1
|
Michálek O, King GF, Pekár S. Prey specificity of predatory venoms. Biol Rev Camb Philos Soc 2024; 99:2253-2273. [PMID: 38991997 DOI: 10.1111/brv.13120] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2024] [Revised: 07/01/2024] [Accepted: 07/03/2024] [Indexed: 07/13/2024]
Abstract
Venom represents a key adaptation of many venomous predators, allowing them to immobilise prey quickly through chemical rather than physical warfare. Evolutionary arms races between prey and a predator are believed to be the main factor influencing the potency and composition of predatory venoms. Predators with narrowly restricted diets are expected to evolve specifically potent venom towards their focal prey, with lower efficacy on alternative prey. Here, we evaluate hypotheses on the evolution of prey-specific venom, focusing on the effect of restricted diet, prey defences, and prey resistance. Prey specificity as a potential evolutionary dead end is also discussed. We then provide an overview of the current knowledge on venom prey specificity, with emphasis on snakes, cone snails, and spiders. As the current evidence for venom prey specificity is still quite limited, we also overview the best approaches and methods for its investigation and provide a brief summary of potential model groups. Finally, possible applications of prey-specific toxins are discussed.
Collapse
Affiliation(s)
- Ondřej Michálek
- Department of Botany and Zoology, Faculty of Science, Masaryk University, Kotlářská 2, Brno, 611 37, Czech Republic
- Institute for Molecular Bioscience, The University of Queensland, St. Lucia, Queensland, 4072, Australia
| | - Glenn F King
- Institute for Molecular Bioscience, The University of Queensland, St. Lucia, Queensland, 4072, Australia
- Australian Research Council Centre of Excellence for Innovations in Peptide and Protein Science, The University of Queensland, St. Lucia, Queensland, 4072, Australia
| | - Stano Pekár
- Department of Botany and Zoology, Faculty of Science, Masaryk University, Kotlářská 2, Brno, 611 37, Czech Republic
| |
Collapse
|
2
|
Kakati H, Patra A, Mukherjee AK. Composition, pharmacology, and pathophysiology of the venom of monocled cobra (Naja kaouthia)- a medically crucial venomous snake of southeast Asia: An updated review. Toxicon 2024; 249:108056. [PMID: 39111718 DOI: 10.1016/j.toxicon.2024.108056] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2024] [Revised: 07/31/2024] [Accepted: 07/31/2024] [Indexed: 08/15/2024]
Abstract
The Monocled Cobra (Naja kaouthia), a category one medically significant snake from the Elapidae family, inflicts severe envenomation in South and Southeast Asian countries. N. kaouthia is distributed throughout the eastern and northeastern parts of India, Nepal, Bangladesh, Myanmar, Thailand, Vietnam, Malaysia, and southwestern China. Envenomation by N. kaouthia is a medical emergency, and the primary clinical symptoms are neurotoxicity and localized tissue destruction. Unfortunately, data on the actual magnitude of N. kaouthia envenomation is scarce due to poor record keeping, lack of diagnostic kits, and region-wise well-coordinated epidemiological surveys. The present review highlights the diversity in the composition of N. Kaouthia venom (NKV) across various geographical regions, as revealed through biochemical and proteomic analyses. The qualitative and quantitative differences in the toxin isoforms result in differences in lethality and pathophysiological manifestation that may limit the effectiveness of antivenom therapy. Studies on commercial polyvalent antivenom (PAV) effectiveness against distinct NKV samples have revealed varying toxicity and enzymatic activity neutralization. Additionally, the identification of snake venom's poorly immunogenic toxins by mass spectrometry, quantification of venom-specific antibodies, and implications for antivenom therapy against snakebites are highlighted. Future directions involve clinical studies on NK envenomation where the snake is frequently encountered and the correlation of this data with NKV composition in that region. For more efficient and superior hospital management of NK envenomation, research should enhance the current immunization procedure to boost the development of antibodies against less immunogenic venom components of this snake.
Collapse
Affiliation(s)
- Hirakjyoti Kakati
- Department of Molecular Biology and Biotechnology, School of Sciences, Tezpur University, Tezpur- 784028, Assam, India
| | - Aparup Patra
- Institute of Advanced Studies in Science and Technology, Vigyan Path Garchuk, Paschim Boragaon, Guwahati-781035, Assam, India; Amrita Research Centre, Amrita Vishwa Vidyapeetham, Faridabad, Haryana, 121002, India
| | - Ashis K Mukherjee
- Department of Molecular Biology and Biotechnology, School of Sciences, Tezpur University, Tezpur- 784028, Assam, India; Institute of Advanced Studies in Science and Technology, Vigyan Path Garchuk, Paschim Boragaon, Guwahati-781035, Assam, India.
| |
Collapse
|
3
|
Dyba B, Rudolphi-Szydło E, Kreczmer B, Barbasz A, Petrilla V, Petrillova M, Legáth J, Bocian A, Hus KK. Exploring the effects of three-finger toxins from Naja ashei venom on neuronal and immunological cancer cell membranes. Sci Rep 2024; 14:18570. [PMID: 39127758 DOI: 10.1038/s41598-024-69459-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2024] [Accepted: 08/05/2024] [Indexed: 08/12/2024] Open
Abstract
Three-finger proteins are the most abundant toxins in the venom of Naja ashei, a snake species from the Elapidae family. This research aimed to describe the effects of varying charges of these proteins, isolated from Naja ashei venom using SEC and IEX chromatography. The study examined how differently charged three-finger toxin fractions interact with and affect neuroblastoma (SK-N-SH) and promyeloblast (HL-60) cells, as well as model Langmuir membranes and liposomes designed to mimic cellular lipid composition. Findings revealed that protein surface charges significantly impact cell survival (MTT assay), membrane damage (lactate dehydrogenase release, malondialdehyde formation), and the structural and electrochemical properties of model membranes (Langmuir membranes and zeta potential for liposomes and cancer cell lines). Results indicated that SK-N-SH cells, characterized by a higher negative charge on their cell membranes, interacted more effectively with positively charged toxins than HL-60 cells. However, the mechanism of these electrostatic interactions is complex. The research demonstrated that electrostatic and mechanical membrane modifications induced by venom proteins can significantly affect cell metabolism. Additionally, the total charge of the membrane, influenced by polar lipid components and phospholipid saturation, plays a decisive role in toxin interaction.
Collapse
Affiliation(s)
- Barbara Dyba
- Department of Biochemistry and Biophysics, University of the National Education Commission, Cracow, Poland.
| | - Elżbieta Rudolphi-Szydło
- Department of Biochemistry and Biophysics, University of the National Education Commission, Cracow, Poland
| | - Barbara Kreczmer
- Department of Biochemistry and Biophysics, University of the National Education Commission, Cracow, Poland
| | - Anna Barbasz
- Department of Biochemistry and Biophysics, University of the National Education Commission, Cracow, Poland
| | - Vladimír Petrilla
- Department of Biology and Physiology, University of Veterinary Medicine and Pharmacy in Košice, Kosice, Slovakia
- Zoological Department, Zoological Garden Košice, Kosice, Slovakia
| | - Monika Petrillova
- Department of General Competencies, University of Veterinary Medicine and Pharmacy in Košice, Kosice, Slovakia
| | - Jaroslav Legáth
- Department of Biotechnology and Bioinformatics, University of Technology, Rzeszow, Poland
- Department of Pharmacology and Toxicology, University of Veterinary Medicine and Pharmacy, Kosice, Slovakia
| | - Aleksandra Bocian
- Department of Biotechnology and Bioinformatics, University of Technology, Rzeszow, Poland
| | - Konrad Kamil Hus
- Department of Biotechnology and Bioinformatics, University of Technology, Rzeszow, Poland
| |
Collapse
|
4
|
Dubovskii PV, Utkin YN. Specific Amino Acid Residues in the Three Loops of Snake Cytotoxins Determine Their Membrane Activity and Provide a Rationale for a New Classification of These Toxins. Toxins (Basel) 2024; 16:262. [PMID: 38922156 PMCID: PMC11209149 DOI: 10.3390/toxins16060262] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2024] [Revised: 05/23/2024] [Accepted: 05/28/2024] [Indexed: 06/27/2024] Open
Abstract
Cytotoxins (CTs) are three-finger membrane-active toxins present mainly in cobra venom. Our analysis of the available CT amino acid sequences, literature data on their membrane activity, and conformational equilibria in aqueous solution and detergent micelles allowed us to identify specific amino acid residues which interfere with CT incorporation into membranes. They include Pro9, Ser28, and Asn/Asp45 within the N-terminal, central, and C-terminal loops, respectively. There is a hierarchy in the effect of these residues on membrane activity: Pro9 > Ser28 > Asn/Asp45. Taking into account all the possible combinations of special residues, we propose to divide CTs into eight groups. Group 1 includes toxins containing all of the above residues. Their representatives demonstrated the lowest membrane activity. Group 8 combines CTs that lack these residues. For the toxins from this group, the greatest membrane activity was observed. We predict that when solely membrane activity determines the cytotoxic effects, the activity of CTs from a group with a higher number should exceed that of CTs from a group with a lower number. This classification is supported by the available data on the cytotoxicity and membranotropic properties of CTs. We hypothesize that the special amino acid residues within the loops of the CT molecule may indicate their involvement in the interaction with non-lipid targets.
Collapse
Affiliation(s)
- Peter V. Dubovskii
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, 16/10 Miklukho-Maklaya Str., 117997 Moscow, Russia;
| | | |
Collapse
|
5
|
Rodríguez-Vargas A, Franco-Vásquez AM, Bolívar-Barbosa JA, Vega N, Reyes-Montaño E, Arreguín-Espinosa R, Carbajal-Saucedo A, Angarita-Sierra T, Ruiz-Gómez F. Unveiling the Venom Composition of the Colombian Coral Snakes Micrurus helleri, M. medemi, and M. sangilensis. Toxins (Basel) 2023; 15:622. [PMID: 37999485 PMCID: PMC10674450 DOI: 10.3390/toxins15110622] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2023] [Revised: 08/10/2023] [Accepted: 08/16/2023] [Indexed: 11/25/2023] Open
Abstract
Little is known of the biochemical composition and functional features of the venoms of poorly known Colombian coral snakes. Here, we provide a preliminary characterization of the venom of two Colombian endemic coral snake species, Micrurus medemi and M. sangilensis, as well as Colombian populations of M. helleri. Electrophoresis and RP-HPLC techniques were used to identify venom components, and assays were conducted to detect enzyme activities, including phospholipase A2, hyaluronidase, and protease activities. The median lethal dose was determined using murine models. Cytotoxic activities in primary cultures from hippocampal neurons and cancer cell lines were evaluated. The venom profiles revealed similarities in electrophoretic separation among proteins under 20 kDa. The differences in chromatographic profiles were significant, mainly between the fractions containing medium-/large-sized and hydrophobic proteins; this was corroborated by a proteomic analysis which showed the expected composition of neurotoxins from the PLA2 (~38%) and 3FTx (~17%) families; however, a considerable quantity of metalloproteinases (~12%) was detected. PLA2 activity and protease activity were higher in M. helleri venom according to qualitative and quantitative assays. M. medemi venom had the highest lethality. All venoms decreased cell viability when tested on tumoral cell cultures, and M. helleri venom had the highest activity in neuronal primary culture. These preliminary studies shed light on the venoms of understudied coral snakes and broaden the range of sources that could be used for subsequent investigations of components with applications to specific diseases. Our findings also have implications for the clinical manifestations of snake envenoming and improvements in its medical management.
Collapse
Affiliation(s)
- Ariadna Rodríguez-Vargas
- Grupo de Investigación en Proteínas, Departamento de Química, Faculty of Sciences, Universidad Nacional de Colombia, Bogotá 11001, Colombia (N.V.); (E.R.-M.)
- Grupo de Investigación en Animales Ponzoñosos y sus Venenos, Dirección de Producción, Instituto Nacional de Salud, Bogotá 111321, Colombia; (T.A.-S.); (F.R.-G.)
| | - Adrián Marcelo Franco-Vásquez
- Departamento de Química de Biomacromoléculas, Instituto de Química, Universidad Nacional Autónoma de México, Coyoacán, Ciudad de México 04510, Mexico (R.A.-E.)
| | - Janeth Alejandra Bolívar-Barbosa
- Grupo de Investigación en Proteínas, Departamento de Química, Faculty of Sciences, Universidad Nacional de Colombia, Bogotá 11001, Colombia (N.V.); (E.R.-M.)
| | - Nohora Vega
- Grupo de Investigación en Proteínas, Departamento de Química, Faculty of Sciences, Universidad Nacional de Colombia, Bogotá 11001, Colombia (N.V.); (E.R.-M.)
| | - Edgar Reyes-Montaño
- Grupo de Investigación en Proteínas, Departamento de Química, Faculty of Sciences, Universidad Nacional de Colombia, Bogotá 11001, Colombia (N.V.); (E.R.-M.)
| | - Roberto Arreguín-Espinosa
- Departamento de Química de Biomacromoléculas, Instituto de Química, Universidad Nacional Autónoma de México, Coyoacán, Ciudad de México 04510, Mexico (R.A.-E.)
| | - Alejandro Carbajal-Saucedo
- Laboratorio de Herpetología, Facultad de Ciencias Biológicas, Universidad Autónoma de Nuevo León, San Nicolás de los Garza 66450, Mexico;
| | - Teddy Angarita-Sierra
- Grupo de Investigación en Animales Ponzoñosos y sus Venenos, Dirección de Producción, Instituto Nacional de Salud, Bogotá 111321, Colombia; (T.A.-S.); (F.R.-G.)
- Grupo de investigación Biodiversidad para la Sociedad, Escuela de pregrados, Dirección Académica, Universidad Nacional de Colombia sede de La Paz, Cesar 22010, Colombia
| | - Francisco Ruiz-Gómez
- Grupo de Investigación en Animales Ponzoñosos y sus Venenos, Dirección de Producción, Instituto Nacional de Salud, Bogotá 111321, Colombia; (T.A.-S.); (F.R.-G.)
| |
Collapse
|
6
|
Oliveira DD, Guerra-Duarte C, Stransky S, Scussel R, Pereira de Castro KL, Costal-Oliveira F, Aragão M, Oliveira-Souza GD, Saavedra-Langer R, Trevisan G, Bonilla-Ferreyra C, Chávez-Olórtegui C, Machado-de-Ávila RA. Toxic and antigenic characterization of Peruvian Micrurus surinamensis coral snake venom. Toxicon 2023; 225:107056. [PMID: 36804442 DOI: 10.1016/j.toxicon.2023.107056] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2022] [Revised: 02/01/2023] [Accepted: 02/10/2023] [Indexed: 02/18/2023]
Abstract
Micrurus surinamensis is a semi-aquatic coral snake found in primary forest region and can cause relevant human accidents. In this work we investigated the toxic and antigenic activities of the Peruvian Micrurus surinamensis venom (MsV). We found that MsV show hyaluronidase activity but lack LAAO and PLA2 enzymatic activities. Interestingly, MsV induce edematogenic responses but cannot cause nociceptive effects. Furthermore, MsV can reduce in vitro cell viability in MGSO-3 cell line derived from human breast cancer tissue. To evaluate its antigenic potential, rabbits were immunized with MsV, which proved to be immunogenic. ELISA, immunobloting and in vivo neutralization assays demonstrated that the specific rabbit anti-MsV antivenom is more efficient than the therapeutic Brazilian antivenom in recognizing and neutralizing the lethal activity of MsV. MsV differs in protein profile and biological activities from M. frontalis venom (MfV), used as control, which impairs its recognition and neutralization by Brazilian therapeutic anti-elapidic antivenom. We performed a SPOT immunoassay for the identification of B-cell linear epitopes in the main toxins described for MsV targeted by the elicited neutralizing antibodies previously produced. A membrane containing 15-mer peptides representing the sequences of five 3TFxs and five PLA2s was produced and probed with anti- MsV antibodies. Results revealed important regions in 3FTx toxins for venom neutralization. Identifying the main MsV components and its biological activities can be helpful in guiding the production of antivenoms and in the optimization of treatment for coral snake envenomation in Brazil.
