1
|
Kuo YJ, Chung CH, Chen CC, Liu JC, Chiou KR, Sheu JR, Chuang WJ, Huang TF. A Novel KGD-Based αIIbβ3 Antagonist Prevents Arterial Thrombosis While Preserving Hemostasis and Avoiding Thrombocytopenia. Int J Mol Sci 2025; 26:4530. [PMID: 40429674 PMCID: PMC12111684 DOI: 10.3390/ijms26104530] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2025] [Revised: 05/07/2025] [Accepted: 05/07/2025] [Indexed: 05/29/2025] Open
Abstract
Current αIIbβ3 antagonists are potent antithrombotic agents, their clinical use is limited by the risk of life-threatening bleeding. Emerging evidence has highlighted key mechanistic differences between thrombosis and hemostasis, opening avenues for safer antithrombotic strategies. Targeting integrin αIIbβ3 outside-in signaling has been proposed to mitigate bleeding risk; however, the short half-life of peptide-based therapeutics remains a major challenge. In this study, we developed an optimized αIIbβ3 antagonist, KGDRR-a recombinant mutant protein derived from snake venom disintegrin, incorporating an Arg55 residue within the KGD loop-through systematic structure-activity relationship (SAR) analysis. Molecular docking revealed a critical cation-π interaction between Arg55 of KGDRR and Tyr122 of the β3 subunit, stabilizing integrin αIIbβ3 in an unliganded-closed conformation. Functionally, KGDRR selectively inhibited thrombus propagation by blocking ligand binding and downstream Gα13-mediated outside-in signaling while preserving initial thrombus core formation, which is a limitation of current αIIbβ3 inhibitors. Unlike conventional antagonists, KGDRR maintained αIIbβ3 in an unliganded-closed conformation without inducing the integrin activation and conformational change that lead to immune-mediated platelet clearance and thrombocytopenia. In animal models, KGDRR effectively suppressed thrombus growth without causing thrombocytopenia or prolonging bleeding time. Furthermore, intramuscular administration of KGDRR achieved a functional half-life 3.5 times longer than that of the clinically used antithrombotic eptifibatide at equivalent antithrombotic efficacy. In conclusion, KGDRR exhibits potent antithrombotic activity with a favorable safety profile and enhanced pharmacokinetic stability. These findings position KGDRR as a promising next generation αIIbβ3 antagonist with the potential to improve clinical outcomes in antithrombotic therapy.
Collapse
Affiliation(s)
- Yu-Ju Kuo
- Division of Cardiology, Department of Internal Medicine, Shuang Ho Hospital, Taipei Medical University, Taipei 23561, Taiwan; (Y.-J.K.); (C.-C.C.); (J.-C.L.); (K.-R.C.)
| | - Ching-Hu Chung
- Department of Medicine, Mackay Medical College, New Taipei City 252, Taiwan;
| | - Chun-Chao Chen
- Division of Cardiology, Department of Internal Medicine, Shuang Ho Hospital, Taipei Medical University, Taipei 23561, Taiwan; (Y.-J.K.); (C.-C.C.); (J.-C.L.); (K.-R.C.)
- Division of Cardiology, Department of Internal Medicine, School of Medicine, College of Medicine, Taipei Medical University, Taipei 23561, Taiwan
| | - Ju-Chi Liu
- Division of Cardiology, Department of Internal Medicine, Shuang Ho Hospital, Taipei Medical University, Taipei 23561, Taiwan; (Y.-J.K.); (C.-C.C.); (J.-C.L.); (K.-R.C.)
- Division of Cardiology, Department of Internal Medicine, School of Medicine, College of Medicine, Taipei Medical University, Taipei 23561, Taiwan
| | - Kuan-Rau Chiou
- Division of Cardiology, Department of Internal Medicine, Shuang Ho Hospital, Taipei Medical University, Taipei 23561, Taiwan; (Y.-J.K.); (C.-C.C.); (J.-C.L.); (K.-R.C.)
- Division of Cardiology, Department of Internal Medicine, School of Medicine, College of Medicine, Taipei Medical University, Taipei 23561, Taiwan
| | - Joen-Rong Sheu
- Graduate Institute of Medical Sciences, College of Medicine, Taipei Medical University, Taipei 11031, Taiwan;
| | - Woei-Jer Chuang
- Department of Biochemistry, National Cheng Kung University Medical College, Tainan 701, Taiwan
| | - Tur-Fu Huang
- Department of Medicine, Mackay Medical College, New Taipei City 252, Taiwan;
- Graduate Institute of Pharmacology, College of Medicine, National Taiwan University, Taipei 100233, Taiwan
| |
Collapse
|
2
|
Chen YC, Huang CH, Chang YT, Chen CY, Shiu JH, Cheng CH, Su YF, Chuang WJ. Structural and Functional Differences of Rhodostomin and Echistatin in Integrin Recognition and Biological Implications. Proteins 2025. [PMID: 40318183 DOI: 10.1002/prot.26834] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2025] [Revised: 04/08/2025] [Accepted: 04/21/2025] [Indexed: 05/07/2025]
Abstract
Rhodostomin (Rho) and Echistatin (Ech) are RGD-containing disintegrins with different sizes, disulfide bond patterns, and amino acid sequences in their RGD loops and C-termini. Cell adhesion analyzes showed that Rho exhibited a 5.2-, 18.9-, 2.2-, and 1.7-fold lower inhibitory activity against integrins αvβ3, α5β1, αIIbβ3, and αvβ5 in comparison with those of Ech. In contrast, Rho exhibited an 8.8-fold higher activity than Ech in inhibiting integrin αvβ6. The swapping of Ech's RGD loop and C-terminal sequences into those of Rho cannot increase its integrins' inhibitory activities. Interestingly, the mutation of Ech into Rho's RGD loop PRGDMP sequence and C-terminal YH sequence caused an 8.2-fold higher activity in inhibiting integrin αvβ6. Structural analyzes of Rho and Ech showed that they have similar conformations in their RGD loop and different conformations in their C-terminal regions. Molecular docking found that not only the RGD loop but also the C-terminal region of Rho and Ech interacted with integrins, showing that the C-terminal region is also important for integrin recognition. The docking of Rho into integrin αvβ6 showed that the C-terminal H68 residue of Rho interacted with D129 of β6. In contrast, the docking of Ech into integrin α5β1 showed that the C-terminal H44 residue of Ech interacted with Q191 of β1. Ech exhibited 78.5- and 10.9-fold higher activities in inhibiting HUVEC proliferation and A375 melanoma cell migration than those of Rho. These findings demonstrate that the disulfide bond pattern, RGD loop, and C-terminal region of disintegrins may cause their functional differences. The functional and structural differences between Rho and Ech support their potential as scaffolds to design drugs targeting their respective integrins.
Collapse
Affiliation(s)
- Yi-Chun Chen
- Department of Biochemistry and Molecular Biology, National Cheng Kung University College of Medicine, Tainan, Taiwan
| | - Chun-Hao Huang
- Department of Biochemistry and Molecular Biology, National Cheng Kung University College of Medicine, Tainan, Taiwan
| | - Yao-Tsung Chang
- Department of Biochemistry and Molecular Biology, National Cheng Kung University College of Medicine, Tainan, Taiwan
| | - Chiu-Yueh Chen
- Department of Biochemistry and Molecular Biology, National Cheng Kung University College of Medicine, Tainan, Taiwan
| | - Jia-Hau Shiu
- Department of Biochemistry and Molecular Biology, National Cheng Kung University College of Medicine, Tainan, Taiwan
| | - Chun-Ho Cheng
- Department of Biochemistry and Molecular Biology, National Cheng Kung University College of Medicine, Tainan, Taiwan
| | - Yu-Fang Su
- Department of Biochemistry and Molecular Biology, National Cheng Kung University College of Medicine, Tainan, Taiwan
| | - Woei-Jer Chuang
- Department of Biochemistry and Molecular Biology, National Cheng Kung University College of Medicine, Tainan, Taiwan
| |
Collapse
|
3
|
Ghazaryan N, Van Werven L, Liepold T, Jahn O, Pardo LA, Ayvazyan N. Macrovipera lebetinus obtusa Venom and Its Fractions Affect Human Dermal Microvascular Endothelial and Fibrosarcoma Cells. Int J Mol Sci 2025; 26:3601. [PMID: 40332122 PMCID: PMC12026461 DOI: 10.3390/ijms26083601] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2025] [Revised: 04/03/2025] [Accepted: 04/04/2025] [Indexed: 05/08/2025] Open
Abstract
The venom of Macrovipera lebetinus obtusa (MLO) has remarkable properties that are hard to overlook. This venom's described 38 protein components work synergistically, forming complexes that greatly enhance their combined effectiveness. Previous studies have shown that both crude venom and one of its components, obtustatin, can reduce sarcoma tumors by 50% and 30%, respectively. Obtustatin, a member of the short disintegrin family, inhibits the angiogenic activity of α1β1 integrin, the adhesive receptor of collagen IV. However, the mechanisms of the greater efficacy of the crude venom compared to its isolated components remain unclear. To investigate this, we propose an experimental work to explore the activity of certain low-molecular-weight components of MLO venom. Our in vitro tests on fibrosarcoma (HT-1080) cells using six venom fractions revealed cytotoxic fractions, which, through mass spectrometry, were identified as containing protein classes such as dimeric and short disintegrins, acidic phospholipase A2, and serine proteinases. Notably, these fractions exhibited minimal toxicity to human dermal microvascular endothelial (HDEC) cells, suggesting their potential as a promising candidate for oncotherapy in the future.
Collapse
Affiliation(s)
- Narine Ghazaryan
- Orbeli Institute of Physiology of NAS RA, Yerevan 0028, Armenia;
| | - Lars Van Werven
- Neuroproteomics Group, Department of Molecular Neurobiology, Max Planck Institute for Multidisciplinary Sciences, 37077 Göttingen, Germany
| | - Thomas Liepold
- Neuroproteomics Group, Department of Molecular Neurobiology, Max Planck Institute for Multidisciplinary Sciences, 37077 Göttingen, Germany
| | - Olaf Jahn
- Neuroproteomics Group, Department of Molecular Neurobiology, Max Planck Institute for Multidisciplinary Sciences, 37077 Göttingen, Germany
- Translational Neuroproteomics Group, Department of Psychiatry and Psychotherapy, University Medical Center Göttingen, 37075 Göttingen, Germany
| | - Luis A. Pardo
- Oncophysiology Group, Max Planck Institute for Multidisciplinary Sciences, 37075 Göttingen, Germany;
| | - Naira Ayvazyan
- Orbeli Institute of Physiology of NAS RA, Yerevan 0028, Armenia;
| |
Collapse
|
4
|
Rivas-Mercado E, Neri-Castro E, Zarzosa V, Hernández-Orihuela L, Olvera-Rodríguez F, Torres-Garza JD, Garza-Ocañas L. Mictlan-D3: A novel medium sized RGD-Disintegrin obtained from Crotalus mictlantecuhtli venom, in vitro tested against human breast Cancer and endothelial cells. Toxicol In Vitro 2025; 104:105987. [PMID: 39631634 DOI: 10.1016/j.tiv.2024.105987] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2024] [Revised: 11/10/2024] [Accepted: 11/29/2024] [Indexed: 12/07/2024]
Abstract
Disintegrins are small non-enzymatic proteins present often at low concentration in the venom of viperid snakes. Isolated disintegrins are known for their lack of toxicity as well as their capacity to antagonize integrin receptors. Integrins are a major family of heterodimeric cell surface receptors that mediate cell-cell and cell-extracellular matrix (ECM) interactions. Integrins regulate key functions in cancer pathology and also tumor development. The aim of this study consisted in the isolation and characterization of disintegrins from rattlesnake new species Crotalus mictlantecuhtli venom. A disintegrin fraction obtained by RP-HPLC and named mictlan-D3, consist in two isoforms of 7439 and 7509 Da with 72 amino acid sequence containing the RGD binding motif. Mictlan-D3 inhibited MDA-MB-231 and HMEC-1 cell adhesion to laminin (LN), fibronectin (FN) and vitronectin (VN), highest inhibition was on MDA-MB-231 cell adhesion to LN by 81 % at 1 μM. The blockade of ⍺Vβ3 integrin was evaluated by wound healing migration assay. Mictlan-D3 inhibited MDA-MB-231 cell migration by 80 % and 38 % after 24 and 72 h of incubation respectively. HMEC-1 cell migration was inhibited by 67.6 % and 27.9 % after 24 and 72 h of incubation. Additionally, mictlan-D3. This work represent the first characterization of disintegrins from the Crotalus mictlantecuhtli venom.
Collapse
Affiliation(s)
- E Rivas-Mercado
- Departamento de Farmacología y Toxicología, Facultad de Medicina, Universidad Autónoma de Nuevo León, Monterrey, Nuevo León, Mexico
| | - E Neri-Castro
- Instituto de Biotecnología, Universidad Nacional Autonoma de México, Cuernavaca, Morelos, Mexico
| | - V Zarzosa
- Instituto de Biotecnología, Universidad Nacional Autonoma de México, Cuernavaca, Morelos, Mexico
| | - L Hernández-Orihuela
- Instituto de Biotecnología, Universidad Nacional Autonoma de México, Cuernavaca, Morelos, Mexico
| | - F Olvera-Rodríguez
- Instituto de Biotecnología, Universidad Nacional Autonoma de México, Cuernavaca, Morelos, Mexico
| | - J D Torres-Garza
- Departamento de Farmacología y Toxicología, Facultad de Medicina, Universidad Autónoma de Nuevo León, Monterrey, Nuevo León, Mexico
| | - L Garza-Ocañas
- Departamento de Farmacología y Toxicología, Facultad de Medicina, Universidad Autónoma de Nuevo León, Monterrey, Nuevo León, Mexico.
| |
Collapse
|
5
|
Ivanović SR, Rešetar Maslov D, Rubić I, Mrljak V, Živković I, Borozan N, Grujić-Milanović J, Borozan S. The Venom of Vipera ammodytes ammodytes: Proteomics, Neurotoxic Effect and Neutralization by Antivenom. Vet Sci 2024; 11:605. [PMID: 39728945 DOI: 10.3390/vetsci11120605] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2024] [Revised: 11/19/2024] [Accepted: 11/21/2024] [Indexed: 12/28/2024] Open
Abstract
Deep proteomic analyses identified, in total, 159 master proteins (with 1% FDR and 2 unique peptides) from 26 protein families in the venom of Vipera ammodytes ammodytes (Vaa). Data are available via ProteomeXchange with the identifier PXD056495. The relative abundance of PLA2s is 11.60% of the crude venom, of which 4.35% are neurotoxic Ammodytoxins (Atxs). The neurotoxicity of the venom of Vaa and the neutralizing effect of the antivenom were tested on the neuromuscular preparation of the diaphragm (NPD) of rats. The activity of PLA2 in the venom of Vaa and its neutralization by the antivenom were determined under in vitro conditions. The Vaa venom leads to a progressive decrease in NPD contractions. We administered pre-incubated venom/antivenom mixtures at various ratios of 1:2, 1:10 and 1:20 (w/w) and observed the effects of these mixtures on NPD contractions. The results show that the mean effective time (ET50) for NPD contractions with the 1:20 mixture is highly significantly different (p < 0.001) from the ET50 for the venom and the ET50 for the 1:2 and 1:10 mixture ratios. We also found a highly significant (p < 0.001) reduction in Na+/K+-ATPase activity in the NPD under the influence of the venom. The reduction in the activity of this enzyme was reversible by the antivenom. Under in vitro conditions, we have achieved the complete neutralization of PLA2 by the antivenom. In conclusion, the antivenom abolished the venom-induced progressive decrease in NPD contractions in a concentration-dependent manner. Antivenom with approximately the same mass proportion almost completely restores Na+/K+-ATPase activity in the NPD and completely neutralizes the PLA2 activity of the venom in vitro.
