1
|
Madhubala D, Mahato R, Saikia K, Patra A, Fernandes PA, Kumar A, Khan MR, Mukherjee AK. Snake Venom-Inspired Novel Peptides Protect Caenorhabditis elegans against Paraquat-Induced Parkinson's Pathology. ACS Chem Neurosci 2025; 16:1275-1296. [PMID: 40096006 DOI: 10.1021/acschemneuro.4c00576] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/19/2025] Open
Abstract
The in vivo protective mechanisms of two low-molecular-mass (∼1.4 kDa) novel custom peptides (CPs) against paraquat-induced neurodegenerative dysfunction in the Caenorhabditis elegans model were deciphered. CPs prevented the paraquat from binding to the nerve ring adjacent to the pharynx in C. elegans (wild-type) by stable and high-affinity binding to the tyrosine-protein kinase receptor CAM-1, resulting in significant inhibition of paraquat-induced toxicity by reducing the production of reactive oxygen species, mitochondrial membrane depolarization, and chemosensory dysfunction. The CPs inhibited paraquat-induced dopaminergic neuron degeneration and alpha-synuclein protein expression, the hallmarks of Parkinson's disease, in transgenic BZ555 and NL5901 strains of C. elegans. Transcriptomic, functional proteomics, and quantitative reverse transcription-polymerase chain reaction analyses show that CPs prevented the increased expression of the genes involved in the skn-1 downstream pathway, thereby restoring paraquat-mediated oxidative stress, apoptosis, and neuronal damage in C. elegans. The ability of CPs to repair paraquat-induced damage was demonstrated by a network of gene expression profiles, illustrating the molecular relationships between the regulatory proteins.
Collapse
Affiliation(s)
- Dev Madhubala
- Department of Molecular Biology and Biotechnology, School of Sciences, Tezpur University, Tezpur, Assam 784028, India
- Institute of Advanced Studies in Science and Technology, Vigyan Path Garchuk, Paschim Boragaon, Guwahati, Assam 781035, India
| | - Rosy Mahato
- Institute of Advanced Studies in Science and Technology, Vigyan Path Garchuk, Paschim Boragaon, Guwahati, Assam 781035, India
- Faculty of Science, Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, Uttar Pradesh 201002, India
| | - Kangkon Saikia
- Institute of Advanced Studies in Science and Technology, Vigyan Path Garchuk, Paschim Boragaon, Guwahati, Assam 781035, India
| | - Aparup Patra
- Institute of Advanced Studies in Science and Technology, Vigyan Path Garchuk, Paschim Boragaon, Guwahati, Assam 781035, India
| | - Pedro Alexandrino Fernandes
- LAQV@REQUIMTE, Departamento de Química e Bioquímica, Faculdade De Ciências, Universidade do Porto, Rua Do Campo Alegre S/N, Porto 4169-007, Portugal
| | - Arun Kumar
- Institute of Advanced Studies in Science and Technology, Vigyan Path Garchuk, Paschim Boragaon, Guwahati, Assam 781035, India
| | - Mojibur R Khan
- Institute of Advanced Studies in Science and Technology, Vigyan Path Garchuk, Paschim Boragaon, Guwahati, Assam 781035, India
| | - Ashis K Mukherjee
- Department of Molecular Biology and Biotechnology, School of Sciences, Tezpur University, Tezpur, Assam 784028, India
- Institute of Advanced Studies in Science and Technology, Vigyan Path Garchuk, Paschim Boragaon, Guwahati, Assam 781035, India
| |
Collapse
|
2
|
Alves ÁEF, Barros ABC, Silva LCF, Carvalho LMM, Pereira GMA, Uchôa AFC, Barbosa-Filho JM, Silva MS, Luna KPO, Soares KSR, Xavier-Júnior FH. Emerging Trends in Snake Venom-Loaded Nanobiosystems for Advanced Medical Applications: A Comprehensive Overview. Pharmaceutics 2025; 17:204. [PMID: 40006571 PMCID: PMC11858983 DOI: 10.3390/pharmaceutics17020204] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2024] [Revised: 12/24/2024] [Accepted: 01/06/2025] [Indexed: 02/27/2025] Open
Abstract
Advances in medical nanobiotechnology have notably enhanced the application of snake venom toxins, facilitating the development of new therapies with animal-derived toxins. The vast diversity of snake species and their venom complexities underline the need for ongoing research. This review is dedicated to exploring the integration of snake venom with nanoparticles to enable their use in human therapies aiming to develop treatments. The complex mixture of snake venom not only inflicts significant pathological effects but also offers valuable insights for the creation of innovative therapies, particularly in the realm of nanobiotechnology. Nanoscale encapsulation not only mitigates the inherent toxicity of snake venom but also amplifies their antitumoral, antimicrobial, and immunomodulatory properties. The synergy between venom-derived macromolecules and nanotechnology offers a novel pathway for augmenting the efficacy and safety of conventional antivenom therapies, extending their applicability beyond treating bites to potentially addressing a myriad of health issues. In conclusion, nanotechnology presents a compelling therapeutic frontier that promises to improve current treatment modalities and ameliorate the adverse effects associated with venomous snakebites.
Collapse
Affiliation(s)
- Álisson E. F. Alves
- Laboratory of Pharmaceutical Biotechnology (BioTecFarm), Department of Pharmacy, Federal University of Paraíba (UFPB), Campus I-Castelo Branco III., Joao Pessoa 58051-900, PB, Brazil; (Á.E.F.A.); (A.B.C.B.); (L.C.F.S.); (L.M.M.C.); (G.M.A.P.); (A.F.C.U.); (K.S.R.S.)
- Post-Graduated Program in Natural and Synthetic Bioactive Products, Federal University of Paraíba (UFPB), Campus I-Castelo Branco III., Joao Pessoa 58051-900, PB, Brazil; (J.M.B.-F.); (M.S.S.)
| | - Anne B. C. Barros
- Laboratory of Pharmaceutical Biotechnology (BioTecFarm), Department of Pharmacy, Federal University of Paraíba (UFPB), Campus I-Castelo Branco III., Joao Pessoa 58051-900, PB, Brazil; (Á.E.F.A.); (A.B.C.B.); (L.C.F.S.); (L.M.M.C.); (G.M.A.P.); (A.F.C.U.); (K.S.R.S.)
| | - Lindomara C. F. Silva
- Laboratory of Pharmaceutical Biotechnology (BioTecFarm), Department of Pharmacy, Federal University of Paraíba (UFPB), Campus I-Castelo Branco III., Joao Pessoa 58051-900, PB, Brazil; (Á.E.F.A.); (A.B.C.B.); (L.C.F.S.); (L.M.M.C.); (G.M.A.P.); (A.F.C.U.); (K.S.R.S.)
| | - Lucas M. M. Carvalho
- Laboratory of Pharmaceutical Biotechnology (BioTecFarm), Department of Pharmacy, Federal University of Paraíba (UFPB), Campus I-Castelo Branco III., Joao Pessoa 58051-900, PB, Brazil; (Á.E.F.A.); (A.B.C.B.); (L.C.F.S.); (L.M.M.C.); (G.M.A.P.); (A.F.C.U.); (K.S.R.S.)
| | - Graziela M. A. Pereira
- Laboratory of Pharmaceutical Biotechnology (BioTecFarm), Department of Pharmacy, Federal University of Paraíba (UFPB), Campus I-Castelo Branco III., Joao Pessoa 58051-900, PB, Brazil; (Á.E.F.A.); (A.B.C.B.); (L.C.F.S.); (L.M.M.C.); (G.M.A.P.); (A.F.C.U.); (K.S.R.S.)
| | - Ana F. C. Uchôa
- Laboratory of Pharmaceutical Biotechnology (BioTecFarm), Department of Pharmacy, Federal University of Paraíba (UFPB), Campus I-Castelo Branco III., Joao Pessoa 58051-900, PB, Brazil; (Á.E.F.A.); (A.B.C.B.); (L.C.F.S.); (L.M.M.C.); (G.M.A.P.); (A.F.C.U.); (K.S.R.S.)
| | - José M. Barbosa-Filho
- Post-Graduated Program in Natural and Synthetic Bioactive Products, Federal University of Paraíba (UFPB), Campus I-Castelo Branco III., Joao Pessoa 58051-900, PB, Brazil; (J.M.B.-F.); (M.S.S.)
| | - Marcelo S. Silva
- Post-Graduated Program in Natural and Synthetic Bioactive Products, Federal University of Paraíba (UFPB), Campus I-Castelo Branco III., Joao Pessoa 58051-900, PB, Brazil; (J.M.B.-F.); (M.S.S.)
| | - Karla P. O. Luna
- Venomics Laboratory (LabVenom), Center for Biological and Health Sciences, State University of Paraíba (UEPB), Campus I, Bodocongó, Campina Grande 58429-600, PB, Brazil;
| | - Karla S. R. Soares
- Laboratory of Pharmaceutical Biotechnology (BioTecFarm), Department of Pharmacy, Federal University of Paraíba (UFPB), Campus I-Castelo Branco III., Joao Pessoa 58051-900, PB, Brazil; (Á.E.F.A.); (A.B.C.B.); (L.C.F.S.); (L.M.M.C.); (G.M.A.P.); (A.F.C.U.); (K.S.R.S.)
| | - Francisco H. Xavier-Júnior
- Laboratory of Pharmaceutical Biotechnology (BioTecFarm), Department of Pharmacy, Federal University of Paraíba (UFPB), Campus I-Castelo Branco III., Joao Pessoa 58051-900, PB, Brazil; (Á.E.F.A.); (A.B.C.B.); (L.C.F.S.); (L.M.M.C.); (G.M.A.P.); (A.F.C.U.); (K.S.R.S.)
- Post-Graduated Program in Natural and Synthetic Bioactive Products, Federal University of Paraíba (UFPB), Campus I-Castelo Branco III., Joao Pessoa 58051-900, PB, Brazil; (J.M.B.-F.); (M.S.S.)
| |
Collapse
|
3
|
Hemajha L, Singh S, Biji CA, Balde A, Benjakul S, Nazeer RA. A review on inflammation modulating venom proteins/peptide therapeutics and their delivery strategies: A review. Int Immunopharmacol 2024; 142:113130. [PMID: 39278056 DOI: 10.1016/j.intimp.2024.113130] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2024] [Revised: 09/02/2024] [Accepted: 09/06/2024] [Indexed: 09/17/2024]
Abstract
Inflammation is an initial biological reaction that occurs in response to infection caused by foreign pathogens or injury. This process involves a tightly controlled series of signaling events at the molecular and cellular levels, with the ultimate goal of restoring tissue balance and protecting against invading pathogens. Malfunction in the process of inflammation can result in a diverse array of diseases, such as cardiovascular, neurological, and autoimmune disorders. Therefore, the management of inflammation is of utmost importance in modern medicine. Nonsteroidal anti-inflammatory drugs (NSAIDs) and corticosteroids have long been the mainstays of pharmacological treatment for inflammation, effectively alleviating symptoms in many patients. Recently, toxins and venom, formerly seen as mostly harmful to the human body, have been recognized as possible medicinal substances for treating inflammation. Organisms that are venomous, such as spiders, scorpions, snakes, and certain marine species, have developed a wide range of powerful toxins that can effectively disable or discourage predators. Remarkably, the majority of these poisons and venoms consist of proteins and peptides, which are acknowledged as significant bioactive compounds with medicinal potential. The goal of this review is to investigate the medicinal potential of peptides derived from venoms and their complex mechanism of action in suppressing inflammation. This review also discusses various challenges and future prospects for effective venom delivery.
Collapse
Affiliation(s)
- Lakshmikanthan Hemajha
- Biopharmaceuticals Lab, Department of Biotechnology, School of Bioengineering, SRM Institute of Science and Technology, Kattankulathur, Chennai 603203, Tamilnadu, India
| | - Simran Singh
- Biopharmaceuticals Lab, Department of Biotechnology, School of Bioengineering, SRM Institute of Science and Technology, Kattankulathur, Chennai 603203, Tamilnadu, India
| | - Catherin Ann Biji
- Biopharmaceuticals Lab, Department of Biotechnology, School of Bioengineering, SRM Institute of Science and Technology, Kattankulathur, Chennai 603203, Tamilnadu, India
| | - Akshad Balde
- Biopharmaceuticals Lab, Department of Biotechnology, School of Bioengineering, SRM Institute of Science and Technology, Kattankulathur, Chennai 603203, Tamilnadu, India
| | - Soottawat Benjakul
- International Center of Excellence in Seafood Science and Innovation, Faculty of Agro Industry, Prince of Songkla University, Hat Yai, Songkhla 90110, Thailand; Department of Food and Nutrition, Kyung Hee University, Seoul 02447, Republic of Korea
| | - Rasool Abdul Nazeer
- Biopharmaceuticals Lab, Department of Biotechnology, School of Bioengineering, SRM Institute of Science and Technology, Kattankulathur, Chennai 603203, Tamilnadu, India.
| |
Collapse
|
4
|
Zeng FY, Ji RS, Yu XQ, Li YN, Zhang QY, Sun QY. A novel snake venom C-type lectin-like protein modulates blood coagulation by targeting von Willebrand factor and coagulation factor IX. Sci Rep 2024; 14:22962. [PMID: 39362926 PMCID: PMC11450200 DOI: 10.1038/s41598-024-73508-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2024] [Accepted: 09/18/2024] [Indexed: 10/05/2024] Open
Abstract
Snake venom C-type lectin-like proteins (CLPs) belong to the nonenzymatic proteins. To date, no CLP with both platelet and coagulation factors activating activities has been reported. In this study, a novel CLP, termed protocetin, with molecular weight of 29.986 kDa, was purified from the Protobothrops mucrosquamatus venom (PMV). It consists of α- and β-chains, with 67% similarity in their N-terminal sequence. Protocetin activates glycoprotein Ib (GPIb) by binding to von Willebrand factor (vWF), inducing platelet aggregation. It also activates the intrinsic coagulation pathway by binding to coagulation factor IX. After injection of protocetin into mice at dose of 0.5 µg/g or 1.5 µg/g, it resulted in activation of platelets, a notable reduction in platelet count and prolonged tail bleeding time. Additionally, the plasma activated partial thromboplastin time (APTT) was significantly extended, and the fibrinogen concentration was markedly reduced. Thrombelastogram comfirmed the anticoagulation effect of protocetin. Notably, no microthrombosis was observed in tissues of lung, liver and kidney within 1 h after injection of protocetin into the mice at dose of 0.5 µg/g. This study revealed protocetin as a novel CLP from PMV that has dual functions in activating platelet and coagulation factor IX, thereby modulates coagulation in vivo. This work contributes to a better understanding of the structure and function of snake venom CLP.
Collapse
Affiliation(s)
- Fan-Yu Zeng
- State Key Laboratory of Functions and Applications of Medicinal Plants, Guizhou Medical University, Guiyang, 550014, China
- School of Pharmaceutical Sciences, Guizhou Medical University, Guiyang, 550025, China
- Natural Products Research Center of Guizhou Province, Guiyang, 550014, China
| | - Ren-Sheng Ji
- Natural Products Research Center of Guizhou Province, Guiyang, 550014, China
- Engineering Laboratory of Protein Drug in Shandong Province, Shandong New Time Pharmaceutical Co., LTD., Linyi, 273400, China
| | - Xiao-Qin Yu
- State Key Laboratory of Functions and Applications of Medicinal Plants, Guizhou Medical University, Guiyang, 550014, China
- School of Pharmaceutical Sciences, Guizhou Medical University, Guiyang, 550025, China
- Natural Products Research Center of Guizhou Province, Guiyang, 550014, China
| | - Ya-Nan Li
- Natural Products Research Center of Guizhou Province, Guiyang, 550014, China
| | - Qi-Yun Zhang
- State Key Laboratory of Functions and Applications of Medicinal Plants, Guizhou Medical University, Guiyang, 550014, China
- School of Pharmaceutical Sciences, Guizhou Medical University, Guiyang, 550025, China
- Natural Products Research Center of Guizhou Province, Guiyang, 550014, China
| | - Qian-Yun Sun
- State Key Laboratory of Functions and Applications of Medicinal Plants, Guizhou Medical University, Guiyang, 550014, China.
- School of Pharmaceutical Sciences, Guizhou Medical University, Guiyang, 550025, China.
