1
|
Woo SY, Park SB, Lee SY, Sul WJ, Chun HS. Mycotoxin and microbiome profiling for aflatoxin control in the Korean traditional fermented soybean paste Doenjang. JOURNAL OF HAZARDOUS MATERIALS 2025; 490:137777. [PMID: 40024121 DOI: 10.1016/j.jhazmat.2025.137777] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/18/2024] [Revised: 02/22/2025] [Accepted: 02/26/2025] [Indexed: 03/04/2025]
Abstract
Mycotoxin contamination is an important concern in producing traditional fermented soybean paste, though no effective control strategy has been developed. This study investigated the mycotoxin profiles of the intermediate (fermented soybean brick, known as "Meju" in South Korea) and final soybean paste products ("Doenjang") to identify major contaminants and describe microbial diversity with the mycotoxins. Profiling of 323 Meju and Doenjang samples revealed severe aflatoxin (AF) contamination. Metagenomic analysis revealed that the species richness and phylogenetic diversity were significantly higher in AF-free than in AF-contaminated Meju and Doenjang. Certain Aspergillus and Penicillium species were more abundant in AF-free than in AF-contaminated Meju and Doenjang. To control AF levels, we developed a novel mycotoxin-reduction approach that preserves the indigenous microbiome by backslopping fermentation of Meju in both Aspergillus-dominant and Penicillium-dominant modes. Both treatments reduced AF levels by > 95 % at a backslopping rate of > 2.5 %. Our results suggested that backslopping fermentation can effectively reduce AF contamination in traditional soybean fermentation, maintaining food safety standards and artisanal practices.
Collapse
Affiliation(s)
- So Young Woo
- GreenTech-Fased Food Safety Research Group, BK21 Four, School of Food Science and Technology, Chung-Ang University, Anseong 17546, South Korea
| | - Su Been Park
- GreenTech-Fased Food Safety Research Group, BK21 Four, School of Food Science and Technology, Chung-Ang University, Anseong 17546, South Korea
| | - Sang Yoo Lee
- GreenTech-Fased Food Safety Research Group, BK21 Four, School of Food Science and Technology, Chung-Ang University, Anseong 17546, South Korea
| | - Woo Jun Sul
- Department of Systems Biotechnology, Chung-Ang University, Anseong, Gyeonggi-do, South Korea
| | - Hyang Sook Chun
- GreenTech-Fased Food Safety Research Group, BK21 Four, School of Food Science and Technology, Chung-Ang University, Anseong 17546, South Korea.
| |
Collapse
|
2
|
Li X, Yang J, Huang W, Lin G, Li M, Mai K, Zhang Y. Evaluation of the combined impact of aflatoxin B1 and deoxynivalenol fed to Penaeus vannamei and mitigation properties provided by a yeast cell wall extract. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2025; 295:118121. [PMID: 40179804 DOI: 10.1016/j.ecoenv.2025.118121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/19/2024] [Revised: 02/28/2025] [Accepted: 03/27/2025] [Indexed: 04/05/2025]
Abstract
The purpose of this study was to examine how white shrimp (Penaeus vannamei) responded to varying concentrations of combined mycotoxins (aflatoxin B1 (AFB1) and deoxynivalenol (DON)) as well as the mitigating effects of an adsorbent (yeast cell wall extract, YCWE). The experiment comprised of five groups receiving isonitrogenous and isolipidic diets: CON (control group), LDA (CON with 20 μg/kg AFB1 and 1500 μg/kg DON), HDA (CON with 100 μg/kg AFB1 and 3000 μg/kg DON), LDAM (LDA with 0.2 % YCWE), and HDAM (HDA with 0.2 % YCWE). Results showed that the contents of total protein, total cholesterol, hemocyanin, and enzyme activities (e.g., catalase, phenoloxidase) in plasma were lower in HDA group, while the alanine aminotransferase activity and malondialdehyde content were higher. The HDA group showed up-regulated expression of apoptotic genes in the hepatopancreas but down-regulated expression of immune-related and antioxidant genes. In the LDA and HDA groups, the higher expression of inflammatory genes in hepatopancreas, the lowest chewiness of muscle and the higher abundance of potential pathogens (e.g., Escherichia-Shigella) in the intestine were observed. However, LDAM and HDAM diets were able to enhance the immune response, antioxidant capacity, and hepatopancreatic and intestinal health of shrimp, especially increased the abundance of intestinal bacteria for detoxification (e.g., Pseudomonas). Moreover, dietary YCWE also led to significantly greater mycotoxin content in the feces. In conclusion, the combined mycotoxins AFB1 and DON can negatively affect the health of shrimp, even at lower doses. But adding YCWE to the diets can effectively mitigate these negative effects.
Collapse
Affiliation(s)
- Xiao Li
- Key Laboratory of Aquaculture Nutrition and Feed, Ministry of Agriculture, The Key Laboratory of Mariculture, Ministry of Education, Ocean University of China, Qingdao 266003, PR China
| | - Jinzhu Yang
- Key Laboratory of Aquaculture Nutrition and Feed, Ministry of Agriculture, The Key Laboratory of Mariculture, Ministry of Education, Ocean University of China, Qingdao 266003, PR China
| | - Weijian Huang
- Key Laboratory of Aquaculture Nutrition and Feed, Ministry of Agriculture, The Key Laboratory of Mariculture, Ministry of Education, Ocean University of China, Qingdao 266003, PR China
| | - Gang Lin
- Institute of Quality Standards and Testing Technology for Agricultural Products, Chinese Academy of Agricultural Sciences, Beijing 100081, PR China
| | - Mingzhu Li
- School of Fisheries, Ludong University, Yantai 264025, PR China
| | - Kangsen Mai
- Key Laboratory of Aquaculture Nutrition and Feed, Ministry of Agriculture, The Key Laboratory of Mariculture, Ministry of Education, Ocean University of China, Qingdao 266003, PR China; Qingdao National Laboratory for Marine Science and Technology, Qingdao 266237, PR China
| | - Yanjiao Zhang
- Key Laboratory of Aquaculture Nutrition and Feed, Ministry of Agriculture, The Key Laboratory of Mariculture, Ministry of Education, Ocean University of China, Qingdao 266003, PR China; Qingdao National Laboratory for Marine Science and Technology, Qingdao 266237, PR China.
| |
Collapse
|
3
|
Jeong J, Kim J, Kim M, Lee B, Park C, Kim M. Effects of Deoxynivalenol Contamination on Growth Performance, Blood Biochemistry, Histology, Metabolomics, and the Microbiota: A Subacute Dose Oral Toxicity Study in Rats. Int J Mol Sci 2025; 26:3086. [PMID: 40243812 PMCID: PMC11988895 DOI: 10.3390/ijms26073086] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2025] [Revised: 03/19/2025] [Accepted: 03/25/2025] [Indexed: 04/18/2025] Open
Abstract
Deoxynivalenol (DON), one of the most common mycotoxins, is frequently found in foods. This study investigated the effects of orally administered DON on the blood biochemical parameters, growth performance, histology, microbial composition, and metabolism of rats. After a 1-week adaptation period, 4-week-old rats were administered 0.9% saline (control), 1 mg/L DON (T1), 10 mg/L DON (T2), or 50 mg/L DON (T3) by gavage for 49 days. The DON-treated groups had significantly lower body weights than the control group (p < 0.05). Blood alkaline phosphatase, phosphate, cholesterol, amylase, and creatinine levels differed significantly between the DON-treated and control groups (p < 0.05). With increasing DON doses, fibrosis and apoptosis were observed in several tissues. In terms of metabolites, the bile acid biosynthesis pathway emerged as a potential biomarker, while the tryptophan metabolism pathway was found to be the most affected. The fecal microbiota showed significant differences in both alpha and beta diversity between the DON-treated and control groups (p < 0.05). In the cecal and fecal microbiota, the relative abundance of Firmicutes increased in the control and T1 groups, whereas Bacteroidota and Campylobacterota were more abundant in the T2 and T3 groups. In conclusion, our results showed that high DON exposure induces several dose-dependent adverse effects on rats.
Collapse
Affiliation(s)
- Jinyoung Jeong
- Animal Nutrition and Physiology Division, National Institute of Animal Science, Wanju 55365, Republic of Korea; (J.K.); (M.K.)
| | - Junsik Kim
- Animal Nutrition and Physiology Division, National Institute of Animal Science, Wanju 55365, Republic of Korea; (J.K.); (M.K.)
| | - Minji Kim
- Animal Nutrition and Physiology Division, National Institute of Animal Science, Wanju 55365, Republic of Korea; (J.K.); (M.K.)
| | - Boram Lee
- Animal Biotechnology Division, National Institute of Animal Science, Wanju 55365, Republic of Korea;
| | - Cheolju Park
- Division of Animal Science, College of Agriculture and Life Sciences, Chonnam National University, Gwangju 61186, Republic of Korea; (C.P.); (M.K.)
| | - Minseok Kim
- Division of Animal Science, College of Agriculture and Life Sciences, Chonnam National University, Gwangju 61186, Republic of Korea; (C.P.); (M.K.)
| |
Collapse
|
4
|
Huang X, Feng R, Hu Q, Mao X, Zhou H. Contamination Status and Health Risk Assessment of 73 Mycotoxins in Four Edible and Medicinal Plants Using an Optimized QuEChERS Pretreatment Coupled with LC-MS/MS. Toxins (Basel) 2025; 17:52. [PMID: 39998069 PMCID: PMC11860848 DOI: 10.3390/toxins17020052] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2024] [Revised: 01/16/2025] [Accepted: 01/20/2025] [Indexed: 02/26/2025] Open
Abstract
The current status of multi-mycotoxin contamination in edible and medicinal plants demands urgent development of high-throughput analytical methods for mycotoxin detection. In this study, a reliable and sensitive method for the simultaneous analysis of 73 mycotoxins was established and successfully applied to detect mycotoxins in 260 samples of four dual-purpose plants (lotus seed, coix seed, licorice root, and dried tangerine peel). Sample preparation involved optimized QuEChERS (Quick, Easy, Cheap, Effective, Rugged, and Safe) extraction combined with liquid-liquid extraction purification, and an enhanced ion pair library was established to reduce matrix interference and improve the method's universality. Method validation demonstrated recovery rates ranging from 61.6% to 118.6% for all compounds, with relative standard deviations (RSDs) below 15%. The limits of detection (LODs) and quantification (LOQs) ranged from 0.25-12.25 μg/kg and 0.5-25 μg/kg, respectively. Based on the contamination analysis and health risk assessment using Margin of Exposure (MOE) and Hazard Index (HI) methods, we found that multi-mycotoxin contamination is highly prevalent in edible and medicinal plants, with different components being susceptible to invasion by distinct fungal genera. Seed-type plants showed high susceptibility to Aspergillus (53.3%) and Fusarium (22.2%) contamination, with MOE values below 10,000 for aflatoxins indicating potential health risks. Physical state and good storage conditions significantly influenced contamination levels, with fragmented samples showing substantially higher mycotoxin levels. Additionally, mycotoxins with associated biosynthetic metabolic pathways were frequently detected simultaneously in highly contaminated samples. Based on these findings, we recommend implementing strict moisture control during storage, maintaining intact product form where possible, and establishing comprehensive supplier qualification systems. This study provides valuable reference for monitoring mycotoxin contamination in similar plants.
