA-hPOMC1-26-GLuc cells) can be stimulated by a carbachol-mediated activation of the Gq-coupled muscarinic-acetylcholine receptor and by the Ca2+-channel forming spider toxin α-latrotoxin. Carbachol-stimulated luciferase release was completely inhibited by the muscarinic acetylcholine receptor antagonist atropine and α-latrotoxin-mediated release by the Ca2+-chelator EGTA, demonstrating the specificity of luciferase-release stimulation. SIMA-hPOMC1-26-GLuc cells express mainly L- and N-type and to a lesser extent T-type VGCC on the mRNA and protein level. In accordance with the expression profile a depolarization-stimulated luciferase release by a high K+-buffer was effectively and dose-dependently inhibited by L-type VGCC inhibitors and to a lesser extent by N-type and T-type inhibitors. P/Q- and R-type inhibitors did not affect the K+-stimulated luciferase release. In summary, the newly established cell-based assay may represent a versatile tool to analyze the biological efficiency of a range of neurotoxins and neuroactive pharmaceuticals which mediate their activity by the modulation of calcium-dependent neurotransmitter release.
Collapse
|
5
|
Zhou J. Two potential molecular signaling pathways of the UFL1 gene to induce the endoplasmic reticulum stress and apoptosis of the ovarian granulosa cell. Med Hypotheses 2020; 145:110328. [PMID: 33035966 DOI: 10.1016/j.mehy.2020.110328] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2020] [Revised: 09/24/2020] [Accepted: 09/28/2020] [Indexed: 11/17/2022]
Abstract
Endoplasmic reticulum stress (ERS) is a crucial physiological and pathological process takes place in the endoplasmic reticulum that usually induced by various intracellular and extracellular factors. It causes multiple diseases, including breast cancer, hepatocellular carcinoma, and premature ovarian failure that mainly associates with the ovarian granulosa cells. To effectively alleviate and cure the ERS and following diseases, molecular signaling pathways that are responsible for inducing ERS must be deeply investigated. There are many intracellular pathways to initiate the ERS, among which, detailed molecular mechanism the UFM1-specific ligase 1 (UFL1) gene induced analogous ubiquitylation related pathway is still unclear. However, some researches have reported that the UFL1 gene is responsible for initiating the ERS in the ovarian granulosa cell and premature ovarian failure. In this article, a new, highly possible molecular signaling pathway is proposed and hoping to provide a unique aspect for the following researches about ERS, especially in the ovarian granulosa cell.
Collapse
Affiliation(s)
- Jingyang Zhou
- Class 182, Queen Mary School, Medical Department, Nanchang University, Nanchang 330031, Jiangxi Province, People's Republic of China.
| |
Collapse
|
6
|
Stazi M, D’Este G, Mattarei A, Negro S, Lista F, Rigoni M, Megighian A, Montecucco C. An agonist of the CXCR4 receptor accelerates the recovery from the peripheral neuroparalysis induced by Taipan snake envenomation. PLoS Negl Trop Dis 2020; 14:e0008547. [PMID: 32898186 PMCID: PMC7537909 DOI: 10.1371/journal.pntd.0008547] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2020] [Revised: 10/06/2020] [Accepted: 06/19/2020] [Indexed: 01/15/2023] Open
Abstract
Envenomation by snakes is a major neglected human disease. Hospitalization and use of animal-derived antivenom are the primary therapeutic supports currently available. There is consensus that additional, not expensive, treatments that can be delivered even long after the snake bite are needed. We recently showed that the drug dubbed NUCC-390 shortens the time of recovery from the neuroparalysis caused by traumatic or toxic degeneration of peripheral motor neurons. These syndromes are characterized by the activation of a pro-regenerative molecular axis, consisting of the CXCR4 receptor expressed at the damaged site in neuronal axons and by the release of its ligand CXCL12α, produced by surrounding Schwann cells. This intercellular signaling axis promotes axonal growth and functional recovery from paralysis. NUCC-390 is an agonist of CXCR4 acting similarly to CXCL12α. Here, we have tested its efficacy in a murine model of neuroparalytic envenoming by a Papuan Taipan (Oxyuranus scutellatus) where a degeneration of the motor axon terminals caused by the presynaptic PLA2 toxin Taipoxin, contained in the venom, occurs. Using imaging of the neuromuscular junction and electrophysiological analysis, we found that NUCC-390 administration after injection of either the purified neuroparalytic Taipoxin or the whole Taipan venom, significantly accelerates the recovery from paralysis. These results indicate that NUCC-390, which is non-toxic in mice, should be considered for trials in humans to test its efficacy in accelerating the recovery from the peripheral neuroparalysis induced by Taipans. NUCC-390 should be tested as well in the envenomation by other snakes that cause neuroparalytic syndromes in humans. NUCC-390 could become an additional treatment, common to many snake envenomings, that can be delivered after the bite to reduce death by respiratory deficits and to shorten and improve functional recovery.
Collapse
Affiliation(s)
- Marco Stazi
- Department of Biomedical Sciences, University of Padova, Padova, Italy
| | - Giorgia D’Este
- Department of Biomedical Sciences, University of Padova, Padova, Italy
| | - Andrea Mattarei
- Department of Pharmaceutical and Pharmacological Sciences, University of Padova, Padova, Italy
| | - Samuele Negro
- Department of Biomedical Sciences, University of Padova, Padova, Italy
| | - Florigio Lista
- Department of Medical and Veterinary Research, the Ministry of Defense, Rome, Italy
| | - Michela Rigoni
- Department of Biomedical Sciences, University of Padova, Padova, Italy
| | - Aram Megighian
- Department of Biomedical Sciences, University of Padova, Padova, Italy
| | - Cesare Montecucco
- Department of Biomedical Sciences, University of Padova, Padova, Italy
- CNR Institute of Neuroscience, Department of Biomedical Sciences, Padua, Italy
| |
Collapse
|
7
|
Rigoni M, Negro S. Signals Orchestrating Peripheral Nerve Repair. Cells 2020; 9:E1768. [PMID: 32722089 PMCID: PMC7464993 DOI: 10.3390/cells9081768] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2020] [Revised: 07/19/2020] [Accepted: 07/20/2020] [Indexed: 12/22/2022] Open
Abstract
The peripheral nervous system has retained through evolution the capacity to repair and regenerate after assault from a variety of physical, chemical, or biological pathogens. Regeneration relies on the intrinsic abilities of peripheral neurons and on a permissive environment, and it is driven by an intense interplay among neurons, the glia, muscles, the basal lamina, and the immune system. Indeed, extrinsic signals from the milieu of the injury site superimpose on genetic and epigenetic mechanisms to modulate cell intrinsic programs. Here, we will review the main intrinsic and extrinsic mechanisms allowing severed peripheral axons to re-grow, and discuss some alarm mediators and pro-regenerative molecules and pathways involved in the process, highlighting the role of Schwann cells as central hubs coordinating multiple signals. A particular focus will be provided on regeneration at the neuromuscular junction, an ideal model system whose manipulation can contribute to the identification of crucial mediators of nerve re-growth. A brief overview on regeneration at sensory terminals is also included.