- Natural Products Research Center of Guizhou Province, Guiyang, 550014, China.
| |
Collapse
|
5
|
Kakati H, Patra A, Mukherjee AK. Composition, pharmacology, and pathophysiology of the venom of monocled cobra (Naja kaouthia)- a medically crucial venomous snake of southeast Asia: An updated review. Toxicon 2024; 249:108056. [PMID: 39111718 DOI: 10.1016/j.toxicon.2024.108056] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2024] [Revised: 07/31/2024] [Accepted: 07/31/2024] [Indexed: 08/15/2024]
Abstract
The Monocled Cobra (Naja kaouthia), a category one medically significant snake from the Elapidae family, inflicts severe envenomation in South and Southeast Asian countries. N. kaouthia is distributed throughout the eastern and northeastern parts of India, Nepal, Bangladesh, Myanmar, Thailand, Vietnam, Malaysia, and southwestern China. Envenomation by N. kaouthia is a medical emergency, and the primary clinical symptoms are neurotoxicity and localized tissue destruction. Unfortunately, data on the actual magnitude of N. kaouthia envenomation is scarce due to poor record keeping, lack of diagnostic kits, and region-wise well-coordinated epidemiological surveys. The present review highlights the diversity in the composition of N. Kaouthia venom (NKV) across various geographical regions, as revealed through biochemical and proteomic analyses. The qualitative and quantitative differences in the toxin isoforms result in differences in lethality and pathophysiological manifestation that may limit the effectiveness of antivenom therapy. Studies on commercial polyvalent antivenom (PAV) effectiveness against distinct NKV samples have revealed varying toxicity and enzymatic activity neutralization. Additionally, the identification of snake venom's poorly immunogenic toxins by mass spectrometry, quantification of venom-specific antibodies, and implications for antivenom therapy against snakebites are highlighted. Future directions involve clinical studies on NK envenomation where the snake is frequently encountered and the correlation of this data with NKV composition in that region. For more efficient and superior hospital management of NK envenomation, research should enhance the current immunization procedure to boost the development of antibodies against less immunogenic venom components of this snake.
Collapse
Affiliation(s)
- Hirakjyoti Kakati
- Department of Molecular Biology and Biotechnology, School of Sciences, Tezpur University, Tezpur- 784028, Assam, India
| | - Aparup Patra
- Institute of Advanced Studies in Science and Technology, Vigyan Path Garchuk, Paschim Boragaon, Guwahati-781035, Assam, India; Amrita Research Centre, Amrita Vishwa Vidyapeetham, Faridabad, Haryana, 121002, India
| | - Ashis K Mukherjee
- Department of Molecular Biology and Biotechnology, School of Sciences, Tezpur University, Tezpur- 784028, Assam, India; Institute of Advanced Studies in Science and Technology, Vigyan Path Garchuk, Paschim Boragaon, Guwahati-781035, Assam, India.
| |
Collapse
|
6
|
Xu H, El-Asal S, Zakri H, Mutlaq R, Krikke NTB, Casewell NR, Slagboom J, Kool J. Aligning Post-Column ESI-MS, MALDI-MS, and Coagulation Bioassay Data of Naja spp., Ophiophagus hannah, and Pseudonaja textillis Venoms Chromatographically to Assess MALDI-MS and ESI-MS Complementarity with Correlation of Bioactive Toxins to Mass Spectrometric Data. Toxins (Basel) 2024; 16:379. [PMID: 39330837 PMCID: PMC11435639 DOI: 10.3390/toxins16090379] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2024] [Revised: 08/15/2024] [Accepted: 08/16/2024] [Indexed: 09/28/2024] Open
Abstract
Snakebite is a serious health issue in tropical and subtropical areas of the world and results in various pathologies, such as hemotoxicity, neurotoxicity, and local swelling, blistering, and tissue necrosis around the bite site. These pathologies may ultimately lead to permanent morbidity and may even be fatal. Understanding the chemical and biological properties of individual snake venom toxins is of great importance when developing a newer generation of safer and more effective snakebite treatments. Two main approaches to ionizing toxins prior to mass spectrometry (MS) analysis are electrospray ionization (ESI) and matrix-assisted laser desorption ionization (MALDI). In the present study, we investigated the use of both ESI-MS and MALDI-MS as complementary techniques for toxin characterization in venom research. We applied nanofractionation analytics to separate crude elapid venoms using reversed-phase liquid chromatography (RPLC) and high-resolution fractionation of the eluting toxins into 384-well plates, followed by online LC-ESI-MS measurements. To acquire clear comparisons between the two ionization approaches, offline MALDI-MS measurements were performed on the nanofractionated toxins. For comparison to the LC-ESI-MS data, we created so-called MALDI-MS chromatograms of each toxin. We also applied plasma coagulation assaying on 384-well plates with nanofractionated toxins to demonstrate parallel biochemical profiling within the workflow. The plotting of post-column acquired MALDI-MS data as so-called plotted MALDI-MS chromatograms to directly align the MALDI-MS data with ESI-MS extracted ion chromatograms allows the efficient correlation of intact mass toxin results from the two MS-based soft ionization approaches with coagulation bioassay chromatograms. This facilitates the efficient correlation of chromatographic bioassay peaks with the MS data. The correlated toxin masses from ESI-MS and/or MALDI-MS were all around 6-8 or 13-14 kDa, with one mass around 20 kDa. Between 24 and 67% of the toxins were observed with good intensity from both ionization methods, depending on the venom analyzed. All Naja venoms analyzed presented anticoagulation activity, whereas pro-coagulation was only observed for the Pseudonaja textillis venom. The data of MALDI-MS can provide complementary identification and characterization power for toxin research on elapid venoms next to ESI-MS.
Collapse
Affiliation(s)
- Haifeng Xu
- Amsterdam Institute of Molecular and Life Sciences, Division of BioAnalytical Chemistry, Department of Chemistry and Pharmaceutical Sciences, Faculty of Science, Vrije Universiteit Amsterdam, De Boelelaan 1085, 1081HV Amsterdam, The Netherlands
- Centre for Analytical Sciences Amsterdam (CASA), 1012 WX Amsterdam, The Netherlands
| | - Susan El-Asal
- Amsterdam Institute of Molecular and Life Sciences, Division of BioAnalytical Chemistry, Department of Chemistry and Pharmaceutical Sciences, Faculty of Science, Vrije Universiteit Amsterdam, De Boelelaan 1085, 1081HV Amsterdam, The Netherlands
| | - Hafsa Zakri
- Amsterdam Institute of Molecular and Life Sciences, Division of BioAnalytical Chemistry, Department of Chemistry and Pharmaceutical Sciences, Faculty of Science, Vrije Universiteit Amsterdam, De Boelelaan 1085, 1081HV Amsterdam, The Netherlands
| | - Rama Mutlaq
- Amsterdam Institute of Molecular and Life Sciences, Division of BioAnalytical Chemistry, Department of Chemistry and Pharmaceutical Sciences, Faculty of Science, Vrije Universiteit Amsterdam, De Boelelaan 1085, 1081HV Amsterdam, The Netherlands
| | - Natascha T. B. Krikke
- Amsterdam Institute of Molecular and Life Sciences, Division of BioAnalytical Chemistry, Department of Chemistry and Pharmaceutical Sciences, Faculty of Science, Vrije Universiteit Amsterdam, De Boelelaan 1085, 1081HV Amsterdam, The Netherlands
| | - Nicholas R. Casewell
- Centre for Snakebite Research and Interventions, Department of Tropical Disease Biology, Liverpool School of Tropical Medicine, Liverpool L3 5QA, UK
| | - Julien Slagboom
- Amsterdam Institute of Molecular and Life Sciences, Division of BioAnalytical Chemistry, Department of Chemistry and Pharmaceutical Sciences, Faculty of Science, Vrije Universiteit Amsterdam, De Boelelaan 1085, 1081HV Amsterdam, The Netherlands
- Centre for Analytical Sciences Amsterdam (CASA), 1012 WX Amsterdam, The Netherlands
| | - Jeroen Kool
- Amsterdam Institute of Molecular and Life Sciences, Division of BioAnalytical Chemistry, Department of Chemistry and Pharmaceutical Sciences, Faculty of Science, Vrije Universiteit Amsterdam, De Boelelaan 1085, 1081HV Amsterdam, The Netherlands
- Centre for Analytical Sciences Amsterdam (CASA), 1012 WX Amsterdam, The Netherlands
| |
Collapse
|
7
|
Wang CR, McFarlane LO, Pukala TL. Exploring snake venoms beyond the primary sequence: From proteoforms to protein-protein interactions. Toxicon 2024; 247:107841. [PMID: 38950738 DOI: 10.1016/j.toxicon.2024.107841] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2024] [Revised: 06/26/2024] [Accepted: 06/28/2024] [Indexed: 07/03/2024]
Abstract
Snakebite envenomation has been a long-standing global issue that is difficult to treat, largely owing to the flawed nature of current immunoglobulin-based antivenom therapy and the complexity of snake venoms as sophisticated mixtures of bioactive proteins and peptides. Comprehensive characterisation of venom compositions is essential to better understanding snake venom toxicity and inform effective and rationally designed antivenoms. Additionally, a greater understanding of snake venom composition will likely unearth novel biologically active proteins and peptides that have promising therapeutic or biotechnological applications. While a bottom-up proteomic workflow has been the main approach for cataloguing snake venom compositions at the toxin family level, it is unable to capture snake venom heterogeneity in the form of protein isoforms and higher-order protein interactions that are important in driving venom toxicity but remain underexplored. This review aims to highlight the importance of understanding snake venom heterogeneity beyond the primary sequence, in the form of post-translational modifications that give rise to different proteoforms and the myriad of higher-order protein complexes in snake venoms. We focus on current top-down proteomic workflows to identify snake venom proteoforms and further discuss alternative or novel separation, instrumentation, and data processing strategies that may improve proteoform identification. The current higher-order structural characterisation techniques implemented for snake venom proteins are also discussed; we emphasise the need for complementary and higher resolution structural bioanalytical techniques such as mass spectrometry-based approaches, X-ray crystallography and cryogenic electron microscopy, to elucidate poorly characterised tertiary and quaternary protein structures. We envisage that the expansion of the snake venom characterisation "toolbox" with top-down proteomics and high-resolution protein structure determination techniques will be pivotal in advancing structural understanding of snake venoms towards the development of improved therapeutic and biotechnology applications.
Collapse
Affiliation(s)
- C Ruth Wang
- Discipline of Chemistry, School of Physics, Chemistry and Earth Sciences, The University of Adelaide, Adelaide, 5005, Australia
| | - Lewis O McFarlane
- Discipline of Chemistry, School of Physics, Chemistry and Earth Sciences, The University of Adelaide, Adelaide, 5005, Australia
| | - Tara L Pukala
- Discipline of Chemistry, School of Physics, Chemistry and Earth Sciences, The University of Adelaide, Adelaide, 5005, Australia.
| |
Collapse
|
8
|
Xu H, Mastenbroek J, Krikke NTB, El-Asal S, Mutlaq R, Casewell NR, Slagboom J, Kool J. Nanofractionation Analytics for Comparing MALDI-MS and ESI-MS Data of Viperidae Snake Venom Toxins. Toxins (Basel) 2024; 16:370. [PMID: 39195780 PMCID: PMC11360109 DOI: 10.3390/toxins16080370] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2024] [Revised: 08/06/2024] [Accepted: 08/08/2024] [Indexed: 08/29/2024] Open
Abstract
Worldwide, it is estimated that there are 1.8 to 2.7 million cases of envenoming caused by snakebites. Snake venom is a complex mixture of protein toxins, lipids, small molecules, and salts, with the proteins typically responsible for causing pathology in snakebite victims. For their chemical characterization and identification, analytical methods are required. Reversed-phase liquid chromatography coupled with electrospray ionization mass spectrometry (RP-LC-ESI-MS) is a widely used technique due to its ease of use, sensitivity, and ability to be directly coupled after LC separation. This method allows for the efficient separation of complex mixtures and sensitive detection of analytes. On the other hand, matrix-assisted laser desorption/ionization mass spectrometry (MALDI-MS) is also sometimes used, and though it typically requires additional sample preparation steps, it offers desirable suitability for the analysis of larger biomolecules. In this study, seven medically important viperid snake venoms were separated into their respective venom toxins and measured by ESI-MS. In parallel, using nanofractionation analytics, post-column high-resolution fractionation was used to collect the eluting toxins for further processing for MALDI-MS analysis. Our comparative results showed that the deconvoluted snake venom toxin masses were observed with good sensitivity from both ESI-MS and MALDI-MS approaches and presented overlap in the toxin masses recovered (between 25% and 57%, depending on the venom analyzed). The mass range of the toxins detected in high abundance was between 4 and 28 kDa. In total, 39 masses were found in both the ESI-MS and/or MALDI-MS analyses, with most being between 5 and 9 kDa (46%), 13 and 15 kDa (38%), and 24 and 28 kDa (13%) in size. Next to the post-column MS analyses, additional coagulation bioassaying was performed to demonstrate the parallel post-column assessment of venom activity in the workflow. Most nanofractionated venoms exhibited anticoagulant activity, with three venoms additionally exhibiting toxins with clear procoagulant activity (Bothrops asper, Crotalus atrox, and Daboia russelii) observed post-column. The results of this study highlight the complementarity of ESI-MS and MALDI-MS approaches for characterizing snake venom toxins and provide a complementary overview of defined toxin masses found in a diversity of viper snake venoms.
Collapse
Affiliation(s)
- Haifeng Xu
- Department of Chemistry and Pharmaceutical Sciences, Division of BioAnalytical Chemistry, Faculty of Science, Amsterdam Institute of Molecular and Life Sciences, Vrije Universiteit Amsterdam, De Boelelaan 1085, 1081 HV Amsterdam, The Netherlands
- Centre for Analytical Sciences Amsterdam (CASA), 1012 WX Amsterdam, The Netherlands
| | - Jesse Mastenbroek
- Department of Chemistry and Pharmaceutical Sciences, Division of BioAnalytical Chemistry, Faculty of Science, Amsterdam Institute of Molecular and Life Sciences, Vrije Universiteit Amsterdam, De Boelelaan 1085, 1081 HV Amsterdam, The Netherlands
| | - Natascha T. B. Krikke
- Department of Chemistry and Pharmaceutical Sciences, Division of BioAnalytical Chemistry, Faculty of Science, Amsterdam Institute of Molecular and Life Sciences, Vrije Universiteit Amsterdam, De Boelelaan 1085, 1081 HV Amsterdam, The Netherlands
| | - Susan El-Asal
- Department of Chemistry and Pharmaceutical Sciences, Division of BioAnalytical Chemistry, Faculty of Science, Amsterdam Institute of Molecular and Life Sciences, Vrije Universiteit Amsterdam, De Boelelaan 1085, 1081 HV Amsterdam, The Netherlands
| | - Rama Mutlaq
- Department of Chemistry and Pharmaceutical Sciences, Division of BioAnalytical Chemistry, Faculty of Science, Amsterdam Institute of Molecular and Life Sciences, Vrije Universiteit Amsterdam, De Boelelaan 1085, 1081 HV Amsterdam, The Netherlands
| | - Nicholas R. Casewell
- Centre for Snakebite Research & Interventions, Liverpool School of Tropical Medicine, Liverpool L3 5QA, UK
| | - Julien Slagboom
- Department of Chemistry and Pharmaceutical Sciences, Division of BioAnalytical Chemistry, Faculty of Science, Amsterdam Institute of Molecular and Life Sciences, Vrije Universiteit Amsterdam, De Boelelaan 1085, 1081 HV Amsterdam, The Netherlands
- Centre for Analytical Sciences Amsterdam (CASA), 1012 WX Amsterdam, The Netherlands
| | - Jeroen Kool
- Department of Chemistry and Pharmaceutical Sciences, Division of BioAnalytical Chemistry, Faculty of Science, Amsterdam Institute of Molecular and Life Sciences, Vrije Universiteit Amsterdam, De Boelelaan 1085, 1081 HV Amsterdam, The Netherlands
- Centre for Analytical Sciences Amsterdam (CASA), 1012 WX Amsterdam, The Netherlands
| |
Collapse
|
9
|
Damm M, Karış M, Petras D, Nalbantsoy A, Göçmen B, Süssmuth RD. Venomics and Peptidomics of Palearctic Vipers: A Clade-Wide Analysis of Seven Taxa of the Genera Vipera, Montivipera, Macrovipera, and Daboia across Türkiye. J Proteome Res 2024; 23:3524-3541. [PMID: 38980134 PMCID: PMC11301686 DOI: 10.1021/acs.jproteome.4c00171] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2024] [Revised: 05/21/2024] [Accepted: 06/28/2024] [Indexed: 07/10/2024]
Abstract
Snake venom variations are a crucial factor to understand the consequences of snakebite envenoming worldwide, and therefore it is important to know about toxin composition alterations between taxa. Palearctic vipers of the genera Vipera, Montivipera, Macrovipera, and Daboia have high medical impacts across the Old World. One hotspot for their occurrence and diversity is Türkiye, located on the border between continents, but many of their venoms remain still understudied. Here, we present the venom compositions of seven Turkish viper taxa. By complementary mass spectrometry-based bottom-up and top-down workflows, the venom profiles were investigated on proteomics and peptidomics level. This study includes the first venom descriptions of Vipera berus barani, Vipera darevskii, Montivipera bulgardaghica albizona, and Montivipera xanthina, as well as the first snake venomics profiles of Turkish Macrovipera lebetinus obtusa, and Daboia palaestinae, including an in-depth reanalysis of M. bulgardaghica bulgardaghica venom. Additionally, we identified the modular consensus sequence pEXW(PZ)1-2P(EI)/(KV)PPLE for bradykinin-potentiating peptides in viper venoms. For better insights into variations and potential impacts of medical significance, the venoms were compared against other Palearctic viper proteomes, including the first genus-wide Montivipera venom comparison. This will help the risk assessment of snakebite envenoming by these vipers and aid in predicting the venoms' pathophysiology and clinical treatments.
