1
|
Sharma D, Dhiman I, Das S, Das DK, Pramanik DD, Dash SK, Pramanik A. Recent Advances in Therapeutic Peptides: Innovations and Applications in Treating Infections and Diseases. ACS OMEGA 2025; 10:17087-17107. [PMID: 40352490 PMCID: PMC12059905 DOI: 10.1021/acsomega.5c02077] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/05/2025] [Revised: 04/11/2025] [Accepted: 04/14/2025] [Indexed: 05/14/2025]
Abstract
Peptides have become a powerful frontier in modern medicine, offering a promising therapeutic solution for various diseases and advancing rapidly in pharmaceutical development. These small amino acid chains, with their innovative design, have attracted significant attention due to their versatility and high receptor specificity, which minimizes off-target effects, along with enhanced therapeutic efficacy, biodegradability, low toxicity, and minimal immunogenicity. They are being explored for use in several clinical domains, like metabolic diseases, immunomodulation, and cancer. Furthermore, antimicrobial peptides (AMPs) have grown to be a promising strategy to combat the worldwide challenge of antibiotic resistance, demonstrating promising results against multidrug-resistant organisms. Both natural and engineered peptides have been discovered and investigated, whereas numerous others are progressing toward clinical trials in a number of therapeutic domains. Recent improvements with surface modification, such as peptide engineering, peptide cyclization, PEGylation, and the utilization of synthetic amino acids to enhance their pharmacokinetic profiles and overcome the inherent disadvantages of these peptides have made it possible for the area to continue to advance. Moreover, their therapeutic potential has been further enhanced by innovative delivery methods, such as self-assembling peptides, nanocarriers, and alternate routes of administration. This Review critically states the potential of peptides as versatile therapeutics along with their modifications and advancements to drive the significant progress to treat infections and chronic diseases, along with their potential benefits and challenges.
Collapse
Affiliation(s)
- Deepshikha Sharma
- Amity
Institute of Biotechnology, Amity University, Noida, Uttar Pradesh 201301, India
| | - Isha Dhiman
- Amity
Institute of Biotechnology, Amity University, Noida, Uttar Pradesh 201301, India
| | - Swarnali Das
- Department
of Physiology, University of Gour Banga, Malda, West Bengal 732103, India
| | - Deepak Kumar Das
- Department
of Chemistry and Nanoscience, GLA University, Mathura, Uttar Pradesh 281406, India
| | - Devlina Das Pramanik
- Amity
Institute of Biotechnology, Amity University, Noida, Uttar Pradesh 201301, India
| | - Sandeep Kumar Dash
- Department
of Physiology, University of Gour Banga, Malda, West Bengal 732103, India
| | - Arindam Pramanik
- Amity
Institute of Biotechnology, Amity University, Noida, Uttar Pradesh 201301, India
- School
of Medicine, University of Leeds, Leeds LS97TF, United Kingdom
| |
Collapse
|
2
|
Zhao H, Bao S, Chen S, Yang Q, Lou K, Gai Y, Lin J, Liu C, Liu H, Zhang C, Yang R. Phytosomes Loaded with Mastoparan-M Represent a Novel Strategy for Breast Cancer Treatment. Int J Nanomedicine 2025; 20:109-124. [PMID: 39816377 PMCID: PMC11733207 DOI: 10.2147/ijn.s481871] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2024] [Accepted: 12/05/2024] [Indexed: 01/18/2025] Open
Abstract
Purpose Mastoparan-M (Mast-M) has cytotoxic effects on various tumor cells in vitro, including liver cancer and colorectal cancer. However, the anti-tumor mechanism of Mast-M remains unclear and its potential for anti-tumor therapy has not been investigated. Herein, we aimed to develop a novel phytosome formulation loaded with Mast-M and evaluate its efficacy against breast cancer both in vitro and in vivo. Furthermore, we investigated the underlying anti-tumor mechanisms of Mast-M. Methods The synthesis of Phy-Mast-M involved a co-solvent technique, followed by solvent evaporation. Its anti-tumor mechanism was investigated using CCK-8, clone formation, and apoptosis assays. Subsequently, the biodistribution and anti-tumor efficacy of Phy-Mast-M were assessed in vivo using the 4T1 tumor-bearing mouse model. Finally, the safety of Phy-Mast-M was evaluated in vivo. Results The prepared Phy-Mast-M demonstrated an exceptional monodisperse size distribution (125.67 ± 45.79 nm), and exhibited excellent stability under different physiological conditions. Phy-Mast-M could inhibit 4T1 cells growth through multiple channels, including arresting cell growth cycle and disturbing mitochondrial membrane integrity. Phy-Mast-M proved significantly higher accumulation at tumor sites in a tumor-bearing mouse model as compared to free Mast-M. Moreover, in vivo anti-tumor studies demonstrated that Phy-Mast-M exhibited superior curative inhibitory effects on tumor growth and favorable biocompatibility. Conclusion Phy-Mast-M demonstrates significant anti-tumor activity both in vitro and in vivo. Moreover, its potential for clinical translation suggests promising prospects for cancer therapy, offering more drug options for breast cancer patients.
Collapse
Affiliation(s)
- Hairong Zhao
- Department of Breast Surgery, The First Affiliated Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen, People’s Republic of China
- Yunnan Provincial Key Laboratory of Entomological Biopharmaceutical R&D, Dali University, Dali, People’s Republic of China
| | - Shuangyan Bao
- Yunnan Provincial Key Laboratory of Entomological Biopharmaceutical R&D, Dali University, Dali, People’s Republic of China
| | - Shuanglong Chen
- Department of Breast Surgery, The First Affiliated Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen, People’s Republic of China
| | - Qingmo Yang
- Department of Breast Surgery, The First Affiliated Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen, People’s Republic of China
| | - Kangliang Lou
- School of Medicine, Xiamen University, Xiamen, People’s Republic of China
| | - Yating Gai
- Xiamen Research Institute of Food and Drug Quality Inspection, Xiamen, People’s Republic of China
| | - Jinyan Lin
- School of Public Health, Xi’an Jiaotong University, Xi’an, People’s Republic of China
| | - Chaojie Liu
- Yunnan Provincial Key Laboratory of Entomological Biopharmaceutical R&D, Dali University, Dali, People’s Republic of China
| | - Heng Liu
- Yunnan Provincial Key Laboratory of Entomological Biopharmaceutical R&D, Dali University, Dali, People’s Republic of China
| | - Chenggui Zhang
- Yunnan Provincial Key Laboratory of Entomological Biopharmaceutical R&D, Dali University, Dali, People’s Republic of China
| | - Ruiqin Yang
- Department of Breast Surgery, The First Affiliated Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen, People’s Republic of China
| |
Collapse
|
3
|
Feng J, Sun M, Liu C, Zhang W, Xu C, Wang J, Wang G, Wan S. SAMP: Identifying antimicrobial peptides by an ensemble learning model based on proportionalized split amino acid composition. Brief Funct Genomics 2024; 23:879-890. [PMID: 39573886 PMCID: PMC11631067 DOI: 10.1093/bfgp/elae046] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2024] [Revised: 08/23/2024] [Accepted: 11/01/2024] [Indexed: 11/24/2024] Open
Abstract
It is projected that 10 million deaths could be attributed to drug-resistant bacteria infections in 2050. To address this concern, identifying new-generation antibiotics is an effective way. Antimicrobial peptides (AMPs), a class of innate immune effectors, have received significant attention for their capacity to eliminate drug-resistant pathogens, including viruses, bacteria, and fungi. Recent years have witnessed widespread applications of computational methods especially machine learning (ML) and deep learning (DL) for discovering AMPs. However, existing methods only use features including compositional, physiochemical, and structural properties of peptides, which cannot fully capture sequence information from AMPs. Here, we present SAMP, an ensemble random projection (RP) based computational model that leverages a new type of feature called proportionalized split amino acid composition (PSAAC) in addition to conventional sequence-based features for AMP prediction. With this new feature set, SAMP captures the residue patterns like sorting signals at both the N-terminal and the C-terminal, while also retaining the sequence order information from the middle peptide fragments. Benchmarking tests on different balanced and imbalanced datasets demonstrate that SAMP consistently outperforms existing state-of-the-art methods, such as iAMPpred and AMPScanner V2, in terms of accuracy, Matthews correlation coefficient (MCC), G-measure, and F1-score. In addition, by leveraging an ensemble RP architecture, SAMP is scalable to processing large-scale AMP identification with further performance improvement, compared to those models without RP. To facilitate the use of SAMP, we have developed a Python package that is freely available at https://github.com/wan-mlab/SAMP.
Collapse
Affiliation(s)
- Junxi Feng
- Department of Biostatistics, School of Public Health, Harvard University, Boston, MA 02115, United States
| | - Mengtao Sun
- Department of Genetics, Cell Biology and Anatomy, College of Medicine, University of Nebraska Medical Center, Omaha, NE 68198, United States
| | - Cong Liu
- Department of Mathematics, Data Science, University of Waterloo, Waterloo, ON N2L3G1, Canada
| | - Weiwei Zhang
- Department of Pathology, Microbiology, and Immunology, College of Medicine, University of Nebraska Medical Center, Omaha, NE 68198, United States
| | - Changmou Xu
- Department of Food Science and Human Nutrition, College of Agricultural, Consumer and Environmental Sciences, University of Illinois Urbana-Champaign, Urbana, IL 61801, United States
| | - Jieqiong Wang
- Department of Neurological Sciences, College of Medicine, University of Nebraska Medical Center, Omaha, NE 68198, United States
| | - Guangshun Wang
- Department of Pathology, Microbiology, and Immunology, College of Medicine, University of Nebraska Medical Center, Omaha, NE 68198, United States
| | - Shibiao Wan
- Department of Genetics, Cell Biology and Anatomy, College of Medicine, University of Nebraska Medical Center, Omaha, NE 68198, United States
| |
Collapse
|
4
|
Chen M, Wang X, Bao S, Wang D, Zhao J, Wang Q, Liu C, Zhao H, Zhang C. Orchestrating AMPK/mTOR signaling to initiate melittin-induced mitophagy: A neuroprotective strategy against Parkinson's disease. Int J Biol Macromol 2024; 281:136119. [PMID: 39343259 DOI: 10.1016/j.ijbiomac.2024.136119] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2024] [Revised: 08/24/2024] [Accepted: 09/26/2024] [Indexed: 10/01/2024]
Abstract
Apitherapy has a long history in treating Parkinson's disease (PD) in humans, with evidence suggesting that bee venom (BV) can mitigate Parkinson's symptoms. Central to BV's effects is melittin (MLT), a principal peptide whose neuroprotective mechanisms in PD are not fully understood. The study investigated the effects of MLT on an experimental PD model in mice and dopaminergic neuron cells, induced by MPTP or MPP+. We concentrate on the autophagic response elicited by MLT during PD pathogenesis. The findings showed that MLT was shown to protect against MPP+/MPTP cytotoxicity and preserve tyrosine hydroxylase (TH) levels, indicating neuronal safeguarding. Remarkably, MLT instigated mitophagy, enhancing mitochondrial homeostasis in MPP+-exposed SH-SY5Y cells. Further, MLT's promotion of mitophagy was confirmed to be AMPK/mTOR signaling-dependent. Validation using Bafilomycin A1, an autophagy inhibitor, confirmed MLT's neuroprotective role, with autophagy inhibition negating MLT's benefits and reducing TH preservation. These findings illuminate MLT's therapeutic potential, particularly its modulation of mitochondrial dysfunction in PD pathology. Our research advances the understanding of MLT's mechanistic action, emphasizing its role in mitochondrial autophagy and AMPK/mTOR signaling, offering a novel perspective beyond the symptomatic relief associated with BV.
Collapse
Affiliation(s)
- Mingran Chen
- Yunnan Provincial Key Laboratory of Entomological Biopharmaceutical R&D, College of Pharmacy, Dali University, Dali, Yunnan, PR China
| | - Xue Wang
- Yunnan Provincial Key Laboratory of Entomological Biopharmaceutical R&D, College of Pharmacy, Dali University, Dali, Yunnan, PR China
| | - Shuangyan Bao
- Yunnan Provincial Key Laboratory of Entomological Biopharmaceutical R&D, College of Pharmacy, Dali University, Dali, Yunnan, PR China
| | - Dexiao Wang
- Yunnan Provincial Key Laboratory of Entomological Biopharmaceutical R&D, College of Pharmacy, Dali University, Dali, Yunnan, PR China
| | - Jie Zhao
- Yunnan Provincial Key Laboratory of Entomological Biopharmaceutical R&D, College of Pharmacy, Dali University, Dali, Yunnan, PR China
| | - Qian Wang
- Yunnan Provincial Key Laboratory of Entomological Biopharmaceutical R&D, College of Pharmacy, Dali University, Dali, Yunnan, PR China
| | - Chaojie Liu
- Yunnan Provincial Key Laboratory of Entomological Biopharmaceutical R&D, College of Pharmacy, Dali University, Dali, Yunnan, PR China
| | - Haiong Zhao
- Yunnan Provincial Key Laboratory of Entomological Biopharmaceutical R&D, College of Pharmacy, Dali University, Dali, Yunnan, PR China; National-Local Joint Engineering Research Center of Entomoceutics, Dali, PR China.
| | - Chenggui Zhang
- Yunnan Provincial Key Laboratory of Entomological Biopharmaceutical R&D, College of Pharmacy, Dali University, Dali, Yunnan, PR China; National-Local Joint Engineering Research Center of Entomoceutics, Dali, PR China.
| |
Collapse
|
5
|
Periwal N, Arora P, Thakur A, Agrawal L, Goyal Y, Rathore AS, Anand HS, Kaur B, Sood V. Antiprotozoal peptide prediction using machine learning with effective feature selection techniques. Heliyon 2024; 10:e36163. [PMID: 39247292 PMCID: PMC11380031 DOI: 10.1016/j.heliyon.2024.e36163] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2023] [Revised: 08/09/2024] [Accepted: 08/11/2024] [Indexed: 09/10/2024] Open
Abstract
Background Protozoal pathogens pose a considerable threat, leading to notable mortality rates and the ongoing challenge of developing resistance to drugs. This situation underscores the urgent need for alternative therapeutic approaches. Antimicrobial peptides stand out as promising candidates for drug development. However, there is a lack of published research focusing on predicting antimicrobial peptides specifically targeting protozoal pathogens. In this study, we introduce a successful machine learning-based framework designed to predict potential antiprotozoal peptides effective against protozoal pathogens. Objective The primary objective of this study is to classify and predict antiprotozoal peptides using diverse negative datasets. Methods A comprehensive literature review was conducted to gather experimentally validated antiprotozoal peptides, forming the positive dataset for our study. To construct a robust machine learning classifier, multiple negative datasets were incorporated, including (i) non-antimicrobial, (ii) antiviral, (iii) antibacterial, (iv) antifungal, and (v) antimicrobial peptides excluding those targeting protozoal pathogens. Various compositional features of the peptides were extracted using the pfeature algorithm. Two feature selection methods, SVC-L1 and mRMR, were employed to identify highly relevant features crucial for distinguishing between the positive and negative datasets. Additionally, five popular classifiers i.e. Decision Tree, Random Forest, Support Vector Machine, Logistic Regression, and XGBoost were used to build efficient decision models. Results XGBoost was the most effective in classifying antiprotozoal peptides from each negative dataset based on the features selected by the mRMR feature selection method. The proposed machine learning framework efficiently differentiate the antiprotozoal peptides from (i) non-antimicrobial (ii) antiviral (iii) antibacterial (iv) antifungal and (v) antimicrobial with accuracy of 97.27 %, 93.64 %, 86.36 %, 90.91 %, and 89.09 % respectively on the validation dataset. Conclusion The models are incorporated in a user-friendly web server (www.soodlab.com/appred) to predict the antiprotozoal activity of given peptides.
