1
|
Turner AD, Maskrey BH, Stone D, Mudge EM, Robertson A. First Confirmed Occurrence of Ciguatera Poisoning in the UK from Imported Pinjalo Snapper ( Pinjalo pinjalo). Mar Drugs 2025; 23:67. [PMID: 39997191 PMCID: PMC11857775 DOI: 10.3390/md23020067] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2024] [Revised: 01/26/2025] [Accepted: 01/31/2025] [Indexed: 02/26/2025] Open
Abstract
Three people in England consumed fish steaks labeled as Red Snapper (Lutjanus bohar) originating from the Indian Ocean. Within 12 h, all three experienced sickness including nausea, vomiting, diarrhea, as well as myalgia and paresthesia. Three steaks from a single package of fish obtained from a grocery store were consumed, leaving one uneaten, which was submitted for analysis. Cytotoxicity testing via the mouse neuroblastoma assay confirmed the presence of sodium channel specific activity consistent with a ciguatoxin standard, and the levels detected were above established guidance limits for safe consumption. Chemical detection using liquid chromatography coupled with high-resolution mass spectrometry of both intact toxins and periodate oxidation products was used to confirm the presence of chromatographic peaks consistent with tri- and di-hydroxylated Pacific ciguatoxin 3C congeners. Taking the shared medical symptoms of patients, the recent dietary history, and the known potential for ciguatera poisoning to occur in snapper species, the subsequent evidence for CTX-like activity and CTXs in the same fish sample provides very strong evidence that the fish steaks consumed were similarly contaminated with CTXs. Furthermore, given the levels reported, such toxicity would be expected to cause intoxication in humans. Fish species identification based on DNA barcoding confirmed that the fish products were mislabeled, with the tissues instead being the Pinjalo snapper, Pinjalo pinjalo. This is the first confirmed ciguatera poisoning incident in both the UK and from the Pinjalo snapper and highlights the need for monitoring of these emerging toxins in reef fish imports to prevent future human intoxication.
Collapse
Affiliation(s)
- Andrew D. Turner
- Centre for Environment Fisheries and Aquaculture Science (Cefas), Barrack Road, Weymouth DT4 8UB, UK; (B.H.M.); (D.S.)
| | - Benjamin H. Maskrey
- Centre for Environment Fisheries and Aquaculture Science (Cefas), Barrack Road, Weymouth DT4 8UB, UK; (B.H.M.); (D.S.)
| | - David Stone
- Centre for Environment Fisheries and Aquaculture Science (Cefas), Barrack Road, Weymouth DT4 8UB, UK; (B.H.M.); (D.S.)
| | - Elizabeth M. Mudge
- Biotoxin Metrology, National Research Council Canada, Halifax, NS B3H 3Z1, Canada;
| | - Alison Robertson
- Dauphin Island Sea Lab, 101 Bienville Blvd, Dauphin Island, AL 36528, USA;
- Department of Marine Sciences, University of South Alabama, University Avenue N., Mobile, AL 36688, USA
| |
Collapse
|
2
|
Yuan KK, Li HY, Yang WD. Marine Algal Toxins and Public Health: Insights from Shellfish and Fish, the Main Biological Vectors. Mar Drugs 2024; 22:510. [PMID: 39590790 PMCID: PMC11595774 DOI: 10.3390/md22110510] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2024] [Revised: 11/07/2024] [Accepted: 11/08/2024] [Indexed: 11/28/2024] Open
Abstract
Exposure to toxigenic harmful algal blooms (HABs) can result in widely recognized acute poisoning in humans. The five most commonly recognized HAB-related illnesses are diarrhetic shellfish poisoning (DSP), paralytic shellfish poisoning (PSP), amnesic shellfish poisoning (ASP), neurotoxic shellfish poisoning (NSP), and ciguatera poisoning (CP). Despite being caused by exposure to various toxins or toxin analogs, these clinical syndromes share numerous similarities. Humans are exposed to these toxins mainly through the consumption of fish and shellfish, which serve as the main biological vectors. However, the risk of human diseases linked to toxigenic HABs is on the rise, corresponding to a dramatic increase in the occurrence, frequency, and intensity of toxigenic HABs in coastal regions worldwide. Although a growing body of studies have focused on the toxicological assessment of HAB-related species and their toxins on aquatic organisms, the organization of this information is lacking. Consequently, a comprehensive review of the adverse effects of HAB-associated species and their toxins on those organisms could deepen our understanding of the mechanisms behind their toxic effects, which is crucial to minimizing the risks of toxigenic HABs to human and public health. To this end, this paper summarizes the effects of the five most common HAB toxins on fish, shellfish, and humans and discusses the possible mechanisms.
Collapse
Affiliation(s)
| | | | - Wei-Dong Yang
- Key Laboratory of Aquatic Eutrophication and Control of Harmful Algal Blooms of Guangdong Higher Education Institute, College of Life Science and Technology, Jinan University, Guangzhou 510632, China; (K.-K.Y.); (H.-Y.L.)
| |
Collapse
|
3
|
Estevez P, Oses-Prieto J, Castro D, Penin A, Burlingame A, Gago-Martinez A. First Detection of Algal Caribbean Ciguatoxin in Amberjack Causing Ciguatera Poisoning in the Canary Islands (Spain). Toxins (Basel) 2024; 16:189. [PMID: 38668614 PMCID: PMC11054928 DOI: 10.3390/toxins16040189] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2024] [Revised: 04/10/2024] [Accepted: 04/11/2024] [Indexed: 04/29/2024] Open
Abstract
Ciguatera Poisoning (CP) is an illness associated with the consumption of fish contaminated with potent natural toxins found in the marine environment, commonly known as ciguatoxins (CTXs). The risk characterization of CP has become a worldwide concern due to the widespread expansion of these natural toxins. The identification of CTXs is hindered by the lack of commercially available reference materials. This limitation impedes progress in developing analytical tools and conducting toxicological studies essential for establishing regulatory levels for control. This study focuses on characterizing the CTX profile of an amberjack responsible for a recent CP case in the Canary Islands (Spain), located on the east Atlantic coast. The exceptional sensitivity offered by Capillary Liquid Chromatography coupled with High-Resolution Mass Spectrometry (cLC-HRMS) enabled the detection, for the first time in fish contaminated in the Canary Islands, of traces of an algal ciguatoxin recently identified in G. silvae and G. caribeaus from the Caribbean Sea. This algal toxin was structurally characterized by cLC-HRMS being initially identified as C-CTX5. The total toxin concentration of CTXs was eight times higher than the guidance level proposed by the Food and Drug Administration (0.1 ng C-CTX1/g fish tissue), with C-CTX1 and 17-hydroxy-C-CTX1 as major CTXs.
Collapse
Affiliation(s)
- Pablo Estevez
- Department of Pharmaceutical Chemistry, University of California San Francisco, San Francisco, CA 94158, USA; (P.E.); (J.O.-P.); (A.B.)
- Biomedical Research Center (CINBIO), Department of Analytical and Food Chemistry, Campus Universitario de Vigo, University of Vigo, 36310 Vigo, Spain; (D.C.); (A.P.)
| | - Juan Oses-Prieto
- Department of Pharmaceutical Chemistry, University of California San Francisco, San Francisco, CA 94158, USA; (P.E.); (J.O.-P.); (A.B.)
| | - David Castro
- Biomedical Research Center (CINBIO), Department of Analytical and Food Chemistry, Campus Universitario de Vigo, University of Vigo, 36310 Vigo, Spain; (D.C.); (A.P.)
| | - Alejandro Penin
- Biomedical Research Center (CINBIO), Department of Analytical and Food Chemistry, Campus Universitario de Vigo, University of Vigo, 36310 Vigo, Spain; (D.C.); (A.P.)
| | - Alma Burlingame
- Department of Pharmaceutical Chemistry, University of California San Francisco, San Francisco, CA 94158, USA; (P.E.); (J.O.-P.); (A.B.)
| | - Ana Gago-Martinez
- Biomedical Research Center (CINBIO), Department of Analytical and Food Chemistry, Campus Universitario de Vigo, University of Vigo, 36310 Vigo, Spain; (D.C.); (A.P.)
| |
Collapse
|
4
|
Barreiro-Crespo L, Fernández-Tejedor M, Diogène J, Rambla-Alegre M. The Temporal Distribution of Cyclic Imines in Shellfish in the Bays of Fangar and Alfacs, Northwestern Mediterranean Region. Toxins (Basel) 2023; 16:10. [PMID: 38251227 PMCID: PMC10819045 DOI: 10.3390/toxins16010010] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2023] [Revised: 11/29/2023] [Accepted: 12/05/2023] [Indexed: 01/23/2024] Open
Abstract
Spirolides (SPXs), gymnodimines (GYMs), and pinnatoxins (PnTXs) have been detected in shellfish from the northwestern Mediterranean coast of Spain. Several samples of bivalves were collected from Fangar Bay and Alfacs Bay in Catalonia over a period of over 7 years (from 2015 to 2021). Shellfish samples were analyzed for cyclic imines (CIs) on an LC1200 Agilent and 3200 QTrap triple-quadrupole mass spectrometer. In shellfish, SPX-1 was detected in two cases (of 26.5 µg/kg and 34 µg/kg), and GYM-A was only detected in trace levels in thirteen samples. Pinnatoxin G (PnTX-G) was detected in 44.6% of the samples, with its concentrations ranging from 2 µg/kg to 38.4 µg/kg. Statistical analyses revealed that seawater temperature influenced the presence or absence of these toxins. PnTX-G showed an extremely significant presence/temperature relationship in both bays in comparison to SPX-1 and GYM-A. The prevalence of these toxins in different bivalve mollusks was evaluated. A seasonal pattern was observed, in which the maximum concentrations were found in the winter months for SPX-1 and GYM-A but in the summer months for PnTX-G. The obtained results indicate that it is unlikely that CIs in the studied area pose a potential health risk through the consumption of a seafood diet. However, further toxicological information about CIs is necessary in order to perform a conclusive risk assessment.
Collapse
Affiliation(s)
- Lourdes Barreiro-Crespo
- Institute of Agrifood Research and Technology (IRTA), Ctra. Poble Nou km.5, 45350 La Ràpita, Spain; (L.B.-C.); (M.F.-T.); (J.D.)
- Department of Analytical Chemistry and Organic Chemistry, Universitat Rovira i Virgili, Marcel·lí Domingo s/n, 43002 Tarragona, Spain
| | - Margarita Fernández-Tejedor
- Institute of Agrifood Research and Technology (IRTA), Ctra. Poble Nou km.5, 45350 La Ràpita, Spain; (L.B.-C.); (M.F.-T.); (J.D.)
| | - Jorge Diogène
- Institute of Agrifood Research and Technology (IRTA), Ctra. Poble Nou km.5, 45350 La Ràpita, Spain; (L.B.-C.); (M.F.-T.); (J.D.)
| | - Maria Rambla-Alegre
- Institute of Agrifood Research and Technology (IRTA), Ctra. Poble Nou km.5, 45350 La Ràpita, Spain; (L.B.-C.); (M.F.-T.); (J.D.)
| |
Collapse
|
5
|
Guinle C, Núñez-Vázquez EJ, Fernández-Herrera LJ, Corona-Rojas DA, Tovar-Ramírez D. Toxicogenomic Effects of Dissolved Saxitoxin on the Early Life Stages of the Longfin Yellowtail ( Seriola rivoliana). Mar Drugs 2023; 21:597. [PMID: 37999421 PMCID: PMC10671919 DOI: 10.3390/md21110597] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2023] [Revised: 11/09/2023] [Accepted: 11/16/2023] [Indexed: 11/25/2023] Open
Abstract
Harmful algal blooms (HABs) can produce a variety of noxious effects and, in some cases, the massive mortality of wild and farmed marine organisms. Some HAB species produce toxins that are released into seawater or transferred via food webs (particulate toxin fraction). The objective of the present study was to identify the toxicological effects of subacute exposure to saxitoxin (STX) during embryonic and early larval stages in Seriola rivoliana. Eggs were exposed to dissolved 19 STX (100 μg L-1). The toxic effects of STX were evaluated via the hatching percentage, the activity of three enzymes (protein and alkaline phosphatases and peroxidase), and the expression of four genes (HSF2, Nav1.4b, PPRC1, and DUSP8). A low hatching percentage (less than 5%) was observed in 44 hpf (hours post fertilization) embryos exposed to STX compared to 71% in the unexposed control. At this STX concentration, no oxidative stress in the embryos was evident. However, STX induced the expression of the NaV1.4 channel α-subunit (NaV1.4b), which is the primary target of this toxin. Our results revealed the overexpression of all four candidate genes in STX-intoxicated lecithotrophic larvae, reflecting the activation of diverse cellular processes involved in stress responses (HSF2), lipid metabolism (PPRC1), and MAP kinase signaling pathways associated with cell proliferation and differentiation (DUSP8). The effects of STX were more pronounced in young larvae than in embryos, indicating a stage-specific sensitivity to the toxin.
Collapse
Affiliation(s)
- Colleen Guinle
- Centro de Investigaciones Biológicas del Noroeste, Laboratorio de Fisiología Comparada y Genómica Funcional, Av. Instituto Politécnico Nacional 195 Playa Palo de Santa Rita, La Paz 23096, Mexico; (C.G.); (D.A.C.-R.)
| | - Erick Julián Núñez-Vázquez
- Centro de Investigaciones Biológicas del Noroeste, Laboratorio de Toxinas Marinas y Aminoácidos, Av. Instituto Politécnico Nacional 195 Playa Palo de Santa Rita, La Paz 23096, Mexico;
| | - Leyberth José Fernández-Herrera
- Centro de Investigaciones Biológicas del Noroeste, Laboratorio de Toxinas Marinas y Aminoácidos, Av. Instituto Politécnico Nacional 195 Playa Palo de Santa Rita, La Paz 23096, Mexico;
| | - Daniela Alejandra Corona-Rojas
- Centro de Investigaciones Biológicas del Noroeste, Laboratorio de Fisiología Comparada y Genómica Funcional, Av. Instituto Politécnico Nacional 195 Playa Palo de Santa Rita, La Paz 23096, Mexico; (C.G.); (D.A.C.-R.)
| | - Dariel Tovar-Ramírez
- Centro de Investigaciones Biológicas del Noroeste, Laboratorio de Fisiología Comparada y Genómica Funcional, Av. Instituto Politécnico Nacional 195 Playa Palo de Santa Rita, La Paz 23096, Mexico; (C.G.); (D.A.C.-R.)
| |
Collapse
|
6
|
Costa PR, Churro C, Rodrigues SM, Frazão B, Barbosa M, Godinho L, Soliño L, Timóteo V, Gouveia N. A 15-Year Retrospective Review of Ciguatera in the Madeira Islands (North-East Atlantic, Portugal). Toxins (Basel) 2023; 15:630. [PMID: 37999493 PMCID: PMC10674775 DOI: 10.3390/toxins15110630] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2023] [Revised: 10/24/2023] [Accepted: 10/24/2023] [Indexed: 11/25/2023] Open
Abstract
The first ciguatera fish poisoning (CFP) in Portugal dates from 2008 when 11 people reported CFP symptoms after consuming a 30 kg amberjack caught around the Selvagens Islands (Madeira Archipelago). Since then, 49 human poisonings have been reported. The emergence of a new threat challenged scientists and regulators, as methods for toxic microalgae analyses and ciguatoxin (CTX) detection were not implemented. To minimise the risk of ciguatera, the Madeira Archipelago authorities interdicted fisheries in Selvagens Islands and banned the capture of amberjacks weighing more than 10 kg in the entire region of Madeira Archipelago. The accurate identification and quantification of the benthic toxin-producing algae species spreading to new areas require efforts in terms of both microscopy and molecular techniques. Two ciguatera-causing dinoflagellates, Gambierdiscus excentricus and Gambierdiscus australes, were identified in the Madeira Island and Selvagens sub-archipelago, respectively. Regarding the CTX analysis (N2a cell-based assay and LC-MS) in fish, the results indicate that the Selvagens Islands are a ciguatera risk area and that fish vectoring CTX are not limited to top predator species. Nevertheless, advances and improvements in screening methods for the fast detection of toxicity in seafood along with certified reference material and sensitive and selective targeted analytical methods for the determination of CTX content are still pending. This study aims to revise the occurrence of ciguatera cases in the Madeira Archipelago since its first detection in 2008, to discuss the risk management strategy that was implemented, and to provide a summary of the available data on the bioaccumulation of CTX in marine fish throughout the marine food web, taking into consideration their ecological significance, ecosystem dynamics, and fisheries relevance.
Collapse
Affiliation(s)
- Pedro Reis Costa
- IPMA—Portuguese Institute of the Sea and Atmosphere, Rua Alfredo Magalhães Ramalho 6, 1495-165 Lisbon, Portugal; (C.C.); (S.M.R.); (B.F.); (M.B.); (L.G.); (L.S.)
- CCMAR—Centre of Marine Sciences, University of Algarve, Campus of Gambelas, 8005-139 Faro, Portugal
| | - Catarina Churro
- IPMA—Portuguese Institute of the Sea and Atmosphere, Rua Alfredo Magalhães Ramalho 6, 1495-165 Lisbon, Portugal; (C.C.); (S.M.R.); (B.F.); (M.B.); (L.G.); (L.S.)
