1
|
Guzmán EA, Peterson TA, Winder PL, Francis KT, McFarland M, Roberts JC, Sandle J, Wright AE. An Assessment of Potential Threats to Human Health from Algae Blooms in the Indian River Lagoon (USA) 2018-2021: Unique Patterns of Cytotoxicity Associated with Toxins. Toxins (Basel) 2023; 15:664. [PMID: 37999526 PMCID: PMC10675324 DOI: 10.3390/toxins15110664] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2023] [Revised: 10/30/2023] [Accepted: 11/08/2023] [Indexed: 11/25/2023] Open
Abstract
The Indian River Lagoon (IRL), a 156-mile-long estuary located on the eastern coast of Florida, experiences phytoplankton bloom events due to increased seasonal temperatures coupled with anthropogenic impacts. This study aimed to gather data on the toxicity to human cells and to identify secondary metabolites found in water samples collected in the IRL. Water samples from 20 sites of the IRL were collected during the wet and dry seasons over a three-year period. A panel of cell lines was used to test cytotoxicity. Hemagglutination, hemolysis, and inhibition of protein phosphatase 2A (PP2A) were also measured. Cytotoxic blooms were seen both in the south (Microcystis) and the north (Pyrodinium) of the IRL. Each toxin induced a consistent pattern of cytotoxicity in the panel of human cell lines assayed. During blooms, cytotoxicity due to a single type of toxin is obvious from this pattern. In the absence of blooms, the cytotoxicity seen reflected either a mixture of toxins or it was caused by an unidentified toxin. These observations suggest that other toxins with the potential to be harmful to human health may be present in the IRL. Moreover, the presence of toxins in the IRL is not always associated with blooms of known toxin-producing organisms.
Collapse
Affiliation(s)
- Esther A. Guzmán
- The Florida Center for Coastal and Human Health, Harbor Branch Oceanographic Institute, Florida Atlantic University, 5600 US 1 North, Fort Pierce, FL 34946, USA; (T.A.P.); (P.L.W.); (K.T.F.); (M.M.); (J.C.R.); (J.S.); (A.E.W.)
| | | | | | | | | | | | | | | |
Collapse
|
2
|
Pinto A, Botelho MJ, Churro C, Asselman J, Pereira P, Pereira JL. A review on aquatic toxins - Do we really know it all regarding the environmental risk posed by phytoplankton neurotoxins? JOURNAL OF ENVIRONMENTAL MANAGEMENT 2023; 345:118769. [PMID: 37597370 DOI: 10.1016/j.jenvman.2023.118769] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/28/2023] [Revised: 07/24/2023] [Accepted: 08/09/2023] [Indexed: 08/21/2023]
Abstract
Aquatic toxins are potent natural toxins produced by certain cyanobacteria and marine algae species during harmful cyanobacterial and algal blooms (CyanoHABs and HABs, respectively). These harmful bloom events and the toxins produced during these events are a human and environmental health concern worldwide, with occurrence, frequency and severity of CyanoHABs and HABs being predicted to keep increasing due to ongoing climate change scenarios. These contexts, as well as human health consequences of some toxins produced during bloom events have been thoroughly reviewed before. Conversely, the wider picture that includes the non-human biota in the assessment of noxious effects of toxins is much less covered in the literature and barely covered by review works. Despite direct human exposure to aquatic toxins and related deleterious effects being responsible for the majority of the public attention to the blooms' problematic, it constitutes a very limited fraction of the real environmental risk posed by these toxins. The disruption of ecological and trophic interactions caused by these toxins in the aquatic biota building on deleterious effects they may induce in different species is paramount as a modulator of the overall magnitude of the environmental risk potentially involved, thus necessarily constraining the quality and efficiency of the management strategies that should be placed. In this way, this review aims at updating and consolidating current knowledge regarding the adverse effects of aquatic toxins, attempting to going beyond their main toxicity pathways in human and related models' health, i.e., also focusing on ecologically relevant model organisms. For conciseness and considering the severity in terms of documented human health risks as a reference, we restricted the detailed revision work to neurotoxic cyanotoxins and marine toxins. This comprehensive revision of the systemic effects of aquatic neurotoxins provides a broad overview of the exposure and the hazard that these compounds pose to human and environmental health. Regulatory approaches they are given worldwide, as well as (eco)toxicity data available were hence thoroughly reviewed. Critical research gaps were identified particularly regarding (i) the toxic effects other than those typical of the recognized disease/disorder each toxin causes following acute exposure in humans and also in other biota; and (ii) alternative detection tools capable of being early-warning signals for aquatic toxins occurrence and therefore provide better human and environmental safety insurance. Future directions on aquatic toxins research are discussed in face of the existent knowledge, with particular emphasis on the much-needed development and implementation of effective alternative (eco)toxicological biomarkers for these toxins. The wide-spanning approach followed herein will hopefully stimulate future research more broadly addressing the environmental hazardous potential of aquatic toxins.
Collapse
Affiliation(s)
- Albano Pinto
- CESAM - Centre for Environmental and Marine Studies, Department of Biology, University of Aveiro, Portugal.