Collapse
Affiliation(s)
| | | | | | | | - Heng Zhou
- Shanghai Institute for Food and Drug Control, Shanghai 201203, China
| |
Collapse
|
5
|
Peng X, Liu J, Liu C, Jiang X, Yang Y, Zhai S. Effects of embryo injected with ochratoxin A on growth performance, jejunal morphology and barrier of ducklings. Br Poult Sci 2024; 65:574-581. [PMID: 38995225 DOI: 10.1080/00071668.2024.2355638] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2023] [Accepted: 04/21/2024] [Indexed: 07/13/2024]
Abstract
1. This trial investigated the effect on embryo injected with ochratoxin A (OTA) and the growth performance, jejunal morphology and barrier of ducklings to 21 d old.2. Two hundred forty, fertilised eggs were individually weighed and randomly assigned to two groups, a control (CON) and the OTA treatment, according to average egg weight. On d 13 of embryonic development, the treatment group was injected with 8 ng OTA/g egg and the CON group was injected with NaHCO3 solution as a placebo. All newly hatched ducklings were assigned to the CON or OTA group based on the different treatments. Each treatment consisted of six replicates and each included 10 ducklings and the experiment lasted until 21 d of age.3. The results showed that embryos injected with OTA affected the 21 d body weight (BW) and average daily gain (ADG) of ducklings (p < 0.05). OTA exposure increased the relative weights of the liver, pancreas, gizzard, proventriculus and jejunum (p < 0.05); and decreased the relative length of the jejunum of ducklings (p < 0.05). Moreover, jejunal crypt depth increased (p < 0.05) and the villus height-to-crypt depth ratio (Vh/Cd) decreased in the OTA-injected group (p < 0.05). Compared with those in the CON group, the mRNA expression of Zonula Occludens-1; (ZO-1) (p = 0.0582) and Occludin; (p = 0.0687) in the OTA treatment group was downregulated.4. The findings demonstrated that a single low-dose injection of OTA increased body weight and daily gain in ducklings. Moreover, embryo exposure to OTA had negative effects with increased relative weight of organs and the jejunal crypt depth, decreased relative length of the intestine and mRNA expression of tight junctions (ZO-1, Occludin).
Collapse
Affiliation(s)
- X Peng
- College of Animal Science and Technology, Yangtze University, Jingzhou, China
| | - J Liu
- College of Animal Science and Technology, Yangtze University, Jingzhou, China
| | - C Liu
- College of Animal Science and Technology, Yangtze University, Jingzhou, China
| | - X Jiang
- College of Animal Science and Technology, Yangtze University, Jingzhou, China
| | - Y Yang
- College of Animal Science and Technology, Yangtze University, Jingzhou, China
| | - S Zhai
- College of Animal Science and Technology, Yangtze University, Jingzhou, China
| |
Collapse
|
6
|
Yeo YT, Lim CM, Huaco AIV, Chen WN. Food circular economy and safety considerations in waste management of urban manufacturing side streams. NPJ Sci Food 2024; 8:65. [PMID: 39284821 PMCID: PMC11405405 DOI: 10.1038/s41538-024-00309-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2023] [Accepted: 09/06/2024] [Indexed: 09/22/2024] Open
Abstract
In food circular economy, the utilization of food manufacturing side streams (FMSS) offers significant potential instead of being discarded. However, reincorporating FMSS into the food value chain raises food safety concerns due to potential food hazards. This perspective explores food safety risks associated with circular management of FMSS by using a 'Quad-Modal hazard dynamic' approach with case studies. Future research and advancements in food safety control strategies are also discussed.
Collapse
Affiliation(s)
- Ying Tong Yeo
- School of Chemistry, Chemical Engineering and Biotechnology, Nanyang Technological University, Singapore, 637459, Singapore
| | - Cia Min Lim
- School of Chemistry, Chemical Engineering and Biotechnology, Nanyang Technological University, Singapore, 637459, Singapore
| | - Alfonso Isaias Vargas Huaco
- School of Chemistry, Chemical Engineering and Biotechnology, Nanyang Technological University, Singapore, 637459, Singapore
| | - Wei Ning Chen
- School of Chemistry, Chemical Engineering and Biotechnology, Nanyang Technological University, Singapore, 637459, Singapore.
- Singapore Future Ready Food Safety Hub, 50 Nanyang Avenue, N1, B3C-41, Singapore, 639798, Singapore.
| |
Collapse
|
7
|
Muhmood A, Liu J, Liu D, Liu S, Azzam MM, Junaid MB, Hou L, Le G, Huang K. Mitigation of Deoxynivalenol (DON)- and Aflatoxin B1 (AFB1)-Induced Immune Dysfunction and Apoptosis in Mouse Spleen by Curcumin. Toxins (Basel) 2024; 16:356. [PMID: 39195766 PMCID: PMC11359138 DOI: 10.3390/toxins16080356] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2024] [Revised: 08/04/2024] [Accepted: 08/06/2024] [Indexed: 08/29/2024] Open
Abstract
In the context of the potential immunomodulatory properties of curcumin in counteracting the detrimental effects of concurrent exposure to Deoxynivalenol (DON) and Aflatoxin B1 (AFB1), a comprehensive 28-days trial was conducted utilizing 60 randomly allocated mice divided into four groups. Administration of curcumin at a dosage of 5 mg/kg body weight in conjunction with DON at 0.1 mg/kg and AFB1 at 0.01 mg/kg body weight was undertaken to assess its efficacy. Results indicated that curcumin intervention demonstrated mitigation of splenic structural damage, augmentation of serum immunoglobulin A (IgA) and immunoglobulin G (IgG) levels, elevation in T lymphocyte subset levels, and enhancement in the mRNA expression levels of pro-inflammatory cytokines TNF-α, IFN-γ, IL-2, and IL-6. Furthermore, curcumin exhibited a suppressive effect on apoptosis in mice, as evidenced by decreased activity of caspase-3 and caspase-9, reduced expression levels of pro-apoptotic markers Bax and Cytochrome-c (Cyt-c) at both the protein and mRNA levels, and the maintenance of a balanced expression ratio of mitochondrial apoptotic regulators Bax and Bcl-2. Collectively, these findings offer novel insights into the therapeutic promise of curcumin in mitigating immunosuppression and apoptotic events triggered by mycotoxin co-exposure.
Collapse
Affiliation(s)
- Azhar Muhmood
- College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, China; (A.M.); (J.L.); (D.L.); (S.L.); (L.H.); (G.L.)
- Institute of Animal Nutritional Health, Nanjing Agricultural University, Nanjing 210095, China
- MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, China
| | - Jianxin Liu
- College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, China; (A.M.); (J.L.); (D.L.); (S.L.); (L.H.); (G.L.)
- Institute of Animal Nutritional Health, Nanjing Agricultural University, Nanjing 210095, China
- MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, China
| | - Dandan Liu
- College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, China; (A.M.); (J.L.); (D.L.); (S.L.); (L.H.); (G.L.)
- Institute of Animal Nutritional Health, Nanjing Agricultural University, Nanjing 210095, China
- MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, China
| | - Shuiping Liu
- College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, China; (A.M.); (J.L.); (D.L.); (S.L.); (L.H.); (G.L.)
- Institute of Animal Nutritional Health, Nanjing Agricultural University, Nanjing 210095, China
- MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, China
| | - Mahmoud M. Azzam
- Animal Production Department, College of Food and Agriculture Sciences, King Saud University, Riyadh 11451, Saudi Arabia;
| | - Muhammad Bilawal Junaid
- Department of Plant Production, College of Food and Agriculture Sciences, King Saud University, Riyadh 11451, Saudi Arabia;
| | - Lili Hou
- College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, China; (A.M.); (J.L.); (D.L.); (S.L.); (L.H.); (G.L.)
- Institute of Animal Nutritional Health, Nanjing Agricultural University, Nanjing 210095, China
- MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, China
| | - Guannan Le
- College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, China; (A.M.); (J.L.); (D.L.); (S.L.); (L.H.); (G.L.)
- Institute of Animal Nutritional Health, Nanjing Agricultural University, Nanjing 210095, China
- MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, China
| | - Kehe Huang
- College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, China; (A.M.); (J.L.); (D.L.); (S.L.); (L.H.); (G.L.)
- Institute of Animal Nutritional Health, Nanjing Agricultural University, Nanjing 210095, China
- MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, China
| |
Collapse
|
8
|
Muhmood A, Tang J, Li J, Liu S, Hou L, Le G, Liu D, Huang K. No-observed adverse effect levels of deoxynivalenol and aflatoxin B1 in combination induced immune inhibition and apoptosis in vivo and in vitro. Food Chem Toxicol 2024; 189:114745. [PMID: 38763499 DOI: 10.1016/j.fct.2024.114745] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2024] [Revised: 04/29/2024] [Accepted: 05/16/2024] [Indexed: 05/21/2024]
Abstract
Mycotoxins are toxic metabolites produced by fungal species, commonly exist in animal feeds, and pose a serious risk to human as well as animal health. But limited studies have focused on combined effects of no-observed adverse effect levels. In vivo study, 6 weeks old twenty-four mice were individually exposed to Deoxynivalenol (DON) at 0.1 mg/kg BW, Aflatoxin B1 (AFB1) at 0.01 mg/kg BW, and mixture of DON and AFB1 (0.1 mg/kg BW and 0.01 mg/kg BW, respectively) for 28 days. Then, DON at 0.5 μg/mL, AFB1 at 0.04 μg/mL, and mixtures of DON and AFB1 (0.5 μg/mL, 0.04 μg/mL, respectively) were applied to porcine alveolar macrophages (PAMs) in vitro study. Our in vivo results revealed that the combined no-observed adverse effect levels of DON and AFB1 administration decreased IgA and IgG levels in the serum, the splenic TNF-α, IFN-γ, IL-2 and IL-6 mRNA expression and T-lymphocyte subset levels (CD4+ and CD8+) in the spleen. Additionally, the combined administration increased caspase-3, caspase-9, Bax, Cyt-c, and decreased Bcl-2 protein expression. Taken together, the combined no-observed adverse effect levels of DON and AFB1 could induce immunosuppression, which may be related to apoptosis. This study provides new insights into the combined immune toxicity (DON and AFB1).