Collapse
Affiliation(s)
- Maik Damm
- Institut
für Chemie, Technische Universität Berlin, Straße des 17. Juni 135, 10623 Berlin, Germany
- LOEWE-Centre
for Translational Biodiversity Genomics, Senckenberganlage 25, 60325 Frankfurt am Main, Germany
- Institute
for Insect Biotechnology, Justus-Liebig
University Giessen, Heinrich-Buff-Ring
26-32, 35392 Gießen, Germany
| | - Mert Karış
- Program
of Laboratory Technology, Department of Chemistry and Chemical Process
Technologies, Acıgöl Vocational School of Technical Sciences, Nevşehir Hacı Bektaş Veli University, Acıgöl, 50140 Nevşehir, Türkiye
| | - Daniel Petras
- Department
of Biochemistry, University of California
Riverside, 169 Aberdeen
Dr, Riverside, California 92507, United States
- Interfaculty
Institute of Microbiology and Infection Medicine, University of Tuebingen, Auf der Morgenstelle 24, 72076 Tuebingen, Germany
| | - Ayse Nalbantsoy
- Department
of Bioengineering, Faculty of Engineering, Ege University, Bornova, 35100 Izmir, Türkiye
| | - Bayram Göçmen
- Zoology
Section, Department of Biology, Faculty of Science, Ege University, Bornova, 35100 Izmir, Türkiye
| | - Roderich D. Süssmuth
- Institut
für Chemie, Technische Universität Berlin, Straße des 17. Juni 135, 10623 Berlin, Germany
| |
Collapse
|
10
|
McFarlane LO, Pukala TL. Proteomic Investigation of Cape Cobra ( Naja nivea) Venom Reveals First Evidence of Quaternary Protein Structures. Toxins (Basel) 2024; 16:63. [PMID: 38393141 PMCID: PMC10892407 DOI: 10.3390/toxins16020063] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2023] [Revised: 01/10/2024] [Accepted: 01/19/2024] [Indexed: 02/25/2024] Open
Abstract
Naja nivea (N. nivea) is classed as a category one snake by the World Health Organization since its envenomation causes high levels of mortality and disability annually. Despite this, there has been little research into the venom composition of N. nivea, with only one full venom proteome published to date. Our current study separated N. nivea venom using size exclusion chromatography before utilizing a traditional bottom-up proteomics approach to unravel the composition of the venom proteome. As expected by its clinical presentation, N. nivea venom was found to consist mainly of neurotoxins, with three-finger toxins (3FTx), making up 76.01% of the total venom proteome. Additionally, cysteine-rich secretory proteins (CRISPs), vespryns (VESPs), cobra venom factors (CVFs), 5'-nucleotidases (5'NUCs), nerve growth factors (NGFs), phospholipase A2s (PLA2), acetylcholinesterases (AChEs), Kunitz-type serine protease inhibitor (KUN), phosphodiesterases (PDEs), L-amino acid oxidases (LAAOs), hydrolases (HYDs), snake venom metalloproteinases (SVMPs), and snake venom serine protease (SVSP) toxins were also identified in decreasing order of abundance. Interestingly, contrary to previous reports, we find PLA2 toxins in N. nivea venom. This highlights the importance of repeatedly profiling the venom of the same species to account for intra-species variation. Additionally, we report the first evidence of covalent protein complexes in N. nivea venom, which likely contribute to the potency of this venom.
Collapse
Affiliation(s)
| | - Tara L. Pukala
- Department of Chemistry, The University of Adelaide, Adelaide 5005, Australia;
| |
Collapse
|
11
|
Kancha MM, Mehrabi M, Bitaraf FS, Vahedi H, Alizadeh M, Bernkop-Schnürch A. Preparation, Characterization, and Anticancer Activity Assessment of Chitosan/TPP Nanoparticles Loaded with Echis carinatus Venom. Anticancer Agents Med Chem 2024; 24:533-543. [PMID: 38243949 DOI: 10.2174/0118715206279731231129105221] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2023] [Revised: 10/22/2023] [Accepted: 11/07/2023] [Indexed: 01/22/2024]
Abstract
AIMS AND BACKGROUND Echis carinatus venom is a toxic substance naturally produced by special glands in this snake species. Alongside various toxic properties, this venom has been used for its therapeutic effects, which are applicable in treating various cancers (liver, breast, etc.). OBJECTIVE Nanotechnology-based drug delivery systems are suitable for protecting Echis carinatus venom against destruction and unwanted absorption. They can manage its controlled transfer and absorption, significantly reducing side effects. METHODS In the present study, chitosan nanoparticles were prepared using the ionotropic gelation method with emulsion cross-linking. The venom's encapsulation efficiency, loading capacity, and release rate were calculated at certain time points. Moreover, the nanoparticles' optimal formulation and cytotoxic effects were determined using the MTT assay. RESULTS The optimized nanoparticle formulation increases cell death induction in various cancerous cell lines. Moreover, chitosan nanoparticles loaded with Echis carinatus venom had a significant rate of cytotoxicity against cancer cells. CONCLUSION It is proposed that this formulation may act as a suitable candidate for more extensive assessments of cancer treatment using nanotechnology-based drug delivery systems.
Collapse
Affiliation(s)
- Maral Mahboubi Kancha
- Student Research Committee, School of Medicine, Shahroud University of Medical Sciences, Shahroud, Iran
- Department of Medical Nanotechnology, School of Medicine, Shahroud University of Medical Sciences, Shahroud, Iran
| | - Mohsen Mehrabi
- Department of Medical Nanotechnology, School of Medicine, Shahroud University of Medical Sciences, Shahroud, Iran
| | - Fatemeh Sadat Bitaraf
- Department of Medical Biotechnology, School of Medicine, Shahroud University of Medical Sciences, Shahroud, Iran
| | - Hamid Vahedi
- Department of Gastroenterology, School of Medicine, Shahroud University of Medical Sciences, Shahroud, Iran
- Clinical Research Development Unit, Imam Hossein Hospital, Shahroud University of Medical Sciences, Shahroud, Iran
| | - Morteza Alizadeh
- Department of Tissue Engineering, School of Medicine, Shahroud University of Medical Sciences, Shahroud, Iran
| | - Andreas Bernkop-Schnürch
- Department of Pharmaceutical Technology, University of Innsbruck, Institute of Pharmacy, Center for Chemistry and Biomedicine, 6020, Innsbruck, Austria
| |
Collapse
|
12
|
Phan P, Deshwal A, McMahon TA, Slikas M, Andrews E, Becker B, Kumar TKS. A Review of Rattlesnake Venoms. Toxins (Basel) 2023; 16:2. [PMID: 38276526 PMCID: PMC10818703 DOI: 10.3390/toxins16010002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2023] [Revised: 12/08/2023] [Accepted: 12/12/2023] [Indexed: 01/27/2024] Open
Abstract
Venom components are invaluable in biomedical research owing to their specificity and potency. Many of these components exist in two genera of rattlesnakes, Crotalus and Sistrurus, with high toxicity and proteolytic activity variation. This review focuses on venom components within rattlesnakes, and offers a comparison and itemized list of factors dictating venom composition, as well as presenting their known characteristics, activities, and significant applications in biosciences. There are 64 families and subfamilies of proteins present in Crotalus and Sistrurus venom. Snake venom serine proteases (SVSP), snake venom metalloproteases (SVMP), and phospholipases A2 (PLA2) are the standard components in Crotalus and Sistrurus venom. Through this review, we highlight gaps in the knowledge of rattlesnake venom; there needs to be more information on the venom composition of three Crotalus species and one Sistrurus subspecies. We discuss the activity and importance of both major and minor components in biomedical research and drug development.
Collapse
Affiliation(s)
- Phuc Phan
- Department of Chemistry and Biochemistry, University of Arkansas, Fayetteville, AR 72701, USA;
| | - Anant Deshwal
- Department of Biology, Bradley University, Peoria, IL 61625, USA; (T.A.M.); (M.S.); (E.A.)
| | - Tyler Anthony McMahon
- Department of Biology, Bradley University, Peoria, IL 61625, USA; (T.A.M.); (M.S.); (E.A.)
| | - Matthew Slikas
- Department of Biology, Bradley University, Peoria, IL 61625, USA; (T.A.M.); (M.S.); (E.A.)
| | - Elodie Andrews
- Department of Biology, Bradley University, Peoria, IL 61625, USA; (T.A.M.); (M.S.); (E.A.)
| | - Brian Becker
- Department of Biological Sciences, University of Arkansas, Fayetteville, AR 72701, USA;
| | | |
Collapse
|
13
|
Abu Aisheh M, Kayili HM, Numanoglu Cevik Y, Kanat MA, Salih B. Composition characterization of various viperidae snake venoms using MS-based proteomics N-glycoproteomics and N-glycomics. Toxicon 2023; 235:107328. [PMID: 37884129 DOI: 10.1016/j.toxicon.2023.107328] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2023] [Revised: 10/03/2023] [Accepted: 10/18/2023] [Indexed: 10/28/2023]
Abstract
Viperidae snake species is widely abundant and responsible for most envenomation cases in Turkey. The structural and compositional profiles of snake venom have been investigated to study the venom component variation across different species and to profile the venom biological activity variation against prey. In this context, we used proteomics, glycoproteomics and glycomics strategies to characterize the protein, glycoproteins and glycan structural and compositional profiles of various snake venoms in the Viperidae family. Moreover, we compared these profiles using the downstream bioinformatics and machine learning classification modules. The overall mass spectrometry profiles identified 144 different proteins, 36 glycoproteins and 78 distinct N-glycan structures varying in composition across the five venoms. A high amount of the characterized proteins belongs to the glycosylated protein family Trypsin-like serine protease (Tryp_SPc), Disintegrin (DISIN), and ADAM Cysteine-Rich (ACR). Most identified N-glycans have a complex chain carrying galactosylated N-glycans abundantly. The glycan composition data obtained from glycoproteomics aligns consistently with the findings from glycomics. The clustering and principal component analyses (PCA) illustrated the composition-based similarities and differences between each snake venom species' proteome, glycoproteome and glycan profiles. Specifically, the N-glycan profiles of M. xanthina (Mx) and V. a. ammodytes (Vaa) venoms were identical and difficult to differentiate; in contrast, their proteome profiles were distinct. Interestingly, the variety of the proteins across the species highlighted the impact of glycosylation on the diversity of the glycosylated protein families. This proposed high throughput approach provides accurate and comprehensive profiles of the composition and function of various Viperidae snake venoms.
Collapse
Affiliation(s)
- Marwa Abu Aisheh
- Department of Chemistry, Faculty of Science, Hacettepe University, 06800, Ankara, Turkey
| | - Haci Mehmet Kayili
- Department of Medical Engineering, Faculty of Engineering, Karabük University, 78000, Karabük, Turkey
| | - Yasemin Numanoglu Cevik
- Microbiology Reference Laboratory, Turkish Public Health Institute, Ministery of Health, 06430, Ankara, Turkey
| | - Mehmet Ali Kanat
- Microbiology and Reference Laboratory and Biological Products Department, General Directorate of Public Health, Minister of Health, 06430, Ankara, Turkey
| | - Bekir Salih
- Department of Chemistry, Faculty of Science, Hacettepe University, 06800, Ankara, Turkey.
| |
Collapse
|
14
|
Messadi E. Snake Venom Components as Therapeutic Drugs in Ischemic Heart Disease. Biomolecules 2023; 13:1539. [PMID: 37892221 PMCID: PMC10605524 DOI: 10.3390/biom13101539] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2023] [Revised: 09/18/2023] [Accepted: 09/27/2023] [Indexed: 10/29/2023] Open
Abstract
Ischemic heart disease (IHD), especially myocardial infarction (MI), is a leading cause of death worldwide. Although coronary reperfusion is the most straightforward treatment for limiting the MI size, it has nevertheless been shown to exacerbate ischemic myocardial injury. Therefore, identifying and developing therapeutic strategies to treat IHD is a major medical challenge. Snake venoms contain biologically active proteins and peptides that are of major interest for pharmacological applications in the cardiovascular system (CVS). This has led to their use for the development and design of new drugs, such as the first-in-class angiotensin-converting enzyme inhibitor captopril, developed from a peptide present in Bothrops jararaca snake venom. This review discusses the potential usefulness of snake venom toxins for developing effective treatments against IHD and related diseases such as hypertension and atherosclerosis. It describes their biological effects at the molecular scale, their mechanisms of action according to their different pharmacological properties, as well as their subsequent molecular pathways and therapeutic targets. The molecules reported here have either been approved for human medical use and are currently available on the drug market or are still in the clinical or preclinical developmental stages. The information summarized here may be useful in providing insights into the development of future snake venom-derived drugs.
Collapse
Affiliation(s)
- Erij Messadi
- Plateforme de Physiologie et Physiopathologie Cardiovasculaires (P2C), Laboratoire des Biomolécules, Venins et Applications Théranostiques (LR20IPT01), Institut Pasteur de Tunis, Université Tunis El Manar, Tunis 1068, Tunisia
| |
Collapse
|
15
|
Bhattacharya N, Kolvekar N, Mondal S, Sarkar A, Chakrabarty D. Biological activities of Vipegrin, an anti-adhesive Kunitz-type serine proteinase inhibitor purified from Russell's viper venom. Toxicon 2023:107213. [PMID: 37419286 DOI: 10.1016/j.toxicon.2023.107213] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2023] [Revised: 07/01/2023] [Accepted: 07/04/2023] [Indexed: 07/09/2023]
Abstract
Vipegrin is a 6.8 kDa protein purified from Russell's viper (Vipera russelii russelii) venom. Structural assessment of Vipegrin indicates that it is a Kunitz-type serine proteinase inhibitor. Kunitz-type serine proteinase inhibitors are non-enzymatic proteins and are ubiquitous constituents of viper venoms. Vipegrin could partially (43%) inhibit the catalytic activity of trypsin. It has disintegrin-like properties and could inhibit collagen and ADP-induced platelet aggregation in a dose-dependent manner. Vipegrin is cytotoxic to human breast cancer cells, MCF7 and restricts its invasive property. Confocal microscopic analysis revealed that Vipegrin could induce apoptosis in MCF7 cells. Vipegrin disrupts cell-cell adhesion of human breast cancer MCF7 cells through its disintegrin-like activity. It also causes cell-matrix disruption of MCF7 cells from synthetic (poly L-lysine) and natural (fibronectin, laminin) matrices. Vipegrin did not cause cytotoxicity on non-cancerous HaCaT, human keratinocytes. The observed properties indicate that Vipegrin may help the development of a potent anti-cancer drug in future.