| | - Maria João Botelho
- IPMA, Portuguese Institute for the Sea and Atmosphere, Av. Alfredo Magalhães Ramalho 6, 1495-165, Algés, Portugal; CIIMAR, Interdisciplinary Centre of Marine and Environmental Research, University of Porto, Terminal de Cruzeiros do Porto, Av. General Norton de Matos s/n, 4450-208, Matosinhos, Portugal
| | - Catarina Churro
- IPMA, Portuguese Institute for the Sea and Atmosphere, Av. Alfredo Magalhães Ramalho 6, 1495-165, Algés, Portugal; CIIMAR, Interdisciplinary Centre of Marine and Environmental Research, University of Porto, Terminal de Cruzeiros do Porto, Av. General Norton de Matos s/n, 4450-208, Matosinhos, Portugal
| | - Jana Asselman
- Blue Growth Research Lab, Ghent University, Bluebridge Building, Ostend Science Park 1, 8400, Ostend, Belgium
| | - Patrícia Pereira
- CESAM - Centre for Environmental and Marine Studies, Department of Biology, University of Aveiro, Portugal
| | - Joana Luísa Pereira
- CESAM - Centre for Environmental and Marine Studies, Department of Biology, University of Aveiro, Portugal
| |
Collapse
|
3
|
Moreira M, Soliño L, Marques CL, Laizé V, Pousão-Ferreira P, Costa PR, Soares F. Cytotoxic and Hemolytic Activities of Extracts of the Fish Parasite Dinoflagellate Amyloodinium ocellatum. Toxins (Basel) 2022; 14:toxins14070467. [PMID: 35878205 PMCID: PMC9316444 DOI: 10.3390/toxins14070467] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2022] [Revised: 07/04/2022] [Accepted: 07/06/2022] [Indexed: 12/04/2022] Open
Abstract
The dinoflagellate Amyloodinium ocellatum is the etiological agent of a parasitic disease named amyloodiniosis. Mortalities of diseased fish are usually attributed to anoxia, osmoregulatory impairment, or opportunistic bacterial infections. Nevertheless, the phylogenetic proximity of A. ocellatum to a group of toxin-producing dinoflagellates from Pfiesteria, Parvodinium and Paulsenella genera suggests that it may produce toxin-like compounds, adding a new dimension to the possible cause of mortalities in A. ocellatum outbreaks. To address this question, extracts prepared from different life stages of the parasite were tested in vitro for cytotoxic effects using two cell lines derived from branchial arches (ABSa15) and the caudal fin (CFSa1) of the gilthead seabream (Sparus aurata), and for hemolytic effects using erythrocytes purified from the blood of gilthead seabream juveniles. Cytotoxicity and a strong hemolytic effect, similar to those observed for Karlodinium toxins, were observed for the less polar extracts of the parasitic stage (trophont). A similar trend was observed for the less polar extracts of the infective stage (dinospores), although cell viability was only affected in the ABSa15 line. These results suggest that A. ocellatum produces tissue-specific toxic compounds that may have a role in the attachment of the dinospores’ and trophonts’ feeding process.
Collapse
Affiliation(s)
- Márcio Moreira
- S2AQUA—Collaborative Laboratory, Association for a Sustainable and Smart Aquaculture, Av. Parque Natural da Ria Formosa s/n, 8700-194 Olhão, Portugal; (M.M.); (C.L.M.); (V.L.); (P.P.-F.); (P.R.C.)
- IPMA—Portuguese Institute for the Ocean and Atmosphere, EPPO—Aquaculture Research Station, Av. Parque Natural da Ria Formosa s/n, 8700-194 Olhão, Portugal
- CCMAR—Centre of Marine Sciences, University of Algarve, Campus de Gambelas, 8005-139 Faro, Portugal;
| | - Lucía Soliño
- CCMAR—Centre of Marine Sciences, University of Algarve, Campus de Gambelas, 8005-139 Faro, Portugal;
- IPMA—Portuguese Institute for the Ocean and Atmosphere, Av. Alfredo Magalhães Ramalho, n° 6, 1495-165 Algés, Portugal
| | - Cátia L. Marques
- S2AQUA—Collaborative Laboratory, Association for a Sustainable and Smart Aquaculture, Av. Parque Natural da Ria Formosa s/n, 8700-194 Olhão, Portugal; (M.M.); (C.L.M.); (V.L.); (P.P.-F.); (P.R.C.)
- IPMA—Portuguese Institute for the Ocean and Atmosphere, EPPO—Aquaculture Research Station, Av. Parque Natural da Ria Formosa s/n, 8700-194 Olhão, Portugal
| | - Vincent Laizé
- S2AQUA—Collaborative Laboratory, Association for a Sustainable and Smart Aquaculture, Av. Parque Natural da Ria Formosa s/n, 8700-194 Olhão, Portugal; (M.M.); (C.L.M.); (V.L.); (P.P.-F.); (P.R.C.)
- CCMAR—Centre of Marine Sciences, University of Algarve, Campus de Gambelas, 8005-139 Faro, Portugal;
| | - Pedro Pousão-Ferreira
- S2AQUA—Collaborative Laboratory, Association for a Sustainable and Smart Aquaculture, Av. Parque Natural da Ria Formosa s/n, 8700-194 Olhão, Portugal; (M.M.); (C.L.M.); (V.L.); (P.P.-F.); (P.R.C.)
- IPMA—Portuguese Institute for the Ocean and Atmosphere, EPPO—Aquaculture Research Station, Av. Parque Natural da Ria Formosa s/n, 8700-194 Olhão, Portugal
| | - Pedro Reis Costa
- S2AQUA—Collaborative Laboratory, Association for a Sustainable and Smart Aquaculture, Av. Parque Natural da Ria Formosa s/n, 8700-194 Olhão, Portugal; (M.M.); (C.L.M.); (V.L.); (P.P.-F.); (P.R.C.)
- CCMAR—Centre of Marine Sciences, University of Algarve, Campus de Gambelas, 8005-139 Faro, Portugal;
- IPMA—Portuguese Institute for the Ocean and Atmosphere, Av. Alfredo Magalhães Ramalho, n° 6, 1495-165 Algés, Portugal
| | - Florbela Soares
- S2AQUA—Collaborative Laboratory, Association for a Sustainable and Smart Aquaculture, Av. Parque Natural da Ria Formosa s/n, 8700-194 Olhão, Portugal; (M.M.); (C.L.M.); (V.L.); (P.P.-F.); (P.R.C.)
