1
|
Covali-Pontes HR, Lima Fernandes MM, Corrêa de Lima L, Rodrigues Macedo ML, Giannesi GC, Bastos de Oliveira MA, Teixeira Ferreira AM, Farias Frihling BE, Migliolo L, Pereira Dos Santos NG, Abreu Falla MV, Coelho GR, Neilson de Lucena M. Tityus paraguayensis, a scorpion from the Brazilian Cerrado: First assessment of venom and hemolymph composition and biological activity. Toxicon 2025; 258:108332. [PMID: 40157652 DOI: 10.1016/j.toxicon.2025.108332] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2025] [Revised: 03/23/2025] [Accepted: 03/24/2025] [Indexed: 04/01/2025]
Abstract
Scorpionism is a serious public health problem in Brazil, where scorpion stings are the most frequent accidents caused by venomous animals. Scorpion venoms comprise a complex mixture of different classes of molecules, some of which may possess pharmacological properties. This study aimed to investigate the biological activity and composition of the venom and hemolymph of Tityus paraguayensis, an endemic species found in Mato Grosso do Sul State. The hemolymph showed proteolytic and lipase activities associated with innate immunity and digestive processes, respectively. Although these activities are not believed to be involved in the manifestations of envenomation, they might prove valuable in the prospection of compounds with antimicrobial activity. The venom exhibited phospholipase and lipase activities and stimulated (Na+,K+)-ATPase activity. The venom was also analyzed for activity against epimastigote forms of Trypanosoma cruzi. In this assay, T. paraguayensis venom inhibited parasite growth. The venom did not cause cytotoxicity to Vero cells. SDS-PAGE analysis revealed proteins ranging from 10 to 140 kDa, as well as bands with molecular mass <10 kDa, possibly corresponding to neurotoxic peptides. HPLC analysis of T. paraguayensis venom revealed that the highest number of peaks had retention times of 1-20 min (0-35 % acetonitrile). The partial sequence of peak 10 was determined by Q-TOF analysis and was partially identified as a peptide (Tp10) that possible act as a K+ channel ligand (KTx). Additionally, 5 toxins related to potassium channel toxins, 3 toxins related to sodium channel toxins and a metalloproteinase were identified by shotgun proteomic of T. paraguayensis venom. This is the first report of the biological activities, HPLC profile, electrophoretic pattern and proteomic analysis of T. paraguayensis venom. These findings suggest that T. paraguayensis venom may be a valuable source for the identification of molecules with pharmacological applications.
Collapse
Affiliation(s)
| | - Mila Marluce Lima Fernandes
- Faculty of Pharmaceutical Sciences, Food and Nutrition, Federal University of Mato Grosso do Sul, Campo Grande, MS, Brazil
| | - Laís Corrêa de Lima
- Institute of Biosciences, Federal University of Mato Grosso do Sul, Campo Grande, MS, Brazil
| | - Maria Ligia Rodrigues Macedo
- Faculty of Pharmaceutical Sciences, Food and Nutrition, Federal University of Mato Grosso do Sul, Campo Grande, MS, Brazil
| | | | | | | | | | | | | | | | | | | |
Collapse
|
2
|
Alano-da-Silva NM, Oliveira ISD, Cardoso IA, Bordon KDCF, Arantes EC. Exploring high molecular weight components in Tityus serrulatus venom. Toxicon 2025; 255:108240. [PMID: 39805528 DOI: 10.1016/j.toxicon.2025.108240] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2024] [Revised: 01/02/2025] [Accepted: 01/10/2025] [Indexed: 01/16/2025]
Abstract
Our study identified high-molecular-weight compounds from Tityus serrulatus venom (TsV), and most of them have not yet been well explored. TsV was fractionated using FPLC system with different columns, analyzed by SDS-PAGE, and characterized by MALDI-TOF/TOF. Our study showed that TsV contains several high-molecular-weight compounds, including CRISPs, metalloproteinase and hyaluronidase. We show how these molecules can be obtained from TsV, enabling future studies about their molecular structures and biological actions, expanding knowledge about this venom.
Collapse
Affiliation(s)
- Nicoly Malachize Alano-da-Silva
- Department of BioMolecular Sciences, School of Pharmaceutical Sciences of Ribeirão Preto, University of São Paulo, Ribeirão Preto, SP, Brazil
| | - Isadora Sousa de Oliveira
- Department of BioMolecular Sciences, School of Pharmaceutical Sciences of Ribeirão Preto, University of São Paulo, Ribeirão Preto, SP, Brazil
| | - Iara Aimê Cardoso
- Department of BioMolecular Sciences, School of Pharmaceutical Sciences of Ribeirão Preto, University of São Paulo, Ribeirão Preto, SP, Brazil
| | - Karla de Castro Figueiredo Bordon
- Department of BioMolecular Sciences, School of Pharmaceutical Sciences of Ribeirão Preto, University of São Paulo, Ribeirão Preto, SP, Brazil
| | - Eliane Candiani Arantes
- Department of BioMolecular Sciences, School of Pharmaceutical Sciences of Ribeirão Preto, University of São Paulo, Ribeirão Preto, SP, Brazil.
| |
Collapse
|
3
|
de Souza FS, de Veras BO, Lucena LDM, Casoti R, Martins RD, Ximenes RM. Antivenom potential of the latex of Jatropha mutabilis baill. (Euphorbiaceae) against Tityus stigmurus venom: Evaluating its ability to neutralize toxins and local effects in mice. JOURNAL OF ETHNOPHARMACOLOGY 2024; 335:118642. [PMID: 39098623 DOI: 10.1016/j.jep.2024.118642] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/26/2024] [Revised: 07/22/2024] [Accepted: 07/29/2024] [Indexed: 08/06/2024]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Species of the Jatropha genus (Euphorbiaceae) are used indiscriminately in traditional medicine to treat accidents involving venomous animals. Jatropha mutabilis Baill., popularly known as "pinhão-de-seda," is found in the semi-arid region of Northeastern Brazil. It is widely used as a vermifuge, depurative, laxative, and antivenom. AIM OF THE STUDY Obtaining the phytochemical profile of the latex of Jatropha mutabilis (JmLa) and evaluate its acute oral toxicity and inhibitory effects against the venom of the scorpion Tityus stigmurus (TstiV). MATERIALS AND METHODS The latex of J. mutabilis (JmLa) was obtained through in situ incisions in the stem and characterized using HPLC-ESI-QToF-MS. Acute oral toxicity was investigated in mice. The protein profile of T. stigmurus venom was obtained by electrophoresis. The ability of latex to interact with venom components (TstiV) was assessed using SDS-PAGE, UV-Vis scanning spectrum, and the neutralization of fibrinogenolytic and hyaluronidase activities. Additionally, the latex was evaluated in vivo for its ability to inhibit local edematogenic and nociceptive effects induced by the venom. RESULTS The phytochemical profile of the latex revealed the presence of 75 compounds, including cyclic peptides, glycosides, phenolic compounds, alkaloids, coumarins, and terpenoids, among others. No signs of acute toxicity were observed at a dose of 2000 mg/kg (p.o.). The latex interacted with the protein profile of TstiV, inhibiting the venom's fibrinogenolytic and hyaluronidase activities by 100%. Additionally, the latex was able to mitigate local envenomation effects, reducing nociception by up to 56.5% and edema by up to 50% compared to the negative control group. CONCLUSIONS The latex of Jatropha mutabilis exhibits a diverse phytochemical composition, containing numerous classes of metabolites. It does not present acute toxic effects in mice and has the ability to inhibit the enzymatic effects of Tityus stigmurus venom in vitro. Additionally, it reduces nociception and edema in vivo. These findings corroborate popular reports regarding the antivenom activity of this plant and indicate that the latex has potential for treating scorpionism.
Collapse
Affiliation(s)
- Felipe Santana de Souza
- Laboratory of Ethnopharmacology and Phytochemistry, Department of Antibiotics, Center for Biosciences, Federal University of Pernambuco, Recife, PE, 50740-525, Brazil
| | - Bruno Oliveira de Veras
- Laboratory of Ethnopharmacology and Phytochemistry, Department of Antibiotics, Center for Biosciences, Federal University of Pernambuco, Recife, PE, 50740-525, Brazil; Department of Biochemistry, Center for Biosciences, Federal University of Pernambuco, Recife, PE, 50670-420, Brazil
| | - Lorena de Mendonça Lucena
- Laboratory of Natural Products and Metabolomics Analysis, Department of Antibiotics, Center for Biosciences, Federal University of Pernambuco, Recife, PE, 50740-525, Brazil
| | - Rosana Casoti
- Laboratory of Natural Products and Metabolomics Analysis, Department of Antibiotics, Center for Biosciences, Federal University of Pernambuco, Recife, PE, 50740-525, Brazil
| | - René Duarte Martins
- Nucleus of Public Health, Academic Center of Vitória, Federal University of Pernambuco, Vitória de Santo Antão, PE, 55608-680, Brazil
| | - Rafael Matos Ximenes
- Laboratory of Ethnopharmacology and Phytochemistry, Department of Antibiotics, Center for Biosciences, Federal University of Pernambuco, Recife, PE, 50740-525, Brazil.
| |
Collapse
|
4
|
Hudefe A, Álvarez A, Hernández D, Castillo C, Malave C, Parrilla P, Zerpa N. Venom characterization of Venezuelan scorpion Tityus caripitensis. Toxicon 2024; 252:108174. [PMID: 39547451 DOI: 10.1016/j.toxicon.2024.108174] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2024] [Revised: 10/30/2024] [Accepted: 11/11/2024] [Indexed: 11/17/2024]
Abstract
Tityus caripitensis is an endemic scorpion species found in the northeastern region from Venezuela, being responsible for sting accidents in this area. This study describes for the first time a biological, biochemical and electrophysiological partial characterization of Tityus caripitensis scorpion venom. The venom is toxic to mice with a LD50 of 20.2 μg/gr mouse. Animals experimentally envenomed with Tityus caripitensis venom gradually manifested clinical signs in response to sublethal doses. SDS-PAGE of the venom resulted in 7 fractions ranging in size from ∼3.5 to ≥38 kDa. The 6-8 kDa proteins could correspond to neurotoxins. In addition, the components of Tityus caripitensis venom were similar to those obtained in the electrophoretic profile of Tityus discrepans. The commercial anti- Tityus discrepans IgG showed reactivity against Tityus caripitensis venom. Tityus caripitensis venom could induce hematological changes such as hyperamylasemia and hyperglycemia. The venom modified voltage dependent Na + v1.4 channels and blocked Kv + channels. Although Tityus caripitensis venom is less toxic than Tityus discrepans, they share molecular and antigenic components. This aspect should be considered in the application of antivenom treatment.
Collapse
Affiliation(s)
- Amini Hudefe
- Universidad de Oriente, Facultad de Medicina, Núcleo Bolívar, Ciudad Bolívar, Venezuela
| | - Aurora Álvarez
- Fundación Instituto de Estudios Avanzados (IDEA), Carretera Nacional Hoyo de la Puerta, Valle de Sartenejas, Baruta, Venezuela
| | - Deyanell Hernández
- Fundación Instituto de Estudios Avanzados (IDEA), Carretera Nacional Hoyo de la Puerta, Valle de Sartenejas, Baruta, Venezuela
| | - Cecilia Castillo
- Fundación Instituto de Estudios Avanzados (IDEA), Carretera Nacional Hoyo de la Puerta, Valle de Sartenejas, Baruta, Venezuela
| | - Caridad Malave
- Fundación Instituto de Estudios Avanzados (IDEA), Carretera Nacional Hoyo de la Puerta, Valle de Sartenejas, Baruta, Venezuela.
| | - Pedro Parrilla
- Universidad de Oriente, Facultad de Medicina, Núcleo Bolívar, Ciudad Bolívar, Venezuela
| | - Noraida Zerpa
- Fundación Instituto de Estudios Avanzados (IDEA), Carretera Nacional Hoyo de la Puerta, Valle de Sartenejas, Baruta, Venezuela
| |
Collapse
|
5
|
Wiezel GA, Oliveira IS, Reis MB, Ferreira IG, Cordeiro KR, Bordon KCF, Arantes EC. The complex repertoire of Tityus spp. venoms: Advances on their composition and pharmacological potential of their toxins. Biochimie 2024; 220:144-166. [PMID: 38176606 DOI: 10.1016/j.biochi.2023.12.012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2023] [Revised: 11/30/2023] [Accepted: 12/30/2023] [Indexed: 01/06/2024]
Abstract
Animal venoms are a rich and complex source of components, including peptides (such as neurotoxins, anionic peptides and hypotensins), lipids, proteins (such as proteases, hyaluronidases and phospholipases) and inorganic compounds, which affect all biological systems of the envenoming victim. Their action may result in a wide range of clinical manifestations, including tachy/bradycardia, hyper/hypotension, disorders in blood coagulation, pain, edema, inflammation, fever, muscle paralysis, coma and even death. Scorpions are one of the most studied venomous animals in the world and interesting bioactive molecules have been isolated and identified from their venoms over the years. Tityus spp. are among the scorpions with high number of accidents reported in the Americas, especially in Brazil. Their venoms have demonstrated interesting results in the search for novel agents with antimicrobial, anti-viral, anti-parasitic, hypotensive, immunomodulation, anti-insect, antitumor and/or antinociceptive activities. Furthermore, other recent activities still under investigation include drug delivery action, design of anti-epileptic drugs, investigation of sodium channel function, treatment of erectile disfunction and priapism, improvement of scorpion antivenom and chelating molecules activity. In this scenario, this paper focuses on reviewing advances on Tityus venom components mainly through the modern omics technologies as well as addressing potential therapeutic agents from their venoms and highlighting this abundant source of pharmacologically active molecules with biotechnological application.