Collapse
Affiliation(s)
| | - Nivedita Kolvekar
- Birla Institute of Technology and Science, Pilani K K Birla Goa Campus, India
| | - Sukanta Mondal
- Birla Institute of Technology and Science, Pilani K K Birla Goa Campus, India
| | - Angshuman Sarkar
- Birla Institute of Technology and Science, Pilani K K Birla Goa Campus, India
| | - Dibakar Chakrabarty
- Birla Institute of Technology and Science, Pilani K K Birla Goa Campus, India.
| |
Collapse
|
16
|
Madhubala D, Patra A, Islam T, Saikia K, Khan MR, Ahmed SA, Borah JC, Mukherjee AK. Snake venom nerve growth factor-inspired designing of novel peptide therapeutics for the prevention of paraquat-induced apoptosis, neurodegeneration, and alteration of metabolic pathway genes in the rat pheochromocytoma PC-12 cell. Free Radic Biol Med 2023; 197:23-45. [PMID: 36669545 DOI: 10.1016/j.freeradbiomed.2023.01.019] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/27/2022] [Revised: 01/03/2023] [Accepted: 01/16/2023] [Indexed: 01/19/2023]
Abstract
Neurodegenerative disorders (ND), associated with the progressive loss of neurons, oxidative stress-mediated production of reactive oxygen species (ROS), and mitochondrial dysfunction, can be treated with synthetic peptides possessing innate neurotrophic effects and neuroprotective activity. Computational analysis of two small synthetic peptides (trideca-neuropeptide, TNP; heptadeca-neuropeptide, HNP) developed from the nerve growth factors from snake venoms predicted their significant interaction with the human TrkA receptor (TrkA). In silico results were validated by an in vitro binding study of the FITC-conjugated custom peptides to rat pheochromocytoma PC-12 cell TrkA receptors. Pre-treatment of PC-12 cells with TNP and HNP induced neuritogenesis and significantly reduced the paraquat (PT)-induced cellular toxicity, the release of lactate dehydrogenase from the cell cytoplasm, production of intracellular ROS, restored the level of antioxidants, prevented alteration of mitochondrial transmembrane potential (ΔΨm) and adenosine triphosphate (ATP) production, and inhibited cellular apoptosis. These peptides lack in vitro cytotoxicity, haemolytic activity, and platelet-modulating properties and do not interfere with the blood coagulation system. Functional proteomic analyses demonstrated the reversal of PT-induced upregulated and downregulated metabolic pathway genes in PC-12 cells that were pre-treated with HNP and revealed the metabolic pathways regulated by HNP to induce neuritogenesis and confer protection against PT-induced neuronal damage in PC-12. The quantitative RT-PCR analysis confirmed that the PT-induced increased and decreased expression of critical pro-apoptotic and anti-apoptotic genes had been restored in the PC-12 cells pre-treated with the custom peptides. A network gene expression profile was proposed to elucidate the molecular interactions among the regulatory proteins for HNP to salvage the PT-induced damage. Taken together, our results show how the peptides can rescue PT-induced oxidative stress, mitochondrial dysfunction, and cellular death and suggest new opportunities for developing neuroprotective drugs.
Collapse
Affiliation(s)
- Dev Madhubala
- Microbial Biotechnology and Protein Research Laboratory, Department of Molecular Biology and Biotechnology, School of Sciences, Tezpur University, Tezpur, 784028, Assam, India; Microbial Biotechnology and Protein Research Laboratory, Institute of Advanced Studies in Science and Technology, Vigyan Path Garchuk, Paschim Boragaon, Guwahati, 781035, Assam, India
| | - Aparup Patra
- Microbial Biotechnology and Protein Research Laboratory, Institute of Advanced Studies in Science and Technology, Vigyan Path Garchuk, Paschim Boragaon, Guwahati, 781035, Assam, India
| | - Taufikul Islam
- Microbial Biotechnology and Protein Research Laboratory, Department of Molecular Biology and Biotechnology, School of Sciences, Tezpur University, Tezpur, 784028, Assam, India
| | - Kangkon Saikia
- Microbial Biotechnology and Protein Research Laboratory, Institute of Advanced Studies in Science and Technology, Vigyan Path Garchuk, Paschim Boragaon, Guwahati, 781035, Assam, India
| | - Mojibur R Khan
- Microbial Biotechnology and Protein Research Laboratory, Institute of Advanced Studies in Science and Technology, Vigyan Path Garchuk, Paschim Boragaon, Guwahati, 781035, Assam, India
| | - Semim Akhtar Ahmed
- Microbial Biotechnology and Protein Research Laboratory, Institute of Advanced Studies in Science and Technology, Vigyan Path Garchuk, Paschim Boragaon, Guwahati, 781035, Assam, India
| | - Jagat C Borah
- Microbial Biotechnology and Protein Research Laboratory, Institute of Advanced Studies in Science and Technology, Vigyan Path Garchuk, Paschim Boragaon, Guwahati, 781035, Assam, India
| | - Ashis K Mukherjee
- Microbial Biotechnology and Protein Research Laboratory, Department of Molecular Biology and Biotechnology, School of Sciences, Tezpur University, Tezpur, 784028, Assam, India; Microbial Biotechnology and Protein Research Laboratory, Institute of Advanced Studies in Science and Technology, Vigyan Path Garchuk, Paschim Boragaon, Guwahati, 781035, Assam, India.
| |
Collapse
|
17
|
Offor BC, Muller B, Piater LA. A Review of the Proteomic Profiling of African Viperidae and Elapidae Snake Venoms and Their Antivenom Neutralisation. Toxins (Basel) 2022; 14:723. [PMID: 36355973 PMCID: PMC9694588 DOI: 10.3390/toxins14110723] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2022] [Revised: 10/17/2022] [Accepted: 10/20/2022] [Indexed: 11/06/2022] Open
Abstract
Snakebite envenoming is a neglected tropical disease (NTD) that results from the injection of snake venom of a venomous snake into animals and humans. In Africa (mainly in sub-Saharan Africa), over 100,000 envenomings and over 10,000 deaths per annum from snakebite have been reported. Difficulties in snakebite prevention and antivenom treatment are believed to result from a lack of epidemiological data and underestimated figures on snakebite envenoming-related morbidity and mortality. There are species- and genus-specific variations associated with snake venoms in Africa and across the globe. These variations contribute massively to diverse differences in venom toxicity and pathogenicity that can undermine the efficacy of adopted antivenom therapies used in the treatment of snakebite envenoming. There is a need to profile all snake venom proteins of medically important venomous snakes endemic to Africa. This is anticipated to help in the development of safer and more effective antivenoms for the treatment of snakebite envenoming within the continent. In this review, the proteomes of 34 snake venoms from the most medically important snakes in Africa, namely the Viperidae and Elipdae, were extracted from the literature. The toxin families were grouped into dominant, secondary, minor, and others based on the abundance of the protein families in the venom proteomes. The Viperidae venom proteome was dominated by snake venom metalloproteinases (SVMPs-41%), snake venom serine proteases (SVSPs-16%), and phospholipase A2 (PLA2-17%) protein families, while three-finger toxins (3FTxs-66%) and PLA2s (16%) dominated those of the Elapidae. We further review the neutralisation of these snake venoms by selected antivenoms widely used within the African continent. The profiling of African snake venom proteomes will aid in the development of effective antivenom against snakebite envenoming and, additionally, could possibly reveal therapeutic applications of snake venom proteins.
Collapse
Affiliation(s)
- Benedict C. Offor
- Department of Biochemistry, Faculty of Science, University of Johannesburg, Auckland Park 2006, South Africa
| | - Beric Muller
- South Africa Venom Suppliers CC, Louis Trichardt 0920, South Africa
| | - Lizelle A. Piater
- Department of Biochemistry, Faculty of Science, University of Johannesburg, Auckland Park 2006, South Africa
| |
Collapse
|
18
|
Joglekar AV, Dehari D, Anjum MM, Dulla N, Chaudhuri A, Singh S, Agrawal AK. Therapeutic potential of venom peptides: insights in the nanoparticle-mediated venom formulations. FUTURE JOURNAL OF PHARMACEUTICAL SCIENCES 2022. [DOI: 10.1186/s43094-022-00415-7] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Abstract
Background
Venoms are the secretions produced by animals, generally for the purpose of self-defense or catching a prey. Biochemically venoms are mainly composed of proteins, lipids, carbohydrates, ions, etc., and classified into three major classes, viz. neurotoxic, hemotoxic and cytotoxic based upon their mode of action. Venoms are composed of different specific peptides/toxins which are responsible for their unique biological actions. Though venoms are generally seen as a source of death, scientifically venom is a complex biochemical substance having a specific pharmacologic action which can be used as agents to diagnose and cure a variety of diseases in humans.
Main body
Many of these venoms have been used since centuries, and their specified therapies can also be found in ancient texts such as Charka Samhita. The modern-day example of such venom therapeutic is captopril, an antihypertensive drug developed from venom of Bothrops jararaca. Nanotechnology is a modern-day science of building materials on a nanoscale with advantages like target specificity, increased therapeutic response and diminished side effects. In the present review we have introduced the venom, sources and related constituents in brief, by highlighting the therapeutic potential of venom peptides and focusing more on the nanoformulations-based approaches. This review is an effort to compile all such report to have an idea about the future direction about the nanoplatforms which should be focused to have more clinically relevant formulations for difficult to treat diseases.
Conclusion
Venom peptides which are fatal in nature if used cautiously and effectively can save life. Several research findings suggested that many of the fatal diseases can be effectively treated with venom peptides. Nanotechnology has emerged as novel strategy in diagnosis, treatment and mitigation of diseases in more effective ways. A variety of nanoformulation approaches have been explored to enhance the therapeutic efficacy and reduce the toxicity and targeted delivery of the venom peptide conjugated with it. We concluded that venom peptides along with nanoparticles can evolve as the new era for potential treatments of ongoing and untreatable diseases.
Graphical Abstract
Collapse
|
19
|
Oliveira AL, Viegas MF, da Silva SL, Soares AM, Ramos MJ, Fernandes PA. The chemistry of snake venom and its medicinal potential. Nat Rev Chem 2022; 6:451-469. [PMID: 35702592 PMCID: PMC9185726 DOI: 10.1038/s41570-022-00393-7] [Citation(s) in RCA: 127] [Impact Index Per Article: 42.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/26/2022] [Indexed: 12/15/2022]
Abstract
The fascination and fear of snakes dates back to time immemorial, with the first scientific treatise on snakebite envenoming, the Brooklyn Medical Papyrus, dating from ancient Egypt. Owing to their lethality, snakes have often been associated with images of perfidy, treachery and death. However, snakes did not always have such negative connotations. The curative capacity of venom has been known since antiquity, also making the snake a symbol of pharmacy and medicine. Today, there is renewed interest in pursuing snake-venom-based therapies. This Review focuses on the chemistry of snake venom and the potential for venom to be exploited for medicinal purposes in the development of drugs. The mixture of toxins that constitute snake venom is examined, focusing on the molecular structure, chemical reactivity and target recognition of the most bioactive toxins, from which bioactive drugs might be developed. The design and working mechanisms of snake-venom-derived drugs are illustrated, and the strategies by which toxins are transformed into therapeutics are analysed. Finally, the challenges in realizing the immense curative potential of snake venom are discussed, and chemical strategies by which a plethora of new drugs could be derived from snake venom are proposed.
Collapse
Affiliation(s)
- Ana L. Oliveira
- Department of Chemistry and Biochemistry, Faculty of Sciences, University of Porto, Porto, Portugal
- LAQV/Requimte, University of Porto, Porto, Portugal
| | - Matilde F. Viegas
- Department of Chemistry and Biochemistry, Faculty of Sciences, University of Porto, Porto, Portugal
- LAQV/Requimte, University of Porto, Porto, Portugal
| | - Saulo L. da Silva
- Department of Chemistry and Biochemistry, Faculty of Sciences, University of Porto, Porto, Portugal
- LAQV/Requimte, University of Porto, Porto, Portugal
| | - Andreimar M. Soares
- Biotechnology Laboratory for Proteins and Bioactive Compounds from the Western Amazon, Oswaldo Cruz Foundation, National Institute of Epidemiology in the Western Amazon (INCT-EpiAmO), Porto Velho, Brazil
- Sao Lucas Universitary Center (UniSL), Porto Velho, Brazil
| | - Maria J. Ramos
- Department of Chemistry and Biochemistry, Faculty of Sciences, University of Porto, Porto, Portugal
- LAQV/Requimte, University of Porto, Porto, Portugal
| | - Pedro A. Fernandes
- Department of Chemistry and Biochemistry, Faculty of Sciences, University of Porto, Porto, Portugal
- LAQV/Requimte, University of Porto, Porto, Portugal
| |
Collapse
|
20
|
|
21
|
Abstract
The venom glands of reptiles, particularly those of front-fanged advanced snakes, must satisfy conflicting biological demands: rapid synthesis of potentially labile and highly toxic proteins, storage in the gland lumen for long periods, stabilization of the stored secretions, immediate activation of toxins upon deployment and protection of the animal from the toxic effects of its own venom. This dynamic system could serve as a model for the study of a variety of different phenomena involving exocrine gland activation, protein synthesis, stabilization of protein products and secretory mechanisms. However, these studies have been hampered by a lack of a long-term model that can be propagated in the lab (as opposed to whole-animal studies). Numerous attempts have been made to extend the lifetime of venom gland secretory cells, but only recently has an organoid model been shown to have the requisite qualities of recapitulation of the native system, self-propagation and long-term viability (>1 year). A tractable model is now available for myriad cell- and molecular-level studies of venom glands, protein synthesis and secretion. However, venom glands of reptiles are not identical, and many differ very extensively in overall architecture, microanatomy and protein products produced. This Review summarizes the similarities among and differences between venom glands of helodermatid lizards and of rear-fanged and front-fanged snakes, highlighting those areas that are well understood and identifying areas where future studies can fill in significant gaps in knowledge of these ancient, yet fascinating systems.
Collapse
Affiliation(s)
- Stephen P Mackessy
- School of Biological Sciences, University of Northern Colorado, 501 20th St., CB 92, Greeley, CO 80639-0017, USA
| |
Collapse
|
22
|
Khamtorn P, Peigneur S, Amorim FG, Quinton L, Tytgat J, Daduang S. De Novo Transcriptome Analysis of the Venom of Latrodectus geometricus with the Discovery of an Insect-Selective Na Channel Modulator. Molecules 2021; 27:molecules27010047. [PMID: 35011282 PMCID: PMC8746590 DOI: 10.3390/molecules27010047] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2021] [Revised: 12/17/2021] [Accepted: 12/20/2021] [Indexed: 12/04/2022] Open
Abstract
The brown widow spider, Latrodectus geometricus, is a predator of a variety of agricultural insects and is also hazardous for humans. Its venom is a true pharmacopeia representing neurotoxic peptides targeting the ion channels and/or receptors of both vertebrates and invertebrates. The lack of transcriptomic information, however, limits our knowledge of the diversity of components present in its venom. The purpose of this study was two-fold: (1) carry out a transcriptomic analysis of the venom, and (2) investigate the bioactivity of the venom using an electrophysiological bioassay. From 32,505 assembled transcripts, 8 toxin families were classified, and the ankyrin repeats (ANK), agatoxin, centipede toxin, ctenitoxin, lycotoxin, scorpion toxin-like, and SCP families were reported in the L. geometricus venom gland. The diversity of L. geometricus venom was also uncovered by the transcriptomics approach with the presence of defensins, chitinases, translationally controlled tumor proteins (TCTPs), leucine-rich proteins, serine proteases, and other important venom components. The venom was also chromatographically purified, and the activity contained in the fractions was investigated using an electrophysiological bioassay with the use of a voltage clamp on ion channels in order to find if the neurotoxic effects of the spider venom could be linked to a particular molecular target. The findings show that U24-ctenitoxin-Pn1a involves the inhibition of the insect sodium (Nav) channels, BgNav and DmNav. This study provides an overview of the molecular diversity of L. geometricus venom, which can be used as a reference for the venom of other spider species. The venom composition profile also increases our knowledge for the development of novel insecticides targeting voltage-gated sodium channels.