Collapse
Affiliation(s)
- Michela Rigoni
- Department of Biomedical Sciences, University of Padua, 35131 Padua, Italy;
- Myology Center (Cir-Myo), University of Padua, 35129 Padua, Italy
| | - Samuele Negro
- Department of Biomedical Sciences, University of Padua, 35131 Padua, Italy;
| |
Collapse
|
8
|
Bickler PE. Amplification of Snake Venom Toxicity by Endogenous Signaling Pathways. Toxins (Basel) 2020; 12:E68. [PMID: 31979014 PMCID: PMC7076764 DOI: 10.3390/toxins12020068] [Citation(s) in RCA: 47] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2019] [Revised: 01/12/2020] [Accepted: 01/14/2020] [Indexed: 02/07/2023] Open
Abstract
The active components of snake venoms encompass a complex and variable mixture of proteins that produce a diverse, but largely stereotypical, range of pharmacologic effects and toxicities. Venom protein diversity and host susceptibilities determine the relative contributions of five main pathologies: neuromuscular dysfunction, inflammation, coagulopathy, cell/organ injury, and disruption of homeostatic mechanisms of normal physiology. In this review, we describe how snakebite is not only a condition mediated directly by venom, but by the amplification of signals dysregulating inflammation, coagulation, neurotransmission, and cell survival. Although venom proteins are diverse, the majority of important pathologic events following envenoming follow from a small group of enzyme-like activities and the actions of small toxic peptides. This review focuses on two of the most important enzymatic activities: snake venom phospholipases (svPLA2) and snake venom metalloproteases (svMP). These two enzyme classes are adept at enabling venom to recruit homologous endogenous signaling systems with sufficient magnitude and duration to produce and amplify cell injury beyond what would be expected from the direct impact of a whole venom dose. This magnification produces many of the most acutely important consequences of envenoming as well as chronic sequelae. Snake venom PLA2s and MPs enzymes recruit prey analogs of similar activity. The transduction mechanisms that recruit endogenous responses include arachidonic acid, intracellular calcium, cytokines, bioactive peptides, and possibly dimerization of venom and prey protein homologs. Despite years of investigation, the precise mechanism of svPLA2-induced neuromuscular paralysis remains incomplete. Based on recent studies, paralysis results from a self-amplifying cycle of endogenous PLA2 activation, arachidonic acid, increases in intracellular Ca2+ and nicotinic receptor deactivation. When prolonged, synaptic suppression supports the degeneration of the synapse. Interaction between endothelium-damaging MPs, sPLA2s and hyaluronidases enhance venom spread, accentuating venom-induced neurotoxicity, inflammation, coagulopathy and tissue injury. Improving snakebite treatment requires new tools to understand direct and indirect effects of envenoming. Homologous PLA2 and MP activities in both venoms and prey/snakebite victim provide molecular targets for non-antibody, small molecule agents for dissecting mechanisms of venom toxicity. Importantly, these tools enable the separation of venom-specific and prey-specific pathological responses to venom.
Collapse
Affiliation(s)
- Philip E. Bickler
- Department of Anesthesia and Perioperative Care, University of California at San Francisco, San Francisco, CA 94143-0542, USA;
- California Academy of Sciences, San Francisco, CA 94118, USA
| |
Collapse
|
9
|
Negro S, Lessi F, Duregotti E, Aretini P, La Ferla M, Franceschi S, Menicagli M, Bergamin E, Radice E, Thelen M, Megighian A, Pirazzini M, Mazzanti CM, Rigoni M, Montecucco C. CXCL12α/SDF-1 from perisynaptic Schwann cells promotes regeneration of injured motor axon terminals. EMBO Mol Med 2018; 9:1000-1010. [PMID: 28559442 PMCID: PMC5538331 DOI: 10.15252/emmm.201607257] [Citation(s) in RCA: 54] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022] Open
Abstract
The neuromuscular junction has retained through evolution the capacity to regenerate after damage, but little is known on the inter-cellular signals involved in its functional recovery from trauma, autoimmune attacks, or neurotoxins. We report here that CXCL12α, also abbreviated as stromal-derived factor-1 (SDF-1), is produced specifically by perisynaptic Schwann cells following motor axon terminal degeneration induced by α-latrotoxin. CXCL12α acts via binding to the neuronal CXCR4 receptor. A CXCL12α-neutralizing antibody or a specific CXCR4 inhibitor strongly delays recovery from motor neuron degeneration in vivo Recombinant CXCL12α in vivo accelerates neurotransmission rescue upon damage and very effectively stimulates the axon growth of spinal cord motor neurons in vitro These findings indicate that the CXCL12α-CXCR4 axis plays an important role in the regeneration of the neuromuscular junction after motor axon injury. The present results have important implications in the effort to find therapeutics and protocols to improve recovery of function after different forms of motor axon terminal damage.
Collapse
Affiliation(s)
- Samuele Negro
- Department of Biomedical Sciences, University of Padua, Padua, Italy
| | - Francesca Lessi
- Laboratory of Genomics, Pisa Science Foundation, Pisa, Italy
| | - Elisa Duregotti
- Department of Biomedical Sciences, University of Padua, Padua, Italy
| | - Paolo Aretini
- Laboratory of Genomics, Pisa Science Foundation, Pisa, Italy
| | - Marco La Ferla
- Laboratory of Genomics, Pisa Science Foundation, Pisa, Italy
| | - Sara Franceschi
- Laboratory of Genomics, Pisa Science Foundation, Pisa, Italy
| | | | - Elisanna Bergamin
- Department of Biomedical Sciences, University of Padua, Padua, Italy
| | - Egle Radice
- Institute for Research in Biomedicine, Università della Svizzera Italiana, Bellinzona, Switzerland
| | - Marcus Thelen
- Institute for Research in Biomedicine, Università della Svizzera Italiana, Bellinzona, Switzerland
| | - Aram Megighian
- Department of Biomedical Sciences, University of Padua, Padua, Italy
| | - Marco Pirazzini
- Department of Biomedical Sciences, University of Padua, Padua, Italy
| | | | - Michela Rigoni
- Department of Biomedical Sciences, University of Padua, Padua, Italy
| | - Cesare Montecucco
- Department of Biomedical Sciences, University of Padua, Padua, Italy .,CNR Institute of Neuroscience, Padua, Italy
| |
Collapse
|
10
|
Rigoni M, Montecucco C. Animal models for studying motor axon terminal paralysis and recovery. J Neurochem 2017; 142 Suppl 2:122-129. [PMID: 28326543 DOI: 10.1111/jnc.13956] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2016] [Revised: 01/10/2017] [Accepted: 01/11/2017] [Indexed: 12/16/2022]
Abstract
An extraordinary property of the peripheral nervous system is that nerve terminals can regenerate after damage caused by different physical, chemical, or biological pathogens. Regeneration is the result of a complex and ill-known interplay among the nerve, the glia, the muscle, the basal lamina and, in some cases, the immune system. This phenomenon has been studied using different injury models mainly in rodents, particularly in mice, where a lesion can be produced in a chosen anatomical area. These approaches differ significantly among them for the nature of the lesion and the final outcomes. We have reviewed here the most common experimental models employed to induce motor axon injury, the relative advantages and drawbacks, and the principal read-outs used to monitor the regenerative process. Recently introduced tools for inducing reversible damage to the motor axon terminal that overcome some of the drawbacks of the more classical approaches are also discussed. Animal models have provided precious information about the cellular components involved in the regenerative process and on its electrophysiological features. Methods and tools made available recently allow one to identify and study molecules that are involved in the crosstalk among the components of the endplate. The time-course of the intercellular signaling and of the intracellular pathways activated will draw a picture of the entire process of regeneration as seen from a privileged anatomical site of observation. This is an article for the special issue XVth International Symposium on Cholinergic Mechanisms.