- IPMA—Portuguese Institute for the Ocean and Atmosphere, EPPO—Aquaculture Research Station, Av. Parque Natural da Ria Formosa s/n, 8700-194 Olhão, Portugal
- Correspondence:
| |
Collapse
|
4
|
Functional and Structural Biological Methods for Palytoxin Detection. JOURNAL OF MARINE SCIENCE AND ENGINEERING 2022. [DOI: 10.3390/jmse10070916] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
Palytoxin (PLTX) and its analogues are marine polyethers identified in Palythoa and Zoanthus corals, Ostreopsis dinoflagellates, and Trichodesmium cyanobacteria. Humans can be exposed to these toxins by different routes with a series of adverse effects but the most severe risk is associated with poisonings by the consumption of edible marine organisms accumulating these toxins, as occurs in (sub)-tropical areas. In temperate areas, adverse effects ascribed to PLTXs have been recorded after inhalation of marine aerosols and/or cutaneous contact with seawater during Ostreopsis blooms, as well as during cleaning procedures of Palythoa-containing home aquaria. Besides instrumental analytical methods, in the last years a series of alternative or complementary methods based on biological/biochemical tools have been developed for the rapid and specific PLTX detection required for risk assessment. These methods are usually sensitive, cost- and time-effective, and do not require highly specialized operators. Among them, structural immunoassays and functional cell-based assays are reviewed. The availability of specific anti-PLTX antibodies allowed the development of different sensitive structural assays, suitable for its detection also in complex matrices, such as mussels. In addition, knowing the mechanism of PLTX action, a series of functional identification methods has been developed. Despite some of them being limited by matrix effects and specificity issues, biological methods for PLTX detection represent a feasible tool, suitable for rapid screening.
Collapse
|
5
|
Cheng D, Deng B, Tong Q, Gao S, Xiao B, Zhu M, Ren Z, Wang L, Sun M. Proteomic Studies of the Mechanism of Cytotoxicity, Induced by Palytoxin on HaCaT Cells. Toxins (Basel) 2022; 14:toxins14040269. [PMID: 35448878 PMCID: PMC9031313 DOI: 10.3390/toxins14040269] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2022] [Revised: 04/07/2022] [Accepted: 04/07/2022] [Indexed: 11/16/2022] Open
Abstract
Palytoxin (PLTX) is a polyether marine toxin isolated from sea anemones. It is one of the most toxic nonprotein substances, causing many people to be poisoned every year and to die in severe cases. Despite its known impact on Na+,K+-ATPase, much still remains unclear about PLTX’s mechanism of action. Here, we tested different concentrations of PLTX on HaCaT cells and studied its distributions in cells, its impact on gene expression, and the associated pathways via proteomics combined with bioinformatics tools. We found that PLTX could cause ferroptosis in HaCaT cells, a new type of programmed cell death, by up-regulating the expression of VDAC3, ACSL4 and NCOA4, which lead to the occurrence of ferroptosis. PLTX also acts on the MAPK pathway, which is related to cell apoptosis, proliferation, division and differentiation. Different from its effect on ferroptosis, PLTX down-regulates the expression of ERK, and, as a result, the expressions of MAPK1, MAP2K1 and MAP2K2 are also lower, affecting cell proliferation. The genes from these two mechanisms showed interactions, but we did not find overlap genes between the two. Both ferroptosis and MAPK pathways can be used as anticancer targets, so PLTX may become an anticancer drug with appropriate modification.
Collapse
|
6
|
Faustino LS, Queiroga FR, Hégaret H, Marques-Santos LF, Neves RAF, Nascimento S, da Silva PM. Effects of the toxic dinoflagellates Prorocentrum lima and Ostreopsis cf. ovata on immune responses of cultured oysters Crassostrea gasar. AQUATIC TOXICOLOGY (AMSTERDAM, NETHERLANDS) 2021; 236:105846. [PMID: 34000566 DOI: 10.1016/j.aquatox.2021.105846] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/21/2021] [Revised: 04/19/2021] [Accepted: 04/24/2021] [Indexed: 06/12/2023]
Abstract
Oyster production in Brazil has been highlighted as an important economic activity and is directly impacted by the quality of the environment, which is largely the result of human interference and climate change. Harmful algal blooms occur in aquatic ecosystems worldwide, including coastal marine environments which have been increasing over the last decades as a result of global change and anthropogenic activities. In this study, the native oysters Crassostrea gasar from Northeast of Brazil were exposed to two toxic benthic dinoflagellate species, Prorocentrum lima and Ostreopsis cf. ovata. Their respective effects on C. gasar physiology and defense mechanisms were investigated. Oyster hemocytes were first exposed in vitro to different concentrations of both dinoflagellate species to assess their effects on hemocyte functions, such as phagocytosis, production of reactive oxygen species, as well as mortality. Results highlighted an alteration of hemocyte phagocytosis and viability in presence of O. cf. ovata, whereas P. lima did not affect the measured hemocyte functions. In a second experiment, oysters were exposed for 4 days in vivo to toxic culture of O. cf. ovata to assess its effects on hemocyte parameters, tissues damages and pathogenic Perkinsus spp. infection. An increase in hemocyte mortality was also observed in vivo, associated with a decrease of ROS production. Histopathological analyses demonstrated a thinning of the epithelium of the digestive tubules of the digestive gland, inflammatory reaction and a significant increase in the level of infection by Perkinsus spp. in oysters exposed to O. cf. ovata. These results indicate that oysters C. gasar seem to be pretty resilient to an exposure to P. lima and may be more susceptible to O. cf. ovata. Furthermore, the latter clearly impaired oyster physiology and defense mechanisms, thus highlighting that harmful algal blooms of O. cf. ovata could potentially lead to increased susceptibility of C. gasar oysters to parasite infections.
Collapse
Affiliation(s)
- Lucemberg Sales Faustino
- Laboratory of Immunology and Pathology of Marine Invertebrates (LABIPI), Department of Molecular Biology, Federal University of Paraíba (UFPB), CEP 58051-900, João Pessoa, Paraíba, Brazil
| | - Fernando Ramos Queiroga
- Laboratory of Immunology and Pathology of Marine Invertebrates (LABIPI), Department of Molecular Biology, Federal University of Paraíba (UFPB), CEP 58051-900, João Pessoa, Paraíba, Brazil; Faculdade de Enfermagem Nova Esperança (FACENE), CEP 58067-695, João Pessoa, Paraíba, Brazil
| | - Hélène Hégaret
- CNRS, Univ Brest, IRD, Ifremer, LEMAR, F-29280, Plouzané, France
| | - Luis Fernando Marques-Santos
- Cell and Developmental Biology Laboratory (LABID), Department of Molecular Biology, Federal University of Paraíba (UFPB), CEP 58051-900, João Pessoa, Paraíba, Brazil
| | - Raquel A F Neves
- Research Group of Experimental and Applied Aquatic Ecology, Federal University of the State of Rio de Janeiro (UNIRIO), Rio de Janeiro, Brazil
| | - Silvia Nascimento
- Research Group of Experimental and Applied Aquatic Ecology, Federal University of the State of Rio de Janeiro (UNIRIO), Rio de Janeiro, Brazil
| | - Patrícia Mirella da Silva
- Laboratory of Immunology and Pathology of Marine Invertebrates (LABIPI), Department of Molecular Biology, Federal University of Paraíba (UFPB), CEP 58051-900, João Pessoa, Paraíba, Brazil.