Collapse
Affiliation(s)
- Daysiane de Oliveira
- Programa de Pós-Graduação em Ciências da Saúde, Universidade do Extremo Sul Catarinense, Criciúma, Brazil
| | - Clara Guerra-Duarte
- Centro de Pesquisa e Desenvolvimento, Fundação Ezequiel Dias, Belo Horizonte, Brazil
| | - Stephanie Stransky
- Department of Biochemistry, Albert Einstein College of Medicine, New York, United States
| | - Rahisa Scussel
- Programa de Pós-Graduação em Ciências da Saúde, Universidade do Extremo Sul Catarinense, Criciúma, Brazil
| | | | - Fernanda Costal-Oliveira
- Departamento de Bioquímica e Imunologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| | - Matheus Aragão
- Departamento de Bioquímica e Imunologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| | - Gladstony de Oliveira-Souza
- Departamento de Bioquímica e Imunologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| | - Rafael Saavedra-Langer
- Departamento de Bioquímica e Imunologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| | - Gabriela Trevisan
- Programa de Pós-Graduação em Farmacologia, Universidade Federal de Santa Maria, Santa Maria, Brazil
| | | | - Carlos Chávez-Olórtegui
- Departamento de Bioquímica e Imunologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil.
| | | |
Collapse
|
7
|
Kalita B, Utkin YN, Mukherjee AK. Current Insights in the Mechanisms of Cobra Venom Cytotoxins and Their Complexes in Inducing Toxicity: Implications in Antivenom Therapy. Toxins (Basel) 2022; 14:toxins14120839. [PMID: 36548736 PMCID: PMC9780984 DOI: 10.3390/toxins14120839] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2022] [Revised: 11/21/2022] [Accepted: 11/22/2022] [Indexed: 12/02/2022] Open
Abstract
Cytotoxins (CTXs), an essential class of the non-enzymatic three-finger toxin family, are ubiquitously present in cobra venoms. These low-molecular-mass toxins, contributing to about 40 to 60% of the cobra venom proteome, play a significant role in cobra venom-induced toxicity, more prominently in dermonecrosis. Structurally, CTXs contain the conserved three-finger hydrophobic loops; however, they also exhibit a certain degree of structural diversity that dictates their biological activities. In their mechanism, CTXs mediate toxicity by affecting cell membrane structures and membrane-bound proteins and activating apoptotic and necrotic cell death pathways. Notably, some CTXs are also responsible for depolarizing neurons and heart muscle membranes, thereby contributing to the cardiac failure frequently observed in cobra-envenomed victims. Consequently, they are also known as cardiotoxins (CdTx). Studies have shown that cobra venom CTXs form cognate complexes with other components that potentiate the toxic effects of the venom's individual component. This review focuses on the pharmacological mechanism of cobra venom CTXs and their complexes, highlighting their significance in cobra venom-induced pathophysiology and toxicity. Furthermore, the potency of commercial antivenoms in reversing the adverse effects of cobra venom CTXs and their complexes in envenomed victims has also been discussed.
Collapse
Affiliation(s)
- Bhargab Kalita
- Amrita School of Nanosciences and Molecular Medicine, Amrita Vishwa Vidyapeetham, Kochi 682041, India
| | - Yuri N. Utkin
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Moscow 117997, Russia
| | - Ashis K. Mukherjee
- Institute of Advanced Study in Science and Technology, Guwahati 781035, India
- Department of Molecular Biology and Biotechnology, Tezpur University, Tezpur 784028, India
- Correspondence:
| |
Collapse
|
8
|
Urra FA, Vivas-Ruiz DE, Sanchez EF, Araya-Maturana R. An Emergent Role for Mitochondrial Bioenergetics in the Action of Snake Venom Toxins on Cancer Cells. Front Oncol 2022; 12:938749. [PMID: 35924151 PMCID: PMC9343075 DOI: 10.3389/fonc.2022.938749] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2022] [Accepted: 06/14/2022] [Indexed: 01/09/2023] Open
Abstract
Beyond the role of mitochondria in apoptosis initiation/execution, some mitochondrial adaptations support the metastasis and chemoresistance of cancer cells. This highlights mitochondria as a promising target for new anticancer strategies. Emergent evidence suggests that some snake venom toxins, both proteins with enzymatic and non-enzymatic activities, act on the mitochondrial metabolism of cancer cells, exhibiting unique and novel mechanisms that are not yet fully understood. Currently, six toxin classes (L-amino acid oxidases, thrombin-like enzymes, secreted phospholipases A2, three-finger toxins, cysteine-rich secreted proteins, and snake C-type lectin) that alter the mitochondrial bioenergetics have been described. These toxins act through Complex IV activity inhibition, OXPHOS uncoupling, ROS-mediated permeabilization of inner mitochondrial membrane (IMM), IMM reorganization by cardiolipin interaction, and mitochondrial fragmentation with selective migrastatic and cytotoxic effects on cancer cells. Notably, selective internalization and direct action of snake venom toxins on tumor mitochondria can be mediated by cell surface proteins overexpressed in cancer cells (e.g. nucleolin and heparan sulfate proteoglycans) or facilitated by the elevated Δψm of cancer cells compared to that non-tumor cells. In this latter case, selective mitochondrial accumulation, in a Δψm-dependent manner, of compounds linked to cationic snake peptides may be explored as a new anti-cancer drug delivery system. This review analyzes the effect of snake venom toxins on mitochondrial bioenergetics of cancer cells, whose mechanisms of action may offer the opportunity to develop new anticancer drugs based on toxin scaffolds.
Collapse
Affiliation(s)
- Félix A. Urra
- Laboratorio de Plasticidad Metabólica y Bioenergética, Programa de Farmacología Clínica y Molecular, Instituto de Ciencias Biomédicas, Facultad de Medicina, Universidad de Chile, Santiago, Chile
- Network for Snake Venom Research and Drug Discovery, Santiago, Chile
- Interdisciplinary Group on Mitochondrial Targeting and Bioenergetics (MIBI), Talca, Chile
- *Correspondence: Félix A. Urra,
| | - Dan E. Vivas-Ruiz
- Network for Snake Venom Research and Drug Discovery, Santiago, Chile
- Laboratorio de Biología Molecular, Facultad de Ciencias Biológicas, Universidad Nacional Mayor de San Marcos, Ciudad Universitaria, Lima, Peru
| | - Eladio Flores Sanchez
- Network for Snake Venom Research and Drug Discovery, Santiago, Chile
- Laboratory of Biochemistry of Proteins from Animal Venoms, Research and Development Center, Ezequiel Dias Foundation, Belo Horizonte, Brazil
| | - Ramiro Araya-Maturana
- Network for Snake Venom Research and Drug Discovery, Santiago, Chile
- Interdisciplinary Group on Mitochondrial Targeting and Bioenergetics (MIBI), Talca, Chile
- Laboratorio de Productos Bioactivos, Instituto de Química de Recursos Naturales, Universidad de Talca, Talca, Chile
| |
Collapse
|
9
|
Pharmacological Screening of Venoms from Five Brazilian Micrurus Species on Different Ion Channels. Int J Mol Sci 2022; 23:ijms23147714. [PMID: 35887062 PMCID: PMC9318628 DOI: 10.3390/ijms23147714] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2022] [Revised: 07/05/2022] [Accepted: 07/07/2022] [Indexed: 12/05/2022] Open
Abstract
Coral snake venoms from the Micrurus genus are a natural library of components with multiple targets, yet are poorly explored. In Brazil, 34 Micrurus species are currently described, and just a few have been investigated for their venom activities. Micrurus venoms are composed mainly of phospholipases A2 and three-finger toxins, which are responsible for neuromuscular blockade—the main envenomation outcome in humans. Beyond these two major toxin families, minor components are also important for the global venom activity, including Kunitz-peptides, serine proteases, 5′ nucleotidases, among others. In the present study, we used the two-microelectrode voltage clamp technique to explore the crude venom activities of five different Micrurus species from the south and southeast of Brazil: M. altirostris, M. corallinus, M. frontalis, M. carvalhoi and M. decoratus. All five venoms induced full inhibition of the muscle-type α1β1δε nAChR with different levels of reversibility. We found M. altirostris and M. frontalis venoms acting as partial inhibitors of the neuronal-type α7 nAChR with an interesting subsequent potentiation after one washout. We discovered that M. altirostris and M. corallinus venoms modulate the α1β2 GABAAR. Interestingly, the screening on KV1.3 showed that all five Micrurus venoms act as inhibitors, being totally reversible after the washout. Since this activity seems to be conserved among different species, we hypothesized that the Micrurus venoms may rely on potassium channel inhibitory activity as an important feature of their envenomation strategy. Finally, tests on NaV1.2 and NaV1.4 showed that these channels do not seem to be targeted by Micrurus venoms. In summary, the venoms tested are multifunctional, each of them acting on at least two different types of targets.
Collapse
|
10
|
Palasuberniam P, Chan YW, Tan KY, Tan CH. Snake Venom Proteomics of Samar Cobra (Naja samarensis) from the Southern Philippines: Short Alpha-Neurotoxins as the Dominant Lethal Component Weakly Cross-Neutralized by the Philippine Cobra Antivenom. Front Pharmacol 2022; 12:727756. [PMID: 35002690 PMCID: PMC8740184 DOI: 10.3389/fphar.2021.727756] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2021] [Accepted: 11/24/2021] [Indexed: 11/16/2022] Open
Abstract
The Samar Cobra, Naja samarensis, is endemic to the southern Philippines and is a WHO-listed Category 1 venomous snake species of medical importance. Envenomation caused by N. samarensis results in neurotoxicity, while there is no species-specific antivenom available for its treatment. The composition and neutralization of N. samarensis venom remain largely unknown to date. This study thus aimed to investigate the venom proteome of N. samarensis for a comprehensive profiling of the venom composition, and to examine the immunorecognition as well as neutralization of its toxins by a hetero-specific antivenom. Applying C18 reverse-phase high-performance liquid chromatography (RP-HPLC) and tandem mass spectrometry (LC-MS/MS), three-finger toxins (3FTx) were shown to dominate the venom proteome by 90.48% of total venom proteins. Other proteins in the venom comprised snake venom metalloproteinases, phospholipases A2, cysteine-rich secretory proteins, venom nerve growth factors, L-amino acid oxidases and vespryn, which were present at much lower abundances. Among all, short-chain alpha-neurotoxins (SαNTX) were the most highly expressed toxin within 3FTx family, constituting 65.87% of the total venom proteins. The SαNTX is the sole neurotoxic component of the venom and has an intravenous median lethal dose (LD50) of 0.18 μg/g in mice. The high abundance and low LD50 support the potent lethal activity of N. samarensis venom. The hetero-specific antivenom, Philippine Cobra Antivenom (PCAV, raised against Naja philippinensis) were immunoreactive toward the venom and its protein fractions, including the principal SαNTX. In efficacy study, PCAV was able to cross-neutralize the lethality of SαNTX albeit the effect was weak with a low potency of 0.20 mg/ml (defined as the amount of toxin completely neutralized per milliliter of the antivenom). With a volume of 5 ml, each vial of PCAV may cross-neutralize approximately 1 mg of the toxin in vivo. The findings support the potential para-specific use of PCAV in treating envenomation caused by N. samarensis while underscoring the need to improve the potency of its neutralization activity, especially against the highly lethal alpha-neurotoxins.
Collapse
Affiliation(s)
- Praneetha Palasuberniam
- Venom Research and Toxicology Laboratory, Department of Pharmacology, Faculty of Medicine, University of Malaya, Kuala Lumpur, Malaysia.,Department of Biomedical Sciences, Faculty of Medicine and Health Sciences, University Malaysia Sabah, Kota Kinabalu, Malaysia
| | - Yi Wei Chan
- Protein and Interactomics Laboratory, Department of Molecular Medicine, Faculty of Medicine, University of Malaya, Kuala Lumpur, Malaysia
| | - Kae Yi Tan
- Protein and Interactomics Laboratory, Department of Molecular Medicine, Faculty of Medicine, University of Malaya, Kuala Lumpur, Malaysia
| | - Choo Hock Tan
- Venom Research and Toxicology Laboratory, Department of Pharmacology, Faculty of Medicine, University of Malaya, Kuala Lumpur, Malaysia
| |
Collapse
|
11
|
Senji Laxme RR, Attarde S, Khochare S, Suranse V, Martin G, Casewell NR, Whitaker R, Sunagar K. Biogeographical venom variation in the Indian spectacled cobra (Naja naja) underscores the pressing need for pan-India efficacious snakebite therapy. PLoS Negl Trop Dis 2021; 15:e0009150. [PMID: 33600405 PMCID: PMC7924803 DOI: 10.1371/journal.pntd.0009150] [Citation(s) in RCA: 63] [Impact Index Per Article: 15.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2020] [Revised: 03/02/2021] [Accepted: 01/18/2021] [Indexed: 01/08/2023] Open
Abstract
Background Snake venom composition is dictated by various ecological and environmental factors, and can exhibit dramatic variation across geographically disparate populations of the same species. This molecular diversity can undermine the efficacy of snakebite treatments, as antivenoms produced against venom from one population may fail to neutralise others. India is the world’s snakebite hotspot, with 58,000 fatalities and 140,000 morbidities occurring annually. Spectacled cobra (Naja naja) and Russell’s viper (Daboia russelii) are known to cause the majority of these envenomations, in part due to their near country-wide distributions. However, the impact of differing ecologies and environment on their venom compositions has not been comprehensively studied. Methods Here, we used a multi-disciplinary approach consisting of venom proteomics, biochemical and pharmacological analyses, and in vivo research to comparatively analyse N. naja venoms across a broad region (>6000 km; seven populations) covering India’s six distinct biogeographical zones. Findings By generating the most comprehensive pan-Indian proteomic and toxicity profiles to date, we unveil considerable differences in the composition, pharmacological effects and potencies of geographically-distinct venoms from this species and, through the use of immunological assays and preclinical experiments, demonstrate alarming repercussions on antivenom therapy. We find that commercially-available antivenom fails to effectively neutralise envenomations by the pan-Indian populations of N. naja, including a complete lack of neutralisation against the desert Naja population. Conclusion Our findings highlight the significant influence of ecology and environment on snake venom composition and potency, and stress the pressing need to innovate pan-India effective antivenoms to safeguard the lives, limbs and livelihoods of the country’s 200,000 annual snakebite victims. Annually, India is burdened by the highest number of snake envenomations across the globe, with over 58,000 fatalities and three times the number of morbidities, predominantly affecting the rural agrarian communities. The spectacled cobra (Naja naja) and Russell’s viper (Daboia russelii) are responsible for the vast majority of envenomations in the country, in part, due to their near country-wide distributions. In this study, we unveil the astounding differences in venom composition of N. naja from six different biogeographical zones across the country (>6000 km). We provide a comprehensive account of their disparate venom proteomic profiles, biochemical and pharmacological effects, and the associated potencies. Our study uncovers alarming differences in the efficacy of the marketed polyvalent antivenoms in neutralising these venoms, thereby, emphasising the pressing need to develop dose-efficacious and pan-India effective antivenoms for the treatment of snakebites in the country. This study also highlights the significant influence of ecology and diverse environments on the venom variability, insinuating the necessity for innovating cost-effective and pan-India efficacious solutions to safeguard the lives, limbs and livelihoods of India’s two hundred thousand annual snakebite victims.