Collapse
Affiliation(s)
- Neha Periwal
- Department of Biochemistry, Jamia Hamdard, India
| | - Pooja Arora
- Department of Zoology, Hansraj College, University of Delhi, India
| | | | | | - Yash Goyal
- Department of Computer Science, Hansraj College, University of Delhi, India
| | - Anand S Rathore
- Department of Zoology, Hansraj College, University of Delhi, India
| | | | - Baljeet Kaur
- Department of Computer Science, Hansraj College, University of Delhi, India
| | - Vikas Sood
- Department of Biochemistry, Jamia Hamdard, India
| |
Collapse
|
6
|
Proaño-Bolaños C, Morán-Marcillo G, Espinosa de Los Monteros-Silva N, Bermúdez-Puga S, Salazar MA, Blasco-Zúñiga A, Cuesta S, Molina C, Espinosa F, Meneses L, Rojas-Silva P, Zapata Mena S, Sáenz FE, Rivera I M, Costales JA. Bioactivity of synthetic peptides from Ecuadorian frog skin secretions against Leishmania mexicana, Plasmodium falciparum, and Trypanosoma cruzi. Microbiol Spectr 2024; 12:e0333923. [PMID: 39012112 DOI: 10.1128/spectrum.03339-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2023] [Accepted: 06/20/2024] [Indexed: 07/17/2024] Open
Abstract
Chagas disease, leishmaniasis, and malaria are major parasitic diseases disproportionately affecting the underprivileged population in developing nations. Finding new, alternative anti-parasitic compounds to treat these diseases is crucial because of the limited number of options currently available, the side effects they cause, the need for long treatment courses, and the emergence of drug-resistant parasites. Anti-microbial peptides (AMPs) derived from amphibian skin secretions are small bioactive molecules capable of lysing the cell membrane of pathogens while having low toxicity against human cells. Here, we report the anti-parasitic activity of five AMPs derived from skin secretions of three Ecuadorian frogs: cruzioseptin-1, cruzioseptin-4 (CZS-4), and cruzioseptin-16 from Cruziohyla calcarifer; dermaseptin-SP2 from Agalychnis spurrelli; and pictuseptin-1 from Boana picturata. These five AMPs were chemically synthesized. Initially, the hemolytic activity of CZS-4 and its minimal inhibitory concentration against Escherichia coli, Staphylococcus aureus, and Candida albicans were determined. Subsequently, the cytotoxicity of the synthetic AMPs against mammalian cells and their anti-parasitic activity against Leishmania mexicana promastigotes, erythrocytic stages of Plasmodium falciparum and mammalian stages of Trypanosoma cruzi were evaluated in vitro. The five AMPs displayed activity against the pathogens studied, with different levels of cytotoxicity against mammalian cells. In silico molecular docking analysis suggests this bioactivity may occur via pore formation in the plasma membrane, resulting in microbial lysis. CZS-4 displayed anti-bacterial, anti-fungal, and anti-parasitic activities with low cytotoxicity against mammalian cells. Further studies about this promising AMP are required to gain a better understanding of its activity.IMPORTANCEChagas disease, malaria, and leishmaniasis are major tropical diseases that cause extensive morbidity and mortality, for which available treatment options are unsatisfactory because of limited efficacy and side effects. Frog skin secretions contain molecules with anti-microbial properties known as anti-microbial peptides. We synthesized five peptides derived from the skin secretions of different species of tropical frogs and tested them against cultures of the causative agents of these three diseases, parasites known as Trypanosoma cruzi, Plasmodium falciparum, and Leishmania mexicana. All the different synthetic peptides studied showed activity against one of more of the parasites. Peptide cruzioseptin-4 is of special interest since it displayed intense activity against parasites while being innocuous against cultured mammalian cells, which indicates it does not simply hold general toxic properties; rather, its activity is specific against the parasites.
Collapse
Affiliation(s)
- Carolina Proaño-Bolaños
- Biomolecules Discovery Group, Laboratory of Molecular Biology and Biochemistry, Universidad Regional Amazónica Ikiam, Tena, Ecuador
| | - Giovanna Morán-Marcillo
- Biomolecules Discovery Group, Laboratory of Molecular Biology and Biochemistry, Universidad Regional Amazónica Ikiam, Tena, Ecuador
| | | | - Sebastián Bermúdez-Puga
- Biomolecules Discovery Group, Laboratory of Molecular Biology and Biochemistry, Universidad Regional Amazónica Ikiam, Tena, Ecuador
- Department of Biochemical-Pharmaceutical Technology, Faculty of Pharmaceutical Sciences, University of São Paulo, São Paulo, Brazil
| | - Mateo A Salazar
- Laboratorio de Investigación en Citogenética y Biomoléculas de Anfibios (LICBA), Centro de Investigación para la Salud en América Latina (CISeAL), Pontificia Universidad Católica del Ecuador, Quito, Ecuador
- Centro de Investigación para la Salud en América Latina, Pontificia Universidad Católica del Ecuador, Quito, Ecuador
| | - Ailín Blasco-Zúñiga
- Laboratorio de Investigación en Citogenética y Biomoléculas de Anfibios (LICBA), Centro de Investigación para la Salud en América Latina (CISeAL), Pontificia Universidad Católica del Ecuador, Quito, Ecuador
| | - Sebastián Cuesta
- Laboratorio de Química Computacional, Facultad de Ciencias Exactas y Naturales, Pontificia Universidad Católica del Ecuador, Quito, Ecuador
| | - Carolina Molina
- Instituto de Microbiología, Colegio de Ciencias Biológicas y Ambientales, Universidad San Francisco de Quito, Quito, Ecuador
| | - Franklin Espinosa
- Instituto de Microbiología, Colegio de Ciencias Biológicas y Ambientales, Universidad San Francisco de Quito, Quito, Ecuador
| | - Lorena Meneses
- Laboratorio de Química Computacional, Facultad de Ciencias Exactas y Naturales, Pontificia Universidad Católica del Ecuador, Quito, Ecuador
| | - Patricio Rojas-Silva
- Instituto de Microbiología, Colegio de Ciencias Biológicas y Ambientales, Universidad San Francisco de Quito, Quito, Ecuador
| | - Sonia Zapata Mena
- Instituto de Microbiología, Colegio de Ciencias Biológicas y Ambientales, Universidad San Francisco de Quito, Quito, Ecuador
| | - Fabián E Sáenz
- Centro de Investigación para la Salud en América Latina, Pontificia Universidad Católica del Ecuador, Quito, Ecuador
| | - Miryan Rivera I
- Laboratorio de Investigación en Citogenética y Biomoléculas de Anfibios (LICBA), Centro de Investigación para la Salud en América Latina (CISeAL), Pontificia Universidad Católica del Ecuador, Quito, Ecuador
| | - Jaime A Costales
- Centro de Investigación para la Salud en América Latina, Pontificia Universidad Católica del Ecuador, Quito, Ecuador
| |
Collapse
|
7
|
Feng J, Sun M, Liu C, Zhang W, Xu C, Wang J, Wang G, Wan S. SAMP: Identifying Antimicrobial Peptides by an Ensemble Learning Model Based on Proportionalized Split Amino Acid Composition. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.04.25.590553. [PMID: 38712184 PMCID: PMC11071531 DOI: 10.1101/2024.04.25.590553] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/08/2024]
Abstract
It is projected that 10 million deaths could be attributed to drug-resistant bacteria infections in 2050. To address this concern, identifying new-generation antibiotics is an effective way. Antimicrobial peptides (AMPs), a class of innate immune effectors, have received significant attention for their capacity to eliminate drug-resistant pathogens, including viruses, bacteria, and fungi. Recent years have witnessed widespread applications of computational methods especially machine learning (ML) and deep learning (DL) for discovering AMPs. However, existing methods only use features including compositional, physiochemical, and structural properties of peptides, which cannot fully capture sequence information from AMPs. Here, we present SAMP, an ensemble random projection (RP) based computational model that leverages a new type of features called Proportionalized Split Amino Acid Composition (PSAAC) in addition to conventional sequence-based features for AMP prediction. With this new feature set, SAMP captures the residue patterns like sorting signals at around both the N-terminus and the C-terminus, while also retaining the sequence order information from the middle peptide fragments. Benchmarking tests on different balanced and imbalanced datasets demonstrate that SAMP consistently outperforms existing state-of-the-art methods, such as iAMPpred and AMPScanner V2, in terms of accuracy, MCC, G-measure and F1-score. In addition, by leveraging an ensemble RP architecture, SAMP is scalable to processing large-scale AMP identification with further performance improvement, compared to those models without RP. To facilitate the use of SAMP, we have developed a Python package freely available at https://github.com/wan-mlab/SAMP.
Collapse
Affiliation(s)
- Junxi Feng
- Department of Biostatistics, Harvard School of Public Health, Boston, MA, United States, 02115
| | - Mengtao Sun
- Department of Genetics, Cell Biology and Anatomy, University of Nebraska Medical Center, Omaha, NE, United States, 68198
| | - Cong Liu
- Department of Mathematics, Data Science, University of Waterloo, Waterloo, ON, Canada, N2L3G1
| | - Weiwei Zhang
- Department of Pathology, Microbiology, and Immunology, University of Nebraska Medical Center, Omaha, NE, United States, 68198
| | - Changmou Xu
- Department of Food Science and Human Nutrition, University of Illinois Urbana-Champaign, Urbana, IL, United States, 61801
| | - Jieqiong Wang
- Department of Neurological Sciences, University of Nebraska Medical Center, Omaha, NE, United States, 68198
| | - Guangshun Wang
- Department of Pathology, Microbiology, and Immunology, University of Nebraska Medical Center, Omaha, NE, United States, 68198
| | - Shibiao Wan
- Department of Genetics, Cell Biology and Anatomy, University of Nebraska Medical Center, Omaha, NE, United States, 68198
| |
Collapse
|
8
|
Praphawilai P, Kaewkod T, Suriyaprom S, Panya A, Disayathanoowat T, Tragoolpua Y. Anti-Herpes Simplex Virus and Anti-Inflammatory Activities of the Melittin Peptides Derived from Apis mellifera and Apis florea Venom. INSECTS 2024; 15:109. [PMID: 38392528 PMCID: PMC10888738 DOI: 10.3390/insects15020109] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/30/2023] [Revised: 01/24/2024] [Accepted: 02/02/2024] [Indexed: 02/24/2024]
Abstract
Herpes simplex virus (HSV) is known to cause cold sores and various diseases in humans. Importantly, HSV infection can develop latent and recurrent infections, and it is also known to cause inflammation. These infections are difficult to control, and effective treatment of the disease remains a challenge. Thus, the search for new antiviral and anti-inflammatory agents is a necessity. Melittin is a major peptide that is present in the venom of the honeybee. It possesses a number of pharmacological properties. In this study, the effects of the melittin peptides from A. mellifera (MEL-AM) and A. florea (MEL-AF) against HSV-1 and HSV-2 were evaluated at different stages during the viral multiplication cycle in an attempt to define the mode of antiviral action using plaque reduction and virucidal assays. The results revealed a new finding that melittin at 5 µg/mL demonstrated the highest inhibitory effect on HSV through the direct inactivation of viral particles, and MEL-AF displayed a greater virucidal activity. Moreover, melittin was also observed to interfere with the process of HSV attachment to the host cells. MEL-AM exhibited anti-HSV-1 and anti-HSV-2 effects with EC50 values of 4.90 ± 0.15 and 4.39 ± 0.20 µg/mL, while MEL-AF demonstrated EC50 values of 4.47 ± 0.21 and 3.95 ± 0.61 µg/mL against HSV-1 and HSV-2, respectively. However, non-cytotoxic concentrations of both types of melittin produced only slight degrees of HSV-1 and HSV-2 inhibition after viral attachment, but melittin at 5 µg/mL was able to reduce the plaque size of HSV-2 when compared to the untreated group. In addition, MEL-AM and MEL-AF also exhibited anti-inflammatory activity via the inhibition of nitric oxide production in LPS-stimulated RAW 264.7 macrophage cells, and they were also found to down-regulate the expressions of the iNOS, COX-2 and IL-6 genes. The highest inhibition of IL-6 mRNA expression was found after treatment with 10 µg/mL of MEL-AM and MEL-AF. Therefore, melittin peptides have displayed strong potential to be used as an alternative treatment for HSV infection and inflammatory diseases in the future.
Collapse
Affiliation(s)
- Pichet Praphawilai
- Department of Biology, Faculty of Science, Chiang Mai University, Chiang Mai 50200, Thailand
- Office of Research Administration, Chiang Mai University, Chiang Mai 50200, Thailand
| | - Thida Kaewkod
- Department of Biology, Faculty of Science, Chiang Mai University, Chiang Mai 50200, Thailand
- Research Center of Deep Technology in Beekeeping and Bee Products for Sustainable Development Goals (SMART BEE SDGs), Faculty of Science, Chiang Mai University, Chiang Mai 50200, Thailand
| | - Sureeporn Suriyaprom
- Department of Biology, Faculty of Science, Chiang Mai University, Chiang Mai 50200, Thailand
- Office of Research Administration, Chiang Mai University, Chiang Mai 50200, Thailand
| | - Aussara Panya
- Department of Biology, Faculty of Science, Chiang Mai University, Chiang Mai 50200, Thailand
- Research Center of Deep Technology in Beekeeping and Bee Products for Sustainable Development Goals (SMART BEE SDGs), Faculty of Science, Chiang Mai University, Chiang Mai 50200, Thailand
| | - Terd Disayathanoowat
- Department of Biology, Faculty of Science, Chiang Mai University, Chiang Mai 50200, Thailand
- Research Center of Deep Technology in Beekeeping and Bee Products for Sustainable Development Goals (SMART BEE SDGs), Faculty of Science, Chiang Mai University, Chiang Mai 50200, Thailand
| | - Yingmanee Tragoolpua
- Department of Biology, Faculty of Science, Chiang Mai University, Chiang Mai 50200, Thailand
- Research Center of Deep Technology in Beekeeping and Bee Products for Sustainable Development Goals (SMART BEE SDGs), Faculty of Science, Chiang Mai University, Chiang Mai 50200, Thailand
| |
Collapse
|
9
|
Berhe H, Kumar Cinthakunta Sridhar M, Zerihun M, Qvit N. The Potential Use of Peptides in the Fight against Chagas Disease and Leishmaniasis. Pharmaceutics 2024; 16:227. [PMID: 38399281 PMCID: PMC10892537 DOI: 10.3390/pharmaceutics16020227] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2023] [Revised: 12/28/2023] [Accepted: 01/30/2024] [Indexed: 02/25/2024] Open
Abstract
Chagas disease and leishmaniasis are both neglected tropical diseases that affect millions of people around the world. Leishmaniasis is currently the second most widespread vector-borne parasitic disease after malaria. The World Health Organization records approximately 0.7-1 million newly diagnosed leishmaniasis cases each year, resulting in approximately 20,000-30,000 deaths. Also, 25 million people worldwide are at risk of Chagas disease and an estimated 6 million people are infected with Trypanosoma cruzi. Pentavalent antimonials, amphotericin B, miltefosine, paromomycin, and pentamidine are currently used to treat leishmaniasis. Also, nifurtimox and benznidazole are two drugs currently used to treat Chagas disease. These drugs are associated with toxicity problems such as nephrotoxicity and cardiotoxicity, in addition to resistance problems. As a result, the discovery of novel therapeutic agents has emerged as a top priority and a promising alternative. Overall, there is a need for new and effective treatments for Chagas disease and leishmaniasis, as the current drugs have significant limitations. Peptide-based drugs are attractive due to their high selectiveness, effectiveness, low toxicity, and ease of production. This paper reviews the potential use of peptides in the treatment of Chagas disease and leishmaniasis. Several studies have demonstrated that peptides are effective against Chagas disease and leishmaniasis, suggesting their use in drug therapy for these diseases. Overall, peptides have the potential to be effective therapeutic agents against Chagas disease and leishmaniasis, but more research is needed to fully investigate their potential.
Collapse
Affiliation(s)
| | | | | | - Nir Qvit
- The Azrieli Faculty of Medicine in the Galilee, Bar-Ilan University, Safed 1311502, Israel; (H.B.); (M.K.C.S.); (M.Z.)
| |
Collapse
|
10
|
Yan R, Dai W, Mao Y, Yu G, Li W, Shu M, Xu B. Melittin inhibits tumor cell migration and enhances cisplatin sensitivity by suppressing IL-17 signaling pathway gene LCN2 in castration-resistant prostate cancer. Prostate 2023; 83:1430-1445. [PMID: 37517867 DOI: 10.1002/pros.24605] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/12/2023] [Revised: 06/14/2023] [Accepted: 07/07/2023] [Indexed: 08/01/2023]
Abstract
BACKGROUND Melittin is a small molecule polypeptide extracted from the abdominal cavity of bees, which is used to treat inflammatory diseases and relieve pain. However, the antitumor effect of melittin and its mechanisms remain unclear, especially in castration-resistant prostate cancer (CRPC). METHODS Through CCK-8 assay, colony formation assay, wound healing assay and Transwell migration assay, we explored the effect of melittin on CRPC cell lines. In addition, with microarray analysis, gene ontology analysis and kyoto encyclopedia of genes and genomes analysis, this study identified key genes and signaling pathways that influence the growth of PC-3 cells. Meanwhile, the effect of melittin on CRPC was also verified through subcutaneous tumor formation experiments. Finally, we also tested the relevant indicators of human prostate cancer (PCa) specimens through immunohistochemistry and H&E stating. RESULTS Here, melittin was verified to inhibit the cell proliferation and migration of CPRC. Moreover, RNA-sequence analysis demonstrated that Interleukin-17 (IL-17) signaling pathway gene Lipocalin-2 (LCN2) was downregulated by melittin treatment in CRPC. Further investigation revealed that overexpression of LCN2 was able to rescue tumor suppression and cisplatin sensitivity which melittin mediated. Interestingly, the expression of LCN2 is highly related to metastasis in PCa. CONCLUSIONS In brief, our study indicates that LCN2 plays an oncogenic role in CRPC and melittin may be selected as an attractive candidate for CRPC therapy.