Collapse
Affiliation(s)
- Saša R Ivanović
- Department of Pharmacology and Toxicology, Faculty of Veterinary Medicine, University of Belgrade, Bulevar Oslobođenja 18, 11000 Belgrade, Serbia
| | - Dina Rešetar Maslov
- Laboratory of Proteomics, Clinic for Internal Diseases, Faculty of Veterinary Medicine, University of Zagreb, Heinzelova 55, 10000 Zagreb, Croatia
| | - Ivana Rubić
- Laboratory of Proteomics, Clinic for Internal Diseases, Faculty of Veterinary Medicine, University of Zagreb, Heinzelova 55, 10000 Zagreb, Croatia
| | - Vladimir Mrljak
- Laboratory of Proteomics, Clinic for Internal Diseases, Faculty of Veterinary Medicine, University of Zagreb, Heinzelova 55, 10000 Zagreb, Croatia
| | - Irena Živković
- Institute of Virology, Vaccines and Sera "Torlak", Vojvode Stepe 458, 11000 Belgrade, Serbia
| | - Nevena Borozan
- Faculty of Medicine, University of Belgrade, Dr Subotića 1, 11000 Belgrade, Serbia
| | - Jelica Grujić-Milanović
- Department of Cardiovascular Research, Institute for Medical Research, National Institute of the Republic of Serbia, University of Belgrade, 11000 Belgrade, Serbia
| | - Sunčica Borozan
- Department of Chemistry, Faculty of Veterinary Medicine, University of Belgrade, Bulevar Oslobođenja 18, 11000 Belgrade, Serbia
| |
Collapse
|
6
|
Guo X, Fu Y, Peng J, Fu Y, Dong S, Ding RB, Qi X, Bao J. Emerging anticancer potential and mechanisms of snake venom toxins: A review. Int J Biol Macromol 2024; 269:131990. [PMID: 38704067 DOI: 10.1016/j.ijbiomac.2024.131990] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2023] [Revised: 03/13/2024] [Accepted: 04/28/2024] [Indexed: 05/06/2024]
Abstract
Animal-derived venom, like snake venom, has been proven to be valuable natural resources for the drug development. Previously, snake venom was mainly investigated in its pharmacological activities in regulating coagulation, vasodilation, and cardiovascular function, and several marketed cardiovascular drugs were successfully developed from snake venom. In recent years, snake venom fractions have been demonstrated with anticancer properties of inducing apoptotic and autophagic cell death, restraining proliferation, suppressing angiogenesis, inhibiting cell adhesion and migration, improving immunity, and so on. A number of active anticancer enzymes and peptides have been identified from snake venom toxins, such as L-amino acid oxidases (LAAOs), phospholipase A2 (PLA2), metalloproteinases (MPs), three-finger toxins (3FTxs), serine proteinases (SPs), disintegrins, C-type lectin-like proteins (CTLPs), cell-penetrating peptides, cysteine-rich secretory proteins (CRISPs). In this review, we focus on summarizing these snake venom-derived anticancer components on their anticancer activities and underlying mechanisms. We will also discuss their potential to be developed as anticancer drugs in the future.
Collapse
Affiliation(s)
- Xijun Guo
- Key Laboratory of Tropical Biological Resources of Ministry of Education, School of Pharmaceutical Sciences, Collaborative Innovation Center of One Health, Hainan University, Haikou 570228, China
| | - Yuanfeng Fu
- Key Laboratory of Tropical Biological Resources of Ministry of Education, School of Pharmaceutical Sciences, Collaborative Innovation Center of One Health, Hainan University, Haikou 570228, China
| | - Junbo Peng
- Key Laboratory of Tropical Biological Resources of Ministry of Education, School of Pharmaceutical Sciences, Collaborative Innovation Center of One Health, Hainan University, Haikou 570228, China
| | - Ying Fu
- Key Laboratory of Tropical Biological Resources of Ministry of Education, School of Pharmaceutical Sciences, Collaborative Innovation Center of One Health, Hainan University, Haikou 570228, China
| | - Shuai Dong
- Key Laboratory of Tropical Biological Resources of Ministry of Education, School of Pharmaceutical Sciences, Collaborative Innovation Center of One Health, Hainan University, Haikou 570228, China
| | - Ren-Bo Ding
- Key Laboratory of Tropical Biological Resources of Ministry of Education, School of Pharmaceutical Sciences, Collaborative Innovation Center of One Health, Hainan University, Haikou 570228, China; State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macao 999078, China
| | - Xingzhu Qi
- Key Laboratory of Tropical Biological Resources of Ministry of Education, School of Pharmaceutical Sciences, Collaborative Innovation Center of One Health, Hainan University, Haikou 570228, China.
| | - Jiaolin Bao
- Key Laboratory of Tropical Biological Resources of Ministry of Education, School of Pharmaceutical Sciences, Collaborative Innovation Center of One Health, Hainan University, Haikou 570228, China; State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macao 999078, China.
| |
Collapse
|
7
|
Offor BC, Piater LA. Snake venom toxins: Potential anticancer therapeutics. J Appl Toxicol 2024; 44:666-685. [PMID: 37697914 DOI: 10.1002/jat.4544] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2023] [Revised: 08/21/2023] [Accepted: 08/29/2023] [Indexed: 09/13/2023]
Abstract
Snake venom contains a cocktail of compounds dominated by proteins and peptides, which make up the toxin. The toxin components of snake venom attack several targets in the human body including the neuromuscular system, kidney and blood coagulation system and cause pathologies. As such, the venom toxins can be managed and used for the treatment of these diseases. In this regard, Captopril used in the treatment of cardiovascular diseases was the first animal venom toxin-based drug approved by the US Food and Drug Administration and the European Medicines Agency. Cancers cause morbidity and mortality worldwide. Due to side effects associated with the current cancer treatments including chemotherapy, radiotherapy, immunotherapy, hormonal therapy and surgery, there is a need to improve the efficacy of current treatments and/or develop novel drugs from natural sources including animal toxin-based drugs. There is a long history of earlier and ongoing studies implicating snake venom toxins as potential anticancer therapies. Here, we review the role of crude snake venoms and toxins including phospholipase A2, L-amino acid oxidase, C-type lectin and disintegrin as potential anticancer agents tested in cancer cell lines and animal tumour models in comparison to normal cell lines. Some of the anti-tumour activities of snake venom toxins include induction of cytotoxicity, apoptosis, cell cycle arrest and inhibition of metastasis, angiogenesis and tumour growth. We thus propose the advancement of multidisciplinary approaches to more pre-clinical and clinical studies for enhanced bioavailability and targeted delivery of snake venom toxin-based anticancer drugs.
Collapse
Affiliation(s)
- Benedict C Offor
- Department of Biochemistry, University of Johannesburg, Auckland Park, South Africa
| | - Lizelle A Piater
- Department of Biochemistry, University of Johannesburg, Auckland Park, South Africa
| |
Collapse
|
8
|
Lu W, Xiao Z, Liao H, Xie J, Gao Y, Xiong W, Zeng Q, Deng Z, Wu J, Chai J, Chen X, Xu X. FS145, the first flea-derived disintegrin, inhibits angiogenesis through specifically binding integrin α vβ 3. Int J Biol Macromol 2024; 259:129289. [PMID: 38211910 DOI: 10.1016/j.ijbiomac.2024.129289] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2023] [Revised: 12/19/2023] [Accepted: 01/04/2024] [Indexed: 01/13/2024]
Abstract
FS145, a protein containing a WGD motif, was previously described from the salivary transcriptome of the flea Xenopsylla cheopis. Nevertheless, its biological function and complete structure are still uncertain. Herein, FS145 was confirmed to adopt a common αββ structure with the WGD motif exposed on its surface and located right at the top of a loop composed of residues 72-81. Furthermore, FS145 dose-dependently inhibited the proliferation, adhesion, migration, and tube formation of HUVECs by not only binding to integrin αvβ3 but also by subsequently inactivating the FAK/Src/MAPK pathway along with the reduction of the expression of MMP-2, MMP-9, VEGFA, bFGF, Ang2, Tie2, HIF-1α, and FAK. Moreover, FS145 also inhibited aortic vessel sprout and showed strong anti-angiogenic activities as assessed ex vivo, by employing the rat aortic ring assay, chick embryo chorioallantoic membrane, and zebrafish embryo models. Altogether, our results suggest that FS145 suppresses angiogenesis ex vivo and in vitro by blocking integrin αvβ3. The current study reveals the first anti-angiogenesis disintegrin with WGD motif from invertebrates and provides a beneficial pharmacological activity to inhibit abnormal angiogenesis.
Collapse
Affiliation(s)
- Wancheng Lu
- NMPA Key Laboratory for Research and Evaluation of Drug Metabolism, Guangdong Provincial Key Laboratory of New Drug Screening, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou 510515, China
| | - Zhijian Xiao
- NMPA Key Laboratory for Research and Evaluation of Drug Metabolism, Guangdong Provincial Key Laboratory of New Drug Screening, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou 510515, China
| | - Hang Liao
- NMPA Key Laboratory for Research and Evaluation of Drug Metabolism, Guangdong Provincial Key Laboratory of New Drug Screening, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou 510515, China
| | - Jianpeng Xie
- NMPA Key Laboratory for Research and Evaluation of Drug Metabolism, Guangdong Provincial Key Laboratory of New Drug Screening, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou 510515, China; Department of Pulmonary and Critical Care Medicine, Zhujiang Hospital, Southern Medical University, Guangzhou 510280, China
| | - Yihan Gao
- NMPA Key Laboratory for Research and Evaluation of Drug Metabolism, Guangdong Provincial Key Laboratory of New Drug Screening, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou 510515, China; Department of Pulmonary and Critical Care Medicine, Zhujiang Hospital, Southern Medical University, Guangzhou 510280, China
| | - Weichen Xiong
- NMPA Key Laboratory for Research and Evaluation of Drug Metabolism, Guangdong Provincial Key Laboratory of New Drug Screening, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou 510515, China
| | - Qingye Zeng
- NMPA Key Laboratory for Research and Evaluation of Drug Metabolism, Guangdong Provincial Key Laboratory of New Drug Screening, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou 510515, China
| | - Zhenhui Deng
- NMPA Key Laboratory for Research and Evaluation of Drug Metabolism, Guangdong Provincial Key Laboratory of New Drug Screening, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou 510515, China
| | - Jiena Wu
- NMPA Key Laboratory for Research and Evaluation of Drug Metabolism, Guangdong Provincial Key Laboratory of New Drug Screening, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou 510515, China
| | - Jinwei Chai
- NMPA Key Laboratory for Research and Evaluation of Drug Metabolism, Guangdong Provincial Key Laboratory of New Drug Screening, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou 510515, China
| | - Xin Chen
- Department of Pulmonary and Critical Care Medicine, Zhujiang Hospital, Southern Medical University, Guangzhou 510280, China
| | - Xueqing Xu
- NMPA Key Laboratory for Research and Evaluation of Drug Metabolism, Guangdong Provincial Key Laboratory of New Drug Screening, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou 510515, China.
| |
Collapse
|
9
|
Almeida GDO, de Oliveira IS, Arantes EC, Sampaio SV. Snake venom disintegrins update: insights about new findings. J Venom Anim Toxins Incl Trop Dis 2023; 29:e20230039. [PMID: 37818211 PMCID: PMC10561651 DOI: 10.1590/1678-9199-jvatitd-2023-0039] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2023] [Accepted: 08/25/2023] [Indexed: 10/12/2023] Open
Abstract
Snake venom disintegrins are low molecular weight, non-enzymatic proteins rich in cysteine, present in the venom of snakes from the families Viperidae, Crotalidae, Atractaspididae, Elapidae, and Colubridae. This family of proteins originated in venom through the proteolytic processing of metalloproteinases (SVMPs), which, in turn, evolved from a gene encoding an A Disintegrin And Metalloprotease (ADAM) molecule. Disintegrins have a recognition motif for integrins in their structure, allowing interaction with these transmembrane adhesion receptors and preventing their binding to proteins in the extracellular matrix and other cells. This interaction gives disintegrins their wide range of biological functions, including inhibition of platelet aggregation and antitumor activity. As a result, many studies have been conducted in an attempt to use these natural compounds as a basis for developing therapies for the treatment of various diseases. Furthermore, the FDA has approved Tirofiban and Eptifibatide as antiplatelet compounds, and they are synthesized from the structure of echistatin and barbourin, respectively. In this review, we discuss some of the main functional and structural characteristics of this class of proteins and their potential for therapeutic use.
Collapse
Affiliation(s)
- Gabriela de Oliveira Almeida
- Department of Clinical Analysis, Toxicology and Food Science, School of Pharmaceutical Sciences of Ribeirão Preto, University of São Paulo, Ribeirão Preto, SP, Brazil
| | - Isadora Sousa de Oliveira
- Department of BioMolecular Sciences, School of Pharmaceutical Sciences of Ribeirão Preto, University of São Paulo, Ribeirão Preto, SP, Brazil
- Department of Biotechnology and Biomedicine, Technical University of Denmark, Kongens Lyngby, Denmark
| | - Eliane Candiani Arantes
- Department of BioMolecular Sciences, School of Pharmaceutical Sciences of Ribeirão Preto, University of São Paulo, Ribeirão Preto, SP, Brazil
| | - Suely Vilela Sampaio
- Department of Clinical Analysis, Toxicology and Food Science, School of Pharmaceutical Sciences of Ribeirão Preto, University of São Paulo, Ribeirão Preto, SP, Brazil
| |
Collapse
|
10
|
Ferreira I, Oliveira I, Bordon K, Reis M, Wiezel G, Sanchez C, Santos L, Santos-Filho N, Pucca M, Antunes L, Lopes D, Arantes E. Beyond Angiogenesis: The Multitasking Approach of the First PEGylated Vascular Endothelial Growth Factor ( CdtVEGF) from Brazilian Rattlesnake Venom. Toxins (Basel) 2023; 15:483. [PMID: 37624240 PMCID: PMC10467076 DOI: 10.3390/toxins15080483] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2023] [Revised: 07/27/2023] [Accepted: 07/28/2023] [Indexed: 08/26/2023] Open
Abstract
A pioneering study regarding the isolation, biochemical evaluation, functional assays and first PEGylation report of a novel vascular endothelial growth factor from Crotalus durissus terrificus venom (CdtVEGF and PEG-CdtVEGF). CdtVEGF was isolated from crude venom using two different chromatographic steps, representing 2% of soluble venom proteins. Its primary sequence was determined using mass spectrometry analysis, and the molecule demonstrated no affinity to heparin. The Brazilian crotalid antivenom recognized CdtVEGF. Both native and PEGylated CdtVEGF were able to induce new vessel formation and migration, and to increase the metabolic activity of human umbilical endothelial vascular cells (HUVEC), resulting in better wound closure (~50% within 12 h) using the native form. CdtVEGF induced leukocyte recruitment to the peritoneal cavity in mice, with a predominance of neutrophil influx followed by lymphocytes, demonstrating the ability to activate the immune system. The molecule also induced a dose-dependent increase in vascular permeability, and PEG-CdtVEGF showed less in vivo inflammatory activity than CdtVEGF. By unraveling the intricate properties of minor components of snake venom like svVEGF, this study illuminates the indispensable significance of exploring these molecular tools to unveil physiological and pathological processes, elucidates the mechanisms of snakebite envenomings, and could possibly be used to design a therapeutic drug.