Collapse
Affiliation(s)
- Pornsawan Khamtorn
- Program in Research and Development in Pharmaceuticals, Faculty of Pharmaceutical Sciences, Khon Kaen University, Khon Kaen 40002, Thailand;
| | - Steve Peigneur
- Toxicology and Pharmacology, Campus Gasthuisberg, University of Leuven (KU Leuven), 3000 Leuven, Belgium; (S.P.); (J.T.)
| | - Fernanda Gobbi Amorim
- Laboratory of Mass Spectrometry, MolSys Research Unit, Department of Chemistry, University of Liège, 4000 Liège, Belgium; (F.G.A.); (L.Q.)
| | - Loïc Quinton
- Laboratory of Mass Spectrometry, MolSys Research Unit, Department of Chemistry, University of Liège, 4000 Liège, Belgium; (F.G.A.); (L.Q.)
| | - Jan Tytgat
- Toxicology and Pharmacology, Campus Gasthuisberg, University of Leuven (KU Leuven), 3000 Leuven, Belgium; (S.P.); (J.T.)
| | - Sakda Daduang
- Center for Research and Development of Herbal Health Products (CDR-HHP), Faculty of Pharmaceutical Sciences, Khon Kaen University, Khon Kaen 40002, Thailand
- Protein and Proteomics Research Center for Commercial and Industrial Purposes (ProCCI), Khon Kaen University, Khon Kaen 40002, Thailand
- Division of Pharmacognosy and Toxicology, Faculty of Pharmaceutical Sciences, Khon Kaen University, Khon Kaen 40002, Thailand
- Correspondence:
| |
Collapse
|
23
|
Kalita B, Saviola AJ, Mukherjee AK. From venom to drugs: a review and critical analysis of Indian snake venom toxins envisaged as anticancer drug prototypes. Drug Discov Today 2021; 26:993-1005. [DOI: 10.1016/j.drudis.2020.12.021] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2020] [Revised: 11/13/2020] [Accepted: 12/21/2020] [Indexed: 12/14/2022]
|
24
|
Akhtar B, Muhammad F, Sharif A, Anwar MI. Mechanistic insights of snake venom disintegrins in cancer treatment. Eur J Pharmacol 2021; 899:174022. [PMID: 33727054 DOI: 10.1016/j.ejphar.2021.174022] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2020] [Revised: 02/26/2021] [Accepted: 03/10/2021] [Indexed: 01/27/2023]
Abstract
Snake venoms are a potential source of various enzymatic and non-enzymatic compounds with a defensive role for the host. Various peptides with significant medicinal properties have been isolated and characterized from these venoms. Few of these are FDA approved. They inhibit tumor cells adhesion, migration, angiogenesis and metastasis by inhibiting integrins on transmembrane cellular surfaces. This plays important role in delaying tumor growth, neovascularization and development. Tumor targeting and smaller size make them ideal candidates as novel therapeutic agents for cancer treatment. This review is based on sources of these disintegrins, their targeting modality, classification and underlying anti-cancer potential.
Collapse
Affiliation(s)
- Bushra Akhtar
- Department of Pharmacy, University of Agriculture, Faisalabad, Pakistan.
| | - Faqir Muhammad
- Institute of Physiology and Pharmacology, University of Agriculture, Faisalabad, Pakistan
| | - Ali Sharif
- Institute of Pharmacy, Faculty of Pharmaceutical and Allied Health Sciences, Lahore College for Women University, Lahore, Pakistan
| | - Muhammad Irfan Anwar
- Department of Pathobiology, Faculty of Veterinary Sciences, Bahauddin Zakariya University, Multan, Pakistan
| |
Collapse
|
25
|
Alangode A, Rajan K, Nair BG. Snake antivenom: Challenges and alternate approaches. Biochem Pharmacol 2020; 181:114135. [DOI: 10.1016/j.bcp.2020.114135] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2020] [Revised: 06/25/2020] [Accepted: 07/01/2020] [Indexed: 02/06/2023]
|
26
|
Herzig V, Cristofori-Armstrong B, Israel MR, Nixon SA, Vetter I, King GF. Animal toxins - Nature's evolutionary-refined toolkit for basic research and drug discovery. Biochem Pharmacol 2020; 181:114096. [PMID: 32535105 PMCID: PMC7290223 DOI: 10.1016/j.bcp.2020.114096] [Citation(s) in RCA: 112] [Impact Index Per Article: 22.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2020] [Revised: 06/06/2020] [Accepted: 06/09/2020] [Indexed: 12/27/2022]
Abstract
Venomous animals have evolved toxins that interfere with specific components of their victim's core physiological systems, thereby causing biological dysfunction that aids in prey capture, defense against predators, or other roles such as intraspecific competition. Many animal lineages evolved venom systems independently, highlighting the success of this strategy. Over the course of evolution, toxins with exceptional specificity and high potency for their intended molecular targets have prevailed, making venoms an invaluable and almost inexhaustible source of bioactive molecules, some of which have found use as pharmacological tools, human therapeutics, and bioinsecticides. Current biomedically-focused research on venoms is directed towards their use in delineating the physiological role of toxin molecular targets such as ion channels and receptors, studying or treating human diseases, targeting vectors of human diseases, and treating microbial and parasitic infections. We provide examples of each of these areas of venom research, highlighting the potential that venom molecules hold for basic research and drug development.
Collapse
Affiliation(s)
- Volker Herzig
- School of Science & Engineering, University of the Sunshine Coast, Sippy Downs, QLD, Australia; Institute for Molecular Bioscience, The University of Queensland, St. Lucia, QLD, Australia.
| | | | - Mathilde R Israel
- Institute for Molecular Bioscience, The University of Queensland, St. Lucia, QLD, Australia
| | - Samantha A Nixon
- Institute for Molecular Bioscience, The University of Queensland, St. Lucia, QLD, Australia
| | - Irina Vetter
- Institute for Molecular Bioscience, The University of Queensland, St. Lucia, QLD, Australia
| | - Glenn F King
- Institute for Molecular Bioscience, The University of Queensland, St. Lucia, QLD, Australia.
| |
Collapse
|
27
|
Proteomic Investigations of Two Pakistani Naja Snake Venoms Species Unravel the Venom Complexity, Posttranslational Modifications, and Presence of Extracellular Vesicles. Toxins (Basel) 2020; 12:toxins12110669. [PMID: 33105837 PMCID: PMC7690644 DOI: 10.3390/toxins12110669] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2020] [Revised: 10/06/2020] [Accepted: 10/20/2020] [Indexed: 12/31/2022] Open
Abstract
Latest advancement of omics technologies allows in-depth characterization of venom compositions. In the present work we present a proteomic study of two snake venoms of the genus Naja i.e., Naja naja (black cobra) and Naja oxiana (brown cobra) of Pakistani origin. The present study has shown that these snake venoms consist of a highly diversified proteome. Furthermore, the data also revealed variation among closely related species. High throughput mass spectrometric analysis of the venom proteome allowed to identify for the N. naja venom 34 protein families and for the N. oxiana 24 protein families. The comparative evaluation of the two venoms showed that N. naja consists of a more complex venom proteome than N. oxiana venom. Analysis also showed N-terminal acetylation (N-ace) of a few proteins in both venoms. To the best of our knowledge, this is the first study revealing this posttranslational modification in snake venom. N-ace can shed light on the mechanism of regulation of venom proteins inside the venom gland. Furthermore, our data showed the presence of other body proteins, e.g., ankyrin repeats, leucine repeats, zinc finger, cobra serum albumin, transferrin, insulin, deoxyribonuclease-2-alpha, and other regulatory proteins in these venoms. Interestingly, our data identified Ras-GTpase type of proteins, which indicate the presence of extracellular vesicles in the venom. The data can support the production of distinct and specific anti-venoms and also allow a better understanding of the envenomation and mechanism of distribution of toxins. Data are available via ProteomeXchange with identifier PXD018726.
Collapse
|
28
|
Identification, Characterization and Synthesis of Walterospermin, a Sperm Motility Activator from the Egyptian Black Snake Walterinnesia aegyptia Venom. Int J Mol Sci 2020; 21:ijms21207786. [PMID: 33096770 PMCID: PMC7594068 DOI: 10.3390/ijms21207786] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2020] [Revised: 10/13/2020] [Accepted: 10/15/2020] [Indexed: 01/02/2023] Open
Abstract
Animal venoms are small natural mixtures highly enriched in bioactive components. They are known to target at least two important pharmacological classes of cell surface receptors: ion channels and G protein coupled receptors. Since sperm cells express a wide variety of ion channels and membrane receptors, required for the control of cell motility and acrosome reaction, two functions that are defective in infertility issues, animal venoms should contain interesting compounds capable of modulating these two essential physiological functions. Herein, we screened for bioactive compounds from the venom of the Egyptian black snake Walterinnesia aegyptia (Wa) that possess the property to activate sperm motility in vitro from male mice OF1. Using RP-HPLC and cation exchange chromatography, we identified a new toxin of 6389.89 Da (termed walterospermin) that activates sperm motility. Walterospermin was de novo sequenced using a combination of matrix assisted laser desorption ionization time of flight mass spectrometry (MALDI-TOF/TOF MS/MS) and liquid chromatography electrospray ionization quadrupole time-of-flight mass spectrometry (LC-ESI-QTOF MS/MS) following reduction, alkylation, and enzymatic proteolytic digestion with trypsin, chymotrypsin or V8 protease. The peptide is 57 amino acid residues long and contains three disulfide bridges and was found to be identical to the previously cloned Wa Kunitz-type protease inhibitor II (Wa Kln-II) sequence. Moreover, it has strong homology with several other hitherto cloned Elapidae and Viperidae snake toxins suggesting that it belongs to a family of compounds able to regulate sperm function. The synthetic peptide shows promising activation of sperm motility from a variety of species, including humans. Its fluorescently-labelled analog predominantly marks the flagellum, a localization in agreement with a receptor that controls motility function.
Collapse
|
29
|
Hatakeyama DM, Tasima LJ, Bravo-Tobar CA, Serino-Silva C, Tashima AK, Rodrigues CFB, Aguiar WDS, Galizio NDC, de Lima EOV, Kavazoi VK, Gutierrez-Marín JD, de Farias IB, Sant’Anna SS, Grego KF, de Morais-Zani K, Tanaka-Azevedo AM. Venom complexity of Bothrops atrox (common lancehead) siblings. J Venom Anim Toxins Incl Trop Dis 2020; 26:e20200018. [PMID: 33101399 PMCID: PMC7553035 DOI: 10.1590/1678-9199-jvatitd-2020-0018] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2020] [Accepted: 09/08/2020] [Indexed: 01/16/2023] Open
Abstract
BACKGROUND Variability in snake venoms is a well-studied phenomenon. However, sex-based variation of Bothrops atrox snake venom using siblings is poorly investigated. Bothrops atrox is responsible for the majority of snakebite accidents in the Brazilian Amazon region. Differences in the venom composition of Bothrops genus have been linked to several factors such as ontogeny, geographical distribution, prey preferences and sex. Thus, in the current study, venom samples of Bothrops atrox male and female siblings were analyzed in order to compare their biochemical and biological characteristics. METHODS Venoms were collected from five females and four males born from a snake captured from the wild in São Bento (Maranhão, Brazil), and kept in the Laboratory of Herpetology of Butantan Intitute. The venoms were analyzed individually and as a pool of each gender. The assays consisted in protein quantification, 1-DE, mass spectrometry, proteolytic, phospholipase A2, L-amino acid oxidase activities, minimum coagulant dose upon plasma, minimum hemorrhagic dose and lethal dose 50%. RESULTS Electrophoretic profiles of male's and female's venom pools were quite similar, with minor sex-based variation. Male venom showed higher LAAO, PLA2 and hemorrhagic activities, while female venom showed higher coagulant activity. On the other hand, the proteolytic activities did not show statistical differences between pools, although some individual variations were observed. Meanwhile, proteomic profile revealed 112 different protein compounds; of which 105 were common proteins of female's and male's venom pools and seven were unique to females. Despite individual variations, lethality of both pools showed similar values. CONCLUSION Although differences between female and male venoms were observed, our results show that individual variations are significant even between siblings, highlighting that biological activities of venoms and its composition are influenced by other factors beyond gender.
Collapse
Affiliation(s)
- Daniela Miki Hatakeyama
- Laboratory of Herpetology, Butantan Institute, São Paulo, SP, Brazil
- Interinstitutional Graduate Program in Biotechnology (IPT, IBU and USP), University of São Paulo (USP), São Paulo, SP, Brazil
| | - Lídia Jorge Tasima
- Laboratory of Herpetology, Butantan Institute, São Paulo, SP, Brazil
- Interinstitutional Graduate Program in Biotechnology (IPT, IBU and USP), University of São Paulo (USP), São Paulo, SP, Brazil
| | - Cesar Adolfo Bravo-Tobar
- Laboratory of Herpetology, Butantan Institute, São Paulo, SP, Brazil
- Interinstitutional Graduate Program in Biotechnology (IPT, IBU and USP), University of São Paulo (USP), São Paulo, SP, Brazil
| | - Caroline Serino-Silva
- Laboratory of Herpetology, Butantan Institute, São Paulo, SP, Brazil
- Interinstitutional Graduate Program in Biotechnology (IPT, IBU and USP), University of São Paulo (USP), São Paulo, SP, Brazil
| | - Alexandre Keiji Tashima
- Department of Biochemistry, Federal University of São Paulo (Unifesp), São Paulo, SP, Brazil
| | - Caroline Fabri Bittencourt Rodrigues
- Laboratory of Herpetology, Butantan Institute, São Paulo, SP, Brazil
- Interinstitutional Graduate Program in Biotechnology (IPT, IBU and USP), University of São Paulo (USP), São Paulo, SP, Brazil
| | - Weslei da Silva Aguiar
- Laboratory of Herpetology, Butantan Institute, São Paulo, SP, Brazil
- Interinstitutional Graduate Program in Biotechnology (IPT, IBU and USP), University of São Paulo (USP), São Paulo, SP, Brazil
| | - Nathália da Costa Galizio
- Laboratory of Herpetology, Butantan Institute, São Paulo, SP, Brazil
- Interinstitutional Graduate Program in Biotechnology (IPT, IBU and USP), University of São Paulo (USP), São Paulo, SP, Brazil
| | | | - Victor Koiti Kavazoi
- Laboratory of Herpetology, Butantan Institute, São Paulo, SP, Brazil
- Interinstitutional Graduate Program in Biotechnology (IPT, IBU and USP), University of São Paulo (USP), São Paulo, SP, Brazil
| | - Juan David Gutierrez-Marín
- Laboratory of Herpetology, Butantan Institute, São Paulo, SP, Brazil
- Interinstitutional Graduate Program in Biotechnology (IPT, IBU and USP), University of São Paulo (USP), São Paulo, SP, Brazil
| | - Iasmim Baptista de Farias
- Laboratory of Herpetology, Butantan Institute, São Paulo, SP, Brazil
- Interinstitutional Graduate Program in Biotechnology (IPT, IBU and USP), University of São Paulo (USP), São Paulo, SP, Brazil
| | | | | | - Karen de Morais-Zani
- Laboratory of Herpetology, Butantan Institute, São Paulo, SP, Brazil
- Interinstitutional Graduate Program in Biotechnology (IPT, IBU and USP), University of São Paulo (USP), São Paulo, SP, Brazil
| | - Anita Mitico Tanaka-Azevedo
- Laboratory of Herpetology, Butantan Institute, São Paulo, SP, Brazil
- Interinstitutional Graduate Program in Biotechnology (IPT, IBU and USP), University of São Paulo (USP), São Paulo, SP, Brazil
| |
Collapse
|
30
|
Simizo A, Kitano ES, Sant'Anna SS, Grego KF, Tanaka-Azevedo AM, Tashima AK. Comparative gender peptidomics of Bothrops atrox venoms: are there differences between them? J Venom Anim Toxins Incl Trop Dis 2020; 26:e20200055. [PMID: 33088286 PMCID: PMC7546584 DOI: 10.1590/1678-9199-jvatitd-2020-0055] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Background: Bothrops atrox is known to be the pit viper responsible for
most snakebites and human fatalities in the Amazon region. It can be found
in a wide geographical area including northern South America, the east of
Andes and the Amazon basin. Possibly, due to its wide distribution and
generalist feeding, intraspecific venom variation was reported by previous
proteomics studies. Sex-based and ontogenetic variations on venom
compositions of Bothrops snakes were also subject of
proteomic and peptidomic analysis. However, the venom peptidome of
B. atrox remains unknown. Methods: We conducted a mass spectrometry-based analysis of the venom peptides of
individual male and female specimens combining bottom-up and top-down
approaches. Results: We identified in B. atrox a total of 105 native peptides in
the mass range of 0.4 to 13.9 kDa. Quantitative analysis showed that
phospholipase A2 and bradykinin potentiating peptides were the
most abundant peptide families in both genders, whereas disintegrin levels
were significantly increased in the venoms of females. Known peptides
processed at non-canonical sites and new peptides as the Ba1a, which
contains the SVMP BATXSVMPII1 catalytic site, were also revealed in this
work. Conclusion: The venom peptidomes of male and female specimens of B.
atrox were analyzed by mass spectrometry-based approaches in
this work. The study points to differences in disintegrin levels in the
venoms of females that may result in distinct pathophysiology of
envenomation. Further research is required to explore the potential
biological implications of this finding.