Collapse
Affiliation(s)
- Azhar Muhmood
- College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, 210095, Jiangsu Province, China; Institute of Animal Nutritional Health, Nanjing Agricultural University, Nanjing, 210095, Jiangsu Province, China; MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, 210095, Jiangsu Province, China
| | - Jiangyu Tang
- College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, 210095, Jiangsu Province, China; Institute of Animal Nutritional Health, Nanjing Agricultural University, Nanjing, 210095, Jiangsu Province, China; MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, 210095, Jiangsu Province, China
| | - Jinyan Li
- College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, 210095, Jiangsu Province, China; Institute of Animal Nutritional Health, Nanjing Agricultural University, Nanjing, 210095, Jiangsu Province, China; MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, 210095, Jiangsu Province, China
| | - Shuiping Liu
- College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, 210095, Jiangsu Province, China; Institute of Animal Nutritional Health, Nanjing Agricultural University, Nanjing, 210095, Jiangsu Province, China; MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, 210095, Jiangsu Province, China
| | - Lili Hou
- College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, 210095, Jiangsu Province, China; Institute of Animal Nutritional Health, Nanjing Agricultural University, Nanjing, 210095, Jiangsu Province, China; MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, 210095, Jiangsu Province, China
| | - Guannan Le
- College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, 210095, Jiangsu Province, China; Institute of Animal Nutritional Health, Nanjing Agricultural University, Nanjing, 210095, Jiangsu Province, China; MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, 210095, Jiangsu Province, China
| | - Dandan Liu
- College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, 210095, Jiangsu Province, China; Institute of Animal Nutritional Health, Nanjing Agricultural University, Nanjing, 210095, Jiangsu Province, China; MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, 210095, Jiangsu Province, China
| | - Kehe Huang
- College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, 210095, Jiangsu Province, China; Institute of Animal Nutritional Health, Nanjing Agricultural University, Nanjing, 210095, Jiangsu Province, China; MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, 210095, Jiangsu Province, China.
| |
Collapse
|
9
|
Ma Z, He Y, Li Y, Wang Q, Fang M, Yang Q, Gong Z, Xu L. Effects of Deoxynivalenol and Its Acetylated Derivatives on Lipid Metabolism in Human Normal Hepatocytes. Toxins (Basel) 2024; 16:294. [PMID: 39057934 PMCID: PMC11281666 DOI: 10.3390/toxins16070294] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2024] [Revised: 06/08/2024] [Accepted: 06/14/2024] [Indexed: 07/28/2024] Open
Abstract
Deoxynivalenol (DON), 3-acetyldeoxynivalenol (3-ADON) and 15-acetyldeoxynivalenol (15-ADON) belong to type B trichothecenes that are widely detected in agricultural products as one of the most common classes of mycotoxins. In the present study, we aimed to characterize the alteration of lipid metabolism in normal human hepatocytes by poisoning with DON and its acetylated derivatives. After verifying the hepatotoxicity of the three toxins, DON, 15-ADON, and 3-ADON, the mRNA expression was determined by transcriptomics, and the results showed that DON and 15-ADON had a significant regulatory effect on the transcriptome, in which glycerophospholipid metabolism pathway and phospholipase D signaling pathways have not been reported in studies of DON and its acetylated derivatives. For further validation, we explored lipid metabolism in depth and found that PC (15:0/16:0), PC (16:1/18:3), PC (18:1/22:6), PC (16:0/16:0), PC (16:0/16:1), PC (16:1/18:1), PC (14:0/18:2), PE (14:0/16:0) and PE (18:1/18:3) were downregulated for all nine lipids. Combined with the transcriptome results, we found that hepatic steatosis induced by the three toxins, DON, 15-ADON and 3-ADON, was associated with altered expression of genes related to lipid oxidation, lipogenesis and lipolysis, and their effects on lipid metabolism in L-02 cells were mainly realized through the PC-PE cycle.
Collapse
Affiliation(s)
- Zhaoqing Ma
- College of Food Scienceand Engineering, Wuhan Polytechnic University, Wuhan 430023, China
| | - Yuyun He
- College of Food Scienceand Engineering, Wuhan Polytechnic University, Wuhan 430023, China
| | - Yuzhi Li
- College of Food Scienceand Engineering, Wuhan Polytechnic University, Wuhan 430023, China
- Key Laboratory for Deep Processing of Major Grain and Oil, Ministry of Education, Wuhan 430023, China
- Hubei Key Laboratory for Processing and Transformation of Agricultural Products, Wuhan 430023, China
- Key Laboratory of Detection Technology of Focus Chemical Hazards in Animal-Derived Food for State Market Regulation, Wuhan 430075, China
| | - Qiao Wang
- College of Food Scienceand Engineering, Wuhan Polytechnic University, Wuhan 430023, China
- Key Laboratory for Deep Processing of Major Grain and Oil, Ministry of Education, Wuhan 430023, China
- Hubei Key Laboratory for Processing and Transformation of Agricultural Products, Wuhan 430023, China
| | - Min Fang
- College of Food Scienceand Engineering, Wuhan Polytechnic University, Wuhan 430023, China
- Key Laboratory for Deep Processing of Major Grain and Oil, Ministry of Education, Wuhan 430023, China
- Hubei Key Laboratory for Processing and Transformation of Agricultural Products, Wuhan 430023, China
| | - Qing Yang
- College of Food Scienceand Engineering, Wuhan Polytechnic University, Wuhan 430023, China
- Key Laboratory for Deep Processing of Major Grain and Oil, Ministry of Education, Wuhan 430023, China
- Hubei Key Laboratory for Processing and Transformation of Agricultural Products, Wuhan 430023, China
| | - Zhiyong Gong
- College of Food Scienceand Engineering, Wuhan Polytechnic University, Wuhan 430023, China
- Key Laboratory for Deep Processing of Major Grain and Oil, Ministry of Education, Wuhan 430023, China
- Hubei Key Laboratory for Processing and Transformation of Agricultural Products, Wuhan 430023, China
| | - Lin Xu
- College of Food Scienceand Engineering, Wuhan Polytechnic University, Wuhan 430023, China
- Key Laboratory for Deep Processing of Major Grain and Oil, Ministry of Education, Wuhan 430023, China
- Hubei Key Laboratory for Processing and Transformation of Agricultural Products, Wuhan 430023, China
| |
Collapse
|
10
|
Murtaza B, Li X, Nawaz MY, Saleemi MK, Li G, Jin B, Wang L, Xu Y. Toxicodynamic of combined mycotoxins: MicroRNAs and acute-phase proteins as diagnostic biomarkers. Compr Rev Food Sci Food Saf 2024; 23:e13338. [PMID: 38629461 DOI: 10.1111/1541-4337.13338] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2023] [Revised: 02/18/2024] [Accepted: 03/19/2024] [Indexed: 04/19/2024]
Abstract
Mycotoxins, ubiquitous contaminants in food, present a global threat to human health and well-being. Mitigation efforts, such as the implementation of sound agricultural practices, thorough food processing, and the advancement of mycotoxin control technologies, have been instrumental in reducing mycotoxin exposure and associated toxicity. To comprehensively assess mycotoxins and their toxicodynamic implications, the deployment of effective and predictive strategies is imperative. Understanding the manner of action, transformation, and cumulative toxic effects of mycotoxins, moreover, their interactions with food matrices can be gleaned through gene expression and transcriptome analyses at cellular and molecular levels. MicroRNAs (miRNAs) govern the expression of target genes and enzymes that play pivotal roles in physiological, pathological, and toxicological responses, whereas acute phase proteins (APPs) exert regulatory control over the metabolism of therapeutic agents, both endogenously and posttranscriptionally. Consequently, this review aims to consolidate current knowledge concerning the regulatory role of miRNAs in the initiation of toxicological pathways by mycotoxins and explores the potential of APPs as biomarkers following mycotoxin exposure. The findings of this research highlight the potential utility of miRNAs and APPs as indicators for the detection and management of mycotoxins in food through biological processes. These markers offer promising avenues for enhancing the safety and quality of food products.