Collapse
Affiliation(s)
- Gisele A Wiezel
- Department of BioMolecular Sciences, School of Pharmaceutical Sciences of Ribeirão Preto, University of São Paulo, Avenida Do Café s/n, Ribeirão Preto, SP, Brazil.
| | - Isadora S Oliveira
- Department of BioMolecular Sciences, School of Pharmaceutical Sciences of Ribeirão Preto, University of São Paulo, Avenida Do Café s/n, Ribeirão Preto, SP, Brazil; Department of Biotechnology and Biomedicine, Technical University of Denmark, Søtolfts Plads, Building 239 Room 006, Kongens Lyngby, 2800, Denmark.
| | - Mouzarllem B Reis
- Department of BioMolecular Sciences, School of Pharmaceutical Sciences of Ribeirão Preto, University of São Paulo, Avenida Do Café s/n, Ribeirão Preto, SP, Brazil.
| | - Isabela G Ferreira
- Department of BioMolecular Sciences, School of Pharmaceutical Sciences of Ribeirão Preto, University of São Paulo, Avenida Do Café s/n, Ribeirão Preto, SP, Brazil.
| | - Kalynka R Cordeiro
- Department of BioMolecular Sciences, School of Pharmaceutical Sciences of Ribeirão Preto, University of São Paulo, Avenida Do Café s/n, Ribeirão Preto, SP, Brazil.
| | - Karla C F Bordon
- Department of BioMolecular Sciences, School of Pharmaceutical Sciences of Ribeirão Preto, University of São Paulo, Avenida Do Café s/n, Ribeirão Preto, SP, Brazil.
| | - Eliane C Arantes
- Department of BioMolecular Sciences, School of Pharmaceutical Sciences of Ribeirão Preto, University of São Paulo, Avenida Do Café s/n, Ribeirão Preto, SP, Brazil.
| |
Collapse
|
6
|
Kalapothakis Y, Miranda K, Aragão M, Larangote D, Braga-Pereira G, Noetzold M, Molina D, Langer R, Conceição IM, Guerra-Duarte C, Chávez-Olórtegui C, Kalapothakis E, Borges A. Divergence in toxin antigenicity and venom enzymes in Tityus melici, a medically important scorpion, despite transcriptomic and phylogenetic affinities with problematic Brazilian species. Int J Biol Macromol 2024; 263:130311. [PMID: 38403220 DOI: 10.1016/j.ijbiomac.2024.130311] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2023] [Revised: 01/27/2024] [Accepted: 02/18/2024] [Indexed: 02/27/2024]
Abstract
The Brazilian scorpion Tityus melici, native to Minas Gerais and Bahia, is morphologically related to Tityus serrulatus, the most medically significant species in Brazil. Despite inhabiting scorpion-envenomation endemic regions, T. melici venom remains unexplored. This work evaluates T. melici venom composition and function using transcriptomics, enzymatic activities, and in vivo and in vitro immunological analyses. Next-Generation Sequencing unveiled 86 components putatively involved in venom toxicity: 39 toxins, 28 metalloproteases, seven disulfide isomerases, six hyaluronidases, three phospholipases and three amidating enzymes. T. serrulatus showed the highest number of toxin matches with 80-100 % sequence similarity. T. melici is of medical importance as it has a venom LD50 of 0.85 mg/kg in mice. We demonstrated venom phospholipase A2 activity, and elevated hyaluronidase and metalloprotease activities compared to T. serrulatus, paralleling our transcriptomic findings. Comparison of transcriptional levels for T. serrulatus and T. melici venom metalloenzymes suggests species-specific expression patterns in Tityus. Despite close phylogenetic association with T. serrulatus inferred from COI sequences and toxin similarities, partial neutralization of T. melici venom toxicity was achieved when using the anti-T. serrulatus antivenom, implying antigenic divergence among their toxins. We suggest that the Brazilian therapeutic scorpion antivenom could be improved to effectively neutralize T. melici venom.
Collapse
Affiliation(s)
- Yan Kalapothakis
- Departamento de Genética, Ecologia e Evolução, ICB, Universidade Federal de Minas Gerais, Av. Antônio Carlos 6627, CEP: 31270-901 Belo Horizonte, Minas Gerais, Brazil
| | - Kelton Miranda
- Departamento de Genética, Ecologia e Evolução, ICB, Universidade Federal de Minas Gerais, Av. Antônio Carlos 6627, CEP: 31270-901 Belo Horizonte, Minas Gerais, Brazil
| | - Matheus Aragão
- Departamento de Bioquímica e Imunologia, ICB, Universidade Federal de Minas Gerais, Av. Antônio Carlos 6627, CEP: 31270-901 Belo Horizonte, Minas Gerais, Brazil
| | - Débora Larangote
- Departamento de Genética, Ecologia e Evolução, ICB, Universidade Federal de Minas Gerais, Av. Antônio Carlos 6627, CEP: 31270-901 Belo Horizonte, Minas Gerais, Brazil
| | - Gracielle Braga-Pereira
- Departamento de Zoologia, ICB, Universidade Federal de Minas Gerais, Av. Antônio Carlos, 6627, CEP 31270-901 Belo Horizonte, Minas Gerais, Brazil
| | - Marina Noetzold
- Departamento de Bioquímica e Imunologia, ICB, Universidade Federal de Minas Gerais, Av. Antônio Carlos 6627, CEP: 31270-901 Belo Horizonte, Minas Gerais, Brazil
| | - Denis Molina
- Departamento de Bioquímica e Imunologia, ICB, Universidade Federal de Minas Gerais, Av. Antônio Carlos 6627, CEP: 31270-901 Belo Horizonte, Minas Gerais, Brazil
| | - Rafael Langer
- Departamento de Bioquímica e Imunologia, ICB, Universidade Federal de Minas Gerais, Av. Antônio Carlos 6627, CEP: 31270-901 Belo Horizonte, Minas Gerais, Brazil
| | - Izabela Mamede Conceição
- Departamento de Bioquímica e Imunologia, ICB, Universidade Federal de Minas Gerais, Av. Antônio Carlos 6627, CEP: 31270-901 Belo Horizonte, Minas Gerais, Brazil
| | - Clara Guerra-Duarte
- Serviço de Toxinologia Molecular, Diretoria de Pesquisa e Desenvolvimento, Fundação Ezequiel Dias, Belo Horizonte, Minas Gerais, Brazil
| | - Carlos Chávez-Olórtegui
- Departamento de Bioquímica e Imunologia, ICB, Universidade Federal de Minas Gerais, Av. Antônio Carlos 6627, CEP: 31270-901 Belo Horizonte, Minas Gerais, Brazil
| | - Evanguedes Kalapothakis
- Departamento de Genética, Ecologia e Evolução, ICB, Universidade Federal de Minas Gerais, Av. Antônio Carlos 6627, CEP: 31270-901 Belo Horizonte, Minas Gerais, Brazil
| | - Adolfo Borges
- Instituto de Medicina Experimental, Universidad Central de Venezuela, Caracas, Venezuela; Centro para el Desarrollo de la Investigación Científica, CEDIC, Asunción 1255, Paraguay.
| |
Collapse
|
7
|
Mendoza-Tobar LL, Clement H, Arenas I, Sepulveda-Arias JC, Vargas JAG, Corzo G. An overview of some enzymes from buthid scorpion venoms from Colombia: Centruroides margaritatus, Tityus pachyurus, and Tityus n. sp. aff. metuendus. J Venom Anim Toxins Incl Trop Dis 2024; 30:e20230063. [PMID: 38505508 PMCID: PMC10950367 DOI: 10.1590/1678-9199-jvatitd-2023-0063] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2023] [Accepted: 12/04/2023] [Indexed: 03/21/2024] Open
Abstract
Background In Colombia, several species of Buthidae scorpions belonging to the genera Centruroides and Tityus coexist, and their stings are considered life-threatening to humans because of their venom neurotoxins. Despite previous studies focusing on neurotoxins from these scorpion genera, little is known about the enzymes present in their venoms and their relationship with whole venom toxicity. Methods Here, using proteomic and biochemical protocols the enzymatic activities of the venoms of three Colombian scorpion species, C. margaritatus, T. pachyurus, and T. n. sp. aff. metuendus, were compared to establish the presence and absence of enzymes such as phospholipases, hyaluronidases, and proteases that could be related to venom toxicity. Results: C. margaritatus was positive for hyaluronidases, T. n. sp. aff. metuendus for proteases, and T. pachyurus exhibited activity for all three mentioned enzymes. Conclusion This information provides valuable insights into the specific enzyme diversity of each species' venom and their potential role in venom toxicity, which could contribute to the development of better treatments and prevention strategies for scorpion envenomation.
Collapse
Affiliation(s)
- Leydy Lorena Mendoza-Tobar
- Grupo de Investigaciones Herpetológicas y Toxinológicas, Facultad de
Ciencias Naturales, Exactas y de la Educación, Universidad del Cauca, Popayán,
Colombia
| | - Herlinda Clement
- Departamento de Medicina Molecular y Bioprocesos, Instituto de
Biotecnología, Universidad Nacional Autónoma de México (UNAM), Cuernavaca Morelos,
México
| | - Iván Arenas
- Departamento de Medicina Molecular y Bioprocesos, Instituto de
Biotecnología, Universidad Nacional Autónoma de México (UNAM), Cuernavaca Morelos,
México
| | - Juan Carlos Sepulveda-Arias
- Grupo de Infección e Inmunidad, Facultad Ciencias de la Salud,
Universidad Tecnológica de Pereira, Pereira, Colombia
| | - Jimmy Alexander Guerrero Vargas
- Grupo de Investigaciones Herpetológicas y Toxinológicas, Facultad de
Ciencias Naturales, Exactas y de la Educación, Universidad del Cauca, Popayán,
Colombia
| | - Gerardo Corzo
- Departamento de Medicina Molecular y Bioprocesos, Instituto de
Biotecnología, Universidad Nacional Autónoma de México (UNAM), Cuernavaca Morelos,
México
| |
Collapse
|
8
|
de Oliveira IS, Alano-da-Silva NM, Ferreira IG, Cerni FA, Sachett JDAG, Monteiro WM, Pucca MB, Arantes EC. Understanding the complexity of Tityus serrulatus venom: A focus on high molecular weight components. J Venom Anim Toxins Incl Trop Dis 2024; 30:e20230046. [PMID: 38317796 PMCID: PMC10843179 DOI: 10.1590/1678-9199-jvatitd-2023-0046] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2023] [Accepted: 12/04/2023] [Indexed: 02/07/2024] Open
Abstract
Tityus serrulatus scorpion is responsible for a significant number of envenomings in Brazil, ranging from mild to severe, and in some cases, leading to fatalities. While supportive care is the primary treatment modality, moderate and severe cases require antivenom administration despite potential limitations and adverse effects. The remarkable proliferation of T. serrulatus scorpions, attributed to their biology and asexual reproduction, contributes to a high incidence of envenomation. T. serrulatus scorpion venom predominantly consists of short proteins acting as neurotoxins (α and β), that primarily target ion channels. Nevertheless, high molecular weight compounds, including metalloproteases, serine proteases, phospholipases, and hyaluronidases, are also present in the venom. These compounds play a crucial role in envenomation, influencing the severity of symptoms and the spread of venom. This review endeavors to comprehensively understand the T. serrulatus scorpion venom by elucidating the primary high molecular weight compounds and exploring their potential contributions to envenomation. Understanding these compounds' mechanisms of action can aid in developing more effective treatments and prevention strategies, ultimately mitigating the impact of scorpion envenomation on public health in Brazil.
Collapse
Affiliation(s)
- Isadora Sousa de Oliveira
- Department of BioMolecular Sciences, School of Pharmaceutical Sciences of Ribeirão Preto, University of São Paulo, Ribeirão Preto, SP, Brazil
- Department of Biotechnology and Biomedicine, Technical University of Denmark, Kongens Lyngby, Denmark
| | - Nicoly Malachize Alano-da-Silva
- Department of BioMolecular Sciences, School of Pharmaceutical Sciences of Ribeirão Preto, University of São Paulo, Ribeirão Preto, SP, Brazil
| | - Isabela Gobbo Ferreira
- Department of BioMolecular Sciences, School of Pharmaceutical Sciences of Ribeirão Preto, University of São Paulo, Ribeirão Preto, SP, Brazil
| | - Felipe Augusto Cerni
- Health and Sciences Postgraduate Program, Federal University of Roraima, Boa Vista, RR, Brazil
| | - Jacqueline de Almeida Gonçalves Sachett
- School of Health Sciences, Amazonas State University, Manaus, AM, Brazil
- Department of Teaching and Research, Dr. Heitor Vieira Dourado Tropical Medicine Foundation, Manaus, AM, Brazil
| | - Wuelton Marcelo Monteiro
- School of Health Sciences, Amazonas State University, Manaus, AM, Brazil
- Department of Teaching and Research, Dr. Heitor Vieira Dourado Tropical Medicine Foundation, Manaus, AM, Brazil
| | - Manuela Berto Pucca
- Department of Clinical Analysis, School of Pharmaceutical Sciences, São Paulo State University, Araraquara, SP, Brazil
| | - Eliane Candiani Arantes
- Department of BioMolecular Sciences, School of Pharmaceutical Sciences of Ribeirão Preto, University of São Paulo, Ribeirão Preto, SP, Brazil
| |
Collapse
|
9
|
Díaz C, Serna-Gonzalez M, Chang-Castillo A, Lomonte B, Bonilla F, Alfaro-Chinchilla A, Triana F, Sasa M. Proteomic profile of the venom of three dark-colored Tityus (Scorpiones: Buthidae) from the tropical rainforests of Costa Rica. Acta Trop 2023; 248:107031. [PMID: 37777039 DOI: 10.1016/j.actatropica.2023.107031] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2023] [Revised: 09/21/2023] [Accepted: 09/22/2023] [Indexed: 10/02/2023]
Abstract
OBJECTIVE We aimed to elucidate the potential differences in the venom peptide sequences of three Tityus species from Costa Rican rainforests: T. jaimei, T. championi and T. dedoslargos, compared to T. cf. asthenes from Colombia, which could explain the low level of scorpionism in Costa Rica, evidenced by the lack of epidemiological data. METHODOLOGY We applied venom proteomics of peptides purified by RP-HPLC and compared the obtained sequences from venoms of these Tityus species to the sequences previously identified from Tityus inhabiting other Central and South American regions. RESULTS Venom proteome analysis evidences that most of the putative peptide toxins identified in Costa Rican dark-colored Tityus are very similar to those present in other T. (Atreus) from the region. CONCLUSIONS Our study suggests that, in the case of potential envenomation by Tityus in Costa Rica, the same level of toxicity should be observed, compared to other cases caused by members of the subgenus from other geographical localities. On the other hand, compared to countries with more accelerated urban expansion, Costa Rican Tityus still inhabit secondary rainforests and do not commonly share the same spaces with humans, so the lack of epidemiological evidence of medical emergencies caused by envenoming by this scorpion group could be more related to ecological and demographic factors and less attributed to the characteristics of the venom.