Collapse
Affiliation(s)
- Rucheng Yan
- Department of Urology, Shanghai Ninth People's Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, P. R. China
| | - Weiwei Dai
- Department of Pharmacology, School of Basic Medical Sciences, Shanghai Medical College, Fudan University, Shanghai, P. R. China
| | - Yuanshen Mao
- Department of Urology, Shanghai Ninth People's Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, P. R. China
| | - Guopeng Yu
- Department of Urology, Shanghai Ninth People's Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, P. R. China
| | - Wenfeng Li
- Department of Urology, Shanghai Ninth People's Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, P. R. China
| | - Minfeng Shu
- Department of Pharmacology, School of Basic Medical Sciences, Shanghai Medical College, Fudan University, Shanghai, P. R. China
| | - Bin Xu
- Department of Urology, Shanghai Ninth People's Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, P. R. China
| |
Collapse
|
11
|
El Naggar HM, Anwar MM, Khayyal AE, Abdelhameed RM, Barakat AM, Sadek SAS, Elashkar AM. Application of honeybee venom loaded nanoparticles for the treatment of chronic toxoplasmosis: parasitological, histopathological, and immunohistochemical studies. J Parasit Dis 2023; 47:591-607. [PMID: 37520202 PMCID: PMC10382463 DOI: 10.1007/s12639-023-01602-w] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2023] [Accepted: 05/27/2023] [Indexed: 08/01/2023] Open
Abstract
Toxoplasma gondii is an opportunistic intracellular protozoon which may cause severe disease in the immunocompromised patients. Unfortunately, the majority of treatments on the market work against tachyzoites in the acute infection but can't affect tissue cysts in the chronic phase. So, this study aimed to evaluate the effect of bee venom (BV) loaded metal organic frameworks (MOFs) nanoparticles (NPs) for the treatment of chronic murine toxoplasmosis. Ninety laboratory Swiss Albino mice were divided into 9 groups (10 mice each); GI (negative control), GII (infected control), GIII-GXI (infected with Me49 strain of Toxoplasma and treated); GIII (MOFs-NPs), GIV and GV (BV alone and loaded on MOFs-NPs), GVI and GVII (spiramycin alone and loaded on MOFs-NPs), GVIII and GIX (ciprofloxacin alone and loaded on MOFs-NPs). Parasitological examination of brain cyst count, histopathological study of brain, retina, liver, and kidney tissue sections and immunohistochemical (IHC) evaluation of liver was performed. Counting of Toxoplasma brain cysts showed high statistically significant difference between the infected treated groups and GII. GV showed the least count of brain cysts; mean ± SD (281 ± 29.5). Histopathological examination revealed a marked ameliorative effect of BV administration when used alone or loaded MOFs-NPs. It significantly reduced tissue inflammation, degeneration, and fibrosis. IHC examination of liver sections revealed high density CD8+ infiltration in GII, low density CD8+ infiltration in GIII, GVI, GVII, GVIII, and GIX while GIV and GV showed intermediate density CD8+ infiltration. BV is a promising Apitherapy against chronic toxoplasmosis. This effect is markedly enhanced by MOFs-NPs. Graphical abstract
Collapse
Affiliation(s)
- Heba M. El Naggar
- Department of Medical Parasitology, Faculty of Medicine, Ain Shams University, Cairo, Egypt
| | - Mona M Anwar
- Department of Medical Parasitology, Faculty of Medicine, Ain Shams University, Cairo, Egypt
| | - Amira E. Khayyal
- Department of Medical Parasitology, Faculty of Medicine, Ain Shams University, Cairo, Egypt
| | - Reda M Abdelhameed
- Department of Applied Organic Chemistry, Chemical Industries Research Division, National Research Centre, Giza, Egypt
| | - Ashraf M. Barakat
- Department of Zoonotic Diseases, National Research Centre, Giza, Egypt
| | - Sabry A. S. Sadek
- Department of Zoonotic Diseases, National Research Centre, Giza, Egypt
| | - Ayman M. Elashkar
- Department of Medical Parasitology, Faculty of Medicine, Ain Shams University, Cairo, Egypt
- Department of Basic Medical Sciences, College of Medicine, University of Bisha, Bisha, KSA Saudi Arabia
| |
Collapse
|
12
|
Robledo SM, Pérez-Silanes S, Fernández-Rubio C, Poveda A, Monzote L, González VM, Alonso-Collado P, Carrión J. Neglected Zoonotic Diseases: Advances in the Development of Cell-Penetrating and Antimicrobial Peptides against Leishmaniosis and Chagas Disease. Pathogens 2023; 12:939. [PMID: 37513786 PMCID: PMC10383258 DOI: 10.3390/pathogens12070939] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2023] [Revised: 07/12/2023] [Accepted: 07/12/2023] [Indexed: 07/30/2023] Open
Abstract
In 2020, the WHO established the road map for neglected tropical diseases 2021-2030, which aims to control and eradicate 20 diseases, including leishmaniosis and Chagas disease. In addition, since 2015, the WHO has been developing a Global Action Plan on Antimicrobial Resistance. In this context, the achievement of innovative strategies as an alternative to replace conventional therapies is a first-order socio-sanitary priority, especially regarding endemic zoonoses in poor regions, such as those caused by Trypanosoma cruzi and Leishmania spp. infections. In this scenario, it is worth highlighting a group of natural peptide molecules (AMPs and CPPs) that are promising strategies for improving therapeutic efficacy against these neglected zoonoses, as they avoid the development of toxicity and resistance of conventional treatments. This review presents the novelties of these peptide molecules and their ability to cross a whole system of cell membranes as well as stimulate host immune defenses or even serve as vectors of molecules. The efforts of the biotechnological sector will make it possible to overcome the limitations of antimicrobial peptides through encapsulation and functionalization methods to obtain approval for these treatments to be used in clinical programs for the eradication of leishmaniosis and Chagas disease.
Collapse
Affiliation(s)
- Sara M. Robledo
- Programa de Estudio y Control de Enfermedades Tropicales PECET, Facultad de Medicina, Universidad de Antioquia, Medellín 050010, Colombia;
| | - Silvia Pérez-Silanes
- Department of Pharmaceutical Technology and Chemistry, ISTUN Instituto de Salud Tropical, IdiSNA, Universidad de Navarra, 31008 Pamplona, Spain;
| | - Celia Fernández-Rubio
- Department of Microbiology and Parasitology, ISTUN Instituto de Salud Tropical, IdiSNA, Universidad de Navarra, 31008 Pamplona, Spain;
| | - Ana Poveda
- DNA Replication and Genome Instability Unit, Grupo de Investigación en Biodiversidad, Zoonosis y Salud Pública (GIBCIZ), Instituto de Investigación en Zoonosis-CIZ, Facultad de Ciencias Químicas, Universidad Central del Ecuador, Quito 170521, Ecuador;
| | - Lianet Monzote
- Department of Parasitology, Institute of Tropical Medicine “Pedro Kourí”, Apartado Postal No. 601, Marianao 13, La Habana 10400, Cuba;
| | - Víctor M. González
- Grupo de Aptámeros, Departamento de Bioquímica-Investigación, IRYCIS-Hospital Universitario Ramón y Cajal, Carretera de Colmenar Viejo Km. 9.100, 28034 Madrid, Spain;
| | - Paloma Alonso-Collado
- Department of Animal Health, Faculty of Veterinary Science, Complutense University of Madrid, 28040 Madrid, Spain;
| | - Javier Carrión
- Department of Animal Health, Faculty of Veterinary Science, Complutense University of Madrid, 28040 Madrid, Spain;
| |
Collapse
|
13
|
Harfmann D, Florea A. Experimental envenomation with honeybee venom melittin and phospholipase A2 induced multiple ultrastructural changes in adrenocortical mitochondria. Toxicon 2023; 229:107136. [PMID: 37116588 DOI: 10.1016/j.toxicon.2023.107136] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2023] [Revised: 04/25/2023] [Accepted: 04/25/2023] [Indexed: 04/30/2023]
Abstract
Bee stings represent a public health subject, but the mechanisms involved in bee venom toxicity are not yet fully understood. To evaluate the reactions of adrenocortical cells, through which organisms respond to stress, two honeybee venom components: melittin (Mlt) and phospholipase A2 (PLA2) were tested as potential chemical stressors. Modifications were investigated with transmission electron microscopy and microanalysis. A single dose of Mlt (31 mg/kg) or PLA2 (9.3 mg/kg) was injected in rats of groups ML and PL; daily doses of Mlt (350 μg/kg) or PLA2 (105 μg/kg) were injected 30 days in rats of groups M30 and P30. Adrenocortical cells in ML group showed ultrastructural degenerative alterations of nuclei, endoplasmic reticulum, and mitochondria that exhibited lipid inclusions and mitochondrial cristae (MC) re-organized into mono- or multimembrane large vesicles, and whorls of membranes. Many MC were degenerated. In the M30 group, similar ultrastructural changes, but of lower amplitude were noted; lipid cytosolic droplets were heterogenous. MC diameters in Mlt groups (melittin treated groups) were significantly higher than in control (C) group. In PL group, mitochondria contained large lipid inclusions, vesicular MC of different sizes and multiple membranes, and debris, or whorl structures. In P30 group MC were tubular with increased diameters. In both PLA2 groups (PLA2 treated groups) MC were significantly larger than in C group. We concluded that Mlt and PLA2 were powerful stressors, toxic at the tested doses, cellular reactions concerning in all groups mainly mitochondria, but also other cellular compartments. Apart from degenerative regression of MC, the rearrangement of tubular MC occurred into one or multiple large multimembrane vesicular MC. Reactions to the high doses were more pronounced, with the highest amplitude in ML group, and the lowest in P30 group.
Collapse
Affiliation(s)
- Diana Harfmann
- Department of Cell and Molecular Biology, Faculty of Medicine, "Iuliu Hațieganu" University of Medicine and Pharmacy, Cluj-Napoca, Romania
| | - Adrian Florea
- Department of Cell and Molecular Biology, Faculty of Medicine, "Iuliu Hațieganu" University of Medicine and Pharmacy, Cluj-Napoca, Romania.
| |
Collapse
|
14
|
Sowers A, Wang G, Xing M, Li B. Advances in Antimicrobial Peptide Discovery via Machine Learning and Delivery via Nanotechnology. Microorganisms 2023; 11:1129. [PMID: 37317103 PMCID: PMC10223199 DOI: 10.3390/microorganisms11051129] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2023] [Revised: 04/13/2023] [Accepted: 04/19/2023] [Indexed: 06/16/2023] Open
Abstract
Antimicrobial peptides (AMPs) have been investigated for their potential use as an alternative to antibiotics due to the increased demand for new antimicrobial agents. AMPs, widely found in nature and obtained from microorganisms, have a broad range of antimicrobial protection, allowing them to be applied in the treatment of infections caused by various pathogenic microorganisms. Since these peptides are primarily cationic, they prefer anionic bacterial membranes due to electrostatic interactions. However, the applications of AMPs are currently limited owing to their hemolytic activity, poor bioavailability, degradation from proteolytic enzymes, and high-cost production. To overcome these limitations, nanotechnology has been used to improve AMP bioavailability, permeation across barriers, and/or protection against degradation. In addition, machine learning has been investigated due to its time-saving and cost-effective algorithms to predict AMPs. There are numerous databases available to train machine learning models. In this review, we focus on nanotechnology approaches for AMP delivery and advances in AMP design via machine learning. The AMP sources, classification, structures, antimicrobial mechanisms, their role in diseases, peptide engineering technologies, currently available databases, and machine learning techniques used to predict AMPs with minimal toxicity are discussed in detail.
Collapse
Affiliation(s)
- Alexa Sowers
- Department of Orthopaedics, School of Medicine, West Virginia University, Morgantown, WV 26506, USA
- School of Pharmacy, West Virginia University, Morgantown, WV 26506, USA
| | - Guangshun Wang
- Department of Pathology and Microbiology, College of Medicine, University of Nebraska Medical Center, 985900 Nebraska Medical Center, Omaha, NE 68198, USA
| | - Malcolm Xing
- Department of Mechanical Engineering, University of Manitoba, Winnipeg, MB R3T 2N2, Canada
| | - Bingyun Li
- Department of Orthopaedics, School of Medicine, West Virginia University, Morgantown, WV 26506, USA
| |
Collapse
|
15
|
Rojas-Pirela M, Kemmerling U, Quiñones W, Michels PAM, Rojas V. Antimicrobial Peptides (AMPs): Potential Therapeutic Strategy against Trypanosomiases? Biomolecules 2023; 13:biom13040599. [PMID: 37189347 DOI: 10.3390/biom13040599] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2023] [Revised: 03/19/2023] [Accepted: 03/20/2023] [Indexed: 03/29/2023] Open
Abstract
Trypanosomiases are a group of tropical diseases that have devastating health and socio-economic effects worldwide. In humans, these diseases are caused by the pathogenic kinetoplastids Trypanosoma brucei, causing African trypanosomiasis or sleeping sickness, and Trypanosoma cruzi, causing American trypanosomiasis or Chagas disease. Currently, these diseases lack effective treatment. This is attributed to the high toxicity and limited trypanocidal activity of registered drugs, as well as resistance development and difficulties in their administration. All this has prompted the search for new compounds that can serve as the basis for the development of treatment of these diseases. Antimicrobial peptides (AMPs) are small peptides synthesized by both prokaryotes and (unicellular and multicellular) eukaryotes, where they fulfill functions related to competition strategy with other organisms and immune defense. These AMPs can bind and induce perturbation in cell membranes, leading to permeation of molecules, alteration of morphology, disruption of cellular homeostasis, and activation of cell death. These peptides have activity against various pathogenic microorganisms, including parasitic protists. Therefore, they are being considered for new therapeutic strategies to treat some parasitic diseases. In this review, we analyze AMPs as therapeutic alternatives for the treatment of trypanosomiases, emphasizing their possible application as possible candidates for the development of future natural anti-trypanosome drugs.
Collapse
|
16
|
Corman HN, Ross JN, Fields FR, Shoue DA, McDowell MA, Lee SW. Rationally Designed Minimal Bioactive Domains of AS-48 Bacteriocin Homologs Possess Potent Antileishmanial Properties. Microbiol Spectr 2022; 10:e0265822. [PMID: 36342284 PMCID: PMC9769502 DOI: 10.1128/spectrum.02658-22] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2022] [Accepted: 10/04/2022] [Indexed: 11/09/2022] Open
Abstract
Leishmaniasis, a category I neglected tropical disease, is a group of diseases caused by the protozoan parasite Leishmania species with a wide range of clinical manifestations. Current treatment options can be highly toxic and expensive, with drug relapse and the emergence of resistance. Bacteriocins, antimicrobial peptides ribosomally produced by bacteria, are a relatively new avenue for potential antiprotozoal drugs. Particular interest has been focused on enterocin AS-48, with previously proven efficacy against protozoan species, including Leishmania spp. Sequential characterization of enterocin AS-48 has illustrated that antibacterial bioactivity is preserved in linearized, truncated forms; however, minimal domains of AS-48 bacteriocins have not yet been explored against protozoans. Using rational design techniques to improve membrane penetration activity, we designed peptide libraries using the minimal bioactive domain of AS-48 homologs. Stepwise changes to the charge (z), hydrophobicity (H), and hydrophobic dipole moment (μH) were achieved through lysine and tryptophan substitutions and the inversion of residues within the helical wheel, respectively. A total of 480 synthetic peptide variants were assessed for antileishmanial activity against Leishmania donovani. One hundred seventy-two peptide variants exhibited 50% inhibitory concentration (IC50) values below 20 μM against axenic amastigotes, with 60 peptide variants in the nanomolar range. Nine peptide variants exhibited potent activity against intracellular amastigotes with observed IC50 values of <4 μM and limited in vitro host cell toxicity, making them worthy of further drug development. Our work demonstrates that minimal bioactive domains of naturally existing bacteriocins can be synthetically engineered to increase membrane penetration against Leishmania spp. with minimal host cytotoxicity, holding the promise of novel, potent antileishmanial therapies. IMPORTANCE Leishmaniasis is a neglected tropical disease caused by protozoan parasites of the genus Leishmania. There are three primary clinical forms, cutaneous, mucocutaneous, and visceral, with visceral leishmaniasis being fatal if left untreated. Current drug treatments are less than ideal, especially in resource-limited areas, due to the difficult administration and treatment regimens as well as the high cost and the emergence of drug resistance. Identifying potent antileishmanial agents is of the utmost importance. We utilized rational design techniques to synthesize enterocin AS-48 and AS-48-like bacteriocin-based peptides and screened these peptides against L. donovani using a fluorescence-based phenotypic assay. Our results suggest that bacteriocins, specifically these rationally designed AS-48-like peptides, are promising leads for further development as antileishmanial drugs.