Collapse
Affiliation(s)
- Bilal Murtaza
- School of Bioengineering, Dalian University of Technology, Dalian, China
- Dalian SEM Bioengineering Technology Co., Ltd, Dalian, China
| | - Xiaoyu Li
- School of Bioengineering, Dalian University of Technology, Dalian, China
- MOE Key Laboratory of Bio-Intelligent Manufacturing, School of Bioengineering, Dalian University of Technology, Dalian, Liaoning, China
| | | | | | - Gen Li
- School of Bioengineering, Dalian University of Technology, Dalian, China
| | - Bowen Jin
- School of Bioengineering, Dalian University of Technology, Dalian, China
| | - Lili Wang
- School of Bioengineering, Dalian University of Technology, Dalian, China
- MOE Key Laboratory of Bio-Intelligent Manufacturing, School of Bioengineering, Dalian University of Technology, Dalian, Liaoning, China
| | - Yongping Xu
- School of Bioengineering, Dalian University of Technology, Dalian, China
- Dalian SEM Bioengineering Technology Co., Ltd, Dalian, China
- MOE Key Laboratory of Bio-Intelligent Manufacturing, School of Bioengineering, Dalian University of Technology, Dalian, Liaoning, China
| |
Collapse
|
11
|
Khan R, Anwar F, Ghazali FM. A comprehensive review of mycotoxins: Toxicology, detection, and effective mitigation approaches. Heliyon 2024; 10:e28361. [PMID: 38628751 PMCID: PMC11019184 DOI: 10.1016/j.heliyon.2024.e28361] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2023] [Revised: 01/19/2024] [Accepted: 01/21/2024] [Indexed: 04/19/2024] Open
Abstract
Mycotoxins, harmful compounds produced by fungal pathogens, pose a severe threat to food safety and consumer health. Some commonly produced mycotoxins such as aflatoxins, ochratoxin A, fumonisins, trichothecenes, zearalenone, and patulin have serious health implications in humans and animals. Mycotoxin contamination is particularly concerning in regions heavily reliant on staple foods like grains, cereals, and nuts. Preventing mycotoxin contamination is crucial for a sustainable food supply. Chromatographic methods like thin layer chromatography (TLC), gas chromatography (GC), high-performance liquid chromatography (HPLC), and liquid chromatography coupled with a mass spectrometer (LC/MS), are commonly used to detect mycotoxins; however, there is a need for on-site, rapid, and cost-effective detection methods. Currently, enzyme-linked immunosorbent assays (ELISA), lateral flow assays (LFAs), and biosensors are becoming popular analytical tools for rapid detection. Meanwhile, preventing mycotoxin contamination is crucial for food safety and a sustainable food supply. Physical, chemical, and biological approaches have been used to inhibit fungal growth and mycotoxin production. However, new strains resistant to conventional methods have led to the exploration of novel strategies like cold atmospheric plasma (CAP) technology, polyphenols and flavonoids, magnetic materials and nanoparticles, and natural essential oils (NEOs). This paper reviews recent scientific research on mycotoxin toxicity, explores advancements in detecting mycotoxins in various foods, and evaluates the effectiveness of innovative mitigation strategies for controlling and detoxifying mycotoxins.
Collapse
Affiliation(s)
- Rahim Khan
- Department of Food Science, Faculty of Food Science and Technology, Universiti Putra Malaysia, 43400, UPM, Serdang, Malaysia
| | - Farooq Anwar
- Department of Food Science, Faculty of Food Science and Technology, Universiti Putra Malaysia, 43400, UPM, Serdang, Malaysia
- Institute of Chemistry, University of Sargodha, Sargodha, 40100, Pakistan
| | - Farinazleen Mohamad Ghazali
- Department of Food Science, Faculty of Food Science and Technology, Universiti Putra Malaysia, 43400, UPM, Serdang, Malaysia
| |
Collapse
|
12
|
Ofori-Attah E, Hashimoto M, Oki M, Kadowaki D. Therapeutic Effect of Natural Products and Dietary Supplements on Aflatoxin-Induced Nephropathy. Int J Mol Sci 2024; 25:2849. [PMID: 38474096 PMCID: PMC10932067 DOI: 10.3390/ijms25052849] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2023] [Revised: 02/20/2024] [Accepted: 02/27/2024] [Indexed: 03/14/2024] Open
Abstract
Aflatoxins are harmful natural contaminants found in foods and are known to be hepatotoxic. However, recent studies have linked chronic consumption of aflatoxins to nephrotoxicity in both animals and humans. Here, we conducted a systematic review of active compounds, crude extracts, herbal formulations, and probiotics against aflatoxin-induced renal dysfunction, highlighting their mechanisms of action in both in vitro and in vivo studies. The natural products and dietary supplements discussed in this study alleviated aflatoxin-induced renal oxidative stress, inflammation, tissue damage, and markers of renal function, mostly in animal models. Therefore, the information provided in this review may improve the management of kidney disease associated with aflatoxin exposure and potentially aid in animal feed supplementation. However, future research is warranted to translate the outcomes of this study into clinical use in kidney patients.
Collapse
Affiliation(s)
- Ebenezer Ofori-Attah
- Faculty of Pharmaceutical Sciences, Sojo University, 4-22-1 Ikeda, Nishi-Ku, Kumamoto 860-0082, Japan; (M.H.); (M.O.)
| | - Mai Hashimoto
- Faculty of Pharmaceutical Sciences, Sojo University, 4-22-1 Ikeda, Nishi-Ku, Kumamoto 860-0082, Japan; (M.H.); (M.O.)
| | - Mayu Oki
- Faculty of Pharmaceutical Sciences, Sojo University, 4-22-1 Ikeda, Nishi-Ku, Kumamoto 860-0082, Japan; (M.H.); (M.O.)
| | - Daisuke Kadowaki
- Faculty of Pharmaceutical Sciences, Sojo University, 4-22-1 Ikeda, Nishi-Ku, Kumamoto 860-0082, Japan; (M.H.); (M.O.)
- DDS Research Institute, Sojo University, 4-22-1 Ikeda, Nishi-Ku, Kumamoto 860-0082, Japan
| |
Collapse
|
13
|
Moulahoum H, Ghorbanizamani F, Beduk T, Beduk D, Ozufuklar O, Guler Celik E, Timur S. Emerging trends in nanomaterial design for the development of point-of-care platforms and practical applications. J Pharm Biomed Anal 2023; 235:115623. [PMID: 37542827 DOI: 10.1016/j.jpba.2023.115623] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2023] [Revised: 07/25/2023] [Accepted: 07/31/2023] [Indexed: 08/07/2023]
Abstract
Nanomaterials and nanotechnology offer promising opportunities in point-of-care (POC) diagnostics and therapeutics due to their unique physical and chemical properties. POC platforms aim to provide rapid and portable diagnostic and therapeutic capabilities at the site of patient care, offering cost-effective solutions. Incorporating nanomaterials with distinct optical, electrical, and magnetic properties can revolutionize the POC industry, significantly enhancing the effectiveness and efficiency of diagnostic and theragnostic devices. By leveraging nanoparticles and nanofibers in POC devices, nanomaterials have the potential to improve the accuracy and speed of diagnostic tests, making them more practical for POC settings. Technological advancements, such as smartphone integration, imagery instruments, and attachments, complement and expand the application scope of POCs, reducing invasiveness by enabling analysis of various matrices like saliva and breath. These integrated testing platforms facilitate procedures without compromising diagnosis quality. This review provides a summary of recent trends in POC technologies utilizing nanomaterials and nanotechnologies for analyzing disease biomarkers. It highlights advances in device development, nanomaterial design, and their applications in POC. Additionally, complementary tools used in POC and nanomaterials are discussed, followed by critical analysis of challenges and future directions for these technologies.
Collapse
Affiliation(s)
- Hichem Moulahoum
- Biochemistry Department, Faculty of Science, Ege University, 35100 Bornova, Izmir, Turkey
| | - Faezeh Ghorbanizamani
- Biochemistry Department, Faculty of Science, Ege University, 35100 Bornova, Izmir, Turkey
| | - Tutku Beduk
- Silicon Austria Labs GmbH: Sensor Systems, Europastrasse 12, Villach 9524, Austria
| | - Duygu Beduk
- Central Research Testing and Analysis Laboratory Research and Application Center, Ege University, 35100 Bornova, Izmir, Turkey
| | - Ozge Ozufuklar
- Department of Biotechnology, Institute of Natural Sciences, Ege University, Izmir 35100, Turkey
| | - Emine Guler Celik
- Bioengineering Department, Faculty of Engineering, 35100 Bornova, Izmir, Turkey
| | - Suna Timur
- Biochemistry Department, Faculty of Science, Ege University, 35100 Bornova, Izmir, Turkey; Central Research Testing and Analysis Laboratory Research and Application Center, Ege University, 35100 Bornova, Izmir, Turkey.
| |
Collapse
|
14
|
Gajęcka M, Otrocka-Domagała I, Brzuzan P, Zielonka Ł, Dąbrowski M, Gajęcki MT. Influence of deoxynivalenol and zearalenone on the immunohistochemical expression of oestrogen receptors and liver enzyme genes in vivo in prepubertal gilts. Arch Toxicol 2023; 97:2155-2168. [PMID: 37328583 PMCID: PMC10322793 DOI: 10.1007/s00204-023-03502-7] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2023] [Accepted: 04/20/2023] [Indexed: 06/18/2023]
Abstract
Deoxynivalenol (DON) and zearalenone (ZEN) are often detected in plant materials used to produce feed for pre-pubertal gilts. Daily exposure to small amounts of these mycotoxins causes subclinical conditions in pigs and affects various biological processes (e.g. mycotoxin biotransformation). The aim of this preclinical study was to evaluate the effect of low monotonic doses of DON and ZEN (12 µg/kg body weight-BW-and 40 µg/kg BW, respectively), administered alone or in combination to 36 prepubertal gilts for 42 days, on the degree of immunohistochemical expression of oestrogen receptors (ERs) in the liver and the mRNA expression of genes encoding selected liver enzymes during biotransformation processes. The level of expression of the analysed genes proves that the tested mycotoxins exhibit variable biological activity at different stages of biotransformation. The biological activity of low doses of mycotoxins determines their metabolic activity. Therefore, taking into account the impact of low doses of mycotoxins on energy-intensive processes and their endogenous metabolism, it seems that the observed situation may lead to the activation of adaptation mechanisms.