Collapse
Affiliation(s)
- Cecilia Díaz
- Instituto Clodomiro Picado, Facultad de Microbiología, Universidad de Costa Rica, San José, Costa Rica; Departamento de Bioquímica, Escuela de Medicina, Universidad de Costa Rica, San José, Costa Rica.
| | | | - Arturo Chang-Castillo
- Instituto Clodomiro Picado, Facultad de Microbiología, Universidad de Costa Rica, San José, Costa Rica
| | - Bruno Lomonte
- Instituto Clodomiro Picado, Facultad de Microbiología, Universidad de Costa Rica, San José, Costa Rica
| | - Fabián Bonilla
- Instituto Clodomiro Picado, Facultad de Microbiología, Universidad de Costa Rica, San José, Costa Rica
| | - Adriana Alfaro-Chinchilla
- Instituto Clodomiro Picado, Facultad de Microbiología, Universidad de Costa Rica, San José, Costa Rica
| | - Felipe Triana
- Instituto Clodomiro Picado, Facultad de Microbiología, Universidad de Costa Rica, San José, Costa Rica
| | - Mahmood Sasa
- Instituto Clodomiro Picado, Facultad de Microbiología, Universidad de Costa Rica, San José, Costa Rica; Museo de Zoología, Centro de Investigación en Biodiversidad y Ecología Tropical, Universidad de Costa Rica, San José, Costa Rica
| |
Collapse
|
10
|
Gunas V, Maievskyi O, Raksha N, Vovk T, Savchuk O, Shchypanskyi S, Gunas I. Protein and peptide profiles of rats' organs in scorpion envenomation. Toxicol Rep 2023; 10:615-620. [PMID: 37234066 PMCID: PMC10208795 DOI: 10.1016/j.toxrep.2023.05.008] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2023] [Revised: 05/09/2023] [Accepted: 05/13/2023] [Indexed: 05/27/2023] Open
Abstract
Problem of scorpion envenomation becomes more alarming each year. Main effects of scorpion venom are commonly believed to be related to its neurotoxic properties, yet severe symptoms may also be developed due to the uncontrolled enzymatic activity and formation of various bioactive molecules, including middle-mass molecules (MMMs). MMMs are considered as endogenous intoxication markers, their presence may indicate multiple organ failure. Scorpions, belong to the Leiurus macroctenus species, are very dangerous, nevertheless, effects of their venom on protein and peptide composition within the tissues remains unclear. In this work we have focused the attention on changes in protein and MMM levels and peptide composition in various organs during Leiurus macroctenus envenomation. The results revealed a decrease in protein level during envenomation as well as a significant increment of MMM210 and MMM254 levels in all assessed organs. Quantitative and qualitative compositions of various protein and peptide factions were continually changing. All of this may suggest that Leiurus macroctenus sting causes considerable destruction of cell microenvironment across all essential organs, providing systemic envenomation. In addition, MMM level increment may indicate endogenous intoxication development. Peptides, formed during envenomation, may possess various bioactive properties, analysis of which constitutes an area of further studies.
Collapse
Affiliation(s)
- Valery Gunas
- Department of Forensic Medicine and Law, National Pirogov Memorial Medical University, Pyrohova Street, 56, Vinnytsia 21018, Ukraine
| | - Oleksandr Maievskyi
- Department of Clinical Medicine, Educational and Scientific Center "Institute of Biology and Medicine" of Taras Shevchenko National University of Kyiv, Hlushkova Avenue, 2, Kyiv 03127, Ukraine
| | - Nataliia Raksha
- Department of Biochemistry, Educational and Scientific Center "Institute of Biology and Medicine" of Taras Shevchenko National University of Kyiv, Hlushkova Avenue, 2, Kyiv 03127, Ukraine
| | - Tetiana Vovk
- Department of Clinical Medicine, Educational and Scientific Center "Institute of Biology and Medicine" of Taras Shevchenko National University of Kyiv, Hlushkova Avenue, 2, Kyiv 03127, Ukraine
| | - Oleksiy Savchuk
- Department of Forensic Medicine and Law, National Pirogov Memorial Medical University, Pyrohova Street, 56, Vinnytsia 21018, Ukraine
| | - Serhii Shchypanskyi
- Department of Biochemistry, Educational and Scientific Center "Institute of Biology and Medicine" of Taras Shevchenko National University of Kyiv, Hlushkova Avenue, 2, Kyiv 03127, Ukraine
| | - Igor Gunas
- Department of Human anatomy, National Pirogov Memorial Medical University, Pyrohova Street, 56, Vinnytsia 21018, Ukraine
| |
Collapse
|
11
|
Kalapothakis Y, Miranda K, Molina DAM, Conceição IMCA, Larangote D, Op den Camp HJM, Kalapothakis E, Chávez-Olórtegui C, Borges A. An overview of Tityus cisandinus scorpion venom: Transcriptome and mass fingerprinting reveal conserved toxin homologs across the Amazon region and novel lipolytic components. Int J Biol Macromol 2023; 225:1246-1266. [PMID: 36427608 DOI: 10.1016/j.ijbiomac.2022.11.185] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2022] [Revised: 11/09/2022] [Accepted: 11/18/2022] [Indexed: 11/23/2022]
Abstract
Tityus cisandinus, a neglected medically important scorpion in Ecuadorian and Peruvian Amazonia, belongs to a complex of species related to the eastern Amazon endemic Tityus obscurus, spanning a distribution of ca. 4000 km. Despite high morbidity and mortality rates, no effective scorpion antivenom is currently available in the Amazon region. Knowledge of the structural/functional relationships between T. cisandinus venom components and those from related Amazonian species is crucial for designing region-specific therapeutic antivenoms. In this work, we carried out the first venom gland transcriptomic study of an Amazonian scorpion outside Brazil, T. cisandinus. We also fingerprinted its total venom through MALDI-TOF MS, which supported our transcriptomic findings. We identified and calculated the expression level of 94 components: 60 toxins, 25 metalloproteases, five disulfide isomerases, three amidating enzymes, one hyaluronidase, and also uncovered transcripts encoding novel lipolytic beta subunits produced by New World buthid scorpions. This study demonstrates the high similarity between T. cisandinus and T. obscurus venoms, reinforcing the existence of a neglected complex of genetically and toxinologically related Amazonian scorpions of medical importance. Finally, we demonstrated the low recognition of currently available therapeutic sera against T. cisandinus and T. obscurus venoms, and concluded that these should be improved to protect against envenomation by Amazonian Tityus spp.
Collapse
Affiliation(s)
- Yan Kalapothakis
- Departamento de Genética, Ecologia e Evolução, ICB, Universidade Federal de Minas Gerais, Av. Antônio Carlos 6627, CEP: 31270-901 Belo Horizonte, Minas Gerais, Brazil
| | - Kelton Miranda
- Departamento de Genética, Ecologia e Evolução, ICB, Universidade Federal de Minas Gerais, Av. Antônio Carlos 6627, CEP: 31270-901 Belo Horizonte, Minas Gerais, Brazil
| | - Denis Alexis Molina Molina
- Departamento de Bioquímica e Imunologia, ICB, Universidade Federal de Minas Gerais, Av. Antônio Carlos 6627, CEP: 31270-901 Belo Horizonte, Minas Gerais, Brazil
| | - Izabela Mamede Costa Andrade Conceição
- Departamento de Bioquímica e Imunologia, ICB, Universidade Federal de Minas Gerais, Av. Antônio Carlos 6627, CEP: 31270-901 Belo Horizonte, Minas Gerais, Brazil
| | - Débora Larangote
- Departamento de Genética, Ecologia e Evolução, ICB, Universidade Federal de Minas Gerais, Av. Antônio Carlos 6627, CEP: 31270-901 Belo Horizonte, Minas Gerais, Brazil
| | - Huub J M Op den Camp
- Department of Microbiology, Faculty of Science, Radboud University Nijmegen, Heyendaalseweg 135, NL-6525 AJ Nijmegen, the Netherlands
| | - Evanguedes Kalapothakis
- Departamento de Genética, Ecologia e Evolução, ICB, Universidade Federal de Minas Gerais, Av. Antônio Carlos 6627, CEP: 31270-901 Belo Horizonte, Minas Gerais, Brazil
| | - Carlos Chávez-Olórtegui
- Departamento de Bioquímica e Imunologia, ICB, Universidade Federal de Minas Gerais, Av. Antônio Carlos 6627, CEP: 31270-901 Belo Horizonte, Minas Gerais, Brazil
| | - Adolfo Borges
- Instituto de Medicina Experimental, Universidad Central de Venezuela, Caracas, Venezuela; Centro para el Desarrollo de la Investigación Científica, CEDIC, Asunción 1255, Paraguay.
| |
Collapse
|
12
|
Venomics of the Scorpion Tityus ocelote (Scorpiones, Buthidae): Understanding Venom Evolution in the Subgenus Archaeotityus. Int J Pept Res Ther 2022. [DOI: 10.1007/s10989-022-10476-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
13
|
Ghezellou P, Jakob K, Atashi J, Ghassempour A, Spengler B. Mass-Spectrometry-Based Lipidome and Proteome Profiling of Hottentotta saulcyi (Scorpiones: Buthidae) Venom. Toxins (Basel) 2022; 14:toxins14060370. [PMID: 35737031 PMCID: PMC9228814 DOI: 10.3390/toxins14060370] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2022] [Revised: 05/23/2022] [Accepted: 05/24/2022] [Indexed: 12/10/2022] Open
Abstract
Scorpion venom is a complex secretory mixture of components with potential biological and physiological properties that attracted many researchers due to promising applications from clinical and pharmacological perspectives. In this study, we investigated the venom of the Iranian scorpion Hottentotta saulcyi (Simon, 1880) by applying mass-spectrometry-based proteomic and lipidomic approaches to assess the diversity of components present in the venom. The data revealed that the venom’s proteome composition is largely dominated by Na+- and K+-channel-impairing toxic peptides, following the enzymatic and non-enzymatic protein families, e.g., angiotensin-converting enzyme, serine protease, metalloprotease, hyaluronidase, carboxypeptidase, and cysteine-rich secretory peptide. Furthermore, lipids comprise ~1.2% of the dry weight of the crude venom. Phospholipids, ether-phospholipids, oxidized-phospholipids, triacylglycerol, cardiolipins, very-long-chain sphingomyelins, and ceramides were the most intensely detected lipid species in the scorpion venom, may acting either independently or synergistically during the envenomation alongside proteins and peptides. The results provide detailed information on the chemical makeup of the venom, helping to improve our understanding of biological molecules present in it, leading to a better insight of the medical significance of the venom, and improving the medical care of patients suffering from scorpion accidents in the relevant regions such as Iran, Iraq, Turkey, and Afghanistan.
Collapse
Affiliation(s)
- Parviz Ghezellou
- Institute of Inorganic and Analytical Chemistry, Justus Liebig University Giessen, 35392 Giessen, Germany;
- Correspondence: (P.G.); (B.S.)
| | - Kevin Jakob
- Institute of Inorganic and Analytical Chemistry, Justus Liebig University Giessen, 35392 Giessen, Germany;
| | - Javad Atashi
- Medicinal Plants and Drugs Research Institute, Shahid Beheshti University, Tehran 1983969411, Iran; (J.A.); (A.G.)
| | - Alireza Ghassempour
- Medicinal Plants and Drugs Research Institute, Shahid Beheshti University, Tehran 1983969411, Iran; (J.A.); (A.G.)
| | - Bernhard Spengler
- Institute of Inorganic and Analytical Chemistry, Justus Liebig University Giessen, 35392 Giessen, Germany;
- Correspondence: (P.G.); (B.S.)
| |
Collapse
|
14
|
Solano-Godoy JA, González-Gómez JC, Torres-Bonilla KA, Floriano RS, Miguel ATSF, Murillo-Arango W. Comparison of biological activities of Tityus pachyurus venom from two Colombian regions. J Venom Anim Toxins Incl Trop Dis 2021; 27:e20210005. [PMID: 34925479 PMCID: PMC8651215 DOI: 10.1590/1678-9199-jvatitd-2021-0005] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2021] [Accepted: 04/26/2021] [Indexed: 01/06/2023] Open
Abstract
Background In the present study, we have tested whether specimens of the medically relevant scorpion Tityus pachyurus, collected from two climatically and ecologically different regions, differ in the biological activities of the venom. Methods Scorpions were collected in Tolima and Huila, Colombia. Chemical profiles of the crude venom were obtained from 80 scorpions for each region, using SDS-PAGE and RP-HPLC. Assays for phospholipase A2, direct and indirect hemolytic, proteolytic, neuromuscular, antibacterial, and insecticidal activities were carried out. Results The electrophoretic profiles of venom from the two regions showed similar bands of 6-14 kDa, 36-45 kDa, 65 kDa and 97 kDa. However, bands between 36 kDa and 65 kDa were observed with more intensity in venoms from Tolima, and a 95 kDa band occurred only in venoms from Huila. The chromatographic profile of the venoms showed differences in the intensity of some peaks, which could be associated with changes in the abundance of some components between both populations. Phospholipase A2 and hemolytic activities were not observable, whereas both venoms showed proteolytic activity towards casein. Insecticidal activity of the venoms from both regions showed significant variation in potency, the bactericidal activity was variable and low for both venoms. Moreover, no differences were observed in the neuromuscular activity assay. Conclusion Our results reveal some variation in the activity of the venom between both populations, which could be explained by the ecological adaptations like differences in feeding, altitude and/or diverse predator exposure. However more in-depth studies are necessary to determine the drivers behind the differences in venom composition and activities.