| |
Collapse
|
7
|
Neves RAF, Pardal MA, Nascimento SM, Oliveira PJ, Rodrigues ET. Screening-level evaluation of marine benthic dinoflagellates toxicity using mammalian cell lines. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2020; 195:110465. [PMID: 32199217 DOI: 10.1016/j.ecoenv.2020.110465] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/05/2019] [Revised: 03/01/2020] [Accepted: 03/08/2020] [Indexed: 06/10/2023]
Abstract
Complementary studies at different levels of the biological organization are fundamental to fully link environmental exposure to marine benthic dinoflagellate toxins and their effects. In order to contribute to this transdisciplinary evaluation, and for the first time, the present study aims to study the effects of Gambierdiscus excentricus, Ostreopsis cf. ovata, Prorocentrum hoffmannianum and Prorocentrum lima extracts on seven functionally different mammalian cell lines: HEK 293, HepG2, HNDF, H9c2(2-1), MC3T3-E1, Raw 264.7 and SH-SY5Y. All the cell lines presented cell mass decrease in a concentration-dependence of dinoflagellate extracts, exhibiting marked differences in cell toxicity. Gambierdiscus excentricus presented the highest effect, at very low concentrations with EC50,24h (i.e., the concentration that gives half-maximal response after a 24-h exposure) between 1.3 and 13 cells mL-1, followed by O. cf. ovata (EC50,24h between 3.3 and 40 cells mL-1), and Prorocentrum species (P. lima: EC50,24h between 191 and 1027 cells mL-1 and P. hoffmannianum: EC50,24h between 152 and 783 cells mL-1). Cellular specificities were also detected and rat cardiomyoblast H9c2(2-1) cells were in general the most sensitive to dinoflagellate toxic compounds, suggesting that this cell line is an animal-free potential model for dinoflagellate toxin testing. Finally, the sensitivity of cells expressing distinct phenotypes to each dinoflagellate extract exhibited low relation to human poisoning symptoms.
Collapse
Affiliation(s)
- Raquel A F Neves
- Department of Ecology and Marine Resources, Federal University of the State of Rio de Janeiro (UNIRIO), Av Pasteur 458-314B, 22290-240, Rio de Janeiro, Brazil; CFE-Centre for Functional Ecology, Department of Life Sciences, University of Coimbra, Calçada Martim de Freitas, 3000-456, Coimbra, Portugal.
| | - Miguel A Pardal
- CFE-Centre for Functional Ecology, Department of Life Sciences, University of Coimbra, Calçada Martim de Freitas, 3000-456, Coimbra, Portugal.
| | - Silvia M Nascimento
- Department of Ecology and Marine Resources, Federal University of the State of Rio de Janeiro (UNIRIO), Av Pasteur 458-314B, 22290-240, Rio de Janeiro, Brazil.
| | - Paulo J Oliveira
- CNC-Center for Neuroscience and Cell Biology, University of Coimbra, UC-Biotech, Biocant Park, 3060-197, Cantanhede, Portugal.
| | - Elsa T Rodrigues
- CFE-Centre for Functional Ecology, Department of Life Sciences, University of Coimbra, Calçada Martim de Freitas, 3000-456, Coimbra, Portugal.
| |
Collapse
|
8
|
Inhalation poisoning with palytoxin from aquarium coral: case description and safety advice. Arh Hig Rada Toksikol 2019; 70:14-17. [PMID: 30956217 DOI: 10.2478/aiht-2019-70-3209] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2018] [Accepted: 03/01/2019] [Indexed: 01/28/2023] Open
Abstract
Palythoa spp. corals and some other marine organisms contain one of the most poisonous substances ever known - palytoxin (PTX). Due to their modest life requirements and ease of breeding, these corals are popular in home aquariums. Here we refer to a case of PTX poisoning of a middle-aged woman who inhaled poisonous vapours while brushing the corals from live rock and compare it with the available literature. As the case revealed that the symptoms of PTX poisoning are not specific and neither is treatment, our aim was to give a brief tabulated review of the symptoms that may indicate such poisoning. Cases of palytoxin poisoning have been reported worldwide, and severe ones (mostly due to ingestion of contaminated sea food) can end in death. As it appears, most (if not all) poisonings result from unawareness of the risk and reckless handling by aquarists. This is one of the first articles which provides some practical advice about the use of personal protection equipment, including gloves, masks, eyewear, and other clothing during any coral manipulation to minimise the risk. We also draw attention to the lack of marketing/trading regulations for dangerous coral species and/or regulations or instructions dealing with their removal and health protection.
Collapse
|
9
|
Huang C, Morlighem JÉR, Zhou H, Lima ÉP, Gomes PB, Cai J, Lou I, Pérez CD, Lee SM, Rádis-Baptista G. The Transcriptome of the Zoanthid Protopalythoa variabilis (Cnidaria, Anthozoa) Predicts a Basal Repertoire of Toxin-like and Venom-Auxiliary Polypeptides. Genome Biol Evol 2016; 8:3045-3064. [PMID: 27566758 PMCID: PMC5630949 DOI: 10.1093/gbe/evw204] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/20/2016] [Indexed: 12/12/2022] Open
Abstract
Protopalythoa is a zoanthid that, together with thousands of predominantly marine species, such as hydra, jellyfish, and sea anemones, composes the oldest eumetazoan phylum, i.e., the Cnidaria. Some of these species, such as sea wasps and sea anemones, are highly venomous organisms that can produce deadly toxins for preying, for defense or for territorial disputes. Despite the fact that hundreds of organic and polypeptide toxins have been characterized from sea anemones and jellyfish, practically nothing is known about the toxin repertoire in zoanthids. Here, based on a transcriptome analysis of the zoanthid Protopalythoa variabilis, numerous predicted polypeptides with canonical venom protein features are identified. These polypeptides comprise putative proteins from different toxin families: neurotoxic peptides, hemostatic and hemorrhagic toxins, membrane-active (pore-forming) proteins, protease inhibitors, mixed-function venom enzymes, and venom auxiliary proteins. The synthesis and functional analysis of two of these predicted toxin products, one related to the ShK/Aurelin family and the other to a recently discovered anthozoan toxin, displayed potent in vivo neurotoxicity that impaired swimming in larval zebrafish. Altogether, the complex array of venom-related transcripts that are identified in P. variabilis, some of which are first reported in Cnidaria, provides novel insight into the toxin distribution among species and might contribute to the understanding of composition and evolution of venom polypeptides in toxiferous animals.