Collapse
Affiliation(s)
- Magdalena Gajęcka
- Department of Veterinary Prevention and Feed Hygiene, Faculty of Veterinary Medicine, University of Warmia and Mazury in Olsztyn, Oczapowskiego 13/29, 10-718, Olsztyn, Poland
| | - Iwona Otrocka-Domagała
- Department of Pathological Anatomy, Faculty of Veterinary Medicine, University of Warmia and Mazury in Olsztyn, Oczapowskiego 13D, 10-718, Olsztyn, Poland
| | - Paweł Brzuzan
- Department of Environmental Biotechnology, Faculty of Environmental Sciences and Fisheries, University of Warmia and Mazury in Olsztyn, Słoneczna 45G, 10-719, Olsztyn, Poland
| | - Łukasz Zielonka
- Department of Veterinary Prevention and Feed Hygiene, Faculty of Veterinary Medicine, University of Warmia and Mazury in Olsztyn, Oczapowskiego 13/29, 10-718, Olsztyn, Poland
| | - Michał Dąbrowski
- Department of Veterinary Prevention and Feed Hygiene, Faculty of Veterinary Medicine, University of Warmia and Mazury in Olsztyn, Oczapowskiego 13/29, 10-718, Olsztyn, Poland
| | - Maciej T. Gajęcki
- Department of Veterinary Prevention and Feed Hygiene, Faculty of Veterinary Medicine, University of Warmia and Mazury in Olsztyn, Oczapowskiego 13/29, 10-718, Olsztyn, Poland
| |
Collapse
|
15
|
Mandal P, Lanaridi O, Warth B, Ansari KM. Metabolomics as an emerging approach for deciphering the biological impact and toxicity of food contaminants: the case of mycotoxins. Crit Rev Food Sci Nutr 2023; 64:9859-9883. [PMID: 37283072 DOI: 10.1080/10408398.2023.2217451] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
Exposure to mycotoxins through the dietary route occurs on a daily basis while their deleterious effects are exhibited in the form of ailments, such as inflammation, cancer, and hormonal imbalance. The negative impact of mycotoxins can be attributed to their interaction with various biomolecules and their interference in metabolic pathways. The activity of biomolecules, such as enzymes/receptors, which engage the intricate mechanism of endogenous metabolism, is more susceptible to disruption by metabolites of high toxicity, which gives rise to adverse health effects. Metabolomics is a useful analytical approach that can assist in unraveling such information. It can simultaneously and comprehensively analyze a large number of endogenous and exogenous molecules present in biofluids and can, thus, reveal biologically relevant perturbations following mycotoxin exposure. Information provided by genome, transcriptome and proteome analyses, which have been utilized for the elucidation of biological mechanisms so far, are further complemented by the addition of metabolomics in the available bioanalytics toolbox. Metabolomics can offer insight into complex biological processes and their respective response to several (co-)exposures. This review focuses on the most extensively studied mycotoxins reported in literature and their respective impact on the metabolome upon exposure.
Collapse
Affiliation(s)
- Payal Mandal
- Food Toxicology Laboratory, Food, Drug and Chemical Toxicology Group, CSIR-Indian Institute of Toxicology Research, Lucknow, Uttar Pradesh, India
| | - Olga Lanaridi
- Department of Food Chemistry and Toxicology, Faculty of Chemistry, University of Vienna, Vienna, Austria
| | - Benedikt Warth
- Department of Food Chemistry and Toxicology, Faculty of Chemistry, University of Vienna, Vienna, Austria
| | - Kausar M Ansari
- Food Toxicology Laboratory, Food, Drug and Chemical Toxicology Group, CSIR-Indian Institute of Toxicology Research, Lucknow, Uttar Pradesh, India
| |
Collapse
|
16
|
Gao Z, Luo K, Zhu Q, Peng J, Liu C, Wang X, Li S, Zhang H. The natural occurrence, toxicity mechanisms and management strategies of Fumonisin B1:A review. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2023; 320:121065. [PMID: 36639041 DOI: 10.1016/j.envpol.2023.121065] [Citation(s) in RCA: 33] [Impact Index Per Article: 16.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/22/2022] [Revised: 12/30/2022] [Accepted: 01/09/2023] [Indexed: 06/17/2023]
Abstract
Fumonisin B1 (FB1) contaminates various crops, causing huge losses to agriculture and livestock worldwide. This review summarizes the occurrence regularity, toxicity, toxic mechanisms and management strategies of FB1. Specifically, FB1 contamination is particularly serious in developing countries, humid and hot regions. FB1 exposure can produce different toxic effects on the nervous system, respiratory system, digestive system and reproductive system. Furthermore, FB1 can also cause systemic immunotoxicity. The mechanism of toxic effects of FB1 is to interfere with the normal pathway of sphingolipid de novo biosynthesis by acting as a competitive inhibitor of ceramide synthase. Meanwhile, the toxic products of sphingolipid metabolic disorders can cause oxidative stress and apoptosis. FB1 also often causes feed contamination by mixing with other mycotoxins, and then exerts combined toxicity. For detection, lateral flow dipstick technology and enzyme linked immunosorbent assay are widely used in the detection of FB1 in commercial feeds, while mainstream detection methods such as high performance liquid chromatography and liquid chromatography-mass spectrometry are widely used in the laboratory theoretical study of FB1. For purification means of FB1, some natural plant extracts (such as Zingiber officinale and Litsea Cubeba essential oil) and their active compounds have been proved to inhibit the toxic effects of FB1 and protect livestock due to their antifungal and antioxidant effects. Natural plant extract has the advantages of high efficiency, low cost and no contamination residue. This review can provide information for comprehensive understanding of FB1, and provide reference for formulating reasonable treatment and management strategies in livestock production.
Collapse
Affiliation(s)
- Zhicheng Gao
- Guangdong Provincial Key Laboratory of Prevention and Control for Severe Clinical Animal Diseases, College of Veterinary Medicine, South China Agricultural University, Guangzhou, Guangdong Province, 510642, People's Republic of China
| | - Kangxin Luo
- Guangdong Provincial Key Laboratory of Prevention and Control for Severe Clinical Animal Diseases, College of Veterinary Medicine, South China Agricultural University, Guangzhou, Guangdong Province, 510642, People's Republic of China
| | - Qiuxiang Zhu
- Guangdong Provincial Key Laboratory of Prevention and Control for Severe Clinical Animal Diseases, College of Veterinary Medicine, South China Agricultural University, Guangzhou, Guangdong Province, 510642, People's Republic of China
| | - Jinghui Peng
- Guangdong Provincial Key Laboratory of Prevention and Control for Severe Clinical Animal Diseases, College of Veterinary Medicine, South China Agricultural University, Guangzhou, Guangdong Province, 510642, People's Republic of China
| | - Chang Liu
- Guangdong Provincial Key Laboratory of Prevention and Control for Severe Clinical Animal Diseases, College of Veterinary Medicine, South China Agricultural University, Guangzhou, Guangdong Province, 510642, People's Republic of China
| | - Xiaoyue Wang
- Guangdong Provincial Key Laboratory of Prevention and Control for Severe Clinical Animal Diseases, College of Veterinary Medicine, South China Agricultural University, Guangzhou, Guangdong Province, 510642, People's Republic of China
| | - Shoujun Li
- Guangdong Provincial Key Laboratory of Prevention and Control for Severe Clinical Animal Diseases, College of Veterinary Medicine, South China Agricultural University, Guangzhou, Guangdong Province, 510642, People's Republic of China
| | - Haiyang Zhang
- Guangdong Provincial Key Laboratory of Prevention and Control for Severe Clinical Animal Diseases, College of Veterinary Medicine, South China Agricultural University, Guangzhou, Guangdong Province, 510642, People's Republic of China.
| |
Collapse
|
17
|
Girón-Pérez MI, Mary VS, Rubinstein HR, Toledo-Ibarra GA, Theumer MG. Diazinon toxicity in hepatic and spleen mononuclear cells is associated to early induction of oxidative stress. INTERNATIONAL JOURNAL OF ENVIRONMENTAL HEALTH RESEARCH 2022; 32:2309-2323. [PMID: 34404283 DOI: 10.1080/09603123.2021.1962814] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/05/2021] [Accepted: 07/27/2021] [Indexed: 06/13/2023]
Abstract
Diazinon is an organophosphorus pesticide, which may have potential toxic effects on the liver and immune system; however, the underlying mechanisms remain mostly unidentified. This work is aimed at evaluating the oxidative stress and cell cycle alterations elicited by low-dose diazinon in a rat liver cell line (BRL-3A) and spleen mononuclear cells (SMC) from Wistar rats. Diazinon (10-50 μM) caused early reactive oxygen species (ROS) generation (from 4 h) as well as increased O2•- level (from 0.5 h), which led to subsequent lipid peroxidation at 24 h, in BRL-3A cells. In SMC, diazinon (20 μM) produced similar increases in ROS levels, at 4 and 24 h, with the highest O2•- level being found at 4 h. Low-dose diazinon induced G1-phase arrest and cell death in hepatic cells and SMC. Therefore, diazinon could affect the liver and the immunological system through the premature oxidative stress induction.Abbreviations: O2•-: superoxide anion radical; ROS: reactive oxygen species; SMC: spleen mononuclear cells; TBARS: thiobarbituric acid reactive substances.
Collapse
Affiliation(s)
- Manuel Iván Girón-Pérez
- Universidad Autónoma de Nayarit,Secretaría de Investigación Y Posgrado, Laboratorio de Inmunotoxicología, Boulevard Tepic-Xalisco S/n, Cd de La Cultura Amado Nervo, C.P, Tepic, Nayarit, Mexico
| | - Verónica S Mary
- Departamento De Bioquímica Clínica, Facultad De Ciencias Químicas, Universidad Nacional De Córdoba (UNC), Córdoba, Argentina
- Consejo Nacional de Investigaciones Científicas Y Técnicas (CONICET), Centro de Investigaciones En Bioquímica Clínica E Inmunología (CIBICI), Córdoba, Argentina
| | - Héctor R Rubinstein
- Departamento De Bioquímica Clínica, Facultad De Ciencias Químicas, Universidad Nacional De Córdoba (UNC), Córdoba, Argentina
- Consejo Nacional de Investigaciones Científicas Y Técnicas (CONICET), Centro de Investigaciones En Bioquímica Clínica E Inmunología (CIBICI), Córdoba, Argentina
| | - Gladys A Toledo-Ibarra
- Universidad Autónoma de Nayarit,Secretaría de Investigación Y Posgrado, Laboratorio de Inmunotoxicología, Boulevard Tepic-Xalisco S/n, Cd de La Cultura Amado Nervo, C.P, Tepic, Nayarit, Mexico
| | - Martín G Theumer
- Departamento De Bioquímica Clínica, Facultad De Ciencias Químicas, Universidad Nacional De Córdoba (UNC), Córdoba, Argentina
- Consejo Nacional de Investigaciones Científicas Y Técnicas (CONICET), Centro de Investigaciones En Bioquímica Clínica E Inmunología (CIBICI), Córdoba, Argentina
| |
Collapse
|
18
|
Jing S, Liu C, Zheng J, Dong Z, Guo N. Toxicity of zearalenone and its nutritional intervention by natural products. Food Funct 2022; 13:10374-10400. [PMID: 36165278 DOI: 10.1039/d2fo01545e] [Citation(s) in RCA: 30] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Zearalenone (ZEN) is a toxic secondary metabolite mainly produced by fungi of the genus Fusarium, and is often present in various food and feed ingredients such as corn and wheat. The structure of ZEN is similar to that of natural estrogen, and it can bind to estrogen receptors and has estrogenic activity. Therefore, it can cause endocrine-disrupting effects and promote the proliferation of estrogen receptor-positive cell lines. In addition, ZEN can cause oxidative damage, endoplasmic reticulum stress, apoptosis, and other hazards, resulting in systemic toxic effects, including reproductive toxicity, hepatotoxicity, and immunotoxicity. In the past few decades, researchers have tried many ways to remove ZEN from food and feed, but it is still a challenge to eliminate it. In recent years, natural compounds have become of interest for their excellent protective effects on human health from food contaminants. Researchers have discovered that natural compounds often used as dietary supplements can effectively alleviate ZEN-induced systemic toxic effects. Most of the compounds mitigate ZEN-induced toxicity through antioxidant effects. In this article, the contamination of food and feed by ZEN and the various toxic effects and mechanisms of ZEN are reviewed, as well as the mitigation effects of natural compounds on ZEN-induced toxicity.