- CIIMAR—Interdisciplinary Centre of Marine and Environmental Research, University of Porto, Terminal de Cruzeiros do Porto de Leixões, Av. General Norton de Matos, s/n, 4450-208 Porto, Portugal
| | - Susana Margarida Rodrigues
- IPMA—Portuguese Institute of the Sea and Atmosphere, Rua Alfredo Magalhães Ramalho 6, 1495-165 Lisbon, Portugal; (C.C.); (S.M.R.); (B.F.); (M.B.); (L.G.); (L.S.)
| | - Bárbara Frazão
- IPMA—Portuguese Institute of the Sea and Atmosphere, Rua Alfredo Magalhães Ramalho 6, 1495-165 Lisbon, Portugal; (C.C.); (S.M.R.); (B.F.); (M.B.); (L.G.); (L.S.)
| | - Miguel Barbosa
- IPMA—Portuguese Institute of the Sea and Atmosphere, Rua Alfredo Magalhães Ramalho 6, 1495-165 Lisbon, Portugal; (C.C.); (S.M.R.); (B.F.); (M.B.); (L.G.); (L.S.)
| | - Lia Godinho
- IPMA—Portuguese Institute of the Sea and Atmosphere, Rua Alfredo Magalhães Ramalho 6, 1495-165 Lisbon, Portugal; (C.C.); (S.M.R.); (B.F.); (M.B.); (L.G.); (L.S.)
| | - Lucía Soliño
- IPMA—Portuguese Institute of the Sea and Atmosphere, Rua Alfredo Magalhães Ramalho 6, 1495-165 Lisbon, Portugal; (C.C.); (S.M.R.); (B.F.); (M.B.); (L.G.); (L.S.)
| | - Viriato Timóteo
- Laboratório Regional de Veterinária e Segurança Alimentar, Caminho das Quebradas de Baixo nº 79, S. Martinho, 9000-254 Funchal, Portugal; (V.T.); (N.G.)
| | - Neide Gouveia
- Laboratório Regional de Veterinária e Segurança Alimentar, Caminho das Quebradas de Baixo nº 79, S. Martinho, 9000-254 Funchal, Portugal; (V.T.); (N.G.)
| |
Collapse
|
7
|
Li Q, Mahmudiono T, Mohammadi H, Nematollahi A, Hoseinvandtabar S, Mehri F, Hasanzadeh V, Limam I, Fakhri Y, Thai VN. Concentration ciguatoxins in fillet of fish: A global systematic review and meta-analysis. Heliyon 2023; 9:e18500. [PMID: 37554806 PMCID: PMC10404960 DOI: 10.1016/j.heliyon.2023.e18500] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2023] [Revised: 07/10/2023] [Accepted: 07/19/2023] [Indexed: 08/10/2023] Open
Abstract
In the current study, an attempt was made to meta-analyze and discuss the concentration of ciguatoxins (CTXs) in fillets of fish based on country and water resources subgroups. The search was conducted in Scopus and PubMed, Embase and Web of Science to retrieve papers about the concentration of CTXs in fillet fish until July 2022. Meta-analysis concentration of CTXs was conducted based on countries and water resources subgroups in the random effects model (REM). The sort of countries based on the pooled concentration of CTXs was Kiribati (3.904 μg/kg) > Vietnam (1.880 μg/kg) > Macaronesia (1.400 μg/kg) > French (1.261 μg/kg) > China (0.674 μg/kg) > Japan (0.572 μg/kg) > USA (0.463 μg/kg) > Spain (0.224 μg/kg) > UK (0.170 μg/kg) > Fiji (0.162 μg/kg) > Mexico (0.150 μg/kg) > Australia (0.138 μg/kg) > Portugal (0.011 μg/kg). CTXs concentrations in all countries are higher than the safe limits of CTX1C (0.1 μg/kg). However, based on the safe limits of CTX1P, the concentrations of CTXs in just Portugal meet the regulation level (0.01 μg/kg). The minimum and maximum concentrations of CTXs were as observed in Selvagens Islands (0.011 μg/kg) and St Barthelemy (7.875 μg/kg) respectively. CTXs concentrations in all water resources are higher than safe limits of CTX1C (0.1 μg/kg) and CTX1B (0.01 μg/kg). Therefore, it is recommended to carry out continuous control pans of CTXs concentration in fish in different countries and water sources.
Collapse
Affiliation(s)
- Qingxiao Li
- College of Grain Engineering, Henan Industry and Trade Vocational College, Zhengzhou,451191, Henan Province, China
| | - Trias Mahmudiono
- Department of Nutrition, Faculty of Public Health, Universitas Airlangga, Surabaya, Indonesia
| | - Hossein Mohammadi
- Department of Bioimaging, School of Advanced Technologies in Medicine, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Amene Nematollahi
- Department of Food Safety and Hygiene, School of Health, Fasa University of Medical Sciences, Fasa, Iran
| | - Somayeh Hoseinvandtabar
- Student Research Committee, School of Public Health, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Fereshteh Mehri
- Nutrition Health Research Center, Center of Excellence for Occupational Health, Research Center for Health Sciences, School of Public Health, Hamadan University of Medical Sciences, Hamadan, Iran
| | - Vajihe Hasanzadeh
- Department of Environmental Health Engineering, School of Public Health and Safety, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Intissar Limam
- Laboratory of Materials, Treatment and Analysis, National Institute of Research and Physicochemical Analysis; and High School for Science and Health Techniques of Tunis, University of Tunis El Manar, Tunisia
| | - Yadolah Fakhri
- Food Health Research Center, Hormozgan University of Medical Sciences, Bandar Abbas, Iran
| | - Van Nam Thai
- HUTECH Institute of Applied Sciences, HUTECH University, 475A, Dien Bien Phu, Ward 25, Binh Thanh District, Ho Chi Minh City, Vietnam
| |
Collapse
|
8
|
Pottier I, Lewis RJ, Vernoux JP. Ciguatera Fish Poisoning in the Caribbean Sea and Atlantic Ocean: Reconciling the Multiplicity of Ciguatoxins and Analytical Chemistry Approach for Public Health Safety. Toxins (Basel) 2023; 15:453. [PMID: 37505722 PMCID: PMC10467118 DOI: 10.3390/toxins15070453] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2023] [Revised: 06/29/2023] [Accepted: 07/01/2023] [Indexed: 07/29/2023] Open
Abstract
Ciguatera is a major circumtropical poisoning caused by the consumption of marine fish and invertebrates contaminated with ciguatoxins (CTXs): neurotoxins produced by endemic and benthic dinoflagellates which are biotransformed in the fish food-web. We provide a history of ciguatera research conducted over the past 70 years on ciguatoxins from the Pacific Ocean (P-CTXs) and Caribbean Sea (C-CTXs) and describe their main chemical, biochemical, and toxicological properties. Currently, there is no official method for the extraction and quantification of ciguatoxins, regardless their origin, mainly due to limited CTX-certified reference materials. In this review, the extraction and purification procedures of C-CTXs are investigated, considering specific objectives such as isolating reference materials, analysing fish toxin profiles, or ensuring food safety control. Certain in vitro assays may provide sufficient sensitivity to detect C-CTXs at sub-ppb levels in fish, but they do not allow for individual identification of CTXs. Recent advances in analysis using liquid chromatography coupled with low- or high-resolution mass spectrometry provide new opportunities to identify known C-CTXs, to gain structural insights into new analogues, and to quantify C-CTXs. Together, these methods reveal that ciguatera arises from a multiplicity of CTXs, although one major form (C-CTX-1) seems to dominate. However, questions arise regarding the abundance and instability of certain C-CTXs, which are further complicated by the wide array of CTX-producing dinoflagellates and fish vectors. Further research is needed to assess the toxic potential of the new C-CTX and their role in ciguatera fish poisoning. With the identification of C-CTXs in the coastal USA and Eastern Atlantic Ocean, the investigation of ciguatera fish poisoning is now a truly global effort.
Collapse
Affiliation(s)
- Ivannah Pottier
- Normandie Univ, UNICAEN, UNIROUEN, ABTE, 14000 Caen, France;
| | - Richard J. Lewis
- Institute for Molecular Bioscience, The University of Queensland, Brisbane 4072, Australia
| | | |
Collapse
|
9
|
Estevez P, Oses Prieto J, Burlingame A, Gago Martinez A. Characterization of the Ciguatoxin Profile in Fish Samples from the Eastern Atlantic Ocean using Capillary Liquid Chromatography-High Resolution Mass Spectrometry. Food Chem 2023; 418:135960. [PMID: 36965390 DOI: 10.1016/j.foodchem.2023.135960] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2022] [Revised: 03/09/2023] [Accepted: 03/13/2023] [Indexed: 03/17/2023]
Abstract
Ciguatera Poisoning is an emerging risk in the east Atlantic Ocean. Despite characterization efforts, the complete profile of ciguatoxin chemical species in these waters is still unknown. These efforts have been complicated by a lack of reference materials and scarcity of fish contaminated with high levels of ciguatoxins. Development and application of analytical methods with enhanced selectivity and sensitivity is essential for ciguatoxin characterization. Here, we developed an analytical characterization approach using capillary liquid chromatography coupled to high resolution mass spectrometry applied to reference materials obtained from ciguatoxin contaminated fish. Capillary LC coupled mass spectrometry resulted in increased sensitivity leading to the confirmation of C-CTX1 as the principal ciguatoxin present in these samples. We also detected and structurally characterized minor C-CTXs analogues consisting of C-CTX3/4, hydroxy-, didehydro-, and methoxy- metabolites.
Collapse
Affiliation(s)
- Pablo Estevez
- Department of Pharmaceutical Chemistry, University of California San Francisco, San Francisco, CA 94158, USA; Biomedical Research Center (CINBIO), Department of Analytical and Food Chemistry, Campus Universitario de Vigo, University of Vigo, 36310 Vigo, Spain.
| | - Juan Oses Prieto
- Department of Pharmaceutical Chemistry, University of California San Francisco, San Francisco, CA 94158, USA
| | - Alma Burlingame
- Department of Pharmaceutical Chemistry, University of California San Francisco, San Francisco, CA 94158, USA
| | - Ana Gago Martinez
- Biomedical Research Center (CINBIO), Department of Analytical and Food Chemistry, Campus Universitario de Vigo, University of Vigo, 36310 Vigo, Spain
| |
Collapse
|
10
|
Metabolic Hepatic Disorders Caused by Ciguatoxins in Goldfish ( Carassius auratus). Animals (Basel) 2022; 12:ani12243500. [PMID: 36552420 PMCID: PMC9774503 DOI: 10.3390/ani12243500] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2022] [Revised: 12/04/2022] [Accepted: 12/07/2022] [Indexed: 12/14/2022] Open
Abstract
Ciguatera poisoning (CP) is a foodborne disease known for centuries; however, little research has been conducted on the effects of ciguatoxins (CTXs) on fish metabolism. The main objective of this study was to assess different hepatic compounds observed in goldfish (Carassius auratus) fed C-CTX1 using nuclear magnetic resonance (NMR)-based metabolomics. Thirteen goldfish were treated with C-CTX1-enriched flesh and sampled on days 1, 8, 15, 29, 36, and 43. On day 43, two individuals, referred to as 'Detox', were isolated until days 102 and 121 to evaluate the possible recovery after returning to a commercial feed. At each sampling, hepatic tissue was weighed to calculate the hepatosomatic index (HSI) and analyzed for the metabolomics study; animals fed toxic flesh showed a higher HSI, even greater in the 'Detox' individuals. Furthermore, altered concentrations of alanine, lactate, taurine, glucose, and glycogen were observed in animals with the toxic diet. These disturbances could be related to an increase in ammonium ion (NH4+) production. An increase in ammonia (NH3) concentration in water was observed in the aquarium where the fish ingested toxic meat compared to the non-toxic aquarium. All these changes may be rationalized by the relationship between CTXs and the glucose-alanine cycle.
Collapse
|
11
|
Campàs M, Leonardo S, Rambla-Alegre M, Sagristà N, Vaya R, Diogène J, Torréns M, Fragoso A. Cyclodextrin polymer clean-up method for the detection of ciguatoxins in fish with cell-based assays. Food Chem 2022; 401:134196. [PMID: 36115230 DOI: 10.1016/j.foodchem.2022.134196] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2022] [Revised: 08/09/2022] [Accepted: 09/08/2022] [Indexed: 12/26/2022]
Abstract
Ciguatoxins (CTXs) are marine toxins produced by microalgae of the genera Gambierdiscus and Fukuyoa, which are transferred through the food webs, reaching humans and causing a poisoning known as ciguatera. The cell-based assay (CBA) is commonly used for their detection because of its high sensitivity and the provided toxicological information. However, matrix effects may interfere in the CBA. In this work, γ-cyclodextrin-hexamethylene diisocyanate (γ-CD-HDI), γ-cyclodextrin-epichlorohydrin (γ-CD-EPI) and γ-CD-EPI conjugated to magnetic beads (γ-CD-EPI-MB) have been evaluated as clean-up materials for fish flesh extracts containing CTXs. The best results were achieved with γ-CD-HDI in column format, which showed a CTX1B recovery of 42% and 32% for Variola louti and Seriola dumerili, respectively, and allowed exposing cells to at least 400 mg/mL of fish flesh. This clean-up strategy provides at least 4.6 and 3.0-fold higher sensitivities to the assay for V.louti and S.dumerili, respectively, improving the reliability of CTX quantification.
Collapse
Affiliation(s)
- Mònica Campàs
- Marine and Continental Waters, IRTA, Ctra. Poble Nou km 5.5, 43540 La Ràpita, Spain.
| | - Sandra Leonardo
- Marine and Continental Waters, IRTA, Ctra. Poble Nou km 5.5, 43540 La Ràpita, Spain
| | - Maria Rambla-Alegre
- Marine and Continental Waters, IRTA, Ctra. Poble Nou km 5.5, 43540 La Ràpita, Spain
| | - Núria Sagristà
- Marine and Continental Waters, IRTA, Ctra. Poble Nou km 5.5, 43540 La Ràpita, Spain
| | - Raquel Vaya
- Marine and Continental Waters, IRTA, Ctra. Poble Nou km 5.5, 43540 La Ràpita, Spain
| | - Jorge Diogène
- Marine and Continental Waters, IRTA, Ctra. Poble Nou km 5.5, 43540 La Ràpita, Spain
| | - Mabel Torréns
- Departament d'Enginyeria Química, Universitat Rovira i Virgili, Av. Països Catalans 26, 43007 Tarragona, Spain
| | - Alex Fragoso
- Departament d'Enginyeria Química, Universitat Rovira i Virgili, Av. Països Catalans 26, 43007 Tarragona, Spain
| |
Collapse
|
12
|
Fernández-Zabala J, Amorim A, Tuya F, Herrera R, Soler-Onís E. Playing hide and seek: Distribution with depth of potentially harmful epibenthic dinoflagellates of Southern El Hierro Island, Canary Islands (NE Atlantic). HARMFUL ALGAE 2022; 117:102271. [PMID: 35944952 DOI: 10.1016/j.hal.2022.102271] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/16/2022] [Revised: 06/01/2022] [Accepted: 06/08/2022] [Indexed: 06/15/2023]
Abstract
The study of epibenthic assemblages of harmful dinoflagellates (BHABs) is commonly conducted in shallow infralittoral zones (0 - 5 m) and are seldom investigated at deeper waters. In this study, the distribution with depth of five BHAB genera (Gambierdiscus, Ostreopsis, Prorocentrum, Coolia and Amphidinium) was investigated in the south of El Hierro island (Canary Islands, Spain). Sampling involved the use of a standardized artificial substrate deployed at three depth levels (5, 10 and 20 m) that were visited at three different times throughout one year. The influence of three depth-correlated abiotic parameters, i.e. light, water motion and water temperature, on the vertical and seasonal distribution of the BHAB assemblage was also assessed. Two vertical distribution patterns were observed consistently through time: cell abundances of Ostreopsis and Coolia decreased from 5 to 20 m while those of Gambierdiscus, Prorocentrum and Amphidinium showed the reverse pattern, although significant differences were only observed between 5 and 10 - 20 m depth. In April, two members of the latter group, Gambierdiscus and Amphidinium, were even absent at 5 m depth. The recorded environmental parameters explained a high percentage of the observed distribution. In particular, model selection statistical approaches indicated that water motion was the most significant parameter. An analysis of Gambierdiscus at species level revealed the co-occurrence of four species in the study area: G. australes, G. belizeanus, G. caribaeus and G. excentricus. The species G. excentricus, reported here for the first time in El Hierro, showed a more restricted vertical and seasonal distribution than the other species, which may explain not being detected in previous studies in the area. The results obtained in this study highlight the importance of considering a wider depth range and different seasons of the year when investigating the ecology of BHABs and assessing their risk and impacts on human health and the environment. Only then, efficient monitoring programs will be implemented in the Canary Islands and globally in areas affected by these events.
Collapse
Affiliation(s)
- Juan Fernández-Zabala
- Observatorio Canario de HABs, FCPCT-ULPGC, Parque Científico Tecnológico Marino de Taliarte, 35214 Taliarte, Las Palmas, Canary Islands, Spain; Grupo de Ecofisiología Marina (EOMAR), IU-ECOAQUA, Universidad de Las Palmas de Gran Canaria, Campus Universitario de Tafira, 35017, Las Palmas, Canary Islands, Spain.
| | - Ana Amorim
- MARE-Centro de Ciências do Mar e do Ambiente, Faculdade de Ciências, Universidade de Lisboa, 1749-016 Lisboa, Portugal
| | - Fernando Tuya
- Grupo en Biodiversidad y Conservación (BIOCON), IU-ECOAQUA, Universidad de Las Palmas de Gran Canaria, 35017 Las Palmas, Canary Islands, Spain
| | - Rogelio Herrera
- Servicio de Biodiversidad, Viceconsejería de Medio Ambiente, Consejería de Agricultura, Ganadería, Pesca y Medio Ambiente, 35003, Las Palmas, Canary Islands, Spain
| | - Emilio Soler-Onís
- Observatorio Canario de HABs, FCPCT-ULPGC, Parque Científico Tecnológico Marino de Taliarte, 35214 Taliarte, Las Palmas, Canary Islands, Spain; Grupo de Ecofisiología Marina (EOMAR), IU-ECOAQUA, Universidad de Las Palmas de Gran Canaria, Campus Universitario de Tafira, 35017, Las Palmas, Canary Islands, Spain
| |
Collapse
|
13
|
Gambierdiscus and Its Associated Toxins: A Minireview. Toxins (Basel) 2022; 14:toxins14070485. [PMID: 35878223 PMCID: PMC9324261 DOI: 10.3390/toxins14070485] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2022] [Revised: 07/11/2022] [Accepted: 07/12/2022] [Indexed: 11/17/2022] Open
Abstract
Gambierdiscus is a dinoflagellate genus widely distributed throughout tropical and subtropical regions. Some members of this genus can produce a group of potent polycyclic polyether neurotoxins responsible for ciguatera fish poisoning (CFP), one of the most significant food-borne illnesses associated with fish consumption. Ciguatoxins and maitotoxins, the two major toxins produced by Gambierdiscus, act on voltage-gated channels and TRPA1 receptors, consequently leading to poisoning and even death in both humans and animals. Over the past few decades, the occurrence and geographic distribution of CFP have undergone a significant expansion due to intensive anthropogenic activities and global climate change, which results in more human illness, a greater public health impact, and larger economic losses. The global spread of CFP has led to Gambierdiscus and its toxins being considered an environmental and human health concern worldwide. In this review, we seek to provide an overview of recent advances in the field of Gambierdiscus and its associated toxins based on the existing literature combined with re-analyses of current data. The taxonomy, phylogenetics, geographic distribution, environmental regulation, toxin detection method, toxin biosynthesis, and pharmacology and toxicology of Gambierdiscus are summarized and discussed. We also highlight future perspectives on Gambierdiscus and its associated toxins.