Collapse
Affiliation(s)
- R. R. Senji Laxme
- Evolutionary Venomics Lab. Centre for Ecological Sciences, Indian Institute of Science, Bangalore, Karnataka, India
| | - Saurabh Attarde
- Evolutionary Venomics Lab. Centre for Ecological Sciences, Indian Institute of Science, Bangalore, Karnataka, India
| | - Suyog Khochare
- Evolutionary Venomics Lab. Centre for Ecological Sciences, Indian Institute of Science, Bangalore, Karnataka, India
| | - Vivek Suranse
- Evolutionary Venomics Lab. Centre for Ecological Sciences, Indian Institute of Science, Bangalore, Karnataka, India
| | - Gerard Martin
- The Liana Trust, Survey #1418/1419 Rathnapuri, Hunsur, Karnataka, India
| | - Nicholas R. Casewell
- Centre for Snakebite Research & Interventions, Liverpool School of Tropical Medicine, Pembroke Place, Liverpool, United Kingdom
| | - Romulus Whitaker
- Madras Crocodile Bank Trust/Centre for Herpetology, Mamallapuram, Tamil Nadu, India
| | - Kartik Sunagar
- Evolutionary Venomics Lab. Centre for Ecological Sciences, Indian Institute of Science, Bangalore, Karnataka, India
- * E-mail:
| |
Collapse
|
12
|
Konshina AG, Dubovskii PV, Efremov RG. Stepwise Insertion of Cobra Cardiotoxin CT2 into a Lipid Bilayer Occurs as an Interplay of Protein and Membrane "Dynamic Molecular Portraits". J Chem Inf Model 2020; 61:385-399. [PMID: 33382618 DOI: 10.1021/acs.jcim.0c01137] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
For many peripheral membrane-binding polypeptides(MBPs), especially β-structural ones, the precise molecular mechanisms of membrane insertion remain unclear. In most cases, only the terminal water-soluble and membrane-bound states have been elucidated, whereas potential functionally important intermediate stages are still not understood in sufficient detail. In this study, we present one of the first successful attempts to describe step-by-step embedding of the MBP cardiotoxin 2 (CT2) from cobra Naja oxiana venom into a lipid bilayer at the atomistic level. CT2 possesses a highly conservative and rigid β-structured three-finger fold shared by many other exogenous and endogenous proteins performing a wide variety of functions. The incorporation of CT2 into the lipid bilayer was analyzed via a 2 μs all-atom molecular dynamics (MD) simulation without restraints. This process was shown to occur over a number of distinct steps, while the geometry of initial membrane attachment drastically differs from that of the final equilibrated state. In the latter one, the hydrophobic platform ("bottom") formed by the tips of the three loops is deeply buried into the lipid bilayer. This agrees well with the NMR data obtained earlier for CT2 in detergent micelles. However, the bottom is too bulky to insert itself into the membrane at once. Instead, the gradual immersion of CT2 initiated by the loop-1 was observed. This initial binding stage was also demonstrated in a series of MD runs with varying starting orientations of the toxin with respect to the bilayer surface. Apart from the nonspecific long-range electrostatic attraction and hydrophobic match/mismatch factor, several specific lipid-binding sites were identified in CT2. They were shown to promote membrane insertion by engaging in strong interactions with lipid head groups, fine-tuning the toxin-membrane accommodation. We therefore propose that the toxin insertion relies on the interplay of nonspecific and specific interactions, which are determined by the "dynamic molecular portraits" of the two players, the protein and the membrane. The proposed model does not require protein oligomerization for membrane insertion and can be further employed to design MBPs with predetermined properties with regard to particular membrane targets.
Collapse
Affiliation(s)
- Anastasia G Konshina
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, 16/10 Miklukho-Maklaya str., Moscow 117997, Russia
| | - Peter V Dubovskii
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, 16/10 Miklukho-Maklaya str., Moscow 117997, Russia
| | - Roman G Efremov
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, 16/10 Miklukho-Maklaya str., Moscow 117997, Russia.,National Research University Higher School of Economics, 20 Myasnitskaya str., Moscow 101000, Russia.,Research Center for Molecular Mechanisms of Aging and Age-related Diseases, Moscow Institute of Physics and Technology (State University), 9 Institutskiy per., Dolgoprudny, Moscow Region 141700, Russia
| |
Collapse
|
13
|
Titelbaum NV, Hughes MJ, Wilson JL. Myalgia as a Symptom of Envenomation by the Eastern Coral Snake, Micrurus Fulvius: A Case Report. Wilderness Environ Med 2020; 32:63-69. [PMID: 33309199 DOI: 10.1016/j.wem.2020.08.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2020] [Revised: 08/09/2020] [Accepted: 08/21/2020] [Indexed: 11/19/2022]
Abstract
We present the case of a patient who developed myalgia as the primary symptom of envenomation by the eastern coral snake, Micrurus fulvius. The patient was evaluated and treated in the emergency department. Physical examination did not demonstrate any neuromuscular abnormalities. On consultation with the poison control center, the patient's myalgia was determined to be an effect of envenomation, and 5 vials of North American coral snake antivenin were administered. The patient was admitted to the intensive care unit where his symptoms resolved. He was discharged the following day after remaining asymptomatic for 24 h.
Collapse
Affiliation(s)
- Nicholas V Titelbaum
- University of Central Florida, Orlando, FL; Ocala Regional Emergency Department, Ocala Regional Medical Center, Ocala, FL.
| | - Michael J Hughes
- University of Central Florida, Orlando, FL; Ocala Regional Emergency Department, Ocala Regional Medical Center, Ocala, FL
| | - James L Wilson
- Ocala Regional Emergency Department, Ocala Regional Medical Center, Ocala, FL
| |
Collapse
|
14
|
Mukherjee AK. Species-specific and geographical variation in venom composition of two major cobras in Indian subcontinent: Impact on polyvalent antivenom therapy. Toxicon 2020; 188:150-158. [DOI: 10.1016/j.toxicon.2020.10.024] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2020] [Revised: 10/13/2020] [Accepted: 10/27/2020] [Indexed: 12/18/2022]
|
15
|
Ho TNT, Abraham N, Lewis RJ. Structure-Function of Neuronal Nicotinic Acetylcholine Receptor Inhibitors Derived From Natural Toxins. Front Neurosci 2020; 14:609005. [PMID: 33324158 PMCID: PMC7723979 DOI: 10.3389/fnins.2020.609005] [Citation(s) in RCA: 52] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2020] [Accepted: 10/30/2020] [Indexed: 12/19/2022] Open
Abstract
Neuronal nicotinic acetylcholine receptors (nAChRs) are prototypical cation-selective, ligand-gated ion channels that mediate fast neurotransmission in the central and peripheral nervous systems. nAChRs are involved in a range of physiological and pathological functions and hence are important therapeutic targets. Their subunit homology and diverse pentameric assembly contribute to their challenging pharmacology and limit their drug development potential. Toxins produced by an extensive range of algae, plants and animals target nAChRs, with many proving pivotal in elucidating receptor pharmacology and biochemistry, as well as providing templates for structure-based drug design. The crystal structures of these toxins with diverse chemical profiles in complex with acetylcholine binding protein (AChBP), a soluble homolog of the extracellular ligand-binding domain of the nAChRs and more recently the extracellular domain of human α9 nAChRs, have been reported. These studies have shed light on the diverse molecular mechanisms of ligand-binding at neuronal nAChR subtypes and uncovered critical insights useful for rational drug design. This review provides a comprehensive overview and perspectives obtained from structure and function studies of diverse plant and animal toxins and their associated inhibitory mechanisms at neuronal nAChRs.
Collapse
Affiliation(s)
| | | | - Richard J. Lewis
- Centre for Pain Research, Institute for Molecular Bioscience, The University of Queensland, St Lucia, QLD, Australia
| |
Collapse
|
16
|
Wu J, Matthias N, Bhalla S, Darabi R. Evaluation of the Therapeutic Potential of Human iPSCs in a Murine Model of VML. Mol Ther 2020; 29:121-131. [PMID: 32966776 DOI: 10.1016/j.ymthe.2020.09.012] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2020] [Revised: 08/12/2020] [Accepted: 09/03/2020] [Indexed: 02/08/2023] Open
Abstract
Volumetric muscle loss injury is a common health problem with long-term disabilities. One common treatment is using muscle flaps from donor site, which has limited potentials due to donor site availability and morbidity. Although several stem cell therapies have been evaluated so far, most suffer from limited availability, immune incompatibility, or differentiation potential. Therefore, induced pluripotent stem cells (iPSCs) have a great promise for this purpose due to their unique differentiation, self-renewal, and immunocompatibility. Current study was designed to determine therapeutic potential of human iPSCs (hiPSCs) in a mouse model of volumetric muscle loss. Muscles were subjected to excision to generate 30%-40% muscle loss. Next, hiPSCs were differentiated toward skeletal myogenic progenitors and used with fibrin hydrogel to reconstruct the lost muscle. Histologic evaluation of the treated muscles indicated abundant engraftment of donor-derived mature fibers expressing human markers. Donor-derived fibers were also positive for the presence of neuromuscular junction (NMJ), indicating their proper innervation. Evaluation of the engrafted region indicated the presence of donor-derived satellite cells expressing human markers and Pax7. Finally, in situ muscle function analysis demonstrated significant improvement of the muscle contractility in muscles treated with hiPSCs. These results therefore provide key evidence for the therapeutic potential of human iPSCs in volumetric muscle loss injuries.
Collapse
Affiliation(s)
- Jianbo Wu
- Center for Stem Cell and Regenerative Medicine (CSCRM), The Brown Foundation Institute of Molecular Medicine for the Prevention of Human Diseases (IMM), University of Texas Health Science Center at Houston, Houston, TX 77030, USA
| | - Nadine Matthias
- Center for Stem Cell and Regenerative Medicine (CSCRM), The Brown Foundation Institute of Molecular Medicine for the Prevention of Human Diseases (IMM), University of Texas Health Science Center at Houston, Houston, TX 77030, USA
| | - Shubhang Bhalla
- Center for Stem Cell and Regenerative Medicine (CSCRM), The Brown Foundation Institute of Molecular Medicine for the Prevention of Human Diseases (IMM), University of Texas Health Science Center at Houston, Houston, TX 77030, USA
| | - Radbod Darabi
- Center for Stem Cell and Regenerative Medicine (CSCRM), The Brown Foundation Institute of Molecular Medicine for the Prevention of Human Diseases (IMM), University of Texas Health Science Center at Houston, Houston, TX 77030, USA.
| |
Collapse
|
17
|
Wang B, Wang Q, Wang C, Wang B, Qiu L, Zou S, Zhang F, Liu G, Zhang L. A comparative analysis of the proteomes and biological activities of the venoms from two sea snakes, Hydrophis curtus and Hydrophis cyanocinctus, from Hainan, China. Toxicon 2020; 187:35-46. [PMID: 32871160 DOI: 10.1016/j.toxicon.2020.08.012] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2020] [Revised: 08/05/2020] [Accepted: 08/13/2020] [Indexed: 12/25/2022]
Abstract
We characterized and compared the venom protein profiles of Hydrophis curtus (synonyms: Lapemis hardwickii, Lapemis curtus and Hydrophis hardwickii) and Hydrophis cyanocinctus, the two representatives of medically important venomous sea snakes in Chinese waters using proteomic approaches. A total of 47 and 38 putative toxins were identified in H. curtus venom (HcuV) and H. cyanocinctus venom (HcyV), respectively, and these toxins could be grouped into 15 functional categories, mainly proteinases, phospholipases, three-finger toxins (3FTxs), lectins, protease inhibitors, ion channel inhibitors, cysteine-rich venom proteins (CRVPs) and snake venom metalloproteases (SVMPs). The constituent ratio of each toxin category varied between HcuV and HcyV with 3FTx (54% in HcuV/69% in HcyV) and PLA2 (38% in HcuV/22% in HcyV) unanimously ranked as the top two most abundant families. Both HcuV and HcyV exhibited relatively high lethality (LD50 values in mice of 0.34 μg/g and 0.24 μg/g, respectively), specific PLA2 activity and hemolytic activity. On the basis of several previous reports of HcuV and HcyV collected from other areas, these findings greatly expand our understanding of geographical variation and interspecies diversity of the two sea snake venoms and can provide a scientific basis for the development of specific sea snake antivenom in the future.
Collapse
Affiliation(s)
- Bo Wang
- Department of Marine Biomedicine and Polar Medicine, Naval Characteristic Medical Center, Naval Medical University, Shanghai, 200433, China
| | - Qianqian Wang
- Department of Marine Biomedicine and Polar Medicine, Naval Characteristic Medical Center, Naval Medical University, Shanghai, 200433, China
| | - Chao Wang
- Department of Marine Biomedicine and Polar Medicine, Naval Characteristic Medical Center, Naval Medical University, Shanghai, 200433, China
| | - Beilei Wang
- Department of Marine Biomedicine and Polar Medicine, Naval Characteristic Medical Center, Naval Medical University, Shanghai, 200433, China
| | - Leilei Qiu
- Department of Marine Biomedicine and Polar Medicine, Naval Characteristic Medical Center, Naval Medical University, Shanghai, 200433, China
| | - Shuaijun Zou
- Department of Marine Biomedicine and Polar Medicine, Naval Characteristic Medical Center, Naval Medical University, Shanghai, 200433, China
| | - Fuhai Zhang
- Department of Marine Biomedicine and Polar Medicine, Naval Characteristic Medical Center, Naval Medical University, Shanghai, 200433, China
| | - Guoyan Liu
- Department of Marine Biomedicine and Polar Medicine, Naval Characteristic Medical Center, Naval Medical University, Shanghai, 200433, China.
| | - Liming Zhang
- Department of Marine Biomedicine and Polar Medicine, Naval Characteristic Medical Center, Naval Medical University, Shanghai, 200433, China.
| |
Collapse
|
18
|
Calvete JJ, Bonilla F, Granados-Martínez S, Sanz L, Lomonte B, Sasa M. Venomics of the Duvernoy's gland secretion of the false coral snake Rhinobothryum bovallii (Andersson, 1916) and assessment of venom lethality towards synapsid and diapsid animal models. J Proteomics 2020; 225:103882. [DOI: 10.1016/j.jprot.2020.103882] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2020] [Revised: 06/16/2020] [Accepted: 06/16/2020] [Indexed: 11/30/2022]
|
19
|
Nirthanan S. Snake three-finger α-neurotoxins and nicotinic acetylcholine receptors: molecules, mechanisms and medicine. Biochem Pharmacol 2020; 181:114168. [PMID: 32710970 DOI: 10.1016/j.bcp.2020.114168] [Citation(s) in RCA: 39] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2020] [Revised: 07/20/2020] [Accepted: 07/20/2020] [Indexed: 12/13/2022]
Abstract
Snake venom three-finger α-neurotoxins (α-3FNTx) act on postsynaptic nicotinic acetylcholine receptors (nAChRs) at the neuromuscular junction (NMJ) to produce skeletal muscle paralysis. The discovery of the archetypal α-bungarotoxin (α-BgTx), almost six decades ago, exponentially expanded our knowledge of membrane receptors and ion channels. This included the localisation, isolation and characterization of the first receptor (nAChR); and by extension, the pathophysiology and pharmacology of neuromuscular transmission and associated pathologies such as myasthenia gravis, as well as our understanding of the role of α-3FNTxs in snakebite envenomation leading to novel concepts of targeted treatment. Subsequent studies on a variety of animal venoms have yielded a plethora of novel toxins that have revolutionized molecular biomedicine and advanced drug discovery from bench to bedside. This review provides an overview of nAChRs and their subtypes, classification of α-3FNTxs and the challenges of typifying an increasing arsenal of structurally and functionally unique toxins, and the three-finger protein (3FP) fold in the context of the uPAR/Ly6/CD59/snake toxin superfamily. The pharmacology of snake α-3FNTxs including their mechanisms of neuromuscular blockade, variations in reversibility of nAChR interactions, specificity for nAChR subtypes or for distinct ligand-binding interfaces within a subtype and the role of α-3FNTxs in neurotoxic envenomation are also detailed. Lastly, a reconciliation of structure-function relationships between α-3FNTx and nAChRs, derived from historical mutational and biochemical studies and emerging atomic level structures of nAChR models in complex with α-3FNTxs is discussed.
Collapse
Affiliation(s)
- Selvanayagam Nirthanan
- School of Medical Science, Griffith Health Group, Griffith University, Gold Coast, Queensland, Australia.
| |
Collapse
|
20
|
Tsetlin VI, Kasheverov IE, Utkin YN. Three-finger proteins from snakes and humans acting on nicotinic receptors: Old and new. J Neurochem 2020; 158:1223-1235. [PMID: 32648941 DOI: 10.1111/jnc.15123] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2020] [Revised: 06/25/2020] [Accepted: 07/06/2020] [Indexed: 12/12/2022]
Abstract
The first toxin to give rise to the three-finger protein (TFP) family was α-bungarotoxin (α-Bgt) from Bungarus multicinctus krait venom. α-Bgt was crucial for research on nicotinic acetylcholine receptors (nAChRs), and in this Review article we focus on present data for snake venom TFPs and those of the Ly6/uPAR family from mammalians (membrane-bound Lynx1 and secreted SLURP-1) interacting with nAChRs. Recently isolated from Bungarus candidus venom, αδ-bungarotoxins differ from α-Bgt: they bind more reversibly and distinguish two binding sites in Torpedo californica nAChR. Naja kaouthia α-cobratoxin, classical blocker of nAChRs, was shown to inhibit certain GABA-A receptor subtypes, whereas α-cobratoxin dimer with 2 intermolecular disulfides has a novel type of 3D structure. Non-conventional toxin WTX has additional 5th disulfide not in the central loop, as α-Bgt, but in the N-terminal loop, like all Ly6/uPAR proteins, and inhibits α7 and Torpedo nAChRs. A water-soluble form of Lynx1, ws-Lynx1, was expressed in E. coli, its 1 H-NMR structure and binding to several nAChRs determined. For SLURP-1, similar information was obtained with its recombinant analogue rSLURP-1. A common feature of ws-Lynx1, rSLURP-1, and WTX is their activity against nAChRs and muscarinic acetylcholine receptors. Synthetic SLURP-1, identical to the natural protein, demonstrated some differences from rSLURP-1 in distinguishing nAChR subtypes. The loop II fragment of the Lynx1 was synthesized having the same µM affinity for the Torpedo nAChR as ws-Lynx1. This review illustrates the productivity of parallel research of nAChR interactions with the two TFP groups.