Collapse
Affiliation(s)
- Isabela Ferreira
- Department of BioMolecular Sciences, School of Pharmaceutical Sciences of Ribeirão Preto, University of Sao Paulo, Ribeirao Preto 14040-903, SP, Brazil
| | - Isadora Oliveira
- Department of BioMolecular Sciences, School of Pharmaceutical Sciences of Ribeirão Preto, University of Sao Paulo, Ribeirao Preto 14040-903, SP, Brazil
| | - Karla Bordon
- Department of BioMolecular Sciences, School of Pharmaceutical Sciences of Ribeirão Preto, University of Sao Paulo, Ribeirao Preto 14040-903, SP, Brazil
| | - Mouzarllem Reis
- Department of BioMolecular Sciences, School of Pharmaceutical Sciences of Ribeirão Preto, University of Sao Paulo, Ribeirao Preto 14040-903, SP, Brazil
| | - Gisele Wiezel
- Department of BioMolecular Sciences, School of Pharmaceutical Sciences of Ribeirão Preto, University of Sao Paulo, Ribeirao Preto 14040-903, SP, Brazil
| | - Caroline Sanchez
- Department of Clinical Analysis, Toxicology and Food Science, School of Pharmaceutical Sciences of Ribeirao Preto, University of Sao Paulo, Ribeirao Preto 14040-903, SP, Brazil
| | - Luísa Santos
- Institute Multidisciplinary in Health, Federal University of Bahia, Vitoria da Conquista 40110-909, BA, Brazil
| | - Norival Santos-Filho
- Department of Biochemistry and Organic Chemistry, Chemistry Institute, Sao Paulo State University (UNESP), Araraquara 14800-901, SP, Brazil
| | - Manuela Pucca
- Department of Clinical Analysis, Sao Paulo State University (UNESP) Araraquara 14800-901, SP, Brazil
| | - Lusânia Antunes
- Department of Clinical Analysis, Toxicology and Food Science, School of Pharmaceutical Sciences of Ribeirao Preto, University of Sao Paulo, Ribeirao Preto 14040-903, SP, Brazil
| | - Daiana Lopes
- Institute Multidisciplinary in Health, Federal University of Bahia, Vitoria da Conquista 40110-909, BA, Brazil
| | - Eliane Arantes
- Department of BioMolecular Sciences, School of Pharmaceutical Sciences of Ribeirão Preto, University of Sao Paulo, Ribeirao Preto 14040-903, SP, Brazil
| |
Collapse
|
11
|
David V, Wermelinger LS, Frattani FS, Lima AGF, Santos YFS, Mourão PADS, Almeida FCL, Kurtenbach E, Zingali RB. rJararacin, a recombinant disintegrin from Bothrops jararaca venom: Exploring its effects on hemostasis and thrombosis. Arch Biochem Biophys 2023; 738:109557. [PMID: 36878339 DOI: 10.1016/j.abb.2023.109557] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2023] [Revised: 02/24/2023] [Accepted: 03/02/2023] [Indexed: 03/07/2023]
Abstract
Integrins are a family of heterodimeric transmembrane receptors which link the extracellular matrix to the cell cytoskeleton. These receptors play a role in many cellular processes: adhesion, proliferation, migration, apoptosis, and platelet aggregation, thus modulating a wide range of scenarios in health and disease. Therefore, integrins have been the target of new antithrombotic drugs. Disintegrins from snake venoms are recognized by the ability to modulate the activity of integrins, such as integrin αIIbβ3, a fundamental platelet glycoprotein, and αvβ3 expressed on tumor cells. For this reason, disintegrins are unique and potential tools for examining integrin-matrix interaction and the development of novel antithrombotic agents. The present study aims to obtain the recombinant form of jararacin and evaluate the secondary structure and its effects on hemostasis and thrombosis. rJararacin was expressed in the Pichia pastoris (P. pastoris) expression system and purified the recombinant protein with a yield of 40 mg/L of culture. The molecular mass (7722 Da) and internal sequence were confirmed by mass spectrometry. Structure and folding analysis were obtained by Circular Dichroism and 1H Nuclear Magnetic Resonance spectra. Disintegrin structure reveals properly folded with the presence of β-sheet structure. rJararacin significantly demonstrated inhibition of the adhesion of B16F10 cells and platelets to the fibronectin matrix under static conditions. rJararacin inhibited platelet aggregation induced by ADP (IC50 95 nM), collagen (IC50 57 nM), and thrombin (IC50 22 nM) in a dose-dependent manner. This disintegrin also inhibited 81% and 94% of the adhesion of platelets to fibrinogen and collagen under continuous flow, respectively. In addition, rjararacin efficaciously prevents platelet aggregation in vitro and ex vivo with rat platelets and thrombus occlusion at an effective dose (5 mg/kg). The data here provides evidence that rjararacin possesses the potential as an αIIbβ3 antagonist, capable of preventing arterial thrombosis.
Collapse
Affiliation(s)
- Victor David
- Instituto de Bioquímica Médica Leopoldo de Meis, Universidade Federal do Rio de Janeiro, Rio de Janeiro, RJ, CEP 21941-902, Brazil.
| | - Luciana Serrão Wermelinger
- Faculdade de Farmácia, Universidade Federal do Rio de Janeiro, Rio de Janeiro, RJ, CEP 21941-170, Brazil.
| | - Flávia Serra Frattani
- Faculdade de Farmácia, Universidade Federal do Rio de Janeiro, Rio de Janeiro, RJ, CEP 21941-170, Brazil.
| | - Antonio Gilclêr Ferreira Lima
- Instituto de Bioquímica Médica Leopoldo de Meis, Universidade Federal do Rio de Janeiro, Rio de Janeiro, RJ, CEP 21941-902, Brazil.
| | - Yasmyn Fernandes Silva Santos
- Instituto de Bioquímica Médica Leopoldo de Meis, Universidade Federal do Rio de Janeiro, Rio de Janeiro, RJ, CEP 21941-902, Brazil.
| | - Paulo Antônio de Souza Mourão
- Instituto de Bioquímica Médica Leopoldo de Meis, Universidade Federal do Rio de Janeiro, Rio de Janeiro, RJ, CEP 21941-902, Brazil.
| | - Fabio Ceneviva Lacerda Almeida
- Instituto de Bioquímica Médica Leopoldo de Meis, Universidade Federal do Rio de Janeiro, Rio de Janeiro, RJ, CEP 21941-902, Brazil.
| | - Eleonora Kurtenbach
- Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, Rio de Janeiro, RJ, CEP 21941-170, Brazil.
| | - Russolina Benedeta Zingali
- Instituto de Bioquímica Médica Leopoldo de Meis, Universidade Federal do Rio de Janeiro, Rio de Janeiro, RJ, CEP 21941-902, Brazil.
| |
Collapse
|
12
|
The First Snake Venom KTS/Disintegrins-Integrin Interactions Using Bioinformatics Approaches. Molecules 2022; 28:molecules28010325. [PMID: 36615520 PMCID: PMC9822126 DOI: 10.3390/molecules28010325] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2022] [Revised: 11/26/2022] [Accepted: 12/09/2022] [Indexed: 01/03/2023] Open
Abstract
Snake venom contains a number of active molecules that have been shown to possess high anti-tumor activities; disintegrins are an excellent example among these. Their ability to interact and bind with integrins suggests that they could be very valuable molecules for the development of new cancer therapeutic approaches. However, in the absence of a clear Lysine-Threonine-Serine (KTS) Disintegrins Integrin interaction model, the exact compound features behind it are still unknown. In this study, we investigated the structural characteristics of three KTS-disintegrins and the interaction mechanisms with the α1β1 integrin receptor using in silico bioinformatics approaches. Normal mode analysis showed that the flexibility of the KTSR motif and the C-terminal region play a key role and influence the KTS-Disintegrin-integrin interaction. Protein-protein docking also suggested that the interaction involving the KTSR motif is highly dependent on the residue following K21, S23 and R24. These findings contribute to a better understanding of the KTS-Disintegrin-Integrin structural differences and their interactions with α1β1 receptors, which could improve the selection process of the best active molecules for antitumor therapies.
Collapse
|
13
|
Biological and Medical Aspects Related to South American Rattlesnake Crotalus durissus (Linnaeus, 1758): A View from Colombia. Toxins (Basel) 2022; 14:toxins14120875. [PMID: 36548772 PMCID: PMC9784998 DOI: 10.3390/toxins14120875] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2022] [Revised: 11/25/2022] [Accepted: 12/03/2022] [Indexed: 12/16/2022] Open
Abstract
In Colombia, South America, there is a subspecies of the South American rattlesnake Crotalus durissus, C. d. cumanensis, a snake of the Viperidae family, whose presence has been reduced due to the destruction of its habitat. It is an enigmatic snake from the group of pit vipers, venomous, with large articulated front fangs, special designs on its body, and a characteristic rattle on its tail. Unlike in Brazil, the occurrence of human envenomation by C. durisus in Colombia is very rare and contributes to less than 1% of envenomation caused by snakes. Its venom is a complex cocktail of proteins with different biological effects, which evolved with the purpose of paralyzing the prey, killing it, and starting its digestive process, as well as having defense functions. When its venom is injected into humans as the result of a bite, the victim presents with both local tissue damage and with systemic involvement, including a diverse degree of neurotoxic, myotoxic, nephrotoxic, and coagulopathic effects, among others. Its biological effects are being studied for use in human health, including the possible development of analgesic, muscle relaxant, anti-inflammatory, immunosuppressive, anti-infection, and antineoplastic drugs. Several groups of researchers in Brazil are very active in their contributions in this regard. In this work, a review is made of the most relevant biological and medical aspects related to the South American rattlesnake and of what may be of importance for a better understanding of the snake C. d. cumanensis, present in Colombia and Venezuela.
Collapse
|
14
|
A Deeper Insight into the Tick Salivary Protein Families under the Light of Alphafold2 and Dali: Introducing the TickSialoFam 2.0 Database. Int J Mol Sci 2022; 23:ijms232415613. [PMID: 36555254 PMCID: PMC9779611 DOI: 10.3390/ijms232415613] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2022] [Revised: 12/05/2022] [Accepted: 12/06/2022] [Indexed: 12/14/2022] Open
Abstract
Hard ticks feed for several days or weeks on their hosts and their saliva contains thousands of polypeptides belonging to dozens of families, as identified by salivary transcriptomes. Comparison of the coding sequences to protein databases helps to identify putative secreted proteins and their potential functions, directing and focusing future studies, usually done with recombinant proteins that are tested in different bioassays. However, many families of putative secreted peptides have a unique character, not providing significant matches to known sequences. The availability of the Alphafold2 program, which provides in silico predictions of the 3D polypeptide structure, coupled with the Dali program which uses the atomic coordinates of a structural model to search the Protein Data Bank (PDB) allows another layer of investigation to annotate and ascribe a functional role to proteins having so far being characterized as "unique". In this study, we analyzed the classification of tick salivary proteins under the light of the Alphafold2/Dali programs, detecting novel protein families and gaining new insights relating the structure and function of tick salivary proteins.
Collapse
|
15
|
How snake venom disintegrins affect platelet aggregation and cancer proliferation. Toxicon 2022; 221:106982. [DOI: 10.1016/j.toxicon.2022.106982] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2022] [Revised: 11/21/2022] [Accepted: 11/22/2022] [Indexed: 11/25/2022]
|
16
|
Offor BC, Muller B, Piater LA. A Review of the Proteomic Profiling of African Viperidae and Elapidae Snake Venoms and Their Antivenom Neutralisation. Toxins (Basel) 2022; 14:723. [PMID: 36355973 PMCID: PMC9694588 DOI: 10.3390/toxins14110723] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2022] [Revised: 10/17/2022] [Accepted: 10/20/2022] [Indexed: 11/06/2022] Open
Abstract
Snakebite envenoming is a neglected tropical disease (NTD) that results from the injection of snake venom of a venomous snake into animals and humans. In Africa (mainly in sub-Saharan Africa), over 100,000 envenomings and over 10,000 deaths per annum from snakebite have been reported. Difficulties in snakebite prevention and antivenom treatment are believed to result from a lack of epidemiological data and underestimated figures on snakebite envenoming-related morbidity and mortality. There are species- and genus-specific variations associated with snake venoms in Africa and across the globe. These variations contribute massively to diverse differences in venom toxicity and pathogenicity that can undermine the efficacy of adopted antivenom therapies used in the treatment of snakebite envenoming. There is a need to profile all snake venom proteins of medically important venomous snakes endemic to Africa. This is anticipated to help in the development of safer and more effective antivenoms for the treatment of snakebite envenoming within the continent. In this review, the proteomes of 34 snake venoms from the most medically important snakes in Africa, namely the Viperidae and Elipdae, were extracted from the literature. The toxin families were grouped into dominant, secondary, minor, and others based on the abundance of the protein families in the venom proteomes. The Viperidae venom proteome was dominated by snake venom metalloproteinases (SVMPs-41%), snake venom serine proteases (SVSPs-16%), and phospholipase A2 (PLA2-17%) protein families, while three-finger toxins (3FTxs-66%) and PLA2s (16%) dominated those of the Elapidae. We further review the neutralisation of these snake venoms by selected antivenoms widely used within the African continent. The profiling of African snake venom proteomes will aid in the development of effective antivenom against snakebite envenoming and, additionally, could possibly reveal therapeutic applications of snake venom proteins.
Collapse
Affiliation(s)
- Benedict C. Offor
- Department of Biochemistry, Faculty of Science, University of Johannesburg, Auckland Park 2006, South Africa
| | - Beric Muller
- South Africa Venom Suppliers CC, Louis Trichardt 0920, South Africa
| | - Lizelle A. Piater
- Department of Biochemistry, Faculty of Science, University of Johannesburg, Auckland Park 2006, South Africa
| |
Collapse
|
17
|
Siigur J, Siigur E. Biochemistry and toxicology of proteins and peptides purified from the venom of Vipera berus berus. Toxicon X 2022; 15:100131. [PMID: 35769869 PMCID: PMC9234072 DOI: 10.1016/j.toxcx.2022.100131] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2022] [Revised: 04/05/2022] [Accepted: 06/06/2022] [Indexed: 12/19/2022] Open
Abstract
The isolation and characterization of individual snake venom components is important for a deeper understanding of the pathophysiology of envenomation and for improving the therapeutic procedures of patients. It also opens possibilities for the discovery of novel toxins that might be useful as tools for understanding cellular and molecular processes. The variable venom composition, toxicological and immunological properties of the common vipers (Vipera berus berus) have been reviewed. The combination of venom gland transcriptomics, bottom-up and top-down proteomics enabled comparison of common viper venom proteomes from multiple individuals. V. b. berus venom contains proteins and peptides belonging to 10–15 toxin families: snake venom metalloproteinase, phospholipases A2 (PLA2), snake venom serine proteinase, aspartic protease, L-amino acid oxidase (LAAO), hyaluronidase, 5′-nucleotidase, glutaminyl-peptide cyclotransferase, disintegrin, C-type lectin (snaclec), nerve growth factor, Kunitz type serine protease inhibitor, snake venom vascular endothelial growth factor, cysteine-rich secretory protein, bradykinin potentiating peptide, natriuretic peptides. PLA2 and LAAO from V. b. berus venom produce more pronounced cytotoxic effects in cancer cells than normal cells, via induction of apoptosis, cell cycle arrest and suppression of proliferation. Proteomic data of V. b. berus venoms from different parts of Russia and Slovakian Republic have been compared with analogous data for Vipera nikolskii venom. Proteomic studies demonstrated quantitative differences in the composition of V. b. berus venom from different geographical regions. Differences in the venom composition of V. berus were mainly driven by the age, sex, habitat and diet of the snakes. The venom variability of V. berus results in a loss of antivenom efficacy against snakebites. The effectiveness of antibodies is discussed. This review presents an overview with a special focus on different toxins that have been isolated and characterized from the venoms of V. b. berus. Their main biochemical properties and toxic actions are described. Vipera berus berus venom composition is variable among different populations. Venom contains about 15 protein/peptide families. It disturbs blood coagulation inducing pro- or anticoagulant effects. Venom contains different types of blood factor X activators. PLA2 and L-amino acid oxidase produce cytotoxic effects in cancer cells.
Collapse
|
18
|
Succar BB, Saldanha-Gama RFG, Valle AS, Wermelinger LS, Barja-Fidalgo C, Kurtenbach E, Zingali RB. The recombinant disintegrin, jarastatin, inhibits platelet adhesion and endothelial cell migration. Toxicon 2022; 217:87-95. [PMID: 35981667 DOI: 10.1016/j.toxicon.2022.08.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2022] [Revised: 07/16/2022] [Accepted: 08/10/2022] [Indexed: 11/19/2022]
Abstract
Integrins are transmembrane heterodimeric glycoproteins, present in most cell types that act as mechanoreceptors, connecting extracellular matrix proteins to the cytoskeleton of the cell, mediating several physiological and pathological processes. The disintegrins are peptides capable of modulating the activity of integrins, such as αIIbβ3, responsible for the platelet aggregation and αvβ3, related to angiogenesis. The aim of this study was to produce the recombinant disintegrin jarastatin (rJast), to evaluate its secondary structure and biological activity. rJast was expressed in the yeast Komagataella phaffii (earlier Pichia pastoris) purified using molecular exclusion chromatography and the internal sequence and molecular mass were confirmed by mass spectrometry. The yield was approximately 40 mg/L of culture. rJast inhibited platelet aggregation induced by 2-4 μM ADP, 10 nM thrombin, and 1 μg/mL collagen (IC50 of 244.8 nM, 166.3 nM and 223.5 nM, respectively). It also blocked the adhesion of platelets to collagen under continuous flow in approximately 60% when used 1 μM. We also evaluated the effect of rJast on HMEC-1 cells. rJast significantly inhibited the adhesion of these cells to vitronectin, as well as cell migration (IC50 1.77 μM) without changing the viability. Conclusions: rJast was successfully expressed with activity in human platelets aggregation identical to the native molecule. Also, rJast inhibits adhesion and migration of endothelial cells. Thus, being relevant for the development of anti-thrombotic and anti-angiogenic drugs.