Collapse
Affiliation(s)
- Michela Rigoni
- Department of Biomedical Sciences, University of Padua, Padua, Italy
| | - Cesare Montecucco
- Department of Biomedical Sciences, University of Padua, Padua, Italy.,CNR Institute of Neuroscience, Padua, Italy
| |
Collapse
|
11
|
Dadhania VP, Trivedi PP, Vikram A, Tripathi DN. Nutraceuticals against Neurodegeneration: A Mechanistic Insight. Curr Neuropharmacol 2017; 14:627-40. [PMID: 26725888 PMCID: PMC4981739 DOI: 10.2174/1570159x14666160104142223] [Citation(s) in RCA: 52] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2015] [Revised: 08/17/2015] [Accepted: 01/01/2016] [Indexed: 12/20/2022] Open
Abstract
The mechanisms underlying neurodegenerative disorders are complex and multifactorial; however, accumulating evidences suggest few common shared pathways. These common pathways include mitochondrial dysfunction, intracellular Ca2+ overload, oxidative stress and inflammation. Often multiple pathways co-exist, and therefore limit the benefits of therapeutic interventions. Nutraceuticals have recently gained importance owing to their multifaceted effects. These food-based approaches are believed to target multiple pathways in a slow but more physiological manner without causing severe adverse effects. Available information strongly supports the notion that apart from preventing the onset of neuronal damage, nutraceuticals can potentially attenuate the continued progression of neuronal destruction. In this article, we i) review the common pathways involved in the pathogenesis of the toxicants-induced neurotoxicity and neurodegenerative disorders with special emphasis on Alzheimer's disease (AD), Parkinson's disease (PD), Huntington's disease (HD), Multiple sclerosis (MS) and Amyotrophic lateral sclerosis (ALS), and ii) summarize current research advancements on the effects of nutraceuticals against these detrimental pathways.
Collapse
Affiliation(s)
| | | | - Ajit Vikram
- Department of Internal Medicine, The University of Iowa, Iowa City, IA-52240, USA.
| | - Durga Nand Tripathi
- DNT at Center for Translational Cancer Research, Institute of Biosciences & Technology, Texas A&M University Health Science Center, Houston, TX-77030, USA.
| |
Collapse
|
12
|
An animal model of Miller Fisher syndrome: Mitochondrial hydrogen peroxide is produced by the autoimmune attack of nerve terminals and activates Schwann cells. Neurobiol Dis 2016; 96:95-104. [PMID: 27597525 DOI: 10.1016/j.nbd.2016.09.005] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2016] [Revised: 08/30/2016] [Accepted: 09/01/2016] [Indexed: 01/08/2023] Open
Abstract
The neuromuscular junction is a tripartite synapse composed of the presynaptic nerve terminal, the muscle and perisynaptic Schwann cells. Its functionality is essential for the execution of body movements and is compromised in a number of disorders, including Miller Fisher syndrome, a variant of Guillain-Barré syndrome: this autoimmune peripheral neuropathy is triggered by autoantibodies specific for the polysialogangliosides GQ1b and GT1a present in motor axon terminals, including those innervating ocular muscles, and in sensory neurons. Their binding to the presynaptic membrane activates the complement cascade, leading to a nerve degeneration that resembles that caused by some animal presynaptic neurotoxins. Here we have studied the intra- and inter-cellular signaling triggered by the binding and complement activation of a mouse monoclonal anti-GQ1b/GT1a antibody to primary cultures of spinal cord motor neurons and cerebellar granular neurons. We found that a membrane attack complex is rapidly assembled following antibody binding, leading to calcium accumulation, which affects mitochondrial functionality. Consequently, using fluorescent probes specific for mitochondrial hydrogen peroxide, we found that this reactive oxygen species is rapidly produced by mitochondria of damaged neurons, and that it triggers the activation of the MAP kinase pathway in Schwann cells. These results throw light on the molecular and cellular pathogenesis of Miller Fisher syndrome, and may well be relevant to other pathologies of the motor axon terminals, including some subtypes of the Guillain Barré syndrome.
Collapse
|
13
|
Negro S, Bergamin E, Rodella U, Duregotti E, Scorzeto M, Jalink K, Montecucco C, Rigoni M. ATP Released by Injured Neurons Activates Schwann Cells. Front Cell Neurosci 2016; 10:134. [PMID: 27242443 PMCID: PMC4876115 DOI: 10.3389/fncel.2016.00134] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2016] [Accepted: 05/06/2016] [Indexed: 11/13/2022] Open
Abstract
Injured nerve terminals of neuromuscular junctions (NMJs) can regenerate. This remarkable and complex response is governed by molecular signals that are exchanged among the cellular components of this synapse: motor axon nerve terminal (MAT), perisynaptic Schwann cells (PSCs), and muscle fiber. The nature of signals that govern MAT regeneration is ill-known. In the present study the spider toxin α-latrotoxin has been used as tool to investigate the mechanisms underlying peripheral neuroregeneration. Indeed this neurotoxin induces an acute, specific, localized and fully reversible damage of the presynaptic nerve terminal, and its action mimics the cascade of events that leads to nerve terminal degeneration in injured patients and in many neurodegenerative conditions. Here we provide evidence of an early release by degenerating neurons of adenosine triphosphate as alarm messenger, that contributes to the activation of a series of intracellular pathways within Schwann cells that are crucial for nerve regeneration: Ca(2+), cAMP, ERK1/2, and CREB. These results contribute to define the cross-talk taking place among degenerating nerve terminals and PSCs, involved in the functional recovery of the NMJ.
Collapse
Affiliation(s)
- Samuele Negro
- Department of Biomedical Sciences, University of PadovaPadua, Italy
| | | | - Umberto Rodella
- Department of Biomedical Sciences, University of PadovaPadua, Italy
| | - Elisa Duregotti
- Department of Biomedical Sciences, University of PadovaPadua, Italy
| | - Michele Scorzeto
- Department of Biomedical Sciences, University of PadovaPadua, Italy
| | - Kees Jalink
- Division of Cell Biology, The Netherlands Cancer InstituteAmsterdam, Netherlands
| | - Cesare Montecucco
- Department of Biomedical Sciences, University of PadovaPadua, Italy
- National Research Council, Institute of NeurosciencePadua, Italy
| | - Michela Rigoni
- Department of Biomedical Sciences, University of PadovaPadua, Italy
| |
Collapse
|
14
|
Snake and Spider Toxins Induce a Rapid Recovery of Function of Botulinum Neurotoxin Paralysed Neuromuscular Junction. Toxins (Basel) 2015; 7:5322-36. [PMID: 26670253 PMCID: PMC4690137 DOI: 10.3390/toxins7124887] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2015] [Revised: 11/20/2015] [Accepted: 11/30/2015] [Indexed: 12/29/2022] Open
Abstract
Botulinum neurotoxins (BoNTs) and some animal neurotoxins (β-Bungarotoxin, β-Btx, from elapid snakes and α-Latrotoxin, α-Ltx, from black widow spiders) are pre-synaptic neurotoxins that paralyse motor axon terminals with similar clinical outcomes in patients. However, their mechanism of action is different, leading to a largely-different duration of neuromuscular junction (NMJ) blockade. BoNTs induce a long-lasting paralysis without nerve terminal degeneration acting via proteolytic cleavage of SNARE proteins, whereas animal neurotoxins cause an acute and complete degeneration of motor axon terminals, followed by a rapid recovery. In this study, the injection of animal neurotoxins in mice muscles previously paralyzed by BoNT/A or /B accelerates the recovery of neurotransmission, as assessed by electrophysiology and morphological analysis. This result provides a proof of principle that, by causing the complete degeneration, reabsorption, and regeneration of a paralysed nerve terminal, one could favour the recovery of function of a biochemically- or genetically-altered motor axon terminal. These observations might be relevant to dying-back neuropathies, where pathological changes first occur at the neuromuscular junction and then progress proximally toward the cell body.