Collapse
Affiliation(s)
- Chen Huang
- State Key Laboratory of Quality Research in Chinese Medicine and Institute of Chinese Medical Sciences, University of Macau, Macau, China
| | - Jean-Étienne Rl Morlighem
- Northeast Biotechnology Network (RENORBIO), Post-graduation program in Biotechnology, Federal University of Ceará, Fortaleza, Brazil Laboratory of Biochemistry and Biotechnology, Institute for Marine Sciences, Federal University of Ceará, Fortaleza, Brazil
| | - Hefeng Zhou
- State Key Laboratory of Quality Research in Chinese Medicine and Institute of Chinese Medical Sciences, University of Macau, Macau, China
| | - Érica P Lima
- Centro Acadêmico de Vitoria, Universidade Federal de Pernambuco, Vitória de Santo Antão, Brazil
| | - Paula B Gomes
- Departamento de Biologia, Universidade Federal Rural de Pernambuco, Recife, Brazil
| | - Jing Cai
- Faculty of Science and Technology, Department of Civil and Environmental Engineering, University of Macau, Macau, China
| | - Inchio Lou
- Faculty of Science and Technology, Department of Civil and Environmental Engineering, University of Macau, Macau, China
| | - Carlos D Pérez
- Centro Acadêmico de Vitoria, Universidade Federal de Pernambuco, Vitória de Santo Antão, Brazil
| | - Simon Ming Lee
- State Key Laboratory of Quality Research in Chinese Medicine and Institute of Chinese Medical Sciences, University of Macau, Macau, China
| | - Gandhi Rádis-Baptista
- Laboratory of Biochemistry and Biotechnology, Institute for Marine Sciences, Federal University of Ceará, Fortaleza, Brazil
| |
Collapse
|
10
|
Reverté L, Soliño L, Carnicer O, Diogène J, Campàs M. Alternative methods for the detection of emerging marine toxins: biosensors, biochemical assays and cell-based assays. Mar Drugs 2014; 12:5719-63. [PMID: 25431968 PMCID: PMC4278199 DOI: 10.3390/md12125719] [Citation(s) in RCA: 50] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2014] [Revised: 11/11/2014] [Accepted: 11/11/2014] [Indexed: 12/02/2022] Open
Abstract
The emergence of marine toxins in water and seafood may have a considerable impact on public health. Although the tendency in Europe is to consolidate, when possible, official reference methods based on instrumental analysis, the development of alternative or complementary methods providing functional or toxicological information may provide advantages in terms of risk identification, but also low cost, simplicity, ease of use and high-throughput analysis. This article gives an overview of the immunoassays, cell-based assays, receptor-binding assays and biosensors that have been developed for the screening and quantification of emerging marine toxins: palytoxins, ciguatoxins, cyclic imines and tetrodotoxins. Their advantages and limitations are discussed, as well as their possible integration in research and monitoring programs.
Collapse
Affiliation(s)
- Laia Reverté
- IRTA, Carretera Poble Nou km 5.5, 43540 Sant Carles de la Ràpita, Spain.
| | - Lucía Soliño
- IRTA, Carretera Poble Nou km 5.5, 43540 Sant Carles de la Ràpita, Spain.
| | - Olga Carnicer
- IRTA, Carretera Poble Nou km 5.5, 43540 Sant Carles de la Ràpita, Spain.
| | - Jorge Diogène
- IRTA, Carretera Poble Nou km 5.5, 43540 Sant Carles de la Ràpita, Spain.
| | - Mònica Campàs
- IRTA, Carretera Poble Nou km 5.5, 43540 Sant Carles de la Ràpita, Spain.
| |
Collapse
|
11
|
In vivo and in vitro effects of 42-hydroxy-palytoxin on mouse skeletal muscle: structural and functional impairment. Toxicol Lett 2013; 225:285-93. [PMID: 24378260 DOI: 10.1016/j.toxlet.2013.12.020] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2013] [Revised: 12/18/2013] [Accepted: 12/19/2013] [Indexed: 11/23/2022]
Abstract
Palytoxins (PLTXs) are known seafood contaminants and their entrance into the food chain raises concern about possible effects on human health. The increasing number of analogs being identified in edible marine organisms complicates the estimation of the real hazard associated with the presence of PLTX-like compounds. So far, 42-OH-PLTX is one of the few congeners available, and the study of its toxicity represents an important step toward a better comprehension of the mechanism of action of this family of compounds. From this perspective, the aim of this work was to investigate the in vivo and in vitro effect of 42-OH-PLTX on skeletal muscle, one of the most sensitive targets for PLTXs. Our results demonstrate that 42-OH-PLTX causes damage at the skeletal muscle level with a cytotoxic potency similar to that of PLTX. 42-OH-PLTX induces cytotoxicity and cell swelling in a Na(+)-dependent manner similar to the parent compound. However, the limited Ca(2+)-dependence of the toxic insult induced by 42-OH-PLTX suggests a specific mechanism of action for this analog. Our results also suggest an impaired response to the physiological agonist acetylcholine and altered cell elasticity.