Collapse
Affiliation(s)
- Hannah N. Corman
- University of Notre Dame, Department of Biological Sciences, Notre Dame, Indiana, USA
- University of Notre Dame, Eck Institute for Global Health, Notre Dame, Indiana, USA
| | - Jessica N. Ross
- University of Notre Dame, Department of Biological Sciences, Notre Dame, Indiana, USA
- University of Notre Dame, Eck Institute for Global Health, Notre Dame, Indiana, USA
| | | | - Douglas A. Shoue
- University of Notre Dame, Department of Biological Sciences, Notre Dame, Indiana, USA
- University of Notre Dame, Eck Institute for Global Health, Notre Dame, Indiana, USA
| | - Mary Ann McDowell
- University of Notre Dame, Department of Biological Sciences, Notre Dame, Indiana, USA
- University of Notre Dame, Eck Institute for Global Health, Notre Dame, Indiana, USA
| | - Shaun W. Lee
- University of Notre Dame, Department of Biological Sciences, Notre Dame, Indiana, USA
- University of Notre Dame, Eck Institute for Global Health, Notre Dame, Indiana, USA
| |
Collapse
|
17
|
Zhang F, Yang P, Mao W, Zhong C, Zhang J, Chang L, Wu X, Liu H, Zhang Y, Gou S, Ni J. Short, mirror-symmetric antimicrobial peptides centered on "RRR" have broad-spectrum antibacterial activity with low drug resistance and toxicity. Acta Biomater 2022; 154:145-167. [PMID: 36241015 DOI: 10.1016/j.actbio.2022.10.003] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2022] [Revised: 08/31/2022] [Accepted: 10/03/2022] [Indexed: 12/14/2022]
Abstract
The increasingly severe bacterial resistance worldwide pushes people to discover and design potential antibacterial drugs unavoidably. In this work, a series of short, mirror-symmetric peptides were designed and successfully synthesized, centered on "RRR" and labeled with hydrophobic amino acids at both ends. Based on the structure-activity relationship analysis, LWWR (LWWRRRWWL-NH2) was screened as a desirable mirror-symmetric peptide for further study. As expected, LWWR displayed broad-spectrum antibacterial activity against the standard bacteria and antibiotic-resistant strains. Undoubtedly, the high stability of LWWR in a complex physiological environment was an essential guarantee to maximizing its antibacterial activity. Indeed, LWWR also exhibited a rapid bactericidal speed and a low tendency to develop bacterial resistance, based on the multiple actions of non-receptor-mediated membrane actions and intra-cellular mechanisms. Surprisingly, although LWWR showed similar in vivo antibacterial activity compared with Polymyxin B and Melittin, the in vivo safety of LWWR was far higher than that of them, so LWWR had better therapeutic potential. In summary, the desirable mirror-symmetric peptide LWWR was promised as a potential antibacterial agent to confront the antibiotics resistance crisis. STATEMENT OF SIGNIFICANCE: Witnessing the growing problem of antibiotic resistance, a series of short, mirror-symmetric peptides based on the symmetric center "RRR" and hydrophobic terminals were designed and synthesized in this study. Among, LWWR (LWWRRRWWL-NH2) presented broad-spectrum antibacterial activity both in vitro and in vivo due to its multiple mechanisms and good stability. Meanwhile, the low drug resistance and toxicity of LWWR also suggested its potential for clinical application. The findings of this study will provide some inspiration for the design and development of potential antibacterial agents, and contribute to the elimination of bacterial infections worldwide as soon as possible.
Collapse
Affiliation(s)
- Fangyan Zhang
- Institute of Materia Medica and Research Unit of Peptide Science, 2019RU066, Chinese Academy of Medical Sciences, Peking Union Medical College, No. 1 Xian Nong Tan Street, Beijing 100050, P. R. China; Institute of Pharmaceutics, School of Pharmacy and Key Laboratory of Preclinical Study for New Drugs of Gansu Province, School of Basic Medical Sciences, Lanzhou University, Lanzhou 730000, P. R. China
| | - Ping Yang
- Institute of Materia Medica and Research Unit of Peptide Science, 2019RU066, Chinese Academy of Medical Sciences, Peking Union Medical College, No. 1 Xian Nong Tan Street, Beijing 100050, P. R. China; Institute of Pharmaceutics, School of Pharmacy and Key Laboratory of Preclinical Study for New Drugs of Gansu Province, School of Basic Medical Sciences, Lanzhou University, Lanzhou 730000, P. R. China
| | - Wenbo Mao
- Institute of Materia Medica and Research Unit of Peptide Science, 2019RU066, Chinese Academy of Medical Sciences, Peking Union Medical College, No. 1 Xian Nong Tan Street, Beijing 100050, P. R. China; Institute of Pharmaceutics, School of Pharmacy and Key Laboratory of Preclinical Study for New Drugs of Gansu Province, School of Basic Medical Sciences, Lanzhou University, Lanzhou 730000, P. R. China
| | - Chao Zhong
- Institute of Materia Medica and Research Unit of Peptide Science, 2019RU066, Chinese Academy of Medical Sciences, Peking Union Medical College, No. 1 Xian Nong Tan Street, Beijing 100050, P. R. China; Institute of Pharmaceutics, School of Pharmacy and Key Laboratory of Preclinical Study for New Drugs of Gansu Province, School of Basic Medical Sciences, Lanzhou University, Lanzhou 730000, P. R. China
| | - Jingying Zhang
- Institute of Materia Medica and Research Unit of Peptide Science, 2019RU066, Chinese Academy of Medical Sciences, Peking Union Medical College, No. 1 Xian Nong Tan Street, Beijing 100050, P. R. China; Institute of Pharmaceutics, School of Pharmacy and Key Laboratory of Preclinical Study for New Drugs of Gansu Province, School of Basic Medical Sciences, Lanzhou University, Lanzhou 730000, P. R. China
| | - Linlin Chang
- Institute of Materia Medica and Research Unit of Peptide Science, 2019RU066, Chinese Academy of Medical Sciences, Peking Union Medical College, No. 1 Xian Nong Tan Street, Beijing 100050, P. R. China; Institute of Pharmaceutics, School of Pharmacy and Key Laboratory of Preclinical Study for New Drugs of Gansu Province, School of Basic Medical Sciences, Lanzhou University, Lanzhou 730000, P. R. China
| | - Xiaoyan Wu
- Institute of Materia Medica and Research Unit of Peptide Science, 2019RU066, Chinese Academy of Medical Sciences, Peking Union Medical College, No. 1 Xian Nong Tan Street, Beijing 100050, P. R. China; Institute of Pharmaceutics, School of Pharmacy and Key Laboratory of Preclinical Study for New Drugs of Gansu Province, School of Basic Medical Sciences, Lanzhou University, Lanzhou 730000, P. R. China
| | - Hui Liu
- Institute of Materia Medica and Research Unit of Peptide Science, 2019RU066, Chinese Academy of Medical Sciences, Peking Union Medical College, No. 1 Xian Nong Tan Street, Beijing 100050, P. R. China; Institute of Pharmaceutics, School of Pharmacy and Key Laboratory of Preclinical Study for New Drugs of Gansu Province, School of Basic Medical Sciences, Lanzhou University, Lanzhou 730000, P. R. China
| | - Yun Zhang
- Institute of Materia Medica and Research Unit of Peptide Science, 2019RU066, Chinese Academy of Medical Sciences, Peking Union Medical College, No. 1 Xian Nong Tan Street, Beijing 100050, P. R. China; Institute of Pharmaceutics, School of Pharmacy and Key Laboratory of Preclinical Study for New Drugs of Gansu Province, School of Basic Medical Sciences, Lanzhou University, Lanzhou 730000, P. R. China
| | - Sanhu Gou
- Institute of Materia Medica and Research Unit of Peptide Science, 2019RU066, Chinese Academy of Medical Sciences, Peking Union Medical College, No. 1 Xian Nong Tan Street, Beijing 100050, P. R. China; Institute of Pharmaceutics, School of Pharmacy and Key Laboratory of Preclinical Study for New Drugs of Gansu Province, School of Basic Medical Sciences, Lanzhou University, Lanzhou 730000, P. R. China
| | - Jingman Ni
- Institute of Materia Medica and Research Unit of Peptide Science, 2019RU066, Chinese Academy of Medical Sciences, Peking Union Medical College, No. 1 Xian Nong Tan Street, Beijing 100050, P. R. China; Institute of Pharmaceutics, School of Pharmacy and Key Laboratory of Preclinical Study for New Drugs of Gansu Province, School of Basic Medical Sciences, Lanzhou University, Lanzhou 730000, P. R. China.
| |
Collapse
|
18
|
Santos FA, Cruz GS, Vieira FA, Queiroz BR, Freitas CD, Mesquita FP, Souza PF. Systematic Review of Antiprotozoal Potential of Antimicrobial Peptides. Acta Trop 2022; 236:106675. [DOI: 10.1016/j.actatropica.2022.106675] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2022] [Revised: 08/29/2022] [Accepted: 08/30/2022] [Indexed: 11/01/2022]
|
19
|
Akbarzadeh-Khiavi M, Torabi M, Olfati AH, Rahbarnia L, Safary A. Bio-nano scale modifications of melittin for improving therapeutic efficacy. Expert Opin Biol Ther 2022; 22:895-909. [PMID: 35687355 DOI: 10.1080/14712598.2022.2088277] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
INTRODUCTION Melittin (MLT), a natural membrane-active component, is the most prominent cytolytic peptide from bee venom. Remarkable biological properties of MLT, including anti-inflammatory, antimicrobial, anticancer, anti-protozoan, and antiarthritic activities, make it an up-and-coming therapeutic candidate for a wide variety of human diseases. Therapeutic applications of MLT may be hindered due to low stability, high toxicity, and weak tissue penetration. Different bio-nano scale modifications hold promise for improving its functionality and therapeutic efficacy. AREAS COVERED In the current review, we aimed to provide a comprehensive insight into strategies used for MLT conjugations and modifications, cellular delivery of modified forms, and their clinical perspectives by reviewing the published literature on PubMed, Scopus, and Google Scholar databases. We also emphasized the MLT structure modifications, mechanism of action, and cellular toxicity. EXPERT OPINION Developing new analogs and conjugates of MLT as a natural drug with improved functions and fewer side effects is crucial for the clinical translation of this approach worldwide, especially where the chemicals and synthetic drugs are more expensive or unavailable in the healthcare system. MLT-nanoconjugation may be one of the best-optimized strategies for improving peptide delivery, increasing its therapeutic efficacy, and providing minimal nonspecific cellular lytic activity. [Figure: see text].
Collapse
Affiliation(s)
- Mostafa Akbarzadeh-Khiavi
- Liver and Gastrointestinal Diseases Research Center Tabriz University of Medical Sciences, Tabriz, Iran.,Research Center for Pharmaceutical Nanotechnology, Biomedicine Institute, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Mitra Torabi
- Research Center for Pharmaceutical Nanotechnology, Biomedicine Institute, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Amir-Hossein Olfati
- Student Research Committee, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Leila Rahbarnia
- Infectious and Tropical Diseases Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Azam Safary
- Connective Tissue Diseases Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| |
Collapse
|
20
|
Zheng X, Yuan C, Zhang Y, Zha S, Mao F, Bao Y. Prediction and characterization of a novel hemoglobin-derived mutant peptide (mTgHbP7) from Tegillarca granosa. FISH & SHELLFISH IMMUNOLOGY 2022; 125:84-89. [PMID: 35537672 DOI: 10.1016/j.fsi.2022.05.007] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/17/2022] [Revised: 05/01/2022] [Accepted: 05/04/2022] [Indexed: 06/14/2023]
Abstract
The hemoglobin (Hb) is identified in Tegillarca granosa and its derived peptides have been proved to possess antibacterial activity against gram-positive and gram-negative bacteria. In this study, we identified a series of novel antimicrobial peptides (AMPs) and artificially mutated AMPs derived from subunits of T. granosa Hbs, among which, a mutant T. granosa hemoglobin peptide (mTgHbP) mTgHbP7, was proved to possess predominant antibacterial activity against three bacteria strains (Vibrio alginolyticus, V. parahaemolyticus and Escherichia coli). Besides, mTgHbP7 was predicted to form α-helical structure, which was known to be an important feature of bactericidal AMPs. Furthermore, upon contact with HEK293 cell line, we confirmed that mTgHbP7 had no cytotoxicity to mammalian cell even at a high concentration of 160 μM. Therefore, the findings reported here provide a rationalization for antimicrobial peptide prediction and optimization from mollusk hemoglobin, which will be useful for future development of antimicrobial agents.
Collapse
Affiliation(s)
- Xiaoying Zheng
- School of Marine Sciences, Ningbo University, Ningbo, 315211, China; Zhejiang Key Laboratory of Aquatic Germplasm Resources, College of Biological and Environmental Sciences, Zhejiang Wanli University, Ningbo, 315100, China
| | - Chun Yuan
- Zhejiang Key Laboratory of Aquatic Germplasm Resources, College of Biological and Environmental Sciences, Zhejiang Wanli University, Ningbo, 315100, China
| | - Yang Zhang
- CAS Key Laboratory of Tropical Marine Bio-resources and Ecology and Guangdong Provincial Key Laboratory of Applied Marine Biology, South China Sea Institute of Oceanology, Innovation Academy of South China Sea Ecology and Environmental Engineering, Chinese Academy of Sciences, Guangzhou, China; Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou), Guangzhou, China
| | - Shanjie Zha
- Zhejiang Key Laboratory of Aquatic Germplasm Resources, College of Biological and Environmental Sciences, Zhejiang Wanli University, Ningbo, 315100, China; Ninghai Institute of Mariculture Breeding and Seed Industry, Zhejiang Wanli University, Ninghai, 315604, China
| | - Fan Mao
- CAS Key Laboratory of Tropical Marine Bio-resources and Ecology and Guangdong Provincial Key Laboratory of Applied Marine Biology, South China Sea Institute of Oceanology, Innovation Academy of South China Sea Ecology and Environmental Engineering, Chinese Academy of Sciences, Guangzhou, China; Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou), Guangzhou, China.
| | - Yongbo Bao
- Zhejiang Key Laboratory of Aquatic Germplasm Resources, College of Biological and Environmental Sciences, Zhejiang Wanli University, Ningbo, 315100, China; Ninghai Institute of Mariculture Breeding and Seed Industry, Zhejiang Wanli University, Ninghai, 315604, China.
| |
Collapse
|
21
|
Memariani M, Memariani H, Poursafavi Z, Baseri Z. Anti-fungal Effects and Mechanisms of Action of Wasp Venom-Derived Peptide Mastoparan-VT1 Against Candida albicans. Int J Pept Res Ther 2022. [DOI: 10.1007/s10989-022-10401-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
22
|
Guha S, Ferrie RP, Ghimire J, Ventura CR, Wu E, Sun L, Kim SY, Wiedman GR, Hristova K, Wimley WC. Applications and evolution of melittin, the quintessential membrane active peptide. Biochem Pharmacol 2021; 193:114769. [PMID: 34543656 DOI: 10.1016/j.bcp.2021.114769] [Citation(s) in RCA: 82] [Impact Index Per Article: 20.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2021] [Revised: 09/14/2021] [Accepted: 09/15/2021] [Indexed: 12/12/2022]
Abstract
Melittin, the main venom component of the European Honeybee, is a cationic linear peptide-amide of 26 amino acid residues with the sequence: GIGAVLKVLTTGLPALISWIKRKRQQ-NH2. Melittin binds to lipid bilayer membranes, folds into amphipathic α-helical secondary structure and disrupts the permeability barrier. Since melittin was first described, a remarkable array of activities and potential applications in biology and medicine have been described. Melittin is also a favorite model system for biophysicists to study the structure, folding and function of peptides and proteins in membranes. Melittin has also been used as a template for the evolution of new activities in membranes. Here we overview the rich history of scientific research into the many activities of melittin and outline exciting future applications.