Collapse
Affiliation(s)
- Victor I Tsetlin
- Department of Molecular Neuroimmune Signalling, Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Moscow, Russian Federation.,PhysBio of MePhi, Moscow, Russian Federation
| | - Igor E Kasheverov
- Department of Molecular Neuroimmune Signalling, Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Moscow, Russian Federation.,Sechenov First Moscow State Medical University, Institute of Molecular Medicine, Moscow, Russian Federation
| | - Yuri N Utkin
- Department of Molecular Neuroimmune Signalling, Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Moscow, Russian Federation
| |
Collapse
|
21
|
Bolívar-Barbosa JA, Rodríguez-Vargas AL. Actividad neurotóxica del veneno de serpientes del género Micrurus y métodos para su análisis. Revisión de la literatura. REVISTA DE LA FACULTAD DE MEDICINA 2020. [DOI: 10.15446/revfacmed.v68n3.75992] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022] Open
Abstract
Introducción. Las serpientes del género Micrurus son animales de hábitos fosoriales, de temperamento pasivo y escasa producción de un potente veneno con características neurotóxicas que bloquean la transmisión sináptica en la placa neuromuscular.Objetivo. Presentar un panorama general de la neurotoxicidad del veneno de las serpientes Micrurus y su caracterización funcional mediante métodos de análisis ex vivo.Materiales y métodos. Se realizó una revisión de la literatura en MedLine y ScienceDirect usando términos específicos y sus combinaciones. Estrategia de búsqueda: tipo de estudios: artículos sobre la neurotoxicidad del veneno de serpientes Micrurus y técnicas para determinar su actividad neurotóxica mediante modelos in vitro, in vivo y ex vivo; periodo de publicación: sin limite inicial a junio de 2018; idiomas: inglés y español.Resultados. De los 88 estudios identificados en la búsqueda inicial, se excluyeron 28 por no cumplir los criterios de inclusión (basándose en la lectura de títulos y resúmenes); además, se incluyeron 8 documentos adicionales (libros e informes), que, a criterio de los autores, complementaban la información reportada por las referencias seleccionadas. Los estudios incluidos en la revisión (n=68) correspondieron a las siguientes tipologías: investigaciones originales (n=44), artículos de revisión (n=16) y capítulos de libros, informes, guías y consultas en internet (n=8).Conclusiones. Los estudios que describen el uso de preparaciones ex vivo de músculo y nervio para evaluar el efecto de neurotoxinas ofrecen un buen modelo para la caracterización del efecto presináptico y postsináptico del veneno producido por las serpientes Micrurus.
Collapse
|
22
|
Kini RM, Koh CY. Snake venom three-finger toxins and their potential in drug development targeting cardiovascular diseases. Biochem Pharmacol 2020; 181:114105. [PMID: 32579959 DOI: 10.1016/j.bcp.2020.114105] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2020] [Revised: 06/13/2020] [Accepted: 06/17/2020] [Indexed: 12/15/2022]
Abstract
Cardiovascular diseases such as coronary and peripheral artery diseases, venous thrombosis, stroke, hypertension, and heart failure are enormous burden to health and economy globally. Snake venoms have been the sources of discovery of successful therapeutics targeting cardiovascular diseases. For example, the first-in-class angiotensin-converting enzyme inhibitor captopril was designed largely based on bradykinin-potentiating peptides from Bothrops jararaca venom. In the recent years, sensitive and high throughput approaches drive discovery and cataloging of new snake venom toxins. As one of the largest class of snake venom toxin, there are now>700 sequences of three-finger toxins (3FTxs) available, many of which are yet to be studied. While the function of 3FTxs are normally associated with neurotoxicity, increasingly more 3FTxs have been characterized to have pharmacological effects on cardiovascular systems. Here we focus on this family of snake venom toxins and their potential in developing therapeutics against cardiovascular diseases.
Collapse
Affiliation(s)
- R Manjunatha Kini
- Department of Biological Sciences, Faculty of Science, National University of Singapore, 117558, Singapore; Department of Pharmacology, Yong Loo Lin School of Medicine, National University of Singapore, 117600, Singapore
| | - Cho Yeow Koh
- Department of Medicine, Yong Loo Lin School of Medicine, National University of Singapore, 119228, Singapore.
| |
Collapse
|
23
|
Conlon JM, Attoub S, Musale V, Leprince J, Casewell NR, Sanz L, Calvete JJ. Isolation and characterization of cytotoxic and insulin-releasing components from the venom of the black-necked spitting cobra Naja nigricollis (Elapidae). Toxicon X 2020; 6:100030. [PMID: 32550585 PMCID: PMC7285909 DOI: 10.1016/j.toxcx.2020.100030] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2020] [Revised: 02/18/2020] [Accepted: 03/09/2020] [Indexed: 01/09/2023] Open
Abstract
Four peptides with cytotoxic activity against BRIN-BD11 rat clonal β-cells were purified from the venom of the black-necked spitting cobra Naja nigricollis using reversed-phase HPLC. The peptides were identified as members of the three-finger superfamily of snake toxins by ESI-MS/MS sequencing of tryptic peptides. The most potent peptide (cytotoxin-1N) showed strong cytotoxic activity against three human tumor-derived cell lines (LC50 = 0.8 ± 0.2 μM for A549 non-small cell lung adenocarcinoma cells; LC50 = 7 ± 1 μM for MDA-MB-231 breast adenocarcinoma cells; and LC50 = 9 ± 1 μM for HT-29 colorectal adenocarcinoma cells). However, all the peptides were to varying degrees cytotoxic against HUVEC human umbilical vein endothelial cells (LC50 in the range 2–22 μM) and cytotoxin-2N was moderately hemolytic (LC50 = 45 ± 3 μM against mouse erythrocytes). The lack of differential activity against cells derived from non-neoplastic tissue limits their potential for development into anti-cancer agents. In addition, two proteins in the venom, identified as isoforms of phospholipase A2, effectively stimulated insulin release from BRIN-BD11 cells (an approximately 6-fold increase in rate compared with 5.6 mM glucose alone) at a concentration (1 μM) that was not cytotoxic to the cells suggesting possible application in therapy for Type 2 diabetes. Four members of the three-finger superfamily of toxins were isolated from N. nigricollis venom. All peptides were cytotoxic to human tumor-derived cells. The peptides were also cytotoxic to non-neoplastic HUVEC cells. Two isoforms of phospholipase A2 effectively stimulated insulin release from rat clonal β-cells.
Collapse
Affiliation(s)
- J M Conlon
- Diabetes Research Group, School of Biomedical Sciences, Ulster University, Coleraine, Ireland
| | - Samir Attoub
- Department of Pharmacology and Therapeutics, College of Medicine and Health Sciences, United Arab Emirates University, Al Ain, United Arab Emirates
| | - Vishal Musale
- Diabetes Research Group, School of Biomedical Sciences, Ulster University, Coleraine, Ireland
| | - Jérôme Leprince
- Inserm U1239, PRIMACEN, Institute for Research and Innovation in Biomedicine (IRIB), Normandy University, 76000, Rouen, France
| | - Nicholas R Casewell
- Centre for Snakebite Research & Interventions, Liverpool School of Tropical Medicine, Pembroke Place, Liverpool, Merseyside, UK
| | - Libia Sanz
- Laboratorio de Venómica Evolutiva y Traslacional, Consejo Superior de Investigaciones Científicas, Valencia, Spain
| | - Juan J Calvete
- Laboratorio de Venómica Evolutiva y Traslacional, Consejo Superior de Investigaciones Científicas, Valencia, Spain
| |
Collapse
|
24
|
Complex approach for analysis of snake venom α-neurotoxins binding to HAP, the high-affinity peptide. Sci Rep 2020; 10:3861. [PMID: 32123252 PMCID: PMC7052197 DOI: 10.1038/s41598-020-60768-y] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2019] [Accepted: 02/14/2020] [Indexed: 12/30/2022] Open
Abstract
Snake venom α-neurotoxins, invaluable pharmacological tools, bind with high affinity to distinct subtypes of nicotinic acetylcholine receptor. The combinatorial high-affinity peptide (HAP), homologous to the C-loop of α1 and α7 nAChR subunits, binds biotinylated α-bungarotoxin (αBgt) with nanomolar affinity and might be a protection against snake-bites. Since there are no data on HAP interaction with other toxins, we checked its binding of α-cobratoxin (αCtx), similar to αBgt in action on nAChRs. Using radioiodinated αBgt, we confirmed a high affinity of HAP for αBgt, the complex formation is supported by mass spectrometry and gel chromatography, but only weak binding was registered with αCtx. A combination of protein intrinsic fluorescence measurements with the principal component analysis of the spectra allowed us to measure the HAP-αBgt binding constant directly (29 nM). These methods also confirmed weak HAP interaction with αCtx (>10000 nM). We attempted to enhance it by modification of HAP structure relying on the known structures of α-neurotoxins with various targets and applying molecular dynamics. A series of HAP analogues have been synthesized, HAP[L9E] analogue being considerably more potent than HAP in αCtx binding (7000 nM). The proposed combination of experimental and computational approaches appears promising for analysis of various peptide-protein interactions.
Collapse
|
25
|
Modahl CM, Brahma RK, Koh CY, Shioi N, Kini RM. Omics Technologies for Profiling Toxin Diversity and Evolution in Snake Venom: Impacts on the Discovery of Therapeutic and Diagnostic Agents. Annu Rev Anim Biosci 2019; 8:91-116. [PMID: 31702940 DOI: 10.1146/annurev-animal-021419-083626] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Snake venoms are primarily composed of proteins and peptides, and these toxins have developed high selectivity to their biological targets. This makes venoms interesting for exploration into protein evolution and structure-function relationships. A single venom protein superfamily can exhibit a variety of pharmacological effects; these variations in activity originate from differences in functional sites, domains, posttranslational modifications, and the formations of toxin complexes. In this review, we discuss examples of how the major venom protein superfamilies have diversified, as well as how newer technologies in the omics fields, such as genomics, transcriptomics, and proteomics, can be used to characterize both known and unknown toxins.Because toxins are bioactive molecules with a rich diversity of activities, they can be useful as therapeutic and diagnostic agents, and successful examples of toxin applications in these areas are also reviewed. With the current rapid pace of technology, snake venom research and its applications will only continue to expand.
Collapse
Affiliation(s)
- Cassandra M Modahl
- Protein Science Lab, Department of Biological Sciences, University of Singapore, Singapore 119077; , ,
| | - Rajeev Kungur Brahma
- Protein Science Lab, Department of Biological Sciences, University of Singapore, Singapore 119077; , ,
| | - Cho Yeow Koh
- Department of Medicine, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 119077;
| | - Narumi Shioi
- Protein Science Lab, Department of Biological Sciences, University of Singapore, Singapore 119077; , , .,Department of Chemistry, Faculty of Science, Fukuoka University, Fukuoka 814-0180, Japan;
| | - R Manjunatha Kini
- Protein Science Lab, Department of Biological Sciences, University of Singapore, Singapore 119077; , ,
| |
Collapse
|
26
|
Lebedev DS, Kryukova EV, Ivanov IA, Egorova NS, Timofeev ND, Spirova EN, Tufanova EY, Siniavin AE, Kudryavtsev DS, Kasheverov IE, Zouridakis M, Katsarava R, Zavradashvili N, Iagorshvili I, Tzartos SJ, Tsetlin VI. Oligoarginine Peptides, a New Family of Nicotinic Acetylcholine Receptor Inhibitors. Mol Pharmacol 2019; 96:664-673. [PMID: 31492697 DOI: 10.1124/mol.119.117713] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2019] [Accepted: 08/26/2019] [Indexed: 12/28/2022] Open
Abstract
Many peptide ligands of nicotinic acetylcholine receptors (nAChRs) contain a large number of positively charged amino acid residues, a striking example being conotoxins RgIA and GeXIVA from marine mollusk venom, with an arginine content of >30%. To determine whether peptides built exclusively from arginine residues will interact with different nAChR subtypes or with their structural homologs such as the acetylcholine-binding protein and ligand-binding domain of the nAChR α9 subunit, we synthesized a series of R3, R6, R8, and R16 oligoarginines and investigated their activity by competition with radioiodinated α-bungarotoxin, two-electrode voltage-clamp electrophysiology, and calcium imaging. R6 and longer peptides inhibited muscle-type nAChRs, α7 nAChRs, and α3β2 nAChRs in the micromolar range. The most efficient inhibition of ion currents was detected for muscle nAChR by R16 (IC50 = 157 nM) and for the α9α10 subtype by R8 and R16 (IC50 = 44 and 120 nM, respectively). Since the R8 affinity for other tested nAChRs was 100-fold lower, R8 appears to be a selective antagonist of α9α10 nAChR. For R8, the electrophysiological and competition experiments indicated the existence of two distinct binding sites on α9α10 nAChR. Since modified oligoarginines and other cationic molecules are widely used as cell-penetrating peptides, we studied several cationic polymers and demonstrated their nAChR inhibitory activity. SIGNIFICANT STATEMENT: By using radioligand analysis, electrophysiology, and calcium imaging, we found that oligoarginine peptides are a new group of inhibitors for muscle nicotinic acetylcholine receptors (nAChRs) and some neuronal nAChRs, the most active being those with 16 and 8 Arg residues. Such compounds and other cationic polymers are cell-penetrating tools for drug delivery, and we also demonstrated the inhibition of nAChRs for several of the latter. Possible positive and negative consequences of such an action should be taken into account.
Collapse
Affiliation(s)
- Dmitry S Lebedev
- Department of Molecular Neuroimmune Signaling, Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Moscow, Russia (D.S.L., E.V.K., I.A.I., N.S.E., N.D.T., E.N.S., E.Y.T., A.E.S., D.S.K., I.E.K., V.I.T.); Department of Neurobiology, Hellenic Pasteur Institute, Athens, Greece (M.Z., S.J.T.); Institute of Molecular Medicine, Sechenov First Moscow State Medical University, Moscow, Russia (I.E.K.); Institute of Chemistry and Molecular Engineering, Agricultural University of Georgia, Kakha Bendukidze University Campus, Tbilisi, Georgia (R.K., N.Z., I.I.); and PhysBio of MePhI, Moscow, Russia (V.I.T.)
| | - Elena V Kryukova
- Department of Molecular Neuroimmune Signaling, Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Moscow, Russia (D.S.L., E.V.K., I.A.I., N.S.E., N.D.T., E.N.S., E.Y.T., A.E.S., D.S.K., I.E.K., V.I.T.); Department of Neurobiology, Hellenic Pasteur Institute, Athens, Greece (M.Z., S.J.T.); Institute of Molecular Medicine, Sechenov First Moscow State Medical University, Moscow, Russia (I.E.K.); Institute of Chemistry and Molecular Engineering, Agricultural University of Georgia, Kakha Bendukidze University Campus, Tbilisi, Georgia (R.K., N.Z., I.I.); and PhysBio of MePhI, Moscow, Russia (V.I.T.)
| | - Igor A Ivanov
- Department of Molecular Neuroimmune Signaling, Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Moscow, Russia (D.S.L., E.V.K., I.A.I., N.S.E., N.D.T., E.N.S., E.Y.T., A.E.S., D.S.K., I.E.K., V.I.T.); Department of Neurobiology, Hellenic Pasteur Institute, Athens, Greece (M.Z., S.J.T.); Institute of Molecular Medicine, Sechenov First Moscow State Medical University, Moscow, Russia (I.E.K.); Institute of Chemistry and Molecular Engineering, Agricultural University of Georgia, Kakha Bendukidze University Campus, Tbilisi, Georgia (R.K., N.Z., I.I.); and PhysBio of MePhI, Moscow, Russia (V.I.T.)
| | - Natalia S Egorova
- Department of Molecular Neuroimmune Signaling, Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Moscow, Russia (D.S.L., E.V.K., I.A.I., N.S.E., N.D.T., E.N.S., E.Y.T., A.E.S., D.S.K., I.E.K., V.I.T.); Department of Neurobiology, Hellenic Pasteur Institute, Athens, Greece (M.Z., S.J.T.); Institute of Molecular Medicine, Sechenov First Moscow State Medical University, Moscow, Russia (I.E.K.); Institute of Chemistry and Molecular Engineering, Agricultural University of Georgia, Kakha Bendukidze University Campus, Tbilisi, Georgia (R.K., N.Z., I.I.); and PhysBio of MePhI, Moscow, Russia (V.I.T.)