Collapse
|
12
|
Mariottini GL, Pane L. Cytotoxic and cytolytic cnidarian venoms. A review on health implications and possible therapeutic applications. Toxins (Basel) 2013; 6:108-51. [PMID: 24379089 PMCID: PMC3920253 DOI: 10.3390/toxins6010108] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2013] [Revised: 12/11/2013] [Accepted: 12/13/2013] [Indexed: 01/20/2023] Open
Abstract
The toxicity of Cnidaria is a subject of concern for its influence on human activities and public health. During the last decades, the mechanisms of cell injury caused by cnidarian venoms have been studied utilizing extracts from several Cnidaria that have been tested in order to evaluate some fundamental parameters, such as the activity on cell survival, functioning and metabolism, and to improve the knowledge about the mechanisms of action of these compounds. In agreement with the modern tendency aimed to avoid the utilization of living animals in the experiments and to substitute them with in vitro systems, established cell lines or primary cultures have been employed to test cnidarian extracts or derivatives. Several cnidarian venoms have been found to have cytotoxic properties and have been also shown to cause hemolytic effects. Some studied substances have been shown to affect tumour cells and microorganisms, so making cnidarian extracts particularly interesting for their possible therapeutic employment. The review aims to emphasize the up-to-date knowledge about this subject taking in consideration the importance of such venoms in human pathology, the health implications and the possible therapeutic application of these natural compounds.
Collapse
Affiliation(s)
- Gian Luigi Mariottini
- Department of Earth, Environment and Life Sciences, University of Genova, Viale Benedetto XV 5, Genova I-16132, Italy.
| | - Luigi Pane
- Department of Earth, Environment and Life Sciences, University of Genova, Viale Benedetto XV 5, Genova I-16132, Italy.
| |
Collapse
|
13
|
Gao L, Zhang J, Liu X, Zhao M, Li L, Liu X, Zhao B. Effect of spider venom on inhibition proliferation of TE13 cells in vivo and in vitro. Thorac Cancer 2013; 4:306-311. [PMID: 28920240 DOI: 10.1111/1759-7714.12020] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2012] [Accepted: 12/10/2012] [Indexed: 11/28/2022] Open
Abstract
BACKGROUND The aim of this study was to evaluate the cytotoxic and antitumor activity of spider venom (SV). METHODS Cell proliferation and cytotoxicity were determined by 3 H-methyl thymidine incorporation ([3 H]-TDR) assay. DNA fragmentation and cell cycle kinetics were analyzed by FACS. In vivo inhibition of tumor size of nude mice by SV (5.0, 10.0, 20.0 mg/kg mice) was constructed. RESULTS SV exhibited significant anti-cancer effects on human squamous esophageal carcinoma cells TE13, mainly as a result of cell apoptosis induced by SV. The anti-cancer effects were likely achieved through decreasing [3 H]-TdR. TE13 cells treated with SV (25, 50, 100 μg/mL), which were arrested in the G0 /G1 phase. SV treatment leads to anti-proliferation effects, and significant apoptosis in TE13 cells with reactive oxygen species (ROS) levels can increase dramatically and decrease cellular mitochondrial membrane potential (MMP). In addition, Western blotting analysis showed that one of the pharmacological mechanisms of SV was to activate the expression of P21. In vivo testing revealed that tumor size was significantly decreased after 21 days of treatment with the venom (P < 0.01). CONCLUSIONS Our data showed that SVs could inhibit TE13 cell proliferation in vitro and in vivo.
Collapse
Affiliation(s)
- Li Gao
- College of Life Science, Hebei Normal University, Shijiazhuang, China
| | - Jing Zhang
- Department of Rehabilitation, The Fourth Hospital of Hebei Medical University, Shijiazhuang, China
| | - Xinyan Liu
- The Department of Oncology, Hebei Province Chest Hospital, Shijiazhuang, China
| | - Min Zhao
- The Department of Oncology, Hebei Province Chest Hospital, Shijiazhuang, China
| | - Lijun Li
- College of Information and Technical, Hebei Normal University, Shijiazhuang, China
| | - Xin Liu
- College of Chemistry and Materials Science, Hebei Normal University, Shijiazhuang, China
| | - Baohua Zhao
- College of Life Science, Hebei Normal University, Shijiazhuang, China
| |
Collapse
|
14
|
Fernández DA, Louzao MC, Vilariño N, Espiña B, Fraga M, Vieytes MR, Román A, Poli M, Botana LM. The kinetic, mechanistic and cytomorphological effects of palytoxin in human intestinal cells (Caco-2) explain its lower-than-parenteral oral toxicity. FEBS J 2013; 280:3906-19. [DOI: 10.1111/febs.12390] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2012] [Revised: 06/10/2013] [Accepted: 06/10/2013] [Indexed: 11/28/2022]
Affiliation(s)
- Diego A. Fernández
- Departamento de Farmacología; Facultad de Veterinaria; Universidad de Santiago de Compostela; Lugo Spain
| | - M. Carmen Louzao
- Departamento de Farmacología; Facultad de Veterinaria; Universidad de Santiago de Compostela; Lugo Spain
| | - Natalia Vilariño
- Departamento de Farmacología; Facultad de Veterinaria; Universidad de Santiago de Compostela; Lugo Spain
| | - Begoña Espiña
- Departamento de Farmacología; Facultad de Veterinaria; Universidad de Santiago de Compostela; Lugo Spain
- International Iberian Nanotechnology Laboratory (INL); Braga Portugal
| | - María Fraga
- Departamento de Farmacología; Facultad de Veterinaria; Universidad de Santiago de Compostela; Lugo Spain
| | - Mercedes R. Vieytes
- Departamento de Fisiología Animal; Facultad de Veterinaria; Universidad de Santiago de Compostela; Lugo Spain
| | - Albina Román
- Unidad de Microscopía Electrónica y Confocal; Edificio CACTUS; Lugo Spain
| | - Mark Poli
- Integrated Toxicology Division; US Army Medical Research Institute of Infectious Diseases; Fort Detrick MD USA
| | - Luis M. Botana
- Departamento de Farmacología; Facultad de Veterinaria; Universidad de Santiago de Compostela; Lugo Spain
| |
Collapse
|
15
|
Del Favero G, Beltramo D, Sciancalepore M, Lorenzon P, Coslovich T, Poli M, Testai E, Sosa S, Tubaro A. Toxicity of palytoxin after repeated oral exposure in mice and in vitro effects on cardiomyocytes. Toxicon 2013; 75:3-15. [PMID: 23770425 DOI: 10.1016/j.toxicon.2013.06.003] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2013] [Revised: 06/03/2013] [Accepted: 06/06/2013] [Indexed: 11/16/2022]
Abstract
Palytoxin (PLTX) is a highly toxic hydrophilic polyether detected in several edible marine organisms from intra-tropical areas, where seafood poisoning were reported. Symptoms usually start with gastro-intestinal malaise, often accompanied by myalgia, muscular cramps, dyspnea and, sometimes, arrhythmias. Monitoring programs in the Mediterranean Sea have detected PLTX-like molecules in edible mollusks and echinoderms. Despite the potential exposure of the human population and its high toxic potential, the toxicological profile of the molecule is still an issue. Thus, the effects of repeated oral administration of PLTX in mice were investigated. Seven days of PLTX administration caused lethality and toxic effects at doses ≥ 30 μg/kg/day. A NOAEL was estimated equal to 3 μg/kg/day, indicating a quite steep dose-response curve. This value, due to the limited number of animal tested, is provisional, although represents a sound basis for further testing. Macroscopic alterations at gastrointestinal level (gastric ulcers and intestinal fluid accumulation) were observed in mice dead during the treatment period. Histological analysis highlighted severe inflammation, locally associated with necrosis, at pulmonary level, as well as hyper-eosinophilia and fiber separation in myocardium. A cardiac damage was supported by the in vitro effect of the toxin on cardiomyocytes, indicating a severe and irreversible impairment of their electrical properties: electrophysiological recordings detected a progressive cell depolarization, arrest of action potentials and beating.