Collapse
|
14
|
Darius HT, Paillon C, Mou-Tham G, Ung A, Cruchet P, Revel T, Viallon J, Vigliola L, Ponton D, Chinain M. Evaluating Age and Growth Relationship to Ciguatoxicity in Five Coral Reef Fish Species from French Polynesia. Mar Drugs 2022; 20:md20040251. [PMID: 35447924 PMCID: PMC9027493 DOI: 10.3390/md20040251] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2022] [Revised: 03/24/2022] [Accepted: 03/28/2022] [Indexed: 12/03/2022] Open
Abstract
Ciguatera poisoning (CP) results from the consumption of coral reef fish or marine invertebrates contaminated with potent marine polyether compounds, namely ciguatoxins. In French Polynesia, 220 fish specimens belonging to parrotfish (Chlorurus microrhinos, Scarus forsteni, and Scarus ghobban), surgeonfish (Naso lituratus), and groupers (Epinephelus polyphekadion) were collected from two sites with contrasted risk of CP, i.e., Kaukura Atoll versus Mangareva Island. Fish age and growth were assessed from otoliths’ yearly increments and their ciguatoxic status (negative, suspect, or positive) was evaluated by neuroblastoma cell-based assay. Using permutational multivariate analyses of variance, no significant differences in size and weight were found between negative and suspect specimens while positive specimens showed significantly greater size and weight particularly for E. polyphekadion and S. ghobban. However, eating small or low-weight specimens remains risky due to the high variability in size and weight of positive fish. Overall, no relationship could be evidenced between fish ciguatoxicity and age and growth characteristics. In conclusion, size, weight, age, and growth are not reliable determinants of fish ciguatoxicity which appears to be rather species and/or site-specific, although larger fish pose an increased risk of poisoning. Such findings have important implications in current CP risk management programs.
Collapse
Affiliation(s)
- Hélène Taiana Darius
- Institut Louis Malardé (ILM), Laboratory of Marine Biotoxins, UMR 241-EIO (IFREMER, ILM, IRD, Université de Polynésie Française), P.O. Box 30, Papeete 98713, Tahiti, French Polynesia; (A.U.); (P.C.); (T.R.); (J.V.); (M.C.)
- Correspondence: ; Tel.: +689-40-416-484
| | - Christelle Paillon
- ENTROPIE, IRD-Université de la Réunion-CNRS-Université de la Nouvelle-Calédonie-IFREMER, Labex Corail, 98848 Nouméa, New Caledonia, France; (C.P.); (G.M.-T.); (L.V.)
| | - Gérard Mou-Tham
- ENTROPIE, IRD-Université de la Réunion-CNRS-Université de la Nouvelle-Calédonie-IFREMER, Labex Corail, 98848 Nouméa, New Caledonia, France; (C.P.); (G.M.-T.); (L.V.)
| | - André Ung
- Institut Louis Malardé (ILM), Laboratory of Marine Biotoxins, UMR 241-EIO (IFREMER, ILM, IRD, Université de Polynésie Française), P.O. Box 30, Papeete 98713, Tahiti, French Polynesia; (A.U.); (P.C.); (T.R.); (J.V.); (M.C.)
| | - Philippe Cruchet
- Institut Louis Malardé (ILM), Laboratory of Marine Biotoxins, UMR 241-EIO (IFREMER, ILM, IRD, Université de Polynésie Française), P.O. Box 30, Papeete 98713, Tahiti, French Polynesia; (A.U.); (P.C.); (T.R.); (J.V.); (M.C.)
| | - Taina Revel
- Institut Louis Malardé (ILM), Laboratory of Marine Biotoxins, UMR 241-EIO (IFREMER, ILM, IRD, Université de Polynésie Française), P.O. Box 30, Papeete 98713, Tahiti, French Polynesia; (A.U.); (P.C.); (T.R.); (J.V.); (M.C.)
| | - Jérôme Viallon
- Institut Louis Malardé (ILM), Laboratory of Marine Biotoxins, UMR 241-EIO (IFREMER, ILM, IRD, Université de Polynésie Française), P.O. Box 30, Papeete 98713, Tahiti, French Polynesia; (A.U.); (P.C.); (T.R.); (J.V.); (M.C.)
| | - Laurent Vigliola
- ENTROPIE, IRD-Université de la Réunion-CNRS-Université de la Nouvelle-Calédonie-IFREMER, Labex Corail, 98848 Nouméa, New Caledonia, France; (C.P.); (G.M.-T.); (L.V.)
| | - Dominique Ponton
- ENTROPIE, IRD-Université de la Réunion-CNRS-Université de la Nouvelle-Calédonie-IFREMER, c/o Institut Halieutique et des Sciences Marines (IH.SM), Université de Toliara, Rue Dr. Rabesandratana, P.O. Box 141, Toliara 601, Madagascar;
| | - Mireille Chinain
- Institut Louis Malardé (ILM), Laboratory of Marine Biotoxins, UMR 241-EIO (IFREMER, ILM, IRD, Université de Polynésie Française), P.O. Box 30, Papeete 98713, Tahiti, French Polynesia; (A.U.); (P.C.); (T.R.); (J.V.); (M.C.)
| |
Collapse
|
15
|
Tudó À, Rambla-Alegre M, Flores C, Sagristà N, Aguayo P, Reverté L, Campàs M, Gouveia N, Santos C, Andree KB, Marques A, Caixach J, Diogène J. Identification of New CTX Analogues in Fish from the Madeira and Selvagens Archipelagos by Neuro-2a CBA and LC-HRMS. Mar Drugs 2022; 20:md20040236. [PMID: 35447910 PMCID: PMC9031360 DOI: 10.3390/md20040236] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2022] [Revised: 03/25/2022] [Accepted: 03/27/2022] [Indexed: 12/10/2022] Open
Abstract
Ciguatera Poisoning (CP) is caused by consumption of fish or invertebrates contaminated with ciguatoxins (CTXs). Presently CP is a public concern in some temperate regions, such as Macaronesia (North-Eastern Atlantic Ocean). Toxicity analysis was performed to characterize the fish species that can accumulate CTXs and improve understanding of the ciguatera risk in this area. For that, seventeen fish specimens comprising nine species were captured from coastal waters inMadeira and Selvagens Archipelagos. Toxicity was analysed by screening CTX-like toxicity with the neuroblastoma cell-based assay (neuro-2a CBA). Afterwards, the four most toxic samples were analysed with liquid chromatography-high resolution mass spectrometry (LC-HRMS). Thirteen fish specimens presented CTX-like toxicity in their liver, but only four of these in their muscle. The liver of one specimen of Muraena augusti presented the highest CTX-like toxicity (0.270 ± 0.121 µg of CTX1B equiv·kg−1). Moreover, CTX analogues were detected with LC-HRMS, for M. augusti and Gymnothorax unicolor. The presence of three CTX analogues was identified: C-CTX1, which had been previously described in the area; dihydro-CTX2, which is reported in the area for the first time; a putative new CTX m/z 1127.6023 ([M+NH4]+) named as putative C-CTX-1109, and gambieric acid A.
Collapse
Affiliation(s)
- Àngels Tudó
- Institute of Agrifood Research and Technology (IRTA), Marine and Continental Waters Program, Carretera de Poble Nou, 43540 La Ràpita, Spain; (À.T.); (N.S.); (P.A.); (L.R.); (M.C.); (K.B.A.); (J.D.)
| | - Maria Rambla-Alegre
- Institute of Agrifood Research and Technology (IRTA), Marine and Continental Waters Program, Carretera de Poble Nou, 43540 La Ràpita, Spain; (À.T.); (N.S.); (P.A.); (L.R.); (M.C.); (K.B.A.); (J.D.)
- Correspondence: ; Tel.: +34-977-74-54-27 (ext. 1824)
| | - Cintia Flores
- Mass Spectrometry Laboratory, Organic Pollutants, IDAEA-CSIC, Jordi Girona 18, 08034 Barcelona, Spain; (C.F.); (J.C.)
| | - Núria Sagristà
- Institute of Agrifood Research and Technology (IRTA), Marine and Continental Waters Program, Carretera de Poble Nou, 43540 La Ràpita, Spain; (À.T.); (N.S.); (P.A.); (L.R.); (M.C.); (K.B.A.); (J.D.)
| | - Paloma Aguayo
- Institute of Agrifood Research and Technology (IRTA), Marine and Continental Waters Program, Carretera de Poble Nou, 43540 La Ràpita, Spain; (À.T.); (N.S.); (P.A.); (L.R.); (M.C.); (K.B.A.); (J.D.)
| | - Laia Reverté
- Institute of Agrifood Research and Technology (IRTA), Marine and Continental Waters Program, Carretera de Poble Nou, 43540 La Ràpita, Spain; (À.T.); (N.S.); (P.A.); (L.R.); (M.C.); (K.B.A.); (J.D.)
| | - Mònica Campàs
- Institute of Agrifood Research and Technology (IRTA), Marine and Continental Waters Program, Carretera de Poble Nou, 43540 La Ràpita, Spain; (À.T.); (N.S.); (P.A.); (L.R.); (M.C.); (K.B.A.); (J.D.)
| | - Neide Gouveia
- Regional Fisheries Management-Madeira Government, Direção de Serviços de Investigação das Pescas (DSI-DRP), Estrada da Pontinha, 9004-562 Funchal, Portugal;
| | - Carolina Santos
- Instituto das Florestas e Conservação da Natureza, IP-RAM, Secretaria Regional do Ambiente e Recursos Naturais, Regional Government of Madeira, IFCN IP-RAM, 9050-027 Funchal, Portugal;
| | - Karl B. Andree
- Institute of Agrifood Research and Technology (IRTA), Marine and Continental Waters Program, Carretera de Poble Nou, 43540 La Ràpita, Spain; (À.T.); (N.S.); (P.A.); (L.R.); (M.C.); (K.B.A.); (J.D.)
| | - Antonio Marques
- Portuguese Institute of Sea and Atmosphere (IPMA), Division of Aquaculture, Seafood Upgrading and Bioprospection (DivAV), Avenida de Brasília, 1449-006 Lisbon, Portugal;
| | - Josep Caixach
- Mass Spectrometry Laboratory, Organic Pollutants, IDAEA-CSIC, Jordi Girona 18, 08034 Barcelona, Spain; (C.F.); (J.C.)
| | - Jorge Diogène
- Institute of Agrifood Research and Technology (IRTA), Marine and Continental Waters Program, Carretera de Poble Nou, 43540 La Ràpita, Spain; (À.T.); (N.S.); (P.A.); (L.R.); (M.C.); (K.B.A.); (J.D.)
| |
Collapse
|
16
|
Ciguatoxin Detection in Flesh and Liver of Relevant Fish Species from the Canary Islands. Toxins (Basel) 2022; 14:toxins14010046. [PMID: 35051023 PMCID: PMC8781511 DOI: 10.3390/toxins14010046] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2021] [Revised: 01/01/2022] [Accepted: 01/02/2022] [Indexed: 12/28/2022] Open
Abstract
The Canary Islands are a ciguatoxin (CTX) hotspot with an established official monitoring for the detection of CTX in fish flesh from the authorised points of first sale. Fish caught by recreational fishermen are not officially tested and the consumption of toxic viscera or flesh could lead to ciguatera poisoning (CP). The objectives of this study were to determine the presence of CTX-like toxicity in relevant species from this archipelago, compare CTX levels in liver and flesh and examine possible factors involved in their toxicity. Sixty amberjack (Seriola spp.), 27 dusky grouper (Epinephelus marginatus), 11 black moray eels (Muraena helena) and 11 common two-banded seabream (Diplodus vulgaris) were analysed by cell-based assay (CBA) and Caribbean ciguatoxin-1 (C-CTX1) was detected by liquid chromatography mass spectrometry (LC-MS/MS) in all these species. Most of the liver displayed higher CTX levels than flesh and even individuals without detectable CTX in flesh exhibited hepatic toxicity. Black moray eels stand out for the large difference between CTX concentration in both tissues. None of the specimens with non-toxic liver showed toxicity in flesh. This is the first evidence of the presence of C-CTX1 in the common two-banded seabream and the first report of toxicity comparison between liver and muscle from relevant fish species captured in the Canary Islands.
Collapse
|
17
|
Ramilo I, Figueroa RI, Rayón-Viña F, Cuadrado Á, Bravo I. Temperature-dependent growth and sexuality of the ciguatoxin producer dinoflagellate Gambierdiscus spp. in cultures established from the Canary Islands. HARMFUL ALGAE 2021; 110:102130. [PMID: 34887010 DOI: 10.1016/j.hal.2021.102130] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/06/2021] [Revised: 09/30/2021] [Accepted: 11/02/2021] [Indexed: 06/13/2023]
Abstract
Benthic dinoflagellates of the genus Gambierdiscus produce ciguatoxins, compounds that when metabolized in fish and consumed by humans cause ciguatera poisoning (CP). This syndrome, which is widespread in tropical and subtropical regions, has recently been reported also in subtropical-temperate latitudes such as the Canary Islands where CP events have been regularly detected since 2004. This study examined the effect of temperature on the growth of Gambierdiscus isolated from Canary waters: G. australes, G. caribaeus, G. carolinianus, G. excentricus, and G. silvae. From the temperature vs. growth curves, the maximum growth (µm), optimum temperature range for growth (Topt), and the temperature yielding maximum growth (Tm) were estimated for each species. The results revealed temperature-dependent differences in the growth parameters. G. caribaeus had the highest Tm and Topt, followed by G. australes, G. carolinianus, G. silvae, and G excentricus. G. australes tolerated the widest range of temperatures (from 15 °C to 29 °C), which may explain its broader geographic distribution, both worldwide and across the Canary archipelago. Neither G. excentricus nor G. silvae survived at 29 °C whereas G. caribaeus reached mean growth rates (± standard deviation) up to 0.19 ± 0.01 div.day-1 at that temperature, followed by G. australes (0.16 ± 0.01 div.day-1) and G. carolinianus (0.14 ± 0.04 div.day-1). G. caribaeus showed no measurable growth at 19°C, whereas G. excentricus and G. silvae along with G. australes appeared as the species better adapted to lower temperatures. In an intraspecific variability study of 12 strains of G. australes, the mean (± standard deviation) of µm and Tm were 0.17 ± 0.01 div.day-1 and 27.7 ± 0.5 °C, respectively. An analysis of the shapes and position of the cell nuclei at the different temperatures showed that nuclei characteristic of vegetative cells appeared mainly at 26 °C but extreme temperatures resulted in nuclei with a more variable morphology. The presence of putative zygotes at extreme temperatures (17 °C, 19 °C and 29 °C) suggests that sexual reproduction is promoted as an adaptive strategy which could play an important role in the expansion of geographic distribution of Gambierdiscus species.
Collapse
Affiliation(s)
- Isabel Ramilo
- Centro Oceanográfico de Vigo, Instituto Español de Oceanografía (IEO, CSIC), Subida a Radio Faro 50, 36390 Vigo, Spain
| | - Rosa Isabel Figueroa
- Centro Oceanográfico de Vigo, Instituto Español de Oceanografía (IEO, CSIC), Subida a Radio Faro 50, 36390 Vigo, Spain
| | - Fernando Rayón-Viña
- Centro Oceanográfico de Vigo, Instituto Español de Oceanografía (IEO, CSIC), Subida a Radio Faro 50, 36390 Vigo, Spain
| | - Ángeles Cuadrado
- Universidad de Alcalá (UAH), Dpto Biomedicina y Biotecnología, 28805 Alcalá de Henares, Madrid, Spain
| | - Isabel Bravo
- Centro Oceanográfico de Vigo, Instituto Español de Oceanografía (IEO, CSIC), Subida a Radio Faro 50, 36390 Vigo, Spain.
| |
Collapse
|
18
|
Costa PR, Estévez P, Soliño L, Castro D, Rodrigues SM, Timoteo V, Leao-Martins JM, Santos C, Gouveia N, Diogène J, Gago-Martínez A. An Update on Ciguatoxins and CTX-like Toxicity in Fish from Different Trophic Levels of the Selvagens Islands (NE Atlantic, Madeira, Portugal). Toxins (Basel) 2021; 13:toxins13080580. [PMID: 34437451 PMCID: PMC8402339 DOI: 10.3390/toxins13080580] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2021] [Revised: 07/28/2021] [Accepted: 08/17/2021] [Indexed: 11/17/2022] Open
Abstract
The Selvagens Islands, which are a marine protected area located at the southernmost point of the Portuguese maritime zone, have been associated with fish harboring ciguatoxins (CTX) and linked to ciguatera fish poisonings. This study reports the results of a field sampling campaign carried out in September 2018 in these remote and rarely surveyed islands. Fifty-six fish specimens from different trophic levels were caught for CTX-like toxicity determination by cell-based assay (CBA) and toxin content analysis by liquid chromatography with tandem mass spectrometry (LC-MS/MS). Notably, high toxicity levels were found in fish with an intermediate position in the food web, such as zebra seabream (Diplodus cervinus) and barred hogfish (Bodianus scrofa), reaching levels up to 0.75 µg CTX1B equivalent kg−1. The LC-MS/MS analysis confirmed that C-CTX1 was the main toxin, but discrepancies between CBA and LC-MS/MS in D. cervinus and top predator species, such as the yellowmouth barracuda (Sphyraena viridis) and amberjacks (Seriola spp.), suggest the presence of fish metabolic products, which need to be further elucidated. This study confirms that fish from coastal food webs of the Selvagens Islands represent a high risk of ciguatera, raising important issues for fisheries and environmental management of the Selvagens Islands.
Collapse
Affiliation(s)
- Pedro Reis Costa
- IPMA—Portuguese Institute of the Sea and Atmosphere, Av. Brasília, 1449-006 Lisbon, Portugal; (L.S.); (S.M.R.)
- CCMAR—Centre of Marine Sciences, Campus of Gambelas, University of Algarve, 8005-139 Faro, Portugal
- Correspondence: (P.R.C.); (J.D.); (A.G.-M.)
| | - Pablo Estévez
- Biomedical Research Center (CINBIO), Department of Analytical and Food Chemistry, Campus Universitario de Vigo, University of Vigo, 36310 Vigo, Spain; (P.E.); (D.C.); (J.M.L.-M.)
| | - Lucía Soliño
- IPMA—Portuguese Institute of the Sea and Atmosphere, Av. Brasília, 1449-006 Lisbon, Portugal; (L.S.); (S.M.R.)