Collapse
Affiliation(s)
- Adriana Simizo
- Department of Biochemistry, Federal University of São Paulo (Unifesp), São Paulo, SP, Brazil
| | - Eduardo S Kitano
- Laboratory of Immunology, Heart Institute, Medical School, University of São Paulo (USP), São Paulo, SP, Brazil
| | - Sávio S Sant'Anna
- Laboratory of Herpetology, Butantan Institute, São Paulo, SP, Brazil
| | | | | | - Alexandre K Tashima
- Department of Biochemistry, Federal University of São Paulo (Unifesp), São Paulo, SP, Brazil.,Special Laboratory for Applied Toxinology, Center of Toxins, Immune-Response and Cell Signaling, Butantan Institute, São Paulo, SP, Brazil
| |
Collapse
|
31
|
Nirthanan S. Snake three-finger α-neurotoxins and nicotinic acetylcholine receptors: molecules, mechanisms and medicine. Biochem Pharmacol 2020; 181:114168. [PMID: 32710970 DOI: 10.1016/j.bcp.2020.114168] [Citation(s) in RCA: 39] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2020] [Revised: 07/20/2020] [Accepted: 07/20/2020] [Indexed: 12/13/2022]
Abstract
Snake venom three-finger α-neurotoxins (α-3FNTx) act on postsynaptic nicotinic acetylcholine receptors (nAChRs) at the neuromuscular junction (NMJ) to produce skeletal muscle paralysis. The discovery of the archetypal α-bungarotoxin (α-BgTx), almost six decades ago, exponentially expanded our knowledge of membrane receptors and ion channels. This included the localisation, isolation and characterization of the first receptor (nAChR); and by extension, the pathophysiology and pharmacology of neuromuscular transmission and associated pathologies such as myasthenia gravis, as well as our understanding of the role of α-3FNTxs in snakebite envenomation leading to novel concepts of targeted treatment. Subsequent studies on a variety of animal venoms have yielded a plethora of novel toxins that have revolutionized molecular biomedicine and advanced drug discovery from bench to bedside. This review provides an overview of nAChRs and their subtypes, classification of α-3FNTxs and the challenges of typifying an increasing arsenal of structurally and functionally unique toxins, and the three-finger protein (3FP) fold in the context of the uPAR/Ly6/CD59/snake toxin superfamily. The pharmacology of snake α-3FNTxs including their mechanisms of neuromuscular blockade, variations in reversibility of nAChR interactions, specificity for nAChR subtypes or for distinct ligand-binding interfaces within a subtype and the role of α-3FNTxs in neurotoxic envenomation are also detailed. Lastly, a reconciliation of structure-function relationships between α-3FNTx and nAChRs, derived from historical mutational and biochemical studies and emerging atomic level structures of nAChR models in complex with α-3FNTxs is discussed.
Collapse
Affiliation(s)
- Selvanayagam Nirthanan
- School of Medical Science, Griffith Health Group, Griffith University, Gold Coast, Queensland, Australia.
| |
Collapse
|
32
|
Schönthal AH, Swenson SD, Chen TC, Markland FS. Preclinical studies of a novel snake venom-derived recombinant disintegrin with antitumor activity: A review. Biochem Pharmacol 2020; 181:114149. [PMID: 32663453 DOI: 10.1016/j.bcp.2020.114149] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2020] [Revised: 07/09/2020] [Accepted: 07/09/2020] [Indexed: 12/12/2022]
Abstract
Snake venoms consist of a complex mixture of many bioactive molecules. Among them are disintegrins, which are peptides without enzymatic activity, but with high binding affinity for integrins, transmembrane receptors that function to connect cells with components of the extracellular matrix. Integrin-mediated cell attachment is critical for cell migration and dissemination, as well as for signal transduction pathways involved in cell growth. During tumor development, integrins play key roles by supporting cancer cell proliferation, angiogenesis, and metastasis. The recognition that snake venom disintegrins can block integrin functions has spawned a number of studies to explore their cancer therapeutic potential. While dozens of different disintegrins have been isolated, none of them as yet has undergone clinical evaluation in cancer patients. Among the best-characterized and preclinically most advanced disintegrins is vicrostatin (VCN), a recombinant disintegrin that was rationally designed by fusing 62 N-terminal amino acids derived from the disintegrin contortrostatin with 6 C-terminal amino acids from echistatin, the disintegrins from another snake species. Bacterially produced VCN was shown to target multiple tumor-associated integrins, achieving potent anti-tumor and anti-angiogenic effects in in vitro and in vivo models in the absence of noticeable toxicity. This review will introduce the field of snake venom disintegrins as potential anticancer agents and illustrate the translational development and cancer-therapeutic potential of VCN as an example.
Collapse
Affiliation(s)
- Axel H Schönthal
- Department of Molecular Microbiology and Immunology, Keck School of Medicine (KSOM), University of Southern California (USC), Los Angeles, CA 90089, USA
| | - Stephen D Swenson
- Department of Neurological Surgery, KSOM, USC, Los Angeles, CA 90089, USA; Department of Biochemistry and Molecular Medicine, KSOM, USC, Los Angeles, CA 90089, USA
| | - Thomas C Chen
- Department of Neurological Surgery, KSOM, USC, Los Angeles, CA 90089, USA
| | - Francis S Markland
- Department of Biochemistry and Molecular Medicine, KSOM, USC, Los Angeles, CA 90089, USA.
| |
Collapse
|
33
|
Kini RM. Toxinology provides multidirectional and multidimensional opportunities: A personal perspective. Toxicon X 2020; 6:100039. [PMID: 32550594 PMCID: PMC7285919 DOI: 10.1016/j.toxcx.2020.100039] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2020] [Revised: 04/28/2020] [Accepted: 05/05/2020] [Indexed: 01/16/2023] Open
Abstract
In nature, toxins have evolved as weapons to capture and subdue the prey or to counter predators or competitors. When they are inadvertently injected into humans, they cause symptoms ranging from mild discomfort to debilitation and death. Toxinology is the science of studying venoms and toxins that are produced by a wide variety of organisms. In the past, the structure, function and mechanisms of most abundant and/or most toxic components were characterized to understand and to develop strategies to neutralize their toxicity. With recent technical advances, we are able to evaluate and determine the toxin profiles using transcriptomes of venom glands and proteomes of tiny amounts of venom. Enormous amounts of data from these studies have opened tremendous opportunities in many directions of basic and applied research. The lower costs for profiling venoms will further fuel the expansion of toxin database, which in turn will provide greater exciting and bright opportunities in toxin research.
Collapse
Affiliation(s)
- R. Manjunatha Kini
- Protein Science Laboratory, Department of Biological Sciences, Faculty of Science and Department of Pharmacology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore
| |
Collapse
|
34
|
Deka A, Sharma M, Mukhopadhyay R, Devi A, Doley R. Naja kaouthia venom protein, Nk-CRISP, upregulates inflammatory gene expression in human macrophages. Int J Biol Macromol 2020; 160:602-611. [PMID: 32470580 DOI: 10.1016/j.ijbiomac.2020.05.169] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2019] [Revised: 05/20/2020] [Accepted: 05/21/2020] [Indexed: 02/01/2023]
Abstract
Cysteine-Rich Secretory Proteins (CRISP) are widespread in snake venoms and known to target ion channels. More recently, CRISPs have been shown to mediate inflammatory responses. Involvement of potential receptor in CRISP-induced inflammatory reactions, however, remains unknown. A CRISP protein named as Nk-CRISP, was isolated from the venom of Naja kaouthia. The molecular mass of the purified protein was found to be ~25 kDa and the primary sequence was determined by MALDI TOF-TOF. The involvement of this protein in proinflammatory effects were evaluated in THP-1 macrophage-like cells. Nk-CRISP treated cells induced up-regulation of several inflammatory marker genes in dose dependent manner. Toll like receptor 4 (TLR4)-myeloid differentiation factor 2 (MD2) complex are known to play crucial role in recognition of damage/pathogen-associated molecular patterns and activation of innate immune response. Therefore, we hypothesized that snake venom CRISP could also modulate the innate immune response via TLR4-MD2 complex. In-silico molecular docking study of cobra CRISP with TLR4-MD2 receptor complex reveals CRISP engages its cysteine-rich domain (CRD) to interact with complex. Inhibition of TLR4 signalling pathway using CLI-095 confirmed the role of TLR4 in Nk-CRISP induced inflammatory responses. Collectively, these findings imply that TLR4 initiates proinflammatory signalling following recognition of cobra CRISP and alteration of TLR4 receptor might improve or control CRISP induced inflammation.
Collapse
Affiliation(s)
- Archana Deka
- Molecular Toxinology Laboratory, Department of Molecular Biology and Biotechnology, Tezpur University, Assam 784028, India
| | - Manoj Sharma
- Cellular, Molecular and Environmental Biotechnology Laboratory, Department of Molecular Biology and Biotechnology, Tezpur University, India
| | - Rupak Mukhopadhyay
- Cellular, Molecular and Environmental Biotechnology Laboratory, Department of Molecular Biology and Biotechnology, Tezpur University, India
| | - Arpita Devi
- Molecular Toxinology Laboratory, Department of Molecular Biology and Biotechnology, Tezpur University, Assam 784028, India
| | - Robin Doley
- Molecular Toxinology Laboratory, Department of Molecular Biology and Biotechnology, Tezpur University, Assam 784028, India.
| |
Collapse
|
35
|
Daneshvar N, Tatsumi R, Peeler J, Anderson JE. Premature satellite cell activation before injury accelerates myogenesis and disrupts neuromuscular junction maturation in regenerating muscle. Am J Physiol Cell Physiol 2020; 319:C116-C128. [PMID: 32374678 DOI: 10.1152/ajpcell.00121.2020] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
Abstract
Satellite cell (SC) activation, mediated by nitric oxide (NO), is essential to myogenic repair, whereas myotube function requires innervation. Semaphorin (Sema) 3A, a neuro-chemorepellent, is thought to regulate axon guidance to neuromuscular junctions (NMJs) during myotube differentiation. We tested whether "premature" SC activation (SC activation before injury) by a NO donor (isosorbide dinitrate) would disrupt early myogenesis and/or NMJs. Adult muscle was examined during regeneration in two models of injury: myotoxic cardiotoxin (CTX) and traumatic crush (CR) (n = 4-5/group). Premature SC activation was confirmed by increased DNA synthesis by SCs immediately in pretreated mice after CTX injury. Myotubes grew faster after CTX than after CR; growth was accelerated by pretreatment. NMJ maturation, classified by silver histochemistry (neurites) and acetylcholinesterase (AchE), and α-bungarotoxin staining (Ach receptors, AchRs) were delayed by pretreatment, consistent with a day 6 rise in the denervation marker γ-AchR. With pretreatment, S100B from terminal Schwann cells (TSCs) increased 10- to 20-fold at days 0 and 10 after CTX and doubled 6 days after CR. Premature SC activation disrupted motoneuritogenesis 8-10 days post-CTX, as pretreatment reduced colocalization of pre- and postsynaptic NMJ features and increased Sema3A-65. Premature SC activation before injury both accelerated myogenic repair and disrupted NMJ remodeling and maturation, possibly by reducing Sema3A neuro-repulsion and altering S100B. This interpretation extends the model of Sema3A-mediated motoneuritogenesis during muscle regeneration. Manipulating the timing and type of Sema3A by brief NO effects on SCs suggests an important role for TSCs and Sema3A-65 processing in axon guidance and NMJ restoration during muscle repair.
Collapse
Affiliation(s)
- Nasibeh Daneshvar
- Department of Biological Sciences, University of Manitoba, Winnipeg, Manitoba, Canada
| | - Ryuichi Tatsumi
- Graduate School of Animal Sciences, Kyushu University, Fukoka, Japan
| | - Jason Peeler
- Department of Human Anatomy and Cell Science, Max Rady College of Medicine, Rady Faculty of Health Sciences, University of Manitoba, Winnipeg, Manitoba, Canada
| | - Judy E Anderson
- Department of Biological Sciences, University of Manitoba, Winnipeg, Manitoba, Canada
| |
Collapse
|
36
|
Wang CR, Bubner ER, Jovcevski B, Mittal P, Pukala TL. Interrogating the higher order structures of snake venom proteins using an integrated mass spectrometric approach. J Proteomics 2020; 216:103680. [PMID: 32028038 DOI: 10.1016/j.jprot.2020.103680] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2019] [Revised: 01/20/2020] [Accepted: 02/02/2020] [Indexed: 12/20/2022]
Abstract
Snake venoms contain complex mixtures of proteins vital for the survival of venomous snakes. Aligned with their diverse pharmacological activities, the protein compositions of snake venoms are highly variable, and efforts to characterise the primary structures of such proteins are ongoing. Additionally, a significant knowledge gap exists in terms of the higher-order protein structures which modulate venom potency, posing a challenge for successful therapeutic applications. Here we use a multifaceted mass spectrometry approach to characterise proteins from venoms of Collett's snake Pseudechis colletti and the puff adder Bitis arietans. Following chromatographic fractionation and bottom-up proteomics analysis, native mass spectrometry identified, among other components, a non-covalent l-amino acid oxidase dimer in the P. colletti venom and a C-type lectin tetramer in the B. arietans venom. Furthermore, a covalently-linked phospholipase A2 (PLA2) dimer was identified in P. colletti venom, from which the PLA2 species were shown to adopt compact geometries using ion mobility measurements. Interestingly, we show that the dimeric PLA2 possesses greater bioactivity than the monomeric PLA2s. This work contributes to ongoing efforts cataloguing components of snake venoms, and notably, emphasises the importance of understanding higher-order venom protein interactions and the utility of a combined mass spectrometric approach for this task. SIGNIFICANCE: The protein constituents of snake venoms represent a sophisticated cocktail of biologically active molecules ideally suited for further exploration in drug design and development. Despite ongoing efforts to characterise the diverse protein components of such venoms there is still much work required in this area, particularly in moving from simply describing the protein primary sequence to providing an understanding of quaternary structure. The combined proteomic and native mass spectrometry workflow utilised here gives new insights into higher order protein structures in selected snake venoms, and can underpin further investigation into the protein interactions which govern snake venom specificity and potency.
Collapse
Affiliation(s)
- C Ruth Wang
- Department of Chemistry, School of Physical Sciences, University of Adelaide, Adelaide 5005, Australia
| | - Emily R Bubner
- Department of Chemistry, School of Physical Sciences, University of Adelaide, Adelaide 5005, Australia
| | - Blagojce Jovcevski
- Department of Chemistry, School of Physical Sciences, University of Adelaide, Adelaide 5005, Australia
| | - Parul Mittal
- Adelaide Proteomics Centre, University of Adelaide, Adelaide 5005, Australia
| | - Tara L Pukala
- Department of Chemistry, School of Physical Sciences, University of Adelaide, Adelaide 5005, Australia.
| |
Collapse
|
37
|
Suryamohan K, Krishnankutty SP, Guillory J, Jevit M, Schröder MS, Wu M, Kuriakose B, Mathew OK, Perumal RC, Koludarov I, Goldstein LD, Senger K, Dixon MD, Velayutham D, Vargas D, Chaudhuri S, Muraleedharan M, Goel R, Chen YJJ, Ratan A, Liu P, Faherty B, de la Rosa G, Shibata H, Baca M, Sagolla M, Ziai J, Wright GA, Vucic D, Mohan S, Antony A, Stinson J, Kirkpatrick DS, Hannoush RN, Durinck S, Modrusan Z, Stawiski EW, Wiley K, Raudsepp T, Kini RM, Zachariah A, Seshagiri S. The Indian cobra reference genome and transcriptome enables comprehensive identification of venom toxins. Nat Genet 2020; 52:106-117. [PMID: 31907489 PMCID: PMC8075977 DOI: 10.1038/s41588-019-0559-8] [Citation(s) in RCA: 110] [Impact Index Per Article: 22.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2019] [Accepted: 11/22/2019] [Indexed: 12/30/2022]
Abstract
Snakebite envenoming is a serious and neglected tropical disease that kills ~100,000 people annually. High-quality, genome-enabled comprehensive characterization of toxin genes will facilitate development of effective humanized recombinant antivenom. We report a de novo near-chromosomal genome assembly of Naja naja, the Indian cobra, a highly venomous, medically important snake. Our assembly has a scaffold N50 of 223.35 Mb, with 19 scaffolds containing 95% of the genome. Of the 23,248 predicted protein-coding genes, 12,346 venom-gland-expressed genes constitute the 'venom-ome' and this included 139 genes from 33 toxin families. Among the 139 toxin genes were 19 'venom-ome-specific toxins' (VSTs) that showed venom-gland-specific expression, and these probably encode the minimal core venom effector proteins. Synthetic venom reconstituted through recombinant VST expression will aid in the rapid development of safe and effective synthetic antivenom. Additionally, our genome could serve as a reference for snake genomes, support evolutionary studies and enable venom-driven drug discovery.