Collapse
|
15
|
Ethnopharmacological survey of medicinal plants used by traditional healers and indigenous people in chittagong hill tracts, bangladesh, for the treatment of snakebite. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2015; 2015:871675. [PMID: 25878719 PMCID: PMC4386694 DOI: 10.1155/2015/871675] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/27/2014] [Accepted: 01/15/2015] [Indexed: 12/27/2022]
Abstract
Snakebites are common in tropical countries like Bangladesh where most snakebite victims dwell in rural areas. Among the management options after snakebite in Bangladesh, snake charmers (Ozha in Bengali language) are the first contact following a snakebite for more than 80% of the victims and they are treated mostly with the help of some medicinal plants. Our aim of the study is to compile plants used for the treatment of snakebite occurrence in Bangladesh. The field survey was carried out in a period of almost 3 years. Fieldwork was undertaken in Chittagong Hill Tracts, Bangladesh, including Chittagong, Rangamati, Bandarban, and Khagrachari. Open-ended and semistructured questionnaire was used to interview a total of 110 people including traditional healers and local people. A total of 116 plant species of 48 families were listed. Leaves were the most cited plant part used against snake venom. Most of the reported species were herb in nature and paste mostly used externally is the mode of preparation. The survey represents the preliminary information of certain medicinal plants having neutralizing effects against snake venoms, though further phytochemical investigation, validation, and clinical trials should be conducted before using these plants as an alternative to popular antivenom.
Collapse
|
16
|
Floriano RS, Rocha T, Carregari VC, Marangoni S, da Cruz-Höfling MA, Hyslop S, Rodrigues-Simioni L, Rowan EG. The neuromuscular activity of Bothriopsis bilineata smaragdina (forest viper) venom and its toxin Bbil-TX (Asp49 phospholipase A2) on isolated mouse nerve-muscle preparations. Toxicon 2015; 96:24-37. [DOI: 10.1016/j.toxicon.2015.01.001] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2014] [Revised: 12/30/2014] [Accepted: 01/03/2015] [Indexed: 11/16/2022]
|
17
|
Mitochondrial alarmins released by degenerating motor axon terminals activate perisynaptic Schwann cells. Proc Natl Acad Sci U S A 2015; 112:E497-505. [PMID: 25605902 DOI: 10.1073/pnas.1417108112] [Citation(s) in RCA: 58] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
An acute and highly reproducible motor axon terminal degeneration followed by complete regeneration is induced by some animal presynaptic neurotoxins, representing an appropriate and controlled system to dissect the molecular mechanisms underlying degeneration and regeneration of peripheral nerve terminals. We have previously shown that nerve terminals exposed to spider or snake presynaptic neurotoxins degenerate as a result of calcium overload and mitochondrial failure. Here we show that toxin-treated primary neurons release signaling molecules derived from mitochondria: hydrogen peroxide, mitochondrial DNA, and cytochrome c. These molecules activate isolated primary Schwann cells, Schwann cells cocultured with neurons and at neuromuscular junction in vivo through the MAPK pathway. We propose that this inter- and intracellular signaling is involved in triggering the regeneration of peripheral nerve terminals affected by other forms of neurodegenerative diseases.
Collapse
|
18
|
Šribar J, Oberčkal J, Križaj I. Understanding the molecular mechanism underlying the presynaptic toxicity of secreted phospholipases A2: An update. Toxicon 2014; 89:9-16. [DOI: 10.1016/j.toxicon.2014.06.019] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2014] [Revised: 06/19/2014] [Accepted: 06/24/2014] [Indexed: 11/16/2022]
|
19
|
Crotoxin from Crotalus durissus terrificus snake venom induces the release of glutamate from cerebrocortical synaptosomes via N and P/Q calcium channels. Toxicon 2014; 85:5-16. [DOI: 10.1016/j.toxicon.2014.04.008] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2013] [Revised: 04/01/2014] [Accepted: 04/09/2014] [Indexed: 11/23/2022]
|
20
|
Abstract
Snakebite is classified by the WHO as a neglected tropical disease. Envenoming is a significant public health problem in tropical and subtropical regions. Neurotoxicity is a key feature of some envenomings, and there are many unanswered questions regarding this manifestation. Acute neuromuscular weakness with respiratory involvement is the most clinically important neurotoxic effect. Data is limited on the many other acute neurotoxic manifestations, and especially delayed neurotoxicity. Symptom evolution and recovery, patterns of weakness, respiratory involvement, and response to antivenom and acetyl cholinesterase inhibitors are variable, and seem to depend on the snake species, type of neurotoxicity, and geographical variations. Recent data have challenged the traditional concepts of neurotoxicity in snake envenoming, and highlight the rich diversity of snake neurotoxins. A uniform system of classification of the pattern of neuromuscular weakness and models for predicting type of toxicity and development of respiratory weakness are still lacking, and would greatly aid clinical decision making and future research. This review attempts to update the reader on the current state of knowledge regarding this important issue.
Collapse
Affiliation(s)
- Udaya K. Ranawaka
- Faculty of Medicine, University of Kelaniya, Ragama, Sri Lanka
- * E-mail:
| | - David G. Lalloo
- Liverpool School of Tropical Medicine, Liverpool, United Kingdom
| | | |
Collapse
|
21
|
Proteomic characterisation of toxins isolated from nematocysts of the South Atlantic jellyfish Olindias sambaquiensis. Toxicon 2013; 71:11-7. [PMID: 23688393 DOI: 10.1016/j.toxicon.2013.05.002] [Citation(s) in RCA: 56] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2013] [Revised: 04/24/2013] [Accepted: 05/01/2013] [Indexed: 11/21/2022]
Abstract
Surprisingly little is known of the toxic arsenal of cnidarian nematocysts compared to other venomous animals. Here we investigate the toxins of nematocysts isolated from the jellyfish Olindias sambaquiensis. A total of 29 unique ms/ms events were annotated as potential toxins homologous to the toxic proteins from diverse animal phyla, including cone-snails, snakes, spiders, scorpions, wasp, bee, parasitic worm and other Cnidaria. Biological activities of these potential toxins include cytolysins, neurotoxins, phospholipases and toxic peptidases. The presence of several toxic enzymes is intriguing, such as sphingomyelin phosphodiesterase B (SMase B) that has only been described in certain spider venoms, and a prepro-haystatin P-IIId snake venom metalloproteinase (SVMP) that activates coagulation factor X, which is very rare even in snake venoms. Our annotation reveals sequence orthologs to many representatives of the most important superfamilies of peptide venoms suggesting that their origins in higher organisms arise from deep eumetazoan innovations. Accordingly, cnidarian venoms may possess unique biological properties that might generate new leads in the discovery of novel pharmacologically active drugs.