- CCMAR—Centre of Marine Sciences, Campus of Gambelas, University of Algarve, 8005-139 Faro, Portugal
| | - David Castro
- Biomedical Research Center (CINBIO), Department of Analytical and Food Chemistry, Campus Universitario de Vigo, University of Vigo, 36310 Vigo, Spain; (P.E.); (D.C.); (J.M.L.-M.)
| | - Susana Margarida Rodrigues
- IPMA—Portuguese Institute of the Sea and Atmosphere, Av. Brasília, 1449-006 Lisbon, Portugal; (L.S.); (S.M.R.)
| | - Viriato Timoteo
- Regional Fisheries Management—Madeira Government, DSI-DRP, Estrada da Pontinha, 9004-562 Funchal, Madeira, Portugal; (V.T.); (N.G.)
| | - José Manuel Leao-Martins
- Biomedical Research Center (CINBIO), Department of Analytical and Food Chemistry, Campus Universitario de Vigo, University of Vigo, 36310 Vigo, Spain; (P.E.); (D.C.); (J.M.L.-M.)
| | - Carolina Santos
- Instituto das Florestas e Conservação da Natureza, IP-RAM, Secretaria Regional do Ambiente, e Recursos Naturais e Alterações Climáticas, Regional Government of Madeira, Rua João de Deus, n.º 12 E/F, R/C-C, 9050-027 Funchal, Madeira, Portugal;
| | - Neide Gouveia
- Regional Fisheries Management—Madeira Government, DSI-DRP, Estrada da Pontinha, 9004-562 Funchal, Madeira, Portugal; (V.T.); (N.G.)
| | - Jorge Diogène
- IRTA, Ctra Poble Nou km 5.5, 43540 Sant Carles de la Ràpita, Spain
- Correspondence: (P.R.C.); (J.D.); (A.G.-M.)
| | - Ana Gago-Martínez
- Biomedical Research Center (CINBIO), Department of Analytical and Food Chemistry, Campus Universitario de Vigo, University of Vigo, 36310 Vigo, Spain; (P.E.); (D.C.); (J.M.L.-M.)
- Correspondence: (P.R.C.); (J.D.); (A.G.-M.)
| |
Collapse
|
19
|
Gwinn JK, Uhlig S, Ivanova L, Fæste CK, Kryuchkov F, Robertson A. In Vitro Glucuronidation of Caribbean Ciguatoxins in Fish: First Report of Conjugative Ciguatoxin Metabolites. Chem Res Toxicol 2021; 34:1910-1925. [PMID: 34319092 PMCID: PMC9215509 DOI: 10.1021/acs.chemrestox.1c00181] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Ciguatoxins (CTX) are potent marine neurotoxins, which can bioaccumulate in seafood, causing a severe and prevalent human illness known as ciguatera poisoning (CP). Despite the worldwide impact of ciguatera, effective disease management is hindered by a lack of knowledge regarding the movement and biotransformation of CTX congeners in marine food webs, particularly in the Caribbean and Western Atlantic. In this study we investigated the hepatic biotransformation of C-CTX across several fish and mammalian species through a series of in vitro metabolism assays focused on phase I (CYP P450; functionalization) and phase II (UGT; conjugation) reactions. Using liquid chromatography high-resolution mass spectrometry to explore potential C-CTX metabolites, we observed two glucuronide products of C-CTX-1/-2 and provided additional evidence from high-resolution tandem mass spectrometry to support their identification. Chemical reduction experiments confirmed that the metabolites were comprised of four distinct glucuronide products with the sugar attached at two separate sites on C-CTX-1/-2 and excluded the C-56 hydroxyl group as the conjugation site. Glucuronidation is a novel biotransformation pathway not yet reported for CTX or other related polyether phycotoxins, yet its occurrence across all fish species tested suggests that it could be a prevalent and important detoxification mechanism in marine organisms. The absence of glucuronidation observed in this study for both rat and human microsomes suggests that alternate biotransformation pathways may be dominant in higher vertebrates.
Collapse
Affiliation(s)
- Jessica Kay Gwinn
- School of Marine and Environmental Sciences, University of South Alabama, Mobile, Alabama 36688, United States
- Dauphin Island Sea Lab, Dauphin Island, Alabama 36528, United States
| | - Silvio Uhlig
- Toxinology Research Group, Norwegian Veterinary Institute, Ås NO-1431, Norway
| | - Lada Ivanova
- Toxinology Research Group, Norwegian Veterinary Institute, Ås NO-1431, Norway
| | | | - Fedor Kryuchkov
- Toxinology Research Group, Norwegian Veterinary Institute, Ås NO-1431, Norway
| | - Alison Robertson
- School of Marine and Environmental Sciences, University of South Alabama, Mobile, Alabama 36688, United States
- Dauphin Island Sea Lab, Dauphin Island, Alabama 36528, United States
| |
Collapse
|
20
|
Sasaki M, Iwasaki K, Arai K. Synthesis and Structural Implication of the JKLMN-Ring Fragment of Caribbean Ciguatoxin C-CTX-1. J Org Chem 2021; 86:4580-4597. [PMID: 33667088 DOI: 10.1021/acs.joc.0c03031] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Synthesis of the JKLMN-ring fragment of Caribbean ciguatoxin C-CTX-1, the causative toxin of ciguatera fish poisoning in the Caribbean Sea and the Northeast Atlantic areas, is described in detail. Key to the synthesis are a [2,3]-sigmatropic rearrangement to construct a seven-membered α-hydroxy exo-enol ether, stereoselective construction of an angular tetrasubstituted stereogenic center on the seven-membered M-ring by a hydrogen atom transfer-based reductive olefin coupling, Suzuki-Miyaura coupling of the KLMN-ring enol phosphate with a highly congested M-ring, and silica gel-mediated epoxide ring opening to form the J-ring. Comparison of the nuclear magnetic resonance spectroscopic data for the synthesized fragment with those for the natural product provided support for the formerly assigned structure of the N-ring in the right-hand terminal of C-CTX-1.
Collapse
Affiliation(s)
- Makoto Sasaki
- Graduate School of Life Sciences, Tohoku University, 2-1-1 Katahira, Aoba-ku, Sendai, Japan
| | - Kotaro Iwasaki
- Graduate School of Life Sciences, Tohoku University, 2-1-1 Katahira, Aoba-ku, Sendai, Japan
| | - Keisuke Arai
- Graduate School of Life Sciences, Tohoku University, 2-1-1 Katahira, Aoba-ku, Sendai, Japan
| |
Collapse
|
21
|
Loeffler CR, Bodi D, Tartaglione L, Dell'Aversano C, Preiss-Weigert A. Improving in vitro ciguatoxin and brevetoxin detection: selecting neuroblastoma (Neuro-2a) cells with lower sensitivity to ouabain and veratridine (OV-LS). HARMFUL ALGAE 2021; 103:101994. [PMID: 33980434 DOI: 10.1016/j.hal.2021.101994] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/10/2020] [Revised: 12/31/2020] [Accepted: 01/25/2021] [Indexed: 06/12/2023]
Abstract
Marine biotoxins accumulating in seafood products pose a risk to human health. These toxins are often potent in minute amounts and contained within complex matrices; requiring sensitive, reliable, and robust methods for their detection. The mouse neuroblastoma (Neuro-2a) cytotoxicity assay (N2a-assay) is a sensitive, high-throughput, in vitro method effective for detecting sodium channel-specific marine biotoxins. The N2a-assay can be conducted to distinguish between specific effects on voltage-gated sodium (NaV) channels, caused by toxins that activate (e.g., ciguatoxins (CTXs), brevetoxins (PbTxs)) or block (e.g., tetrodotoxins, saxitoxins) the target NaV. The sensitivity and specificity of the assay to compounds activating the NaV are achieved through the addition of the pharmaceuticals ouabain (O) and veratridine (V). However, these compounds can be toxic to Neuro-2a cells and their application at insufficient or excessive concentrations can reduce the effectiveness of this assay for marine toxin detection. Therefore, during growth incubation, Neuro-2a cells were exposed to O and V, and surviving cells exhibiting a lower sensitivity to O and V (OV-LS) were propagated. OV-LS Neuro-2a cells were selected for 60-80% survival when exposed to 0.22/0.022 mM O/V during the cytotoxicity assay. At these conditions, OV-LS N2a cells demonstrated a 3.5-fold higher survival rate 71% ± 7.9 SD (n = 232), and lower sensitivity to O/V, compared to the original Neuro-2a cells 20% ± 9.0 SD (n = 16). Additionally, OV-LS N2a cells were 1.3-2.6-fold more sensitive for detecting CTX3C 1.35 pg/ml, CTX1B 2.06 pg/ml, and PbTx-3 3.04 ng/ml compared to Neuro-2a cells using 0.1/0.01 mM O/V. Detection of CTX3C in a complex fish matrix using OV-LS cells was 0.0048 pg CTX3C/mg fish tissue equivalent. This work shows the potential for a significant improvement in sensitivity for CTX3C, CTX1B, and PbTx-3 using the OV-LS N2a-assay.
Collapse
Affiliation(s)
- Christopher R Loeffler
- German Federal Institute for Risk Assessment, Department Safety in the Food Chain, National Reference Laboratory of Marine Biotoxins, Max-Dohrn-Str. 8-10, 10589 Berlin, Germany - www.bfr.bund.de; Department of Pharmacy, School of Medicine and Surgery, University of Napoli Federico II, Via D. Montesano 49, 80131, Napoli, Italy.
| | - Dorina Bodi
- German Federal Institute for Risk Assessment, Department Safety in the Food Chain, National Reference Laboratory of Marine Biotoxins, Max-Dohrn-Str. 8-10, 10589 Berlin, Germany - www.bfr.bund.de
| | - Luciana Tartaglione
- Department of Pharmacy, School of Medicine and Surgery, University of Napoli Federico II, Via D. Montesano 49, 80131, Napoli, Italy; CoNISMa - Italian Interuniversity Consortium on Marine Sciences, Piazzale Flaminio 9, 00196 Rome, Italy
| | - Carmela Dell'Aversano
- Department of Pharmacy, School of Medicine and Surgery, University of Napoli Federico II, Via D. Montesano 49, 80131, Napoli, Italy; CoNISMa - Italian Interuniversity Consortium on Marine Sciences, Piazzale Flaminio 9, 00196 Rome, Italy
| | - Angelika Preiss-Weigert
- German Federal Institute for Risk Assessment, Department Safety in the Food Chain, National Reference Laboratory of Marine Biotoxins, Max-Dohrn-Str. 8-10, 10589 Berlin, Germany - www.bfr.bund.de
| |
Collapse
|
22
|
Chinain M, Gatti CMI, Darius HT, Quod JP, Tester PA. Ciguatera poisonings: A global review of occurrences and trends. HARMFUL ALGAE 2021; 102:101873. [PMID: 33875186 DOI: 10.1016/j.hal.2020.101873] [Citation(s) in RCA: 70] [Impact Index Per Article: 17.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/20/2020] [Revised: 07/17/2020] [Accepted: 07/22/2020] [Indexed: 06/12/2023]
Abstract
Ciguatera Poisoning (CP) is the most prevalent, phycotoxin related seafood poisoning across the globe, affecting between 10,000 and 50,000 people annually. This illness results from the consumption of seafood contaminated with lipid soluble toxins known as ciguatoxins (CTXs) that are produced by benthic dinoflagellates in the genera Gambierdiscus and Fukuyoa. The present work reviews the global occurrence of CP events and outbreaks, based on both scientific and gray literature. Ciguatera prevalence is significantly underestimated due to a lack of recognition of ciguatera symptoms, limited collection of epidemiological data on a global level, and reticence to report ciguatera in CP-endemic regions. Analysis of the time-series data available for a limited number of countries indicates the highest incidence rates are consistently reported from two historical CP-endemic areas i.e., the Pacific and Caribbean regions, a situation due in part to the strong reliance of local communities on marine resources. Ciguatera-related fatalities are rare (<0.1% of reported cases). The vast majority of outbreaks involve carnivorous fish including snappers, groupers, wrasses, and barracudas. Since 2000, an expansion of the geographical range of CP has been observed in several areas like Macaronesia and east and southeast Asia. In some of these locales, random surveys confirmed the presence of CTXs in locally sourced fish, consistent with the concurrent report of novel CP incidents (e.g., Canary Islands, Madeira, Selvagens Islands, New South Wales). One characteristic of outbreaks occurring in Asia is that they often present as large disease clusters due to group consumption of a single contaminated fish. Similar observations are reported from the Indian Ocean in the form of shark poisoning outbreaks which often lead to singular types of CP characterized by a high fatality rate. Other atypical forms of CP linked to the consumption of marine invertebrates also have been documented recently. Owing to the significant health, socioeconomic and socio-cultural impacts of ciguatera, there is an urgent need for increased, standardized, coordinated efforts in ciguatera education, monitoring and research programs. Several regional and international initiatives have emerged recently, that may help improve patients' care, data collection at a global scale, and risk monitoring and management capabilities in countries most vulnerable to CP's toxic threat.
Collapse
Affiliation(s)
- M Chinain
- Laboratory of Marine Biotoxins, Institut Louis Malardé - UMR 241 EIO, BP 30, 98713 Papeete, Tahiti, French Polynesia.
| | - C M I Gatti
- Laboratory of Marine Biotoxins, Institut Louis Malardé - UMR 241 EIO, BP 30, 98713 Papeete, Tahiti, French Polynesia
| | - H T Darius
- Laboratory of Marine Biotoxins, Institut Louis Malardé - UMR 241 EIO, BP 30, 98713 Papeete, Tahiti, French Polynesia
| | - J-P Quod
- ARVAM-Pareto, Technopole de la Réunion, 14 rue Henri Cornu, 97490 Sainte-Clotilde, La Réunion, France
| | - P A Tester
- Ocean Tester, LLC, 295 Dills Point Road, Beaufort, NC 28516, USA
| |
Collapse
|
23
|
Sanchez-Henao A, García-Álvarez N, Padilla D, Ramos-Sosa M, Silva Sergent F, Fernández A, Estévez P, Gago-Martínez A, Diogène J, Real F. Accumulation of C-CTX1 in Muscle Tissue of Goldfish ( Carassius auratus) by Dietary Experience. Animals (Basel) 2021; 11:ani11010242. [PMID: 33477985 PMCID: PMC7835822 DOI: 10.3390/ani11010242] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2020] [Revised: 12/06/2020] [Accepted: 12/11/2020] [Indexed: 12/22/2022] Open
Abstract
Ciguatoxins (CTXs) are produced by dinoflagellates usually present in tropical and subtropical waters. These toxins are bioaccumulated and transformed in fish causing ciguatera fish poisoning (CFP) in humans. Few trials have been performed to understand how CTXs are incorporated into fish. This study developed an experimental model of goldfish (Carassius auratus) fed flesh contaminated with Caribbean ciguatoxin (C-CTX1). Fourteen goldfish were fed 0.014 ng CTX1B (Eq. g-1 of body weight) daily, and control goldfish received non-toxic flesh. CTX presence was determined by a cell-based assay on days 1, 8, 15, 29, 36, 43, and 84. Toxicity was detected in muscle from the second sampling and then seemed to stabilize at ~0.03 ng CTX1B Eq. g-1. After two weeks, all experimental goldfish developed lethargy and loss of brightness, but only two of them displayed erratic swimming and jerking movements near the sixth sampling. One of these fish had its toxic diet replaced by commercial food for 60 more days; the fish showed recovery signs within the first weeks and no CTX activity was detected. These results indicate that C-CTX1 could accumulate in goldfish muscle tissue and produce toxic symptoms, but also remarked on the detoxification and recovery capacity of this species.
Collapse
Affiliation(s)
- Andres Sanchez-Henao
- Division of Fish Health and Pathology, University Institute of Animal Health and Food Safety (IUSA), University of Las Palmas de Gran Canaria, 35416 Arucas, Spain
| | - Natalia García-Álvarez
- Division of Fish Health and Pathology, University Institute of Animal Health and Food Safety (IUSA), University of Las Palmas de Gran Canaria, 35416 Arucas, Spain
| | - Daniel Padilla
- Division of Fish Health and Pathology, University Institute of Animal Health and Food Safety (IUSA), University of Las Palmas de Gran Canaria, 35416 Arucas, Spain
| | - María Ramos-Sosa
- Division of Fish Health and Pathology, University Institute of Animal Health and Food Safety (IUSA), University of Las Palmas de Gran Canaria, 35416 Arucas, Spain
| | - Freddy Silva Sergent
- Division of Fish Health and Pathology, University Institute of Animal Health and Food Safety (IUSA), University of Las Palmas de Gran Canaria, 35416 Arucas, Spain
| | - Antonio Fernández
- Division of Fish Health and Pathology, University Institute of Animal Health and Food Safety (IUSA), University of Las Palmas de Gran Canaria, 35416 Arucas, Spain
| | - Pablo Estévez
- Department of Analytical and Food Chemistry, Campus Universitario de Vigo, University of Vigo, 36310 Vigo, Spain
| | - Ana Gago-Martínez
- Department of Analytical and Food Chemistry, Campus Universitario de Vigo, University of Vigo, 36310 Vigo, Spain
| | - Jorge Diogène
- Marine and Continental Waters Environmental Monitoring, IRTA, Ctra. Poble Nou, km 5.5, 43540 Sant Carles de la Ràpita, Spain
| | - Fernando Real
- Division of Fish Health and Pathology, University Institute of Animal Health and Food Safety (IUSA), University of Las Palmas de Gran Canaria, 35416 Arucas, Spain
| |
Collapse
|
24
|
Chinain M, Gatti CMI, Ung A, Cruchet P, Revel T, Viallon J, Sibat M, Varney P, Laurent V, Hess P, Darius HT. Evidence for the Range Expansion of Ciguatera in French Polynesia: A Revisit of the 2009 Mass-Poisoning Outbreak in Rapa Island (Australes Archipelago). Toxins (Basel) 2020; 12:E759. [PMID: 33271904 PMCID: PMC7759781 DOI: 10.3390/toxins12120759] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2020] [Revised: 11/27/2020] [Accepted: 11/28/2020] [Indexed: 01/14/2023] Open
Abstract
Ciguatera poisoning (CP) results from the consumption of seafood contaminated with ciguatoxins (CTXs). This disease is highly prevalent in French Polynesia with several well-identified hotspots. Rapa Island, the southernmost inhabited island in the country, was reportedly free of CP until 2007. This study describes the integrated approach used to investigate the etiology of a fatal mass-poisoning outbreak that occurred in Rapa in 2009. Symptoms reported in patients were evocative of ciguatera. Several Gambierdiscus field samples collected from benthic assemblages tested positive by the receptor binding assay (RBA). Additionally, the toxicity screening of ≈250 fish by RBA indicated ≈78% of fish could contain CTXs. The presence of CTXs in fish was confirmed by liquid chromatography tandem mass spectrometry (LC-MS/MS). The potential link between climate change and this range expansion of ciguatera to a subtropical locale of French Polynesia was also examined based on the analysis of temperature time-series data. Results are indicative of a global warming trend in Rapa area. A five-fold reduction in incidence rates was observed between 2009 and 2012, which was due in part to self-regulating behavior among individuals (avoidance of particular fish species and areas). Such observations underscore the prominent role played by community outreach in ciguatera risk management.