| | - Nikita D Timofeev
- Department of Molecular Neuroimmune Signaling, Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Moscow, Russia (D.S.L., E.V.K., I.A.I., N.S.E., N.D.T., E.N.S., E.Y.T., A.E.S., D.S.K., I.E.K., V.I.T.); Department of Neurobiology, Hellenic Pasteur Institute, Athens, Greece (M.Z., S.J.T.); Institute of Molecular Medicine, Sechenov First Moscow State Medical University, Moscow, Russia (I.E.K.); Institute of Chemistry and Molecular Engineering, Agricultural University of Georgia, Kakha Bendukidze University Campus, Tbilisi, Georgia (R.K., N.Z., I.I.); and PhysBio of MePhI, Moscow, Russia (V.I.T.)
| | - Ekaterina N Spirova
- Department of Molecular Neuroimmune Signaling, Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Moscow, Russia (D.S.L., E.V.K., I.A.I., N.S.E., N.D.T., E.N.S., E.Y.T., A.E.S., D.S.K., I.E.K., V.I.T.); Department of Neurobiology, Hellenic Pasteur Institute, Athens, Greece (M.Z., S.J.T.); Institute of Molecular Medicine, Sechenov First Moscow State Medical University, Moscow, Russia (I.E.K.); Institute of Chemistry and Molecular Engineering, Agricultural University of Georgia, Kakha Bendukidze University Campus, Tbilisi, Georgia (R.K., N.Z., I.I.); and PhysBio of MePhI, Moscow, Russia (V.I.T.)
| | - Elizaveta Yu Tufanova
- Department of Molecular Neuroimmune Signaling, Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Moscow, Russia (D.S.L., E.V.K., I.A.I., N.S.E., N.D.T., E.N.S., E.Y.T., A.E.S., D.S.K., I.E.K., V.I.T.); Department of Neurobiology, Hellenic Pasteur Institute, Athens, Greece (M.Z., S.J.T.); Institute of Molecular Medicine, Sechenov First Moscow State Medical University, Moscow, Russia (I.E.K.); Institute of Chemistry and Molecular Engineering, Agricultural University of Georgia, Kakha Bendukidze University Campus, Tbilisi, Georgia (R.K., N.Z., I.I.); and PhysBio of MePhI, Moscow, Russia (V.I.T.)
| | - Andrei E Siniavin
- Department of Molecular Neuroimmune Signaling, Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Moscow, Russia (D.S.L., E.V.K., I.A.I., N.S.E., N.D.T., E.N.S., E.Y.T., A.E.S., D.S.K., I.E.K., V.I.T.); Department of Neurobiology, Hellenic Pasteur Institute, Athens, Greece (M.Z., S.J.T.); Institute of Molecular Medicine, Sechenov First Moscow State Medical University, Moscow, Russia (I.E.K.); Institute of Chemistry and Molecular Engineering, Agricultural University of Georgia, Kakha Bendukidze University Campus, Tbilisi, Georgia (R.K., N.Z., I.I.); and PhysBio of MePhI, Moscow, Russia (V.I.T.)
| | - Denis S Kudryavtsev
- Department of Molecular Neuroimmune Signaling, Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Moscow, Russia (D.S.L., E.V.K., I.A.I., N.S.E., N.D.T., E.N.S., E.Y.T., A.E.S., D.S.K., I.E.K., V.I.T.); Department of Neurobiology, Hellenic Pasteur Institute, Athens, Greece (M.Z., S.J.T.); Institute of Molecular Medicine, Sechenov First Moscow State Medical University, Moscow, Russia (I.E.K.); Institute of Chemistry and Molecular Engineering, Agricultural University of Georgia, Kakha Bendukidze University Campus, Tbilisi, Georgia (R.K., N.Z., I.I.); and PhysBio of MePhI, Moscow, Russia (V.I.T.)
| | - Igor E Kasheverov
- Department of Molecular Neuroimmune Signaling, Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Moscow, Russia (D.S.L., E.V.K., I.A.I., N.S.E., N.D.T., E.N.S., E.Y.T., A.E.S., D.S.K., I.E.K., V.I.T.); Department of Neurobiology, Hellenic Pasteur Institute, Athens, Greece (M.Z., S.J.T.); Institute of Molecular Medicine, Sechenov First Moscow State Medical University, Moscow, Russia (I.E.K.); Institute of Chemistry and Molecular Engineering, Agricultural University of Georgia, Kakha Bendukidze University Campus, Tbilisi, Georgia (R.K., N.Z., I.I.); and PhysBio of MePhI, Moscow, Russia (V.I.T.)
| | - Marios Zouridakis
- Department of Molecular Neuroimmune Signaling, Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Moscow, Russia (D.S.L., E.V.K., I.A.I., N.S.E., N.D.T., E.N.S., E.Y.T., A.E.S., D.S.K., I.E.K., V.I.T.); Department of Neurobiology, Hellenic Pasteur Institute, Athens, Greece (M.Z., S.J.T.); Institute of Molecular Medicine, Sechenov First Moscow State Medical University, Moscow, Russia (I.E.K.); Institute of Chemistry and Molecular Engineering, Agricultural University of Georgia, Kakha Bendukidze University Campus, Tbilisi, Georgia (R.K., N.Z., I.I.); and PhysBio of MePhI, Moscow, Russia (V.I.T.)
| | - Ramaz Katsarava
- Department of Molecular Neuroimmune Signaling, Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Moscow, Russia (D.S.L., E.V.K., I.A.I., N.S.E., N.D.T., E.N.S., E.Y.T., A.E.S., D.S.K., I.E.K., V.I.T.); Department of Neurobiology, Hellenic Pasteur Institute, Athens, Greece (M.Z., S.J.T.); Institute of Molecular Medicine, Sechenov First Moscow State Medical University, Moscow, Russia (I.E.K.); Institute of Chemistry and Molecular Engineering, Agricultural University of Georgia, Kakha Bendukidze University Campus, Tbilisi, Georgia (R.K., N.Z., I.I.); and PhysBio of MePhI, Moscow, Russia (V.I.T.)
| | - Nino Zavradashvili
- Department of Molecular Neuroimmune Signaling, Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Moscow, Russia (D.S.L., E.V.K., I.A.I., N.S.E., N.D.T., E.N.S., E.Y.T., A.E.S., D.S.K., I.E.K., V.I.T.); Department of Neurobiology, Hellenic Pasteur Institute, Athens, Greece (M.Z., S.J.T.); Institute of Molecular Medicine, Sechenov First Moscow State Medical University, Moscow, Russia (I.E.K.); Institute of Chemistry and Molecular Engineering, Agricultural University of Georgia, Kakha Bendukidze University Campus, Tbilisi, Georgia (R.K., N.Z., I.I.); and PhysBio of MePhI, Moscow, Russia (V.I.T.)
| | - Ia Iagorshvili
- Department of Molecular Neuroimmune Signaling, Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Moscow, Russia (D.S.L., E.V.K., I.A.I., N.S.E., N.D.T., E.N.S., E.Y.T., A.E.S., D.S.K., I.E.K., V.I.T.); Department of Neurobiology, Hellenic Pasteur Institute, Athens, Greece (M.Z., S.J.T.); Institute of Molecular Medicine, Sechenov First Moscow State Medical University, Moscow, Russia (I.E.K.); Institute of Chemistry and Molecular Engineering, Agricultural University of Georgia, Kakha Bendukidze University Campus, Tbilisi, Georgia (R.K., N.Z., I.I.); and PhysBio of MePhI, Moscow, Russia (V.I.T.)
| | - Socrates J Tzartos
- Department of Molecular Neuroimmune Signaling, Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Moscow, Russia (D.S.L., E.V.K., I.A.I., N.S.E., N.D.T., E.N.S., E.Y.T., A.E.S., D.S.K., I.E.K., V.I.T.); Department of Neurobiology, Hellenic Pasteur Institute, Athens, Greece (M.Z., S.J.T.); Institute of Molecular Medicine, Sechenov First Moscow State Medical University, Moscow, Russia (I.E.K.); Institute of Chemistry and Molecular Engineering, Agricultural University of Georgia, Kakha Bendukidze University Campus, Tbilisi, Georgia (R.K., N.Z., I.I.); and PhysBio of MePhI, Moscow, Russia (V.I.T.)
| | - Victor I Tsetlin
- Department of Molecular Neuroimmune Signaling, Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Moscow, Russia (D.S.L., E.V.K., I.A.I., N.S.E., N.D.T., E.N.S., E.Y.T., A.E.S., D.S.K., I.E.K., V.I.T.); Department of Neurobiology, Hellenic Pasteur Institute, Athens, Greece (M.Z., S.J.T.); Institute of Molecular Medicine, Sechenov First Moscow State Medical University, Moscow, Russia (I.E.K.); Institute of Chemistry and Molecular Engineering, Agricultural University of Georgia, Kakha Bendukidze University Campus, Tbilisi, Georgia (R.K., N.Z., I.I.); and PhysBio of MePhI, Moscow, Russia (V.I.T.)
| |
Collapse
|
27
|
Deka A, Gogoi A, Das D, Purkayastha J, Doley R. Proteomics of Naja kaouthia venom from North East India and assessment of Indian polyvalent antivenom by third generation antivenomics. J Proteomics 2019; 207:103463. [DOI: 10.1016/j.jprot.2019.103463] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2019] [Revised: 07/15/2019] [Accepted: 07/21/2019] [Indexed: 11/25/2022]
|
28
|
Kryukova EV, Egorova NS, Kudryavtsev DS, Lebedev DS, Spirova EN, Zhmak MN, Garifulina AI, Kasheverov IE, Utkin YN, Tsetlin VI. From Synthetic Fragments of Endogenous Three-Finger Proteins to Potential Drugs. Front Pharmacol 2019; 10:748. [PMID: 31333465 PMCID: PMC6616073 DOI: 10.3389/fphar.2019.00748] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2018] [Accepted: 06/11/2019] [Indexed: 12/25/2022] Open
Abstract
The proteins of the Ly6 family have a three-finger folding as snake venom α-neurotoxins, targeting nicotinic acetylcholine receptors (nAChRs), and some of them, like mammalian secreted Ly6/uPAR protein (SLURP1) and membrane-attached Ly-6/neurotoxin (Lynx1), also interact with distinct nAChR subtypes. We believed that synthetic fragments of these endogenous proteins might open new ways for drug design because nAChRs are well-known targets for developing analgesics and drugs against neurodegenerative diseases. Since interaction with nAChRs was earlier shown for synthetic fragments of the α-neurotoxin central loop II, we synthesized a 15-membered fragment of human Lynx1, its form with two Cys residues added at the N- and C-termini and forming a disulfide, as well as similar forms of human SLURP1, SLURP2, and of Drosophila sleepless protein (SSS). The IC50 values measured in competition with radioiodinated α-bungarotoxin for binding to the membrane-bound Torpedo californica nAChR were 4.9 and 7.4 µM for Lynx1 and SSS fragments, but over 300 µM for SLURP1 or SLURP2 fragments. The affinity of these compounds for the α7 nAChR in the rat pituitary tumor-derived cell line GH4C1 was different: 13.1 and 147 µM for SSS and Lynx1 fragments, respectively. In competition for the ligand-binding domain of the α9 nAChR subunit, SSS and Lynx1 fragments had IC50 values of about 40 µM, which correlates with the value found for the latter with the rat α9α10 nAChR expressed in the Xenopus oocytes. Thus, the activity of these synthetic peptides against muscle-type and α9α10 nAChRs indicates that they may be useful in design of novel myorelaxants and analgesics.
Collapse
Affiliation(s)
- Elena V Kryukova
- Department of Molecular Neuroimmune Signalling, Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Moscow, Russia
| | - Natalia S Egorova
- Department of Molecular Neuroimmune Signalling, Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Moscow, Russia
| | - Denis S Kudryavtsev
- Department of Molecular Neuroimmune Signalling, Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Moscow, Russia
| | - Dmitry S Lebedev
- Department of Molecular Neuroimmune Signalling, Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Moscow, Russia
| | - Ekaterina N Spirova
- Department of Molecular Neuroimmune Signalling, Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Moscow, Russia
| | - Maxim N Zhmak
- Department of Molecular Neuroimmune Signalling, Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Moscow, Russia
| | - Aleksandra I Garifulina
- Department of Molecular Neuroimmune Signalling, Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Moscow, Russia
| | - Igor E Kasheverov
- Department of Molecular Neuroimmune Signalling, Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Moscow, Russia.,Sechenov First Moscow State Medical University, Institute of Molecular Medicine, Moscow, Russia
| | - Yuri N Utkin
- Department of Molecular Neuroimmune Signalling, Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Moscow, Russia
| | - Victor I Tsetlin
- Department of Molecular Neuroimmune Signalling, Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Moscow, Russia.,PhysBio of MEPhI, Moscow, Russia
| |
Collapse
|
29
|
Roy A, Qingxiang S, Alex C, Rajagopalan N, Jobichen C, Sivaraman J, Kini RM. Identification of a α-helical molten globule intermediate and structural characterization of β-cardiotoxin, an all β-sheet protein isolated from the venom of Ophiophagus hannah (king cobra). Protein Sci 2019; 28:952-963. [PMID: 30891862 PMCID: PMC6459992 DOI: 10.1002/pro.3605] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2018] [Revised: 03/12/2019] [Accepted: 03/19/2019] [Indexed: 02/05/2023]
Abstract
β-Cardiotoxin is a novel member of the snake venom three-finger toxin (3FTX) family. This is the first exogenous protein to antagonize β-adrenergic receptors and thereby causing reduction in heart rates (bradycardia) when administered into animals, unlike the conventional cardiotoxins as reported earlier. 3FTXs are stable all β-sheet peptides with 60-80 amino acid residues. Here, we describe the three-dimensional crystal structure of β-cardiotoxin together with the identification of a molten globule intermediate in the unfolding pathway of this protein. In spite of the overall structural similarity of this protein with conventional cardiotoxins, there are notable differences observed at the loop region and in the charge distribution on the surface, which are known to be critical for cytolytic activity of cardiotoxins. The molten globule intermediate state present in the thermal unfolding pathway of β-cardiotoxin was however not observed during the chemical denaturation of the protein. Interestingly, circular dichroism (CD) and NMR studies revealed the presence of α-helical secondary structure in the molten globule intermediate. These results point to substantial conformational plasticity of β-cardiotoxin, which might aid the protein in responding to the sometimes conflicting demands of structure, stability, and function during its biological lifetime.