Collapse
Affiliation(s)
- Barbara Barbosa Succar
- Laboratório de Hemostase e Venenos, Instituto de Bioquímica Médica Leopoldo de Meis, And Instituto Nacional de Ciência e Tecnologia de Biologia Estrutural e Bioimagem (Inbeb) - Universidade Federal do Rio de Janeiro -UFRJ, RJ, Brazil
| | - Roberta F G Saldanha-Gama
- Laboratório de Farmacologia Celular e Molecular, IBRAG, Universidade do Estado do Rio de Janeiro - UERJ, RJ, Brazil
| | - Aline Sol Valle
- Laboratório de Biologia Molecular e Bioquímica de Proteínas, Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro - UFRJ, RJ, Brazil
| | - Luciana Serrão Wermelinger
- Departamento de Análises Clínicas e Toxicológicas - Faculdade de Farmácia, Universidade Federal do Rio de Janeiro - UFRJ, RJ, Brazil
| | - Christina Barja-Fidalgo
- Laboratório de Farmacologia Celular e Molecular, IBRAG, Universidade do Estado do Rio de Janeiro - UERJ, RJ, Brazil
| | - Eleonora Kurtenbach
- Laboratório de Biologia Molecular e Bioquímica de Proteínas, Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro - UFRJ, RJ, Brazil
| | - Russolina Benedeta Zingali
- Laboratório de Hemostase e Venenos, Instituto de Bioquímica Médica Leopoldo de Meis, And Instituto Nacional de Ciência e Tecnologia de Biologia Estrutural e Bioimagem (Inbeb) - Universidade Federal do Rio de Janeiro -UFRJ, RJ, Brazil.
| |
Collapse
|
19
|
Brás-Costa C, Chaves AFA, Cajado-Carvalho D, da Silva Pires D, Andrade-Silva D, Serrano SMT. Profilings of subproteomes of lectin-binding proteins of nine Bothrops venoms reveal variability driven by different glycan types. BIOCHIMICA ET BIOPHYSICA ACTA. PROTEINS AND PROTEOMICS 2022; 1870:140795. [PMID: 35662639 DOI: 10.1016/j.bbapap.2022.140795] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/27/2022] [Revised: 05/23/2022] [Accepted: 05/27/2022] [Indexed: 06/15/2023]
Abstract
Snake venom proteomes have long been investigated to explore a multitude of biologically active components that are used for prey capture and defense, and are involved in the pathological effects observed upon mammalian envenomation. Glycosylation is a major protein post-translational modification in venoms and contributes to the diversification of proteomes. We have shown that Bothrops venoms are markedly defined by their content of glycoproteins, and that most N-glycan structures of eight Bothrops venoms contain sialic acid, while bisected N-acetylglucosamine was identified in Bothrops cotiara venom. To further investigate the mechanisms involved in the generation of different venoms by related snakes, here the glycoproteomes of nine Bothrops venoms (Bothrops atrox, B. cotiara, Bothrops erythromelas, Bothrops fonsecai, B. insularis, Bothrops jararaca, Bothrops jararacussu, Bothrops moojeni and Bothrops neuwiedi) were comparatively analyzed by enrichment with three lectins of different specificities, recognizing bisecting N-acetylglucosamine- and sialic acid-containing glycoproteins, and mass spectrometry. The lectin capture strategy generated venom fractions enriched with several glycoproteins, including metalloprotease, serine protease, and L- amino acid oxidase, in addition to various types of low abundant enzymes. The different contents of lectin-enriched proteins underscore novel aspects of the variability of the glycoprotein subproteomes of Bothrops venoms and point to the role of distinct types of glycan chains in generating different venoms by closely related snake species.
Collapse
Affiliation(s)
- Carolina Brás-Costa
- Laboratory of Applied Toxinology, Center of Toxins, Immune-Response and Cell Signaling (CeTICS), Instituto Butantan, São Paulo, Brazil
| | - Alison Felipe Alencar Chaves
- Laboratory of Applied Toxinology, Center of Toxins, Immune-Response and Cell Signaling (CeTICS), Instituto Butantan, São Paulo, Brazil
| | - Daniela Cajado-Carvalho
- Laboratory of Applied Toxinology, Center of Toxins, Immune-Response and Cell Signaling (CeTICS), Instituto Butantan, São Paulo, Brazil
| | - David da Silva Pires
- Laboratory of Cell Cycle, Center of Toxins, Immune-Response and Cell Signaling (CeTICS), Instituto Butantan, São Paulo, Brazil
| | - Débora Andrade-Silva
- Laboratory of Applied Toxinology, Center of Toxins, Immune-Response and Cell Signaling (CeTICS), Instituto Butantan, São Paulo, Brazil
| | - Solange M T Serrano
- Laboratory of Applied Toxinology, Center of Toxins, Immune-Response and Cell Signaling (CeTICS), Instituto Butantan, São Paulo, Brazil.
| |
Collapse
|
20
|
Oliveira AL, Viegas MF, da Silva SL, Soares AM, Ramos MJ, Fernandes PA. The chemistry of snake venom and its medicinal potential. Nat Rev Chem 2022; 6:451-469. [PMID: 35702592 PMCID: PMC9185726 DOI: 10.1038/s41570-022-00393-7] [Citation(s) in RCA: 127] [Impact Index Per Article: 42.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/26/2022] [Indexed: 12/15/2022]
Abstract
The fascination and fear of snakes dates back to time immemorial, with the first scientific treatise on snakebite envenoming, the Brooklyn Medical Papyrus, dating from ancient Egypt. Owing to their lethality, snakes have often been associated with images of perfidy, treachery and death. However, snakes did not always have such negative connotations. The curative capacity of venom has been known since antiquity, also making the snake a symbol of pharmacy and medicine. Today, there is renewed interest in pursuing snake-venom-based therapies. This Review focuses on the chemistry of snake venom and the potential for venom to be exploited for medicinal purposes in the development of drugs. The mixture of toxins that constitute snake venom is examined, focusing on the molecular structure, chemical reactivity and target recognition of the most bioactive toxins, from which bioactive drugs might be developed. The design and working mechanisms of snake-venom-derived drugs are illustrated, and the strategies by which toxins are transformed into therapeutics are analysed. Finally, the challenges in realizing the immense curative potential of snake venom are discussed, and chemical strategies by which a plethora of new drugs could be derived from snake venom are proposed.
Collapse
Affiliation(s)
- Ana L. Oliveira
- Department of Chemistry and Biochemistry, Faculty of Sciences, University of Porto, Porto, Portugal
- LAQV/Requimte, University of Porto, Porto, Portugal
| | - Matilde F. Viegas
- Department of Chemistry and Biochemistry, Faculty of Sciences, University of Porto, Porto, Portugal
- LAQV/Requimte, University of Porto, Porto, Portugal
| | - Saulo L. da Silva
- Department of Chemistry and Biochemistry, Faculty of Sciences, University of Porto, Porto, Portugal
- LAQV/Requimte, University of Porto, Porto, Portugal
| | - Andreimar M. Soares
- Biotechnology Laboratory for Proteins and Bioactive Compounds from the Western Amazon, Oswaldo Cruz Foundation, National Institute of Epidemiology in the Western Amazon (INCT-EpiAmO), Porto Velho, Brazil
- Sao Lucas Universitary Center (UniSL), Porto Velho, Brazil
| | - Maria J. Ramos
- Department of Chemistry and Biochemistry, Faculty of Sciences, University of Porto, Porto, Portugal
- LAQV/Requimte, University of Porto, Porto, Portugal
| | - Pedro A. Fernandes
- Department of Chemistry and Biochemistry, Faculty of Sciences, University of Porto, Porto, Portugal
- LAQV/Requimte, University of Porto, Porto, Portugal
| |
Collapse
|
21
|
Teodoro A, Gonçalves FJ, Oliveira H, Marques S. Venom of Viperidae: A Perspective of its Antibacterial and Antitumor
Potential. Curr Drug Targets 2022; 23:126-144. [DOI: 10.2174/1389450122666210811164517] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2021] [Revised: 05/17/2021] [Accepted: 06/07/2021] [Indexed: 12/25/2022]
Abstract
:
The emergence of multi-drug resistant bacteria and limitations on cancer treatment represent
two important challenges in modern medicine. Biological compounds have been explored with
a particular focus on venoms. Although they can be lethal or cause considerable damage to humans,
venom is also a source rich in components with high therapeutic potential.
:
Viperidae family is one of the most emblematic venomous snake families and several studies highlighted
the antibacterial and antitumor potential of viper toxins. According to the literature, these
activities are mainly associated to five protein families - svLAAO, Disintegrins, PLA2, SVMPs and
C-type lectins- that act through different mechanisms leading to the inhibition of the growth of bacteria,
as well as, cytotoxic effects and inhibition of metastasis process. In this review, we provide
an overview of the venom toxins produced by species belonging to the Viperidae family, exploring
their roles during the envenoming and their pharmacological properties, in order to demonstrate its
antibacterial and antitumor potential.
Collapse
Affiliation(s)
- André Teodoro
- Department of Biology, University of Aveiro, 3810-193 Aveiro, Portugal
| | - Fernando J.M. Gonçalves
- Department of Biology, University of Aveiro, 3810-193 Aveiro, Portugal
- CESAM- Centre for Environmental and
Marine Studies, University of Aveiro, 3810-193 Aveiro, Portugal
| | - Helena Oliveira
- Department of Biology, University of Aveiro, 3810-193 Aveiro, Portugal
- CESAM- Centre for Environmental and
Marine Studies, University of Aveiro, 3810-193 Aveiro, Portugal
| | - Sérgio Marques
- Department of Biology, University of Aveiro, 3810-193 Aveiro, Portugal
- CESAM- Centre for Environmental and
Marine Studies, University of Aveiro, 3810-193 Aveiro, Portugal
| |
Collapse
|
22
|
Vasconcelos AA, Estrada JC, David V, Wermelinger LS, Almeida FCL, Zingali RB. Structure-Function Relationship of the Disintegrin Family: Sequence Signature and Integrin Interaction. Front Mol Biosci 2021; 8:783301. [PMID: 34926583 PMCID: PMC8678471 DOI: 10.3389/fmolb.2021.783301] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2021] [Accepted: 11/11/2021] [Indexed: 01/09/2023] Open
Abstract
Disintegrins are small cysteine-rich proteins found in a variety of snake venom. These proteins selectively modulate integrin function, heterodimeric receptors involved in cell-cell and cell-matrix interaction that are widely studied as therapeutic targets. Snake venom disintegrins emerged from the snake venom metalloproteinase and are classified according to the sequence size and number of disulfide bonds. Evolutive structure and function diversification of disintegrin family involves a stepwise decrease in the polypeptide chain, loss of cysteine residues, and selectivity. Since the structure elucidation of echistatin, the description of the structural properties of disintegrins has allowed the investigation of the mechanisms involved in integrin-cell-extracellular matrix interaction. This review provides an analysis of the structures of all family groups enabling the description of an expanded classification of the disintegrin family in seven groups. Each group presents a particular disulfide pattern and sequence signatures, facilitating the identification of new disintegrins. The classification was based on the disintegrin-like domain of the human metalloproteinase (ADAM-10). We also present the sequence and structural signatures important for disintegrin-integrin interaction, unveiling the relationship between the structure and function of these proteins.
Collapse
Affiliation(s)
- Ariana A Vasconcelos
- Instituto de Bioquímica Médica (IBqM) Leopoldo de Meis, Centro Nacional de Ressonância Magnética Nuclear, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil.,Centro Nacional de Ressonância Magnética Nuclear (CNRMN), Centro Nacional de Biologia Estrutural e Bioimagem (CENABIO), Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Jorge C Estrada
- Laboratório de Hemostase e Venenos, Instituto de Bioquímica Médica (IBqM) Leopoldo de Meis, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Victor David
- Laboratório de Hemostase e Venenos, Instituto de Bioquímica Médica (IBqM) Leopoldo de Meis, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Luciana S Wermelinger
- Faculdade de Farmácia, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Fabio C L Almeida
- Instituto de Bioquímica Médica (IBqM) Leopoldo de Meis, Centro Nacional de Ressonância Magnética Nuclear, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil.,Centro Nacional de Ressonância Magnética Nuclear (CNRMN), Centro Nacional de Biologia Estrutural e Bioimagem (CENABIO), Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Russolina B Zingali
- Laboratório de Hemostase e Venenos, Instituto de Bioquímica Médica (IBqM) Leopoldo de Meis, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| |
Collapse
|
23
|
Szteiter SS, Diego IN, Ortegon J, Salinas EM, Cirilo A, Reyes A, Sanchez O, Suntravat M, Salazar E, Sánchez EE, Galan JA. Examination of the Efficacy and Cross-Reactivity of a Novel Polyclonal Antibody Targeting the Disintegrin Domain in SVMPs to Neutralize Snake Venom. Toxins (Basel) 2021; 13:254. [PMID: 33807363 PMCID: PMC8066378 DOI: 10.3390/toxins13040254] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2021] [Revised: 03/23/2021] [Accepted: 03/24/2021] [Indexed: 11/25/2022] Open
Abstract
Snake envenomation can result in hemorrhage, local necrosis, swelling, and if not treated properly can lead to adverse systemic effects such as coagulopathy, nephrotoxicity, neurotoxicity, and cardiotoxicity, which can result in death. As such, snake venom metalloproteinases (SVMPs) and disintegrins are two toxic components that contribute to hemorrhage and interfere with the hemostatic system. Administration of a commercial antivenom is the common antidote to treat snake envenomation, but the high-cost, lack of efficacy, side effects, and limited availability, necessitates the development of new strategies and approaches for therapeutic treatments. Herein, we describe the neutralization ability of anti-disintegrin polyclonal antibody on the activities of isolated disintegrins, P-II/P-III SVMPs, and crude venoms. Our results show disintegrin activity on platelet aggregation in whole blood and the migration of the SK-Mel-28 cells that can be neutralized with anti-disintegrin polyclonal antibody. We characterized a SVMP and found that anti-disintegrin was also able to inhibit its activity in an in vitro proteolytic assay. Moreover, we found that anti-disintegrin could neutralize the proteolytic and hemorrhagic activities from crude Crotalus atrox venom. Our results suggest that anti-disintegrin polyclonal antibodies have the potential for a targeted approach to neutralize SVMPs in the treatment of snakebite envenomations.
Collapse
Affiliation(s)
- Shelby S. Szteiter
- National Natural Toxins Research Center (NNTRC), Texas A&M University-Kingsville, MSC 224, 975 West Avenue B, Kingsville, TX 78363, USA; (S.S.S.); (I.N.D.); (J.O.); (E.M.S.); (A.C.); (A.R.); (O.S.); (M.S.); (E.S.)
| | - Ilse N. Diego
- National Natural Toxins Research Center (NNTRC), Texas A&M University-Kingsville, MSC 224, 975 West Avenue B, Kingsville, TX 78363, USA; (S.S.S.); (I.N.D.); (J.O.); (E.M.S.); (A.C.); (A.R.); (O.S.); (M.S.); (E.S.)
| | - Jonathan Ortegon
- National Natural Toxins Research Center (NNTRC), Texas A&M University-Kingsville, MSC 224, 975 West Avenue B, Kingsville, TX 78363, USA; (S.S.S.); (I.N.D.); (J.O.); (E.M.S.); (A.C.); (A.R.); (O.S.); (M.S.); (E.S.)
| | - Eliana M. Salinas
- National Natural Toxins Research Center (NNTRC), Texas A&M University-Kingsville, MSC 224, 975 West Avenue B, Kingsville, TX 78363, USA; (S.S.S.); (I.N.D.); (J.O.); (E.M.S.); (A.C.); (A.R.); (O.S.); (M.S.); (E.S.)
| | - Abcde Cirilo
- National Natural Toxins Research Center (NNTRC), Texas A&M University-Kingsville, MSC 224, 975 West Avenue B, Kingsville, TX 78363, USA; (S.S.S.); (I.N.D.); (J.O.); (E.M.S.); (A.C.); (A.R.); (O.S.); (M.S.); (E.S.)
| | - Armando Reyes
- National Natural Toxins Research Center (NNTRC), Texas A&M University-Kingsville, MSC 224, 975 West Avenue B, Kingsville, TX 78363, USA; (S.S.S.); (I.N.D.); (J.O.); (E.M.S.); (A.C.); (A.R.); (O.S.); (M.S.); (E.S.)
| | - Oscar Sanchez
- National Natural Toxins Research Center (NNTRC), Texas A&M University-Kingsville, MSC 224, 975 West Avenue B, Kingsville, TX 78363, USA; (S.S.S.); (I.N.D.); (J.O.); (E.M.S.); (A.C.); (A.R.); (O.S.); (M.S.); (E.S.)
| | - Montamas Suntravat
- National Natural Toxins Research Center (NNTRC), Texas A&M University-Kingsville, MSC 224, 975 West Avenue B, Kingsville, TX 78363, USA; (S.S.S.); (I.N.D.); (J.O.); (E.M.S.); (A.C.); (A.R.); (O.S.); (M.S.); (E.S.)