Collapse
Affiliation(s)
- Mireille Chinain
- Institut Louis Malardé, Laboratory of Marine Biotoxins—UMR EIO (IFREMER-ILM-IRD-UPF), P.O. Box 30, 98713 Papeete, Tahiti, French Polynesia; (C.M.i.G.); (A.U.); (P.C.); (T.R.); (J.V.); (H.T.D.)
| | - Clémence Mahana iti Gatti
- Institut Louis Malardé, Laboratory of Marine Biotoxins—UMR EIO (IFREMER-ILM-IRD-UPF), P.O. Box 30, 98713 Papeete, Tahiti, French Polynesia; (C.M.i.G.); (A.U.); (P.C.); (T.R.); (J.V.); (H.T.D.)
| | - André Ung
- Institut Louis Malardé, Laboratory of Marine Biotoxins—UMR EIO (IFREMER-ILM-IRD-UPF), P.O. Box 30, 98713 Papeete, Tahiti, French Polynesia; (C.M.i.G.); (A.U.); (P.C.); (T.R.); (J.V.); (H.T.D.)
| | - Philippe Cruchet
- Institut Louis Malardé, Laboratory of Marine Biotoxins—UMR EIO (IFREMER-ILM-IRD-UPF), P.O. Box 30, 98713 Papeete, Tahiti, French Polynesia; (C.M.i.G.); (A.U.); (P.C.); (T.R.); (J.V.); (H.T.D.)
| | - Taina Revel
- Institut Louis Malardé, Laboratory of Marine Biotoxins—UMR EIO (IFREMER-ILM-IRD-UPF), P.O. Box 30, 98713 Papeete, Tahiti, French Polynesia; (C.M.i.G.); (A.U.); (P.C.); (T.R.); (J.V.); (H.T.D.)
| | - Jérôme Viallon
- Institut Louis Malardé, Laboratory of Marine Biotoxins—UMR EIO (IFREMER-ILM-IRD-UPF), P.O. Box 30, 98713 Papeete, Tahiti, French Polynesia; (C.M.i.G.); (A.U.); (P.C.); (T.R.); (J.V.); (H.T.D.)
| | - Manoëlla Sibat
- Institut Français de Recherche Pour l’Exploitation de la Mer, Phycotoxins Laboratory, 44311 Nantes, France; (M.S.); (P.H.)
| | - Patrick Varney
- Météo France, Direction Inter-Régionale en Polynésie Française, P.O. Box 6005, 98702 Faa’a, Tahiti, French Polynesia; (P.V.); (V.L.)
| | - Victoire Laurent
- Météo France, Direction Inter-Régionale en Polynésie Française, P.O. Box 6005, 98702 Faa’a, Tahiti, French Polynesia; (P.V.); (V.L.)
| | - Philipp Hess
- Institut Français de Recherche Pour l’Exploitation de la Mer, Phycotoxins Laboratory, 44311 Nantes, France; (M.S.); (P.H.)
| | - Hélène Taiana Darius
- Institut Louis Malardé, Laboratory of Marine Biotoxins—UMR EIO (IFREMER-ILM-IRD-UPF), P.O. Box 30, 98713 Papeete, Tahiti, French Polynesia; (C.M.i.G.); (A.U.); (P.C.); (T.R.); (J.V.); (H.T.D.)
| |
Collapse
|
25
|
Epibenthic Harmful Marine Dinoflagellates from Fuerteventura (Canary Islands), with Special Reference to the Ciguatoxin-Producing Gambierdiscus. JOURNAL OF MARINE SCIENCE AND ENGINEERING 2020. [DOI: 10.3390/jmse8110909] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
The relationship between the ciguatoxin-producer benthic dinoflagellate Gambierdiscus and other epibenthic dinoflagellates in the Canary Islands was examined in macrophyte samples obtained from two locations of Fuerteventura Island in September 2016. The genera examined included Coolia, Gambierdiscus, Ostreopsis, Prorocentrum, Scrippsiella, Sinophysis, and Vulcanodinium. Distinct assemblages among these benthic dinoflagellates and preferential macroalgal communities were observed. Vulcanodinium showed the highest cell concentrations (81.6 × 103 cells gr−1 wet weight macrophyte), followed by Ostreopsis (25.2 × 103 cells gr−1 wet weight macrophyte). These two species were most represented at a station (Playitas) characterized by turfy Rhodophytes. In turn, Gambierdiscus (3.8 × 103 cells gr−1 wet weight macrophyte) and Sinophysis (2.6 × 103 cells gr−1 wet weight macrophyte) were mostly found in a second station (Cotillo) dominated by Rhodophytes and Phaeophytes. The influence of macrophyte’s thallus architecture on the abundance of dinoflagellates was observed. Filamentous morphotypes followed by macroalgae arranged in entangled clumps presented more richness of epiphytic dinoflagellates. Morphometric analysis was applied to Gambierdiscus specimens. By large, G. excentricus was the most abundant species and G. australes occupied the second place. The toxigenic potential of some of the genera/species distributed in the benthic habitats of the Canary coasts, together with the already known presence of ciguatera in the region, merits future studies on possible transmission of their toxins in the marine food chain.
Collapse
|
26
|
Neves RAF, Pardal MA, Nascimento SM, Silva A, Oliveira PJ, Rodrigues ET. High sensitivity of rat cardiomyoblast H9c2(2-1) cells to Gambierdiscus toxic compounds. AQUATIC TOXICOLOGY (AMSTERDAM, NETHERLANDS) 2020; 223:105475. [PMID: 32325308 DOI: 10.1016/j.aquatox.2020.105475] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/06/2019] [Revised: 03/18/2020] [Accepted: 03/18/2020] [Indexed: 06/11/2023]
Abstract
Ciguatera fish poisoning is a frequently reported non-bacterial food-borne illness related to the consumption of seafood contaminated with ciguatoxins, and possibly maitotoxins. These toxins are synthesized by marine dinoflagellate species of Gambierdiscus and Fukuyoa genera, and their abundance is a matter of great concern due to their adverse effects to aquatic life and human health. The present study aims to assess the sensitivity of rat cardiomyoblast H9c2(2-1) cells to Gambierdiscus toxic compounds using concentration- and time-dependent sulforhodamine B (SRB) colorimetric assays. Low concentrations of Gambierdiscus extracts (corresponding to 1.3-2.3 cells mL-1) induced a concentration-dependent response. Specificity in time-dependent response of H9c2(2-1) cells was demonstrated for G. excentricus after a 180 min exposure compared to both G. cf. belizeanus and G. silvae species, with EC50s obtained after 720 and 360 min, respectively. The sensitivity of H9c2(2-1) cells to dinoflagellate toxic compounds was also tested with other genera from benthic (Coolia malayensis, Ostreopsis cf. ovata, Prorocentrum hoffmannianum and P. lima) and planktonic (Amphidinium carterae and Lingulodinium polyedrum) habitats. Amphidinium, Coolia and Lingulodinium data did not present any concentration-response relationships, and EC50 values could only be obtained after 720 and 1440 min of exposure to both Prorocentrum species and O. cf. ovata, respectively. This study demonstrated that the H9c2(2-1) SRB assay represents a promising and sensitive tool for the detection of Gambierdiscus toxic compounds present in water samples, particularly of G. excentricus at very low cell abundances.
Collapse
Affiliation(s)
- Raquel A F Neves
- Department of Ecology and Marine Resources, Federal University of the State of Rio de Janeiro (UNIRIO), Av Pasteur 458-307, 22290-240, Rio de Janeiro, Brazil; CFE-Centre for Functional Ecology, Department of Life Sciences, University of Coimbra, Calçada Martim de Freitas, 3000-456 Coimbra, Portugal.
| | - Miguel A Pardal
- CFE-Centre for Functional Ecology, Department of Life Sciences, University of Coimbra, Calçada Martim de Freitas, 3000-456 Coimbra, Portugal.
| | - Silvia M Nascimento
- Department of Ecology and Marine Resources, Federal University of the State of Rio de Janeiro (UNIRIO), Av Pasteur 458-307, 22290-240, Rio de Janeiro, Brazil.
| | - Alexandra Silva
- Phytoplankton Laboratory, Division of Oceanography and Environment, Portuguese Institute for the Sea and Atmosphere (IPMA), Rua Alfredo Magalhães Ramalho 6, 1495-006, Lisboa, Portugal.
| | - Paulo J Oliveira
- CNC-Centre for Neuroscience and Cell Biology, University of Coimbra Biotech Building, Lot 8A, Biocant Park, 3060-197, Cantanhede, Portugal.
| | - Elsa T Rodrigues
- CFE-Centre for Functional Ecology, Department of Life Sciences, University of Coimbra, Calçada Martim de Freitas, 3000-456 Coimbra, Portugal.
| |
Collapse
|
27
|
Solanki H, Pierdet M, Thomas OP, Zubia M. Insights into the Metabolome of the Cyanobacterium Leibleinia gracilis from the Lagoon of Tahiti and First Inspection of Its Variability. Metabolites 2020; 10:E215. [PMID: 32456338 PMCID: PMC7281704 DOI: 10.3390/metabo10050215] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2020] [Revised: 05/18/2020] [Accepted: 05/21/2020] [Indexed: 01/31/2023] Open
Abstract
Cyanobacteria are known to produce a large diversity of specialized metabolites that can cause severe (eco)toxicological effects. In the lagoon of Tahiti, the benthic cyanobacterium Leibleinia gracilis is commonly found overgrowing the proliferative macroalga Turbinaria ornata or dead branching corals. The specialized metabolome of the cyanobacterium L. gracilis was therefore investigated together with its variability on both substrates and changes in environmental parameters. For the study of the metabolome variability, replicates of L. gracilis were collected in the same location of the lagoon of Tahiti before and after a raining event, both on dead corals and on T. ornata. The variability in the metabolome was inferred from a comparative non-targeted metabolomic using high resolution mass spectrometry (MS) data and a molecular network analysis built through MS/MS analyses. Oxidized fatty acid derivatives including the unusual 11-oxopalmitelaidic acid were found as major constituents of the specialized metabolome of this species. Significant variations in the metabolome of the cyanobacteria were observed, being more important with a change in environmental factors. Erucamide was found to be the main chemical marker highly present when the cyanobacterium grows on the macroalga. This study highlights the importance of combined approaches in metabolomics and molecular networks to inspect the variability in the metabolome of cyanobacteria with applications for ecological questions.
Collapse
Affiliation(s)
- Hiren Solanki
- Marine Biodiscovery, School of Chemistry and Ryan Institute, National University of Ireland Galway, University Road, H91 TK33 Galway, Ireland;
| | - Manon Pierdet
- University of French Polynesia, UMR Ecosystèmes Insulaires Océaniens, LabEx CORAIL, BP6570, Faa’a, 98702 Tahiti, French Polynesia;
| | - Olivier P. Thomas
- Marine Biodiscovery, School of Chemistry and Ryan Institute, National University of Ireland Galway, University Road, H91 TK33 Galway, Ireland;
| | - Mayalen Zubia
- University of French Polynesia, UMR Ecosystèmes Insulaires Océaniens, LabEx CORAIL, BP6570, Faa’a, 98702 Tahiti, French Polynesia;
| |
Collapse
|
28
|
Lehel J, Yaucat-Guendi R, Darnay L, Palotás P, Laczay P. Possible food safety hazards of ready-to-eat raw fish containing product (sushi, sashimi). Crit Rev Food Sci Nutr 2020; 61:867-888. [PMID: 32270692 DOI: 10.1080/10408398.2020.1749024] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Abstract
It is undeniable that with the popularity of sushi and sashimi over the last decade the consumption of raw fish has extremely increased. Raw fish is very appreciated worldwide and has become a major component of human diet because of its fine taste and nutritional properties. Possible hazards concerning fish safety and quality are classified as biological and chemical hazards. They are contaminants that often accumulate in edible tissue of fish and transmit to humans via the food chain affecting the consumer's health. Although their concentration in fish and fishery products are found at non-alarming level of a daily basis period, they induce hazardous outcome on human health due to long and continuous consumption of raw fish. Regular sushi and sashimi eaters have to be aware of the contaminants found in the other components of their dish that often add up to acceptable residue limits found in fish. Hence, there is the urge for effective analytical methods to be developed as well as stricter regulations to be put in force between countries to monitor the safety and quality of fish for the interest of public health.
Collapse
Affiliation(s)
- József Lehel
- Department of Food Hygiene, University of Veterinary Medicine, Budapest, Hungary
| | | | - Lívia Darnay
- Department of Food Hygiene, University of Veterinary Medicine, Budapest, Hungary
| | | | - Péter Laczay
- Department of Food Hygiene, University of Veterinary Medicine, Budapest, Hungary
| |
Collapse
|
29
|
Leonardo S, Gaiani G, Tsumuraya T, Hirama M, Turquet J, Sagristà N, Rambla-Alegre M, Flores C, Caixach J, Diogène J, O'Sullivan CK, Alcaraz C, Campàs M. Addressing the Analytical Challenges for the Detection of Ciguatoxins Using an Electrochemical Biosensor. Anal Chem 2020; 92:4858-4865. [PMID: 32133843 DOI: 10.1021/acs.analchem.9b04499] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The importance of ciguatoxins (CTXs) in seafood safety and their emerging occurrence in locations far away from tropical areas highlight the need for simple and low-cost methods for the sensitive and rapid detection of these potent marine toxins to protect seafood consumers. Herein, an electrochemical immunosensor for the detection of CTXs is presented. A sandwich configuration is proposed, using magnetic beads (MBs) as immobilization supports for two capture antibodies, with their combination facilitating the detection of CTX1B, CTX3C, 54-deoxyCTX1B, and 51-hydroxyCTX3C. PolyHRP-streptavidin is used for the detection of the biotinylated detector antibody. Experimental conditions are first optimized using colorimetry, and these conditions are subsequently used for electrochemical detection on electrode arrays. Limits of detection at the pg/mL level are achieved for CTX1B and 51-hydroxyCTX3C. The applicability of the immunosensor to the analysis of fish samples is demonstrated, attaining detection of CTX1B at contents as low as 0.01 μg/kg and providing results in correlation with those obtained using mouse bioassay (MBA) and cell-based assay (CBA), and confirmed by liquid chromatography coupled to high-resolution mass spectrometry (LC-ESI-HRMS). This user-friendly bioanalytical tool for the rapid detection of CTXs can be used to mitigate ciguatera risk and contribute to the protection of consumer health.
Collapse
Affiliation(s)
- Sandra Leonardo
- IRTA, Ctra. Poble Nou km 5.5, 43540 Sant Carles de la Ràpita, Spain
| | - Greta Gaiani
- IRTA, Ctra. Poble Nou km 5.5, 43540 Sant Carles de la Ràpita, Spain
| | - Takeshi Tsumuraya
- Department of Biological Sciences, Graduate School of Science, Osaka Prefecture University, Osaka 599-8570, Japan
| | - Masahiro Hirama
- Department of Biological Sciences, Graduate School of Science, Osaka Prefecture University, Osaka 599-8570, Japan
| | - Jean Turquet
- Citeb, C/o CYROI, 2 Rue Maxime Rivière, 97490 Sainte Clotilde, La Réunion, France
| | - Núria Sagristà
- IRTA, Ctra. Poble Nou km 5.5, 43540 Sant Carles de la Ràpita, Spain
| | | | - Cintia Flores
- Mass Spectrometry Laboratory/Organic Pollutants, IDAEA-CSIC, C. Jordi Girona 18, 08034 Barcelona, Spain
| | - Josep Caixach
- Mass Spectrometry Laboratory/Organic Pollutants, IDAEA-CSIC, C. Jordi Girona 18, 08034 Barcelona, Spain
| | - Jorge Diogène
- IRTA, Ctra. Poble Nou km 5.5, 43540 Sant Carles de la Ràpita, Spain
| | - Ciara K O'Sullivan
- Departament d'Enginyeria Química, URV, Av. Països Catalans 26, 43007 Tarragona, Spain.,ICREA, Pg. Lluís Companys 23, 08010 Barcelona, Spain
| | - Carles Alcaraz
- IRTA, Ctra. Poble Nou km 5.5, 43540 Sant Carles de la Ràpita, Spain
| | - Mònica Campàs
- IRTA, Ctra. Poble Nou km 5.5, 43540 Sant Carles de la Ràpita, Spain
| |
Collapse
|
30
|
Soliño L, Costa PR. Global impact of ciguatoxins and ciguatera fish poisoning on fish, fisheries and consumers. ENVIRONMENTAL RESEARCH 2020; 182:109111. [PMID: 31927300 DOI: 10.1016/j.envres.2020.109111] [Citation(s) in RCA: 46] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/01/2019] [Revised: 12/31/2019] [Accepted: 01/01/2020] [Indexed: 06/10/2023]
Abstract
Ciguatera fish poisoning (CFP) is one of the most devastating food-borne illnesses caused by fish consumption. Ciguatoxins (CTXs) are potent neurotoxins synthesized by the benthic microalgae Gambierdiscus spp. and Fukuyoa spp. that are transmitted to fish by grazing and predation. Despite the high incidence of CFP, affecting an estimated number of 50,000 persons per year in tropical and subtropical latitudes, the factors underlying CTXs occurrence are still not well understood. Toxin transfer and dynamics in fish and food-webs are complex. Feeding habits and metabolic pathways determine the toxin profile and toxicity of fish, and migratory species may transport and spread the hazard. Furthermore, CTX effect on fish may be a limiting factor for fish recruitment and toxin prevalence. Recently, new occurrences of Gambierdiscus spp. in temperate areas have been concomitant with the detection of toxic fish and CFP incidents in non-endemic areas. CFP cases in Europe have led to implementation of monitoring programs and fisheries restrictions with considerable impact on local economies. More than 400 species of fish can be vectors of CTXs, and most of them are high-valued commercial species. Thus, the risk uncertainty and the spread of Gambierdiscus have serious consequences for fisheries and food safety. Here, we present a critical review of CTXs impacts on fish, fisheries, and humans, based on the current knowledge on CFP incidence and CTXs prevalence in microalgae and fish.