Collapse
|
22
|
Chaisakul J, Parkington HC, Isbister GK, Konstantakopoulos N, Hodgson WC. Differential myotoxic and cytotoxic activities of pre-synaptic neurotoxins from Papuan taipan (Oxyuranus scutellatus) and Irian Jayan death adder (Acanthophis rugosus) venoms. Basic Clin Pharmacol Toxicol 2013; 112:325-34. [PMID: 23311944 DOI: 10.1111/bcpt.12048] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2012] [Accepted: 12/23/2012] [Indexed: 11/28/2022]
Abstract
Pre-synaptic PLA(2) neurotoxins are important components of many Australasian elapid snake venoms. These toxins disrupt neurotransmitter release. Taipoxin, a pre-synaptic neurotoxin isolated from the venom of the coastal taipan (Oxyuranus scutellatus), causes necrosis and muscle degeneration. The present study examined the myotoxic and cytotoxic activities of venoms from the Papuan taipan (O. scutellatus) and Irian Jayan death adder (Acanthophis rugosus), and also tested their pre-synaptic neurotoxins: cannitoxin and P-EPTX-Ar1a. Based on size-exclusion chromatography analysis, cannitoxin represents 16% of O. scutellatus venom, while P-EPTX-Ar1a represents 6% of A. rugosus venom. In the chick biventer cervicis nerve-muscle preparation, A. rugosus venom displayed significantly higher myotoxic activity than O. scutellatus venom as indicated by inhibition of direct twitches, and an increase in baseline tension. Both cannitoxin and P-EPTX-Ar1a displayed marked myotoxic activity. A. rugosus venom (50-300 μg/ml) produced concentration-dependent inhibition of cell proliferation in a rat skeletal muscle cell line (L6), while 300 μg/ml of O. scutellatus venom was required to inhibit cell proliferation, following 24-hr incubation. P-EPTX-Ar1a had greater cytotoxicity than cannitoxin, inhibiting cell proliferation after 24-hr incubation in L6 cells. Lactate dehydrogenase levels were increased after 1-hr incubation with A. rugosus venom (100-250 μg/ml), O. scutellatus venom (200-250 μg/ml) and P-EPTX-Ar1a (1-2 μM), but not cannitoxin (1-2 μM), suggesting venoms/toxin generated cell necrosis. Thus, A. rugosus and O. scutellatus venoms possess different myotoxic and cytotoxic activities. The proportion of pre-synaptic neurotoxin in the venoms and PLA(2) activity of the whole venoms are unlikely to be responsible for these activities.
Collapse
Affiliation(s)
- Janeyuth Chaisakul
- Monash Venom Group, Department of Pharmacology, Monash University, Clayton, Vic, Australia
| | | | | | | | | |
Collapse
|
23
|
Del Brutto OH. Neurological effects of venomous bites and stings: snakes, spiders, and scorpions. HANDBOOK OF CLINICAL NEUROLOGY 2013; 114:349-68. [PMID: 23829924 DOI: 10.1016/b978-0-444-53490-3.00028-5] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Snake and spider bites, as well as scorpion sting envenoming, are neglected diseases affecting millions of people all over the world. Neurological complications vary according to the offending animal, and are often directly related to toxic effects of the venom, affecting the central nervous system, the neuromuscular transmission, the cardiovascular system, or the coagulation cascade. Snake bite envenoming may result in stroke or muscle paralysis. Metalloproteinases and other substances (common in vipers and colubrids) have anticoagulant or procoagulant activity, and may induce ischemic or hemorrhagic strokes. The venom of elapids is rich in neurotoxins affecting the neuromuscular transmission at either presynaptic or postsynaptic levels. The clinical picture of scorpion sting envenoming is dominated by muscle weakness associated with arterial hypertension, cardiac arrythmias, myocarditis, or pulmonary edema. These manifestations occur as the result of release of catecholamines into the bloodstream or due to direct cardiac toxicity of the venom. Cerebrovascular complications have been reported after the sting of the Indian red scorpion. Intracranial hemorrhages occur in the setting of acute increases in arterial blood pressure related to sympathetic overstimulation, and cerebral infarctions are related to either cerebral hypoperfusion, consumption coagulopathy, vasculitis, or cardiogenic brain embolism. Three main syndromes result from spider bite envenoming: latrodectism, loxoscelism, and funnel-web spider envenoming. Latrodectism is related to neurotoxins present in the venom of widow spiders. Most cases present with headache, lethargy, irritability, myalgia, tremor, fasciculation, or ataxia. Loxoscelism is caused by envenoming by spiders of the family Sicariidae. It may present with a stroke due to a severe coagulopathy. The venom of funnel-web spiders also has neurotoxins that stimulate neurotransmitter release, resulting in sensory disturbances and muscle paralysis. Proper management of the envenomed patient, including prompt transport to the hospital, correction of the hemostatic disorder, ventilatory support, and administration of antivenom, significantly reduce the risk of neurological complications which, in turn, reduce the mortality and improve the functional outcome of survivors.
Collapse
Affiliation(s)
- Oscar H Del Brutto
- School of Medicine, Universidad Espiritu Santo, Guayaquil, Ecuador; Department of Neurological Sciences, Hospital Clinica Kennedy, Guayaquil, Ecuador.
| |
Collapse
|
24
|
Duregotti E, Tedesco E, Montecucco C, Rigoni M. Calpains participate in nerve terminal degeneration induced by spider and snake presynaptic neurotoxins. Toxicon 2012; 64:20-8. [PMID: 23266309 DOI: 10.1016/j.toxicon.2012.12.007] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2012] [Revised: 11/13/2012] [Accepted: 12/13/2012] [Indexed: 11/19/2022]
Abstract
α-latrotoxin and snake presynaptic phospholipases A2 neurotoxins target the presynaptic membrane of axon terminals of the neuromuscular junction causing paralysis. These neurotoxins display different biochemical activities, but similarly alter the presynaptic membrane permeability causing Ca(2+) overload within the nerve terminals, which in turn induces nerve degeneration. Using different methods, here we show that the calcium-activated proteases calpains are involved in the cytoskeletal rearrangements that we have previously documented in neurons exposed to α-latrotoxin or to snake presynaptic phospholipases A2 neurotoxins. These results indicate that calpains, activated by the massive calcium influx from the extracellular medium, target fundamental components of neuronal cytoskeleton such as spectrin and neurofilaments, whose cleavage is functional to the ensuing nerve terminal fragmentation.
Collapse
Affiliation(s)
- Elisa Duregotti
- Department of Biomedical Sciences, CNR Institute of Neuroscience, University of Padova, Italy
| | | | | | | |
Collapse
|
25
|
Tsai JY, Chou CT, Liu SI, Liang WZ, Kuo CC, Liao WC, Lin KL, Hsu SS, Lu YC, Huang JK, Jan CR. Effect of diindolylmethane on Ca2+ homeostasis and viability in PC3 human prostate cancer cells. J Recept Signal Transduct Res 2012; 32:271-8. [PMID: 22845469 DOI: 10.3109/10799893.2012.707212] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
The effect of the natural product diindolylmethane on cytosolic Ca(2+) concentrations ([Ca(2+)](i)) and viability in PC3 human prostate cancer cells was explored. The Ca(2+)-sensitive fluorescent dye fura-2 was applied to measure [Ca(2+)](i). Diindolylmethane at concentrations of 20-50 µM induced [Ca(2+)](i) rise in a concentration-dependent manner. The response was reduced partly by removing Ca(2+). Diindolylmethane-evoked Ca(2+) entry was suppressed by nifedipine, econazole, SK&F96365, protein kinase C modulators and aristolochic acid. In the absence of extracellular Ca(2+), incubation with the endoplasmic reticulum Ca(2+) pump inhibitor thapsigargin or 2,5-di-tert-butylhydroquinone (BHQ) inhibited or abolished diindolylmethane-induced [Ca(2+)](i) rise. Incubation with diindolylmethane also inhibited thapsigargin or BHQ-induced [Ca(2+)](i) rise. Inhibition of phospholipase C with U73122 reduced diindolylmethane-induced [Ca(2+)](i) rise. At concentrations of 50-100 µM, diindolylmethane killed cells in a concentration-dependent manner. This cytotoxic effect was not altered by chelating cytosolic Ca(2+) with 1,2-bis(2-aminophenoxy)ethane-N,N,N',N'-tetraacetic acid (BAPTA). Annexin V/PI staining data implicate that diindolylmethane (50 and 100 µM) induced apoptosis in a concentration-dependent manner. In conclusion, diindolylmethane induced a [Ca(2+)](i) rise in PC3 cells by evoking phospholipase C-dependent Ca(2+) release from the endoplasmic reticulum and Ca(2+) entry via phospholipase A(2)-sensitive store-operated Ca(2+) channels. Diindolylmethane caused cell death in which apoptosis may participate.