Collapse
Affiliation(s)
- Shantanu Guha
- University of Texas Health Science Center at Houston, Department of Microbiology and Molecular Genetics, Houston, TX, USA
| | - Ryan P Ferrie
- Tulane University School of Medicine, Department of Biochemistry and Molecular Biology, New Orleans, LA, USA
| | - Jenisha Ghimire
- Tulane University School of Medicine, Department of Biochemistry and Molecular Biology, New Orleans, LA, USA
| | - Cristina R Ventura
- Seton Hall University, Department of Chemistry and Biochemistry, South Orange, NJ, USA
| | - Eric Wu
- Tulane University School of Medicine, Department of Biochemistry and Molecular Biology, New Orleans, LA, USA
| | - Leisheng Sun
- Tulane University School of Medicine, Department of Biochemistry and Molecular Biology, New Orleans, LA, USA
| | - Sarah Y Kim
- Duke University, Department of Biomedical Engineering, Durham, NC, USA
| | - Gregory R Wiedman
- Seton Hall University, Department of Chemistry and Biochemistry, South Orange, NJ, USA
| | - Kalina Hristova
- Johns Hopkins University, Department of Materials Science and Engineering, Baltimore, MD, USA.
| | - Wimley C Wimley
- University of Texas Health Science Center at Houston, Department of Microbiology and Molecular Genetics, Houston, TX, USA.
| |
Collapse
|
23
|
El-Dirany R, Shahrour H, Dirany Z, Abdel-Sater F, Gonzalez-Gaitano G, Brandenburg K, Martinez de Tejada G, Nguewa PA. Activity of Anti-Microbial Peptides (AMPs) against Leishmania and Other Parasites: An Overview. Biomolecules 2021; 11:984. [PMID: 34356608 PMCID: PMC8301979 DOI: 10.3390/biom11070984] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2021] [Revised: 06/23/2021] [Accepted: 06/26/2021] [Indexed: 12/13/2022] Open
Abstract
Anti-microbial peptides (AMPs), small biologically active molecules, produced by different organisms through their innate immune system, have become a considerable subject of interest in the request of novel therapeutics. Most of these peptides are cationic-amphipathic, exhibiting two main mechanisms of action, direct lysis and by modulating the immunity. The most commonly reported activity of AMPs is their anti-bacterial effects, although other effects, such as anti-fungal, anti-viral, and anti-parasitic, as well as anti-tumor mechanisms of action have also been described. Their anti-parasitic effect against leishmaniasis has been studied. Leishmaniasis is a neglected tropical disease. Currently among parasitic diseases, it is the second most threating illness after malaria. Clinical treatments, mainly antimonial derivatives, are related to drug resistance and some undesirable effects. Therefore, the development of new therapeutic agents has become a priority, and AMPs constitute a promising alternative. In this work, we describe the principal families of AMPs (melittin, cecropin, cathelicidin, defensin, magainin, temporin, dermaseptin, eumenitin, and histatin) exhibiting a potential anti-leishmanial activity, as well as their effectiveness against other microorganisms.
Collapse
Affiliation(s)
- Rima El-Dirany
- ISTUN Instituto de Salud Tropical, Department of Microbiology and Parasitology, IdiSNA (Navarra Institute for Health Research), University of Navarra, c/Irunlarrea 1, 31008 Pamplona, Navarra, Spain;
- Faculty of Sciences I, Lebanese University, Hadath 1003, Lebanon; (H.S.); (F.A.-S.)
| | - Hawraa Shahrour
- Faculty of Sciences I, Lebanese University, Hadath 1003, Lebanon; (H.S.); (F.A.-S.)
- Department of Microbiology and Parasitology, IdiSNA (Navarra Institute for Health Research), University of Navarra, 31008 Pamplona, Navarra, Spain;
| | - Zeinab Dirany
- Department of Chemistry, Faculty of Sciences, University of Navarra, 31080 Pamplona, Navarra, Spain; (Z.D.); (G.G.-G.)
| | - Fadi Abdel-Sater
- Faculty of Sciences I, Lebanese University, Hadath 1003, Lebanon; (H.S.); (F.A.-S.)
| | - Gustavo Gonzalez-Gaitano
- Department of Chemistry, Faculty of Sciences, University of Navarra, 31080 Pamplona, Navarra, Spain; (Z.D.); (G.G.-G.)
| | - Klaus Brandenburg
- Brandenburg Antiinfektiva GmbH, c/o Forschungszentrum Borstel, Leibniz Lungenzentrum, 23845 Borstel, Germany;
| | - Guillermo Martinez de Tejada
- Department of Microbiology and Parasitology, IdiSNA (Navarra Institute for Health Research), University of Navarra, 31008 Pamplona, Navarra, Spain;
| | - Paul A. Nguewa
- ISTUN Instituto de Salud Tropical, Department of Microbiology and Parasitology, IdiSNA (Navarra Institute for Health Research), University of Navarra, c/Irunlarrea 1, 31008 Pamplona, Navarra, Spain;
| |
Collapse
|
24
|
Martín-Escolano R, Cebrián R, Maqueda M, Romero D, Rosales MJ, Sánchez-Moreno M, Marín C. Assessing the effectiveness of AS-48 in experimental mice models of Chagas' disease. J Antimicrob Chemother 2021; 75:1537-1545. [PMID: 32129856 DOI: 10.1093/jac/dkaa030] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2019] [Revised: 01/14/2020] [Accepted: 01/15/2020] [Indexed: 12/14/2022] Open
Abstract
OBJECTIVES We report the in vivo trypanocidal activity of the bacteriocin AS-48 (lacking toxicity), which is produced by Enterococcus faecalis, against the flagellated protozoan Trypanosoma cruzi, the aetiological agent of Chagas' disease. METHODS We determined the in vivo activity of AS-48 against the T. cruzi Arequipa strain in BALB/c mice (in both acute and chronic phases of Chagas' disease). We evaluated the parasitaemia, the reactivation of parasitaemia after immunosuppression and the nested parasites in the chronic phase by PCR in target tissues. RESULTS AS-48 reduced the parasitaemia profile in acute infection and showed a noteworthy reduction in the parasitic load in chronic infection after immunosuppression according to the results obtained by PCR (double-checking to demonstrate cure). CONCLUSIONS AS-48 is a promising alternative that provides a step forward in the development of a new therapy against Chagas' disease.
Collapse
Affiliation(s)
- Rubén Martín-Escolano
- Department of Parasitology, Instituto de Investigación Biosanitaria (ibs.Granada), Hospitales Universitarios De Granada/University of Granada, Severo Ochoa s/n, E-18071 Granada, Spain
| | - Rubén Cebrián
- Department of Microbiology, Faculty of Sciences, Avda. Fuentenueva s/n, University of Granada, 18071 Granada, Spain
| | - Mercedes Maqueda
- Department of Microbiology, Faculty of Sciences, Avda. Fuentenueva s/n, University of Granada, 18071 Granada, Spain
| | - Desirée Romero
- Department of Statistics and Operations Research, Faculty of Sciences, Avda. Fuentenueva s/n, University of Granada, 18071 Granada, Spain
| | - Maria José Rosales
- Department of Parasitology, Instituto de Investigación Biosanitaria (ibs.Granada), Hospitales Universitarios De Granada/University of Granada, Severo Ochoa s/n, E-18071 Granada, Spain
| | - Manuel Sánchez-Moreno
- Department of Parasitology, Instituto de Investigación Biosanitaria (ibs.Granada), Hospitales Universitarios De Granada/University of Granada, Severo Ochoa s/n, E-18071 Granada, Spain
| | - Clotilde Marín
- Department of Parasitology, Instituto de Investigación Biosanitaria (ibs.Granada), Hospitales Universitarios De Granada/University of Granada, Severo Ochoa s/n, E-18071 Granada, Spain
| |
Collapse
|
25
|
Dabbagh Moghaddam F, Akbarzadeh I, Marzbankia E, Farid M, khaledi L, Reihani AH, Javidfar M, Mortazavi P. Delivery of melittin-loaded niosomes for breast cancer treatment: an in vitro and in vivo evaluation of anti-cancer effect. Cancer Nanotechnol 2021. [DOI: 10.1186/s12645-021-00085-9] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Abstract
Background
Melittin, a peptide component of honey bee venom, is an appealing candidate for cancer therapy. In the current study, melittin, melittin-loaded niosome, and empty niosome had been optimized and the anticancer effect assessed in vitro on 4T1 and SKBR3 breast cell lines and in vivo on BALB/C inbred mice. "Thin-layer hydration method" was used for preparing the niosomes; different niosomal formulations of melittin were prepared and characterized in terms of morphology, size, polydispersity index, encapsulation efficiency, release kinetics, and stability. A niosome was formulated and loaded with melittin as a promising drug carrier system for chemotherapy of the breast cancer cells. Hemolysis, apoptosis, cell cytotoxicity, invasion and migration of selected concentrations of melittin, and melittin-loaded niosome were evaluated on 4T1 and SKBR3 cells using hemolytic activity assay, flow cytometry, MTT assay, soft agar colony assay, and wound healing assay. Real-time PCR was used to determine the gene expression. 40 BALB/c inbred mice were used; then, the histopathology, P53 immunohistochemical assay and estimate of renal and liver enzyme activity for all groups had been done.
Results
This study showed melittin-loaded niosome is an excellent substitute in breast cancer treatment due to enhanced targeting, encapsulation efficiency, PDI, and release rate and shows a high anticancer effect on cell lines. The melittin-loaded niosome affects the genes expression by studied cells were higher than other samples; down-regulates the expression of Bcl2, MMP2, and MMP9 genes while they up-regulate the expression of Bax, Caspase3 and Caspase9 genes. They have also enhanced the apoptosis rate and inhibited cell migration, invasion in both cell lines compared to the melittin samples. Results of histopathology showed reduce mitosis index, invasion and pleomorphism in melittin-loaded niosome. Renal and hepatic biomarker activity did not significantly differ in melittin-loaded niosome and melittin compared to healthy control. In immunohistochemistry, P53 expression did not show a significant change in all groups.
Conclusions
Our study successfully declares that melittin-loaded niosome had more anti-cancer effects than free melittin. This project has demonstrated that niosomes are suitable vesicle carriers for melittin, compare to the free form.
Collapse
|
26
|
Memariani H, Memariani M. Melittin as a promising anti-protozoan peptide: current knowledge and future prospects. AMB Express 2021; 11:69. [PMID: 33983454 PMCID: PMC8119515 DOI: 10.1186/s13568-021-01229-1] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2021] [Accepted: 05/05/2021] [Indexed: 12/19/2022] Open
Abstract
Protozoan diseases such as malaria, leishmaniasis, Chagas disease, and sleeping sickness still levy a heavy toll on human lives. Deplorably, only few classes of anti-protozoan drugs have thus far been developed. The problem is further compounded by their intrinsic toxicity, emergence of drug resistance, and the lack of licensed vaccines. Thus, there is a genuine exigency to develop novel anti-protozoan medications. Over the past years, melittin, the major constituent in the venom of European honeybee Apis mellifera, has gathered the attention of researchers due to its potential therapeutic applications. Insofar as we are aware, there has been no review pertinent to anti-protozoan properties of melittin. The present review outlines the current knowledge about anti-protozoan effects of melittin and its underlying mechanisms. The peptide has proven to be efficacious in killing different protozoan parasites such as Leishmania, Plasmodium, Toxoplasma, and Trypanosoma in vitro. Apart from direct membrane-disruptive activity, melittin is capable of destabilizing calcium homeostasis, reducing mitochondrial membrane potential, disorganizing kinetoplast DNA, instigating apoptotic cell death, and induction of autophagy in protozoan pathogens. Emerging evidence suggests that melittin is a promising candidate for future vaccine adjuvants. Transmission-blocking activity of melittin against vector-borne pathogens underscores its potential utility for both transgenic and paratransgenic manipulations. Nevertheless, future research should focus upon investigating anti-microbial activities of melittin, alone or in combination with the current anti-protozoan medications, against a far broader spectrum of protozoan parasites as well as pre-clinical testing of the peptide in animal models.
Collapse
|
27
|
Haktanir I, Masoura M, Mantzouridou FT, Gkatzionis K. Mechanism of antimicrobial activity of honeybee (Apis mellifera) venom on Gram-negative bacteria: Escherichia coli and Pseudomonas spp. AMB Express 2021; 11:54. [PMID: 33835274 PMCID: PMC8035396 DOI: 10.1186/s13568-021-01214-8] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2021] [Accepted: 03/29/2021] [Indexed: 11/17/2022] Open
Abstract
Honeybee venom (Apitoxin, BV), a secretion substance expelled from the venom gland of bees, has being reported as antimicrobial against various bacterial species; however, the mechanism of action remains uncharacterized. In this study, the antibacterial activity of BV was investigated on hygiene indicator Escherichia coli and the environmental pathogen and spoilage bacterial species, Pseudomonas putida and Pseudomonas fluorescens. An array of methods was combined to elucidate the mode of action of BV. Viability by culture on media was combined with assessing cell injury with flow cytometry analysis. ATP depletion was monitored as an indicator to metabolic activity of cells, by varying BV concentration (75, 225and 500 µg/mL), temperature (25 \documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$$^\circ \complement $$\end{document}∘∁ and 37 \documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$$^\circ \complement $$\end{document}∘∁), and time of exposure (0 to 24 h). Venom presented moderate inhibitory effect on E. coli by viability assay, caused high membrane permeability and significant ATP loss where the effect was increased by increased concentration. The viability of P. putida was reduced to a greater extent than other tested bacteria at comparable venom concentrations and was dictated by exposure time. On the contrary, P. fluorescens appeared less affected by venom based on viability; however, flow cytometry and ATP analysis highlighted concentration- and time-dependent effect of venom. According to Transmission Electron Microscopy results, the deformation of the cell wall was evident for all species. This implies a common mechanism of action of the BV which is as follows: the cell wall destruction, change of membrane permeability, leakage of cell contents, inactivation of metabolic activity and finally cell death.
Collapse
|
28
|
Herzig V, Cristofori-Armstrong B, Israel MR, Nixon SA, Vetter I, King GF. Animal toxins - Nature's evolutionary-refined toolkit for basic research and drug discovery. Biochem Pharmacol 2020; 181:114096. [PMID: 32535105 PMCID: PMC7290223 DOI: 10.1016/j.bcp.2020.114096] [Citation(s) in RCA: 112] [Impact Index Per Article: 22.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2020] [Revised: 06/06/2020] [Accepted: 06/09/2020] [Indexed: 12/27/2022]
Abstract
Venomous animals have evolved toxins that interfere with specific components of their victim's core physiological systems, thereby causing biological dysfunction that aids in prey capture, defense against predators, or other roles such as intraspecific competition. Many animal lineages evolved venom systems independently, highlighting the success of this strategy. Over the course of evolution, toxins with exceptional specificity and high potency for their intended molecular targets have prevailed, making venoms an invaluable and almost inexhaustible source of bioactive molecules, some of which have found use as pharmacological tools, human therapeutics, and bioinsecticides. Current biomedically-focused research on venoms is directed towards their use in delineating the physiological role of toxin molecular targets such as ion channels and receptors, studying or treating human diseases, targeting vectors of human diseases, and treating microbial and parasitic infections. We provide examples of each of these areas of venom research, highlighting the potential that venom molecules hold for basic research and drug development.