Collapse
Affiliation(s)
- Lucía Soliño
- IPMA - Instituto Português do Mar da Atmosfera, Rua Alfredo Magalhães Ramalho, 6, 1495-006, Lisbon, Portugal; CCMAR - Centre of Marine Sciences, University of Algarve, Campus of Gambelas, 8005-139, Faro, Portugal.
| | - Pedro Reis Costa
- IPMA - Instituto Português do Mar da Atmosfera, Rua Alfredo Magalhães Ramalho, 6, 1495-006, Lisbon, Portugal; CCMAR - Centre of Marine Sciences, University of Algarve, Campus of Gambelas, 8005-139, Faro, Portugal
| |
Collapse
|
31
|
Rossignoli AE, Tudó A, Bravo I, Díaz PA, Diogène J, Riobó P. Toxicity Characterisation of Gambierdiscus Species from the Canary Islands. Toxins (Basel) 2020; 12:toxins12020134. [PMID: 32098095 PMCID: PMC7076799 DOI: 10.3390/toxins12020134] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2019] [Revised: 02/14/2020] [Accepted: 02/17/2020] [Indexed: 01/16/2023] Open
Abstract
In the last decade, several outbreaks of ciguatera fish poisoning (CFP) have been reported in the Canary Islands (central northeast Atlantic Ocean), confirming ciguatera as an emerging alimentary risk in this region. Five Gambierdiscus species, G. australes, G. excentricus, G. silvae, G. carolinianus and G. caribaeus, have been detected in macrophytes from this area and are known to produce the ciguatoxins (CTXs) that cause CFP. A characterization of the toxicity of these species is the first step in identifying locations in the Canary Islands at risk of CFP. Therefore, in this study the toxicity of 63 strains of these five Gambierdiscus species were analysed using the erythrocyte lysis assay to evaluate their maitotoxin (MTX) content. In addition, 20 of the strains were also analysed in a neuroblastoma Neuro-2a (N2a) cytotoxicity assay to determine their CTX-like toxicity. The results allowed the different species to be grouped according to their ratios of CTX-like and MTX-like toxicity. MTX-like toxicity was especially high in G. excentricus and G. australes but much lower in the other species and lowest in G. silvae. CTX-like toxicity was highest in G. excentricus, which produced the toxin in amounts ranging between 128.2 ± 25.68 and 510.6 ± 134.2 fg CTX1B equivalents (eq) cell−1 (mean ± SD). In the other species, CTX concentrations were as follows: G. carolinianus (100.84 ± 18.05 fg CTX1B eq cell−1), G. australes (31.1 ± 0.56 to 107.16 ± 21.88 fg CTX1B eq cell−1), G. silvae (12.19 ± 0.62 to 76.79 ± 4.97 fg CTX1B eq cell−1) and G. caribaeus (<LOD to 90.37 ± 15.89 fg CTX1B eq cell−1). Unlike the similar CTX-like toxicity of G. australes and G. silvae strains from different locations, G. excentricus and G. caribaeus differed considerably according to the origin of the strain. These differences emphasise the importance of species identification to assess the regional risk of CFP.
Collapse
Affiliation(s)
- Araceli E. Rossignoli
- Instituto Español de Oceanografía, Centro Ocenográfico de Vigo, Subida a Radiofaro 50, 36390 Vigo, Spain;
- Correspondence: ; Tel.: +34-986492111; Fax: +34-986498626
| | - Angels Tudó
- IRTA, Ctra. Poble Nou, km. 5.5, 43540 Sant Carles de la Ràpita, Spain; (A.T.); (J.D.)
| | - Isabel Bravo
- Instituto Español de Oceanografía, Centro Ocenográfico de Vigo, Subida a Radiofaro 50, 36390 Vigo, Spain;
| | - Patricio A. Díaz
- Centro i~mar & CeBiB, Universidad de Los Lagos, Casilla 557, Puerto Montt, Chile;
| | - Jorge Diogène
- IRTA, Ctra. Poble Nou, km. 5.5, 43540 Sant Carles de la Ràpita, Spain; (A.T.); (J.D.)
| | - Pilar Riobó
- Department of Photobiology and Toxinology of Phytoplankton, Instituto de Investigaciones Marinas, CSIC, Eduardo Cabello 6, 36208 Vigo, Spain;
| |
Collapse
|
32
|
Tester PA, Litaker RW, Berdalet E. Climate change and harmful benthic microalgae. HARMFUL ALGAE 2020; 91:101655. [PMID: 32057343 DOI: 10.1016/j.hal.2019.101655] [Citation(s) in RCA: 67] [Impact Index Per Article: 13.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/29/2019] [Accepted: 07/30/2019] [Indexed: 06/10/2023]
Abstract
Sea surface temperatures in the world's oceans are projected to warm by 0.4-1.4 °C by mid twenty-first century causing many tropical and sub-tropical harmful dinoflagellate genera like Gambierdiscus, Fukuyoa and Ostreopsis (benthic harmful algal bloom species, BHABs) to exhibit higher growth rates over much of their current geographic range, resulting in higher population densities. The primary exception to this trend will be in the tropics where temperatures exceed species-specific upper thermal tolerances (30-31 °C) beyond which growth slows significantly. As surface waters warm, migration to deeper habitats is expected to provide refuge. Range extensions of several degrees of latitude also are anticipated, but only where species-specific habitat requirements can be met (e.g., temperature, suitable substrate, low turbulence, light, salinity, pH). The current understanding of habitat requirements that determine species distributions are reviewed to provide fuller understanding of how individual species will respond to climate change from the present to 2055 while addressing the paucity of information on environmental factors controlling small-scale distribution in localized habitats. Based on the available information, we hypothesized how complex environmental interactions can influence abundance and potential range extensions of BHAB species in different biogeographic regions and identify sentinel sites appropriate for long-term monitoring programs to detect range extensions and reduce human health risks.
Collapse
Affiliation(s)
| | - R Wayne Litaker
- National Oceanic and Atmospheric Administration, National Ocean Service, National Centers for Coastal Ocean Science, Beaufort Laboratory, 101 Pivers Island Road, Beaufort, NC, 28516, USA
| | - Elisa Berdalet
- Institute of Marine Sciences (ICM-CSIC), Passeig Marítim de la Barceloneta, 37-49, 08003, Barcelona, Catalonia, Spain
| |
Collapse
|
33
|
Bravo I, Rodriguez F, Ramilo I, Rial P, Fraga S. Ciguatera-Causing Dinoflagellate Gambierdiscus spp. (Dinophyceae) in a Subtropical Region of North Atlantic Ocean (Canary Islands): Morphological Characterization and Biogeography. Toxins (Basel) 2019; 11:toxins11070423. [PMID: 31331083 PMCID: PMC6669716 DOI: 10.3390/toxins11070423] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2019] [Revised: 07/16/2019] [Accepted: 07/17/2019] [Indexed: 12/04/2022] Open
Abstract
Dinoflagellates belonging to the genus Gambierdiscus produce ciguatoxins (CTXs), which are metabolized in fish to more toxic forms and subsequently cause ciguatera fish poisoning (CFP) in humans. Five species of Gambierdiscus have been described from the Canary Islands, where CTXs in fish have been reported since 2004. Here we present new data on the distribution of Gambierdiscus species in the Canary archipelago and specifically from two islands, La Palma and La Gomera, where the genus had not been previously reported. Gambierdiscus spp. concentrations were low, with maxima of 88 and 29 cells·g−1 wet weight in samples from La Gomera and La Palma, respectively. Molecular analysis (LSUrRNA gene sequences) revealed differences in the species distribution between the two islands: only G. excentricus was detected at La Palma whereas four species, G. australes, G. caribaeus, G. carolinianus, and G. excentricus, were identified from La Gomera. Morphometric analyses of cultured cells of the five Canary Islands species and of field specimens from La Gomera included cell size and a characterization of three thecal arrangement traits: (1) the shape of the 2′ plate, (2) the position of Po in the anterior suture of the 2′ plate, and (3) the length–width relationship of the 2″″ plate. Despite the wide morphological variability within the culture and field samples, the use of two or more variables allowed the discrimination of two species in the La Gomera samples: G. cf. excentricus and G. cf. silvae. A comparison of the molecular data with the morphologically based classification demonstrated important coincidences, such as the dominance of G. excentricus, but also differences in the species composition of Gambierdiscus, as G. caribaeus was detected in the study area only by using molecular methods.
Collapse
Affiliation(s)
- Isabel Bravo
- Centro Oceanográfico de Vigo, Instituto Español de Oceanografía (IEO), Subida a Radio Faro 50, 36390 Vigo, Spain.
| | - Francisco Rodriguez
- Centro Oceanográfico de Vigo, Instituto Español de Oceanografía (IEO), Subida a Radio Faro 50, 36390 Vigo, Spain
| | - Isabel Ramilo
- Centro Oceanográfico de Vigo, Instituto Español de Oceanografía (IEO), Subida a Radio Faro 50, 36390 Vigo, Spain
| | - Pilar Rial
- Centro Oceanográfico de Vigo, Instituto Español de Oceanografía (IEO), Subida a Radio Faro 50, 36390 Vigo, Spain
| | - Santiago Fraga
- Centro Oceanográfico de Vigo, Instituto Español de Oceanografía (IEO), Subida a Radio Faro 50, 36390 Vigo, Spain
| |
Collapse
|
34
|
Sanchez-Henao JA, García-Álvarez N, Fernández A, Saavedra P, Silva Sergent F, Padilla D, Acosta-Hernández B, Martel Suárez M, Diogène J, Real F. Predictive score and probability of CTX-like toxicity in fish samples from the official control of ciguatera in the Canary Islands. THE SCIENCE OF THE TOTAL ENVIRONMENT 2019; 673:576-584. [PMID: 30999098 DOI: 10.1016/j.scitotenv.2019.03.445] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/12/2018] [Revised: 03/28/2019] [Accepted: 03/28/2019] [Indexed: 06/09/2023]
Abstract
This research identifies factors associated with the contamination by ciguatoxins (CTXs) in a population of fish and proposes a predictive score of the presence of CTX-like toxicity in amberjack samples from the official control program of ciguatera in the Canary Islands of the Directorate-General (DG) Fisheries (Canary Government). Out of the 970 samples of fish studied, 177 (18.2%) samples showed CTX-like toxicity. The fish were classified according to the species, amberjack (Seriola dumerili and S. rivoliana) (n = 793), dusky grouper (Epinephelus marginatus) (n = 145) and wahoo (Acanthocybium solandri) (n = 32). The data were separated by species category and statistically examined, resulting in 137 (17.3%) amberjack and 39 (26.9%) grouper samples showing CTX-like toxicity; regarding wahoo species, only 1 toxic sample (3.1%) was found. According to fishing location the contamination rates suggested grouping the islands in four clusters; namely: {El Hierro: HI; La Gomera: LG; La Palma: LP}, {Gran Canaria: GC; Tenerife: TF}, {Fuerteventura: FU} and {Lanzarote: LZ}. For the amberjack species, the multivariate logistic regression showed the factors that maintained independent association with the outcome, which were the warm season (OR = 3.617; 95% CI = 1.249-10.474), the weight (per kg, 1.102; 95% CI = 1.069-1.136) and the island of fish catching. A prediction score was obtained for the probability of contamination by CTX in amberjack fish samples. The area under de curve (AUC) obtained using the validation data was 0.747 (95% CI = 0.662-0.833). Regarding grouper species, the island of fishing was the only factor that showed significant differences associated with the presence of CTX-like toxicity. We provide herein data for a better management and prediction of ciguatera in the Canary Islands, suggesting a review of the minimum limits of fish weight established by the Canary Government for the control program.
Collapse
Affiliation(s)
- J Andres Sanchez-Henao
- Division of Fish Health and Pathology, Institute of Animal Health and Food Safety (IUSA), University of Las Palmas de Gran Canaria, 35416 Arucas, Las Palmas, Spain
| | - Natalia García-Álvarez
- Division of Fish Health and Pathology, Institute of Animal Health and Food Safety (IUSA), University of Las Palmas de Gran Canaria, 35416 Arucas, Las Palmas, Spain.
| | - Antonio Fernández
- Division of Fish Health and Pathology, Institute of Animal Health and Food Safety (IUSA), University of Las Palmas de Gran Canaria, 35416 Arucas, Las Palmas, Spain
| | - Pedro Saavedra
- Department of Mathematics, University of Las Palmas de Gran Canaria, Canary Islands, Spain
| | - Freddy Silva Sergent
- Division of Fish Health and Pathology, Institute of Animal Health and Food Safety (IUSA), University of Las Palmas de Gran Canaria, 35416 Arucas, Las Palmas, Spain
| | - Daniel Padilla
- Division of Fish Health and Pathology, Institute of Animal Health and Food Safety (IUSA), University of Las Palmas de Gran Canaria, 35416 Arucas, Las Palmas, Spain
| | - Begoña Acosta-Hernández
- Division of Fish Health and Pathology, Institute of Animal Health and Food Safety (IUSA), University of Las Palmas de Gran Canaria, 35416 Arucas, Las Palmas, Spain
| | - Manuela Martel Suárez
- Division of Fish Health and Pathology, Institute of Animal Health and Food Safety (IUSA), University of Las Palmas de Gran Canaria, 35416 Arucas, Las Palmas, Spain
| | - Jorge Diogène
- Marine and Continental Waters Environmental Monitoring, IRTA, Ctra. Poble Nou, km 5.5, 43540 Sant Carles de la Ràpita, Spain
| | - Fernando Real
- Division of Fish Health and Pathology, Institute of Animal Health and Food Safety (IUSA), University of Las Palmas de Gran Canaria, 35416 Arucas, Las Palmas, Spain
| |
Collapse
|
35
|
Estevez P, Castro D, Pequeño-Valtierra A, Giraldez J, Gago-Martinez A. Emerging Marine Biotoxins in Seafood from European Coasts: Incidence and Analytical Challenges. Foods 2019; 8:E149. [PMID: 31052406 PMCID: PMC6560407 DOI: 10.3390/foods8050149] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2019] [Revised: 04/16/2019] [Accepted: 04/25/2019] [Indexed: 11/30/2022] Open
Abstract
The presence of emerging contaminants in food and the sources of the contamination are relevant issues in food safety. The impact of climate change on these contaminations is a topic widely debated; however, the consequences of climate change for the food system is not as deeply studied as other human and animal health and welfare issues. Projections of climate change in Europe have been evaluated through the EU Commission, and the impact on the marine environment is considered a priority issue. Marine biotoxins are produced by toxic microalgae and are natural contaminants of the marine environment. They are considered to be an important contaminant that needs to be evaluated. Their source is affected by oceanographic and environmental conditions; water temperature, sunlight, salinity, competing microorganisms, nutrients, and wind and current directions affect the growth and proliferation of microalgae. Although climate change should not be the only reason for this increase and other factors such as eutrophication, tourism, fishery activities, etc. could be considered, the influence of climate change has been observed through increased growth of dinoflagellates in areas where they have not been previously detected. An example of this is the recent emergence of ciguatera fish poisoning toxins, typically found in tropical or subtropical areas from the Pacific and Caribbean and in certain areas of the Atlantic Sea such as the Canary Islands (Spain) and Madeira (Portugal). In addition, the recent findings of the presence of tetrodotoxins, typically found in certain areas of the Pacific, are emerging in the EU and contaminating not only the fish species where these toxins had been found before but also bivalve mollusks. The emergence of these marine biotoxins in the EU is a reason for concern in the EU, and for this reason, the risk evaluation and characterization of these toxins are considered a priority for the European Food Safety Authorities (EFSA), which also emphasize the search for occurrence data using reliable and efficient analytical methods.
Collapse
Affiliation(s)
- Pablo Estevez
- Department of Analytical and Food Chemistry, University of Vigo, Campus Universitario de Vigo, 36310 Vigo, Spain.
| | - David Castro
- Department of Analytical and Food Chemistry, University of Vigo, Campus Universitario de Vigo, 36310 Vigo, Spain.
| | - Ana Pequeño-Valtierra
- Department of Analytical and Food Chemistry, University of Vigo, Campus Universitario de Vigo, 36310 Vigo, Spain.
| | - Jorge Giraldez
- Department of Analytical and Food Chemistry, University of Vigo, Campus Universitario de Vigo, 36310 Vigo, Spain.
| | - Ana Gago-Martinez
- Department of Analytical and Food Chemistry, University of Vigo, Campus Universitario de Vigo, 36310 Vigo, Spain.
- EU Reference Laboratory for marine biotoxins, Campus Universitario de Vigo, 36310 Vigo, Spain.
| |
Collapse
|
36
|
Estevez P, Castro D, Pequeño-Valtierra A, Leao JM, Vilariño O, Diogène J, Gago-Martínez A. An Attempt to Characterize the Ciguatoxin Profile in Seriola fasciata Causing Ciguatera Fish Poisoning in Macaronesia. Toxins (Basel) 2019; 11:toxins11040221. [PMID: 31013948 PMCID: PMC6521267 DOI: 10.3390/toxins11040221] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2019] [Revised: 04/09/2019] [Accepted: 04/10/2019] [Indexed: 01/05/2023] Open
Abstract
Ciguatera Fish Poisoning is a worldwide concern caused by the consumption of fish contaminated with ciguatoxins not only in endemic regions in the Pacific Ocean or the Caribbean Sea but also in emerging areas of Macaronesia on the eastern Atlantic. The recent emergence of these toxins in other coastal areas worldwide, prompted the need for the characterization of the risk in these areas. This Ciguatera Fish Poisoning risk has been recently identified as a potential threat in subtropical areas of the Atlantic coast and scientific efforts are being focused in the identification and confirmation of the toxins involved in this potential risk. Neuroblastoma cell assay has been widely used for the evaluation of the toxicity in several marine biotoxin groups, and found to be a very useful tool for toxicity screening. LC-MS/MS has been also used for confirmatory purposes although the main limitation of the advances on LC-MS/MS development is due to commercial unavailability of reference materials and hampers method implementation and validation or even confirmation of the ciguatoxins (CTXs) responsible for the toxic profiles. While neuroblastoma cell assay (N2a) is typically used for toxicity screening as mentioned above, being necessary to confirm this N2a toxicity by LC-MS/MS, this study is designed using N2a as a tool to confirm the toxicity of the fractions obtained corresponding to potential CTXs analogues according to the analysis by LC-MS/MS. With this aim, an amberjack sample (Seriola fasciata) from Selvagen Islads (Portugal) and implicated in Ciguatera Fish Poisoning was analyzed by LC-MS/MS and Caribbean Ciguatoxins were found to be mainly responsible for the toxicity. N2a was used in this work as a tool to help in the confirmation of the toxicity of fractions obtained by HPLC. Caribbean Ciguatoxin-1 was found as the main analogue responsible for the N2a toxicity while three Caribbean Ciguatoxin-1 (C-CTX1) metabolites which contribute to the total toxicity were also identified.