- Department of Chemistry, Texas A&M University-Kingsville, MSC 161, Kingsville, TX 78363, USA
| | - Emelyn Salazar
- National Natural Toxins Research Center (NNTRC), Texas A&M University-Kingsville, MSC 224, 975 West Avenue B, Kingsville, TX 78363, USA; (S.S.S.); (I.N.D.); (J.O.); (E.M.S.); (A.C.); (A.R.); (O.S.); (M.S.); (E.S.)
| | - Elda E. Sánchez
- National Natural Toxins Research Center (NNTRC), Texas A&M University-Kingsville, MSC 224, 975 West Avenue B, Kingsville, TX 78363, USA; (S.S.S.); (I.N.D.); (J.O.); (E.M.S.); (A.C.); (A.R.); (O.S.); (M.S.); (E.S.)
- Department of Chemistry, Texas A&M University-Kingsville, MSC 161, Kingsville, TX 78363, USA
| | - Jacob A. Galan
- National Natural Toxins Research Center (NNTRC), Texas A&M University-Kingsville, MSC 224, 975 West Avenue B, Kingsville, TX 78363, USA; (S.S.S.); (I.N.D.); (J.O.); (E.M.S.); (A.C.); (A.R.); (O.S.); (M.S.); (E.S.)
- Department of Chemistry, Texas A&M University-Kingsville, MSC 161, Kingsville, TX 78363, USA
| |
Collapse
|
24
|
Akhtar B, Muhammad F, Sharif A, Anwar MI. Mechanistic insights of snake venom disintegrins in cancer treatment. Eur J Pharmacol 2021; 899:174022. [PMID: 33727054 DOI: 10.1016/j.ejphar.2021.174022] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2020] [Revised: 02/26/2021] [Accepted: 03/10/2021] [Indexed: 01/27/2023]
Abstract
Snake venoms are a potential source of various enzymatic and non-enzymatic compounds with a defensive role for the host. Various peptides with significant medicinal properties have been isolated and characterized from these venoms. Few of these are FDA approved. They inhibit tumor cells adhesion, migration, angiogenesis and metastasis by inhibiting integrins on transmembrane cellular surfaces. This plays important role in delaying tumor growth, neovascularization and development. Tumor targeting and smaller size make them ideal candidates as novel therapeutic agents for cancer treatment. This review is based on sources of these disintegrins, their targeting modality, classification and underlying anti-cancer potential.
Collapse
Affiliation(s)
- Bushra Akhtar
- Department of Pharmacy, University of Agriculture, Faisalabad, Pakistan.
| | - Faqir Muhammad
- Institute of Physiology and Pharmacology, University of Agriculture, Faisalabad, Pakistan
| | - Ali Sharif
- Institute of Pharmacy, Faculty of Pharmaceutical and Allied Health Sciences, Lahore College for Women University, Lahore, Pakistan
| | - Muhammad Irfan Anwar
- Department of Pathobiology, Faculty of Veterinary Sciences, Bahauddin Zakariya University, Multan, Pakistan
| |
Collapse
|
25
|
Gopcevic K, Karadzic I, Izrael-Zivkovic L, Medic A, Isakovic A, Popović M, Kekic D, Stanojkovic T, Hozic A, Cindric M. Study of the venom proteome of Vipera ammodytes ammodytes (Linnaeus, 1758): A qualitative overview, biochemical and biological profiling. COMPARATIVE BIOCHEMISTRY AND PHYSIOLOGY D-GENOMICS & PROTEOMICS 2020; 37:100776. [PMID: 33197857 DOI: 10.1016/j.cbd.2020.100776] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/28/2020] [Revised: 10/13/2020] [Accepted: 11/04/2020] [Indexed: 12/23/2022]
Abstract
Vipera ammodytes (Va), is the European venomous snake of the greatest medical importance. We analyzed whole venom proteome of the subspecies V. ammodytes ammodytes (Vaa) from Serbia for the first time using the shotgun proteomics approach and identified 99 proteins belonging to four enzymatic families: serine protease (SVSPs), L-amino acid oxidase (LAAOs), metalloproteinases (SVMPs), group II phospholipase (PLA2s), and five nonenzymatic families: cysteine-rich secretory proteins (CRISPs), C-type lectins (snaclecs), growth factors -nerve (NGFs) and vascular endothelium (VEGFs), and Kunitz-type protease inhibitors (SPIs). Considerable enzymatic activity of LAAO, SVSPs, and SVMPs and a high acidic PLA2 activity was measured implying potential of Vaa to produce haemotoxic, myotoxic, neuro and cardiotoxic effects. Moreover, significant antimicrobial activity of Vaa venom against Gram-negative (Klebsiella pneumoniae, Pseudomonas aeruginosa) and Gram-positive bacteria (Staphylococcus aureus) was found. The crude venom shows considerable potential cytotoxic activity on the C6 and HL60 and a moderate level of potency on B16 cell lines. HeLa cells showed the same sensitivity, while DU 145 and PC-3 are less sensitive than as normal cell line. Our data demonstrated a high complexity of Vaa and considerable enzymatic, antibacterial and cytotoxic activity, implying a great medical potential of Vaa venom as a promising source for new antibacterial and cytostatic agents.
Collapse
Affiliation(s)
- Kristina Gopcevic
- Department of Chemistry, Faculty of Medicine, University of Belgrade, 11000 Belgrade, Serbia.
| | - Ivanka Karadzic
- Department of Chemistry, Faculty of Medicine, University of Belgrade, 11000 Belgrade, Serbia
| | - Lidija Izrael-Zivkovic
- Department of Chemistry, Faculty of Medicine, University of Belgrade, 11000 Belgrade, Serbia
| | - Ana Medic
- Department of Chemistry, Faculty of Medicine, University of Belgrade, 11000 Belgrade, Serbia
| | - Aleksandra Isakovic
- Department of Medical Biochemistry, Faculty of Medicine, University of Belgrade, 11000 Belgrade, Serbia
| | - Marjan Popović
- Department of Medical Biochemistry, Faculty of Medicine, University of Belgrade, 11000 Belgrade, Serbia
| | - Dusan Kekic
- Department of Microbiology and Immunology, Faculty of Medicine, University of Belgrade, 11000 Belgrade, Serbia
| | | | - Amela Hozic
- Ruđer Bošković Institute, Proteomics and Mass Spectrometry, Zagreb, Croatia
| | - Mario Cindric
- Ruđer Bošković Institute, Proteomics and Mass Spectrometry, Zagreb, Croatia
| |
Collapse
|
26
|
Schönthal AH, Swenson SD, Chen TC, Markland FS. Preclinical studies of a novel snake venom-derived recombinant disintegrin with antitumor activity: A review. Biochem Pharmacol 2020; 181:114149. [PMID: 32663453 DOI: 10.1016/j.bcp.2020.114149] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2020] [Revised: 07/09/2020] [Accepted: 07/09/2020] [Indexed: 12/12/2022]
Abstract
Snake venoms consist of a complex mixture of many bioactive molecules. Among them are disintegrins, which are peptides without enzymatic activity, but with high binding affinity for integrins, transmembrane receptors that function to connect cells with components of the extracellular matrix. Integrin-mediated cell attachment is critical for cell migration and dissemination, as well as for signal transduction pathways involved in cell growth. During tumor development, integrins play key roles by supporting cancer cell proliferation, angiogenesis, and metastasis. The recognition that snake venom disintegrins can block integrin functions has spawned a number of studies to explore their cancer therapeutic potential. While dozens of different disintegrins have been isolated, none of them as yet has undergone clinical evaluation in cancer patients. Among the best-characterized and preclinically most advanced disintegrins is vicrostatin (VCN), a recombinant disintegrin that was rationally designed by fusing 62 N-terminal amino acids derived from the disintegrin contortrostatin with 6 C-terminal amino acids from echistatin, the disintegrins from another snake species. Bacterially produced VCN was shown to target multiple tumor-associated integrins, achieving potent anti-tumor and anti-angiogenic effects in in vitro and in vivo models in the absence of noticeable toxicity. This review will introduce the field of snake venom disintegrins as potential anticancer agents and illustrate the translational development and cancer-therapeutic potential of VCN as an example.
Collapse
Affiliation(s)
- Axel H Schönthal
- Department of Molecular Microbiology and Immunology, Keck School of Medicine (KSOM), University of Southern California (USC), Los Angeles, CA 90089, USA
| | - Stephen D Swenson
- Department of Neurological Surgery, KSOM, USC, Los Angeles, CA 90089, USA; Department of Biochemistry and Molecular Medicine, KSOM, USC, Los Angeles, CA 90089, USA
| | - Thomas C Chen
- Department of Neurological Surgery, KSOM, USC, Los Angeles, CA 90089, USA
| | - Francis S Markland
- Department of Biochemistry and Molecular Medicine, KSOM, USC, Los Angeles, CA 90089, USA.
| |
Collapse
|
27
|
Comparative proteomics of geographically distinct saw-scaled viper ( Echis carinatus) venoms from India. Toxicon X 2020; 7:100048. [PMID: 32613195 PMCID: PMC7322182 DOI: 10.1016/j.toxcx.2020.100048] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2020] [Revised: 06/09/2020] [Accepted: 06/17/2020] [Indexed: 11/21/2022] Open
Abstract
Snakebite is a socio-economic problem in tropical countries and it is exacerbated by geographical venom variation of snakes. We investigated on venom variation in geographically distinct populations of Echis carinatus from three ecologically distinct regions: Tamil Nadu (ECVTN), Goa (ECVGO), and Rajasthan (ECVRAJ). Venom was fractionated by RP-HPLC, combined with SDS-PAGE, and subjected to tandem mass spectrometry. Toxins were identified, and their relative abundance was estimated. Using NCBI database of Echis genus, we queried the MS/MS spectra, and found 69, 38 and 38 proteins in ECVTN, ECVGO and ECVRAJ respectively, belonging to 8-10 different toxin families. The differences in the venom profiles were due to change in the relative composition of the toxin families. Snake venom metalloproteinase (svMP), Snaclecs and Phospholipase A2 (PLA2) were the major venom components in all the venoms. Heteromeric Disintegrins were found in ECVTN and absent in other venoms. ECVRAJ showed higher abundance of low-molecular-weight (>30 kDa) proteins than ECVTN and ECVGO. Cysteine-rich venom protein (CRISP) was highest in ECVRAJ (7.34%), followed by ECVTN (0.01%) and in ECVGO, it was not detected. These findings highlight the need for evaluating the efficacy of the polyvalent anti-venom to neutralize the toxins from geographically distinct venoms of E. carinatus.
Collapse
|
28
|
Fast venomic analysis of Crotalus durissus terrificus from northeastern Argentina. Toxicon X 2020; 7:100047. [PMID: 32613194 PMCID: PMC7322346 DOI: 10.1016/j.toxcx.2020.100047] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2020] [Revised: 06/03/2020] [Accepted: 06/09/2020] [Indexed: 11/24/2022] Open
Abstract
The complete knowledge of the toxins that make up venoms is the base for the treatment of snake accidents victims and the selection of specimens for the preparation of venom pools for antivenom production. In this work, we used a fast and direct venomics approach to identify the toxin families in the C.d. terrificus venom, a Southern American Neotropical rattlesnake. The RP-HPLC separation profile of pooled venom from adult specimens followed by mass spectrometry analysis revealed that C.d. terrificus' venom proteome is composed of 12 protein families, which are unevenly distributed in the venom, e.g., there are few major proteins in the venom's composition phospholipase A2, serine proteinase, crotamine and L-amino acid oxidase. At the same time, the proteome analysis revealed a small set of proteins with low quantity (less than 1.5%), both enzymes (metaloprotease, phospholipase B and 5'-nucleotidase) and proteins (Bradykinin potentiating and C-type natriuretic peptides, C-type lectin convulxin and nerve growth factor). To sum up, this research is the first venomic report of C.d.terrificus venom from Argentina. This proved to be crotamine positive venom that has a lower metalloprotease content than C.d. terrificus venoms from other regions. This information could be used in the discovery of future pharmacological agents or targets in antivenom therapy.
Collapse
|
29
|
Urra FA, Araya-Maturana R. Putting the brakes on tumorigenesis with snake venom toxins: New molecular insights for cancer drug discovery. Semin Cancer Biol 2020; 80:195-204. [PMID: 32428714 DOI: 10.1016/j.semcancer.2020.05.006] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2019] [Revised: 05/04/2020] [Accepted: 05/11/2020] [Indexed: 01/09/2023]
Abstract
Cancer cells exhibit molecular characteristics that confer them different proliferative capacities and survival advantages to adapt to stress conditions, such as deregulation of cellular bioenergetics, genomic instability, ability to promote angiogenesis, invasion, cell dormancy, immune evasion, and cell death resistance. In addition to these hallmarks of cancer, the current cytostatic drugs target the proliferation of malignant cells, being ineffective in metastatic disease. These aspects highlight the need to identify promising therapeutic targets for new generations of anti-cancer drugs. Toxins isolated from snake venoms are a natural source of useful molecular scaffolds to obtain agents with a selective effect on cancer cells. In this article, we discuss the recent advances in the molecular mechanisms of nine classes of snake toxins that suppress the hallmarks of cancer by induction of oxidative phosphorylation dysfunction, reactive oxygen species-dependent DNA damage, blockage of extracellular matrix-integrin signaling, disruption of cytoskeleton network and inhibition of growth factor-dependent signaling. The possible therapeutic implications of toxin-based anti-cancer drug development are also highlighted.
Collapse
Affiliation(s)
- Félix A Urra
- Programa de Farmacología Molecular y Clínica, Instituto de Ciencias Biomédicas, Facultad de Medicina, Universidad de Chile, Independencia 1027, Santiago 7800003, Chile; Network for Snake Venom Research and Drug Discovery, Santiago 7800003, Chile.
| | - Ramiro Araya-Maturana
- Network for Snake Venom Research and Drug Discovery, Santiago 7800003, Chile; Instituto de Química de Recursos Naturales, Universidad de Talca, Talca 3460000, Chile; Programa de Investigación Asociativa en Cáncer Gástrico, Universidad de Talca, Talca 3460000, Chile.
| |
Collapse
|
30
|
Venomics of the asp viper Vipera aspis aspis from France. J Proteomics 2020; 218:103707. [PMID: 32087377 DOI: 10.1016/j.jprot.2020.103707] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2019] [Revised: 02/13/2020] [Accepted: 02/18/2020] [Indexed: 12/15/2022]
Abstract
The asp viper Vipera aspis aspis is a venomous snake found in France, and despite its medical importance, the complete toxin repertoire produced is unknown. Here, we used a venomics approach to decipher the composition of its venom. Transcriptomic analysis revealed 80 venom-annotated sequences grouped into 16 gene families. Among the most represented toxins were snake venom metalloproteases (23%), phospholipases A2 (15%), serine proteases (13%), snake venom metalloprotease inhibitors (13%) and C-type lectins (12%). LC-MS of venoms revealed similar profiles regardless of the method of extraction (milking vs defensive bite). Proteomic analysis validated 57 venom-annotated transcriptomic sequences (>70%), including one for each of the 16 families, but also identified 7 sequences not initially annotated as venom proteins, including a serine protease, a disintegrin, a glutaminyl-peptide cyclotransferase, a proactivator polypeptide-like and 3 aminopeptidases. Interestingly, phospholipases A2 were the dominant proteins in the venom, among which included an ammodytoxin B-like sequence, which may explain the reported neurotoxicity following some asp viper envenomations. In total, 87 sequences were retrieved from the Vipera aspis aspis transcriptome and proteome, constituting a valuable resource that will help in understanding the toxinological basis of clinical signs of envenoming and for the mining of useful pharmacological compounds. BIOLOGICAL SIGNIFICANCE: The asp viper (Vipera aspis aspis) causes several hundred envenomations annually in France, including unusual cases with neurological signs, resulting in one death per year on average. Here, we performed a proteotranscriptomic analysis of V. a. aspis venom in order to provide a better understanding of its venom composition. We found that, as in other Vipera species, phospholipase A2 dominates in the venom, and the presence of a sequence related to ammodytoxin B may explain the reported neurotoxicity following some asp viper envenomations. Thus, this study will help in informing the toxinological basis of clinical signs of envenoming.