Collapse
Affiliation(s)
- Giorgia Del Favero
- Department of Life Sciences, University of Trieste, 34127 Trieste, Italy
| | | | | | | | | | | | | | | | | |
Collapse
|
16
|
Görögh T, Bèress L, Quabius ES, Ambrosch P, Hoffmann M. Head and neck cancer cells and xenografts are very sensitive to palytoxin: decrease of c-jun n-terminale kinase-3 expression enhances palytoxin toxicity. Mol Cancer 2013; 12:12. [PMID: 23409748 PMCID: PMC3585753 DOI: 10.1186/1476-4598-12-12] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2012] [Accepted: 02/06/2013] [Indexed: 02/01/2023] Open
Abstract
Objectives Palytoxin (PTX), a marine toxin isolated from the Cnidaria (zooanthid) Palythoa caribaeorum is one of the most potent non-protein substances known. It is a very complex molecule that presents both lipophilic and hydrophilic areas. The effect of PTX was investigated in a series of experiments conducted in head and neck squamous cell carcinoma (HNSCC) cell lines and xenografts. Materials and methods Cell viability, and gene expression of the sodium/potassium-transporting ATPase subumit alpha1 (ATP1AL1) and GAPDH were analyzed in HNSCC cells and normal epithelial cells after treatment with PTX using cytotoxicity-, clonogenic-, and enzyme inhibitor assays as well as RT-PCR and Northern Blotting. For xenograft experiments severe combined immunodeficient (SCID) mice were used to analyze tumor regression. The data were statistically analyzed using One-Way Annova (SPSS vs20). Results Significant toxic effects were observed in tumor cells treated with PTX (LD50 of 1.5 to 3.5 ng/ml) in contrast to normal cells. In tumor cells PTX affected both the release of LDH and the expression of the sodium/potassium-transporting ATPase subunit alpha1 gene suggesting loss of cellular integrity, primarily of the plasma membrane. Furthermore, strong repression of the c-Jun N-terminal kinase 3 (JNK3) mRNA expression was found in carcinoma cells which correlated with enhanced toxicity of PTX suggesting an essential role of the mitogen activated protein kinase (MAPK)/JNK signalling cascades pathway in the mechanisms of HNSCC cell resistance to PTX. In mice inoculated with carcinoma cells, injections of PTX into the xenografted tumors resulted within 24 days in extensive tumor destruction in 75% of the treated animals (LD50 of 68 ng/kg to 83 ng/kg) while no tumor regression occurred in control animals. Conclusions These results clearly provide evidence that PTX possesses preferential toxicity for head and neck carcinoma cells and therefore it is worth further studying its impact which may extend our knowledge of the biology of head and neck cancer.
Collapse
Affiliation(s)
- Tibor Görögh
- Department of Otorhinolaryngology- Head and Neck Surgery, Section of Experimental Oncology, University of Kiel Schleswig-Holstein, Kiel, 24105, Germany.
| | | | | | | | | |
Collapse
|
17
|
Gorbi S, Bocchetti R, Binelli A, Bacchiocchi S, Orletti R, Nanetti L, Raffaelli F, Vignini A, Accoroni S, Totti C, Regoli F. Biological effects of palytoxin-like compounds from Ostreopsis cf. ovata: a multibiomarkers approach with mussels Mytilus galloprovincialis. CHEMOSPHERE 2012; 89:623-632. [PMID: 22704213 DOI: 10.1016/j.chemosphere.2012.05.064] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/14/2011] [Revised: 05/02/2012] [Accepted: 05/16/2012] [Indexed: 06/01/2023]
Abstract
Massive blooms of the harmful benthic dinoflagellate Ostreopsis cf. ovata are of growing environmental concern in the Mediterranean, having recently caused adverse effects on benthic invertebrates and also some intoxication episodes to humans. The toxicological potential of produced palytoxin-like compounds was investigated in the present study on a typical marine sentinel species, the mussel Mytilus galloprovincialis. Organisms were sampled during various phases of a O. cf. ovata bloom, in two differently impacted sites. The presence of the algal toxins was indirectly assessed in mussels tissues (mouse test and hemolysis neutralization assay), while biological and toxicological effects were evaluated through the measurement of osmoregulatory and neurotoxic alterations (Na(+)/K(+)-ATPase and acetylcholinesterase activities), oxidative stress responses (antioxidant defences and total oxyradical scavenging capacity), lipid peroxidation processes (level of malondialdehyde), peroxisomal proliferation, organelle dysfunctions (lysosomal membrane stability, accumulation of lipofuscin and neutral lipids), immunological impairment (granulocytes percentage). Obtained results demonstrated a significant accumulation of algal toxins in mussels exposed to O. cf. ovata. These organisms exhibited a marked inhibition of the Na(+)/K(+)-ATPase activity and alterations of immunological, lysosomal and neurotoxic responses. Markers of oxidative stress showed more limited variations suggesting that toxicity of the O. cf. ovata toxins is not primarily mediated by an over production of reactive oxygen species. This study provided preliminary results on the usefulness of a multi-biomarker approach to assess biological alterations and toxicological events associated to blooms of O. cf. ovata in marine organisms.