Collapse
Affiliation(s)
- Jennifer Alexandra Solano-Godoy
- Natural Products Research Group (GIPRONUT), School of Sciences, University of Tolima, Altos de Santa Helena, Ibagué, Tolima, Colombia
| | - Julio César González-Gómez
- Research Group BEA - Biology and Ecology of Arthropods, Corporación Huiltur, Neiva, Huila, Colombia.,School of Sciences, University of Tolima, Altos de Santa Helena, Ibagué, Tolima, Colombia.,Research Group on Bio-ecology of Vertebrates (BIVET), Fundación Merenberg, La Plata, Huila, Colombia
| | - Kristian A Torres-Bonilla
- Department of Pharmacology, School of Medical Sciences, State University of Campinas (Unicamp), Campinas, SP, Brazil
| | - Rafael Stuani Floriano
- Laboratory of Toxinology and Cardiovascular Research (LATEC), Graduate Program in Health Sciences, University of Western São Paulo (Unoeste), Presidente Prudente, SP, Brazil
| | - Ananda T Santa Fé Miguel
- Department of Pharmacology, School of Medical Sciences, State University of Campinas (Unicamp), Campinas, SP, Brazil
| | - Walter Murillo-Arango
- Natural Products Research Group (GIPRONUT), School of Sciences, University of Tolima, Altos de Santa Helena, Ibagué, Tolima, Colombia
| |
Collapse
|
15
|
Mendoza-Tobar LL, Meza-Cabrera IA, Sepúlveda-Arias JC, Guerrero-Vargas JA. Comparison of the Scorpionism Caused by Centruroidesmargaritatus, Tityuspachyurus and Tityus n. sp. aff. metuendus Scorpion Venoms in Colombia. Toxins (Basel) 2021; 13:toxins13110757. [PMID: 34822541 PMCID: PMC8625436 DOI: 10.3390/toxins13110757] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2021] [Revised: 10/02/2021] [Accepted: 10/11/2021] [Indexed: 01/04/2023] Open
Abstract
Among other scorpion species, Colombia has two genera of the Buthidae family Centruroides and Tityus, considered to be dangerous to humans. This research shares scientific knowledge aiming to a better understanding about the pathophysiological effects of such venoms. The venom of the three species: Centruroides margaritarus, Tityus pachyurus, and T. n. sp. aff. metuendus with biomedical interest were studied. An initial pre-glycemic sample was taken from ICR mice. They were later intraperitoneally inoculated with doses of 35% and 70% of LD50 of total venom. Poisoning signs were observed during a 6-h period to determine the level of scorpionism. After observation, a second glycemic sample was taken, and a histopathological evaluation of different organs was performed. This work revealed that all three venoms showed considerably notorious histopathological alterations in main organs such as heart and lungs; and inducing multiple organ failure, in relation to the glycemia values, only C. margaritatus and T. n. sp. aff. metuendus showed significant changes through manifestation of hyperglycemia. According to the Colombian scorpionism level; signs were mild to severe affecting the autonomous nervous system.
Collapse
Affiliation(s)
- Leydy Lorena Mendoza-Tobar
- Programa de Doctorado en Ciencias Biomédicas, Facultad de Ciencias de la Salud, Universidad Tecnológica de Pereira, Pereira 660003, Colombia; (L.L.M.-T.); (J.C.S.-A.)
- Grupo de Investigaciones Herpetológicas y Toxinológicas, Centro de Investigaciones Biomédicas-Bioterio, Departamento de Biología, Facultad de Ciencias Naturales, Exactas y de la Educación, Universidad del Cauca, Popayán 190002, Colombia
| | | | - Juan C. Sepúlveda-Arias
- Programa de Doctorado en Ciencias Biomédicas, Facultad de Ciencias de la Salud, Universidad Tecnológica de Pereira, Pereira 660003, Colombia; (L.L.M.-T.); (J.C.S.-A.)
| | - Jimmy Alexander Guerrero-Vargas
- Grupo de Investigaciones Herpetológicas y Toxinológicas, Centro de Investigaciones Biomédicas-Bioterio, Departamento de Biología, Facultad de Ciencias Naturales, Exactas y de la Educación, Universidad del Cauca, Popayán 190002, Colombia
- Correspondence:
| |
Collapse
|
16
|
A Pseudoscorpion's Promising Pinch: The venom of Chelifer cancroides contains a rich source of novel compounds. Toxicon 2021; 201:92-104. [PMID: 34416254 DOI: 10.1016/j.toxicon.2021.08.012] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2021] [Revised: 08/11/2021] [Accepted: 08/16/2021] [Indexed: 12/12/2022]
Abstract
With pedipalps modified for venom injection, some pseudoscorpions possess a unique venom delivery system, which evolved independently from those of other arachnids like scorpions and spiders. Up to now, only a few studies have been focused on pseudoscorpion venom, which either identified a small fraction of venom compounds, or were based on solely transcriptomic approaches. Only one study addressed the bioactivity of pseudoscorpion venom. Here, we expand existing knowledge about pseudoscorpion venom by providing a comprehensive proteomic and transcriptomic analysis of the venom of Chelifer cancroides. We identified the first putative genuine toxins in the venom of C. cancroides and we showed that a large fraction of the venom comprises novel compounds. In addition, we tested the activity of the venom at specific ion channels for the first time. These tests demonstrate that the venom of C. cancroides causes inhibition of a voltage-gated insect potassium channel (Shaker IR) and modulates the inactivation process of voltage-gated sodium channels from Varroa destructor. For one of the smallest venomous animals ever studied, today's toolkits enabled a comprehensive venom analysis. This is demonstrated by allocating our identified venom compounds to more than half of the prominent ion signals in MALDI-TOF mass spectra of venom samples. The present study is a starting point for understanding the complex composition and activity of pseudoscorpion venom and provides a potential rich source of bioactive compounds useable for basic research and industrial application.
Collapse
|
17
|
Miyashita M, Mitani N, Kitanaka A, Yakio M, Chen M, Nishimoto S, Uchiyama H, Sue M, Hotta H, Nakagawa Y, Miyagawa H. Identification of an antiviral component from the venom of the scorpion Liocheles australasiae using transcriptomic and mass spectrometric analyses. Toxicon 2020; 191:25-37. [PMID: 33340503 DOI: 10.1016/j.toxicon.2020.12.007] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2020] [Revised: 12/01/2020] [Accepted: 12/13/2020] [Indexed: 12/17/2022]
Abstract
Scorpion venom contains a variety of biologically active peptides. Among them, neurotoxins are major components in the venom, but it also contains peptides that show antimicrobial activity. Previously, we identified three insecticidal peptides from the venom of the Liocheles australasiae scorpion, but activities and structures of other venom components remained unknown. In this study, we performed a transcriptome analysis of the venom gland of the scorpion L. australasiae to gain a comprehensive understanding of its venom components. The result shows that potassium channel toxin-like peptides were the most diverse, whereas only a limited number of sodium channel toxin-like peptides were observed. In addition to these neurotoxin-like peptides, many non-disulfide-bridged peptides were identified, suggesting that these components have some critical roles in the L. australasiae venom. In this study, we also isolated a component with antiviral activity against hepatitis C virus using a bioassay-guided fractionation approach. By integrating mass spectrometric and transcriptomic data, we successfully identified LaPLA2-1 as an anti-HCV component. LaPLA2-1 is a phospholipase A2 having a heterodimeric structure that is N-glycosylated at the N-terminal region. Since the antiviral activity of LaPLA2-1 was inhibited by a PLA2 inhibitor, the enzymatic activity of LaPLA2-1 is likely to be involved in its antiviral activity.
Collapse
Affiliation(s)
- Masahiro Miyashita
- Graduate School of Agriculture, Kyoto University, Kyoto, 606-8502, Japan.
| | - Naoya Mitani
- Graduate School of Agriculture, Kyoto University, Kyoto, 606-8502, Japan
| | - Atsushi Kitanaka
- Graduate School of Agriculture, Kyoto University, Kyoto, 606-8502, Japan
| | - Mao Yakio
- Graduate School of Agriculture, Kyoto University, Kyoto, 606-8502, Japan
| | - Ming Chen
- Graduate School of Health Sciences, Kobe University, Kobe, 650-0047, Japan
| | - Sachiko Nishimoto
- Faculty of Clinical Nutrition and Dietetics, Konan Women's University, Kobe, 658-0001, Japan
| | - Hironobu Uchiyama
- NODAI Genome Research Center, Tokyo University of Agriculture, Tokyo, 156-8502, Japan
| | - Masayuki Sue
- Department of Agricultural Chemistry, Tokyo University of Agriculture, Tokyo, 156-8502, Japan
| | - Hak Hotta
- Graduate School of Health Sciences, Kobe University, Kobe, 650-0047, Japan; Faculty of Clinical Nutrition and Dietetics, Konan Women's University, Kobe, 658-0001, Japan
| | - Yoshiaki Nakagawa
- Graduate School of Agriculture, Kyoto University, Kyoto, 606-8502, Japan
| | - Hisashi Miyagawa
- Graduate School of Agriculture, Kyoto University, Kyoto, 606-8502, Japan
| |
Collapse
|
18
|
Borges A, Rojas de Arias A, de Almeida Lima S, Lomonte B, Díaz C, Chávez-Olórtegui C, Graham MR, Kalapothakis E, Coronel C, de Roodt AR. Genetic and toxinological divergence among populations of Tityus trivittatus Kraepelin, 1898 (Scorpiones: Buthidae) inhabiting Paraguay and Argentina. PLoS Negl Trop Dis 2020; 14:e0008899. [PMID: 33315884 PMCID: PMC7769620 DOI: 10.1371/journal.pntd.0008899] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2020] [Revised: 12/28/2020] [Accepted: 10/20/2020] [Indexed: 11/22/2022] Open
Abstract
Envenoming by scorpions in genus Tityus is a public health problem in Tropical America. One of the most medically significant species is Tityus trivittatus, which is known to occur from southwest Brazil to central-northern and eastern Argentina. In this work, we studied the lethality, composition, antigenicity, and enzymatic activity of venom from a T. trivittatus population found further north in urban areas of eastern Paraguay, where it has caused serious envenomation of children. Our results indicate that the population is of medical importance as it produces a potently toxic venom with an LD50 around 1.19 mg/kg. Venom neutralization in preliminary mouse bioassays was complete when using Brazilian anti-T. serrulatus antivenom but only partial when using Argentinean anti-T. trivittatus antivenom. Venom competitive solid-phase enzyme immunoassays and immunoblotting from Argentinean and Paraguayan T. trivittatus populations indicated that antigenic differences exist across the species range. SDS-PAGE showed variations in type and relative amounts of venom proteins between T. trivitattus samples from Argentina and Paraguay. MALDI-TOF mass spectrometry indicated that while some sodium channel toxins are shared, including β-toxin Tt1g, others are population-specific. Proteolytic activity by zymography and peptide identification through nESI-MS/MS also point out that population-specific proteases may exist in T. trivitattus, which are postulated to be involved in the envenoming process. A time-calibrated molecular phylogeny of mitochondrial COI sequences revealed a significant (8.14%) genetic differentiation between the Argentinean and Paraguayan populations, which appeared to have diverged between the mid Miocene and early Pliocene. Altogether, toxinological and genetic evidence indicate that T. trivitattus populations from Paraguay and Argentina correspond to distinct, unique cryptic species, and suggest that further venom and taxonomic diversity exists in synanthropic southern South American Tityus than previously thought.
Collapse
Affiliation(s)
- Adolfo Borges
- Centro para el Desarrollo de la Investigación Científica (CEDIC), Asunción, Paraguay
- Laboratorio de Biología Molecular de Toxinas y Receptores, Instituto de Medicina Experimental, Facultad de Medicina, Universidad Central de Venezuela, Caracas, Venezuela
| | | | - Sabrina de Almeida Lima
- Laboratorio de Inmunoquimica, Departamento de Bioquímica e Inmunologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, Brasil
| | - Bruno Lomonte
- Instituto Clodomiro Picado, Universidad de Costa Rica, San José, Costa Rica
| | - Cecilia Díaz
- Instituto Clodomiro Picado, Universidad de Costa Rica, San José, Costa Rica
| | - Carlos Chávez-Olórtegui
- Laboratorio de Inmunoquimica, Departamento de Bioquímica e Inmunologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, Brasil
| | - Matthew R. Graham
- Department of Biology, Eastern Connecticut State University, Willimantic, Connecticut, United States of America
| | - Evanguedes Kalapothakis
- Departamento de Biologia Geral, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, Brasil
| | - Cathia Coronel
- Centro para el Desarrollo de la Investigación Científica (CEDIC), Asunción, Paraguay
| | - Adolfo R. de Roodt
- Instituto Nacional de Producción de Biológicos “Carlos G. Malbrán”, Buenos Aires, Argentina
| |
Collapse
|
19
|
Kalapothakis Y, Miranda K, Pereira AH, Witt ASA, Marani C, Martins AP, Leal HG, Campos-Júnior E, Pimenta AMC, Borges A, Chávez-Olórtegui C, Kalapothakis E. Novel components of Tityus serrulatus venom: A transcriptomic approach. Toxicon 2020; 189:91-104. [PMID: 33181162 DOI: 10.1016/j.toxicon.2020.11.001] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2020] [Revised: 10/01/2020] [Accepted: 11/08/2020] [Indexed: 12/13/2022]
Abstract
Several research groups have studied the components produced by the venom gland of the scorpion Tityus serrulatus, which has one of the most lethal venoms in the world. Various methodologies have been employed to clarify the complex mechanisms of action of these components, especially neurotoxins and enzymes. Transcriptomes and proteomes have provided important information for pharmacological, biochemical, and immunological research. Next-generation sequencing (NGS) has allowed the description of new transcripts and completion of partial sequence descriptions for peptides, especially those with low expression levels. In the present work, after NGS sequencing, we searched for new putative venom components. We present a total of nine new transcripts with neurotoxic potential (Ts33-41) and describe the sequences of one hyaluronidase (TsHyal_4); three enzymes involved in amidation (peptidyl-glycine alpha-amidating monooxygenase A, peptidyl-alpha-hydroxyglycine alpha-amidating lyase, and peptidylglycine alpha-hydroxylating monooxygenase), which increases the lethal potential of neurotoxins; and also the enzyme Ts_Chitinase1, which may be involved in the venom's digestive action. In addition, we determined the level of transcription of five groups: toxins, metalloproteases, hyaluronidases, chitinases and amidation enzymes, including new components found in this study. Toxins are the predominant group with an expression level of 91.945%, followed by metalloproteases with only 7.790% and other groups representing 0.265%.