Collapse
|
31
|
Isolation of an Anti-Tumour Disintegrin: Dabmaurin-1, a Peptide Lebein-1-Like, from Daboia mauritanica Venom. Toxins (Basel) 2020; 12:toxins12020102. [PMID: 32033352 PMCID: PMC7076848 DOI: 10.3390/toxins12020102] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2020] [Revised: 01/28/2020] [Accepted: 01/31/2020] [Indexed: 11/17/2022] Open
Abstract
In the soft treatment of cancer tumours, consequent downregulation of the malignant tissue angiogenesis constitutes an efficient way to stifle tumour development and metastasis spreading. As angiogenesis requires integrin–promoting endothelial cell adhesion, migration, and vessel tube formation, integrins represent potential targets of new therapeutic anti–angiogenic agents. Our work is a contribution to the research of such therapeutic disintegrins in animal venoms. We report isolation of one peptide, named Dabmaurin–1, from the hemotoxic venom of snake Daboia mauritanica, and we evaluate its potential anti–tumour activity through in vitro inhibition of the human vascular endothelial cell HMECs functions involved in tumour angiogenesis. Dabmaurin–1 altered, in a dose–dependent manner, without any significant cytotoxicity, HMEC proliferation, adhesion, and their mesenchymal migration onto various extracellular matrix proteins, as well as formation of capillary–tube mimics on MatrigelTM. Via experiments involving HMEC or specific cancers cells integrins, we demonstrated that the above Dabmaurin–1 effects are possibly due to some anti–integrin properties. Dabmaurin–1 was demonstrated to recognize a broad panel of prooncogenic integrins (αvβ6, αvβ3 or αvβ5) and/or particularly involved in control of angiogenesis (α5β1, α6β4, αvβ3 or αvβ5). Furthermore, mass spectrometry and partial N–terminal sequencing of this peptide revealed, it is close to Lebein–1, a known anti–β1 disintegrin from Macrovipera lebetina venom. Therefore, our results show that if Dabmaurin–1 exhibits in vitro apparent anti–angiogenic effects at concentrations lower than 30 nM, it is likely because it acts as an anti–tumour disintegrin.
Collapse
|
32
|
Montealegre-Sánchez L, Gimenes SN, Lopes DS, Teixeira SC, Solano-Redondo L, de Melo Rodrigues V, Jiménez-Charris E. Antitumoral Potential of Lansbermin-I, a Novel Disintegrin from Porthidium lansbergii lansbergii Venom on Breast Cancer Cells. Curr Top Med Chem 2019; 19:2069-2078. [DOI: 10.2174/1568026619666190806151401] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2019] [Revised: 06/13/2019] [Accepted: 07/01/2019] [Indexed: 12/31/2022]
Abstract
Background:
Disintegrins from snake venoms bind with high specificity cell surface integrins,
which are important pharmacological targets associated with cancer development and progression.
Objective:
In this study, we isolated a disintegrin from the Porthidium lansbergii lansbergii venom and
evaluated its antitumoral effects on breast cancer cells.
Methods:
The isolation of the disintegrin was performed on RP-HPLC and the inhibition of platelet aggregation
was evaluated on human platelet-rich plasma. The inhibition of cell adhesion was also evaluated
in vitro on cultures of cell lines by the MTT method as well as the inhibition of breast cancer cell
migration by the wound healing assay. The binding of the disintegrin to integrin subunits was verified by
flow cytometry and confocal microscopy. Finally, inhibition of angiogenesis was assessed in vitro on
HUVEC cells and the concentration of VEGF was measured in the cellular supernatants.
Results:
The disintegrin, named Lansbermin-I, is a low molecular weight protein (< 10 kDa) that includes
an RGD on its sequence identified previously. Lansbermin-I showed potent inhibition of ADP and
collagen-induced platelet aggregation on human plasma and also displayed inhibitory effects on the adhesion
and migration of breast cancer MCF7 and MDA-MB 231cell lines, without affecting nontumorigenic
breast MCF-10A and lung BEAS cells. Additionally, Lansbermin-I prevented MCF7 cells to
adhere to fibronectin and collagen, and also inhibited in vitro angiogenesis on human endothelial HUVEC
cells.
Conclusion:
Our results display the first report on the antitumor and anti-metastatic effects of an RGDdisintegrin
isolated from a Porthidium snake venom by possibly interfering with α2 and/or β1-containing
integrins. Thus, Lansbermin-I could be an attractive model to elucidate the role of disintegrins against
breast cancer development.
Collapse
Affiliation(s)
| | - Sarah N.C. Gimenes
- Laboratorio de Bioquimica e Toxinas Animais, Instituto de Biotecnologia, Universidade Federal de Uberlandia, MG, Brazil
| | - Daiana S. Lopes
- Instituto Multidisciplinar em Saude, Campus Anisio Teixeira, Universidade Federal da Bahia, BA, Brazil
| | - Samuel C. Teixeira
- Laboratorio de Bioquimica e Toxinas Animais, Instituto de Biotecnologia, Universidade Federal de Uberlandia, MG, Brazil
| | - Luis Solano-Redondo
- Grupo Laboratorio de Herpetologia, Facultad de Ciencias, Universidad del Valle, Cali, Colombia
| | - Veridiana de Melo Rodrigues
- Laboratorio de Bioquimica e Toxinas Animais, Instituto de Biotecnologia, Universidade Federal de Uberlandia, MG, Brazil
| | | |
Collapse
|
33
|
Koh CY, Kini RM. Exogenous Factors from Venomous and Hematophagous Animals in Drugs and Diagnostic Developments for Cardiovascular and Neurovascular Diseases. Cardiovasc Hematol Disord Drug Targets 2019; 19:90-94. [PMID: 31385761 DOI: 10.2174/1871529x1902190619123603] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Affiliation(s)
- Cho Yeow Koh
- Department of Medicine, National University of Singapore, Singapore
| | - R Manjunatha Kini
- Department of Biological Sciences, National University of Singapore, Singapore
| |
Collapse
|
34
|
Abstract
Leucurogin is an ECD disintegrin-like protein, cloned from Bothrops leucurus venom gland. This new protein, encompassing the disintegrin region of a PIII metalloproteinase, is produced by recombinant technology and its biological and functional activity was partially characterized in this study. Biological activity was characterized in vitro using human fibroblasts. Functional activity of leucurogin was analysed in vitro and in vivo with murine B16F10 Nex-2 and human melanoma BLM cells. The results show that leucurogin inhibits cellular processes dependent on collagen type I. In a competition assay with collagen, leucurogin inhibits, in a dose-dependent manner, the adhesion of fibroblast to collagen. At 10 μM leucurogin reduces adhesion (40%) and migration (70%) of hFb and inhibits migration (32%) and proliferation (65%) of BLM cells. At 2.5 μM leucurogin inhibits 80% cell proliferation of B16F10 Nex-2 melanoma cells. At 4.8 μM leucurogin inhibits, in vitro, the vascular structures formation by endothelial cells by 66%. Leucurogin, injected intraperitoneally, i.p. (5 μg/animal, two-month old C57/Bl6 male mice) on alternate days for 15 days, inhibits lung metastasis of B16F10 Nex-2 cells by 70-75%. In the treatment of human melanoma, grafted intradermally in the nude mice flank, leucurogin (7.5 μg/kg in alternate days during 17 days) inhibits tumor growth by more than 40%. Leucurogin can be considered a promising agent for melanoma treatment.
Collapse
|
35
|
Eble JA. Structurally Robust and Functionally Highly Versatile-C-Type Lectin (-Related) Proteins in Snake Venoms. Toxins (Basel) 2019; 11:toxins11030136. [PMID: 30823637 PMCID: PMC6468738 DOI: 10.3390/toxins11030136] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2019] [Revised: 02/19/2019] [Accepted: 02/20/2019] [Indexed: 12/31/2022] Open
Abstract
Snake venoms contain an astounding variety of different proteins. Among them are numerous C-type lectin family members, which are grouped into classical Ca2+- and sugar-binding lectins and the non-sugar-binding snake venom C-type lectin-related proteins (SV-CLRPs), also called snaclecs. Both groups share the robust C-type lectin domain (CTLD) fold but differ in a long loop, which either contributes to a sugar-binding site or is expanded into a loop-swapping heterodimerization domain between two CLRP subunits. Most C-type lectin (-related) proteins assemble in ordered supramolecular complexes with a high versatility of subunit numbers and geometric arrays. Similarly versatile is their ability to inhibit or block their target molecules as well as to agonistically stimulate or antagonistically blunt a cellular reaction triggered by their target receptor. By utilizing distinct interaction sites differentially, SV-CLRPs target a plethora of molecules, such as distinct coagulation factors and receptors of platelets and endothelial cells that are involved in hemostasis, thrombus formation, inflammation and hematogenous metastasis. Because of their robust structure and their high affinity towards their clinically relevant targets, SV-CLRPs are and will potentially be valuable prototypes to develop new diagnostic and therapeutic tools in medicine, provided that the molecular mechanisms underlying their versatility are disclosed.
Collapse
Affiliation(s)
- Johannes A Eble
- Institute of Physiological Chemistry and Pathobiochemistry, University of Münster, Waldeyerstr. 15, 48149 Münster, Germany.
| |
Collapse
|
36
|
Cesar PHS, Braga MA, Trento MVC, Menaldo DL, Marcussi S. Snake Venom Disintegrins: An Overview of their Interaction with Integrins. Curr Drug Targets 2019; 20:465-477. [DOI: 10.2174/1389450119666181022154737] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2018] [Revised: 10/16/2018] [Accepted: 10/17/2018] [Indexed: 12/12/2022]
Abstract
Disintegrins are non-enzymatic proteins that interfere on cell–cell interactions and signal transduction, contributing to the toxicity of snake venoms and play an essential role in envenomations. Most of their pharmacological and toxic effects are the result of the interaction of these molecules with cell surface ligands, which has been widely described and studied. These proteins may act on platelets, leading to hemorrhage, and may also induce apoptosis and cytotoxicity, which highlights a high pharmacological potential for the development of thrombolytic and antitumor agents. Additionally, these molecules interfere with the functions of integrins by altering various cellular processes such as migration, adhesion and proliferation. This review gathers information on functional characteristics of disintegrins isolated from snake venoms, emphasizing a comprehensive view of the possibility of direct use of these molecules in the development of new drugs, or even indirectly as structural models.
Collapse
Affiliation(s)
- Pedro Henrique Souza Cesar
- Department of Chemistry, Biochemistry Laboratory, Federal University of Lavras (UFLA), Lavras, Minas Gerais, 37200-000, Brazil
| | - Mariana Aparecida Braga
- Department of Chemistry, Biochemistry Laboratory, Federal University of Lavras (UFLA), Lavras, Minas Gerais, 37200-000, Brazil
| | - Marcus Vinicius Cardoso Trento
- Department of Chemistry, Biochemistry Laboratory, Federal University of Lavras (UFLA), Lavras, Minas Gerais, 37200-000, Brazil
| | - Danilo Luccas Menaldo
- Department of Clinical Analyses, Toxicology and Food Sciences, School of Pharmaceutical Sciences of Ribeirão Preto, University of Sao Paulo (FCFRP-USP), Ribeirão Preto-SP, Brazil
| | - Silvana Marcussi
- Department of Chemistry, Biochemistry Laboratory, Federal University of Lavras (UFLA), Lavras, Minas Gerais, 37200-000, Brazil
| |
Collapse
|
37
|
Munawar A, Ali SA, Akrem A, Betzel C. Snake Venom Peptides: Tools of Biodiscovery. Toxins (Basel) 2018; 10:toxins10110474. [PMID: 30441876 PMCID: PMC6266942 DOI: 10.3390/toxins10110474] [Citation(s) in RCA: 53] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2018] [Revised: 10/30/2018] [Accepted: 11/07/2018] [Indexed: 01/09/2023] Open
Abstract
Nature endowed snakes with a lethal secretion known as venom, which has been fine-tuned over millions of years of evolution. Snakes utilize venom to subdue their prey and to survive in their natural habitat. Venom is known to be a very poisonous mixture, consisting of a variety of molecules, such as carbohydrates, nucleosides, amino acids, lipids, proteins and peptides. Proteins and peptides are the major constituents of the dry weight of snake venoms and are of main interest for scientific investigations as well as for various pharmacological applications. Snake venoms contain enzymatic and non-enzymatic proteins and peptides, which are grouped into different families based on their structure and function. Members of a single family display significant similarities in their primary, secondary and tertiary structures, but in many cases have distinct pharmacological functions and different bioactivities. The functional specificity of peptides belonging to the same family can be attributed to subtle variations in their amino acid sequences. Currently, complementary tools and techniques are utilized to isolate and characterize the peptides, and study their potential applications as molecular probes, and possible templates for drug discovery and design investigations.
Collapse
Affiliation(s)
- Aisha Munawar
- Department of Chemistry, University of Engineering and Technology, Lahore 54890, Pakistan.
| | - Syed Abid Ali
- H.E. J. Research Institute of Chemistry, (ICCBS), University of Karachi, Karachi 75270, Pakistan.
| | - Ahmed Akrem
- Botany Division, Institute of Pure and Applied Biology, Bahauddin Zakariya University, Multan 60800, Pakistan.
| | - Christian Betzel
- Department of Chemistry, Institute of Biochemistry and Molecular Biology, University of Hamburg, 22607 Hamburg, Germany.
- Laboratory for Structural Biology of Infection and Inflammation, DESY, Build. 22a, Notkestr. 85, 22603 Hamburg, Germany.
| |
Collapse
|
38
|
Ferreira BA, Deconte SR, de Moura FBR, Tomiosso TC, Clissa PB, Andrade SP, Araújo FDA. Inflammation, angiogenesis and fibrogenesis are differentially modulated by distinct domains of the snake venom metalloproteinase jararhagin. Int J Biol Macromol 2018; 119:1179-1187. [PMID: 30102981 DOI: 10.1016/j.ijbiomac.2018.08.051] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2018] [Revised: 08/08/2018] [Accepted: 08/09/2018] [Indexed: 12/21/2022]
Abstract
Jararhagin, a metalloprotease from Bothrops jararaca snake venom, is a toxin containing the metalloproteinase, disintegrin-like and cysteine-rich domains; it causes acute inflammation and damage to vascular tissue. However, the actions of these domains on key components of chronic inflammation have not been determined. Our aim was to investigate the effects of jararhagin (Jar), jararhagin-C (Jar-C) and o-phenantrolin-treated jararhagin (Jar-Phe), on inflammatory response, blood vessel formation and extracellular matrix deposition in the murine sponge model. The polyether-polyurethane sponge matrix was implanted into Balb/c mice and injected daily with Jar (400 ng), Jar-Phe (400 ng), Jar-C (200 ng) or saline (control). Nine days after implantation, the sponge discs were removed and processed. In the Jar-treated implants, some of inflammatory markers (N-acetyl-β-d-glucosaminidase activity, CCL2 and TNF-α) and TGF-β1 levels were higher compared with the control group. In the Jar-C group, the inflammatory markers myeloperoxidase activity and CXCL1 were higher compared with the control. In this group, VEGF levels and collagen deposition were also higher. Jar-Phe treatment was able to inhibit the activity and/or production of MPO, CXCL1, CCL2 and TGF-β. The differential effects of these proteins in modulating the main components of fibrovascular tissue may be exploited in the management fibroproliferative diseases.