Collapse
Affiliation(s)
- Volker Herzig
- School of Science & Engineering, University of the Sunshine Coast, Sippy Downs, QLD, Australia; Institute for Molecular Bioscience, The University of Queensland, St. Lucia, QLD, Australia.
| | | | - Mathilde R Israel
- Institute for Molecular Bioscience, The University of Queensland, St. Lucia, QLD, Australia
| | - Samantha A Nixon
- Institute for Molecular Bioscience, The University of Queensland, St. Lucia, QLD, Australia
| | - Irina Vetter
- Institute for Molecular Bioscience, The University of Queensland, St. Lucia, QLD, Australia
| | - Glenn F King
- Institute for Molecular Bioscience, The University of Queensland, St. Lucia, QLD, Australia.
| |
Collapse
|
29
|
Luong HX, Thanh TT, Tran TH. Antimicrobial peptides - Advances in development of therapeutic applications. Life Sci 2020; 260:118407. [PMID: 32931796 PMCID: PMC7486823 DOI: 10.1016/j.lfs.2020.118407] [Citation(s) in RCA: 143] [Impact Index Per Article: 28.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2020] [Revised: 09/02/2020] [Accepted: 09/07/2020] [Indexed: 02/07/2023]
Abstract
The severe infection is becoming a significant health problem which threaten the lives of patients and the safety and economy of society. In the way of finding new strategy, antimicrobial peptides (AMPs) - an important part of host defense family, emerged with tremendous potential. Up to date, huge numbers of AMPs has been investigated from both natural and synthetic sources showing not only the ability to kill microbial pathogens but also propose other benefits such as wound healing, anti-tumor, immune modulation. In this review, we describe the involvements of AMPs in biological systems and discuss the opportunity in developing AMPs for clinical applications. In the detail, their properties in antibacterial activity is followed by their application in some infection diseases and cancer. The key discussions are the approaches to improve biological activities of AMPs either by modifying chemical structure or incorporating into delivery systems. The new applications and perspectives for the future of AMPs would open the new era of their development.
Collapse
Affiliation(s)
- Huy Xuan Luong
- Faculty of Pharmacy, PHENIKAA University, Yen Nghia, Ha Dong, Hanoi 12116, Viet Nam; PHENIKAA Institute for Advanced Study (PIAS), PHENIKAA University, Hanoi 12116, Viet Nam.
| | - Tung Truong Thanh
- Faculty of Pharmacy, PHENIKAA University, Yen Nghia, Ha Dong, Hanoi 12116, Viet Nam; PHENIKAA Institute for Advanced Study (PIAS), PHENIKAA University, Hanoi 12116, Viet Nam.
| | - Tuan Hiep Tran
- Faculty of Pharmacy, PHENIKAA University, Yen Nghia, Ha Dong, Hanoi 12116, Viet Nam; PHENIKAA Research and Technology Institute (PRATI), A&A Green Phoenix Group JSC, No.167 Hoang Ngan, Trung Hoa, Cau Giay, Hanoi 11313, Viet Nam.
| |
Collapse
|
30
|
Campos LM, de Oliveira Lemos AS, da Cruz LF, de Freitas Araújo MG, de Mello Botti GCR, Júnior JLR, Rocha VN, Denadai ÂML, da Silva TP, Tavares GD, Scio E, Fabri RL, Pinto PF. Development and in vivo evaluation of chitosan-gel containing Mitracarpus frigidus methanolic extract for vulvovaginal candidiasis treatment. Biomed Pharmacother 2020; 130:110609. [PMID: 34321177 DOI: 10.1016/j.biopha.2020.110609] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2020] [Revised: 07/22/2020] [Accepted: 08/02/2020] [Indexed: 02/08/2023] Open
Abstract
Vulvovaginal candidiasis (VVC) is characterized by inflammatory changes in the vaginal mucosa caused by abnormal colonization of Candida species. Traditional topical therapies using reference antifungal drugs usually present several issues and limitations for VVC treatment. Thus, the interest in new vaginal formulations, mainly those based on compounds from natural origin, has been growing over the last years. Methanolic extract from the plant species Mitracarpus frigidus (Willd. Ex Reem Schult.) K. Schum (MFM) has presented potential antifungal activity against C. albicans vaginal infection. Here, we aimed to develop and characterize a gynecological gel formulation based on chitosan containing MFM and to evaluate its anti-C. albicans effectiveness in the treatment of VVC. First, MFM was incorporated into a gel formulation based on chitosan in three final concentrations: 2.5 %, 5.0 %, and 10.0 %. Next, these gel formulations were subjected to stationary and oscillatory rheological tests. Finally, the gel was tested in an experimental VVC model. The rheological tests indicated pseudoplastic fluids, becoming more viscous and elastic with the increase of the extract concentration, indicating intermolecular interactions. Our in vivo analyses demonstrated a great reduction of vulvovaginal fungal burden and infection accompanied with the reduction of mucosal inflammation after MFM chitosan-gel treatment. The present findings open perspectives for the further use of the MFM-chitosan-gel formulation as a therapeutic alternative for VVC treatment.
Collapse
Affiliation(s)
- Lara Melo Campos
- Bioactive Natural Products Laboratory and Protein Structure and Function Laboratory, Department of Biochemistry, Institute of Biological Sciences, Federal University of Juiz de Fora, Campus, Juiz de Fora, MG, Brazil
| | - Ari Sérgio de Oliveira Lemos
- Bioactive Natural Products Laboratory and Protein Structure and Function Laboratory, Department of Biochemistry, Institute of Biological Sciences, Federal University of Juiz de Fora, Campus, Juiz de Fora, MG, Brazil
| | - Luisa Ferreira da Cruz
- Laboratory of Pharmacology, Federal University of São João Del-Rei, Campus Centro Oeste Dona Lindu, Divinópolis, MG, Brazil
| | | | | | - Janildo Ludolf Reis Júnior
- Department of Veterinary Medicine, Faculty of Medicine, Federal University of Juiz de Fora, Campus, Juiz de Fora, MG, Brazil
| | - Vinícius Novaes Rocha
- Department of Veterinary Medicine, Faculty of Medicine, Federal University of Juiz de Fora, Campus, Juiz de Fora, MG, Brazil
| | - Ângelo Márcio Leite Denadai
- Department of Pharmacy, Institute of Life Sciences, Federal University of Juiz de Fora, Campus Governador Valadares, Governor Valadares, MG, Brazil
| | - Thiago Pereira da Silva
- Laboratory of Cellular Biology, Department of Biology, Institute of Biological Sciences, Federal University of Juiz de Fora, Campus, Juiz de Fora, MG, Brazil
| | - Guilherme Diniz Tavares
- Laboratory of Nanostructured Systems Development, Department of Pharmaceutical Science, Faculty of Pharmacy, Federal University of Juiz de Fora, Campus, Juiz de Fora, MG, Brazil
| | - Elita Scio
- Bioactive Natural Products Laboratory and Protein Structure and Function Laboratory, Department of Biochemistry, Institute of Biological Sciences, Federal University of Juiz de Fora, Campus, Juiz de Fora, MG, Brazil
| | - Rodrigo Luiz Fabri
- Bioactive Natural Products Laboratory and Protein Structure and Function Laboratory, Department of Biochemistry, Institute of Biological Sciences, Federal University of Juiz de Fora, Campus, Juiz de Fora, MG, Brazil.
| | - Priscila Faria Pinto
- Bioactive Natural Products Laboratory and Protein Structure and Function Laboratory, Department of Biochemistry, Institute of Biological Sciences, Federal University of Juiz de Fora, Campus, Juiz de Fora, MG, Brazil
| |
Collapse
|
31
|
Hakimi Alni R, Tavasoli F, Barati A, Shahrokhi Badarbani S, Salimi Z, Babaeekhou L. Synergistic activity of melittin with mupirocin: A study against methicillin-resistant S. Aureus (MRSA) and methicillin-susceptible S. Aureus (MSSA) isolates. Saudi J Biol Sci 2020; 27:2580-2585. [PMID: 32994714 PMCID: PMC7499389 DOI: 10.1016/j.sjbs.2020.05.027] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2019] [Revised: 05/10/2020] [Accepted: 05/11/2020] [Indexed: 01/06/2023] Open
Abstract
Methicillin-Resistant Staphylococcus aureus (MRSA) biofilms are involved in various nosocomial infections, being in the limelight of academic research. The current study aimed to determine the antimicrobial effects of melittin on planktonic and biofilm forms of S. aureus. Following the identification of MRSA and SCCmec types (using PCR method), Minimum Inhibitory Concentration (MIC), Minimum Bactericidal Concentration (MBC), and fractional inhibitory concentration index (FICi), for melittin and mupirocin were determined by broth microdilution assay. Melittin anti-biofilm activity was determined, using a microtiter-plate test (MtP) and scanning electron microscope (SEM) methods. The quorum sensing inhibitory activity of ½ MIC melittin was examined using a quantitative real-time RT-PCR method, and melittin cytotoxicity on Vero cells was examined by tetrazolium-based colorimetric (MTT) test. The Results of our study showed that Geometric means of MIC values of the melittin and mupirocin were 4.4 and 14.22 μg/ml respectively. The geometric mean of the FICi for both melittin-mupirocin was 0.75. No S. aureus biofilm was formed and hld gene (as a biofilm regulator) expression down-regulated. It seems that melittin can be useful in the treatment of S. aureus infections (especially MRSA) by reducing the hld expression. Furthermore, synergistic growth-inhibitory effects of mupirocin with melittin could be considered as a promising approach in the treatment of MRSA isolates.
Collapse
Affiliation(s)
- Reza Hakimi Alni
- Department of Microbiology, Faculty of Medicine, Hamadan University of Medical Sciences, Hamadan, Iran
| | - Fatemeh Tavasoli
- Department of Biology, Islamshahr Branch, Islamic Azad University, Islamshahr, Iran
| | - Amirhomayoon Barati
- Department of Biology, Islamshahr Branch, Islamic Azad University, Islamshahr, Iran
| | | | - Zahra Salimi
- Department of Biology, Islamshahr Branch, Islamic Azad University, Islamshahr, Iran
| | - Laleh Babaeekhou
- Department of Biology, Islamshahr Branch, Islamic Azad University, Islamshahr, Iran
| |
Collapse
|
32
|
Sáenz-Garcia JL, Yamanaka IB, Pacheco-Lugo LA, Miranda JS, Córneo ES, Machado-de-Ávila RA, De Moura JF, DaRocha WD. Targeting epimastigotes of Trypanosoma cruzi with a peptide isolated from a phage display random library. Exp Parasitol 2020; 210:107830. [PMID: 31917970 DOI: 10.1016/j.exppara.2020.107830] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2019] [Revised: 12/06/2019] [Accepted: 01/04/2020] [Indexed: 12/01/2022]
Abstract
Chagas disease, also known as American trypanosomiasis, is a potentially life-threatening illness caused by the protozoan parasite Trypanosoma cruzi, which is transmitted by insects of the family Reduviidae. Since conventional treatments with nitroheterocyclic drugs show serious adverse reactions and have questionable efficiency, different research groups have investigated polypeptide-based approaches to interfere with the parasite cell cycle in other Trypanosomatids. These strategies are supported by the fact that surface players are candidates to develop surface ligands that impair function since they may act as virulence factors. In this study, we used a phage display approach to identify peptides from one library-LX8CX8 (17 aa) (where X corresponds to any amino acid). After testing different biopanning conditions using live or fixed epimastigotes, 10 clones were sequenced that encoded the same peptide, named here as EPI18. The bacteriophage expressing EPI18 binds to epimastigotes from distinct strains of T. cruzi. To confirm these results, this peptide was synthetized, biotinylated, and assayed using flow cytometry and confocal microscopy analyses. These assays confirmed the specificity of the binding capacity of EPI18 toward epimastigote surfaces. Our findings suggest that EPI18 may have potential biotechnological applications that include peptide-based strategies to control parasite transmission.
Collapse
Affiliation(s)
- José L Sáenz-Garcia
- Laboratório de Genômica Funcional de Parasitos, Departamento de Bioquímica e Biologia Molecular, Universidade Federal Do Paraná, Curitiba, Brazil; Departamento de Ciencias Fisiológicas, Facultad de Ciencias Médicas, UNAN-Managua, Managua, Nicaragua
| | - Isabel B Yamanaka
- Laboratório de Imunoquímica, Departamento de Patologia Básica, Universidade Federal Do Paraná, Curitiba, Brazil
| | - Lisandro A Pacheco-Lugo
- Laboratório de Genômica Funcional de Parasitos, Departamento de Bioquímica e Biologia Molecular, Universidade Federal Do Paraná, Curitiba, Brazil; Universidad Simón Bolívar. Barranquilla, Colombia
| | - Juliana S Miranda
- Laboratório de Imunoquímica, Departamento de Patologia Básica, Universidade Federal Do Paraná, Curitiba, Brazil
| | - Emily S Córneo
- Laboratório de Fisiopatologia Experimental, Programa de Pós-Graduação Em Ciências da Saúde, Unidade Acadêmica de Ciências da Saúde, Universidade Do Extremo Sul Catarinense, CEP, 88806-000. Criciúma, Brazil
| | - Ricardo A Machado-de-Ávila
- Laboratório de Fisiopatologia Experimental, Programa de Pós-Graduação Em Ciências da Saúde, Unidade Acadêmica de Ciências da Saúde, Universidade Do Extremo Sul Catarinense, CEP, 88806-000. Criciúma, Brazil
| | - Juliana F De Moura
- Laboratório de Imunoquímica, Departamento de Patologia Básica, Universidade Federal Do Paraná, Curitiba, Brazil.
| | - Wanderson D DaRocha
- Laboratório de Genômica Funcional de Parasitos, Departamento de Bioquímica e Biologia Molecular, Universidade Federal Do Paraná, Curitiba, Brazil.
| |
Collapse
|
33
|
Sabiá Júnior EF, Menezes LFS, de Araújo IFS, Schwartz EF. Natural Occurrence in Venomous Arthropods of Antimicrobial Peptides Active against Protozoan Parasites. Toxins (Basel) 2019; 11:E563. [PMID: 31557900 PMCID: PMC6832604 DOI: 10.3390/toxins11100563] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2019] [Revised: 08/31/2019] [Accepted: 09/10/2019] [Indexed: 02/07/2023] Open
Abstract
Arthropoda is a phylum of invertebrates that has undergone remarkable evolutionary radiation, with a wide range of venomous animals. Arthropod venom is a complex mixture of molecules and a source of new compounds, including antimicrobial peptides (AMPs). Most AMPs affect membrane integrity and produce lethal pores in microorganisms, including protozoan pathogens, whereas others act on internal targets or by modulation of the host immune system. Protozoan parasites cause some serious life-threatening diseases among millions of people worldwide, mostly affecting the poorest in developing tropical regions. Humans can be infected with protozoan parasites belonging to the genera Trypanosoma, Leishmania, Plasmodium, and Toxoplasma, responsible for Chagas disease, human African trypanosomiasis, leishmaniasis, malaria, and toxoplasmosis. There is not yet any cure or vaccine for these illnesses, and the current antiprotozoal chemotherapeutic compounds are inefficient and toxic and have been in clinical use for decades, which increases drug resistance. In this review, we will present an overview of AMPs, the diverse modes of action of AMPs on protozoan targets, and the prospection of novel AMPs isolated from venomous arthropods with the potential to become novel clinical agents to treat protozoan-borne diseases.
Collapse
Affiliation(s)
- Elias Ferreira Sabiá Júnior
- Departamento de Ciências Fisiológicas, Instituto de Ciências Biológicas, Universidade de Brasília, Brasília, DF 70910-900, Brazil.
| | - Luis Felipe Santos Menezes
- Departamento de Ciências Fisiológicas, Instituto de Ciências Biológicas, Universidade de Brasília, Brasília, DF 70910-900, Brazil.
| | - Israel Flor Silva de Araújo
- Departamento de Ciências Fisiológicas, Instituto de Ciências Biológicas, Universidade de Brasília, Brasília, DF 70910-900, Brazil.
| | - Elisabeth Ferroni Schwartz
- Departamento de Ciências Fisiológicas, Instituto de Ciências Biológicas, Universidade de Brasília, Brasília, DF 70910-900, Brazil.
| |
Collapse
|
34
|
Melittin Exerts Beneficial Effects on Paraquat-Induced Lung Injuries In Mice by Modifying Oxidative Stress and Apoptosis. Molecules 2019; 24:molecules24081498. [PMID: 30995821 PMCID: PMC6514788 DOI: 10.3390/molecules24081498] [Citation(s) in RCA: 38] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2019] [Revised: 04/05/2019] [Accepted: 04/08/2019] [Indexed: 12/21/2022] Open
Abstract
Melittin (MEL) is a 26-amino acid peptide with numerous biological activities. Paraquat (PQ) is one of the most widely used herbicides, although it is extremely toxic to humans. To date, PQ poisoning has no effective treatment, and therefore the current study aimed to assess for the first time the possible effects of MEL on PQ-induced lung injuries in mice. Mice received a single intraperitoneal (IP) injection of PQ (30 mg/kg), followed by IP treatment with MEL (0.1 and 0.5 mg/kg) twice per week for four consecutive weeks. Histological alterations, oxidative stress, and apoptosis in the lungs were studied. Hematoxylin and eosin (H&E) staining indicated that MEL markedly reduced lung injuries induced by PQ. Furthermore, treatment with MEL increased superoxide dismutase (SOD), catalase (CAT), and glutathione peroxidase (GPx) activity, and decreased malonaldehyde (MDA) and nitric oxide (NO) levels in lung tissue homogenates. Moreover, immunohistochemical staining showed that B-cell lymphoma-2 (Bcl-2) and survivin expressions were upregulated after MEL treatment, while Ki-67 expression was downregulated. The high dose of MEL was more effective than the low dose in all experiments. In summary, MEL efficiently reduced PQ-induced lung injuries in mice. Specific pharmacological examinations are required to determine the effectiveness of MEL in cases of human PQ poisoning.