Collapse
Affiliation(s)
- Amrita Roy
- Department of Biological Sciences, Faculty of ScienceNational University of SingaporeSingapore 117543
| | - Sun Qingxiang
- Department of Biological Sciences, Faculty of ScienceNational University of SingaporeSingapore 117543
- Department of PathologyWest China Hospital, Sichuan UniversityChengduChina 610041
| | - Chapeaurouge Alex
- Department of Biological Sciences, Faculty of ScienceNational University of SingaporeSingapore 117543
- Fundação Oswaldo Cruz‐CearáRua São José, 2° Pavimento, PrecaburaEusébio 61760‐000Brazil
| | - Nandhakishore Rajagopalan
- Department of Biological Sciences, Faculty of ScienceNational University of SingaporeSingapore 117543
- National Research Council of CanadaCanada
| | - Chacko Jobichen
- Department of Biological Sciences, Faculty of ScienceNational University of SingaporeSingapore 117543
| | - J. Sivaraman
- Department of Biological Sciences, Faculty of ScienceNational University of SingaporeSingapore 117543
| | - R. Manjunatha Kini
- Department of Biological Sciences, Faculty of ScienceNational University of SingaporeSingapore 117543
| |
Collapse
|
30
|
Evolution and diversity of the EMA families of the divergent equid parasites, Theileria equi and T. haneyi. INFECTION GENETICS AND EVOLUTION 2019; 68:153-160. [DOI: 10.1016/j.meegid.2018.12.020] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/12/2018] [Revised: 12/04/2018] [Accepted: 12/17/2018] [Indexed: 11/30/2022]
|
31
|
Grau V, Richter K, Hone AJ, McIntosh JM. Conopeptides [V11L;V16D]ArIB and RgIA4: Powerful Tools for the Identification of Novel Nicotinic Acetylcholine Receptors in Monocytes. Front Pharmacol 2019; 9:1499. [PMID: 30687084 PMCID: PMC6338043 DOI: 10.3389/fphar.2018.01499] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2018] [Accepted: 12/07/2018] [Indexed: 12/27/2022] Open
Abstract
Venomous marine snails of the genus Conus employ small peptides to capture prey, mainly osteichthyes, mollusks, and worms. A subset of these peptides known as α-conotoxins, are antagonists of nicotinic acetylcholine receptors (nAChRs). These disulfide-rich peptides provide a large number of evolutionarily refined templates that can be used to develop conopeptides that are highly selective for the various nAChR subtypes. Two such conopeptides, namely [V11L;V16D]ArIB and RgIA4, have been engineered to selectively target mammalian α7∗ and α9∗ nAChRs, respectively, and have been used to study the functional roles of these subtypes in immune cells. Unlike in neurons and cochlear hair cells, where α7∗ and α9∗ nAChRs, respectively, function as ligand-gated ion channels, in immune cells ligand-evoked ion currents have not been demonstrated. Instead, different metabotropic functions of α7∗ and α9∗ nAChRs have been described in monocytic cells including the inhibition of ATP-induced ion currents, inflammasome activation, and interleukin-1β (IL-1β) release. In addition to conventional nAChR agonists, diverse compounds containing a phosphocholine group inhibit monocytic IL-1β release and include dipalmitoyl phosphatidylcholine, palmitoyl lysophosphatidylcholine, glycerophosphocholine, phosphocholine, phosphocholine-decorated lipooligosaccharides from Haemophilus influenzae, synthetic phosphocholine-modified bovine serum albumin, and the phosphocholine-binding C-reactive protein. In monocytic cells, the effects of [V11L;V16D]ArIB and RgIA4 suggested that activation of nAChRs containing α9, α7, and/or α10 subunits inhibits ATP-induced IL-1β release. These results have been corroborated utilizing gene-deficient mice and small interfering RNA. Targeted re-engineering of native α-conotoxins has resulted in excellent tools for nAChR research as well as potential therapeutics. ∗indicates possible presence of additional subunits.
Collapse
Affiliation(s)
- Veronika Grau
- Laboratory of Experimental Surgery, Department of General and Thoracic Surgery, German Centre for Lung Research (DZL), Giessen University, Giessen, Germany
| | - Katrin Richter
- Laboratory of Experimental Surgery, Department of General and Thoracic Surgery, German Centre for Lung Research (DZL), Giessen University, Giessen, Germany
| | - Arik J Hone
- Department of Biology, University of Utah, Salt Lake City, UT, United States
| | - J Michael McIntosh
- Department of Biology, University of Utah, Salt Lake City, UT, United States.,George E. Wahlen Department of Veterans Affairs Medical Center, Salt Lake City, UT, United States.,Department of Psychiatry, University of Utah, Salt Lake City, UT, United States
| |
Collapse
|
32
|
Utkin YN. Last decade update for three-finger toxins: Newly emerging structures and biological activities. World J Biol Chem 2019; 10:17-27. [PMID: 30622682 PMCID: PMC6314878 DOI: 10.4331/wjbc.v10.i1.17] [Citation(s) in RCA: 40] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/01/2018] [Revised: 11/20/2018] [Accepted: 12/05/2018] [Indexed: 02/05/2023] Open
Abstract
Three-finger toxins (TFTs) comprise one of largest families of snake venom toxins. While they are principal to and the most toxic components of the venoms of the Elapidae snake family, their presence has also been detected in the venoms of snakes from other families. The first TFT, α-bungarotoxin, was discovered almost 50 years ago and has since been used widely as a specific marker of the α7 and muscle-type nicotinic acetylcholine receptors. To date, the number of TFT amino acid sequences deposited in the UniProt Knowledgebase free-access database is more than 700, and new members are being added constantly. Although structural variations among the TFTs are not numerous, several new structures have been discovered recently; these include the disulfide-bound dimers of TFTs and toxins with nonstandard pairing of disulfide bonds. New types of biological activities have also been demonstrated for the well-known TFTs, and research on this topic has become a hot topic of TFT studies. The classic TFTs α-bungarotoxin and α-cobratoxin, for example, have now been shown to inhibit ionotropic receptors of γ-aminobutyric acid, and some muscarinic toxins have been shown to interact with adrenoceptors. New, unexpected activities have been demonstrated for some TFTs as well, such as toxin interaction with interleukin or insulin receptors and even TFT-activated motility of sperm. This minireview provides a summarization of the data that has emerged in the last decade on the TFTs and their activities.
Collapse
Affiliation(s)
- Yuri N Utkin
- Laboratory of Molecular Toxinology, Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Moscow 117997, Russia
| |
Collapse
|
33
|
Chanda A, Kalita B, Patra A, Senevirathne WDST, Mukherjee AK. Proteomic analysis and antivenomics study of Western India Naja naja venom: correlation between venom composition and clinical manifestations of cobra bite in this region. Expert Rev Proteomics 2018; 16:171-184. [DOI: 10.1080/14789450.2019.1559735] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Affiliation(s)
- Abhishek Chanda
- Microbial Biotechnology and Protein Research Laboratory, Department of Molecular Biology and Biotechnology, Tezpur University, Tezpur, India
| | - Bhargab Kalita
- Microbial Biotechnology and Protein Research Laboratory, Department of Molecular Biology and Biotechnology, Tezpur University, Tezpur, India
| | - Aparup Patra
- Microbial Biotechnology and Protein Research Laboratory, Department of Molecular Biology and Biotechnology, Tezpur University, Tezpur, India
| | - Wanigasingha. D. Sandani T. Senevirathne
- Microbial Biotechnology and Protein Research Laboratory, Department of Molecular Biology and Biotechnology, Tezpur University, Tezpur, India
- Deptartment of Rabies and Vaccine Quality Control, Medical Research Institute, Colombo, Sri Lanka
| | - Ashis K. Mukherjee
- Microbial Biotechnology and Protein Research Laboratory, Department of Molecular Biology and Biotechnology, Tezpur University, Tezpur, India
| |
Collapse
|
34
|
Kryukova EV, Ivanov IA, Lebedev DS, Spirova EN, Egorova NS, Zouridakis M, Kasheverov IE, Tzartos SJ, Tsetlin VI. Orthosteric and/or Allosteric Binding of α-Conotoxins to Nicotinic Acetylcholine Receptors and Their Models. Mar Drugs 2018; 16:md16120460. [PMID: 30469507 PMCID: PMC6315749 DOI: 10.3390/md16120460] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2018] [Revised: 11/09/2018] [Accepted: 11/20/2018] [Indexed: 12/19/2022] Open
Abstract
α-Conotoxins from Conus snails are capable of distinguishing muscle and neuronal nicotinic acetylcholine receptors (nAChRs). α-Conotoxin RgIA and αO-conotoxin GeXIVA, blocking neuronal α9α10 nAChR, are potential analgesics. Typically, α-conotoxins bind to the orthosteric sites for agonists/competitive antagonists, but αO-conotoxin GeXIVA was proposed to attach allosterically, judging by electrophysiological experiments on α9α10 nAChR. We decided to verify this conclusion by radioligand analysis in competition with α-bungarotoxin (αBgt) on the ligand-binding domain of the nAChR α9 subunit (α9 LBD), where, from the X-ray analysis, αBgt binds at the orthosteric site. A competition with αBgt was registered for GeXIVA and RgIA, IC50 values being in the micromolar range. However, high nonspecific binding of conotoxins (detected with their radioiodinated derivatives) to His6-resin attaching α9 LBD did not allow us to accurately measure IC50s. However, IC50s were measured for binding to Aplysia californica AChBP: the RgIA globular isomer, known to be active against α9α10 nAChR, was more efficient than the ribbon one, whereas all three GeXIVA isomers had similar potencies at low µM. Thus, radioligand analysis indicated that both conotoxins can attach to the orthosteric sites in these nAChR models, which should be taken into account in the design of analgesics on the basis of these conotoxins.
Collapse
Affiliation(s)
- Elena V Kryukova
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Miklukho-Maklaya Street, 16/10, 117997 Moscow, Russia.
| | - Igor A Ivanov
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Miklukho-Maklaya Street, 16/10, 117997 Moscow, Russia.
| | - Dmitry S Lebedev
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Miklukho-Maklaya Street, 16/10, 117997 Moscow, Russia.
| | - Ekaterina N Spirova
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Miklukho-Maklaya Street, 16/10, 117997 Moscow, Russia.
| | - Natalia S Egorova
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Miklukho-Maklaya Street, 16/10, 117997 Moscow, Russia.
| | - Marios Zouridakis
- Department of Neurobiology, Hellenic Pasteur Institute, 127, Vas. Sofias ave., Athens 115 21, Greece.
| | - Igor E Kasheverov
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Miklukho-Maklaya Street, 16/10, 117997 Moscow, Russia.
- Institute of Molecular Medicine, Sechenov First Moscow State Medical University, Trubetskaya Street 8, bld. 2, 119991 Moscow, Russia.
| | - Socrates J Tzartos
- Department of Neurobiology, Hellenic Pasteur Institute, 127, Vas. Sofias ave., Athens 115 21, Greece.
| | - Victor I Tsetlin
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Miklukho-Maklaya Street, 16/10, 117997 Moscow, Russia.
- PhysBio of MEPhI, Kashirskoye Ave., 31, 115409 Moscow, Russia.
| |
Collapse
|
35
|
Munawar A, Ali SA, Akrem A, Betzel C. Snake Venom Peptides: Tools of Biodiscovery. Toxins (Basel) 2018; 10:toxins10110474. [PMID: 30441876 PMCID: PMC6266942 DOI: 10.3390/toxins10110474] [Citation(s) in RCA: 53] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2018] [Revised: 10/30/2018] [Accepted: 11/07/2018] [Indexed: 01/09/2023] Open
Abstract
Nature endowed snakes with a lethal secretion known as venom, which has been fine-tuned over millions of years of evolution. Snakes utilize venom to subdue their prey and to survive in their natural habitat. Venom is known to be a very poisonous mixture, consisting of a variety of molecules, such as carbohydrates, nucleosides, amino acids, lipids, proteins and peptides. Proteins and peptides are the major constituents of the dry weight of snake venoms and are of main interest for scientific investigations as well as for various pharmacological applications. Snake venoms contain enzymatic and non-enzymatic proteins and peptides, which are grouped into different families based on their structure and function. Members of a single family display significant similarities in their primary, secondary and tertiary structures, but in many cases have distinct pharmacological functions and different bioactivities. The functional specificity of peptides belonging to the same family can be attributed to subtle variations in their amino acid sequences. Currently, complementary tools and techniques are utilized to isolate and characterize the peptides, and study their potential applications as molecular probes, and possible templates for drug discovery and design investigations.
Collapse
Affiliation(s)
- Aisha Munawar
- Department of Chemistry, University of Engineering and Technology, Lahore 54890, Pakistan.
| | - Syed Abid Ali
- H.E. J. Research Institute of Chemistry, (ICCBS), University of Karachi, Karachi 75270, Pakistan.
| | - Ahmed Akrem
- Botany Division, Institute of Pure and Applied Biology, Bahauddin Zakariya University, Multan 60800, Pakistan.
| | - Christian Betzel
- Department of Chemistry, Institute of Biochemistry and Molecular Biology, University of Hamburg, 22607 Hamburg, Germany.
- Laboratory for Structural Biology of Infection and Inflammation, DESY, Build. 22a, Notkestr. 85, 22603 Hamburg, Germany.
| |
Collapse
|
36
|
Defining the pathogenic threat of envenoming by South African shield-nosed and coral snakes (genus Aspidelaps), and revealing the likely efficacy of available antivenom. J Proteomics 2018; 198:186-198. [PMID: 30290233 DOI: 10.1016/j.jprot.2018.09.019] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2018] [Revised: 09/15/2018] [Accepted: 09/30/2018] [Indexed: 12/15/2022]
Abstract
While envenoming by the southern African shield-nosed or coral snakes (genus Aspidelaps) has caused fatalities, bites are uncommon. Consequently, this venom is not used in the mixture of snake venoms used to immunise horses for the manufacture of regional SAIMR (South African Institute for Medical Research) polyvalent antivenom. Aspidelaps species are even excluded from the manufacturer's list of venomous snakes that can be treated by this highly effective product. This leaves clinicians, albeit rarely, in a therapeutic vacuum when treating envenoming by these snakes. This is a significantly understudied small group of nocturnal snakes and little is known about their venom compositions and toxicities. Using a murine preclinical model, this study determined that the paralysing toxicity of venoms from Aspidelaps scutatus intermedius, A. lubricus cowlesi and A. l. lubricus approached that of venoms from highly neurotoxic African cobras and mambas. This finding was consistent with the cross-genus dominance of venom three-finger toxins, including numerous isoforms which showed extensive interspecific variation. Our comprehensive analysis of venom proteomes showed that the three Aspidelaps species possess highly similar venom proteomic compositions. We also revealed that the SAIMR polyvalent antivenom cross-reacted extensively in vitro with venom proteins of the three Aspidelaps. Importantly, this cross-genus venom-IgG binding translated to preclinical (in a murine model) neutralisation of A. s. intermedius venom-induced lethality by the SAIMR polyvalent antivenom, at doses comparable with those that neutralise venom from the cape cobra (Naja nivea), which the antivenom is directed against. Our results suggest a wider than anticipated clinical utility of the SAIMR polyvalent antivenom, and here we seek to inform southern African clinicians that this readily available antivenom is likely to prove effective for victims of Aspidelaps envenoming. BIOLOGICAL SIGNIFICANCE: Coral and shield-nosed snakes (genus Aspidelaps) comprise two species and several subspecies of potentially medically important venomous snakes distributed in Namibia, Botswana, Zimbabwe, Mozambique and South Africa. Documented human fatalities, although rare, have occurred from both A. lubricus and A. scutatus. However, their venom proteomes and the pathological effects of envenomings by this understudied group of nocturnal snakes remain uncharacterised. Furthermore, no commercial antivenom is made using venom from species of the genus Aspidelaps. To fill this gap, we have conducted a transcriptomics-guided comparative proteomics analysis of the venoms of the intermediate shield-nose snake (A. s. intermedius), southern coral snake (A. l. lubricus), and Cowle's shield snake (A. l. cowlesi); investigated the mechanism of action underpinning lethality by A. s. intermedius in the murine model; and assessed the in vitro immunoreactivity of the SAIMR polyvalent antivenom towards the venom toxins of A. l. lubricus and A. l. cowlesi, and the in vivo capability of this antivenom at neutralising the lethal effect of A. s. intermedius venom. Our data revealed a high degree of conservation of the global composition of the three Aspidelaps venom proteomes, all characterised by the overwhelming predominance of neurotoxic 3FTxs, which induced classical signs of systemic neurotoxicity in mice. The SAIMR polyvalent antivenom extensively binds to Aspidelaps venom toxins and neutralised, with a potency of 0.235 mg venom/mL antivenom, the lethal effect of A. s. intermedius venom. Our data suggest that the SAIMR antivenom could be a useful therapeutic tool for treating human envenomings by Aspidelaps species.
Collapse
|
37
|
Choudhury M, McCleary RJR, Kini RM, Velmurugan D. Orphan Three-Finger Toxins Bind at Tissue Factor-Factor VIIa Interface to Inhibit Factor X Activation: Identification of Functional Site by Docking. TH OPEN 2018; 2:e303-e314. [PMID: 31249954 PMCID: PMC6524886 DOI: 10.1055/s-0038-1672184] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2018] [Accepted: 08/03/2018] [Indexed: 02/03/2023] Open
Abstract
Three-finger toxins (3FTxs) contribute to toxicity of venomous snakes belonging to the family Elapidae. Currently, functions of a considerable proportion of 3FTxs are still unknown. Here, we describe the function of orphan group I 3FTxs consisting of four members. We also identified a new member of this group by sequencing a transcript isolated from Naja naja venom. This transcript, named najalexin, is identical to that previously described 3FTx from Naja atra venom gland, and shared high sequence identity with ringhalexin from Hemachatus haemachatus and a hypothetical protein from Ophiophagus hannah (here named as ophiolexin). The three-dimensional structure, as predicted by molecular modeling, showed that najalexin and ophiolexin share the same conserved structural organization as ringhalexin and other 3FTxs. Since ringhalexin inhibits the activation of factor X by the tissue factor-factor VIIa complex (TF-FVIIa), we evaluated the interaction of this group of 3FTxs with all components using in silico protein-protein docking studies. The binding of orphan group I 3FTxs to TF-FVIIa complex appears to be driven by their interaction with TF. They bind to fibronectin domain closer to the 170-loop of the FVIIa heavy chain to inhibit factor X activation. The docking studies reveal that functional site residues Tyr7, Lys9, Glu12, Lys26, Arg34, Leu35, Arg40, Val55, Asp56, Cys57, Cys58, and Arg65 on these 3FTxs are crucial for interaction. In silico replacement of these residues by Ala resulted in significant effects in the binding energies. Furthermore, these functional residues are not found in other groups of 3FTxs, which exhibit distinct pharmacological properties.