Collapse
Affiliation(s)
- Pablo Estevez
- University of Vigo, Department of Analytical and Food Chemistry, Campus Universitario de Vigo, 36310 Vigo, Spain.
| | - David Castro
- University of Vigo, Department of Analytical and Food Chemistry, Campus Universitario de Vigo, 36310 Vigo, Spain.
| | - Ana Pequeño-Valtierra
- University of Vigo, Department of Analytical and Food Chemistry, Campus Universitario de Vigo, 36310 Vigo, Spain.
| | - José M Leao
- University of Vigo, Department of Analytical and Food Chemistry, Campus Universitario de Vigo, 36310 Vigo, Spain.
- European Union Reference Laboratory for Marine Biotoxins, CITEXVI, Campus Universitario de Vigo, 36310 Vigo, Spain.
| | - Oscar Vilariño
- University of Vigo, Department of Analytical and Food Chemistry, Campus Universitario de Vigo, 36310 Vigo, Spain.
- European Union Reference Laboratory for Marine Biotoxins, CITEXVI, Campus Universitario de Vigo, 36310 Vigo, Spain.
| | - Jorge Diogène
- IRTA, Marine and Continental Waters, Ctra. Poble Nou, km. 5.5, E-43540 Sant Carles de la Ràpita, Spain.
| | - Ana Gago-Martínez
- University of Vigo, Department of Analytical and Food Chemistry, Campus Universitario de Vigo, 36310 Vigo, Spain.
- European Union Reference Laboratory for Marine Biotoxins, CITEXVI, Campus Universitario de Vigo, 36310 Vigo, Spain.
| |
Collapse
|
37
|
Structure Elucidation and Biological Evaluation of Maitotoxin-3, a Homologue of Gambierone, from Gambierdiscus belizeanus. Toxins (Basel) 2019; 11:toxins11020079. [PMID: 30717108 PMCID: PMC6409949 DOI: 10.3390/toxins11020079] [Citation(s) in RCA: 38] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2018] [Revised: 01/23/2019] [Accepted: 01/28/2019] [Indexed: 01/15/2023] Open
Abstract
Gambierdiscus species are the producers of the marine toxins ciguatoxins and maitotoxins which cause worldwide human intoxications recognized as Ciguatera Fish Poisoning. A deep chemical investigation of a cultured strain of G. belizeanus, collected in the Caribbean Sea, led to the identification of a structural homologue of the recently described gambierone isolated from the same strain. The structure was elucidated mainly by comparison of NMR and MS data with those of gambierone and ascertained by 2D NMR data analyses. Gratifyingly, a close inspection of the MS data of the new 44-methylgambierone suggests that this toxin would actually correspond to the structure of maitotoxin-3 (MTX3, m/z 1039.4957 for the protonated adduct) detected in 1994 in a Pacific strain of Gambierdiscus and recently shown in routine monitoring programs. Therefore, this work provides for the first time the chemical identification of the MTX3 molecule by NMR. Furthermore, biological data confirmed the similar activities of both gambierone and 44-methylgambierone. Both gambierone and MTX3 induced a small increase in the cytosolic calcium concentration but only MTX3 caused cell cytotoxicity at micromolar concentrations. Moreover, chronic exposure of human cortical neurons to either gambierone or MTX3 altered the expression of ionotropic glutamate receptors, an effect already described before for the synthetic ciguatoxin CTX3C. However, even when gambierone and MTX3 affected glutamate receptor expression in a similar manner their effect on receptor expression differed from that of CTX3C, since both toxins decreased AMPA receptor levels while increasing N-methyl-d-aspartate (NMDA) receptor protein. Thus, further studies should be pursued to clarify the similarities and differences in the biological activity between the known ciguatoxins and the new identified molecule as well as its contribution to the neurological symptoms of ciguatera.
Collapse
|
38
|
Costa PR, Estevez P, Castro D, Soliño L, Gouveia N, Santos C, Rodrigues SM, Leao JM, Gago-Martínez A. New Insights into the Occurrence and Toxin Profile of Ciguatoxins in Selvagens Islands (Madeira, Portugal). Toxins (Basel) 2018; 10:E524. [PMID: 30544529 PMCID: PMC6316156 DOI: 10.3390/toxins10120524] [Citation(s) in RCA: 37] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2018] [Revised: 12/04/2018] [Accepted: 12/05/2018] [Indexed: 11/30/2022] Open
Abstract
Ciguatoxins (CTXs), endemic from tropical and subtropical regions of the Pacific and Indian Ocean and the Caribbean Sea, have caused several human poisonings during the last decade in Europe. Ciguatera fish poisonings (CFP) in Madeira and Canary Islands appear to be particularly related with consumption of fish caught close to Selvagens Islands, a Portuguese natural reserve composed of three small islands that harbor high fish biomass. In this study, fish specimens considered as potential vectors of CTXs were caught in Madeira and Selvagens archipelagos for toxins determination via sensitive liquid chromatography with tandem mass spectrometry detection (LC⁻MS/MS). CTXs were found in most of the fish samples from Selvagens and none from Madeira. Caribbean ciguatoxin-1 (C-CTX1) was the only toxin congener determined, reaching the highest value of 0.25 µg C-CTX1 kg-1 in a 4.6 kg island grouper (Mycteroperca fusca). This study indicates that a diversity of fish from different trophic levels contains CTXs, Selvagens appear to be one of the most favorable locations for CTXs food web transfer and finally, this study highlights the need of further research based on intensive environmental and biological sampling on these remote islands.
Collapse
Affiliation(s)
- Pedro Reis Costa
- IPMA-Portuguese Institute of the Sea and Atmosphere, Av. Brasília, 1449-006 Lisbon, Portugal.
| | - Pablo Estevez
- Faculty of Chemistry, Department of Analytical and Food Chemistry, University of Vigo, Campus Universitario de Vigo, 36310 Vigo, Spain.
| | - David Castro
- Faculty of Chemistry, Department of Analytical and Food Chemistry, University of Vigo, Campus Universitario de Vigo, 36310 Vigo, Spain.
| | - Lucía Soliño
- IPMA-Portuguese Institute of the Sea and Atmosphere, Av. Brasília, 1449-006 Lisbon, Portugal.
| | - Neide Gouveia
- Regional Fisheries Management-Madeira Government, DSI-DRP, Estrada da Pontinha 9004-562 Funchal, Madeira, Portugal.
| | - Carolina Santos
- Instituto das Florestas e Conservação da Natureza, IP-RAM, Secretaria Regional do Ambiente e Recursos Naturais, Regional Government of Madeira, IFCN IP-RAM, Quinta Vila Passos-Rua Alferes Veiga Pestana 15, 9054-505 Funchal, Madeira, Portugal.
| | | | - José Manuel Leao
- Faculty of Chemistry, Department of Analytical and Food Chemistry, University of Vigo, Campus Universitario de Vigo, 36310 Vigo, Spain.
| | - Ana Gago-Martínez
- Faculty of Chemistry, Department of Analytical and Food Chemistry, University of Vigo, Campus Universitario de Vigo, 36310 Vigo, Spain.
| |
Collapse
|
39
|
Vacarizas J, Benico G, Austero N, Azanza R. Taxonomy and toxin production of Gambierdiscus carpenteri (Dinophyceae) in a tropical marine ecosystem: The first record from the Philippines. MARINE POLLUTION BULLETIN 2018; 137:430-443. [PMID: 30503452 DOI: 10.1016/j.marpolbul.2018.10.034] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/28/2018] [Revised: 09/30/2018] [Accepted: 10/15/2018] [Indexed: 06/09/2023]
Abstract
Morphological and phylogenetic analysis showed that the Gambierdiscus isolate from Bolinao, Philippines belongs to the species of G. carpenteri. It was morphologically more similar to the Merimbula strain than the subtropical Florida Keys strain. Growth and toxin production were also investigated at varying levels of temperature, salinity, and irradiance. Gambierdiscus are known to grow favorably in a low light environment. However, this study showed high growth rates of G. carpenteri even at high irradiance levels. Generally, cells produced more toxins at lower treatment levels. Highest cellular toxin content recorded was 7.48 ± 0.49 pg Pbtx eq/cell at culture conditions of 25 °C, 100 μmol photons m-2 s-1, and salinity of 26. Growth rate and toxin production data suggest that cells produced more toxins during the slowest growth at certain range of treatments. This information gives insight into how changes in environmental conditions may affect toxin production and growth of G. carpenteri.
Collapse
Affiliation(s)
- Joshua Vacarizas
- Harmful Algal Bloom Laboratory, The Marine Science Institute, University of the Philippines Diliman, Quezon City, Philippines; Verde Island Passage Center for Oceanographic Research and Aquatic Life Sciences, Batangas State University, Batangas City, Batangas, Philippines.
| | - Garry Benico
- Harmful Algal Bloom Laboratory, The Marine Science Institute, University of the Philippines Diliman, Quezon City, Philippines
| | - Nero Austero
- Harmful Algal Bloom Laboratory, The Marine Science Institute, University of the Philippines Diliman, Quezon City, Philippines
| | - Rhodora Azanza
- Harmful Algal Bloom Laboratory, The Marine Science Institute, University of the Philippines Diliman, Quezon City, Philippines
| |
Collapse
|
40
|
Boente-Juncal A, Vale C, Alfonso A, Botana LM. Synergistic Effect of Transient Receptor Potential Antagonist and Amiloride against Maitotoxin Induced Calcium Increase and Cytotoxicity in Human Neuronal Stem Cells. ACS Chem Neurosci 2018; 9:2667-2678. [PMID: 29733572 DOI: 10.1021/acschemneuro.8b00128] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Maitotoxins (MTX) are among the most potent marine toxins identified to date causing cell death trough massive calcium influx. However, the exact mechanism for the MTX-induced calcium entry and cytotoxicity is still unknown. In this work, the effect of MTX-1 on the cytosolic free calcium concentration and cellular viability of human neuronal stem cells was evaluated. MTX elicited a concentration-dependent decrease in cell viability which was already evident after 1 h of treatment with 0.25 nM MTX; however, at a concentration of 0.1 nM, the toxin did not cause cell death even after 14 days of exposure. Moreover, the toxin caused a concentration dependent rise in the cytosolic calcium concentration which was maximal at toxin concentrations of 1 nM and dependent on the presence of extracellular calcium on the bathing solution. Several pharmacological approaches were employed to evaluate the role of canonical transient potential receptor channels (TRPC) on the MTX effects. The results presented here lead to the identification of the TRPC4 channels as contributors to the MTX effects in human neuronal cells. Both, the calcium increase and the cytotoxicity of MTX were either fully (for the calcium increase) or partially (in the case of cytotoxicity) reverted by the blockade of canonical TRPC4 receptors with the selective antagonist ML204. Furthermore, the sodium proton exchanger blocker amiloride also partially inhibited the calcium rise and the cell death elicited by MTX while the combination of amiloride and ML204 fully prevented both the cytotoxicity and the calcium rise elicited by the toxin.
Collapse
Affiliation(s)
- Andrea Boente-Juncal
- Departamento de Farmacología, Farmacia y Tecnología Farmacéutica, Facultad de Veterinaria, Universidad de Santiago de Compostela, 27002 Lugo, Spain
| | - Carmen Vale
- Departamento de Farmacología, Farmacia y Tecnología Farmacéutica, Facultad de Veterinaria, Universidad de Santiago de Compostela, 27002 Lugo, Spain
| | - Amparo Alfonso
- Departamento de Farmacología, Farmacia y Tecnología Farmacéutica, Facultad de Veterinaria, Universidad de Santiago de Compostela, 27002 Lugo, Spain
| | - Luis M. Botana
- Departamento de Farmacología, Farmacia y Tecnología Farmacéutica, Facultad de Veterinaria, Universidad de Santiago de Compostela, 27002 Lugo, Spain
| |
Collapse
|
41
|
Sasaki M, Iwasaki K, Arai K. Studies toward the Total Synthesis of Caribbean Ciguatoxin C-CTX-1: Synthesis of the LMN-Ring Fragment through Reductive Olefin Cross-Coupling. Org Lett 2018; 20:7163-7166. [PMID: 30362358 DOI: 10.1021/acs.orglett.8b03102] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
Synthesis of the LMN-ring fragment of Caribbean ciguatoxin C-CTX-1, the principal causative toxin for ciguatera fish poisoning around the Caribbean Sea areas, is described. The key feature of the synthesis is the stereoselective introduction of an angular methyl group on the sterically encumbered seven-membered M-ring by the application of a hydrogen atom transfer-based reductive olefin coupling.
Collapse
Affiliation(s)
- Makoto Sasaki
- Graduate School of Life Sciences , Tohoku University , 2-1-1 Katahira, Aoba-ku , Sendai 980-8577 , Japan
| | - Kotaro Iwasaki
- Graduate School of Life Sciences , Tohoku University , 2-1-1 Katahira, Aoba-ku , Sendai 980-8577 , Japan
| | - Keisuke Arai
- Graduate School of Life Sciences , Tohoku University , 2-1-1 Katahira, Aoba-ku , Sendai 980-8577 , Japan
| |
Collapse
|
42
|
Vilariño N, Louzao MC, Abal P, Cagide E, Carrera C, Vieytes MR, Botana LM. Human Poisoning from Marine Toxins: Unknowns for Optimal Consumer Protection. Toxins (Basel) 2018; 10:E324. [PMID: 30096904 PMCID: PMC6116008 DOI: 10.3390/toxins10080324] [Citation(s) in RCA: 86] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2018] [Revised: 08/03/2018] [Accepted: 08/07/2018] [Indexed: 01/21/2023] Open
Abstract
Marine biotoxins are produced by aquatic microorganisms and accumulate in shellfish or finfish following the food web. These toxins usually reach human consumers by ingestion of contaminated seafood, although other exposure routes like inhalation or contact have also been reported and may cause serious illness. This review shows the current data regarding the symptoms of acute intoxication for several toxin classes, including paralytic toxins, amnesic toxins, ciguatoxins, brevetoxins, tetrodotoxins, diarrheic toxins, azaspiracids and palytoxins. The information available about chronic toxicity and relative potency of different analogs within a toxin class are also reported. The gaps of toxicological knowledge that should be studied to improve human health protection are discussed. In general, gathering of epidemiological data in humans, chronic toxicity studies and exploring relative potency by oral administration are critical to minimize human health risks related to these toxin classes in the near future.
Collapse
Affiliation(s)
- Natalia Vilariño
- Departamento de Farmacología, Facultad de Veterinaria, Universidade de Santiago de Compostela, 27002 Lugo, Spain.
| | - M Carmen Louzao
- Departamento de Farmacología, Facultad de Veterinaria, Universidade de Santiago de Compostela, 27002 Lugo, Spain.
| | - Paula Abal
- Departamento de Farmacología, Facultad de Veterinaria, Universidade de Santiago de Compostela, 27002 Lugo, Spain.
| | - Eva Cagide
- Laboratorio CIFGA S.A., Plaza Santo Domingo 20-5°, 27001 Lugo, Spain.
| | - Cristina Carrera
- Departamento de Farmacología, Facultad de Veterinaria, Universidade de Santiago de Compostela, 27002 Lugo, Spain.
- Hospital Veterinario Universitario Rof Codina, Facultad de Veterinaria, Universidade de Santiago de Compostela, 27002 Lugo, Spain.
| | - Mercedes R Vieytes
- Departamento de Fisiología, Facultad de Veterinaria, Universidade de Santiago de Compostela, 27002 Lugo, Spain.
| | - Luis M Botana
- Departamento de Farmacología, Facultad de Veterinaria, Universidade de Santiago de Compostela, 27002 Lugo, Spain.
| |
Collapse
|
43
|
Martin-Yken H, Gironde C, Derick S, Darius HT, Furger C, Laurent D, Chinain M. Ciguatoxins activate the Calcineurin signalling pathway in Yeasts: Potential for development of an alternative detection tool? ENVIRONMENTAL RESEARCH 2018; 162:144-151. [PMID: 29306662 DOI: 10.1016/j.envres.2017.12.022] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/25/2017] [Revised: 11/05/2017] [Accepted: 12/22/2017] [Indexed: 06/07/2023]
Abstract
Ciguatoxins (CTXs) are lipid-soluble polyether compounds produced by dinoflagellates from the genus Gambierdiscus spp. typically found in tropical and subtropical zones. This endemic area is however rapidly expanding due to environmental perturbations, and both toxic Gambierdiscus spp. and ciguatoxic fishes have been recently identified in the North Atlantic Ocean (Madeira and Canary islands) and Mediterranean Sea. Ciguatoxins bind to Voltage Gated Sodium Channels on the membranes of sensory neurons, causing Ciguatera Fish Poisoning (CFP) in humans, a disease characterized by a complex array of gastrointestinal, neurological, neuropsychological, and cardiovascular symptoms. Although CFP is the most frequently reported non bacterial food-borne poisoning worldwide, there is still no simple and quick way of detecting CTXs in contaminated samples. In the prospect to engineer rapid and easy-to-use CTXs live cells-based tests, we have studied the effects of CTXs on the yeast Saccharomyces cerevisiae, a unicellular model which displays a remarkable conservation of cellular signalling pathways with higher eukaryotes. Taking advantage of this high level of conservation, yeast strains have been genetically modified to encode specific transcriptional reporters responding to CTXs exposure. These yeast strains were further exposed to different concentrations of either purified CTX or micro-algal extracts containing CTXs. Our data establish that CTXs are not cytotoxic to yeast cells even at concentrations as high as 1μM, and cause an increase in the level of free intracellular calcium in yeast cells. Concomitantly, a dose-dependent activation of the calcineurin signalling pathway is observed, as assessed by measuring the activity of specific transcriptional reporters in the engineered yeast strains. These findings offer promising prospects regarding the potential development of a yeast cells-based test that could supplement or, in some instances, replace current methods for the routine detection of CTXs in seafood products.