Collapse
Affiliation(s)
- Jeng-Yu Tsai
- Department of Surgery, Kaohsiung Veterans General Hospital, Kaohsiung, Taiwan
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
26
|
Abstract
Snake bite envenoming is a neglected tropical disease affecting millions of people living in the developing world. According to the offending snake species, the clinical picture may be dominated by swelling and soft tissue necrosis in the bitten limb, or by systemic or neurological manifestations. Serious neurological complications, including stroke and muscle paralysis, are related to the toxic effects of the venom, which contains a complex mixture of toxins affecting the coagulation cascade, the neuromuscular transmission, or both. Metalloproteinases, serine proteases, and C-type lentins (common in viper and colubrid venoms) have anticoagulant or procoagulant activity and may be either agonists or antagonists of platelet aggregation; as a result, ischemic or hemorrhagic strokes may occur. In contrast, the venom of elapids is rich in phospholipase A(2) and three-finger proteins, which are potent neurotoxins affecting the neuromuscular transmission at either presynaptic or post-synaptic levels. Presynaptic-acting neurotoxins (called β-neurotoxins) inhibit the release of acetylcholine, while post-synaptic-acting neurotoxins (called α-neurotoxins) cause a reversible blockage of acetylcholine receptors. Proper management of the envenomed patient, including prompt transport to the hospital, correction of the hemostatic disorder, ventilatory support, and administration of antivenom, significantly reduces the risk of neurological complications which, in turn, reduce the mortality and improve the functional outcome of survivors.
Collapse
Affiliation(s)
- O H Del Brutto
- Department of Neurological Sciences, Hospital - Clínica Kennedy, Guayaquil, Ecuador.
| | | |
Collapse
|
27
|
Jan CR, Chen CY, Wang SC, Kuo SY. Phenethyl isothiocyanate induces Ca2+ movement and cytotoxicity in PC3 human prostate cancer cells. J Taiwan Inst Chem Eng 2011. [DOI: 10.1016/j.jtice.2011.04.009] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
28
|
Kuo CC, Huang JK, Chou CT, Cheng JS, Tsai JY, Fang YC, Hsu SS, Liao WC, Chang HT, Ho CM, Jan CR. Effect of bisphenol A on Ca2+fluxes and viability in Madin-Darby canine renal tubular cells. Drug Chem Toxicol 2011; 34:454-61. [DOI: 10.3109/01480545.2011.556645] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
|
29
|
Liao WC, Chou CT, Kuo CC, Pan CC, Kuo DH, Shieh P, Cheng JS, Jan CR, Shaw CF. Effect of thimerosal on Ca2+ movement and apoptosis in PC3 prostate cancer cells. Drug Dev Res 2011. [DOI: 10.1002/ddr.20434] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
|
30
|
Mesngon M, McNutt P. Alpha-latrotoxin rescues SNAP-25 from BoNT/A-mediated proteolysis in embryonic stem cell-derived neurons. Toxins (Basel) 2011; 3:489-503. [PMID: 22069721 PMCID: PMC3202834 DOI: 10.3390/toxins3050489] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2011] [Revised: 04/22/2011] [Accepted: 04/29/2011] [Indexed: 11/17/2022] Open
Abstract
The botulinum neurotoxins (BoNTs) exhibit zinc-dependent proteolytic activity against members of the core synaptic membrane fusion complex, preventing neurotransmitter release and resulting in neuromuscular paralysis. No pharmacologic therapies have been identified that clinically relieve botulinum poisoning. The black widow spider venom α-latrotoxin (LTX) has the potential to attenuate the severity or duration of BoNT-induced paralysis in neurons via the induction of synaptic degeneration and remodeling. The potential for LTX to antagonize botulinum poisoning was evaluated in embryonic stem cell-derived neurons (ESNs), using a novel screening assay designed around the kinetics of BoNT/A activation. Exposure of ESNs to 400 pM LTX for 6.5 or 13 min resulted in the nearly complete restoration of uncleaved SNAP-25 within 48 h, whereas treatment with 60 mM K+ had no effect. Time-lapse imaging demonstrated that LTX treatment caused a profound increase in Ca2+ influx and evidence of excitotoxicity, though ESNs remained viable 48 h after LTX treatment. This is the first instance of a cell-based treatment that has shown the ability to eliminate BoNT activity. These data suggest that LTX treatment may provide the basis for a new class of therapeutic approach to BoNT intoxication and may contribute to an improved understanding of long-term mechanisms of BoNT intoxication and recovery. They further demonstrate that ESNs are a novel, responsive and biologically relevant model for LTX research and BoNT therapeutic drug discovery.
Collapse
Affiliation(s)
- Mariano Mesngon
- United States Army Medical Research Institute of Chemical Defense, 3100 Ricketts Point Road, Gunpowder, MD 21010, USA.
| | | |
Collapse
|
31
|
Huang JK, Chou CT, Chang HT, Shu SS, Kuo CC, Tsai JY, Liao WC, Wang JL, Lin KL, Lu YC, Chen IS, Liu SI, Ho CM, Jan CR. Effect of thapsigargin on Ca²+ fluxes and viability in human prostate cancer cells. J Recept Signal Transduct Res 2011; 31:247-55. [PMID: 21410406 DOI: 10.3109/10799893.2011.563311] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
Effect of the carcinogen thapsigargin on human prostate cancer cells is unclear. This study examined if thapsigargin altered basal [Ca²⁺](i) levels in suspended PC3 human prostate cancer cells by using fura-2 as a Ca²⁺-sensitive fluorescent probe. Thapsigargin at concentrations between 10 nM and 10 µM increased [Ca²⁺](i) in a concentration-dependent fashion. The Ca²⁺ signal was reduced partly by removing extracellular Ca²⁺ indicating that Ca²⁺ entry and release both contributed to the [Ca²⁺](i) rise. This Ca²⁺ influx was inhibited by suppression of phospholipase A2, but not by inhibition of store-operated Ca²⁺ channels or by modulation of protein kinase C activity. In Ca²⁺-free medium, pretreatment with the endoplasmic reticulum Ca²⁺ pump inhibitor 2,5-di-(t-butyl)-1,4-hydroquinone (BHQ) nearly abolished thapsigargin-induced Ca²⁺ release. Conversely, pretreatment with thapsigargin greatly reduced BHQ-induced [Ca²⁺](i) rise, suggesting that thapsigargin released Ca²⁺ from the endoplasmic reticulum. Inhibition of phospholipase C did not change thapsigargin-induced [Ca²⁺](i) rise. At concentrations of 1-10 µM, thapsigargin induced cell death that was partly reversed by chelation of Ca²⁺ with BAPTA/AM. Annexin V/propidium iodide staining data suggest that apoptosis was partly responsible for thapsigargin-induced cell death. Together, in PC3 human prostate cancer cells, thapsigargin induced [Ca²⁺](i) rises by causing phospholipase C-independent Ca²⁺ release from the endoplasmic reticulum and Ca²⁺ influx via phospholipase A2-sensitive Ca²⁺ channels. Thapsigargin also induced cell death via Ca²⁺-dependent pathways and Ca²⁺-independent apoptotic pathways.