Collapse
Affiliation(s)
- Kushal Suryamohan
- Molecular Biology Department, Genentech, Inc., South San Francisco, CA, USA
- MedGenome Inc., Foster City, CA, USA
| | | | - Joseph Guillory
- Molecular Biology Department, Genentech, Inc., South San Francisco, CA, USA
| | - Matthew Jevit
- Molecular Cytogenetics laboratory, Texas A&M University, College Station, TX, USA
| | - Markus S Schröder
- Molecular Biology Department, Genentech, Inc., South San Francisco, CA, USA
| | - Meng Wu
- Molecular Biology Department, Genentech, Inc., South San Francisco, CA, USA
| | | | | | | | - Ivan Koludarov
- Ecology and Evolution Unit, Okinawa Institute of Science and Technology, Onna-son, Japan
| | - Leonard D Goldstein
- Molecular Biology Department, Genentech, Inc., South San Francisco, CA, USA
- Department of Bioinformatics and Computational Biology, Genentech, Inc., South San Francisco, CA, USA
| | - Kate Senger
- Molecular Biology Department, Genentech, Inc., South San Francisco, CA, USA
| | | | | | - Derek Vargas
- Molecular Biology Department, Genentech, Inc., South San Francisco, CA, USA
- MedGenome Inc., Foster City, CA, USA
| | - Subhra Chaudhuri
- Molecular Biology Department, Genentech, Inc., South San Francisco, CA, USA
| | | | - Ridhi Goel
- AgriGenome Labs Private Ltd, Kochi, India
| | - Ying-Jiun J Chen
- Molecular Biology Department, Genentech, Inc., South San Francisco, CA, USA
| | - Aakrosh Ratan
- Center for Public Health Genomics, University of Virginia, Charlottesville, VA, USA
| | - Peter Liu
- Department of Microchemistry Proteomics, and Lipidomics, Genentech, Inc., South San Francisco, CA, USA
| | - Brendan Faherty
- Department of Microchemistry Proteomics, and Lipidomics, Genentech, Inc., South San Francisco, CA, USA
| | - Guillermo de la Rosa
- The Donnelly Centre for Cellular and Biomolecular Research, University of Toronto, Toronto, Ontario, Canada
| | - Hiroki Shibata
- Division of Genomics, Medical Institute of Bioregulation, Kyushu University, Fukuouka, Japan
| | - Miriam Baca
- Department of Pathology, Genentech, Inc., South San Francisco, CA, USA
| | - Meredith Sagolla
- Department of Pathology, Genentech, Inc., South San Francisco, CA, USA
| | - James Ziai
- Department of Pathology, Genentech, Inc., South San Francisco, CA, USA
| | - Gus A Wright
- College of Veterinary Medicine, Flow Cytometry Shared Resource Laboratory, Texas A&M University, College Station, TX, USA
| | - Domagoj Vucic
- Department of Early Discovery Biochemistry, Genentech, Inc., South San Francisco, CA, USA
| | - Sangeetha Mohan
- Department of Molecular Biology, SciGenom Labs, Kochi, India
| | - Aju Antony
- Department of Molecular Biology, SciGenom Labs, Kochi, India
| | - Jeremy Stinson
- Molecular Biology Department, Genentech, Inc., South San Francisco, CA, USA
| | - Donald S Kirkpatrick
- Department of Microchemistry Proteomics, and Lipidomics, Genentech, Inc., South San Francisco, CA, USA
| | - Rami N Hannoush
- Department of Early Discovery Biochemistry, Genentech, Inc., South San Francisco, CA, USA
| | - Steffen Durinck
- Molecular Biology Department, Genentech, Inc., South San Francisco, CA, USA
- Department of Bioinformatics and Computational Biology, Genentech, Inc., South San Francisco, CA, USA
| | - Zora Modrusan
- Molecular Biology Department, Genentech, Inc., South San Francisco, CA, USA
| | - Eric W Stawiski
- Molecular Biology Department, Genentech, Inc., South San Francisco, CA, USA
- MedGenome Inc., Foster City, CA, USA
| | | | - Terje Raudsepp
- Molecular Cytogenetics laboratory, Texas A&M University, College Station, TX, USA
| | - R Manjunatha Kini
- Department of Biological Sciences, National University of Singapore, Singapore, Singapore
| | - Arun Zachariah
- SciGenom Research Foundation, Bangalore, India
- Wayanad Wildlife Sanctuary, Sultan Bathery, India
| | - Somasekar Seshagiri
- Molecular Biology Department, Genentech, Inc., South San Francisco, CA, USA.
- SciGenom Research Foundation, Bangalore, India.
| |
Collapse
|
38
|
Yang X, Wang Y, Wu C, Ling EA. Animal Venom Peptides as a Treasure Trove for New Therapeutics Against Neurodegenerative Disorders. Curr Med Chem 2019; 26:4749-4774. [PMID: 30378475 DOI: 10.2174/0929867325666181031122438] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2018] [Revised: 10/08/2018] [Accepted: 10/24/2018] [Indexed: 12/12/2022]
Abstract
BACKGROUND Neurodegenerative diseases, such as Alzheimer's disease, Parkinson's disease, and cerebral ischemic stroke, impose enormous socio-economic burdens on both patients and health-care systems. However, drugs targeting these diseases remain unsatisfactory, and hence there is an urgent need for the development of novel and potent drug candidates. METHODS Animal toxins exhibit rich diversity in both proteins and peptides, which play vital roles in biomedical drug development. As a molecular tool, animal toxin peptides have not only helped clarify many critical physiological processes but also led to the discovery of novel drugs and clinical therapeutics. RESULTS Recently, toxin peptides identified from venomous animals, e.g. exenatide, ziconotide, Hi1a, and PcTx1 from spider venom, have been shown to block specific ion channels, alleviate inflammation, decrease protein aggregates, regulate glutamate and neurotransmitter levels, and increase neuroprotective factors. CONCLUSION Thus, components of venom hold considerable capacity as drug candidates for the alleviation or reduction of neurodegeneration. This review highlights studies evaluating different animal toxins, especially peptides, as promising therapeutic tools for the treatment of different neurodegenerative diseases and disorders.
Collapse
Affiliation(s)
- Xinwang Yang
- Department of Anatomy and Histology & Embryology, Faculty of Basic Medical Science, Kunming Medical University, Kunming 650500, Yunnan, China
| | - Ying Wang
- Key Laboratory of Chemistry in Ethnic Medicine Resource, State Ethnic Affairs Commission & Ministry of Education, School of Ethnomedicine and Ethnopharmacy, Yunnan Minzu University, Kunming 650500, Yunnan, China
| | - Chunyun Wu
- Department of Anatomy and Histology & Embryology, Faculty of Basic Medical Science, Kunming Medical University, Kunming 650500, Yunnan, China
| | - Eng-Ang Ling
- Department of Anatomy, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117597, Singapore
| |
Collapse
|
39
|
First report on BaltCRP, a cysteine-rich secretory protein (CRISP) from Bothrops alternatus venom: Effects on potassium channels and inflammatory processes. Int J Biol Macromol 2019; 140:556-567. [DOI: 10.1016/j.ijbiomac.2019.08.108] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2019] [Revised: 08/12/2019] [Accepted: 08/12/2019] [Indexed: 12/20/2022]
|
40
|
Snake Venoms in Drug Discovery: Valuable Therapeutic Tools for Life Saving. Toxins (Basel) 2019; 11:toxins11100564. [PMID: 31557973 PMCID: PMC6832721 DOI: 10.3390/toxins11100564] [Citation(s) in RCA: 101] [Impact Index Per Article: 16.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2019] [Revised: 09/20/2019] [Accepted: 09/22/2019] [Indexed: 12/16/2022] Open
Abstract
Animal venoms are used as defense mechanisms or to immobilize and digest prey. In fact, venoms are complex mixtures of enzymatic and non-enzymatic components with specific pathophysiological functions. Peptide toxins isolated from animal venoms target mainly ion channels, membrane receptors and components of the hemostatic system with high selectivity and affinity. The present review shows an up-to-date survey on the pharmacology of snake-venom bioactive components and evaluates their therapeutic perspectives against a wide range of pathophysiological conditions. Snake venoms have also been used as medical tools for thousands of years especially in tradition Chinese medicine. Consequently, snake venoms can be considered as mini-drug libraries in which each drug is pharmacologically active. However, less than 0.01% of these toxins have been identified and characterized. For instance, Captopril® (Enalapril), Integrilin® (Eptifibatide) and Aggrastat® (Tirofiban) are drugs based on snake venoms, which have been approved by the FDA. In addition to these approved drugs, many other snake venom components are now involved in preclinical or clinical trials for a variety of therapeutic applications. These examples show that snake venoms can be a valuable source of new principle components in drug discovery.
Collapse
|
41
|
Structural basis for the C-domain-selective angiotensin-converting enzyme inhibition by bradykinin-potentiating peptide b (BPPb). Biochem J 2019; 476:1553-1570. [DOI: 10.1042/bcj20190290] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2019] [Revised: 04/15/2019] [Accepted: 05/09/2019] [Indexed: 12/13/2022]
Abstract
Abstract
Angiotensin-converting enzyme (ACE) is a zinc metalloprotease best known for its role in blood pressure regulation. ACE consists of two homologous catalytic domains, the N- and C-domain, that display distinct but overlapping catalytic functions in vivo owing to subtle differences in substrate specificity. While current generation ACE inhibitors target both ACE domains, domain-selective ACE inhibitors may be clinically advantageous, either reducing side effects or having utility in new indications. Here, we used site-directed mutagenesis, an ACE chimera and X-ray crystallography to unveil the molecular basis for C-domain-selective ACE inhibition by the bradykinin-potentiating peptide b (BPPb), naturally present in Brazilian pit viper venom. We present the BPPb N-domain structure in comparison with the previously reported BPPb C-domain structure and highlight key differences in peptide interactions with the S4 to S9 subsites. This suggests the involvement of these subsites in conferring C-domain-selective BPPb binding, in agreement with the mutagenesis results where unique residues governing differences in active site exposure, lid structure and dynamics between the two domains were the major drivers for C-domain-selective BPPb binding. Mere disruption of BPPb interactions with unique S2 and S4 subsite residues, which synergistically assist in BPPb binding, was insufficient to abolish C-domain selectivity. The combination of unique S9–S4 and S2′ subsite C-domain residues was required for the favourable entry, orientation and thus, selective binding of the peptide. This emphasizes the need to consider factors other than direct protein–inhibitor interactions to guide the design of domain-selective ACE inhibitors, especially in the case of larger peptides.
Collapse
|
42
|
Cardoso MGB, Trento MVC, Reis CH, Marcussi S, Cardoso PG. Lecanicillium aphanocladii: snake venom phospholipases A 2 and proteases as tools to prospect enzymatic inhibitors. Lett Appl Microbiol 2019; 69:88-95. [PMID: 31102470 DOI: 10.1111/lam.13171] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2019] [Revised: 05/03/2019] [Accepted: 05/06/2019] [Indexed: 01/08/2023]
Abstract
Natural enzyme inhibitors have been widely described in literature because of its pharmacological and cosmetic applications. Fungi found in caves represent a promising source of bioactive substances that are still little explored scientifically. Thus, the present work evaluated the presence of enzymatic modulators in a filtrate obtained from the cultivation of the cave fungus Lecanicillium aphanocladii (Family: Cordycipitaceae). Snake venoms from Bothrops alternatus and Bothrops atrox were used as an enzymatic source for the induction of the phospholipase, proteolytic, thrombolytic, cytotoxic and coagulant activities. Compounds present in the fungal filtrate inhibited 50, 23·8, 26·6, 50·9 and 52·5% of the proteolytic, phospholipase, haemolytic, thrombolytic and coagulant activities respectively. The filtrate was not cytotoxic on erythrocytes, but induced partial dissolution of thrombi. Fungal enzyme inhibitors that have low or no toxicity and can be obtained on a large scale and at low cost are relevant in the medical-scientific context. Therefore, the inhibition of phospholipases A2 and proteases observed in the present work highlights the potential of fungal metabolites for the development of drugs that can be used in the treatment of haemostasis and inflammation-related disorders. SIGNIFICANCE AND IMPACT OF THE STUDY: In this study, secondary metabolites synthesized by Lecanicillium aphanocladii, a fungus isolated from caves, demonstrated modulating action on proteases and phospholipases A2 present in snake venoms of the Bothrops genus, widely used as tools for the study of pathophysiology processes related to haemostasis and inflammation. The results suggest the possibility of future applications for these metabolites in the development of pharmaceuticals of medical-scientific interest.
Collapse
Affiliation(s)
- M G B Cardoso
- Department of Biology, Biogen Laboratory, Universidade Federal de Lavras (UFLA), Lavras, Brazil
| | - M V C Trento
- Department of Chemistry, Biochemistry Laboratory, Universidade Federal de Lavras (UFLA), Lavras, Brazil
| | - C H Reis
- Department of Biology, Biogen Laboratory, Universidade Federal de Lavras (UFLA), Lavras, Brazil
| | - S Marcussi
- Department of Chemistry, Biochemistry Laboratory, Universidade Federal de Lavras (UFLA), Lavras, Brazil
| | - P G Cardoso
- Department of Biology, Biogen Laboratory, Universidade Federal de Lavras (UFLA), Lavras, Brazil
| |
Collapse
|
43
|
Nusair SD, Ahmad MI. Toxicity of Vipera palaestinae venom and antagonistic effects of methanolic leaf extract of Eryngium creticum lam. Toxicon 2019; 166:1-8. [PMID: 31095960 DOI: 10.1016/j.toxicon.2019.05.006] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2019] [Revised: 04/08/2019] [Accepted: 05/11/2019] [Indexed: 01/10/2023]
Abstract
Vipera palaestinae is responsible for many venomous incidents in the Middle East. However, this species is not included in the antigenic pool of venoms for the production of the regionally available polyvalent antivenoms. In an attempt to develop a potential complementary alternative therapy for snakebite patients, this study is investigating the antagonistic effect of Eryngium creticum against V. palaestinae venom. In this context, the concentration of the venom as well as the electrophoretic profile, and the venom LD50 were determined by intraperitoneal injection (ip). The methanolic leaf extract was prepared, and its safety on rats was examined. Adult male Sprague-Dawley rats were divided into 8 groups (n = 6); G1-G3 were injected subplantar in the right hind paws with 2.5, 3.125, and 3.75 mg kg-1 then 200 mg kg-1 extract ip. G4-G6 were given the same venom dose with no extract, respectively. Controls were G7 that only had the extract ip, and G8 that was injected subplantar with PBS. The swollen paws were measured at Hour 0 (before injection), Hour 1, Hour 6, and Hour 24. IL-6 and TNF-α were measured in serum using ELISA. Histopathological changes were examined in paw sections. The pooled venom concentration was 176.93 ± 35.81 mg ml-1, revealed 10 protein bands (5-80 kDa), and the LD50 via ip rout was 6.56 mg kg-1. Paw edema peaked at Hour 1. At Hour 6, edema in G1 was significantly reduced (p < 0.05) compared to G6, while at Hour 24 there was no significant difference between all groups including the controls. Treated animals in G1-G3 expressed IL-6 significantly lower (p < 0.001) than untreated G4-G6, respectively. Levels of TNF-α in G1 and G2 were significantly (p < 0.001) lower than G3-G6, while G5 and G6 were significantly (p < 0.001) higher than G1-G4. Histopathological changes showed intensifying edema, hemorrhage, and inflammation with incrementing venom doses. Sections from treated animals expressed less adverse changes compared to untreated animals. Together, the outcomes are encouraging future utilization of E. creticum as a supportive remedy for snakebite cases.