Collapse
Affiliation(s)
- Hélène Martin-Yken
- LISBP INSA Université de Toulouse, UMR CNRS 5504, UMR INRA 792, 135 Avenue de Rangueil, 31077 Toulouse, France.
| | - Camille Gironde
- Led Engineering Development and LAAS-CNRS, 7 Avenue du colonel Roche, Toulouse, France
| | - Sylvain Derick
- Led Engineering Development and LAAS-CNRS, 7 Avenue du colonel Roche, Toulouse, France
| | - Hélène Taiana Darius
- Laboratoire des Micro-Algues Toxiques, Institut Louis Malardé, UMR 241-EIO, BP 30 98713 Papeete, Tahiti, Polynésie Française
| | - Christophe Furger
- Led Engineering Development and LAAS-CNRS, 7 Avenue du colonel Roche, Toulouse, France
| | - Dominique Laurent
- Université Paul Sabatier Toulouse 3 UMR 152 et IRD Polynésie Française, BP 529 98713 Papeete, Tahiti, Polynésie Française
| | - Mireille Chinain
- Laboratoire des Micro-Algues Toxiques, Institut Louis Malardé, UMR 241-EIO, BP 30 98713 Papeete, Tahiti, Polynésie Française
| |
Collapse
|
44
|
Gatti CMI, Lonati D, Darius HT, Zancan A, Roué M, Schicchi A, Locatelli CA, Chinain M. Tectus niloticus (Tegulidae, Gastropod) as a Novel Vector of Ciguatera Poisoning: Clinical Characterization and Follow-Up of a Mass Poisoning Event in Nuku Hiva Island (French Polynesia). Toxins (Basel) 2018; 10:E102. [PMID: 29495579 PMCID: PMC5869390 DOI: 10.3390/toxins10030102] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2018] [Revised: 02/19/2018] [Accepted: 02/23/2018] [Indexed: 01/19/2023] Open
Abstract
Ciguatera fish poisoning (CFP) is the most prevalent non-bacterial food-borne form of poisoning in French Polynesia, which results from the consumption of coral reef fish naturally contaminated with ciguatoxins produced by dinoflagellates in the genus Gambierdiscus. Since the early 2000s, this French territory has also witnessed the emergence of atypical forms of ciguatera, known as ciguatera shellfish poisoning (CSP), associated with the consumption of marine invertebrates. In June 2014, nine tourists simultaneously developed a major and persistent poisoning syndrome following the consumption of the gastropod Tectus niloticus collected in Anaho, a secluded bay of Nuku Hiva Island (Marquesas Archipelago, French Polynesia). The unusual nature and severity of this event prompted a multidisciplinary investigation in order to characterize the etiology and document the short/long-term health consequences of this mass-poisoning event. This paper presents the results of clinical investigations based on hospital medical records, medical follow-up conducted six and 20 months post-poisoning, including a case description. This study is the first to describe the medical signature of T. niloticus poisoning in French Polynesia and contributed to alerting local authorities about the potential health hazards associated with the consumption of this gastropod, which is highly prized by local communities in Pacific island countries and territories.
Collapse
Affiliation(s)
- Clémence Mahana Iti Gatti
- Laboratory of Toxic Microalgae, Institut Louis Malardé (ILM)-UMR 241-EIO, P.O. box 30, 98713 Papeete, Tahiti, French Polynesia.
| | - Davide Lonati
- Poison Control Centre and National Toxicology Information Centre-Toxicology Unit, Istituti Clinici Scientifici Maugeri, IRCCS Maugeri Hospital and University of Pavia, 27100 Pavia, Italy.
| | - Hélène Taiana Darius
- Laboratory of Toxic Microalgae, Institut Louis Malardé (ILM)-UMR 241-EIO, P.O. box 30, 98713 Papeete, Tahiti, French Polynesia.
| | - Arturo Zancan
- Subacute Care Unit, Istituti Clinici Scientifici Maugeri, IRCCS Maugeri Hospital, 27100 Pavia, Italy.
| | - Mélanie Roué
- Institut de Recherche pour le Développement (IRD)-UMR 241-EIO, P.O. box 529, 98713 Papeete, Tahiti, French Polynesia.
| | - Azzurra Schicchi
- Poison Control Centre and National Toxicology Information Centre-Toxicology Unit, Istituti Clinici Scientifici Maugeri, IRCCS Maugeri Hospital and University of Pavia, 27100 Pavia, Italy.
| | - Carlo Alessandro Locatelli
- Poison Control Centre and National Toxicology Information Centre-Toxicology Unit, Istituti Clinici Scientifici Maugeri, IRCCS Maugeri Hospital and University of Pavia, 27100 Pavia, Italy.
| | - Mireille Chinain
- Laboratory of Toxic Microalgae, Institut Louis Malardé (ILM)-UMR 241-EIO, P.O. box 30, 98713 Papeete, Tahiti, French Polynesia.
| |
Collapse
|
45
|
Pacific Ciguatoxin Induces Excitotoxicity and Neurodegeneration in the Motor Cortex Via Caspase 3 Activation: Implication for Irreversible Motor Deficit. Mol Neurobiol 2018; 55:6769-6787. [DOI: 10.1007/s12035-018-0875-5] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2017] [Accepted: 01/07/2018] [Indexed: 12/14/2022]
|
46
|
Larsson ME, Laczka OF, Harwood DT, Lewis RJ, Himaya SWA, Murray SA, Doblin MA. Toxicology of Gambierdiscus spp. (Dinophyceae) from Tropical and Temperate Australian Waters. Mar Drugs 2018; 16:md16010007. [PMID: 29301247 PMCID: PMC5793055 DOI: 10.3390/md16010007] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2017] [Revised: 12/07/2017] [Accepted: 12/15/2017] [Indexed: 11/22/2022] Open
Abstract
Ciguatera Fish Poisoning (CFP) is a human illness caused by the consumption of marine fish contaminated with ciguatoxins (CTX) and possibly maitotoxins (MTX), produced by species from the benthic dinoflagellate genus Gambierdiscus. Here, we describe the identity and toxicology of Gambierdiscus spp. isolated from the tropical and temperate waters of eastern Australia. Based on newly cultured strains, we found that four Gambierdiscus species were present at the tropical location, including G. carpenteri, G. lapillus and two others which were not genetically identical to other currently described species within the genus, and may represent new species. Only G. carpenteri was identified from the temperate location. Using LC-MS/MS analysis we did not find any characterized microalgal CTXs (P-CTX-3B, P-CTX-3C, P-CTX-4A and P-CTX-4B) or MTX-1; however, putative maitotoxin-3 (MTX-3) was detected in all species except for the temperate population of G. carpenteri. Using the Ca2+ influx SH-SY5Y cell Fluorescent Imaging Plate Reader (FLIPR) bioassay we found CTX-like activity in extracts of the unidentified Gambierdiscus strains and trace level activity in strains of G. lapillus. While no detectable CTX-like activity was observed in tropical or temperate strains of G. carpenteri, all species showed strong maitotoxin-like activity. This study, which represents the most comprehensive analyses of the toxicology of Gambierdiscus strains isolated from Australia to date, suggests that CFP in this region may be caused by currently undescribed ciguatoxins and maitotoxins.
Collapse
Affiliation(s)
- Michaela E Larsson
- Climate Change Cluster, University of Technology Sydney, P.O. Box 123 Broadway, Sydney, NSW 2007, Australia.
| | - Olivier F Laczka
- Climate Change Cluster, University of Technology Sydney, P.O. Box 123 Broadway, Sydney, NSW 2007, Australia.
| | - D Tim Harwood
- Cawthron Institute, 98 Halifax Street East, Private Bag 2, Nelson 7010, New Zealand.
| | - Richard J Lewis
- Institute for Molecular Biosciences, The University of Queensland, Brisbane, QLD 4072, Australia.
| | - S W A Himaya
- Institute for Molecular Biosciences, The University of Queensland, Brisbane, QLD 4072, Australia.
| | - Shauna A Murray
- Climate Change Cluster, University of Technology Sydney, P.O. Box 123 Broadway, Sydney, NSW 2007, Australia.
| | - Martina A Doblin
- Climate Change Cluster, University of Technology Sydney, P.O. Box 123 Broadway, Sydney, NSW 2007, Australia.
| |
Collapse
|
47
|
Nicolas J, Hoogenboom RL, Hendriksen PJ, Bodero M, Bovee TF, Rietjens IM, Gerssen A. Marine biotoxins and associated outbreaks following seafood consumption: Prevention and surveillance in the 21st century. GLOBAL FOOD SECURITY-AGRICULTURE POLICY ECONOMICS AND ENVIRONMENT 2017. [DOI: 10.1016/j.gfs.2017.03.002] [Citation(s) in RCA: 57] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
|
48
|
Shmukler YB, Nikishin DA. Ladder-Shaped Ion Channel Ligands: Current State of Knowledge. Mar Drugs 2017; 15:E232. [PMID: 28726749 PMCID: PMC5532674 DOI: 10.3390/md15070232] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2017] [Revised: 07/07/2017] [Accepted: 07/14/2017] [Indexed: 12/20/2022] Open
Abstract
Ciguatoxins (CTX) and brevetoxins (BTX) are polycyclic ethereal compounds biosynthesized by the worldwide distributed planktonic and epibenthic dinoflagellates of Gambierdiscus and Karenia genera, correspondingly. Ciguatera, evoked by CTXs, is a type of ichthyosarcotoxism, which involves a variety of gastrointestinal and neurological symptoms, while BTXs cause so-called neurotoxic shellfish poisoning. Both types of toxins are reviewed together because of similar mechanisms of their action. These are the only molecules known to activate voltage-sensitive Na⁺-channels in mammals through a specific interaction with site 5 of its α-subunit and may compete for it, which results in an increase in neuronal excitability, neurotransmitter release and impairment of synaptic vesicle recycling. Most marine ciguatoxins potentiate Nav channels, but a considerable number of them, such as gambierol and maitotoxin, have been shown to affect another ion channel. Although the extrinsic function of these toxins is probably associated with the function of a feeding deterrent, it was suggested that their intrinsic function is coupled with the regulation of photosynthesis via light-harvesting complex II and thioredoxin. Antagonistic effects of BTXs and brevenal may provide evidence of their participation as positive and negative regulators of this mechanism.
Collapse
Affiliation(s)
- Yuri B Shmukler
- Group of Embryophysiology, N.K. Koltzov Institute of Developmental Biology, Russian Academy of Sciences, 26, Vavilov st, 119334 Moscow, Russia.
| | - Denis A Nikishin
- Group of Embryophysiology, N.K. Koltzov Institute of Developmental Biology, Russian Academy of Sciences, 26, Vavilov st, 119334 Moscow, Russia.
| |
Collapse
|
49
|
Pisapia F, Sibat M, Herrenknecht C, Lhaute K, Gaiani G, Ferron PJ, Fessard V, Fraga S, Nascimento SM, Litaker RW, Holland WC, Roullier C, Hess P. Maitotoxin-4, a Novel MTX Analog Produced by Gambierdiscus excentricus. Mar Drugs 2017; 15:E220. [PMID: 28696398 PMCID: PMC5532662 DOI: 10.3390/md15070220] [Citation(s) in RCA: 48] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2017] [Revised: 06/30/2017] [Accepted: 07/05/2017] [Indexed: 11/17/2022] Open
Abstract
Maitotoxins (MTXs) are among the most potent toxins known. These toxins are produced by epi-benthic dinoflagellates of the genera Gambierdiscus and Fukuyoa and may play a role in causing the symptoms associated with Ciguatera Fish Poisoning. A recent survey revealed that, of the species tested, the newly described species from the Canary Islands, G. excentricus, is one of the most maitotoxic. The goal of the present study was to characterize MTX-related compounds produced by this species. Initially, lysates of cells from two Canary Island G. excentricus strains VGO791 and VGO792 were partially purified by (i) liquid-liquid partitioning between dichloromethane and aqueous methanol followed by (ii) size-exclusion chromatography. Fractions from chromatographic separation were screened for MTX toxicity using both the neuroblastoma neuro-2a (N2a) cytotoxicity and Ca2+ flux functional assays. Fractions containing MTX activity were analyzed using liquid chromatography coupled to high-resolution mass spectrometry (LC-HRMS) to pinpoint potential MTX analogs. Subsequent non-targeted HRMS analysis permitted the identification of a novel MTX analog, maitotoxin-4 (MTX4, accurate mono-isotopic mass of 3292.4860 Da, as free acid form) in the most toxic fractions. HRMS/MS spectra of MTX4 as well as of MTX are presented. In addition, crude methanolic extracts of five other strains of G. excentricus and 37 other strains representing one Fukuyoa species and ten species, one ribotype and one undetermined strain/species of Gambierdiscus were screened for the presence of MTXs using low resolution tandem mass spectrometry (LRMS/MS). This targeted analysis indicated the original maitotoxin (MTX) was only present in one strain (G. australes S080911_1). Putative maitotoxin-2 (p-MTX2) and maitotoxin-3 (p-MTX3) were identified in several other species, but confirmation was not possible because of the lack of reference material. Maitotoxin-4 was detected in all seven strains of G. excentricus examined, independently of their origin (Brazil, Canary Islands and Caribbean), and not detected in any other species. MTX4 may therefore serve as a biomarker for the highly toxic G. excentricus in the Atlantic area.
Collapse
Affiliation(s)
- Francesco Pisapia
- Ifremer, Phycotoxins Laboratory, rue de l'Ile d'Yeu, BP 21105, F-44311 Nantes, France.
| | - Manoëlla Sibat
- Ifremer, Phycotoxins Laboratory, rue de l'Ile d'Yeu, BP 21105, F-44311 Nantes, France.
| | - Christine Herrenknecht
- Mer Molécules Santé (MMS) Laboratory EA2160, University of Nantes, LUNAM, Pharmacy Faculty, 9 rue Bias, F-44035 Nantes, France.
| | - Korian Lhaute
- Ifremer, Phycotoxins Laboratory, rue de l'Ile d'Yeu, BP 21105, F-44311 Nantes, France.
| | - Greta Gaiani
- Department of Life Science, University of Trieste, Via Giorgieri 5, 34127 Trieste, Italy.
| | - Pierre-Jean Ferron
- Toxicology of Contaminants Unit, ANSES Laboratory-French Agency for Food, Environmental and Occupational Health and Safety, Fougères, 10 B rue Claude Bourgelat, 35133 Javené, France.
| | - Valérie Fessard
- Toxicology of Contaminants Unit, ANSES Laboratory-French Agency for Food, Environmental and Occupational Health and Safety, Fougères, 10 B rue Claude Bourgelat, 35133 Javené, France.
| | - Santiago Fraga
- Instituto Español de Oceanografía (IEO), Centro Oceanográfico de Vigo, Subida a Radio Faro 50, 36390 Vigo, Spain.
| | - Silvia M Nascimento
- Laboratório de Microalgas Marinhas, Departamento de Ecologia e Recursos Marinhos, Universidade Federal do Estado do Rio de Janeiro (UNIRIO), Rio de Janeiro 22290-240, Brazil.
| | - R Wayne Litaker
- National Oceanic and Atmospheric Administration, National Ocean Service, National Centers for Coastal Ocean Science, Center for Coastal Fisheries and Habitat Research (CCFHR), 101 Pivers Island Road, Beaufort, NC 28516, USA.
| | - William C Holland
- National Oceanic and Atmospheric Administration, National Ocean Service, National Centers for Coastal Ocean Science, Center for Coastal Fisheries and Habitat Research (CCFHR), 101 Pivers Island Road, Beaufort, NC 28516, USA.
| | - Catherine Roullier
- Mer Molécules Santé (MMS) Laboratory EA2160, University of Nantes, LUNAM, Pharmacy Faculty, 9 rue Bias, F-44035 Nantes, France.
| | - Philipp Hess
- Ifremer, Phycotoxins Laboratory, rue de l'Ile d'Yeu, BP 21105, F-44311 Nantes, France.
| |
Collapse
|
50
|
Rodríguez F, Fraga S, Ramilo I, Rial P, Figueroa RI, Riobó P, Bravo I. "Canary Islands (NE Atlantic) as a biodiversity 'hotspot' of Gambierdiscus: Implications for future trends of ciguatera in the area". HARMFUL ALGAE 2017; 67:131-143. [PMID: 28755716 DOI: 10.1016/j.hal.2017.06.009] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/11/2017] [Revised: 06/27/2017] [Accepted: 06/29/2017] [Indexed: 06/07/2023]
Abstract
In the present study the geographical distribution, abundance and composition of Gambierdiscus was described over a 600km longitudinal scale in the Canary Islands. Samples for cell counts, isolation and identification of Gambierdiscus were obtained from five islands (El Hierro, Tenerife, Gran Canaria, Fuerteventura and Lanzarote). Average densities of Gambierdiscus spp. between 0 and 2200cellsg-1 blot dry weight of macrophyte were recorded. Morphological (light microscopy and SEM techniques) and molecular analyses (LSU and SSU rDNA sequencing of cultures and single cells from the field) of Gambierdiscus was performed. Five Gambierdiscus species (G. australes, G. caribaeus, G. carolinianus, G. excentricus and G. silvae), together with a new putative species (Gambierdiscus ribotype 3) were identified. These results suggest that some cases of CFP in the region could be associated with the accumulation of ciguatoxins in the marine food web acquired from local populations of Gambierdiscus. This unexpected high diversity of Gambierdiscus species in an area which a priori is not under risk of ciguatera, hints at an ancient settlement of Gambierdiscus populations, likely favored by warmer climate conditions in the Miocene Epoch (when oldest current Canary Islands were created), in contrast with cooler present ones. Currently, warming trends associated with climate change could contribute to extend favorable environmental conditions in the area for Gambierdiscus growth especially during winter months.
Collapse
Affiliation(s)
- Francisco Rodríguez
- Centro Oceanográfico de Vigo, Instituto Español de Oceanografía (IEO), Subida a Radio Faro 50, 36390 Vigo, Spain.
| | - Santiago Fraga
- Centro Oceanográfico de Vigo, Instituto Español de Oceanografía (IEO), Subida a Radio Faro 50, 36390 Vigo, Spain.
| | - Isabel Ramilo
- Centro Oceanográfico de Vigo, Instituto Español de Oceanografía (IEO), Subida a Radio Faro 50, 36390 Vigo, Spain.
| | - Pilar Rial
- Centro Oceanográfico de Vigo, Instituto Español de Oceanografía (IEO), Subida a Radio Faro 50, 36390 Vigo, Spain.
| | - Rosa Isabel Figueroa
- Centro Oceanográfico de Vigo, Instituto Español de Oceanografía (IEO), Subida a Radio Faro 50, 36390 Vigo, Spain; Aquatic Ecology, Biology Building, Lund University, 22362 Lund, Sweden.
| | - Pilar Riobó
- Instituto de Investigaciones Marinas, CSIC, Eduardo Cabello, 6, 36208 Vigo, Spain.
| | - Isabel Bravo
- Centro Oceanográfico de Vigo, Instituto Español de Oceanografía (IEO), Subida a Radio Faro 50, 36390 Vigo, Spain.
| |
Collapse
|