Collapse
Affiliation(s)
- Manisha Choudhury
- CAS in Crystallography and Biophysics, University of Madras, Chennai, Tamil Nadu, India
| | - Ryan J. R. McCleary
- Department of Biological Sciences, National University of Singapore, Singapore, Singapore
- Department of Biology, Stetson University, DeLand, Florida, United States
| | - R. Manjunatha Kini
- Department of Biological Sciences, National University of Singapore, Singapore, Singapore
| | - Devadasan Velmurugan
- CAS in Crystallography and Biophysics, University of Madras, Chennai, Tamil Nadu, India
| |
Collapse
|
38
|
de la Rosa G, Corrales-García LL, Rodriguez-Ruiz X, López-Vera E, Corzo G. Short-chain consensus alpha-neurotoxin: a synthetic 60-mer peptide with generic traits and enhanced immunogenic properties. Amino Acids 2018; 50:885-895. [PMID: 29626299 DOI: 10.1007/s00726-018-2556-0] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2018] [Accepted: 03/13/2018] [Indexed: 10/17/2022]
Abstract
The three-fingered toxin family and more precisely short-chain α-neurotoxins (also known as Type I α-neurotoxins) are crucial in defining the elapid envenomation process, but paradoxically, they are barely neutralized by current elapid snake antivenoms. This work has been focused on the primary structural identity among Type I neurotoxins in order to create a consensus short-chain α-neurotoxin with conserved characteristics. A multiple sequence alignment considering the twelve most toxic short-chain α-neurotoxins reported from the venoms of the elapid genera Acanthophis, Oxyuranus, Walterinnesia, Naja, Dendroaspis and Micrurus led us to propose a short-chain consensus α-neurotoxin, here named ScNtx. The synthetic ScNtx gene was de novo constructed and cloned into the expression vector pQE30 containing a 6His-Tag and an FXa proteolytic cleavage region. Escherichia coli Origami cells transfected with the pQE30/ScNtx vector expressed the recombinant consensus neurotoxin in a soluble form with a yield of 1.5 mg/L of culture medium. The 60-amino acid residue ScNtx contains canonical structural motifs similar to α-neurotoxins from African elapids and its LD50 of 3.8 µg/mice is similar to the most toxic short-chain α-neurotoxins reported from elapid venoms. Furthermore, ScNtx was also able to antagonize muscular, but not neuronal, nicotinic acetylcholine receptors (nAChR). Rabbits immunized with ScNtx were able to immune-recognize short-chain α-neurotoxins within whole elapid venoms. Type I neurotoxins are difficult to isolate and purify from natural sources; therefore, the heterologous expression of molecules such ScNtx, bearing crucial motifs and key amino acids, is a step forward to create common immunogens for developing cost-effective antivenoms with a wider spectrum of efficacy, quality and strong therapeutic value.
Collapse
Affiliation(s)
- Guillermo de la Rosa
- Departamento de Medicina Molecular y Bioprocesos, Instituto de Biotecnología, Universidad Nacional Autónoma de México, UNAM, Apartado Postal 510-3, 61500, Cuernavaca, Morelos, Mexico
| | - Ligia L Corrales-García
- Departamento de Medicina Molecular y Bioprocesos, Instituto de Biotecnología, Universidad Nacional Autónoma de México, UNAM, Apartado Postal 510-3, 61500, Cuernavaca, Morelos, Mexico.,Departamento de Alimentos, Facultad de Ciencias Farmacéuticas y Alimentarias, Universidad de Antioquia, AA 1226, Medellín, Colombia
| | - Ximena Rodriguez-Ruiz
- Instituto de Ciencias del Mar y Limnología/Posgrado en Ciencias del Mar y Limnologia, Universidad Nacional Autónoma de México, UNAM, Circuito exterior s/n, Ciudad Universitaria, 04510, Mexico City, Mexico
| | - Estuardo López-Vera
- Instituto de Ciencias del Mar y Limnología/Posgrado en Ciencias del Mar y Limnologia, Universidad Nacional Autónoma de México, UNAM, Circuito exterior s/n, Ciudad Universitaria, 04510, Mexico City, Mexico
| | - Gerardo Corzo
- Departamento de Medicina Molecular y Bioprocesos, Instituto de Biotecnología, Universidad Nacional Autónoma de México, UNAM, Apartado Postal 510-3, 61500, Cuernavaca, Morelos, Mexico. .,Institute of Biotechnology-UNAM, Av. Universidad 2001, 62210, Cuernavaca, Morelos, Mexico.
| |
Collapse
|
39
|
Mcalees TJ, Abraham LA. Australian elapid snake envenomation in cats: Clinical priorities and approach. J Feline Med Surg 2017; 19:1131-1147. [PMID: 29068247 PMCID: PMC10816621 DOI: 10.1177/1098612x17735761] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Practical relevance: No fewer than 140 species of terrestrial snakes reside in Australia, 92 of which possess venom glands. With the exception of the brown tree snake, the venom-producing snakes belong to the family Elapidae. The venom of a number of elapid species is more toxic than that of the Indian cobra and eastern diamondback rattle snake, which has earned Australia its reputation for being home to the world's most venomous snakes. Clinical challenges: The diagnosis of elapid snake envenomation is not always easy. Identification of Australian snakes is not straightforward and there are no pathognomonic clinical signs. In cats, diagnosis of envenomation is confounded by the fact that, in most cases, there is a delay in seeking veterinary attention, probably because snake encounters are not usually witnessed by owners, and also because of the tendency of cats to hide and seek seclusion when unwell. Although the administration of antivenom is associated with improved outcomes, the snake venom detection kit and antivenom are expensive and so their use may be precluded if there are financial constraints. Evidence base: In providing comprehensive guidance on the diagnosis and treatment of Australian elapid snake envenomation in cats, the authors of this review draw on the published veterinary, medical and toxicology literature, as well as their professional experience as specialists in medicine, and emergency medicine and critical care.
Collapse
Affiliation(s)
| | - Linda A Abraham
- Centre for Animal Referral and Emergency, Melbourne, Australia
| |
Collapse
|
40
|
Dutertre S, Nicke A, Tsetlin VI. Nicotinic acetylcholine receptor inhibitors derived from snake and snail venoms. Neuropharmacology 2017. [PMID: 28623170 DOI: 10.1016/j.neuropharm.2017.06.011] [Citation(s) in RCA: 54] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
The nicotinic acetylcholine receptor (nAChR) represents the prototype of ligand-gated ion channels. It is vital for neuromuscular transmission and an important regulator of neurotransmission. A variety of toxic compounds derived from diverse species target this receptor and have been of elemental importance in basic and applied research. They enabled milestone discoveries in pharmacology and biochemistry ranging from the original formulation of the receptor concept, the first isolation and structural analysis of a receptor protein (the nAChR) to the identification, localization, and differentiation of its diverse subtypes and their validation as a target for therapeutic intervention. Among the venom-derived compounds, α-neurotoxins and α-conotoxins provide the largest families and still represent indispensable pharmacological tools. Application of modified α-neurotoxins provided substantial structural and functional details of the nAChR long before high resolution structures were available. α-bungarotoxin represents not only a standard pharmacological tool and label in nAChR research but also for unrelated proteins tagged with a minimal α-bungarotoxin binding motif. A major advantage of α-conotoxins is their smaller size, as well as superior selectivity for diverse nAChR subtypes that allows their development into ligands with optimized pharmacological and chemical properties and potentially novel drugs. In the following, these two groups of nAChR antagonists will be described focusing on their respective roles in the structural and functional characterization of nAChRs and their development into research tools. In addition, we provide a comparative overview of the diverse α-conotoxin selectivities that can serve as a practical guide for both structure activity studies and subtype classification. This article is part of the Special Issue entitled 'Venom-derived Peptides as Pharmacological Tools.'
Collapse
Affiliation(s)
- Sébastien Dutertre
- Institut des Biomolécules Max Mousseron, UMR 5247, Université Montpellier - CNRS, Place Eugène Bataillon, 34095 Montpellier Cedex 5, France
| | - Annette Nicke
- Walther Straub Institute for Pharmacology and Toxicology, Ludwig-Maximilians-Universität, Nußbaumstr. 26, 80336 Munich, Germany.
| | - Victor I Tsetlin
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Miklukho-Maklaya str.16/10, Moscow 117999, Russian Federation
| |
Collapse
|
41
|
Thakur R, Mukherjee AK. Pathophysiological significance and therapeutic applications of snake venom protease inhibitors. Toxicon 2017; 131:37-47. [DOI: 10.1016/j.toxicon.2017.03.011] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2016] [Revised: 03/06/2017] [Accepted: 03/09/2017] [Indexed: 12/11/2022]
|
42
|
The Molecular Basis of Toxins' Interactions with Intracellular Signaling via Discrete Portals. Toxins (Basel) 2017; 9:toxins9030107. [PMID: 28300784 PMCID: PMC5371862 DOI: 10.3390/toxins9030107] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2017] [Revised: 03/02/2017] [Accepted: 03/04/2017] [Indexed: 12/20/2022] Open
Abstract
An understanding of the molecular mechanisms by which microbial, plant or animal-secreted toxins exert their action provides the most important element for assessment of human health risks and opens new insights into therapies addressing a plethora of pathologies, ranging from neurological disorders to cancer, using toxinomimetic agents. Recently, molecular and cellular biology dissecting tools have provided a wealth of information on the action of these diverse toxins, yet, an integrated framework to explain their selective toxicity is still lacking. In this review, specific examples of different toxins are emphasized to illustrate the fundamental mechanisms of toxicity at different biochemical, molecular and cellular- levels with particular consideration for the nervous system. The target of primary action has been highlighted and operationally classified into 13 sub-categories. Selected examples of toxins were assigned to each target category, denominated as portal, and the modulation of the different portal’s signaling was featured. The first portal encompasses the plasma membrane lipid domains, which give rise to pores when challenged for example with pardaxin, a fish toxin, or is subject to degradation when enzymes of lipid metabolism such as phospholipases A2 (PLA2) or phospholipase C (PLC) act upon it. Several major portals consist of ion channels, pumps, transporters and ligand gated ionotropic receptors which many toxins act on, disturbing the intracellular ion homeostasis. Another group of portals consists of G-protein-coupled and tyrosine kinase receptors that, upon interaction with discrete toxins, alter second messengers towards pathological levels. Lastly, subcellular organelles such as mitochondria, nucleus, protein- and RNA-synthesis machineries, cytoskeletal networks and exocytic vesicles are also portals targeted and deregulated by other diverse group of toxins. A fundamental concept can be drawn from these seemingly different toxins with respect to the site of action and the secondary messengers and signaling cascades they trigger in the host. While the interaction with the initial portal is largely determined by the chemical nature of the toxin, once inside the cell, several ubiquitous second messengers and protein kinases/ phosphatases pathways are impaired, to attain toxicity. Therefore, toxins represent one of the most promising natural molecules for developing novel therapeutics that selectively target the major cellular portals involved in human physiology and diseases.
Collapse
|
43
|
Pla D, Sanz L, Whiteley G, Wagstaff SC, Harrison RA, Casewell NR, Calvete JJ. What killed Karl Patterson Schmidt? Combined venom gland transcriptomic, venomic and antivenomic analysis of the South African green tree snake (the boomslang), Dispholidus typus. Biochim Biophys Acta Gen Subj 2017; 1861:814-823. [PMID: 28130154 PMCID: PMC5335903 DOI: 10.1016/j.bbagen.2017.01.020] [Citation(s) in RCA: 45] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2016] [Revised: 12/15/2016] [Accepted: 01/10/2017] [Indexed: 12/13/2022]
Abstract
Background Non-front-fanged colubroid snakes comprise about two-thirds of extant ophidian species. The medical significance of the majority of these snakes is unknown, but at least five species have caused life-threatening or fatal human envenomings. However, the venoms of only a small number of species have been explored. Methods A combined venomic and venom gland transcriptomic approach was employed to characterise of venom of Dispholidus typus (boomslang), the snake that caused the tragic death of Professor Karl Patterson Schmidt. The ability of CroFab™ antivenom to immunocapture boomslang venom proteins was investigated using antivenomics. Results Transcriptomic-assisted proteomic analysis identified venom proteins belonging to seven protein families: three-finger toxin (3FTx); phospholipase A2 (PLA2); cysteine-rich secretory proteins (CRISP); snake venom (SV) serine proteinase (SP); C-type lectin-like (CTL); SV metalloproteinases (SVMPs); and disintegrin-like/cysteine-rich (DC) proteolytic fragments. CroFab™ antivenom efficiently immunodepleted some boomslang SVMPs. Conclusions The present work is the first to address the overall proteomic profile of D. typus venom. This study allowed us to correlate the toxin composition with the toxic activities of the venom. The antivenomic analysis suggested that the antivenom available at the time of the unfortunate accident could have exhibited at least some immunoreactivity against the boomslang SVMPs responsible for the disseminated intravascular coagulation syndrome that caused K.P. Schmidt's fatal outcome. General significance This study may stimulate further research on other non-front-fanged colubroid snake venoms capable of causing life-threatening envenomings to humans, which in turn should contribute to prevent fatal human accidents, such as that unfortunately suffered by K.P. Schmidt. The venom proteome of Dispholidus typus (boomslang) is reported. Transcriptomic-assisted proteomic analysis identified venom proteins belonging to seven protein families. Boomslang venom proteome is dominated (75%) by snake venom PIII-metalloproteinases (PIII-SVMPs). CroFab™ antivenom efficiently immunodepleted some boomslang PIII-SVMPs.
Collapse
Affiliation(s)
- Davinia Pla
- Laboratorio de Venómica Estructural y Funcional, Instituto de Biomedicina de Valencia, CSIC, Valencia, Spain
| | - Libia Sanz
- Laboratorio de Venómica Estructural y Funcional, Instituto de Biomedicina de Valencia, CSIC, Valencia, Spain
| | - Gareth Whiteley
- Alistair Reid Venom Research Unit, Parasitology Department, Liverpool School of Tropical Medicine, Liverpool, United Kingdom
| | - Simon C Wagstaff
- Bioinformatics Unit, Parasitology Department, Liverpool School of Tropical Medicine, Liverpool, United Kingdom
| | - Robert A Harrison
- Alistair Reid Venom Research Unit, Parasitology Department, Liverpool School of Tropical Medicine, Liverpool, United Kingdom
| | - Nicholas R Casewell
- Alistair Reid Venom Research Unit, Parasitology Department, Liverpool School of Tropical Medicine, Liverpool, United Kingdom.
| | - Juan J Calvete
- Laboratorio de Venómica Estructural y Funcional, Instituto de Biomedicina de Valencia, CSIC, Valencia, Spain.
| |
Collapse
|
44
|
Proteomic analysis to unravel the complex venom proteome of eastern India Naja naja: Correlation of venom composition with its biochemical and pharmacological properties. J Proteomics 2017; 156:29-39. [PMID: 28062377 DOI: 10.1016/j.jprot.2016.12.018] [Citation(s) in RCA: 95] [Impact Index Per Article: 11.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2016] [Revised: 12/27/2016] [Accepted: 12/29/2016] [Indexed: 12/29/2022]
Abstract
The complex venom proteome of the eastern India (EI) spectacled cobra (Naja naja) was analyzed using tandem mass spectrometry of cation-exchange venom fractions. About 75% of EI N. naja venom proteins were <18kDa and cationic at physiological pH of blood. SDS-PAGE (non-reduced) analysis indicated that in the native state venom proteins either interacted with each-other or self-aggregated resulting in the formation of higher molecular mass complexes. Proteomic analysis revealed that 43 enzymatic and non-enzymatic proteins in EI N. naja venom with a percent composition of about 28.4% and 71.6% respectively were distributed over 15 venom protein families. The three finger toxins (63.8%) and phospholipase A2s (11.4%) were the most abundant families of non-enzymatic and enzymatic proteins, respectively. nanoLC-ESI-MS/MS analysis demonstrated the occurrence of acetylcholinesterase, phosphodiesterase, cholinesterase and snake venom serine proteases in N. naja venom previously not detected by proteomic analysis. ATPase, ADPase, hyaluronidase, TAME, and BAEE-esterase activities were detected by biochemical analysis; however, due to a limitation in the protein database depository they were not identified in EI N. naja venom by proteomic analysis. The proteome composition of EI N. naja venom was well correlated with its in vitro and in vivo pharmacological properties in experimental animals and envenomed human. BIOLOGICAL SIGNIFICANCE Proteomic analysis reveals the complex and diverse protein profile of EI N. naja venom which collectively contributes to the severe pathophysiological manifestation upon cobra envenomation. The study has also aided in comprehending the compositional variation in venom proteins of N. naja within the Indian sub-continent. In addition, this study has also identified several enzymes in EI N. naja venom which were previously uncharacterized by proteomic analysis of Naja venom.