Collapse
|
35
|
Martín-Escolano R, Cebrián R, Martín-Escolano J, Rosales MJ, Maqueda M, Sánchez-Moreno M, Marín C. Insights into Chagas treatment based on the potential of bacteriocin AS-48. INTERNATIONAL JOURNAL FOR PARASITOLOGY-DRUGS AND DRUG RESISTANCE 2019; 10:1-8. [PMID: 30953804 PMCID: PMC6447751 DOI: 10.1016/j.ijpddr.2019.03.003] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/01/2019] [Accepted: 03/26/2019] [Indexed: 02/01/2023]
Abstract
Chagas disease caused by the protozoan parasite Trypanosoma cruzi represents a significant public health problem in Latin America, affecting around 8 million cases worldwide. Nowadays is urgent the identification of new antichagasic agents as the only therapeutic options available, Nifurtimox and Benznidazole, are in use for >40 years, and present high toxicity, limited efficacy and frequent treatment failures in the chronic phase of the disease. Recently, it has been described the antiparasitic effect of AS-48, a bacteriocin produced by Enterococcus faecalis, against Trypanosoma brucei and Leishmania spp. In this work, we have demonstrated the in vitro potential of the AS-48 bacteriocin against T. cruzi. Interesting, AS-48 was more effective against the three morphological forms of different T. cruzi strains, and displayed lower cytotoxicity than the reference drug Benznidazole. In addition, AS-48 combines the criteria established as a potential antichagasic agent, resulting in a promising therapeutic alternative. According to the action mechanism, AS-48 trypanocidal activity could be explained in a mitochondrion-dependent manner through a reactive oxygen species production and mitochondrial depolarization, causing a fast and severe bioenergetic collapse.
Collapse
Affiliation(s)
- Rubén Martín-Escolano
- Department of Parasitology, Instituto de Investigación Biosanitaria (ibs.Granada), Hospitales Universitarios De Granada/University of Granada, Severo Ochoa S/n, E-18071, Granada, Spain
| | - Rubén Cebrián
- Department of Microbiology, Faculty of Sciences. C/ Fuentenueva S/n. University of Granada, Severo Ochoa /n, 18071, Granada, Spain
| | - Javier Martín-Escolano
- Department of Parasitology, Instituto de Investigación Biosanitaria (ibs.Granada), Hospitales Universitarios De Granada/University of Granada, Severo Ochoa S/n, E-18071, Granada, Spain
| | - Maria J Rosales
- Department of Parasitology, Instituto de Investigación Biosanitaria (ibs.Granada), Hospitales Universitarios De Granada/University of Granada, Severo Ochoa S/n, E-18071, Granada, Spain
| | - Mercedes Maqueda
- Department of Microbiology, Faculty of Sciences. C/ Fuentenueva S/n. University of Granada, Severo Ochoa /n, 18071, Granada, Spain
| | - Manuel Sánchez-Moreno
- Department of Parasitology, Instituto de Investigación Biosanitaria (ibs.Granada), Hospitales Universitarios De Granada/University of Granada, Severo Ochoa S/n, E-18071, Granada, Spain
| | - Clotilde Marín
- Department of Parasitology, Instituto de Investigación Biosanitaria (ibs.Granada), Hospitales Universitarios De Granada/University of Granada, Severo Ochoa S/n, E-18071, Granada, Spain.
| |
Collapse
|
36
|
Begum S, Pramanik A, Gates K, Gao Y, Ray PC. Antimicrobial Peptide-Conjugated MoS2-Based Nanoplatform for Multimodal Synergistic Inactivation of Superbugs. ACS APPLIED BIO MATERIALS 2018; 2:769-776. [DOI: 10.1021/acsabm.8b00632] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Affiliation(s)
- Salma Begum
- Department of Chemistry and Biochemistry, Jackson State University, Jackson, Mississippi 39217, United States
| | - Avijit Pramanik
- Department of Chemistry and Biochemistry, Jackson State University, Jackson, Mississippi 39217, United States
| | - Kaelin Gates
- Department of Chemistry and Biochemistry, Jackson State University, Jackson, Mississippi 39217, United States
| | - Ye Gao
- Department of Chemistry and Biochemistry, Jackson State University, Jackson, Mississippi 39217, United States
| | - Paresh Chandra Ray
- Department of Chemistry and Biochemistry, Jackson State University, Jackson, Mississippi 39217, United States
| |
Collapse
|
37
|
Antimicrobial peptides with antiprotozoal activity: current state and future perspectives. Future Med Chem 2018; 10:2569-2572. [PMID: 30499691 DOI: 10.4155/fmc-2018-0460] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
|
38
|
Alqarni AM, Ferro VA, Parkinson JA, Dufton MJ, Watson DG. Effect of Melittin on Metabolomic Profile and Cytokine Production in PMA-Differentiated THP-1 Cells. Vaccines (Basel) 2018; 6:vaccines6040072. [PMID: 30322119 PMCID: PMC6313865 DOI: 10.3390/vaccines6040072] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2018] [Revised: 10/09/2018] [Accepted: 10/11/2018] [Indexed: 12/25/2022] Open
Abstract
Melittin, the major active peptide of honeybee venom (BV), has potential for use in adjuvant immunotherapy. The immune system response to different stimuli depends on the secretion of different metabolites from macrophages. One potent stimulus is lipopolysaccharide (LPS), a component isolated from gram-negative bacteria, which induces the secretion of pro-inflammatory cytokines in macrophage cell cultures. This secretion is amplified when LPS is combined with melittin. In the present study, pure melittin was isolated from whole BV by flash chromatography to obtain pure melittin. The ability of melittin to enhance the release of tumour necrosis factor-α (TNF-α), Interleukin (IL-1β, IL-6, and IL-10) cytokines from a macrophage cell line (THP-1) was then assessed. The response to melittin and LPS, applied alone or in combination, was characterised by metabolic profiling, and the metabolomics results were used to evaluate the potential of melittin as an immune adjuvant therapy. The addition of melittin enhanced the release of inflammatory cytokines induced by LPS. Effective chromatographic separation of metabolites was obtained by liquid chromatography-mass spectrometry (LC-MS) using a ZIC-pHILIC column and an ACE C4 column. The levels of 108 polar and non-polar metabolites were significantly changed (p ˂ 0.05) following cell activation by the combination of LPS and melittin when compared to untreated control cells. Overall, the findings of this study suggested that melittin might have a potential application as a vaccine adjuvant.
Collapse
Affiliation(s)
- Abdulmalik M Alqarni
- Strathclyde Institute of Pharmacy and Biomedical Sciences, University of Strathclyde, 161 Cathedral Street, Glasgow G4 0RE, UK.
| | - Valerie A Ferro
- Strathclyde Institute of Pharmacy and Biomedical Sciences, University of Strathclyde, 161 Cathedral Street, Glasgow G4 0RE, UK.
| | - John A Parkinson
- WestCHEM Department of Pure and Applied Chemistry, University of Strathclyde, 295 Cathedral Street, Glasgow G1 1XL, UK.
| | - Mark J Dufton
- WestCHEM Department of Pure and Applied Chemistry, University of Strathclyde, 295 Cathedral Street, Glasgow G1 1XL, UK.
| | - David G Watson
- Strathclyde Institute of Pharmacy and Biomedical Sciences, University of Strathclyde, 161 Cathedral Street, Glasgow G4 0RE, UK.
| |
Collapse
|
39
|
Prediction and characterization of a novel hemocyanin-derived antimicrobial peptide from shrimp Litopenaeus vannamei. Amino Acids 2018; 50:995-1005. [PMID: 29728914 PMCID: PMC6060862 DOI: 10.1007/s00726-018-2575-x] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2018] [Accepted: 04/23/2018] [Indexed: 12/17/2022]
Abstract
Hemocyanin, the multifunctional glycoprotein in the hemolymph of invertebrates, can generate various antimicrobial peptides (AMPs). Given the rising interest in the use of natural therapeutic agents such as AMPs, alternative and more efficient methods for their generation are being explored. In this work, free online software was first applied to predict the generation of antimicrobial peptides from the large subunit of Litopenaeus vannamei hemocyanin. Twenty potential antimicrobial peptides ranging from 1.5 to 1.9 kDa were predicted, five of which had α-helical structures and were selected for antibacterial activity testing. The results indicated that these five peptides had antibacterial activity against seven different bacteria. Of the five peptides, one peptide, designated L1, had the strongest antibacterial activity against both Gram-negative and Gram-positive bacteria. Moreover, CD and NMR data showed that L1 had both α-helical and β-turns structural composition, and that these structures were essential for L1’s antibacterial activity. Furthermore, SEM analysis revealed that peptide L1 had broad-spectrum activity against both Gram-positive and Gram-negative bacteria, as it could destroy the bacterial cell walls and kill the bacteria. Thus, L1 is a very potent antimicrobial peptide that can be exploited and used in antibacterial therapeutics.
Collapse
|
40
|
Armah FA, Amponsah IK, Mensah AY, Dickson RA, Steenkamp PA, Madala NE, Adokoh CK. Leishmanicidal activity of the root bark of Erythrophleum Ivorense (Fabaceae) and identification of some of its compounds by ultra-performance liquid chromatography quadrupole time of flight mass spectrometry (UPLC-QTOF-MS/MS). JOURNAL OF ETHNOPHARMACOLOGY 2018; 211:207-216. [PMID: 28970156 DOI: 10.1016/j.jep.2017.09.030] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/15/2017] [Revised: 09/07/2017] [Accepted: 09/24/2017] [Indexed: 06/07/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Leishmaniasis is one of the neglected tropical disease caused by a protozoan of the genus Leishmania transmitted by sandflies. High cost and lack of oral formulation of existing drugs, rapid developments of resistance by the parasite coupled with serious side effects require new treatments to augment or replace currently available therapies. The major merits of herbal medicine seem to demonstrate perceived efficacy, low incidence of serious adverse effects and low cost. Erythrophleum plants possess beneficial biological properties and, as such, characterization of the bioactive components of these plants is imperative. Previous work has shown an overwhelming presence of cassaine alkaloids in these plants. However, amongst these plants, the African based specie (Erythrophleum ivorense) is the least studied. OBJECTIVE In the current study, the in vitro anti-leishmanial activity of the crude extract, its fractions and isolated compounds were evaluated using direct counting assay of promastigotes of Leishmania donovani using amphotericin B as positive control. MATERIALS AND METHODS The anti-leishmanial activity of E. ivorense extract was evaluated in vitro against the promastigote forms of Leishmania Donovani using a direct counting assay based on growth inhibition. Different crude extracts from ethyl acetate, pet-ether, and methanol as well as pure isolated compounds of E. ivorense: Erythroivorensin, Eriodictyol and Betulinic acid were screened. To know the possible components of the active methanolic extract, attempt was made to elucidate the extract using ultra-performance liquid chromatography quadrupole time of flight mass spectrometry (UHPLC-QTOF-MS/MS). RESULTS This afforded a weak pet-ether fraction, a moderately active ethyl acetate fraction and a significantly active methanol fraction (IC50 = 2.97μg/mL) compared to Amphotericin B (IC50 = 2.40±0.67μg/mL). The novel diterpene erythroivorensin, betulinic acid and the flavanone Eriodictyol, from the ethyl acetate fraction, showed weak activity. UPLC-QTOF-MS/MS was used to identify the cassaine diterpenoids from the active methanol fraction. Here, 10 compounds of this type were putatively identified from the ethanol crude extract. CONCLUSION The fragmentation mechanism of these metabolites is also proposed and are expected to serve as reference template for identification of these and related compounds in future. The presence of these compounds is an indication that they are an inherited and evolutionary component of plants belonging to the Erythrophleum genus. Our results further present another dimension where these compounds and their relative abundances can be used as chemo-taxonomical bio-markers of the genus. The present study also successfully demonstrated/re-affirmed the use of UPLC-QTOF-MS/MS as a robust technique for the characterization of natural products.
Collapse
Affiliation(s)
- Francis A Armah
- Department of Biomedical Sciences, Faculty of Allied Sciences, College of Health and Allied Health Sciences, University of Cape Coast, Cape Coast, Ghana.
| | - Isaac K Amponsah
- Department of Pharmacognosy, Faculty of Pharmacy & Pharmaceutical Sciences, Kwame Nkrumah University of Science and Technology (KNUST), Kumasi, Ghana
| | - Abraham Y Mensah
- Department of Pharmacognosy, Faculty of Pharmacy & Pharmaceutical Sciences, Kwame Nkrumah University of Science and Technology (KNUST), Kumasi, Ghana
| | - Rita A Dickson
- Department of Pharmacognosy, Faculty of Pharmacy & Pharmaceutical Sciences, Kwame Nkrumah University of Science and Technology (KNUST), Kumasi, Ghana
| | - Paul A Steenkamp
- Council for Scientific and Industrial Research (CSIR), Biosciences, Natural Products and Agroprocessing Group, Pretoria 0001, South Africa; Department of Biochemistry, University of Johannesburg, P.O. Box 524, Auckland Park 2006, South Africa
| | - Ntakadzeni E Madala
- Department of Biochemistry, University of Johannesburg, P.O. Box 524, Auckland Park 2006, South Africa
| | - Christian K Adokoh
- Department of Forensic Sciences, School of Biological Sciences, University of Cape Coast, Cape Coast, Ghana.
| |
Collapse
|
41
|
The dinoponeratoxin peptides from the giant ant Dinoponera quadriceps display in vitro antitrypanosomal activity. Biol Chem 2018; 399:187-196. [DOI: 10.1515/hsz-2017-0198] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2017] [Accepted: 09/12/2017] [Indexed: 12/22/2022]
Abstract
Abstract
The crude venom of the giant ant Dinoponera quadriceps is a cocktail of polypeptides and organic compounds that shows antiparasitic effects against Trypanosoma cruzi, the causative agent of Chagas disease. In order to investigate the venom-derived components responsible for such antitrypanosomal activity, four dinoponeratoxins (DnTxs) were identified, namely M-PONTX-Dq3a, -Dq3b, -Dq3c and -Dq4e, that are diverse in size, net charge, hydrophobicity and propensity to interact with eukaryote cell membranes. These peptides were tested against epimastigote, trypomastigote and amastigote forms of benznidazole (Bz)-resistant Y strain of T. cruzi and in mammalian host cells. The M-PONTX-Dq3a and -Dq4e inhibited all developmental forms of T. cruzi, including amastigotes, the responsible form for the maintenance of infection on chronic phase of the disease. The M-PONTX-Dq3a showed the highest selectivity index (SI) (80) and caused morphological alterations in T. cruzi, as observed by scanning electron microscopy (SEM), and induced cell death through necrosis, as seen by multiparametric flow cytometry analysis with specific biochemical markers. Altogether, the D. quadriceps venom appears as a source for the prospection of trypanocidal peptides and the M-PONTX-Dq3a arises as a candidate among the dinoponeratoxin-related peptides in the development of compounds against Chagas disease.