Collapse
Affiliation(s)
- Jong-Khing Huang
- Department of Surgery, Kaohsiung Veterans General Hospital, Kaohsiung, Taiwan 813
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
32
|
Cheng JS, Shu SS, Kuo CC, Chou CT, Tsai WL, Fang YC, Kuo LN, Yeh JH, Chen WC, Chien JM, Lu T, Pan CC, Cheng HH, Chai KL, Jan CR. Effect of diindolylmethane on Ca(2+) movement and viability in HA59T human hepatoma cells. Arch Toxicol 2011; 85:1257-66. [PMID: 21409406 DOI: 10.1007/s00204-011-0670-9] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2010] [Accepted: 02/08/2011] [Indexed: 01/15/2023]
Abstract
The effect of diindolylmethane, a natural compound derived from indole-3-carbinol in cruciferous vegetables, on cytosolic Ca(2+) concentrations ([Ca(2+)](i)) and viability in HA59T human hepatoma cells is unclear. This study explored whether diindolylmethane changed [Ca(2+)](i) in HA59T cells. The Ca(2+)-sensitive fluorescent dye fura-2 was applied to measure [Ca(2+)](i). Diindolylmethane at concentrations of 1-50 μM evoked a [Ca(2+)](i) rise in a concentration-dependent manner. The signal was reduced by removing Ca(2+). Diindolylmethane-induced Ca(2+) influx was not inhibited by nifedipine, econazole, SK&F96365, and protein kinase C modulators but was inhibited by aristolochic acid. In Ca(2+)-free medium, treatment with the endoplasmic reticulum Ca(2+) pump inhibitors thapsigargin or 2,5-di-tert-butylhydroquinone (BHQ) inhibited or abolished diindolylmethane-induced [Ca(2+)](i) rise. Incubation with diindolylmethane inhibited thapsigargin or BHQ-induced [Ca(2+)](i) rise. Inhibition of phospholipase C with U73122 reduced diindolylmethane-induced [Ca(2+)](i) rise. At concentrations of 10-75 μM, diindolylmethane killed cells in a concentration-dependent manner. The cytotoxic effect of diindolylmethane was not reversed by chelating cytosolic Ca(2+) with 1,2-bis(2-aminophenoxy)ethane-N,N,N',N'-tetraacetic acid. Propidium iodide staining data suggest that diindolylmethane (25-50 μM) induced apoptosis in a concentration-dependent manner. Collectively, in HA59T cells, diindolylmethane induced a [Ca(2+)](i) rise by causing phospholipase C-dependent Ca(2+) release from the endoplasmic reticulum and Ca(2+) influx via phospholipase A(2)-sensitive channels. Diindolylmethane induced cell death that may involve apoptosis.
Collapse
Affiliation(s)
- Jin-Shiung Cheng
- Department of Medicine, Yongkang Veterans Hospital, Tainan 710, Taiwan
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
33
|
Chien JM, Chou CT, Pan CC, Kuo CC, Tsai JY, Liao WC, Kuo DH, Shieh P, Ho CM, Chu ST, Su HH, Chi CC, Jan CR. The mechanism of sertraline-induced [Ca2+]i rise in human OC2 oral cancer cells. Hum Exp Toxicol 2011; 30:1635-43. [PMID: 21247994 DOI: 10.1177/0960327110396523] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
Abstract
Effect of sertraline, an antidepressant, on cytosolic free Ca(2+) levels ([Ca(2+)](i)) in human cancer cells is unclear. This study examined if sertraline altered basal [Ca(2+)](i) levels in suspended OC2 human oral cancer by using fura-2 as a Ca(2+)-sensitive fluorescent probe. At concentrations of 10-100 μM, sertraline induced a [Ca(2+)](i) rise in a concentration-dependent fashion. The Ca(2+) signal was reduced partly by removing extracellular Ca(2+) indicating that Ca(2+) entry and release both contributed to the [Ca(2+)](i) rise. Sertraline induced Mn(2+) influx, leading to quench of fura-2 fluorescence suggesting Ca(2+) influx. This Ca(2+) influx was inhibited by suppression of phospholipase A2, inhibition of store-operated Ca(2+) channels or by modulation of protein kinase C activity. In Ca(2+)-free medium, pretreatment with the endoplasmic reticulum Ca(2+) pump inhibitor thapsigargin or 2,5-di-(t-butyl)-1,4-hydroquinone (BHQ) nearly abolished sertraline-induced Ca(2+) release. Conversely, pretreatment with sertraline greatly reduced the inhibitor-induced [Ca(2+)](i) rise, suggesting that sertraline released Ca(2+) from the endoplasmic reticulum. Inhibition of phospholipase C did not change sertraline-induced [Ca(2+)](i) rise. Together, in human oral cancer cells, sertraline induced [Ca(2+)](i) rises by causing phospholipase C-independent Ca(2+) release from the endoplasmic reticulum and Ca(2+) influx via store-operated Ca(2+) channels.
Collapse
Affiliation(s)
- Jau-Min Chien
- Department of Pediatrics, Ping Tung Christian Hospital, Ping Tung, Taiwan
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
34
|
Chen WC, Hsu SS, Chou CT, Kuo CC, Huang JK, Fang YC, Chang HT, Tsai JY, Liao WC, Wang BW, Shieh P, Kuo DH, Jan CR. Effect of diallyl disulfide on Ca2+ movement and viability in PC3 human prostate cancer cells. Toxicol In Vitro 2011; 25:636-43. [PMID: 21232596 DOI: 10.1016/j.tiv.2010.12.015] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2010] [Revised: 12/20/2010] [Accepted: 12/29/2010] [Indexed: 12/31/2022]
Abstract
The effect of diallyl disulfide (DADS) on cytosolic Ca(2+) concentrations ([Ca(2+)](i)) and viability in PC3 human prostate cancer cells is unclear. This study explored whether DADS changed [Ca(2+)](i) in PC3 cells by using fura-2. DADS at 50-1000 μM increased [Ca(2+)](i) in a concentration-dependent manner. The signal was reduced by removing Ca(2+). DADS-induced Ca(2+) influx was not inhibited by nifedipine, econazole, SK&F96365, and protein kinase C modulators; but was inhibited by aristolochic acid. In Ca(2+)-free medium, pretreatment with the endoplasmic reticulum Ca(2+) pump inhibitors thapsigargin or 2,5-di-tert-butylhydroquinone (BHQ) nearly abolished DADS-induced [Ca(2+)](i) rise. Incubation with DADS inhibited thapsigargin or BHQ-induced [Ca(2+)](i) rise. Inhibition of phospholipase C with U73122 did not alter DADS-induced [Ca(2+)](i) rise. At 500-1000 μM, DADS killed cells in a concentration-dependent manner. The cytotoxic effect of DADS was partly reversed by prechelating cytosolic Ca(2+) with 1,2-bis(2-aminophenoxy)ethane-N,N,N',N'-tetraacetic acid (BAPTA). Propidium iodide staining suggests that DADS (500 μM) induced apoptosis in a Ca(2+)-independent manner. Annexin V/PI staining further shows that 10 μM and 500 μM DADS both evoked apoptosis. DADS also increased reactive oxygen species (ROS) production. Collectively, in PC3 cells, DADS induced [Ca(2+)](i) rise probably by causing phospholipase C-independent Ca(2+) release from the endoplasmic reticulum and Ca(2+) influx via phospholipase A(2)-sensitive channels. DADS induced Ca(2+)-dependent cell death, ROS production, and Ca(2+)-independent apoptosis.