Collapse
|
45
|
Zainal Abidin SA, Rajadurai P, Chowdhury MEH, Ahmad Rusmili MR, Othman I, Naidu R. Proteomic Characterization and Comparison of Malaysian Tropidolaemus wagleri and Cryptelytrops purpureomaculatus Venom Using Shotgun-Proteomics. Toxins (Basel) 2016; 8:toxins8100299. [PMID: 27763534 PMCID: PMC5086659 DOI: 10.3390/toxins8100299] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2016] [Revised: 10/11/2016] [Accepted: 10/11/2016] [Indexed: 12/02/2022] Open
Abstract
Tropidolaemus wagleri and Cryptelytrops purpureomaculatus are venomous pit viper species commonly found in Malaysia. Tandem mass spectrometry analysis of the crude venoms has detected different proteins in T. wagleri and C. purpureomaculatus. They were classified into 13 venom protein families consisting of enzymatic and nonenzymatic proteins. Enzymatic families detected in T. wagleri and C. purpureomaculatus venom were snake venom metalloproteinase, phospholipase A2, l-amino acid oxidase, serine proteases, 5′-nucleotidase, phosphodiesterase, and phospholipase B. In addition, glutaminyl cyclotransferase was detected in C. purpureomaculatus. C-type lectin-like proteins were common nonenzymatic components in both species. Waglerin was present and unique to T. wagleri—it was not in C. purpureomaculatus venom. In contrast, cysteine-rich secretory protein, bradykinin-potentiating peptide, and C-type natriuretic peptide were present in C. purpureomaculatus venom. Composition of the venom proteome of T. wagleri and C. purpureomaculatus provides useful information to guide production of effective antivenom and identification of proteins with potential therapeutic applications.
Collapse
Affiliation(s)
- Syafiq Asnawi Zainal Abidin
- Jeffrey Cheah School of Medicine and Health Sciences, Monash University Malaysia, Jalan Lagoon Selatan, Bandar Sunway, Selangor Darul Ehsan 47500, Malaysia.
| | - Pathmanathan Rajadurai
- Jeffrey Cheah School of Medicine and Health Sciences, Monash University Malaysia, Jalan Lagoon Selatan, Bandar Sunway, Selangor Darul Ehsan 47500, Malaysia.
- Ramsay Sime Darby Healthcare, Sime Darby Medical Centre, No. 1, Jalan SS12/1A, Subang Jaya, Selangor Darul Ehsan 47500, Malaysia.
| | - Md Ezharul Hoque Chowdhury
- Jeffrey Cheah School of Medicine and Health Sciences, Monash University Malaysia, Jalan Lagoon Selatan, Bandar Sunway, Selangor Darul Ehsan 47500, Malaysia.
| | - Muhamad Rusdi Ahmad Rusmili
- Kuliyyah of Pharmacy, International Islamic University Malaysia, Kuantan Campus, Bandar Indera Mahkota, Kuantan, Pahang Darul Makmur 25200, Malaysia.
| | - Iekhsan Othman
- Jeffrey Cheah School of Medicine and Health Sciences, Monash University Malaysia, Jalan Lagoon Selatan, Bandar Sunway, Selangor Darul Ehsan 47500, Malaysia.
| | - Rakesh Naidu
- Jeffrey Cheah School of Medicine and Health Sciences, Monash University Malaysia, Jalan Lagoon Selatan, Bandar Sunway, Selangor Darul Ehsan 47500, Malaysia.
| |
Collapse
|
46
|
Huang C, Morlighem JÉR, Zhou H, Lima ÉP, Gomes PB, Cai J, Lou I, Pérez CD, Lee SM, Rádis-Baptista G. The Transcriptome of the Zoanthid Protopalythoa variabilis (Cnidaria, Anthozoa) Predicts a Basal Repertoire of Toxin-like and Venom-Auxiliary Polypeptides. Genome Biol Evol 2016; 8:3045-3064. [PMID: 27566758 PMCID: PMC5630949 DOI: 10.1093/gbe/evw204] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/20/2016] [Indexed: 12/12/2022] Open
Abstract
Protopalythoa is a zoanthid that, together with thousands of predominantly marine species, such as hydra, jellyfish, and sea anemones, composes the oldest eumetazoan phylum, i.e., the Cnidaria. Some of these species, such as sea wasps and sea anemones, are highly venomous organisms that can produce deadly toxins for preying, for defense or for territorial disputes. Despite the fact that hundreds of organic and polypeptide toxins have been characterized from sea anemones and jellyfish, practically nothing is known about the toxin repertoire in zoanthids. Here, based on a transcriptome analysis of the zoanthid Protopalythoa variabilis, numerous predicted polypeptides with canonical venom protein features are identified. These polypeptides comprise putative proteins from different toxin families: neurotoxic peptides, hemostatic and hemorrhagic toxins, membrane-active (pore-forming) proteins, protease inhibitors, mixed-function venom enzymes, and venom auxiliary proteins. The synthesis and functional analysis of two of these predicted toxin products, one related to the ShK/Aurelin family and the other to a recently discovered anthozoan toxin, displayed potent in vivo neurotoxicity that impaired swimming in larval zebrafish. Altogether, the complex array of venom-related transcripts that are identified in P. variabilis, some of which are first reported in Cnidaria, provides novel insight into the toxin distribution among species and might contribute to the understanding of composition and evolution of venom polypeptides in toxiferous animals.
Collapse
Affiliation(s)
- Chen Huang
- State Key Laboratory of Quality Research in Chinese Medicine and Institute of Chinese Medical Sciences, University of Macau, Macau, China
| | - Jean-Étienne Rl Morlighem
- Northeast Biotechnology Network (RENORBIO), Post-graduation program in Biotechnology, Federal University of Ceará, Fortaleza, Brazil Laboratory of Biochemistry and Biotechnology, Institute for Marine Sciences, Federal University of Ceará, Fortaleza, Brazil
| | - Hefeng Zhou
- State Key Laboratory of Quality Research in Chinese Medicine and Institute of Chinese Medical Sciences, University of Macau, Macau, China
| | - Érica P Lima
- Centro Acadêmico de Vitoria, Universidade Federal de Pernambuco, Vitória de Santo Antão, Brazil
| | - Paula B Gomes
- Departamento de Biologia, Universidade Federal Rural de Pernambuco, Recife, Brazil
| | - Jing Cai
- Faculty of Science and Technology, Department of Civil and Environmental Engineering, University of Macau, Macau, China
| | - Inchio Lou
- Faculty of Science and Technology, Department of Civil and Environmental Engineering, University of Macau, Macau, China
| | - Carlos D Pérez
- Centro Acadêmico de Vitoria, Universidade Federal de Pernambuco, Vitória de Santo Antão, Brazil
| | - Simon Ming Lee
- State Key Laboratory of Quality Research in Chinese Medicine and Institute of Chinese Medical Sciences, University of Macau, Macau, China
| | - Gandhi Rádis-Baptista
- Laboratory of Biochemistry and Biotechnology, Institute for Marine Sciences, Federal University of Ceará, Fortaleza, Brazil
| |
Collapse
|
47
|
Shulepko MA, Lyukmanova EN, Shenkarev ZO, Dubovskii PV, Astapova MV, Feofanov AV, Arseniev AS, Utkin YN, Kirpichnikov MP, Dolgikh DA. Towards universal approach for bacterial production of three-finger Ly6/uPAR proteins: Case study of cytotoxin I from cobra N. oxiana. Protein Expr Purif 2016; 130:13-20. [PMID: 27702601 DOI: 10.1016/j.pep.2016.09.021] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2016] [Revised: 09/29/2016] [Accepted: 09/30/2016] [Indexed: 01/26/2023]
Abstract
Cytotoxins or cardiotoxins is a group of polycationic toxins from cobra venom belonging to the 'three-finger' protein superfamily (Ly6/uPAR family) which includes small β-structural proteins (60-90 residues) with high disulfide bond content (4-5 disulfides). Due to a high cytotoxic activity for cancer cells, cytotoxins are considered as potential anticancer agents. Development of the high-throughput production methods is required for the prospective applications of cytotoxins. Here, efficient approach for bacterial production of recombinant analogue of cytotoxin I from N. oxiana containing additional N-terminal Met-residue (rCTX1) was developed. rCTX1 was produced in the form of E. coli inclusion bodies. Refolding in optimized conditions provided ∼6 mg of correctly folded protein from 1 L of bacterial culture. Cytotoxicity of rCTX1 for C6 rat glioma cells was found to be similar to the activity of wild type CTX1. The milligram quantities of 13C,15N-labeled rCTX1 were obtained. NMR study confirmed the similarity of the spatial structures of recombinant and wild-type toxins. Additional Met residue does not perturb the overall structure of the three-finger core. The analysis of available data for different Ly6/uPAR proteins of snake and human origin revealed that efficiency of their folding in vitro is correlated with the number of proline residues in the third loop and the surface area of hydrophobic residues buried within the protein interior. The obtained data indicate that hydrophobic core is important for the folding of proteins with high disulfide bond content. Developed expression method opens new possibilities for structure-function studies of CTX1 and other related three-finger proteins.
Collapse
Affiliation(s)
- M A Shulepko
- Biological Faculty, Lomonosov Moscow State University, 119234, Moscow, Russia; Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, 16/10 Miklukho-Maklaya Street, 117997, Moscow, Russia
| | - E N Lyukmanova
- Biological Faculty, Lomonosov Moscow State University, 119234, Moscow, Russia; Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, 16/10 Miklukho-Maklaya Street, 117997, Moscow, Russia.
| | - Z O Shenkarev
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, 16/10 Miklukho-Maklaya Street, 117997, Moscow, Russia; Moscow Institute of Physics and Technology, Institutskiy Pereulok 9, Dolgoprudny, Moscow Region, 141700, Russia
| | - P V Dubovskii
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, 16/10 Miklukho-Maklaya Street, 117997, Moscow, Russia
| | - M V Astapova
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, 16/10 Miklukho-Maklaya Street, 117997, Moscow, Russia
| | - A V Feofanov
- Biological Faculty, Lomonosov Moscow State University, 119234, Moscow, Russia; Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, 16/10 Miklukho-Maklaya Street, 117997, Moscow, Russia
| | - A S Arseniev
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, 16/10 Miklukho-Maklaya Street, 117997, Moscow, Russia; Moscow Institute of Physics and Technology, Institutskiy Pereulok 9, Dolgoprudny, Moscow Region, 141700, Russia
| | - Y N Utkin
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, 16/10 Miklukho-Maklaya Street, 117997, Moscow, Russia
| | - M P Kirpichnikov
- Biological Faculty, Lomonosov Moscow State University, 119234, Moscow, Russia; Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, 16/10 Miklukho-Maklaya Street, 117997, Moscow, Russia
| | - D A Dolgikh
- Biological Faculty, Lomonosov Moscow State University, 119234, Moscow, Russia; Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, 16/10 Miklukho-Maklaya Street, 117997, Moscow, Russia
| |
Collapse
|
48
|
Rodríguez de la Vega RC, Giraud T. Intragenome Diversity of Gene Families Encoding Toxin-like Proteins in Venomous Animals. Integr Comp Biol 2016; 56:938-949. [PMID: 27543626 DOI: 10.1093/icb/icw097] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
The evolution of venoms is the story of how toxins arise and of the processes that generate and maintain their diversity. For animal venoms these processes include recruitment for expression in the venom gland, neofunctionalization, paralogous expansions, and functional divergence. The systematic study of these processes requires the reliable identification of the venom components involved in antagonistic interactions. High-throughput sequencing has the potential of uncovering the entire set of toxins in a given organism, yet the existence of non-venom toxin paralogs and the misleading effects of partial census of the molecular diversity of toxins make necessary to collect complementary evidence to distinguish true toxins from their non-venom paralogs. Here, we analyzed the whole genomes of two scorpions, one spider and one snake, aiming at the identification of the full repertoires of genes encoding toxin-like proteins. We classified the entire set of protein-coding genes into paralogous groups and monotypic genes, identified genes encoding toxin-like proteins based on known toxin families, and quantified their expression in both venom-glands and pooled tissues. Our results confirm that genes encoding toxin-like proteins are part of multigene families, and that these families arise by recruitment events from non-toxin genes followed by limited expansions of the toxin-like protein coding genes. We also show that failing to account for sequence similarity with non-toxin proteins has a considerable misleading effect that can be greatly reduced by comparative transcriptomics. Our study overall contributes to the understanding of the evolutionary dynamics of proteins involved in antagonistic interactions.
Collapse
Affiliation(s)
- Ricardo C Rodríguez de la Vega
- Ecologie Systematique Evolution, UMR8079, CNRS, Univ. of Paris-Sud, AgroParisTech, Université Paris-Saclay, 91400 Orsay, France
| | - Tatiana Giraud
- Ecologie Systematique Evolution, UMR8079, CNRS, Univ. of Paris-Sud, AgroParisTech, Université Paris-Saclay, 91400 Orsay, France
| |
Collapse
|
49
|
Venomic Analysis of the Poorly Studied Desert Coral Snake, Micrurus tschudii tschudii, Supports the 3FTx/PLA₂ Dichotomy across Micrurus Venoms. Toxins (Basel) 2016; 8:toxins8060178. [PMID: 27338473 PMCID: PMC4926144 DOI: 10.3390/toxins8060178] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2016] [Revised: 05/17/2016] [Accepted: 06/01/2016] [Indexed: 12/11/2022] Open
Abstract
The venom proteome of the poorly studied desert coral snake Micrurus tschudii tschudii was unveiled using a venomic approach, which identified ≥38 proteins belonging to only four snake venom protein families. The three-finger toxins (3FTxs) constitute, both in number of isoforms (~30) and total abundance (93.6% of the venom proteome), the major protein family of the desert coral snake venom. Phospholipases A2 (PLA2s; seven isoforms, 4.1% of the venom proteome), 1–3 Kunitz-type proteins (1.6%), and 1–2 l-amino acid oxidases (LAO, 0.7%) complete the toxin arsenal of M. t. tschudii. Our results add to the growing evidence that the occurrence of two divergent venom phenotypes, i.e., 3FTx- and PLA2-predominant venom proteomes, may constitute a general trend across the cladogenesis of Micrurus. The occurrence of a similar pattern of venom phenotypic variability among true sea snake (Hydrophiinae) venoms suggests that the 3FTx/PLA2 dichotomy may be widely distributed among Elapidae venoms.
Collapse
|
50
|
NETosis and lack of DNase activity are key factors in Echis carinatus venom-induced tissue destruction. Nat Commun 2016; 7:11361. [PMID: 27093631 PMCID: PMC4838891 DOI: 10.1038/ncomms11361] [Citation(s) in RCA: 60] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2015] [Accepted: 03/17/2016] [Indexed: 12/15/2022] Open
Abstract
Indian Echis carinatus bite causes sustained tissue destruction at the bite site. Neutrophils, the major leukocytes in the early defence process, accumulate at the bite site. Here we show that E. carinatus venom induces neutrophil extracellular trap (NET) formation. The NETs block the blood vessels and entrap the venom toxins at the injection site, promoting tissue destruction. The stability of NETs is attributed to the lack of NETs-degrading DNase activity in E. carinatus venom. In a mouse tail model, mice co-injected with venom and DNase 1, and neutropenic mice injected with the venom, do not develop NETs, venom accumulation and tissue destruction at the injected site. Strikingly, venom-induced mice tail tissue destruction is also prevented by the subsequent injection of DNase 1. Thus, our study suggests that DNase 1 treatment may have a therapeutic potential for preventing the tissue destruction caused by snake venom. The saw-scaled viper venom causes continued tissue damage that may cause death. Here the authors show that the venom attracts neutrophils to the bite site and induces neutrophil extracellular traps that capture venom components causing tissue damage, which can be prevented by enzymatic DNA degradation.
Collapse
|