Collapse
Affiliation(s)
- Siyuan Jing
- College of Food Science and Engineering, Jilin University, Changchun 130062, China.
| | - Chunmei Liu
- College of Food Science and Engineering, Jilin University, Changchun 130062, China.
| | - Jian Zheng
- College of Food Science and Engineering, Jilin University, Changchun 130062, China.
| | - Zhijian Dong
- College of Food Science and Engineering, Jilin University, Changchun 130062, China.
| | - Na Guo
- College of Food Science and Engineering, Jilin University, Changchun 130062, China.
| |
Collapse
|
19
|
A Novel Lateral Flow Immunochromatographic Assay for Rapid and Simultaneous Detection of Aflatoxin B1 and Zearalenone in Food and Feed Samples Based on Highly Sensitive and Specific Monoclonal Antibodies. Toxins (Basel) 2022; 14:toxins14090615. [PMID: 36136553 PMCID: PMC9505352 DOI: 10.3390/toxins14090615] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2022] [Revised: 08/28/2022] [Accepted: 08/31/2022] [Indexed: 12/02/2022] Open
Abstract
Simultaneous aflatoxin (AFB1) and zearalenone (ZEN) contamination in agro-products have become widespread globally and have a toxic superposition effect. In the present study, we describe a highly sensitive and specific dual lateral flow immunochromatographic assay (dual test strip) for rapid and simultaneous detection of AFB1 and ZEN in food and feed samples based on respective monoclonal antibodies (mAbs). Two immunogens AFB1-BSA (an AFB1 and bovine serum albumin (BSA) conjugate) and ZEN-BSA (a ZEN and BSA conjugate) were synthesized in oximation active ester (OAE) and amino glutaraldehyde (AGA). The molecular binding ratio of AFB1:BSA was 8.64:1, and that of ZEN:BSA was 17.2:1, identified by high-resolution mass spectrometry (HRMS) and an ultraviolet spectrometer (UV). The hybridoma cell lines 2A11, 2F6, and 3G2 for AFB1 and 2B6, 4D9 for ZEN were filtered by an indirect non-competitive enzyme-linked immunosorbent assay (inELISA) and an indirect competitive enzyme-linked immunosorbent assay (icELISA), respectively. As AFB1 mAb 2A11 and ZEN mAb 2B6 had the lowest 50% inhibitive concentration (IC50) and cross-reactivity (CR), they were selected for subsequent experiments. By systematically optimizing the preparation condition of gold nanoparticles (AuNPs), AuNPs-labeled mAbs, and detection condition, the visual limit of detection (LOD) of the dual test strip was 1.0 μg/L for AFB1 and 5.0 μg/L for ZEN, whereas that of the test strip reader was 0.23 μg/L for AFB1 and 1.53 μg/L for ZEN. The high reproducibility and stability of the dual test were verified using mycotoxin-spiked samples. The dual test strips were highly specific and sensitive for AFB1 and ZEN, which were validated using liquid chromatography-tandem mass spectrometry (LC-MS/MS). Thus, the proposed AFB1 and ZEN dual test strip is suitable for rapid and simultaneous detection of AFB1 and ZEN contamination in food and feed samples.
Collapse
|
20
|
Liu J, Jiang X, Peng X, Yuan Y, Shen Y, Li Y, Yan Z, Yuan X, Yang Y, Zhai S. Effects of embryo injected with ochratoxins A on hatching quality and jejunum antioxidant capacity of ducks at hatching. Front Vet Sci 2022; 9:944891. [PMID: 36118355 PMCID: PMC9472544 DOI: 10.3389/fvets.2022.944891] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2022] [Accepted: 07/19/2022] [Indexed: 11/21/2022] Open
Abstract
Numerous studies have shown that ochratoxins A (OTA) exerts diverse toxicological effects, namely, hepatotoxicity, nephrotoxicity, genotoxicity, enterotoxicity, and immunotoxicity. The main objective of this study was to investigate the influence of embryonic exposure to OTA by different injection times and OTA doses on hatching quality and jejunal antioxidant capacity of ducks at hatching. In total, 480 fertilized eggs were weighed and randomly assigned into a 4 × 4 factorial design including four OTA doses (0, 2, 4, and 8 ng/g egg) on 8, 13, 18, and 23 of embryonic development (E8, E13, E18, and E23). Each treatment included 6 repeats with 5 eggs per repeat. The results showed that the injection time affected the hatching weight (P < 0.0001). The relative length of the jejunum and ileum on E18 and E23 was lower than on E8 and E13 (P < 0.05). Injection time, doses, and their interaction had no effect on jejunum morphology, namely, villous height (Vh), crypt depth (Cd), and villous height/crypt depth ratio Vh/Cd (P > 0.05). The injection time affected the activities of Superoxide dismutase (SOD) (P < 0.0001), total antioxidant capacity (T-AOC) (P < 0.05) and the malondialdehyde (MDA) content (P < 0.0001). The activity of SOD and T-AOC activities in the jejunum of ducklings injected with OTA at the E8 and E13 was lower than that injected at the E18 (P < 0.05). The highest MDA content was observed in ducklings injected with OTA at the E13 (P < 0.05). The injection time (P < 0.0001), OTA doses and their interaction affected the contents of IL-1β (P < 0.05), which significantly increased especially on E13. In conclusion, the embryo injected with ochratoxins A affected the hatching weight, the relative length of jejunum and ileum, decreased the antioxidant capacity and increased the content of proinflammatory cytokine IL-1β of the jejunum.
Collapse
|
21
|
Feng YQ, Zhao AH, Wang JJ, Tian Y, Yan ZH, Dri M, Shen W, De Felici M, Li L. Oxidative stress as a plausible mechanism for zearalenone to induce genome toxicity. Gene 2022; 829:146511. [PMID: 35447234 DOI: 10.1016/j.gene.2022.146511] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2021] [Revised: 02/27/2022] [Accepted: 04/14/2022] [Indexed: 02/07/2023]
Abstract
Zearalenone (ZEN), a common non-steroidal estrogenic mycotoxin of the Fusarium genus, is one of the most frequent and powerful contaminant of grains and cereal products representing a serious threat for people and livestock health. In fact, ZEN causes cytotoxicity and genotoxicity in a variety of cell types at least in part through binding to estrogen receptors (ERs). The main pathways through which ZEN induces such effects remain, however, elusive. In particular, how the mycotoxin causes DNA damage, dysregulates DNA repair mechanisms, changes epigenome of targeted cells and, not least, affects chromatin conformation and non-coding RNA (ncRNA), is unclear. In the present paper, following extensive review of the literature about such ZEN effects and our own experience in studying the effects of this compound on reproductive processes, we propose that increased production of reactive oxygen species (ROS) and consequently oxidative stress (OS) are central in ZEN genotoxicity. Besides to shed light on the action mechanisms of the mycotoxin, this notion might help to develop effective strategies to counteract its deleterious biological effects.
Collapse
Affiliation(s)
- Yan-Qin Feng
- College of Life Sciences, Key Laboratory of Animal Reproduction and Biotechnology in Universities of Shandong, Qingdao Agricultural University, Qingdao 266109, China
| | - Ai-Hong Zhao
- Qingdao Academy of Agricultural Sciences, Qingdao 266100, China
| | - Jun-Jie Wang
- College of Life Sciences, Key Laboratory of Animal Reproduction and Biotechnology in Universities of Shandong, Qingdao Agricultural University, Qingdao 266109, China
| | - Yu Tian
- College of Life Sciences, Key Laboratory of Animal Reproduction and Biotechnology in Universities of Shandong, Qingdao Agricultural University, Qingdao 266109, China
| | - Zi-Hui Yan
- College of Life Sciences, Key Laboratory of Animal Reproduction and Biotechnology in Universities of Shandong, Qingdao Agricultural University, Qingdao 266109, China
| | - Maria Dri
- Department of Biomedicine and Prevention, University of Rome Tor Vergata, Rome 00133, Italy
| | - Wei Shen
- College of Life Sciences, Key Laboratory of Animal Reproduction and Biotechnology in Universities of Shandong, Qingdao Agricultural University, Qingdao 266109, China
| | - Massimo De Felici
- Department of Biomedicine and Prevention, University of Rome Tor Vergata, Rome 00133, Italy.
| | - Lan Li
- College of Life Sciences, Key Laboratory of Animal Reproduction and Biotechnology in Universities of Shandong, Qingdao Agricultural University, Qingdao 266109, China.
| |
Collapse
|
22
|
Damato A, Vianello F, Novelli E, Balzan S, Gianesella M, Giaretta E, Gabai G. Comprehensive Review on the Interactions of Clay Minerals With Animal Physiology and Production. Front Vet Sci 2022; 9:889612. [PMID: 35619608 PMCID: PMC9127995 DOI: 10.3389/fvets.2022.889612] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2022] [Accepted: 04/11/2022] [Indexed: 11/13/2022] Open
Abstract
Clay minerals are naturally occurring rock and soil materials primarily composed of fine-grained aluminosilicate minerals, characterized by high hygroscopicity. In animal production, clays are often mixed with feed and, due to their high binding capacity towards organic molecules, used to limit animal absorption of feed contaminants, such as mycotoxins and other toxicants. Binding capacity of clays is not specific and these minerals can form complexes with different compounds, such as nutrients and pharmaceuticals, thus possibly affecting the intestinal absorption of important substances. Indeed, clays cannot be considered a completely inert feed additive, as they can interfere with gastro-intestinal (GI) metabolism, with possible consequences on animal physiology. Moreover, clays may contain impurities, constituted of inorganic micronutrients and/or toxic trace elements, and their ingestion can affect animal health. Furthermore, clays may also have effects on the GI mucosa, possibly modifying nutrient digestibility and animal microbiome. Finally, clays may directly interact with GI cells and, depending on their mineral grain size, shape, superficial charge and hydrophilicity, can elicit an inflammatory response. As in the near future due to climate change the presence of mycotoxins in feedstuffs will probably become a major problem, the use of clays in feedstuff, given their physico-chemical properties, low cost, apparent low toxicity and eco-compatibility, is expected to increase. The present review focuses on the characteristics and properties of clays as feed additives, evidencing pros and cons. Aims of future studies are suggested, evidencing that, in particular, possible interferences of these minerals with animal microbiome, nutrient absorption and drug delivery should be assessed. Finally, the fate of clay particles during their transit within the GI system and their long-term administration/accumulation should be clarified.