Collapse
Affiliation(s)
- Shreen Deeb Nusair
- Department of Clinical Pharmacy, Faculty of Pharmacy, Jordan University of Science and Technology, P.O. Box 3030, Irbid, 22110, Jordan.
| | - Mohammad Ibrahim Ahmad
- Research and Innovation Centre, The Jordanian Pharmaceutical Manufacturing Company, Amman, Jordan
| |
Collapse
|
44
|
Roy A, Qingxiang S, Alex C, Rajagopalan N, Jobichen C, Sivaraman J, Kini RM. Identification of a α-helical molten globule intermediate and structural characterization of β-cardiotoxin, an all β-sheet protein isolated from the venom of Ophiophagus hannah (king cobra). Protein Sci 2019; 28:952-963. [PMID: 30891862 PMCID: PMC6459992 DOI: 10.1002/pro.3605] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2018] [Revised: 03/12/2019] [Accepted: 03/19/2019] [Indexed: 02/05/2023]
Abstract
β-Cardiotoxin is a novel member of the snake venom three-finger toxin (3FTX) family. This is the first exogenous protein to antagonize β-adrenergic receptors and thereby causing reduction in heart rates (bradycardia) when administered into animals, unlike the conventional cardiotoxins as reported earlier. 3FTXs are stable all β-sheet peptides with 60-80 amino acid residues. Here, we describe the three-dimensional crystal structure of β-cardiotoxin together with the identification of a molten globule intermediate in the unfolding pathway of this protein. In spite of the overall structural similarity of this protein with conventional cardiotoxins, there are notable differences observed at the loop region and in the charge distribution on the surface, which are known to be critical for cytolytic activity of cardiotoxins. The molten globule intermediate state present in the thermal unfolding pathway of β-cardiotoxin was however not observed during the chemical denaturation of the protein. Interestingly, circular dichroism (CD) and NMR studies revealed the presence of α-helical secondary structure in the molten globule intermediate. These results point to substantial conformational plasticity of β-cardiotoxin, which might aid the protein in responding to the sometimes conflicting demands of structure, stability, and function during its biological lifetime.
Collapse
Affiliation(s)
- Amrita Roy
- Department of Biological Sciences, Faculty of ScienceNational University of SingaporeSingapore 117543
| | - Sun Qingxiang
- Department of Biological Sciences, Faculty of ScienceNational University of SingaporeSingapore 117543
- Department of PathologyWest China Hospital, Sichuan UniversityChengduChina 610041
| | - Chapeaurouge Alex
- Department of Biological Sciences, Faculty of ScienceNational University of SingaporeSingapore 117543
- Fundação Oswaldo Cruz‐CearáRua São José, 2° Pavimento, PrecaburaEusébio 61760‐000Brazil
| | - Nandhakishore Rajagopalan
- Department of Biological Sciences, Faculty of ScienceNational University of SingaporeSingapore 117543
- National Research Council of CanadaCanada
| | - Chacko Jobichen
- Department of Biological Sciences, Faculty of ScienceNational University of SingaporeSingapore 117543
| | - J. Sivaraman
- Department of Biological Sciences, Faculty of ScienceNational University of SingaporeSingapore 117543
| | - R. Manjunatha Kini
- Department of Biological Sciences, Faculty of ScienceNational University of SingaporeSingapore 117543
| |
Collapse
|
45
|
Identification of a peptide derived from a Bothrops moojeni metalloprotease with in vitro inhibitory action on the Plasmodium falciparum purine nucleoside phosphorylase enzyme (PfPNP). Biochimie 2019; 162:97-106. [PMID: 30978375 DOI: 10.1016/j.biochi.2019.04.009] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2019] [Accepted: 04/07/2019] [Indexed: 11/22/2022]
Abstract
There is a growing need for research on new antimalarial agents against Plasmodium falciparum infection, especially in regards to planning molecular architecture for specific molecular targets of the parasite. Thus, a metalloprotease from Bothrops moojeni, known as BmooMPα-I, was explored in this study, through in silico assays, aiming at the development of a peptide generated from this molecule with potential inhibitory action on PfPNP, an enzyme necessary for the survival of the parasite. In order to isolate BmooMPα-I, cation exchange and reverse phase chromatographies were performed, followed by in vitro assays of antiparasitic activity against the W2 strain of P. falciparum. The interactions between BmooMPα-I and PfPNP were evaluated via docking, and the resulting peptide, described as Pep1 BM, was selected according to the BmooMPα-I region demonstrating the best interaction score with the target of interest. The values for the specific activities of the PfPNP reaction were measured using the inorganic phosphate substrate and MESG. The fraction corresponding to BmooMPα-I was identified as fraction 4 in the cation exchange chromatography step, due to proteolytic activity on casein and the presence of a major band at ≅ 23 kDa. BmooMPα-I was able to inhibit in vitro growth of W2 P. falciparum, with an IC50 value of 16.14 μg/mL. Virtual screening with Pep1 BM demonstrated two PfPNP target binding regions, with ΔG values at the interaction interface of -10.75 kcal/mol and -11.74 kcal/mol. A significant reduction in the enzymatic activity of PfPNP was observed in the presence of Pep 1 BM when compared to the assay in the absence of this possible inhibitor. BmooMPα-I showed activity in vitro against W2 P. falciparum. By means of in silico techniques, the Pep 1 BM was identified as having potential binding affinity to the catalytic site of PfPNP and of inhibiting its catalytic activity in vitro.
Collapse
|
46
|
Kalogeropoulos K, Treschow AF, Auf dem Keller U, Escalante T, Rucavado A, Gutiérrez JM, Laustsen AH, Workman CT. Protease Activity Profiling of Snake Venoms Using High-Throughput Peptide Screening. Toxins (Basel) 2019; 11:toxins11030170. [PMID: 30893860 PMCID: PMC6468401 DOI: 10.3390/toxins11030170] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2019] [Revised: 03/13/2019] [Accepted: 03/15/2019] [Indexed: 01/22/2023] Open
Abstract
Snake venom metalloproteinases (SVMPs) and snake venom serine proteinases (SVSPs) are among the most abundant enzymes in many snake venoms, particularly among viperids. These proteinases are responsible for some of the clinical manifestations classically seen in viperid envenomings, including hemorrhage, necrosis, and coagulopathies. The objective of this study was to investigate the enzymatic activities of these proteins using a high-throughput peptide library to screen for the proteinase targets of the venoms of five viperid (Echis carinatus, Bothrops asper, Daboia russelii, Bitis arietans, Bitis gabonica) and one elapid (Naja nigricollis) species of high medical importance. The proteinase activities of these venoms were each tested against 360 peptide substrates, yielding 2160 activity profiles. A nonlinear regression model that accurately described the observed enzymatic activities was fitted to the experimental data, allowing for the comparison of cleavage rates across species. In this study, previously unknown protein targets of snake venom proteinases were identified, potentially implicating novel human and animal proteins that may be involved in the pathophysiology of viper envenomings. The functional relevance of these targets was further evaluated and discussed. These new findings may contribute to our understanding of the clinical manifestations and underlying biochemical mechanisms of snakebite envenoming by viperid species.
Collapse
Affiliation(s)
| | | | - Ulrich Auf dem Keller
- Department of Biotechnology and Biomedicine, Technical University of Denmark, 2800 Lyngby, Denmark.
| | - Teresa Escalante
- Instituto Clodomiro Picado, Facultad de Microbiología, Universidad de Costa Rica, San José 11501-2060, Costa Rica.
| | - Alexandra Rucavado
- Instituto Clodomiro Picado, Facultad de Microbiología, Universidad de Costa Rica, San José 11501-2060, Costa Rica.
| | - José María Gutiérrez
- Instituto Clodomiro Picado, Facultad de Microbiología, Universidad de Costa Rica, San José 11501-2060, Costa Rica.
| | | | - Christopher T Workman
- Department of Biotechnology and Biomedicine, Technical University of Denmark, 2800 Lyngby, Denmark.
| |
Collapse
|
47
|
Eble JA. Structurally Robust and Functionally Highly Versatile-C-Type Lectin (-Related) Proteins in Snake Venoms. Toxins (Basel) 2019; 11:toxins11030136. [PMID: 30823637 PMCID: PMC6468738 DOI: 10.3390/toxins11030136] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2019] [Revised: 02/19/2019] [Accepted: 02/20/2019] [Indexed: 12/31/2022] Open
Abstract
Snake venoms contain an astounding variety of different proteins. Among them are numerous C-type lectin family members, which are grouped into classical Ca2+- and sugar-binding lectins and the non-sugar-binding snake venom C-type lectin-related proteins (SV-CLRPs), also called snaclecs. Both groups share the robust C-type lectin domain (CTLD) fold but differ in a long loop, which either contributes to a sugar-binding site or is expanded into a loop-swapping heterodimerization domain between two CLRP subunits. Most C-type lectin (-related) proteins assemble in ordered supramolecular complexes with a high versatility of subunit numbers and geometric arrays. Similarly versatile is their ability to inhibit or block their target molecules as well as to agonistically stimulate or antagonistically blunt a cellular reaction triggered by their target receptor. By utilizing distinct interaction sites differentially, SV-CLRPs target a plethora of molecules, such as distinct coagulation factors and receptors of platelets and endothelial cells that are involved in hemostasis, thrombus formation, inflammation and hematogenous metastasis. Because of their robust structure and their high affinity towards their clinically relevant targets, SV-CLRPs are and will potentially be valuable prototypes to develop new diagnostic and therapeutic tools in medicine, provided that the molecular mechanisms underlying their versatility are disclosed.
Collapse
Affiliation(s)
- Johannes A Eble
- Institute of Physiological Chemistry and Pathobiochemistry, University of Münster, Waldeyerstr. 15, 48149 Münster, Germany.
| |
Collapse
|
48
|
Zhang F, Zhang C, Xu X, Zhang Y, Gong X, Yang Z, Zhang H, Tang D, Liang S, Liu Z. Naja atra venom peptide reduces pain by selectively blocking the voltage-gated sodium channel Nav1.8. J Biol Chem 2019; 294:7324-7334. [PMID: 30804211 DOI: 10.1074/jbc.ra118.007370] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2018] [Revised: 02/20/2019] [Indexed: 01/14/2023] Open
Abstract
The voltage-gated sodium channel Nav1.8 is preferentially expressed in peripheral nociceptive neurons and contributes to inflammatory and neuropathic pain. Therefore, Nav1.8 has emerged as one of the most promising analgesic targets for pain relief. Using large-scale screening of various animal-derived toxins and venoms for Nav1.8 inhibitors, here we identified μ-EPTX-Na1a, a 62-residue three-finger peptide from the venom of the Chinese cobra (Naja atra), as a potent inhibitor of Nav1.8, exhibiting high selectivity over other voltage-gated sodium channel subtypes. Using whole-cell voltage-clamp recordings, we observed that purified μ-EPTX-Na1a blocked the Nav1.8 current. This blockade was associated with a depolarizing shift of activation and repolarizing shift of inactivation, a mechanism distinct from that of any other gating modifier toxin identified to date. In rodent models of inflammatory and neuropathic pain, μ-EPTX-Na1a alleviated nociceptive behaviors more potently than did morphine, indicating that μ-EPTX-Na1a has a potent analgesic effect. μ-EPTX-Na1a displayed no evident cytotoxicity and cardiotoxicity and produced no obvious adverse responses in mice even at a dose 30-fold higher than that producing a significant analgesic effect. Our study establishes μ-EPTX-Na1a as a promising lead for the development of Nav1.8-targeting analgesics to manage pain.
Collapse
Affiliation(s)
- Fan Zhang
- From The National and Local Joint Engineering Laboratory of Animal Peptide Drug Development, College of Life Sciences, Hunan Normal University, Changsha, 410081 Hunan, China
| | - Changxin Zhang
- From The National and Local Joint Engineering Laboratory of Animal Peptide Drug Development, College of Life Sciences, Hunan Normal University, Changsha, 410081 Hunan, China
| | - Xunxun Xu
- From The National and Local Joint Engineering Laboratory of Animal Peptide Drug Development, College of Life Sciences, Hunan Normal University, Changsha, 410081 Hunan, China
| | - Yunxiao Zhang
- From The National and Local Joint Engineering Laboratory of Animal Peptide Drug Development, College of Life Sciences, Hunan Normal University, Changsha, 410081 Hunan, China
| | - Xue Gong
- From The National and Local Joint Engineering Laboratory of Animal Peptide Drug Development, College of Life Sciences, Hunan Normal University, Changsha, 410081 Hunan, China
| | - Zuqin Yang
- From The National and Local Joint Engineering Laboratory of Animal Peptide Drug Development, College of Life Sciences, Hunan Normal University, Changsha, 410081 Hunan, China
| | - Heng Zhang
- From The National and Local Joint Engineering Laboratory of Animal Peptide Drug Development, College of Life Sciences, Hunan Normal University, Changsha, 410081 Hunan, China
| | - Dongfang Tang
- From The National and Local Joint Engineering Laboratory of Animal Peptide Drug Development, College of Life Sciences, Hunan Normal University, Changsha, 410081 Hunan, China
| | - Songping Liang
- From The National and Local Joint Engineering Laboratory of Animal Peptide Drug Development, College of Life Sciences, Hunan Normal University, Changsha, 410081 Hunan, China
| | - Zhonghua Liu
- From The National and Local Joint Engineering Laboratory of Animal Peptide Drug Development, College of Life Sciences, Hunan Normal University, Changsha, 410081 Hunan, China
| |
Collapse
|
49
|
Govindu PCV, Mohanan A, Dolle A, Gowd KH. Conformations of cysteine disulfides of peptide toxins: Advantage of differentiating forward and reverse asymmetric disulfide conformers. J Biomol Struct Dyn 2018; 37:2017-2029. [DOI: 10.1080/07391102.2018.1475257] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/16/2022]
Affiliation(s)
- Panchada Ch V Govindu
- Department of Chemistry, School of Chemical Sciences, Central University of Karnataka, Kalaburagi, Karnataka, India
| | - Athul Mohanan
- Department of Chemistry, School of Chemical Sciences, Central University of Karnataka, Kalaburagi, Karnataka, India
| | - Ashwini Dolle
- Department of Chemistry, School of Chemical Sciences, Central University of Karnataka, Kalaburagi, Karnataka, India
| | - Konkallu Hanumae Gowd
- Department of Chemistry, School of Chemical Sciences, Central University of Karnataka, Kalaburagi, Karnataka, India
| |
Collapse
|
50
|
Kunalan S, Othman I, Syed Hassan S, Hodgson WC. Proteomic Characterization of Two Medically Important Malaysian Snake Venoms, Calloselasma rhodostoma (Malayan Pit Viper) and Ophiophagus hannah (King Cobra). Toxins (Basel) 2018; 10:toxins10110434. [PMID: 30373186 PMCID: PMC6266455 DOI: 10.3390/toxins10110434] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2018] [Revised: 10/23/2018] [Accepted: 10/23/2018] [Indexed: 02/07/2023] Open
Abstract
Calloselasma rhodostoma (CR) and Ophiophagus hannah (OH) are two medically important snakes found in Malaysia. While some studies have described the biological properties of these venoms, feeding and environmental conditions also influence the concentration and distribution of snake venom toxins, resulting in variations in venom composition. Therefore, a combined proteomic approach using shotgun and gel filtration chromatography, analyzed by tandem mass spectrometry, was used to examine the composition of venoms from these Malaysian snakes. The analysis revealed 114 proteins (15 toxin families) and 176 proteins (20 toxin families) in Malaysian Calloselasma rhodostoma and Ophiophagus hannah species, respectively. Flavin monoamine oxidase, phospholipase A2, phosphodiesterase, snake venom metalloproteinase, and serine protease toxin families were identified in both venoms. Aminopeptidase, glutaminyl-peptide cyclotransferase along with ankyrin repeats were identified for the first time in CR venom, and insulin, c-type lectins/snaclecs, hepatocyte growth factor, and macrophage colony-stimulating factor together with tumor necrosis factor were identified in OH venom for the first time. Our combined proteomic approach has identified a comprehensive arsenal of toxins in CR and OH venoms. These data may be utilized for improved antivenom production, understanding pathological effects of envenoming, and the discovery of biologically active peptides with medical and/or biotechnological value.
Collapse
Affiliation(s)
- Sugita Kunalan
- Jeffrey Cheah School of Medicine and Health Sciences, Monash University Malaysia, Jalan Lagoon Selatan, Bandar Sunway, Selangor Darul Ehsan 47500, Malaysia.
| | - Iekhsan Othman
- Jeffrey Cheah School of Medicine and Health Sciences, Monash University Malaysia, Jalan Lagoon Selatan, Bandar Sunway, Selangor Darul Ehsan 47500, Malaysia.
| | - Sharifah Syed Hassan
- Jeffrey Cheah School of Medicine and Health Sciences, Monash University Malaysia, Jalan Lagoon Selatan, Bandar Sunway, Selangor Darul Ehsan 47500, Malaysia.
| | - Wayne C Hodgson
- Monash Venom Group, Department of Pharmacology, Faculty of Medicine, Nursing and Health Sciences, Monash University, Victoria 3800, Australia.
| |
Collapse
|