Collapse
|
42
|
Antichagasic effect of crotalicidin, a cathelicidin-like vipericidin, found in Crotalus durissus terrificus rattlesnake's venom gland. Parasitology 2017; 145:1059-1064. [PMID: 29208061 DOI: 10.1017/s0031182017001846] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Cathelicidins are antimicrobial peptides produced by humans and animals in response to various pathogenic microbes. Crotalicidin (Ctn), a cathelicidin-related vipericidin from the South American Crotalus durissus terrificus rattlesnake's venom gland, and its fragments have demonstrated antimicrobial and antifungal activity, similarly to human cathelicidin LL-37. In order to provide templates for the development of modern trypanocidal agents, the present study evaluated the antichagasic effect of these four peptides (Ctn, Ctn[1-14], Ctn[15-34] and LL-37). Herein, Ctn and short derived peptides were tested against the epimastigote, trypomastigote and amastigote forms of Trypanosoma cruzi Y strain (benznidazole-resistant strain) and cytotoxicity in mammalian cells was evaluated against LLC-MK2 lineage cells. Ctn inhibited all T. cruzi developmental forms, including amastigotes, which is implicated in the burden of infection in the chronic phase of Chagas disease. Moreover, Ctn showed a high selective index against trypomastigote forms (>200). Ctn induced cell death in T. cruzi through necrosis, as determined by flow cytometry analyses with specific molecular probes and morphological alterations, such as loss of membrane integrity and cell shrinkage, as observed through scanning electron microscopy. Overall, Ctn seems to be a promising template for the development of antichagasic agents.
Collapse
|
43
|
Gao Y, Pramanik A, Begum S, Sweet C, Jones S, Alamgir A, Ray PC. Multifunctional Biochar for Highly Efficient Capture, Identification, and Removal of Toxic Metals and Superbugs from Water Samples. ACS OMEGA 2017; 2:7730-7738. [PMID: 30023562 PMCID: PMC6044975 DOI: 10.1021/acsomega.7b01386] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/16/2017] [Accepted: 11/01/2017] [Indexed: 05/16/2023]
Abstract
According to the World Health Organization, more than two billion people in our world use drinking water sources which are not free from pathogens and heavy metal contamination. Unsafe drinking water is responsible for the death of several millions in the 21st century. To find facile and cost-effective routes for developing multifunctional materials, which has the capability to resolve many of the challenges associated with drinking water problem, here, we report the novel design of multifunctional fluorescence-magnetic biochar with the capability for highly efficient separation, identification, and removal of pathogenic superbugs and toxic metals from environmental water samples. Details of synthesis and characterization of multifunctional biochar that exhibits very good magnetic properties and emits bright blue light owing to the quantum confinement effect are reported. In our design, biochar, a carbon-rich low-cost byproduct of naturally abundant biomass, which exhibits heterogeneous surface chemistry and strong binding affinity via oxygen-containing group on the surface, has been used to capture pathogens and toxic metals. Biochar dots (BCDs) of an average of 4 nm size with very bright photoluminescence have been developed for the identification of pathogens and toxic metals. In the current design, magnetic nanoparticles have been incorporated with BCDs which allow pathogens and toxic metals to be completely removed from water after separation by an external magnetic field. Reported results show that owing to the formation of strong complex between multifunctional biochar and cobalt(II), multifunctional biochar can be used for the selective capture and removal of Co(II) from environmental samples. Experimental data demonstrate that multifunctional biochar can be used for the highly efficient removal of methicillin-resistant Staphylococcus aureus (MRSA) from environmental samples. Reported results also show that melittin, an antimicrobial peptide-attached multifunctional biochar, has the capability to completely disinfect MRSA superbugs after magnetic separation. A possible mechanism for the selective separation of Co(II), as well as separation and killing of MRSA, has been discussed.
Collapse
|
44
|
Socarras KM, Theophilus PAS, Torres JP, Gupta K, Sapi E. Antimicrobial Activity of Bee Venom and Melittin against Borrelia burgdorferi. Antibiotics (Basel) 2017; 6:antibiotics6040031. [PMID: 29186026 PMCID: PMC5745474 DOI: 10.3390/antibiotics6040031] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2017] [Revised: 11/21/2017] [Accepted: 11/22/2017] [Indexed: 01/12/2023] Open
Abstract
Lyme disease is a tick-borne, multi-systemic disease, caused by the bacterium Borrelia burgdorferi. Though antibiotics are used as a primary treatment, relapse often occurs after the discontinuation of antimicrobial agents. The reason for relapse remains unknown, however previous studies suggest the possible presence of antibiotic resistant Borrelia round bodies, persisters and attached biofilm forms. Thus, there is an urgent need to find antimicrobial agents suitable to eliminate all known forms of B. burgdorferi. In this study, natural antimicrobial agents such as Apis mellifera venom and a known component, melittin, were tested using SYBR Green I/PI, direct cell counting, biofilm assays combined with LIVE/DEAD and atomic force microscopy methods. The obtained results were compared to standalone and combinations of antibiotics such as Doxycycline, Cefoperazone, Daptomycin, which were recently found to be effective against Borrelia persisters. Our findings showed that both bee venom and melittin had significant effects on all the tested forms of B. burgdorferi. In contrast, the control antibiotics when used individually or even in combinations had limited effects on the attached biofilm form. These findings strongly suggest that whole bee venom or melittin could be effective antimicrobial agents for B. burgdorferi; however, further research is necessary to evaluate their effectiveness in vivo, as well as their safe and effective delivery method for their therapeutic use.
Collapse
Affiliation(s)
- Kayla M Socarras
- Lyme Disease Research Group, Department of Biology and Environmental Science, University of New Haven, West Haven, CT 06519, USA.
| | - Priyanka A S Theophilus
- Lyme Disease Research Group, Department of Biology and Environmental Science, University of New Haven, West Haven, CT 06519, USA.
| | - Jason P Torres
- Lyme Disease Research Group, Department of Biology and Environmental Science, University of New Haven, West Haven, CT 06519, USA.
| | - Khusali Gupta
- Lyme Disease Research Group, Department of Biology and Environmental Science, University of New Haven, West Haven, CT 06519, USA.
| | - Eva Sapi
- Lyme Disease Research Group, Department of Biology and Environmental Science, University of New Haven, West Haven, CT 06519, USA.
| |
Collapse
|
45
|
Hur J, Kim K, Lee S, Park H, Park Y. Melittin-induced alterations in morphology and deformability of human red blood cells using quantitative phase imaging techniques. Sci Rep 2017; 7:9306. [PMID: 28839153 PMCID: PMC5571175 DOI: 10.1038/s41598-017-08675-7] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2016] [Accepted: 07/12/2017] [Indexed: 01/05/2023] Open
Abstract
Here, the actions of melittin, the active molecule of apitoxin or bee venom, were investigated on human red blood cells (RBCs) using quantitative phase imaging techniques. High-resolution real-time 3-D refractive index (RI) measurements and dynamic 2-D phase images of individual melittin-bound RBCs enabled in-depth examination of melittin-induced biophysical alterations of the cells. From the measurements, morphological, intracellular, and mechanical alterations of the RBCs were analyzed quantitatively. Furthermore, leakage of haemoglobin (Hb) inside the RBCs at high melittin concentration was also investigated.
Collapse
Affiliation(s)
- Joonseok Hur
- Department of Physics, Korea Advanced Institute of Science and Technology, Daejeon, 34141, Republic of Korea.,Department of Physics and Research Laboratory of Electronics, Massachusetts Institute of Technology, Cambridge, 02139, Massachusetts, United States
| | - Kyoohyun Kim
- Department of Physics, Korea Advanced Institute of Science and Technology, Daejeon, 34141, Republic of Korea.,KAIST Institute Health Science and Technology, Daejeon, 34141, South Korea
| | - SangYun Lee
- Department of Physics, Korea Advanced Institute of Science and Technology, Daejeon, 34141, Republic of Korea.,KAIST Institute Health Science and Technology, Daejeon, 34141, South Korea
| | - HyunJoo Park
- Department of Physics, Korea Advanced Institute of Science and Technology, Daejeon, 34141, Republic of Korea
| | - YongKeun Park
- Department of Physics, Korea Advanced Institute of Science and Technology, Daejeon, 34141, Republic of Korea. .,KAIST Institute Health Science and Technology, Daejeon, 34141, South Korea. .,Tomocube Inc., Daejeon, 34051, Republic of Korea.
| |
Collapse
|
46
|
Vinhote JFC, Lima DB, Menezes RRPPBD, Mello CP, de Souza BM, Havt A, Palma MS, Santos RPD, Albuquerque ELD, Freire VN, Martins AMC. Trypanocidal activity of mastoparan from Polybia paulista wasp venom by interaction with TcGAPDH. Toxicon 2017; 137:168-172. [PMID: 28826757 DOI: 10.1016/j.toxicon.2017.08.002] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2016] [Revised: 07/31/2017] [Accepted: 08/02/2017] [Indexed: 11/25/2022]
Abstract
Chagas disease, considered a neglected disease, is a parasitic infection caused by Trypanosoma cruzi, which is endemic throughout the world. Previously, the antimicrobial effect of Mastoparan (MP) from Polybia paulista wasp venom against bacteria was described. To continue the study, we report in this short communication the antimicrobial effect of MP against Trypanosoma cruzi. MP inhibits all T. cruzi developmental forms through the inhibition of TcGAPDH suggested by the molecular docking. In conclusion, we suggest there is an antimicrobial effect also on T. cruzi.
Collapse
Affiliation(s)
| | - Dânya Bandeira Lima
- Department of Clinical and Toxicological Analyses, Federal University of Ceará, Fortaleza, Ceará, Brazil
| | | | - Clarissa Perdigão Mello
- Department of Clinical and Toxicological Analyses, Federal University of Ceará, Fortaleza, Ceará, Brazil
| | | | - Alexandre Havt
- Department of Physiology and Pharmacology, Federal University of Ceará, Fortaleza, Ceará, Brazil
| | - Mario Sérgio Palma
- Institute of Biosciences of Rio Claro, São Paulo State University, Brazil
| | | | - Eudenilson Lins de Albuquerque
- Department of Biophysics and Pharmacology, Federal University of Rio Grande do Norte, Natal, Rio Grande do Norte, Brazil
| | | | - Alice Maria Costa Martins
- Department of Clinical and Toxicological Analyses, Federal University of Ceará, Fortaleza, Ceará, Brazil.
| |
Collapse
|
47
|
VOSalophen: a vanadium complex with a stilbene derivative—induction of apoptosis, autophagy, and efficiency in experimental cutaneous leishmaniasis. J Biol Inorg Chem 2017; 22:929-939. [DOI: 10.1007/s00775-017-1471-2] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2017] [Accepted: 05/30/2017] [Indexed: 10/24/2022]
|
48
|
Miranda N, Gerola AP, Novello CR, Ueda-Nakamura T, de Oliveira Silva S, Dias-Filho BP, Hioka N, de Mello JCP, Nakamura CV. Pheophorbide a, a compound isolated from the leaves of Arrabidaea chica, induces photodynamic inactivation of Trypanosoma cruzi. Photodiagnosis Photodyn Ther 2017; 19:256-265. [PMID: 28587855 DOI: 10.1016/j.pdpdt.2017.05.004] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2017] [Revised: 04/24/2017] [Accepted: 05/05/2017] [Indexed: 01/17/2023]
Abstract
BACKGROUND Approximately 6-7 million people are infected with Trypanosoma cruzi, the etiological agent of Chagas' disease. Only two therapeutic compounds have been found to be useful against this disease: nifurtimox and benznidazole. These drugs have been effective in the acute phase of the disease but less effective in the chronic phase; they also have many side effects. Thus, the search for new compounds with trypanocidal action is necessary. Natural products can be the source of many important substances for the development of drugs to treat this infection. The present study evaluated the biological activity of an extract and fractions of Arrabidaea chica against T. cruzi and observed morphological and ultrastructural characteristics of parasites exposed to the isolated compound pheophorbide a. METHODS The crude hydroethanolic extract of A. chica was prepared. Fractions were obtained by partition and separated by liquid chromatography. RESULTS We observed a progressive increase in activity against epimastigote, trypomastigote, and amastigote forms of the parasite over the course of the fractionation process. Interestingly, we isolated a compound known as a photosensitizer that is used in photodynamic therapy. This method of treatment involving a photosensitizer, activation light and molecular oxygen is of great importance due to its selectivity. Pheophorbide a had activity against the protozoan in the presence of light and caused morphological and ultrastructural changes, demonstrating its potential in photodynamic therapy. CONCLUSIONS Based on the ability of pheophorbide a to eliminate bloodstream forms of T. cruzi, we suggest its use in blood banks for hemoprophylaxis.
Collapse
Affiliation(s)
- Nathielle Miranda
- Post-Graduate Program in Pharmaceutical Sciences, Laboratory of Technological Innovation in the Development of Drugs and Cosmetics, State University of Maringá, Maringá, Paraná, Brazil.
| | | | | | - Tânia Ueda-Nakamura
- Post-Graduate Program in Pharmaceutical Sciences, Laboratory of Technological Innovation in the Development of Drugs and Cosmetics, State University of Maringá, Maringá, Paraná, Brazil; Department of Basic Sciences of Health, State University of Maringá, Maringá, Paraná, Brazil.
| | - Sueli de Oliveira Silva
- Post-Graduate Program in Pharmaceutical Sciences, Laboratory of Technological Innovation in the Development of Drugs and Cosmetics, State University of Maringá, Maringá, Paraná, Brazil; Department of Basic Sciences of Health, State University of Maringá, Maringá, Paraná, Brazil.
| | - Benedito Prado Dias-Filho
- Post-Graduate Program in Pharmaceutical Sciences, Laboratory of Technological Innovation in the Development of Drugs and Cosmetics, State University of Maringá, Maringá, Paraná, Brazil; Department of Basic Sciences of Health, State University of Maringá, Maringá, Paraná, Brazil.
| | - Noboru Hioka
- Department of Chemistry, State University of Maringá, Maringá, Paraná, Brazil.
| | - João Carlos Palazzo de Mello
- Post-Graduate Program in Pharmaceutical Sciences, Laboratory of Technological Innovation in the Development of Drugs and Cosmetics, State University of Maringá, Maringá, Paraná, Brazil.
| | - Celso Vataru Nakamura
- Post-Graduate Program in Pharmaceutical Sciences, Laboratory of Technological Innovation in the Development of Drugs and Cosmetics, State University of Maringá, Maringá, Paraná, Brazil; Department of Basic Sciences of Health, State University of Maringá, Maringá, Paraná, Brazil.
| |
Collapse
|
49
|
Stroppa PH, Antinarelli LM, Carmo AM, Gameiro J, Coimbra ES, da Silva AD. Effect of 1,2,3-triazole salts, non-classical bioisosteres of miltefosine, on Leishmania amazonensis. Bioorg Med Chem 2017; 25:3034-3045. [DOI: 10.1016/j.bmc.2017.03.051] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2017] [Revised: 03/21/2017] [Accepted: 03/23/2017] [Indexed: 10/19/2022]
|
50
|
Rady I, Siddiqui IA, Rady M, Mukhtar H. Melittin, a major peptide component of bee venom, and its conjugates in cancer therapy. Cancer Lett 2017; 402:16-31. [PMID: 28536009 DOI: 10.1016/j.canlet.2017.05.010] [Citation(s) in RCA: 236] [Impact Index Per Article: 29.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2017] [Revised: 05/11/2017] [Accepted: 05/12/2017] [Indexed: 02/07/2023]
Abstract
Melittin (MEL), a major peptide component of bee venom, is an attractive candidate for cancer therapy. This agent has shown a variety of anti-cancer effects in preclinical cell culture and animal model systems. Despite a convincing efficacy data against variety of cancers, its applicability to humans has met with challenges due to several issues including its non-specific cytotoxicity, degradation and hemolytic activity. Several optimization approaches including utilization of nanoparticle based delivery of MEL have been utilized to circumvent the issues. Here, we summarize the current understanding of the anticancer effects of bee venom and MEL on different kinds of cancers. Further, we also present the available information for the possible mechanism of action of bee venom and/or MEL.
Collapse
Affiliation(s)
- Islam Rady
- School of Medicine and Public Health, Department of Dermatology, University of Wisconsin-Madison, WI 53706, USA; Department of Zoology, Faculty of Science, Al-Azhar University, Cairo, Egypt
| | - Imtiaz A Siddiqui
- School of Medicine and Public Health, Department of Dermatology, University of Wisconsin-Madison, WI 53706, USA
| | - Mohamad Rady
- Department of Zoology, Faculty of Science, Al-Azhar University, Cairo, Egypt
| | - Hasan Mukhtar
- School of Medicine and Public Health, Department of Dermatology, University of Wisconsin-Madison, WI 53706, USA.
| |
Collapse
|