Collapse
Affiliation(s)
- Wei-Chuan Chen
- Department of Surgery, Ping Tung Christian Hospital, Ping Tung 900, Taiwan
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
35
|
Tseng LL, Shu SS, Kuo CC, Chou CT, Hsieh YD, Chu ST, Chi CC, Liang WZ, Ho CM, Jan CR. Effect of methoxychlor on Ca2+ handling and viability in OC2 human oral cancer cells. Basic Clin Pharmacol Toxicol 2011; 108:341-8. [PMID: 21205218 DOI: 10.1111/j.1742-7843.2010.00662.x] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
The effect of the insecticide methoxychlor on the physiology of oral cells is unknown. This study aimed to explore the effect of methoxychlor on cytosolic Ca(2+) concentrations ([Ca(2+)](i)) in human oral cancer cells (OC2) by using the Ca(2+)-sensitive fluorescent dye fura-2. Methoxychlor at 5-20 μM increased [Ca(2+)](i) in a concentration-dependent manner. The signal was reduced by 70% by removing extracellular Ca(2+). Methoxychlor-induced Ca(2+) entry was not affected by nifedipine, econazole, SK&F96365 and protein kinase C modulators but was inhibited by the phospholipase A2 inhibitor aristolochic acid. In Ca(2+)-free medium, treatment with the endoplasmic reticulum Ca(2+) pump inhibitor thapsigargin or 2,5-di-tert-butylhydroquinone (BHQ) inhibited or abolished methoxychlor-induced [Ca(2+)](i) rise. Incubation with methoxychlor also inhibited thapsigargin- or BHQ-induced [Ca(2+)](i) rise. Inhibition of phospholipase C with U73122 did not alter methoxychlor-induced [Ca(2+)](i) rise. At 5-20 μM, methoxychlor killed cells in a concentration-dependent manner. The cytotoxic effect of methoxychlor was not reversed by chelating cytosolic Ca(2+) with 1,2-bis(2-aminophenoxy)ethane-N,N,N',N'-tetraacetic acid/AM (BAPTA/AM). Annexin V-FITC data suggest that methoxychlor (10 and 20 μM) evoked apoptosis in a concentration-dependent manner. Together, in human OC2, methoxychlor induced a [Ca(2+)](i) rise probably by inducing phospholipase C-independent Ca(2+) release from the endoplasmic reticulum and Ca(2+) entry via phospholipase A(2)-sensitive channels. Methoxychlor induced cell death that may involve apoptosis.
Collapse
Affiliation(s)
- Li-Ling Tseng
- Department of Dentistry, Kaohsiung Veterans General Hospital, Taiwan
| | | | | | | | | | | | | | | | | | | |
Collapse
|
36
|
Chen CY, Yang YH, Kuo SY. Effect of [6]-shogaol on cytosolic Ca2+ levels and proliferation in human oral cancer cells (OC2). JOURNAL OF NATURAL PRODUCTS 2010; 73:1370-1374. [PMID: 20669930 DOI: 10.1021/np100213a] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/29/2023]
Abstract
The effect of [6]-shogaol (1) on cytosolic free Ca(2+) concentrations ([Ca(2+)](i)) and viability has not been explored previously in oral epithelial cells. The present study has examined whether 1 alters [Ca(2+)](i) and viability in OC2 human oral cancer cells. Compound 1 at concentrations > or = 5 microM increased [Ca(2+)](i) in a concentration-dependent manner with a 50% effective concentration (EC(50)) value of 65 microM. The Ca(2+) signal was reduced substantially by removing extracellular Ca(2+). In a Ca(2+)-free medium, the 1-induced [Ca(2+)](i) elevation was mostly attenuated by depleting stored Ca(2+) with thapsigargin (an endoplasmic reticulum Ca(2+) pump inhibitor). The [Ca(2+)](i) signal was inhibited by La(3+) but not by L-type Ca(2+) channel blockers. The elevation of [Ca(2+)](i) caused by 1 in a Ca(2+)-containing medium was not affected by modulation of protein kinase C activity, but was inhibited by 82% with the phospholipase A2 inhibitor aristolochic acid I (20 microM). U73122, a selective inhibitor of phospholipase C, abolished 1-induced [Ca(2+)](i) release. At concentrations of 5-100 microM, 1 killed cells in a concentration-dependent manner. These findings suggest that [6]-shogaol induces a significant rise in [Ca(2+)](i) in oral cancer OC2 cells by causing stored Ca(2+) release from the thapsigargin-sensitive endoplasmic reticulum pool in an inositol 1,4,5-trisphosphate-dependent manner and by inducing Ca(2+) influx via a phospholipase A2- and La(3+)-sensitive pathway.
Collapse
Affiliation(s)
- Chung-Yi Chen
- Department of Medical Technology, School of Medical and Health Sciences, Fooyin University, Ta-liao, Kaohsiung County 83101, Taiwan, Republic of China
| | | | | |
Collapse
|
37
|
Liao WC, Huang CC, Lu YC, Chi CC, Chu ST, Su HH, Kuo CC, Cheng JS, Tseng LL, Ho CM, Jan CR. Maprotiline-induced Ca2+ fluxes and apoptosis in human osteosarcoma cells. Drug Dev Res 2010. [DOI: 10.1002/ddr.20371] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
|
38
|
Kuo DH, Liu LM, Chen HW, Chen FA, Jan CR. Econazole-induced Ca2+ fluxes and apoptosis in human oral cancer cells. Drug Dev Res 2010. [DOI: 10.1002/ddr.20366] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
39
|
Fang YC, Kuo DH, Shieh P, Chen FA, Kuo CC, Jan CR. Effect of m-3M3FBS on Ca(2+) movement in Madin-Darby canine renal tubular cells. Hum Exp Toxicol 2009; 28:655-63. [PMID: 19770166 DOI: 10.1177/0960327109106972] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
The effect of 2,4,6-trimethyl-N-(meta-3-trifluoromethyl-phenyl)-benzenesulfonamide (m-3M3FBS), a presumed phospholipase C (PLC) activator, on cytosolic free Ca(2+) concentrations ([Ca( 2+)](i)) in Madin-Darby canine kidney (MDCK) cells is unclear. This study explored whether m-3M3FBS changed basal [Ca(2+)](i) levels in suspended MDCK cells using fura-2 as a Ca(2+)-sensitive fluorescent dye. M-3M3FBS at concentrations between 0.1 and 20 microM increased [Ca(2+)](i) in a concentration-dependent manner. The Ca(2+) signal was decreased by removing extracellular Ca(2+). M-3M3FBS-induced Ca(2+) influx was inhibited by the store-operated Ca(2+) channel blockers nifedipine, econazole, and SK&F96365, and by the phospholipase A2 inhibitor aristolochic acid. In Ca(2+)-free medium, 20-microM m-3M3FBS pretreatment abolished the [Ca(2+)](i) rise induced by the endoplasmic reticulum Ca(2+) pump inhibitors thapsigargin (TG) and cyclopiazonic acid (CPA). Conversely, pretreatment with TG or CPA partly reduced m-3M3FBS-induced [Ca(2+)](i) rise. The inhibition of PLC with U73122 did not alter m-3M3FBS-induced [Ca(2+)](i) rise. Collectively, in MDCK cells, m-3M3FBS induced [Ca(2+)](i) rises by causing PLC-independent Ca(2+) release from the endoplasmic reticulum and Ca(2+) influx via store-operated Ca(2+) channels and other unidentified Ca(2+) channels.
Collapse
Affiliation(s)
- Yi-Chien Fang
- Zuoying Armed Forces General Hospital, Kaohsiung, Taiwan
| | | | | | | | | | | |
Collapse
|
40
|
Pan CC, Kuo DH, Shieh P, Chen FA, Kuo CC, Jan CR. Effect of the antidepressant paroxetine on Ca 2+movement in PC3 human prostate cancer cells. Drug Dev Res 2009. [DOI: 10.1002/ddr.20339] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
|
41
|
Yeh JH, Lee JK, Wang JS, Yeh MY, Yang YL, Huang JS, Chang WT, Kuo DH, Shieh P, Chen FA, Kuo CC, Jan CR. Effect of capsaicin on Ca 2+fluxes in Madin-Darby canine renal tubular cells. Drug Dev Res 2009. [DOI: 10.1002/ddr.20330] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
|