Collapse
Affiliation(s)
- Anna Damato
- Department of Comparative Biomedicine and Food Science, University of Padua, Padua, Italy
| | - Fabio Vianello
- Department of Comparative Biomedicine and Food Science, University of Padua, Padua, Italy
| | - Enrico Novelli
- Department of Comparative Biomedicine and Food Science, University of Padua, Padua, Italy
| | - Stefania Balzan
- Department of Comparative Biomedicine and Food Science, University of Padua, Padua, Italy
| | - Matteo Gianesella
- Department of Animal Medicine, Production and Health, University of Padua, Padua, Italy
| | - Elisa Giaretta
- Department of Comparative Biomedicine and Food Science, University of Padua, Padua, Italy
- *Correspondence: Elisa Giaretta
| | - Gianfranco Gabai
- Department of Comparative Biomedicine and Food Science, University of Padua, Padua, Italy
| |
Collapse
|
23
|
Cytotoxicity of Mycotoxins and Their Combinations on Different Cell Lines: A Review. Toxins (Basel) 2022; 14:toxins14040244. [PMID: 35448853 PMCID: PMC9031280 DOI: 10.3390/toxins14040244] [Citation(s) in RCA: 44] [Impact Index Per Article: 14.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2022] [Revised: 03/22/2022] [Accepted: 03/28/2022] [Indexed: 12/11/2022] Open
Abstract
Mycotoxins are secondary metabolites of molds and mainly produced by species of the genera Aspergillus, Penicillium and Fusarium. They can be synthesized on the field, during harvest as well as during storage. They are fairly stable compounds and difficult to remove. Among several hundreds of mycotoxins, according to the WHO, ochratoxin A, aflatoxins, zearalenone, deoxynivalenol, patulin, fumonisins as well as T-2 and HT-2 toxins deserve special attention. Cytotoxicity is one of the most important adverse properties of mycotoxins and is generally assessed via the MTT assay, the neutral red assay, the LDH assay, the CCK-8 assay and the ATP test in different cell lines. The apoptotic cell ratio is mainly assessed via flow cytometry. Aside from the assessment of the toxicity of individual mycotoxins, it is important to determine the cytotoxicity of mycotoxin combinations. Such combinations often exhibit stronger cytotoxicity than individual mycotoxins. The cytotoxicity of different mycotoxins often depends on the cell line used in the experiment and is frequently time- and dose-dependent. A major drawback of assessing mycotoxin cytotoxicity in cell lines is the lack of interaction typical for complex organisms (for example, immune responses).
Collapse
|
24
|
Hasuda AL, Person E, Khoshal AK, Bruel S, Puel S, Oswald IP, Bracarense APFL, Pinton P. Deoxynivalenol induces apoptosis and inflammation in the liver: Analysis using precision-cut liver slices. Food Chem Toxicol 2022; 163:112930. [DOI: 10.1016/j.fct.2022.112930] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2022] [Revised: 02/28/2022] [Accepted: 03/16/2022] [Indexed: 12/22/2022]
|
25
|
Wang Y, Zhang C, Wang J, Knopp D. Recent Progress in Rapid Determination of Mycotoxins Based on Emerging Biorecognition Molecules: A Review. Toxins (Basel) 2022; 14:73. [PMID: 35202100 PMCID: PMC8874725 DOI: 10.3390/toxins14020073] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2021] [Revised: 01/14/2022] [Accepted: 01/15/2022] [Indexed: 12/12/2022] Open
Abstract
Mycotoxins are secondary metabolites produced by fungal species, which pose significant risk to humans and livestock. The mycotoxins which are produced from Aspergillus, Penicillium, and Fusarium are considered most important and therefore regulated in food- and feedstuffs. Analyses are predominantly performed by official laboratory methods in centralized labs by expert technicians. There is an urgent demand for new low-cost, easy-to-use, and portable analytical devices for rapid on-site determination. Most significant advances were realized in the field bioanalytical techniques based on molecular recognition. This review aims to discuss recent progress in the generation of native biomolecules and new bioinspired materials towards mycotoxins for the development of reliable bioreceptor-based analytical methods. After brief presentation of basic knowledge regarding characteristics of most important mycotoxins, the generation, benefits, and limitations of present and emerging biorecognition molecules, such as polyclonal (pAb), monoclonal (mAb), recombinant antibodies (rAb), aptamers, short peptides, and molecularly imprinted polymers (MIPs), are discussed. Hereinafter, the use of binders in different areas of application, including sample preparation, microplate- and tube-based assays, lateral flow devices, and biosensors, is highlighted. Special focus, on a global scale, is placed on commercial availability of single receptor molecules, test-kits, and biosensor platforms using multiplexed bead-based suspension assays and planar biochip arrays. Future outlook is given with special emphasis on new challenges, such as increasing use of rAb based on synthetic and naïve antibody libraries to renounce animal immunization, multiple-analyte test-kits and high-throughput multiplexing, and determination of masked mycotoxins, including stereoisomeric degradation products.
Collapse
Affiliation(s)
- Yanru Wang
- College of Food Science and Engineering, Northwest A&F University, Yangling, Xianyang 712100, China; (Y.W.); (C.Z.)
| | - Cui Zhang
- College of Food Science and Engineering, Northwest A&F University, Yangling, Xianyang 712100, China; (Y.W.); (C.Z.)
| | - Jianlong Wang
- College of Food Science and Engineering, Northwest A&F University, Yangling, Xianyang 712100, China; (Y.W.); (C.Z.)
| | - Dietmar Knopp
- Chair for Analytical Chemistry and Water Chemistry, Institute of Hydrochemistry, Technische Universitat München, Elisabeth-Winterhalter-Weg 6, D-81377 München, Germany
| |
Collapse
|
26
|
Liu L, Xie M, Wei D. Biological Detoxification of Mycotoxins: Current Status and Future Advances. Int J Mol Sci 2022; 23:ijms23031064. [PMID: 35162993 PMCID: PMC8835436 DOI: 10.3390/ijms23031064] [Citation(s) in RCA: 39] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2021] [Revised: 01/14/2022] [Accepted: 01/17/2022] [Indexed: 02/01/2023] Open
Abstract
Mycotoxins are highly toxic metabolites produced by fungi that pose a huge threat to human and animal health. Contamination of food and feed with mycotoxins is a worldwide issue, which leads to huge financial losses, annually. Decades of research have developed various approaches to degrade mycotoxins, among which the biological methods have been proved to have great potential and advantages. This review provides an overview on the important advances in the biological removal of mycotoxins over the last decade. Here, we provided further insight into the chemical structures and the toxicity of the main mycotoxins. The innovative strategies including mycotoxin degradation by novel probiotics are summarized in an in-depth discussion on potentialities and limitations. We prospected the promising future for the development of multifunctional approaches using recombinant enzymes and microbial consortia for the simultaneous removal of multiple mycotoxins.
Collapse
Affiliation(s)
- Lu Liu
- Guangdong Provincial Key Laboratory of Microbial Culture Collection and Application, State Key Laboratory of Applied Microbiology Southern China, Guangdong Institute of Microbiology, Guangdong Academy of Sciences, Guangzhou 510070, China;
- Engineering Research Center of Starch and Vegetable Protein Processing Ministry of Education, Guangdong Province Key Laboratory for Green Processing of Natural Products and Product Safety, School of Food Science and Engineering, South China University of Technology, Wushan Road 381, Guangzhou 510641, China
| | - Mei Xie
- Food Science and Technology Program, Beijing Normal University-Hong Kong Baptist University United International College, Zhuhai 519087, China;
| | - Dong Wei
- Engineering Research Center of Starch and Vegetable Protein Processing Ministry of Education, Guangdong Province Key Laboratory for Green Processing of Natural Products and Product Safety, School of Food Science and Engineering, South China University of Technology, Wushan Road 381, Guangzhou 510641, China
- Correspondence: ; Tel.: +86-20-8711-3849
| |
Collapse
|
27
|
A El-Sadawy A, M G Zedan A, Gamal El-Dein HM. Hepatoprotective Role of Clay and Nano Clay for Alleviating Aflatoxin Toxicity in Male Rats. Pak J Biol Sci 2021; 24:1091-1102. [PMID: 34842380 DOI: 10.3923/pjbs.2021.1091.1102] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
<b>Background and Objective:</b> Aflatoxin formed by <i>Aspergillus</i> sp. causes acute hepatotoxicity by DNA damage, gene expression disruption and induced liver carcinoma in humans and laboratory animals. The objectives of this research were to evaluate the protective role of both clay and nano clay as adsorbents to inhibit the side effect of Aflatoxin (AF) by measures the common biological assay of aflatoxicosis in rats along with hepatic gene expression and comet assay. <b>Materials and Methods:</b> Six weeks old male albino rats were distributed into 6 groups with 10 rats per group fed on, Group 1: Basal diet, Group 2: Basal diet with clay (5 g kg<sup></sup><sup>1</sup> diet), Group 3: Basal diet with nano clay (5 g kg<sup></sup><sup>1</sup> diet), Group 4: AF-contaminated diet (1 mg kg<sup></sup><sup>1</sup> diet), Group 5: AF with clay, Group 6: AF with nano clay. <b>Results:</b> AF induced a noticeable increase in the liver function parameters, accompanied by a significant decrease in antioxidant enzyme activities and significant histological alterations in liver tissues. The obtained qPCR results showed a significant up regulation in the expression of Cyp3A6, HO-1, TNFα and NFKB genes in the liver of rats treated with aflatoxin. In contrast, there is a significant down regulation in the expression levels of the Glut2 gene in liver rats treated with aflatoxin. Also, aflatoxin induced a significant increase in DNA damage. Clay and nano clay succeeded in ameliorating the toxic effects of aflatoxin. <b>Conclusion:</b> The results indicated the effective role of clay and nano clay in alleviating aflatoxin and reduce its harmful effects.