Collapse
Affiliation(s)
- Yan Kalapothakis
- Departamento de Genética, Ecologia e Evolução, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais, 31270-901, Brazil
| | - Kelton Miranda
- Departamento de Genética, Ecologia e Evolução, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais, 31270-901, Brazil
| | - Adriana Heloísa Pereira
- Departamento de Genética, Ecologia e Evolução, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais, 31270-901, Brazil
| | - Amanda S A Witt
- Departamento de Genética, Ecologia e Evolução, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais, 31270-901, Brazil
| | - Camila Marani
- Departamento de Genética, Ecologia e Evolução, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais, 31270-901, Brazil
| | - Ana Paula Martins
- Departamento de Genética, Ecologia e Evolução, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais, 31270-901, Brazil
| | - Hortênsia Gomes Leal
- Departamento de Genética, Ecologia e Evolução, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais, 31270-901, Brazil
| | - Edimar Campos-Júnior
- Departamento de Genética, Ecologia e Evolução, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais, 31270-901, Brazil
| | - Adriano M C Pimenta
- Departamento de Bioquímica-Imunologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais, 31270-901, Brazil
| | - Adolfo Borges
- Centro para el Desarrollo de la Investigación Científica (CEDIC), Manduvirá 635 c/15 de Agosto, Asunción, Paraguay
| | - Carlos Chávez-Olórtegui
- Departamento de Bioquímica-Imunologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais, 31270-901, Brazil
| | - Evanguedes Kalapothakis
- Departamento de Genética, Ecologia e Evolução, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais, 31270-901, Brazil.
| |
Collapse
|
20
|
Das B, Patra A, Mukherjee AK. Correlation of Venom Toxinome Composition of Indian Red Scorpion ( Mesobuthus tamulus) with Clinical Manifestations of Scorpion Stings: Failure of Commercial Antivenom to Immune-Recognize the Abundance of Low Molecular Mass Toxins of This Venom. J Proteome Res 2020; 19:1847-1856. [PMID: 32125869 DOI: 10.1021/acs.jproteome.0c00120] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The Indian red scorpion (Mesobuthus tamulus), with its life-threatening sting, is the world's most dangerous species of scorpion. The toxinome composition of M. tamulus venom was determined by tandem mass spectrometry (MS) analysis of venom protein bands separated by SDS-PAGE. A total of 110 venom toxins were identified from searching the MS data against the Buthidae family (taxid: 6855) of toxin entries in nonredundant protein databases. The Na+ and K+ ion channel toxins taken together are the most abundant toxins (76.7%) giving rise to the neurotoxic nature of this venom. The other minor toxin classes in the M. tamulus venom proteome are serine protease-like protein (2.9%), serine protease inhibitor (2.2%), antimicrobial peptide (2.3%), hyaluronidase (2.2%), makatoxin (2.1%), lipolysis potentiating peptides (1.2%), neurotoxin affecting Cl- channel (1%), parabutoporin (0.6%), Ca2+ channel toxins (0.8%), bradykinin potentiating peptides (0.2%), HMG CoA reductase inhibitor (0.1%), and other toxins with unknown pharmacological activity (7.7%). Several of these toxins have been shown to be promising drug candidates. M. tamulus venom does not show enzymatic activity (phospholipase A2, l-amino acid oxidase, adenosine tri-, di-, and monophosphatase, hyaluronidase, metalloproteinase, and fibrinogenolytic), in vitro hemolytic activity, interference with blood coagulation, or platelet modulation properties. The clinical manifestations post M. tamulus sting have been described in the literature and are well correlated with its venom proteome composition. An abundance of low molecular mass toxins (3-15 kDa) are responsible for exerting the major pharmacological effects of M. tamulus venom, though they are poorly immune-recognized by commercial scorpion antivenom. This is a major concern for the development of effective antivenom therapy against scorpion stings.
Collapse
Affiliation(s)
- Bhabana Das
- Microbial Biotechnology and Protein Research Laboratory, Department of Molecular Biology and Biotechnology, School of Sciences, Tezpur University, Tezpur 784028, Assam, India
| | - Aparup Patra
- Microbial Biotechnology and Protein Research Laboratory, Department of Molecular Biology and Biotechnology, School of Sciences, Tezpur University, Tezpur 784028, Assam, India
| | - Ashis Kumar Mukherjee
- Microbial Biotechnology and Protein Research Laboratory, Department of Molecular Biology and Biotechnology, School of Sciences, Tezpur University, Tezpur 784028, Assam, India
| |
Collapse
|
21
|
Díaz C, Rivera J, Lomonte B, Bonilla F, Diego-García E, Camacho E, Tytgat J, Sasa M. Venom characterization of the bark scorpion Centruroides edwardsii (Gervais 1843): Composition, biochemical activities and in vivo toxicity for potential prey. Toxicon 2019; 171:7-19. [PMID: 31585140 DOI: 10.1016/j.toxicon.2019.09.021] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2019] [Revised: 09/21/2019] [Accepted: 09/25/2019] [Indexed: 02/07/2023]
Abstract
In this study, we characterize the venom of Centruroides edwardsii, one of the most abundant scorpions in urban and rural areas of Costa Rica, in terms of its biochemical constituents and their biological activities. C. edwardsii venom is rich in peptides but also contains some higher molecular weight protein components. No phospholipase A2, hemolytic or fibrinogenolytic activities were found, but the presence of proteolytic and hyaluronidase enzymes was evidenced by zymography. Venom proteomic analysis indicates the presence of a hyaluronidase, several cysteine-rich secretory proteins, metalloproteinases and a peptidylglycine α-hydroxylating monooxygenase like-enzyme. It also includes peptides similar to the K+-channel blocker margatoxin, a dominant toxin in the venom of the related scorpion C. margaritatus. MS and N-terminal sequencing analysis also reveals the presence of Na+-channel-modulating peptides with sequence similarity to orthologs present in other scorpion species of the genera Centruroides and Tityus. We purified the hyaluronidase (which co-eluted with an allergen 5-like CRiSP) and sequenced ~60% of this enzyme. We also sequenced some venom gland transcripts that include other cysteine-containing peptides and a Non-Disulfide Bridged Peptide (NDBP). Our in vivo experiments characterizing the effects on potential predators and prey show that C. edwardsii venom induces paralysis in several species of arthropods and geckos; crickets being the most sensitive and cockroaches and scorpions the most resistant organisms tested. Envenomation signs were also observed in mice, but no lethality was reached by intraperitoneal administration of this venom up to 120 μg/g body weight.
Collapse
Affiliation(s)
- Cecilia Díaz
- Instituto Clodomiro Picado, Facultad de Microbiología, San José, Costa Rica; Departamento de Bioquímica, Escuela de Medicina, Universidad de Costa Rica, San José, Costa Rica.
| | - Jennifer Rivera
- Instituto Clodomiro Picado, Facultad de Microbiología, San José, Costa Rica
| | - Bruno Lomonte
- Instituto Clodomiro Picado, Facultad de Microbiología, San José, Costa Rica
| | - Fabián Bonilla
- Instituto Clodomiro Picado, Facultad de Microbiología, San José, Costa Rica
| | - Elia Diego-García
- Toxicology and Pharmacology, University of Leuven (KU Leuven), Belgium
| | - Erika Camacho
- Instituto Clodomiro Picado, Facultad de Microbiología, San José, Costa Rica
| | - Jan Tytgat
- Toxicology and Pharmacology, University of Leuven (KU Leuven), Belgium
| | - Mahmood Sasa
- Instituto Clodomiro Picado, Facultad de Microbiología, San José, Costa Rica; Escuela de Biología, Universidad de Costa Rica, San José, Costa Rica
| |
Collapse
|
22
|
Inhibition of Tityus serrulatus venom hyaluronidase affects venom biodistribution. PLoS Negl Trop Dis 2019; 13:e0007048. [PMID: 31002673 PMCID: PMC6493768 DOI: 10.1371/journal.pntd.0007048] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2018] [Revised: 05/01/2019] [Accepted: 03/14/2019] [Indexed: 01/05/2023] Open
Abstract
Background The hyaluronidase enzyme is generally known as a spreading factor in animal venoms. Although its activity has been demonstrated in several organisms, a deeper knowledge about hyaluronidase and the venom spreading process from the bite/sting site until its elimination from the victim's body is still in need. Herein, we further pursued the goal of demonstrating the effects of inhibition of T. serrulatus venom (TsV) hyaluronidase on venom biodistribution. Methods and principal findings We used technetium-99m radiolabeled Tityus serrulatus venom (99mTc-TsV) to evaluate the venom distribution kinetics in mice. To understand the hyaluronidase’s role in the venom’s biodistribution, 99mTc-TsV was immunoneutralized with specific anti-T.serrulatus hyaluronidase serum. Venom biodistribution was monitored by scintigraphic images of treated animals and by measuring radioactivity levels in tissues as heart, liver, lungs, spleen, thyroid, and kidneys. In general, results revealed that hyaluronidase inhibition delays venom components distribution, when compared to the non-neutralized 99mTc-TsV control group. Scintigraphic images showed that the majority of the immunoneutralized venom is retained at the injection site, whereas non-treated venom is quickly biodistributed throughout the animal’s body. At the first 30 min, concentration peaks are observed in the heart, liver, lungs, spleen, and thyroid, which gradually decreases over time. On the other hand, immunoneutralized 99mTc-TsV takes 240 min to reach high concentrations in the organs. A higher concentration of immunoneutralized 99mTc-TsV was observed in the kidneys in comparison with the non-treated venom. Further, in situ neutralization of 99mTc-TsV by anti-T.serrulatus hyaluronidase serum at zero, ten, and 30 min post venom injection showed that late inhibition of hyaluronidase can still affect venom biodistribution. In this assay, immunoneutralized 99mTc-TsV was accumulated in the bloodstream until 120 or 240 min after TsV injection, depending on anti-hyaluronidase administration time. Altogether, our data show that immunoneutralization of hyaluronidase prevents venom spreading from the injection site. Conclusions By comparing TsV biodistribution in the absence or presence of anti-hyaluronidase serum, the results obtained in the present work show that hyaluronidase has a key role not only in the venom spreading from the inoculation point to the bloodstream, but also in venom biodistribution from the bloodstream to target organs. Our findings demonstrate that hyaluronidase is indeed an important spreading factor of TsV and its inhibition can be used as a novel first-aid strategy in envenoming. Hyaluronidases are known as the venom components responsible for disseminating toxins from the injection site to the victim’s organism. Therefore, understanding how the venom distribution occurs and the role of hyaluronidases in this process is crucial in the field of toxinology. In this study, we inhibited Tityus serrulatus venom (TsV) hyaluronidase’s action using specific anti-Ts-hyaluronidase antibodies. Labeling TsV with a radioactive compound enabled monitoring of its biodistribution in mice. Our results show that, upon hyaluronidase inhibition, TsV remains at the injection site for longer, and only a reduced amount of the venom reaches the bloodstream. Consequently, the venom arrives later at target organs like the heart, liver, lungs, spleen, and thyroid. Considering the possible application of hyaluronidase inhibition as a therapeutic resource in envenoming first-aid treatment, we performed the administration of hyaluronidase neutralizing antibodies at different times after TsV injection. We observed that TsV remains in the bloodstream and its arrival at tissues is delayed by 120 or 240 min after TsV injection, depending on anti-hyaluronidase administration times. Our data show that hyaluronidase plays a crucial role in TsV spreading from the injection site to the bloodstream and from the bloodstream to the organs, thus suggesting that its inhibition can help to improve envenoming’s treatment.
Collapse
|
23
|
Amorim FG, Longhim HT, Cologna CT, Degueldre M, Pauw ED, Quinton L, Arantes EC. Proteome of fraction from Tityus serrulatus venom reveals new enzymes and toxins. J Venom Anim Toxins Incl Trop Dis 2019; 25:e148218. [PMID: 31131005 PMCID: PMC6483408 DOI: 10.1590/1678-9199-jvatitd-1482-18] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2018] [Accepted: 10/08/2018] [Indexed: 01/17/2023] Open
Abstract
Background Tityus serrulatus venom (Ts venom) is a complex mixture of several compounds with biotechnological and therapeutical potentials, which highlights the importance of the identification and characterization of these components. Although a considerable number of studies have been dedicated to the characterization of this complex cocktail, there is still a limitation of knowledge concerning its venom composition. Most of Ts venom studies aim to isolate and characterize their neurotoxins, which are small, basic proteins and are eluted with high buffer concentrations on cation exchange chromatography. The first and largest fraction from carboxymethyl cellulose-52 (CMC-52) chromatography of Ts venom, named fraction I (Fr I), is a mixture of proteins of high and low molecular masses, which do not interact with the cation exchange resin, being therefore a probable source of components still unknown of this venom. Thus, the present study aimed to perform the proteome study of Fraction I from Ts venom, by high resolution mass spectrometry, and its biochemical characterization, by the determination of several enzymatic activities. Methods Fraction I was obtained by a cation exchange chromatography using 50 mg of crude venom. This fraction was subjected to a biochemical characterization, including determination of L-amino acid oxidase, phospholipase, hyaluronidase, proteases activities and inhibition of angiotensin converting enzyme (ACE) activity. Fraction I was submitted to reduction, alkylation and digestion processes, and the tryptic digested peptides obtained were analyzed in a Q-Exactive Orbitrap mass spectrometer. Data analysis was performed by PEAKS 8.5 software against NCBI database. Results Fraction I exhibits proteolytic activity and it was able to inhibit ACE activity. Its proteome analysis identified 8 different classes of venom components, among them: neurotoxins (48%), metalloproteinases (21%), hypotensive peptides (11%), cysteine-rich venom protein (9%), antimicrobial peptides (AMP), phospholipases and other enzymes (chymotrypsin and lysozymes) (3%) and phosphodiesterases (2%). Conclusions The combination of a proteomic and biochemical characterization strategies leads us to identify new components in the T. serrulatus scorpion venom. The proteome of venom´s fraction can provide valuable direction in the obtainment of components in their native forms in order to perform a preliminary characterization and, consequently, to promote advances in biological discoveries in toxinology.