Collapse
Affiliation(s)
- Bruno Antonio Ferreira
- Departamento de Ciências Fisiológicas, Instituto de Ciências Biomédicas, Universidade Federal de Uberlândia, UFU, Uberlândia, MG, Brazil
| | - Simone Ramos Deconte
- Departamento de Ciências Fisiológicas, Instituto de Ciências Biomédicas, Universidade Federal de Uberlândia, UFU, Uberlândia, MG, Brazil
| | - Francyelle Borges Rosa de Moura
- Departamento de Biologia Celular, Histologia e Embriologia, Instituto de Ciências Biomédicas, Universidade Federal de Uberlândia, UFU, Uberlândia, MG, Brazil
| | - Tatiana Carla Tomiosso
- Departamento de Biologia Celular, Histologia e Embriologia, Instituto de Ciências Biomédicas, Universidade Federal de Uberlândia, UFU, Uberlândia, MG, Brazil
| | | | - Silvia Passos Andrade
- Departamento de Fisiologia e Biofísica, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, MG, Brazil
| | - Fernanda de Assis Araújo
- Departamento de Ciências Fisiológicas, Instituto de Ciências Biomédicas, Universidade Federal de Uberlândia, UFU, Uberlândia, MG, Brazil.
| |
Collapse
|
39
|
Oliveira ISD, Manzini RV, Ferreira IG, Cardoso IA, Bordon KDCF, Machado ART, Antunes LMG, Rosa JC, Arantes EC. Cell migration inhibition activity of a non-RGD disintegrin from Crotalus durissus collilineatus venom. J Venom Anim Toxins Incl Trop Dis 2018; 24:28. [PMID: 30377432 PMCID: PMC6195974 DOI: 10.1186/s40409-018-0167-6] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2018] [Accepted: 10/05/2018] [Indexed: 01/18/2023] Open
Abstract
BACKGROUND In recent decades, snake venom disintegrins have received special attention due to their potential use in anticancer therapy. Disintegrins are small and cysteine-rich proteins present in snake venoms and can interact with specific integrins to inhibit their activities in cell-cell and cell-ECM interactions. These molecules, known to inhibit platelet aggregation, are also capable of interacting with certain cancer-related integrins, and may interfere in important processes involved in carcinogenesis. Therefore, disintegrin from Crotalus durissus collilineatus venom was isolated, structurally characterized and evaluated for its toxicity and ability to interfere with cell proliferation and migration in MDA-MB-231, a human breast cancer cell line. METHODS Based on previous studies, disintegrin was isolated by FPLC, through two chromatographic steps, both on reversed phase C-18 columns. The isolated disintegrin was structurally characterized by Tris-Tricine-SDS-PAGE, mass spectrometry and N-terminal sequencing. For the functional assays, MTT and wound-healing assays were performed in order to investigate cytotoxicity and effect on cell migration in vitro, respectively. RESULTS Disintegrin presented a molecular mass of 7287.4 Da and its amino acid sequence shared similarity with the disintegrin domain of P-II metalloproteases. Using functional assays, the disintegrin showed low cytotoxicity (15% and 17%, at 3 and 6 μg/mL, respectively) after 24 h of incubation and in the wound-healing assay, the disintegrin (3 μg/mL) was able to significantly inhibit cell migration (24%, p < 0.05), compared to negative control. CONCLUSION Thus, our results demonstrate that non-RGD disintegrin from C. d. collilineatus induces low cytotoxicity and inhibits migration of human breast cancer cells. Therefore, it may be a very useful molecular tool for understanding ECM-cell interaction cancer-related mechanisms involved in an important integrin family that highlights molecular aspects of tumorigenesis. Also, non-RGD disintegrin has potential to serve as an agent in anticancer therapy or adjuvant component combined with other anticancer drugs.
Collapse
Affiliation(s)
- Isadora Sousa de Oliveira
- School of Pharmaceutical Sciences of Ribeirão Preto, Department of Physics and Chemistry, University of São Paulo, Av. do Café s/n°, Monte Alegre, Ribeirão Preto, SP 14040-903 Brazil
| | - Rafaella Varzoni Manzini
- School of Pharmaceutical Sciences of Ribeirão Preto, Department of Physics and Chemistry, University of São Paulo, Av. do Café s/n°, Monte Alegre, Ribeirão Preto, SP 14040-903 Brazil
| | - Isabela Gobbo Ferreira
- School of Pharmaceutical Sciences of Ribeirão Preto, Department of Physics and Chemistry, University of São Paulo, Av. do Café s/n°, Monte Alegre, Ribeirão Preto, SP 14040-903 Brazil
| | - Iara Aimê Cardoso
- School of Pharmaceutical Sciences of Ribeirão Preto, Department of Physics and Chemistry, University of São Paulo, Av. do Café s/n°, Monte Alegre, Ribeirão Preto, SP 14040-903 Brazil
| | - Karla de Castro Figueiredo Bordon
- School of Pharmaceutical Sciences of Ribeirão Preto, Department of Physics and Chemistry, University of São Paulo, Av. do Café s/n°, Monte Alegre, Ribeirão Preto, SP 14040-903 Brazil
| | - Ana Rita Thomazela Machado
- Department of Clinical Analysis, Toxicology and Food Science, School of Pharmaceutical Sciences of Ribeirão Preto, University of São Paulo, Ribeirão Preto, SP Brazil
| | - Lusânia Maria Greggi Antunes
- Department of Clinical Analysis, Toxicology and Food Science, School of Pharmaceutical Sciences of Ribeirão Preto, University of São Paulo, Ribeirão Preto, SP Brazil
| | - José Cesar Rosa
- Protein Chemistry Center and Department of Molecular and Cell Biology and Pathogenic Bioagents, School of Medicine of Ribeirão Preto, University of São Paulo, Ribeirão Preto, SP Brazil
| | - Eliane Candiani Arantes
- School of Pharmaceutical Sciences of Ribeirão Preto, Department of Physics and Chemistry, University of São Paulo, Av. do Café s/n°, Monte Alegre, Ribeirão Preto, SP 14040-903 Brazil
| |
Collapse
|
40
|
Estevão-Costa MI, Sanz-Soler R, Johanningmeier B, Eble JA. Snake venom components in medicine: From the symbolic rod of Asclepius to tangible medical research and application. Int J Biochem Cell Biol 2018; 104:94-113. [PMID: 30261311 DOI: 10.1016/j.biocel.2018.09.011] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2018] [Revised: 09/03/2018] [Accepted: 09/19/2018] [Indexed: 12/21/2022]
Abstract
Both mythologically and logically, snakes have always fascinated man. Snakes have attracted both awe and fear not only because of the elegant movement of their limbless bodies, but also because of the potency of their deadly venoms. Practically, in 2017, the world health organization (WHO) listed snake envenomation as a high priority neglected disease, as snakes inflict up to 2.7 million poisonous bites, around 100.000 casualties, and about three times as many invalidities on man. The venoms of poisonous snakes are a cocktail of potent compounds which specifically and avidly target numerous essential molecules with high efficacy. The individual effects of all venom toxins integrate into lethal dysfunctions of almost any organ system. It is this efficacy and specificity of each venom component, which after analysis of its structure and activity may serve as a potential lead structure for chemical imitation. Such toxin mimetics may help in influencing a specific body function pharmaceutically for the sake of man's health. In this review article, we will give some examples of snake venom components which have spurred the development of novel pharmaceutical compounds. Moreover, we will provide examples where such snake toxin-derived mimetics are in clinical use, trials, or consideration for further pharmaceutical exploitation, especially in the fields of hemostasis, thrombosis, coagulation, and metastasis. Thus, it becomes clear why a snake captured its symbolic place at the Asclepius rod with good reason still nowadays.
Collapse
Affiliation(s)
- Maria-Inacia Estevão-Costa
- Institute of Physiological Chemistry and Pathobiochemistry, University of Münster, Waldeyerstr. 15, 48149, Münster, Germany
| | - Raquel Sanz-Soler
- Institute of Physiological Chemistry and Pathobiochemistry, University of Münster, Waldeyerstr. 15, 48149, Münster, Germany
| | - Benjamin Johanningmeier
- Institute of Physiological Chemistry and Pathobiochemistry, University of Münster, Waldeyerstr. 15, 48149, Münster, Germany
| | - Johannes A Eble
- Institute of Physiological Chemistry and Pathobiochemistry, University of Münster, Waldeyerstr. 15, 48149, Münster, Germany.
| |
Collapse
|
41
|
David V, Succar BB, de Moraes JA, Saldanha-Gama RFG, Barja-Fidalgo C, Zingali RB. Recombinant and Chimeric Disintegrins in Preclinical Research. Toxins (Basel) 2018; 10:E321. [PMID: 30087285 PMCID: PMC6116119 DOI: 10.3390/toxins10080321] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2018] [Revised: 07/23/2018] [Accepted: 07/27/2018] [Indexed: 01/31/2023] Open
Abstract
Disintegrins are a family of small cysteine-rich peptides, found in a wide variety of snake venoms of different phylogenetic origin. These peptides selectively bind to integrins, which are heterodimeric adhesion receptors that play a fundamental role in the regulation of many physiological and pathological processes, such as hemostasis and tumor metastasis. Most disintegrins interact with integrins through the RGD (Arg-Gly-Asp) sequence loop, resulting in an active site that modulates the integrin activity. Some variations in the tripeptide sequence and the variability in its neighborhood result in a different specificity or affinity toward integrin receptors from platelets, tumor cells or neutrophils. Recombinant forms of these proteins are obtained mainly through Escherichia coli, which is the most common host used for heterologous expression. Advances in the study of the structure-activity relationship and importance of some regions of the molecule, especially the hairpin loop and the C-terminus, rely on approaches such as site-directed mutagenesis and the design and expression of chimeric peptides. This review provides highlights of the biological relevance and contribution of recombinant disintegrins to the understanding of their binding specificity, biological activities and therapeutic potential. The biological and pharmacological relevance on the newest discoveries about this family of integrin-binding proteins are discussed.
Collapse
Affiliation(s)
- Victor David
- Laboratório de Hemostase e Venenos, Instituto de Bioquímica Médica Leopoldo de Meis, Universidade Federal do Rio de Janeiro, Rio de Janeiro 21.941-902, Brazil.
| | - Barbara Barbosa Succar
- Laboratório de Hemostase e Venenos, Instituto de Bioquímica Médica Leopoldo de Meis, Universidade Federal do Rio de Janeiro, Rio de Janeiro 21.941-902, Brazil.
| | - João Alfredo de Moraes
- Instituto de Ciências Biomédicas, Universidade Federal do Rio de Janeiro, Rio de Janeiro 21.941-902, Brazil.
| | - Roberta Ferreira Gomes Saldanha-Gama
- Laboratório de Farmacologia Celular e Molecular, Departamento de Biologia Celular, IBRAG, Universidade do Estado do Rio de Janeiro, Rio de Janeiro 20.551-030, Brazil.
| | - Christina Barja-Fidalgo
- Laboratório de Farmacologia Celular e Molecular, Departamento de Biologia Celular, IBRAG, Universidade do Estado do Rio de Janeiro, Rio de Janeiro 20.551-030, Brazil.
| | - Russolina Benedeta Zingali
- Laboratório de Hemostase e Venenos, Instituto de Bioquímica Médica Leopoldo de Meis, Universidade Federal do Rio de Janeiro, Rio de Janeiro 21.941-902, Brazil.
| |
Collapse
|
42
|
Van de Velde AC, Gay CC, Moritz MNDO, Dos Santos PK, Bustillo S, Rodríguez JP, Acosta OC, Biscoglio MJ, Selistre-de-Araujo HS, Leiva LC. Purification of a fragment obtained by autolysis of a PIIIb-SVMP from Bothrops alternatus venom. Int J Biol Macromol 2018; 113:205-211. [PMID: 29471097 DOI: 10.1016/j.ijbiomac.2018.02.063] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2017] [Revised: 11/07/2017] [Accepted: 02/11/2018] [Indexed: 11/17/2022]
Affiliation(s)
- Andrea Carolina Van de Velde
- Laboratorio de Investigación en Proteínas, Instituto de Química Básica y Aplicada del Nordeste Argentino (UNNE-CONICET), Corrientes, Argentina
| | - Claudia Carolina Gay
- Laboratorio de Investigación en Proteínas, Instituto de Química Básica y Aplicada del Nordeste Argentino (UNNE-CONICET), Corrientes, Argentina.
| | | | | | - Soledad Bustillo
- Laboratorio de Investigación en Proteínas, Instituto de Química Básica y Aplicada del Nordeste Argentino (UNNE-CONICET), Corrientes, Argentina
| | - Juan Pablo Rodríguez
- Laboratorio de Investigación en Proteínas, Instituto de Química Básica y Aplicada del Nordeste Argentino (UNNE-CONICET), Corrientes, Argentina
| | - Ofelia Cristina Acosta
- Laboratorio de Farmacología, Facultad de Ciencias Veterinarias, Universidad Nacional del Nordeste, Corrientes, Argentina
| | | | | | - Laura Cristina Leiva
- Laboratorio de Investigación en Proteínas, Instituto de Química Básica y Aplicada del Nordeste Argentino (UNNE-CONICET), Corrientes, Argentina
| |
Collapse
|
43
|
Nicolau CA, Prorock A, Bao Y, Neves-Ferreira AGDC, Valente RH, Fox JW. Revisiting the Therapeutic Potential of Bothrops jararaca Venom: Screening for Novel Activities Using Connectivity Mapping. Toxins (Basel) 2018; 10:toxins10020069. [PMID: 29415440 PMCID: PMC5848170 DOI: 10.3390/toxins10020069] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2017] [Revised: 01/30/2018] [Accepted: 02/02/2018] [Indexed: 12/12/2022] Open
Abstract
Snake venoms are sources of molecules with proven and potential therapeutic applications. However, most activities assayed in venoms (or their components) are of hemorrhagic, hypotensive, edematogenic, neurotoxic or myotoxic natures. Thus, other relevant activities might remain unknown. Using functional genomics coupled to the connectivity map (C-map) approach, we undertook a wide range indirect search for biological activities within the venom of the South American pit viper Bothrops jararaca. For that effect, venom was incubated with human breast adenocarcinoma cell line (MCF7) followed by RNA extraction and gene expression analysis. A list of 90 differentially expressed genes was submitted to biosimilar drug discovery based on pattern recognition. Among the 100 highest-ranked positively correlated drugs, only the antihypertensive, antimicrobial (both antibiotic and antiparasitic), and antitumor classes had been previously reported for B. jararaca venom. The majority of drug classes identified were related to (1) antimicrobial activity; (2) treatment of neuropsychiatric illnesses (Parkinson’s disease, schizophrenia, depression, and epilepsy); (3) treatment of cardiovascular diseases, and (4) anti-inflammatory action. The C-map results also indicated that B. jararaca venom may have components that target G-protein-coupled receptors (muscarinic, serotonergic, histaminergic, dopaminergic, GABA, and adrenergic) and ion channels. Although validation experiments are still necessary, the C-map correlation to drugs with activities previously linked to snake venoms supports the efficacy of this strategy as a broad-spectrum approach for biological activity screening, and rekindles the snake venom-based search for new therapeutic agents.
Collapse
Affiliation(s)
- Carolina Alves Nicolau
- Laboratory of Toxinology, Oswaldo Cruz Institute, FIOCRUZ, Rio de Janeiro, RJ 21040-900, Brazil.
- National Institute of Science and Technology on Toxins (INCTTOX), CNPq, Brasília, DF 71605-170, Brazil.
- Department of Microbiology, Immunology and Cancer Biology, University of Virginia, Charlottesville, VA 22908, USA.
| | - Alyson Prorock
- Department of Microbiology, Immunology and Cancer Biology, University of Virginia, Charlottesville, VA 22908, USA.
| | - Yongde Bao
- Department of Microbiology, Immunology and Cancer Biology, University of Virginia, Charlottesville, VA 22908, USA.
| | - Ana Gisele da Costa Neves-Ferreira
- Laboratory of Toxinology, Oswaldo Cruz Institute, FIOCRUZ, Rio de Janeiro, RJ 21040-900, Brazil.
- National Institute of Science and Technology on Toxins (INCTTOX), CNPq, Brasília, DF 71605-170, Brazil.
| | - Richard Hemmi Valente
- Laboratory of Toxinology, Oswaldo Cruz Institute, FIOCRUZ, Rio de Janeiro, RJ 21040-900, Brazil.