Collapse
Affiliation(s)
- S Gorbi
- Dipartimento di Scienze della Vita e dell'Ambiente, Università Politecnica delle Marche, Via Brecce Bianche, 60131 Ancona, Italy.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
18
|
Del Favero G, Florio C, Codan B, Sosa S, Poli M, Sbaizero O, Molgó J, Tubaro A, Lorenzon P. The Stretch-Activated Channel Blocker Gd3+ Reduces Palytoxin Toxicity in Primary Cultures of Skeletal Muscle Cells. Chem Res Toxicol 2012; 25:1912-20. [DOI: 10.1021/tx300203x] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
| | | | | | | | - Mark Poli
- United States Army Medical Research Institute of Infectious Diseases, Fort Detrick, Maryland 21701-5011, United States
| | | | - Jordi Molgó
- Institut Fédératif de Neurobiologie Alfred Fessard, Laboratoire de Neurobiologie
et Développement, CNRS UPR 3294, 91198 Gif sur Yvette cedex,
France
| | | | | |
Collapse
|
19
|
Prandi S, Sala GL, Bellocci M, Alessandrini A, Facci P, Bigiani A, Rossini GP. Palytoxin induces cell lysis by priming a two-step process in mcf-7 cells. Chem Res Toxicol 2011; 24:1283-96. [PMID: 21728342 DOI: 10.1021/tx2001866] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
The cytolytic action of palytoxin (PlTX) was recognized long ago, but its features have remained largely undetermined. We used biochemical, morphological, physiological, and physical tools, to study the cytolytic response in MCF-7 cells, as our model system. Cytolysis represented a stereotyped response induced by the addition of isotonic phosphate buffer (PBS) to cells that had been exposed to PlTX, after toxin removal and under optimal and suboptimal experimental conditions. Cytolysis was sensitive to osmolytes present during cell exposure to PlTX but not in the course of the lytic phase. Fluorescence microscopy showed that PlTX caused cell rounding and rearrangement of the actin cytoskeleton. Atomic force microscopy (AFM) was used to monitor PlTX effects in real time, and we found that morphological and mechanical properties of MCF-7 cells did not change during toxin exposure, but increased cell height and decreased stiffness at its surface were observed when PBS was added to PlTX-treated cells. The presence of an osmolyte during PlTX treatment prevented the detection of changes in morphological and mechanical properties caused by PBS addition to toxin-treated cells, as detected by AFM. By patch-clamp technique, we confirmed that PlTX action involved the transformation of the Na(+),K(+)-ATPase into a channel and found that cell membrane capacitance was not changed by PlTX, indicating that the membrane surface area was not greatly affected in our model system. Overall, our findings show that the cytolytic response triggered by PlTX in MCF-7 cells includes a first phase, which is toxin-dependent and osmolyte-sensitive, priming cells to lytic events taking place in a separate phase, which does not require the presence of the toxin and is osmolyte-insensitive but is accompanied by marked reorganization of actin-based cytoskeleton and altered mechanical properties at the cell's surface. A model of the two-step process of PlTX-induced cytolysis is presented.
Collapse
Affiliation(s)
- Simone Prandi
- Dipartimento di Scienze Biomediche, Università di Modena e Reggio Emilia , Via Campi 287, I-41125 Modena, Italy
| | | | | | | | | | | | | |
Collapse
|
20
|
Ficarra S, Russo A, Stefanizzi F, Mileto M, Barreca D, Bellocco E, Laganà G, Leuzzi U, Giardina B, Galtieri A, Tellone E. Palytoxin Induces Functional Changes of Anion Transport in Red Blood Cells: Metabolic Impact. J Membr Biol 2011; 242:31-9. [DOI: 10.1007/s00232-011-9374-6] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2011] [Accepted: 06/13/2011] [Indexed: 10/18/2022]
|
21
|
|
22
|
Rossini GP, Bigiani A. Palytoxin action on the Na(+),K(+)-ATPase and the disruption of ion equilibria in biological systems. Toxicon 2010; 57:429-39. [PMID: 20932855 DOI: 10.1016/j.toxicon.2010.09.011] [Citation(s) in RCA: 56] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2010] [Revised: 09/03/2010] [Accepted: 09/24/2010] [Indexed: 11/29/2022]
Abstract
Palytoxin-group toxins (PlTX) exert their potent biological activity by altering mechanisms of ion homeostasis in excitable and non-excitable tissues. This review will describe major aspects that led to the relatively early identification of the Na(+),K(+)-ATPase as the molecular target and receptor of the toxin in sensitive systems. The importance of this pump in the normal functioning of animal cells has driven extensive investigative efforts. The recognized molecular mechanism of action of PlTX involves its binding to the extracellular portion of alpha subunit of this plasma membrane protein, which converts an enzyme carrying ions against their concentration gradients at the expense of chemical energy (ATP) into a non-selective cation channel, allowing passive flow of ions following their concentration gradients. More recent findings have indicated that PlTX would interfere with the normal strict coupling between inner and outer gates of the pump controlling the ion access to the Na(+),K(+)-ATPase, allowing the gates to be simultaneously open. The ability of PlTX to make internal portions of the Na(+),K(+)-ATPase accessible to relatively large molecules has been exploited to characterize the structure-function relationship of the pump, leading to a better understanding of its ion translocation pathway. Thus, forty years from the isolation of this potent marine biotoxin, a considerable understanding of its mode of action and of its potential as a research tool have been achieved and are the basis for promising future advancement in the characterization of biological systems and their alteration by PlTX.
Collapse
Affiliation(s)
- Gian Paolo Rossini
- Dipartimento di Scienze Biomediche, Università di Modena e Reggio Emilia, Via G. Campi 287, I-41125 Modena, Italy.
| | | |
Collapse
|