Collapse
Affiliation(s)
- Fernanda Gobbi Amorim
- Department of Physics and Chemistry, School of Pharmaceutical Sciences of Ribeirão Preto, University of São Paulo, Av. do Café s/n, Monte Alegre, Ribeirão Preto, SP 14040-903, Brazil.,University of Vila Velha, Vila Velha, ES, Brazil
| | - Heloisa Tavoni Longhim
- Department of Physics and Chemistry, School of Pharmaceutical Sciences of Ribeirão Preto, University of São Paulo, Av. do Café s/n, Monte Alegre, Ribeirão Preto, SP 14040-903, Brazil
| | - Camila Takeno Cologna
- Department of Physics and Chemistry, School of Pharmaceutical Sciences of Ribeirão Preto, University of São Paulo, Av. do Café s/n, Monte Alegre, Ribeirão Preto, SP 14040-903, Brazil.,Laboratory of mass spectrometry, MolSys Research Unit, Liège Université, Liège, Belgium
| | - Michel Degueldre
- Laboratory of mass spectrometry, MolSys Research Unit, Liège Université, Liège, Belgium
| | - Edwin De Pauw
- Laboratory of mass spectrometry, MolSys Research Unit, Liège Université, Liège, Belgium
| | - Loïc Quinton
- Laboratory of mass spectrometry, MolSys Research Unit, Liège Université, Liège, Belgium
| | - Eliane Candiani Arantes
- Department of Physics and Chemistry, School of Pharmaceutical Sciences of Ribeirão Preto, University of São Paulo, Av. do Café s/n, Monte Alegre, Ribeirão Preto, SP 14040-903, Brazil
| |
Collapse
|
24
|
Purification and Biochemical Characterization of TsMS 3 and TsMS 4: Neuropeptide-Degrading Metallopeptidases in the Tityus serrulatus Venom. Toxins (Basel) 2019; 11:toxins11040194. [PMID: 30935107 PMCID: PMC6520902 DOI: 10.3390/toxins11040194] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2019] [Revised: 03/22/2019] [Accepted: 03/28/2019] [Indexed: 12/14/2022] Open
Abstract
Although omics studies have indicated presence of proteases on the Tityus serrulatus venom (TsV), little is known about the function of these molecules. The TsV contains metalloproteases that cleave a series of human neuropeptides, including the dynorphin A (1-13) and the members of neuropeptide Y family. Aiming to isolate the proteases responsible for this activity, the metalloserrulase 3 and 4 (TsMS 3 and TsMS 4) were purified after two chromatographic steps and identified by mass spectrometry analysis. The biochemical parameters (pH, temperature and cation effects) were determined for both proteases, and the catalytic parameters (Km, kcat, cleavage sites) of TsMS 4 over fluorescent substrate were obtained. The metalloserrulases have a high preference for cleaving neuropeptides but presented different primary specificities. For example, the Leu-enkephalin released from dynorphin A (1-13) hydrolysis was exclusively performed by TsMS 3. Neutralization assays using Butantan Institute antivenoms show that both metalloserrulases were well blocked. Although TsMS 3 and TsMS 4 were previously described through cDNA library studies using the venom gland, this is the first time that both these toxins were purified. Thus, this study represents a step further in understanding the mechanism of scorpion venom metalloproteases, which may act as possible neuropeptidases in the envenomation process.
Collapse
|
25
|
Rojas-Azofeifa D, Sasa M, Lomonte B, Diego-García E, Ortiz N, Bonilla F, Murillo R, Tytgat J, Díaz C. Biochemical characterization of the venom of Central American scorpion Didymocentrus krausi Francke, 1978 (Diplocentridae) and its toxic effects in vivo and in vitro. Comp Biochem Physiol C Toxicol Pharmacol 2019; 217:54-67. [PMID: 30517877 DOI: 10.1016/j.cbpc.2018.11.021] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/16/2018] [Revised: 11/27/2018] [Accepted: 11/28/2018] [Indexed: 11/28/2022]
Abstract
Venoms of medically important scorpions from Buthidae family have been intensively studied, in contrast to non-buthid venoms, for which knowledge is scarce. In this work, we characterized the venom of a Diplocentridae species, Didymocentrus krausi, a small fossorial scorpion that inhabits the Tropical Dry Forest of Central America. D. krausi venom soluble fraction contains proteases with enzymatic activity on gelatin and casein. Mass spectrometry and venomic analysis confirmed the presence of elastase-like, cathepsin-O-like proteases and a neprilysin-like metalloproteinase. We did not detect phospholipase A2, C or D, nor hyaluronidase activity in the venom. By homology-based venom gland transcriptomic analysis, NDBPs, a β-KTx-like peptide, and other putative toxin transcripts were found, which, together with a p-benzoquinone compound present in the venom, could potentially explain its direct hemolytic and cytotoxic effects in several mammalian cell lines. Cytotoxicity of D. krausi venom was higher than the effect of venoms from two buthid scorpion species distributed in Costa Rica, Centruroides edwardsii and Tityus pachyurus. Even though D. krausi venom was not lethal to mice or crickets, when injected in mouse gastrocnemius muscle at high doses it induced pathological effects at 24 h, which include myonecrosis, weak hemorrhage, and inflammatory infiltration. We observed an apparent thrombotic effect in the skin blood vessels, but no in vitro fibrinogenolytic activity was detected. In crickets, D. krausi venom induced toxicity and paralysis in short periods of time.
Collapse
Affiliation(s)
- Daniela Rojas-Azofeifa
- Departamento de Bioquímica, Escuela de Medicina, Universidad de Costa Rica, San José, Costa Rica; Instituto Clodomiro Picado, Facultad de Microbiología, Universidad de Costa Rica, San José, Costa Rica
| | - Mahmood Sasa
- Instituto Clodomiro Picado, Facultad de Microbiología, Universidad de Costa Rica, San José, Costa Rica; Escuela de Biología, Universidad de Costa Rica, San José, Costa Rica
| | - Bruno Lomonte
- Instituto Clodomiro Picado, Facultad de Microbiología, Universidad de Costa Rica, San José, Costa Rica
| | - Elia Diego-García
- Cátedras CONACYT-El Colegio de la Frontera Sur (ECOSUR), Tapachula, Chiapas, Mexico; Department of Pharmaceutical and Pharmacological Sciences, University of Leuven, Belgium
| | - Natalia Ortiz
- Departamento de Bioquímica, Escuela de Medicina, Universidad de Costa Rica, San José, Costa Rica; Instituto Clodomiro Picado, Facultad de Microbiología, Universidad de Costa Rica, San José, Costa Rica
| | - Fabián Bonilla
- Instituto Clodomiro Picado, Facultad de Microbiología, Universidad de Costa Rica, San José, Costa Rica
| | - Renato Murillo
- Centro de Investigaciones en Productos Naturales, Universidad de Costa Rica, San José, Costa Rica
| | - Jan Tytgat
- Department of Pharmaceutical and Pharmacological Sciences, University of Leuven, Belgium
| | - Cecilia Díaz
- Departamento de Bioquímica, Escuela de Medicina, Universidad de Costa Rica, San José, Costa Rica; Instituto Clodomiro Picado, Facultad de Microbiología, Universidad de Costa Rica, San José, Costa Rica.
| |
Collapse
|
26
|
The diversity of venom components of the scorpion species Paravaejovis schwenkmeyeri (Scorpiones: Vaejovidae) revealed by transcriptome and proteome analyses. Toxicon 2018; 151:47-62. [DOI: 10.1016/j.toxicon.2018.06.085] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2018] [Revised: 06/20/2018] [Accepted: 06/25/2018] [Indexed: 12/11/2022]
|
27
|
Ward MJ, Ellsworth SA, Nystrom GS. A global accounting of medically significant scorpions: Epidemiology, major toxins, and comparative resources in harmless counterparts. Toxicon 2018; 151:137-155. [DOI: 10.1016/j.toxicon.2018.07.007] [Citation(s) in RCA: 47] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2018] [Revised: 06/25/2018] [Accepted: 07/05/2018] [Indexed: 01/18/2023]
|
28
|
de Oliveira UC, Nishiyama MY, dos Santos MBV, Santos-da-Silva ADP, Chalkidis HDM, Souza-Imberg A, Candido DM, Yamanouye N, Dorce VAC, Junqueira-de-Azevedo IDLM. Proteomic endorsed transcriptomic profiles of venom glands from Tityus obscurus and T. serrulatus scorpions. PLoS One 2018; 13:e0193739. [PMID: 29561852 PMCID: PMC5862453 DOI: 10.1371/journal.pone.0193739] [Citation(s) in RCA: 51] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2017] [Accepted: 02/16/2018] [Indexed: 11/18/2022] Open
Abstract
Background Except for the northern region, where the Amazonian black scorpion, T. obscurus, represents the predominant and most medically relevant scorpion species, Tityus serrulatus, the Brazilian yellow scorpion, is widely distributed throughout Brazil, causing most envenoming and fatalities due to scorpion sting. In order to evaluate and compare the diversity of venom components of Tityus obscurus and T. serrulatus, we performed a transcriptomic investigation of the telsons (venom glands) corroborated by a shotgun proteomic analysis of the venom from the two species. Results The putative venom components represented 11.4% and 16.7% of the total gene expression for T. obscurus and T. serrulatus, respectively. Transcriptome and proteome data revealed high abundance of metalloproteinases sequences followed by sodium and potassium channel toxins, making the toxin core of the venom. The phylogenetic analysis of metalloproteinases from T. obscurus and T. serrulatus suggested an intraspecific gene expansion, as we previously observed for T. bahiensis, indicating that this enzyme may be under evolutionary pressure for diversification. We also identified several putative venom components such as anionic peptides, antimicrobial peptides, bradykinin-potentiating peptide, cysteine rich protein, serine proteinases, cathepsins, angiotensin-converting enzyme, endothelin-converting enzyme and chymotrypsin like protein, proteinases inhibitors, phospholipases and hyaluronidases. Conclusion The present work shows that the venom composition of these two allopatric species of Tityus are considerably similar in terms of the major classes of proteins produced and secreted, although their individual toxin sequences are considerably divergent. These differences at amino acid level may reflect in different epitopes for the same protein classes in each species, explaining the basis for the poor recognition of T. obscurus venom by the antiserum raised against other species.
Collapse
Affiliation(s)
- Ursula Castro de Oliveira
- Laboratório Especial de Toxinologia Aplicada, CeTICS, Instituto Butantan, São Paulo, São Paulo, Brazil
- * E-mail: ,
| | - Milton Yutaka Nishiyama
- Laboratório Especial de Toxinologia Aplicada, CeTICS, Instituto Butantan, São Paulo, São Paulo, Brazil
| | | | | | | | | | | | - Norma Yamanouye
- Laboratório de Farmacologia, Instituto Butantan, São Paulo, São Paulo, Brazil
| | | | | |
Collapse
|
29
|
Ward MJ, Ellsworth SA, Rokyta DR. Venom-gland transcriptomics and venom proteomics of the Hentz striped scorpion (Centruroides hentzi; Buthidae) reveal high toxin diversity in a harmless member of a lethal family. Toxicon 2018; 142:14-29. [DOI: 10.1016/j.toxicon.2017.12.042] [Citation(s) in RCA: 39] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2017] [Revised: 12/07/2017] [Accepted: 12/11/2017] [Indexed: 01/02/2023]
|
30
|
Tityus serrulatus Scorpion Venom: In Vitro Tests and Their Correlation with In Vivo Lethal Dose Assay. Toxins (Basel) 2017; 9:toxins9120380. [PMID: 29168766 PMCID: PMC5744100 DOI: 10.3390/toxins9120380] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2017] [Revised: 11/10/2017] [Accepted: 11/17/2017] [Indexed: 12/29/2022] Open
Abstract
Scorpion stings are the main cause of human envenomation in Brazil and, for the treatment of victims, the World Health Organization (WHO) recommends the use of antivenoms. The first step to achieve effective antivenom is to use a good quality venom pool and to evaluate it, with LD50 determination as the most accepted procedure. It is, however, time-consuming and requires advanced technical training. Further, there are significant ethical concerns regarding the number of animals required for testing. Hence, we investigated the correspondence between LD50 results, in vitro assays, and a strong correlation with proteolytic activity levels was observed, showing, remarkably, that proteases are potential toxicity markers for Tityus serrulatus venom. The comparison of reversed-phase chromatographic profiles also has a potential application in venoms’ quality control, as there were fewer neurotoxins detected in the venom with high LD50 value. These results were confirmed by mass spectrometry analysis. Therefore, these methods could precede the LD50 assay to evaluate the venom excellence by discriminating—and discarding—poor-quality batches, and, consequently, with a positive impact on the number of animals used. Notably, proposed assays are fast and inexpensive, being technically and economically feasible in Tityus serrulatus venom quality control to produce effective antivenoms.