- National Institute of Science and Technology on Toxins (INCTTOX), CNPq, Brasília, DF 71605-170, Brazil.
| | - Jay William Fox
- Department of Microbiology, Immunology and Cancer Biology, University of Virginia, Charlottesville, VA 22908, USA.
| |
Collapse
|
44
|
Beyond the Matrix: The Many Non-ECM Ligands for Integrins. Int J Mol Sci 2018; 19:ijms19020449. [PMID: 29393909 PMCID: PMC5855671 DOI: 10.3390/ijms19020449] [Citation(s) in RCA: 47] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2017] [Revised: 01/21/2018] [Accepted: 01/30/2018] [Indexed: 12/17/2022] Open
Abstract
The traditional view of integrins portrays these highly conserved cell surface receptors as mediators of cellular attachment to the extracellular matrix (ECM), and to a lesser degree, as coordinators of leukocyte adhesion to the endothelium. These canonical activities are indispensable; however, there is also a wide variety of integrin functions mediated by non-ECM ligands that transcend the traditional roles of integrins. Some of these unorthodox roles involve cell-cell interactions and are engaged to support immune functions such as leukocyte transmigration, recognition of opsonization factors, and stimulation of neutrophil extracellular traps. Other cell-cell interactions mediated by integrins include hematopoietic stem cell and tumor cell homing to target tissues. Integrins also serve as cell-surface receptors for various growth factors, hormones, and small molecules. Interestingly, integrins have also been exploited by a wide variety of organisms including viruses and bacteria to support infectious activities such as cellular adhesion and/or cellular internalization. Additionally, the disruption of integrin function through the use of soluble integrin ligands is a common strategy adopted by several parasites in order to inhibit blood clotting during hematophagy, or by venomous snakes to kill prey. In this review, we strive to go beyond the matrix and summarize non-ECM ligands that interact with integrins in order to highlight these non-traditional functions of integrins.
Collapse
|
45
|
Targeting Metastasis with Snake Toxins: Molecular Mechanisms. Toxins (Basel) 2017; 9:toxins9120390. [PMID: 29189742 PMCID: PMC5744110 DOI: 10.3390/toxins9120390] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2017] [Revised: 11/28/2017] [Accepted: 11/28/2017] [Indexed: 01/05/2023] Open
Abstract
Metastasis involves the migration of cancer cells from a primary tumor to invade and establish secondary tumors in distant organs, and it is the main cause for cancer-related deaths. Currently, the conventional cytostatic drugs target the proliferation of malignant cells, being ineffective in metastatic disease. This highlights the need to find new anti-metastatic drugs. Toxins isolated from snake venoms are a natural source of potentially useful molecular scaffolds to obtain agents with anti-migratory and anti-invasive effects in cancer cells. While there is greater evidence concerning the mechanisms of cell death induction of several snake toxin classes on cancer cells; only a reduced number of toxin classes have been reported on (i.e., disintegrins/disintegrin-like proteins, C-type lectin-like proteins, C-type lectins, serinproteases, cardiotoxins, snake venom cystatins) as inhibitors of adhesion, migration, and invasion of cancer cells. Here, we discuss the anti-metastatic mechanisms of snake toxins, distinguishing three targets, which involve (1) inhibition of extracellular matrix components-dependent adhesion and migration, (2) inhibition of epithelial-mesenchymal transition, and (3) inhibition of migration by alterations in the actin/cytoskeleton network.
Collapse
|
46
|
Dramatic and concerted conformational changes enable rhodocetin to block α2β1 integrin selectively. PLoS Biol 2017; 15:e2001492. [PMID: 28704364 PMCID: PMC5509089 DOI: 10.1371/journal.pbio.2001492] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2016] [Accepted: 06/15/2017] [Indexed: 01/08/2023] Open
Abstract
The collagen binding integrin α2β1 plays a crucial role in hemostasis, fibrosis, and cancer progression amongst others. It is specifically inhibited by rhodocetin (RC), a C-type lectin-related protein (CLRP) found in Malayan pit viper (Calloselasma rhodostoma) venom. The structure of RC alone reveals a heterotetramer arranged as an αβ and γδ subunit in a cruciform shape. RC specifically binds to the collagen binding A-domain of the integrin α2 subunit, thereby blocking collagen-induced platelet aggregation. However, until now, the molecular basis for this interaction has remained unclear. Here, we present the molecular structure of the RCγδ-α2A complex solved to 3.0 Å resolution. Our findings show that RC undergoes a dramatic structural reorganization upon binding to α2β1 integrin. Besides the release of the nonbinding RCαβ tandem, the RCγ subunit interacts with loop 2 of the α2A domain as result of a dramatic conformational change. The RCδ subunit contacts the integrin α2A domain in the “closed” conformation through its helix C. Combined with epitope-mapped antibodies, conformationally locked α2A domain mutants, point mutations within the α2A loop 2, and chemical modifications of the purified toxin protein, this molecular structure of RCγδ-α2A complex explains the inhibitory mechanism and specificity of RC for α2β1 integrin. In animals, collagen-mediated platelet aggregation is an essential component of the blood’s clotting response following vascular injury. A small group of snake venom toxins belonging to the C-type lectin protein family exert their harmful effects by directly targeting this pathway. Rhodocetin (RC) is a heterotetrameric protein found in the venom of the Malayan pit viper (C. rhodostoma). RC specifically binds α2β1 integrin, the key protein required for collagen-mediated platelet aggregation. In this study, we describe the interaction between RC and α2β1 integrin at atomic resolution. This study reveals that RC undergoes a massive structural reorganization upon α2β1 integrin binding, such that RC’s αβ subunit is released from its γδ subunit and a γδ-α2β1 integrin complex is formed. The inhibitory nature of this complex can be readily explained as RC binding along the top surface of the α2β1 integrin and directly above the collagen binding site. As a result, access of collagen to its binding site is blocked, thereby preventing collagen-mediated platelet aggregation.
Collapse
|
47
|
Montenegro CF, Casali BC, Lino RLB, Pachane BC, Santos PK, Horwitz AR, Selistre-de-Araujo HS, Lamers ML. Inhibition of αvβ3 integrin induces loss of cell directionality of oral squamous carcinoma cells (OSCC). PLoS One 2017; 12:e0176226. [PMID: 28437464 PMCID: PMC5402964 DOI: 10.1371/journal.pone.0176226] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2016] [Accepted: 04/08/2017] [Indexed: 11/23/2022] Open
Abstract
The connective tissue formed by extracellular matrix (ECM) rich in fibronectin and collagen consists a barrier that cancer cells have to overpass to reach blood vessels and then a metastatic site. Cell adhesion to fibronectin is mediated by αvβ3 and α5β1 integrins through an RGD motif present in this ECM protein, thus making these receptors key targets for cell migration studies. Here we investigated the effect of an RGD disintegrin, DisBa-01, on the migration of human fibroblasts (BJ) and oral squamous cancer cells (OSCC, SCC25) on a fibronectin-rich environment. Time-lapse images were acquired on fibronectin-coated glass-bottomed dishes. Migration speed and directionality analysis indicated that OSCC cells, but not fibroblasts, showed significant decrease in both parameters in the presence of DisBa-01 (1μM and 2μM). Integrin expression levels of the α5, αv and β3 subunits were similar in both cell lines, while β1 subunit is present in lower levels on the cancer cells. Next, we examined whether the effects of DisBa-01 were related to changes in adhesion properties by using paxillin immunostaining and total internal reflection fluorescence TIRF microscopy. OSCCs in the presence of DisBa-01 showed increased adhesion sizes and number of maturing adhesion. The same parameters were analyzed usingβ3-GFP overexpressing cells and showed that β3 overexpression restored cell migration velocity and the number of maturing adhesion that were altered by DisBa-01. Surface plasmon resonance analysis showed that DisBa-01 has 100x higher affinity for αvβ3 integrin than forα5β1 integrin. In conclusion, our results suggest that the αvβ3 integrin is the main receptor involved in cell directionality and its blockage may be an interesting alternative against metastasis.
Collapse
Affiliation(s)
- Cyntia F. Montenegro
- Department of Physiological Sciences, Center of Biological and Health Science, Federal University of São Carlos, Rod. Washington Luis, São Carlos, São Paulo, Brazil, CEP
| | - Bruna C. Casali
- Department of Physiological Sciences, Center of Biological and Health Science, Federal University of São Carlos, Rod. Washington Luis, São Carlos, São Paulo, Brazil, CEP
| | - Rafael L. B. Lino
- Department of Physiological Sciences, Center of Biological and Health Science, Federal University of São Carlos, Rod. Washington Luis, São Carlos, São Paulo, Brazil, CEP
| | - Bianca C. Pachane
- Department of Physiological Sciences, Center of Biological and Health Science, Federal University of São Carlos, Rod. Washington Luis, São Carlos, São Paulo, Brazil, CEP
| | - Patty K. Santos
- Department of Physiological Sciences, Center of Biological and Health Science, Federal University of São Carlos, Rod. Washington Luis, São Carlos, São Paulo, Brazil, CEP
| | - Alan R. Horwitz
- Department of Cell Biology, University of Virginia, School of Medicine, Charlottesville, Virginia, United States of America
| | - Heloisa S. Selistre-de-Araujo
- Department of Physiological Sciences, Center of Biological and Health Science, Federal University of São Carlos, Rod. Washington Luis, São Carlos, São Paulo, Brazil, CEP
- * E-mail:
| | - Marcelo L. Lamers
- Department of Morphological Sciences, Institute of Basic Health Sciences, Federal University of Rio Grande do Sul, Rua Sarmento Leite, Porto Alegre, RS, Brazil, CEP
| |
Collapse
|
48
|
de Queiroz MR, de Sousa BB, da Cunha Pereira DF, Mamede CCN, Matias MS, de Morais NCG, de Oliveira Costa J, de Oliveira F. The role of platelets in hemostasis and the effects of snake venom toxins on platelet function. Toxicon 2017; 133:33-47. [PMID: 28435120 DOI: 10.1016/j.toxicon.2017.04.013] [Citation(s) in RCA: 43] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2016] [Revised: 04/12/2017] [Accepted: 04/19/2017] [Indexed: 12/09/2022]
Abstract
The human body has a set of physiological processes, known as hemostasis, which keeps the blood fluid and free of clots in normal vessels; in the case of vascular injury, this process induces the local formation of a hemostatic plug, preventing hemorrhage. The hemostatic system in humans presents complex physiological interactions that involve platelets, plasma proteins, endothelial and subendothelial structures. Disequilibrium in the regulatory mechanisms that control the growth and the size of the thrombus is one of the factors that favors the development of diseases related to vascular disorders such as myocardial infarction and stroke, which are among the leading causes of death in the western world. Interfering with platelet function is a strategy for the treatment of thrombotic diseases. Antiplatelet drugs are used mainly in cases related to arterial thrombosis and interfere in the formation of the platelet plug by different mechanisms. Aspirin (acetylsalicylic acid) is the oldest and most widely used antithrombotic drug. Although highly effective in most cases, aspirin has limitations compared to other drugs used in the treatment of homeostatic disorders. For this reason, research related to molecules that interfere with platelet aggregation are of great relevance. In this regard, snake venoms are known to contain a number of molecules that interfere with hemostasis, including platelet function. The mechanisms by which snake venom components inhibit or activate platelet aggregation are varied and can be used as tools for the diagnosis and the treatment of several hemostatic disorders. The aim of this review is to present the role of platelets in hemostasis and the mechanisms by which snake venom toxins interfere with platelet function.
Collapse
Affiliation(s)
- Mayara Ribeiro de Queiroz
- Instituto de Genética e Bioquímica, Universidade Federal de Uberlândia, Uberlândia, MG, Brazil; Instituto Nacional de Ciência e Tecnologia em Nano-Biofarmacêutica (N-Biofar), Belo Horizonte, MG, Brazil
| | - Bruna Barbosa de Sousa
- Instituto de Genética e Bioquímica, Universidade Federal de Uberlândia, Uberlândia, MG, Brazil; Instituto Nacional de Ciência e Tecnologia em Nano-Biofarmacêutica (N-Biofar), Belo Horizonte, MG, Brazil
| | | | - Carla Cristine Neves Mamede
- Instituto de Ciências Agrárias, Universidade Federal de Uberlândia, Uberlândia, MG, Brazil; Instituto Nacional de Ciência e Tecnologia em Nano-Biofarmacêutica (N-Biofar), Belo Horizonte, MG, Brazil
| | - Mariana Santos Matias
- Instituto de Genética e Bioquímica, Universidade Federal de Uberlândia, Uberlândia, MG, Brazil
| | | | - Júnia de Oliveira Costa
- Instituto Federal de Educação, Ciência e Tecnologia do Triângulo Mineiro, Ituiutaba, MG, Brazil
| | - Fábio de Oliveira
- Instituto de Ciências Biomédicas, Universidade Federal de Uberlândia, Uberlândia, MG, Brazil; Instituto Nacional de Ciência e Tecnologia em Nano-Biofarmacêutica (N-Biofar), Belo Horizonte, MG, Brazil.
| |
Collapse
|
49
|
Guimarães DDO, Lopes DS, Azevedo FVPV, Gimenes SNC, Silva MA, Achê DC, Gomes MSR, Vecchi L, Goulart LR, Yoneyama KAG, Rodrigues RS, Rodrigues VDM. In vitro antitumor and antiangiogenic effects of Bothropoidin, a metalloproteinase from Bothrops pauloensis snake venom. Int J Biol Macromol 2017; 97:770-777. [DOI: 10.1016/j.ijbiomac.2017.01.064] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2016] [Revised: 01/11/2017] [Accepted: 01/12/2017] [Indexed: 10/20/2022]
|
50
|
Rodríguez-Acosta A, Lucena S, Alfonso A, Goins A, Walls R, Guerrero B, Suntravat M, Sánchez EE. Biological and biochemical characterization of venom from the broad-banded copperhead ( Agkistrodon contortrix laticinctus): isolation of two new dimeric disintegrins. ANIM BIOL 2017; 66:173-187. [PMID: 28090197 DOI: 10.1163/15707563-00002495] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Disintegrins represent a family of effective cell-cell and cell-matrix inhibitors by binding to integrin receptors. Integrins are heterodimeric, transmembrane receptors that are the bridges for these cell interactions. Disintegrins have been shown to have many therapeutic implications for the treatment of strokes, heart attacks, and cancer. Two novel heterodimeric disintegrins were isolated from the venom of the broad-banded copperhead (Agkistrodon contortrix laticinctus). Crude venom separated by cation-exchange chromatography resulted in several fractions possessing hemorrhagic, fibrinolytic, gelatinase, and platelet activities. Venom fractions 2-3 and 17-19 showed fibrinolytic activity. Fractions 2-6, 8-11, and 16-21 had hemorrhagic activity. Gelatinase activity was found in fractions 3, 11, and 19. The isolation of laticinstatins 1 and 2 was accomplished by fractionating crude venom using reverse phase chromatography. Data from both SDS-PAGE and N-terminal sequencing determined that laticinstatins 1 and 2 were heterodimeric disintegrins, and both were assayed for their ability to inhibit platelet aggregation in human whole blood. Future functional evaluation of snake venom disintegrins shows considerable promise for elucidating the biochemical mechanisms of integrin-ligand interactions that will allow the development of adequate medications for hemostatic pathologies such as thrombosis, stroke, and cerebral and cardiac accidents. In this study, we are presenting the first report of the purification, and partial characterization of two new dimeric disintegrins isolated from the venom of broad-banded copperhead snakes.
Collapse
Affiliation(s)
- Alexis Rodríguez-Acosta
- Laboratorio de Inmunoquímica y Ultraestructura, Instituto Anatómico de la Universidad Central de Venezuela, Ciudad Universitaria, Caracas 1041, Venezuela
| | - Sara Lucena
- National Natural Toxins Research Center (NNTRC), Texas A&M University-Kingsville, MSC 158, 975 West Avenue B, Kingsville, TX 78363, USA
| | - Andrea Alfonso
- Biology Department, Del Mar College, 101 Baldwin Blvd., Corpus Christi, TX 78404, USA
| | - Amber Goins
- Biology Department, Del Mar College, 101 Baldwin Blvd., Corpus Christi, TX 78404, USA
| | - Robert Walls
- National Natural Toxins Research Center (NNTRC), Texas A&M University-Kingsville, MSC 158, 975 West Avenue B, Kingsville, TX 78363, USA
| | - Belsy Guerrero
- Laboratorio de Fisiopatología, Centro de Medicina Experimental, Instituto Venezolano de Investigaciones Científicas, Caracas 1020A, Venezuela
| | - Montamas Suntravat
- National Natural Toxins Research Center (NNTRC), Texas A&M University-Kingsville, MSC 158, 975 West Avenue B, Kingsville, TX 78363, USA
| | - Elda E Sánchez
- National Natural Toxins Research Center (NNTRC), Texas A&M University-Kingsville, MSC 158, 975 West Avenue B, Kingsville, TX 78363, USA
| |
Collapse
|