Collapse
|
31
|
Zornetta I, Scorzeto M, Mendes Dos Reis PV, De Lima ME, Montecucco C, Megighian A, Rossetto O. Electrophysiological Characterization of the Antarease Metalloprotease from Tityus serrulatus Venom. Toxins (Basel) 2017; 9:E81. [PMID: 28264432 PMCID: PMC5371836 DOI: 10.3390/toxins9030081] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2016] [Revised: 02/15/2017] [Accepted: 02/20/2017] [Indexed: 12/14/2022] Open
Abstract
Scorpions are among the oldest venomous living organisms and the family Buthidae is the largest and most medically relevant one. Scorpion venoms include many toxic peptides, but recently, a metalloprotease from Tityus serrulatus called antarease was reported to be capable of cleaving VAMP2, a protein involved in the neuroparalytic syndromes of tetanus and botulism. We have produced antarease and an inactive metalloprotease mutant in a recombinant form and analyzed their enzymatic activity on recombinant VAMP2 in vitro and on mammalian and insect neuromuscular junction. The purified recombinant antarease paralyzed the neuromuscular junctions of mice and of Drosophila melanogaster whilst the mutant was inactive. We were unable to demonstrate any cleavage of VAMP2 under conditions which leads to VAMP proteolysis by botulinum neurotoxin type B. Antarease caused a reduced release probability, mainly due to defects upstream of the synaptic vesicles fusion process. Paired pulse experiments indicate that antarease might proteolytically inactivate a voltage-gated calcium channel.
Collapse
Affiliation(s)
- Irene Zornetta
- Dipartimento di Scienze Biomediche and Istituto CNR di Neuroscienze, Università di Padova, Via Ugo Bassi 58/B, 35121 Padova, Italy.
| | - Michele Scorzeto
- Dipartimento di Scienze Biomediche and Istituto CNR di Neuroscienze, Università di Padova, Via Ugo Bassi 58/B, 35121 Padova, Italy.
| | - Pablo Victor Mendes Dos Reis
- Laboratório de Venenos e Toxinas Animais, Departamento de Bioquímica e Imunologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte 31270-901, MG, Brazil.
| | - Maria E De Lima
- Laboratório de Venenos e Toxinas Animais, Departamento de Bioquímica e Imunologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte 31270-901, MG, Brazil.
| | - Cesare Montecucco
- Dipartimento di Scienze Biomediche and Istituto CNR di Neuroscienze, Università di Padova, Via Ugo Bassi 58/B, 35121 Padova, Italy.
| | - Aram Megighian
- Dipartimento di Scienze Biomediche and Istituto CNR di Neuroscienze, Università di Padova, Via Ugo Bassi 58/B, 35121 Padova, Italy.
| | - Ornella Rossetto
- Dipartimento di Scienze Biomediche and Istituto CNR di Neuroscienze, Università di Padova, Via Ugo Bassi 58/B, 35121 Padova, Italy.
| |
Collapse
|
32
|
Pucca MB, Cerni FA, Pinheiro-Junior EL, Zoccal KF, Bordon KDCF, Amorim FG, Peigneur S, Vriens K, Thevissen K, Cammue BPA, Júnior RBM, Arruda E, Faccioli LH, Tytgat J, Arantes EC. Non-disulfide-bridged peptides from Tityus serrulatus venom: Evidence for proline-free ACE-inhibitors. Peptides 2016; 82:44-51. [PMID: 27221550 DOI: 10.1016/j.peptides.2016.05.008] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/23/2016] [Revised: 05/15/2016] [Accepted: 05/19/2016] [Indexed: 12/15/2022]
Abstract
The present study purifies two T. serrulatus non-disulfide-bridged peptides (NDBPs), named venom peptides 7.2 (RLRSKG) and 8 (KIWRS) and details their synthesis and biological activity, comparing to the synthetic venom peptide 7.1 (RLRSKGKK), previously identified. The synthetic replicate peptides were subjected to a range of biological assays: hemolytic, antifungal, antiviral, electrophysiological, immunological and angiotensin-converting enzyme (ACE) inhibition activities. All venom peptides neither showed to be cytolytic nor demonstrated significant antifungal or antiviral activities. Interestingly, peptides were able to modulate macrophages' responses, increasing IL-6 production. The three venom peptides also demonstrated potential to inhibit ACE in the following order: 7.2>7.1>8. The ACE inhibition activity was unexpected, since peptides that display this function are usually proline-rich peptides. In attempt to understand the origin of such small peptides, we discovered that the isolated peptides 7.2 and 8 are fragments of the same molecule, named Pape peptide precursor. Furthermore, the study discusses that Pape fragments could be originated from a post-splitting mechanism resulting from metalloserrulases and other proteinases cleavage, which can be seen as a clever mechanism used by the scorpion to enlarge its repertoire of venom components. Scorpion venom remains as an interesting source of bioactive proteins and this study advances our knowledge about three NDBPs and their biological activities.
Collapse
Affiliation(s)
- Manuela Berto Pucca
- Department of Physics and Chemistry, School of Pharmaceutical Sciences of Ribeirão Preto, University of São Paulo, Ribeirão Preto, SP, Brazil
| | - Felipe Augusto Cerni
- Department of Physics and Chemistry, School of Pharmaceutical Sciences of Ribeirão Preto, University of São Paulo, Ribeirão Preto, SP, Brazil
| | - Ernesto Lopes Pinheiro-Junior
- Department of Physics and Chemistry, School of Pharmaceutical Sciences of Ribeirão Preto, University of São Paulo, Ribeirão Preto, SP, Brazil
| | - Karina Furlani Zoccal
- Department of Clinical Analysis, Toxicology and Food Science, School of Pharmaceutical Sciences of Ribeirão Preto, University of São Paulo, Ribeirão Preto, SP, Brazil
| | - Karla de Castro Figueiredo Bordon
- Department of Physics and Chemistry, School of Pharmaceutical Sciences of Ribeirão Preto, University of São Paulo, Ribeirão Preto, SP, Brazil
| | - Fernanda Gobbi Amorim
- Department of Physics and Chemistry, School of Pharmaceutical Sciences of Ribeirão Preto, University of São Paulo, Ribeirão Preto, SP, Brazil
| | - Steve Peigneur
- Toxicology and Pharmacology, University of Leuven, Leuven, Belgium
| | - Kim Vriens
- Centre of Microbial and Plant Genetics, University of Leuven, Heverlee, Belgium
| | - Karin Thevissen
- Centre of Microbial and Plant Genetics, University of Leuven, Heverlee, Belgium
| | - Bruno Philippe Angelo Cammue
- Centre of Microbial and Plant Genetics, University of Leuven, Heverlee, Belgium; Department of Plant Systems Biology, VIB, Technologiepark 927, 9052 Gent, Belgium
| | | | - Eurico Arruda
- Department of Cell Biology, School of Medicine of Ribeirão Preto, University of São Paulo, Ribeirão Preto, SP, Brazil
| | - Lúcia Helena Faccioli
- Department of Clinical Analysis, Toxicology and Food Science, School of Pharmaceutical Sciences of Ribeirão Preto, University of São Paulo, Ribeirão Preto, SP, Brazil
| | - Jan Tytgat
- Toxicology and Pharmacology, University of Leuven, Leuven, Belgium
| | - Eliane Candiani Arantes
- Department of Physics and Chemistry, School of Pharmaceutical Sciences of Ribeirão Preto, University of São Paulo, Ribeirão Preto, SP, Brazil.
| |
Collapse
|
33
|
Laustsen AH, Solà M, Jappe EC, Oscoz S, Lauridsen LP, Engmark M. Biotechnological Trends in Spider and Scorpion Antivenom Development. Toxins (Basel) 2016; 8:E226. [PMID: 27455327 PMCID: PMC4999844 DOI: 10.3390/toxins8080226] [Citation(s) in RCA: 56] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2016] [Revised: 06/19/2016] [Accepted: 07/13/2016] [Indexed: 12/28/2022] Open
Abstract
Spiders and scorpions are notorious for their fearful dispositions and their ability to inject venom into prey and predators, causing symptoms such as necrosis, paralysis, and excruciating pain. Information on venom composition and the toxins present in these species is growing due to an interest in using bioactive toxins from spiders and scorpions for drug discovery purposes and for solving crystal structures of membrane-embedded receptors. Additionally, the identification and isolation of a myriad of spider and scorpion toxins has allowed research within next generation antivenoms to progress at an increasingly faster pace. In this review, the current knowledge of spider and scorpion venoms is presented, followed by a discussion of all published biotechnological efforts within development of spider and scorpion antitoxins based on small molecules, antibodies and fragments thereof, and next generation immunization strategies. The increasing number of discovery and development efforts within this field may point towards an upcoming transition from serum-based antivenoms towards therapeutic solutions based on modern biotechnology.
Collapse
Affiliation(s)
- Andreas Hougaard Laustsen
- Department of Biotechnology and Biomedicine, Technical University of Denmark, DK-2800 Kgs. Lyngby, Denmark.
- Department of Drug Design and Pharmacology, Faculty of Health and Medical Sciences, University of Copenhagen, DK-2100 Copenhagen East, Denmark.
| | - Mireia Solà
- Department of Biotechnology and Biomedicine, Technical University of Denmark, DK-2800 Kgs. Lyngby, Denmark.
| | - Emma Christine Jappe
- Department of Biotechnology and Biomedicine, Technical University of Denmark, DK-2800 Kgs. Lyngby, Denmark.
| | - Saioa Oscoz
- Department of Biotechnology and Biomedicine, Technical University of Denmark, DK-2800 Kgs. Lyngby, Denmark.
| | - Line Præst Lauridsen
- Department of Biotechnology and Biomedicine, Technical University of Denmark, DK-2800 Kgs. Lyngby, Denmark.
| | - Mikael Engmark
- Department of Biotechnology and Biomedicine, Technical University of Denmark, DK-2800 Kgs. Lyngby, Denmark.
- Department of Bio and Health Informatics, Technical University of Denmark, DK-2800 Kgs. Lyngby, Denmark.
| |
Collapse
|
34
|
Duzzi B, Cajado-Carvalho D, Kuniyoshi AK, Kodama RT, Gozzo FC, Fioramonte M, Tambourgi DV, Portaro FV, Rioli V. [des-Arg(1)]-Proctolin: A novel NEP-like enzyme inhibitor identified in Tityus serrulatus venom. Peptides 2016; 80:18-24. [PMID: 26056922 DOI: 10.1016/j.peptides.2015.05.013] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/22/2015] [Revised: 05/21/2015] [Accepted: 05/26/2015] [Indexed: 10/23/2022]
Abstract
The scorpion Tityus serrulatus venom comprises a complex mixture of molecules that paralyzes and kills preys, especially insects. However, venom components also interact with molecules in humans, causing clinic envenomation. This cross-interaction may result from homologous molecular targets in mammalians and insects, such as (NEP)-like enzymes. In face of these similarities, we searched for peptides in Tityus serrulatus venom using human NEP as a screening tool. We found a NEP-inhibiting peptide with the primary sequence YLPT, which is very similar to that of the insect neuropeptide proctolin (RYLPT). Thus, we named the new peptide [des-Arg(1)]-proctolin. Comparative NEP activity assays using natural substrates demonstrated that [des-Arg(1)]-proctolin has high specificity for NEP and better inhibitory activity than proctolin. To test the initial hypothesis that molecular homologies allow Tityus serrulatus venom to act on both mammal and insect targets, we investigated the presence of a NEP-like in cockroaches, the main scorpion prey, that could be likewise inhibited by [des-Arg(1)]-proctolin. Indeed, we detected a possible NEP-like in a homogenate of cockroach heads whose activity was blocked by thiorphan and also by [des-Arg(1)]-proctolin. Western blot analysis using a human NEP monoclonal antibody suggested a NEP-like enzyme in the homogenate of cockroach heads. Our study describes for the first time a proctolin-like peptide, named [des-Arg(1)]-proctolin, isolated from Tityus serrulatus venom. The tetrapeptide inhibits human NEP activity and a NEP-like activity in a cockroach head homogenate, thus it may play a role in human envenomation as well as in the paralysis and death of scorpion preys.
Collapse
Affiliation(s)
- Bruno Duzzi
- Immunochemistry Laboratory, Butantan Institute, Av. Prof. Vital Brazil, 1500, CEP 05503-900, São Paulo, SP, Brazil
| | - Daniela Cajado-Carvalho
- Immunochemistry Laboratory, Butantan Institute, Av. Prof. Vital Brazil, 1500, CEP 05503-900, São Paulo, SP, Brazil
| | - Alexandre Kazuo Kuniyoshi
- Immunochemistry Laboratory, Butantan Institute, Av. Prof. Vital Brazil, 1500, CEP 05503-900, São Paulo, SP, Brazil
| | - Roberto Tadashi Kodama
- Immunochemistry Laboratory, Butantan Institute, Av. Prof. Vital Brazil, 1500, CEP 05503-900, São Paulo, SP, Brazil
| | | | | | - Denise Vilarinho Tambourgi
- Immunochemistry Laboratory, Butantan Institute, Av. Prof. Vital Brazil, 1500, CEP 05503-900, São Paulo, SP, Brazil
| | - Fernanda Vieira Portaro
- Immunochemistry Laboratory, Butantan Institute, Av. Prof. Vital Brazil, 1500, CEP 05503-900, São Paulo, SP, Brazil.
| | - Vanessa Rioli
- Special Laboratory of Applied Toxinology/Center of Toxins, Immune-Response and Cell Signaling (CeTICS), Butantan Institute, São Paulo, SP, Brazil
| |
Collapse
|
35
|
Cerni FA, Pucca MB, Amorim FG, de Castro Figueiredo Bordon K, Echterbille J, Quinton L, De Pauw E, Peigneur S, Tytgat J, Arantes EC. Isolation and characterization of Ts19 Fragment II, a new long-chain potassium channel toxin from Tityus serrulatus venom. Peptides 2016; 80:9-17. [PMID: 26116782 DOI: 10.1016/j.peptides.2015.06.004] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/07/2015] [Revised: 06/05/2015] [Accepted: 06/08/2015] [Indexed: 01/13/2023]
Abstract
Ts19 Fragment II (Ts19 Frag-II) was first isolated from the venom of the scorpion Tityus serrulatus (Ts). It is a protein presenting 49 amino acid residues, three disulfide bridges, Mr 5534Da and was classified as a new member of class (subfamily) 2 of the β-KTxs, the second one described for Ts scorpion. The β-KTx family is composed by two-domain peptides: N-terminal helical domain (NHD), with cytolytic activity, and a C-terminal CSαβ domain (CCD), with Kv blocking activity. The extensive electrophysiological screening (16 Kv channels and 5 Nav channels) showed that Ts19 Frag-II presents a specific and significant blocking effect on Kv1.2 (IC50 value of 544±32nM). However, no cytolytic activity was observed with this toxin. We conclude that the absence of 9 amino acid residues from the N-terminal sequence (compared to Ts19 Frag-I) is responsible for the absence of cytolytic activity. In order to prove this hypothesis, we synthesized the peptide with these 9 amino acid residues, called Ts19 Frag-III. As expected, Ts19 Frag-III showed to be cytolytic and did not block the Kv1.2 channel. The post-translational modifications of Ts19 and its fragments (I-III) are also discussed here. A mechanism of post-translational processing (post-splitting) is suggested to explain Ts19 fragments production. In addition to the discovery of this new toxin, this report provides further evidence for the existence of several compounds in the scorpion venom contributing to the diversity of the venom arsenal.
Collapse
Affiliation(s)
- Felipe Augusto Cerni
- Department of Physics and Chemistry, School of Pharmaceutical Sciences of Ribeirão Preto, University of São Paulo, Av. do Café, s/n, 14040-903 Ribeirão Preto, SP, Brazil
| | - Manuela Berto Pucca
- Department of Physics and Chemistry, School of Pharmaceutical Sciences of Ribeirão Preto, University of São Paulo, Av. do Café, s/n, 14040-903 Ribeirão Preto, SP, Brazil
| | - Fernanda Gobbi Amorim
- Department of Physics and Chemistry, School of Pharmaceutical Sciences of Ribeirão Preto, University of São Paulo, Av. do Café, s/n, 14040-903 Ribeirão Preto, SP, Brazil
| | - Karla de Castro Figueiredo Bordon
- Department of Physics and Chemistry, School of Pharmaceutical Sciences of Ribeirão Preto, University of São Paulo, Av. do Café, s/n, 14040-903 Ribeirão Preto, SP, Brazil
| | - Julien Echterbille
- Laboratory of Mass Spectrometry, Department of Chemistry, University of Liège, Allée de la chimie 6, B6c, B-4000 Liège, Belgium
| | - Loïc Quinton
- Laboratory of Mass Spectrometry, Department of Chemistry, University of Liège, Allée de la chimie 6, B6c, B-4000 Liège, Belgium
| | - Edwin De Pauw
- Laboratory of Mass Spectrometry, Department of Chemistry, University of Liège, Allée de la chimie 6, B6c, B-4000 Liège, Belgium
| | - Steve Peigneur
- Toxicology and Pharmacology, University of Leuven, O&N 2, Herestraat 49, P.O. Box 922, 3000 Leuven, Belgium
| | - Jan Tytgat
- Toxicology and Pharmacology, University of Leuven, O&N 2, Herestraat 49, P.O. Box 922, 3000 Leuven, Belgium
| | - Eliane Candiani Arantes
- Department of Physics and Chemistry, School of Pharmaceutical Sciences of Ribeirão Preto, University of São Paulo, Av. do Café, s/n, 14040-903 Ribeirão Preto, SP, Brazil.
| |
Collapse
|
36
|
Abstract
Tityus serrulatus (Ts) is the main scorpion species of medical importance in Brazil. Ts venom is composed of several compounds such as mucus, inorganic salts, lipids, amines, nucleotides, enzymes, kallikrein inhibitor, natriuretic peptide, proteins with high molecular mass, peptides, free amino acids and neurotoxins. Neurotoxins are considered the most responsible for the envenoming syndrome due to their pharmacological action on ion channels such as voltage-gated sodium (Nav) and potassium (Kv) channels. The major goal of this review is to present important advances in Ts envenoming research, correlating both the crude Ts venom and isolated toxins with alterations observed in all human systems. The most remarkable event lies in the Ts induced massive releasing of neurotransmitters influencing, directly or indirectly, the entire body. Ts venom proved to extremely affect nervous and muscular systems, to modulate the immune system, to induce cardiac disorders, to cause pulmonary edema, to decrease urinary flow and to alter endocrine, exocrine, reproductive, integumentary, skeletal and digestive functions. Therefore, Ts venom possesses toxins affecting all anatomic systems, making it a lethal cocktail. However, its low lethality may be due to the low venom mass injected, to the different venom compositions, the body characteristics and health conditions of the victim and the local of Ts sting. Furthermore, we also described the different treatments employed during envenoming cases. In particular, throughout the review, an effort will be made to provide information from an extensive documented studies concerning Ts venom in vitro, in animals and in humans (a total of 151 references).
Collapse
|
37
|
Borges A, Morales M, Loor W, Delgado M. Scorpionism in Ecuador: First report of severe and fatal envenoming cases from northern Manabí by Tityus asthenes Pocock. Toxicon 2015; 105:56-61. [DOI: 10.1016/j.toxicon.2015.08.019] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2015] [Revised: 08/13/2015] [Accepted: 08/26/2015] [Indexed: 02/08/2023]
|
38
|
Cordeiro FA, Amorim FG, Anjolette FAP, Arantes EC. Arachnids of medical importance in Brazil: main active compounds present in scorpion and spider venoms and tick saliva. J Venom Anim Toxins Incl Trop Dis 2015; 21:24. [PMID: 26273285 PMCID: PMC4535291 DOI: 10.1186/s40409-015-0028-5] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2014] [Accepted: 07/21/2015] [Indexed: 11/30/2022] Open
Abstract
Arachnida is the largest class among the arthropods, constituting over 60,000 described species (spiders, mites, ticks, scorpions, palpigrades, pseudoscorpions, solpugids and harvestmen). Many accidents are caused by arachnids, especially spiders and scorpions, while some diseases can be transmitted by mites and ticks. These animals are widely dispersed in urban centers due to the large availability of shelter and food, increasing the incidence of accidents. Several protein and non-protein compounds present in the venom and saliva of these animals are responsible for symptoms observed in envenoming, exhibiting neurotoxic, dermonecrotic and hemorrhagic activities. The phylogenomic analysis from the complementary DNA of single-copy nuclear protein-coding genes shows that these animals share some common protein families known as neurotoxins, defensins, hyaluronidase, antimicrobial peptides, phospholipases and proteinases. This indicates that the venoms from these animals may present components with functional and structural similarities. Therefore, we described in this review the main components present in spider and scorpion venom as well as in tick saliva, since they have similar components. These three arachnids are responsible for many accidents of medical relevance in Brazil. Additionally, this study shows potential biotechnological applications of some components with important biological activities, which may motivate the conducting of further research studies on their action mechanisms.
Collapse
Affiliation(s)
- Francielle A Cordeiro
- Department of Physics and Chemistry, School of Pharmaceutical Sciences of Ribeirão Preto, University of São Paulo (USP), Avenida do Café, s/n, Ribeirão Preto, SP 14.040-903 Brazil
| | - Fernanda G Amorim
- Department of Physics and Chemistry, School of Pharmaceutical Sciences of Ribeirão Preto, University of São Paulo (USP), Avenida do Café, s/n, Ribeirão Preto, SP 14.040-903 Brazil
| | - Fernando A P Anjolette
- Department of Physics and Chemistry, School of Pharmaceutical Sciences of Ribeirão Preto, University of São Paulo (USP), Avenida do Café, s/n, Ribeirão Preto, SP 14.040-903 Brazil
| | - Eliane C Arantes
- Department of Physics and Chemistry, School of Pharmaceutical Sciences of Ribeirão Preto, University of São Paulo (USP), Avenida do Café, s/n, Ribeirão Preto, SP 14.040-903 Brazil
| |
Collapse
|
39
|
Pucca MB, Cerni FA, Peigneur S, Bordon KCF, Tytgat J, Arantes EC. Revealing the Function and the Structural Model of Ts4: Insights into the "Non-Toxic" Toxin from Tityus serrulatus Venom. Toxins (Basel) 2015; 7:2534-50. [PMID: 26153865 PMCID: PMC4516927 DOI: 10.3390/toxins7072534] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2015] [Revised: 06/20/2015] [Accepted: 06/25/2015] [Indexed: 01/21/2023] Open
Abstract
The toxin, previously described as a "non-toxic" toxin, was isolated from the scorpion venom of Tityus serrulatus (Ts), responsible for the most severe and the highest number of accidents in Brazil. In this study, the subtype specificity and selectivity of Ts4 was investigated using six mammalian Nav channels (Nav1.2→Nav1.6 and Nav1.8) and two insect Nav channels (DmNav1 and BgNav). The electrophysiological assays showed that Ts4 specifically inhibited the fast inactivation of Nav1.6 channels, the most abundant sodium channel expressed in the adult central nervous system, and can no longer be classified as a "non-toxic peptide". Based on the results, we could classify the Ts4 as a classical α-toxin. The Ts4 3D-structural model was built based on the solved X-ray Ts1 3D-structure, the major toxin from Ts venom with which it shares high sequence identity (65.57%). The Ts4 model revealed a flattened triangular shape constituted by three-stranded antiparallel β-sheet and one α-helix stabilized by four disulfide bonds. The absence of a Lys in the first amino acid residue of the N-terminal of Ts4 is probably the main responsible for its low toxicity. Other key amino acid residues important to the toxicity of α- and β-toxins are discussed here.
Collapse
Affiliation(s)
- Manuela B Pucca
- Department of Physics and Chemistry, School of Pharmaceutical Sciences of Ribeirão Preto, University of São Paulo, Av. do Café, s/n, Ribeirão Preto, SP 14040-903, Brazil.
| | - Felipe A Cerni
- Department of Physics and Chemistry, School of Pharmaceutical Sciences of Ribeirão Preto, University of São Paulo, Av. do Café, s/n, Ribeirão Preto, SP 14040-903, Brazil.
| | - Steve Peigneur
- Toxicology and Pharmacology, University of Leuven, O&N 2, Herestraat 49, P.O. Box 922, Leuven 3000, Belgium.
| | - Karla C F Bordon
- Department of Physics and Chemistry, School of Pharmaceutical Sciences of Ribeirão Preto, University of São Paulo, Av. do Café, s/n, Ribeirão Preto, SP 14040-903, Brazil.
| | - Jan Tytgat
- Toxicology and Pharmacology, University of Leuven, O&N 2, Herestraat 49, P.O. Box 922, Leuven 3000, Belgium.
| | - Eliane C Arantes
- Department of Physics and Chemistry, School of Pharmaceutical Sciences of Ribeirão Preto, University of São Paulo, Av. do Café, s/n, Ribeirão Preto, SP 14040-903, Brazil.
| |
Collapse
|
40
|
The transcriptome recipe for the venom cocktail of Tityus bahiensis scorpion. Toxicon 2015; 95:52-61. [DOI: 10.1016/j.toxicon.2014.12.013] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2014] [Revised: 12/13/2014] [Accepted: 12/27/2014] [Indexed: 12/23/2022]
|
41
|
Carmo AO, Chatzaki M, Horta CCR, Magalhães BF, Oliveira-Mendes BBR, Chávez-Olórtegui C, Kalapothakis E. Evolution of alternative methodologies of scorpion antivenoms production. Toxicon 2015; 97:64-74. [PMID: 25701676 DOI: 10.1016/j.toxicon.2015.02.007] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2014] [Revised: 11/10/2014] [Accepted: 02/17/2015] [Indexed: 12/23/2022]
Abstract
Scorpionism represents a serious public health problem resulting in the death of children and debilitated individuals. Scorpion sting treatment employs various strategies including the use of specific medicines such as antiserum, especially for patients with severe symptoms. In 1909 Charles Todd described the production of an antiserum against the venom of the scorpion Buthus quinquestriatus. Based on Todd's work, researchers worldwide began producing antiserum using the same approach i.e., immunization of horses with crude venom as antigen. Despite achieving satisfactory results using this approach, researchers in this field have developed alternative approaches for the production of scorpion antivenom serum. In this review, we describe the work published by experts in toxinology to the development of scorpion venom antiserum. Methods and results describing the use of specific antigens, detoxified venom or toxins, purified toxins and or venom fractions, native toxoids, recombinant toxins, synthetic peptides, monoclonal and recombinant antibodies, and alternative animal models are presented.
Collapse
Affiliation(s)
- A O Carmo
- Departamento de Biologia Geral, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Avenida Presidente Antônio Carlos, 6627, Pampulha, Belo Horizonte, MG 31270-901, Brazil.
| | - M Chatzaki
- Department of Molecular Biology & Genetics, Democritus University of Thrace, University Campus, 69100 Komotini, Greece.
| | - C C R Horta
- Departamento de Biologia Geral, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Avenida Presidente Antônio Carlos, 6627, Pampulha, Belo Horizonte, MG 31270-901, Brazil.
| | - B F Magalhães
- Departamento de Biologia Geral, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Avenida Presidente Antônio Carlos, 6627, Pampulha, Belo Horizonte, MG 31270-901, Brazil.
| | - B B R Oliveira-Mendes
- Departamento de Biologia Geral, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Avenida Presidente Antônio Carlos, 6627, Pampulha, Belo Horizonte, MG 31270-901, Brazil.
| | - C Chávez-Olórtegui
- Departamento de Bioquímica e Imunologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Avenida Presidente Antônio Carlos, 6627, Pampulha, Belo Horizonte, MG 31270-901, Brazil.
| | - E Kalapothakis
- Departamento de Biologia Geral, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Avenida Presidente Antônio Carlos, 6627, Pampulha, Belo Horizonte, MG 31270-901, Brazil.
| |
Collapse
|