Collapse
|
28
|
Urinary Biomarkers of Mycotoxin Induced Nephrotoxicity-Current Status and Expected Future Trends. Toxins (Basel) 2021; 13:toxins13120848. [PMID: 34941686 PMCID: PMC8708607 DOI: 10.3390/toxins13120848] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2021] [Revised: 11/19/2021] [Accepted: 11/24/2021] [Indexed: 12/18/2022] Open
Abstract
The intensifying world-wide spread of mycotoxigenic fungal species has increased the possibility of mycotoxin contamination in animal feed and the human food chain. Growing evidence shows the deleterious toxicological effects of mycotoxins from infants to adults, while large population-based screening programs are often missing to identify affected individuals. The kidney functions as the major excretory system, which makes it particularly vulnerable to nephrotoxic injury. However, few studies have attempted to screen for kidney injury biomarkers in large, mycotoxin-exposed populations. As a result, there is an urgent need to screen them with sensitive biomarkers for potential nephrotoxicity. Although a plethora of biomarkers have been tested to estimate the harmful effects of a wide spectrum of toxicants, β2-microglobulin (β2-MG) and N-acetyl-β-D-glucosaminidase (NAG) are currently the dominant biomarkers employed routinely in environmental toxicology research. Nevertheless, kidney injury molecule 1 (KIM-1) and neutrophil gelatinase-associated lipocalin (NGAL) are also emerging as useful and informative markers to reveal mycotoxin induced nephrotoxicity. In this opinion article we consider the nephrotoxic effects of mycotoxins, the biomarkers available to detect and quantify the kidney injuries caused by them, and to recommend biomarkers to screen mycotoxin-exposed populations for renal damage.
Collapse
|
29
|
Seo H, Jang S, Jo H, Kim H, Lee S, Yun H, Jeong M, Moon J, Na T, Cho H. Optimization of the QuEChERS-Based Analytical Method for Investigation of 11 Mycotoxin Residues in Feed Ingredients and Compound Feeds. Toxins (Basel) 2021; 13:toxins13110767. [PMID: 34822551 PMCID: PMC8618524 DOI: 10.3390/toxins13110767] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2021] [Revised: 10/18/2021] [Accepted: 10/27/2021] [Indexed: 12/11/2022] Open
Abstract
Mycotoxins are toxic substances naturally produced by various fungi, and these compounds not only inflict economic damage, but also pose risks to human and animal health. The goal of the present study was to optimize the QuEChERS-based extraction and liquid chromatography–tandem mass spectrometry (LC–MS/MS) method for the analysis of 11 mycotoxins, such as aflatoxins (AFs), ochratoxin A (OTA), fumonisins (FBs), T-2 toxin, HT-2 toxin, zearalenone (ZEN), and deoxynivalenol (DON), commonly found in feed. The QuEChERS method, characterized by being “quick, easy, cheap, effective, rugged, and safe”, has become one of the most common extractions and clean-up procedures for mycotoxin analyses in food. Therefore, in this experiment, an optimal method for the analysis of 11 mycotoxins in feed was established by modifying the general QuEChERS method. In this process, it was confirmed that even if feed samples of different weights were extracted, the quantitative value of mycotoxins in the feed was not affected. To reduce matrix effects, 13C-labeled compounds and deuterium were used as internal standards. This optimized method was then applied in the determination of 11 mycotoxins in 736 feed ingredients and compound feeds obtained from South Korea. The results showed that the occurrence rates of FBs, ZEN, and DON were 59.4%, 38.0%, and 32.1%, respectively, and OTA, AFs, and T-2 toxin and HT-2 toxin were found in fewer than 1% of the 736 feeds. The mean concentration ranges of FBs, ZEN, and DON were 757–2387, 44–4552, and 248–9680 μg/kg, respectively. Among the samples in which DON and ZEN were detected, 10 and 12 samples exceeded the management recommendation standards presented by the Ministry of Agriculture, Food and Rural Affairs (MAFRA). However, when the detected concentrations of DON and ZEN were compared with guideline levels in foreign countries, such as the US, Japan, China, and the EU, the number of positive samples changed. In addition, the co-occurrence of mycotoxins in the feed was analyzed, and the results showed that 43.8% of the samples were contaminated with two or three mycotoxins, among which the co-occurrence rate of FBs, ZEN, and DON was the highest. In conclusion, these results suggest the need for stricter management standards for FBs, DON, and ZEN in South Korea, and emphasize the importance of the continuous monitoring of feeds.
Collapse
Affiliation(s)
- Hyungju Seo
- Experiment Research Institute, National Agricultural Products Quality Management Service, 141, Yongjeon-ro, Gimcheon-si 39660, Korea; (H.S.); (S.J.); (H.K.); (S.L.); (H.Y.); (M.J.)
| | - Sunyeong Jang
- Experiment Research Institute, National Agricultural Products Quality Management Service, 141, Yongjeon-ro, Gimcheon-si 39660, Korea; (H.S.); (S.J.); (H.K.); (S.L.); (H.Y.); (M.J.)
| | - Hyeongwook Jo
- Hansalim Agro-Food Analysis Center, Hankyong National University Industry Academic Cooperation Foundation, Suwon 16500, Korea; (H.J.); (J.M.)
| | - Haejin Kim
- Experiment Research Institute, National Agricultural Products Quality Management Service, 141, Yongjeon-ro, Gimcheon-si 39660, Korea; (H.S.); (S.J.); (H.K.); (S.L.); (H.Y.); (M.J.)
| | - Seunghwa Lee
- Experiment Research Institute, National Agricultural Products Quality Management Service, 141, Yongjeon-ro, Gimcheon-si 39660, Korea; (H.S.); (S.J.); (H.K.); (S.L.); (H.Y.); (M.J.)
| | - Hyejeong Yun
- Experiment Research Institute, National Agricultural Products Quality Management Service, 141, Yongjeon-ro, Gimcheon-si 39660, Korea; (H.S.); (S.J.); (H.K.); (S.L.); (H.Y.); (M.J.)
| | - Minhee Jeong
- Experiment Research Institute, National Agricultural Products Quality Management Service, 141, Yongjeon-ro, Gimcheon-si 39660, Korea; (H.S.); (S.J.); (H.K.); (S.L.); (H.Y.); (M.J.)
| | - Joonkwan Moon
- Hansalim Agro-Food Analysis Center, Hankyong National University Industry Academic Cooperation Foundation, Suwon 16500, Korea; (H.J.); (J.M.)
| | - Taewoong Na
- Experiment Research Institute, National Agricultural Products Quality Management Service, 141, Yongjeon-ro, Gimcheon-si 39660, Korea; (H.S.); (S.J.); (H.K.); (S.L.); (H.Y.); (M.J.)
- Correspondence: (T.N.); (H.C.); Tel.: +82-54-429-7813 (T.N.); +82-54-429-7810 (H.C.)
| | - Hyunjeong Cho
- Experiment Research Institute, National Agricultural Products Quality Management Service, 141, Yongjeon-ro, Gimcheon-si 39660, Korea; (H.S.); (S.J.); (H.K.); (S.L.); (H.Y.); (M.J.)
- Correspondence: (T.N.); (H.C.); Tel.: +82-54-429-7813 (T.N.); +82-54-429-7810 (H.C.)
| |
Collapse
|
30
|
Santos EV, Fontes DO, Benfato MDS, Hackenhaar FS, Salomon T, Jacob DV, Prévéraud D, Araujo WAG, da Glória EM, Domingos RL, Lopes IMG, Guedes LLM, Lima VR, Cardoso LA, Silva BAN. Mycotoxin deactivator improves performance, antioxidant status, and reduces oxidative stress in nursery pigs fed diets containing mycotoxins. J Anim Sci 2021; 99:6380201. [PMID: 34599328 DOI: 10.1093/jas/skab277] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2021] [Accepted: 09/28/2021] [Indexed: 11/13/2022] Open
Abstract
Ingestion of mycotoxins can result in many problems, including decreased growth rates and immune suppression. The present study aimed to evaluate the impact of the supplementation of a mycotoxin deactivator composed by adsorbent clay minerals; inactivated fermentation extracts of Saccharomyces cerevisiae; and blend of antioxidants, organic acids, and botanicals in diets containing added mycotoxins for nursery pigs on their performance and antioxidant status. Ninety pigs weaned with 24 d of age (7.12 ± 0.68 kg of BW) were used. Pigs were housed in pens of three animals each according to body weight, litter origin, and sex. The dietary treatments consisted of feeding the pigs with a standard control diet as negative control (NC; mycotoxin levels at accepted regulatory Brazilian Ministry of Agriculture standards; deoxynivalenol (DON): <100 μg/kg; zearalenone (ZEA): <20 μg/kg; fumonisins (FB): <1 mg/kg); the standard diet added with mycotoxins to reach a low contamination level is considered as positive low (PCL-; DON: 900 μg/kg; ZEA: 100 μg/kg; FB: 5,000 μg/kg) without deactivator; a positive low added the deactivator at an inclusion rate of 1 kg/ton (PCL+); the standard diet added with mycotoxins to reach a high contamination level is considered as positive high (PCH-; DON: 4,500 μg/kg; ZEA: 500 μg/kg; FB: 18,000 μg/kg) without the deactivator; and a positive high added the deactivator at an inclusion rate of 5 kg/ton (PCH+). Pigs were individually weighed at the beginning and at the end of each phase and feed intake recorded based on daily pen intake during the experiment. On days 7, 19, 34, and 43 post-weaning, blood samples were drawn for antioxidant analyses. Antioxidant enzymes (glutathione peroxidase [GPx] and total superoxide dismutase [TSOD]), vitamins [Vit A, E, and C], and malondialdehyde [MDA]) were evaluated in erythrocyte and plasma samples. Pigs challenged with mycotoxins presented lower performance traits, decrease in the efficiency of central antioxidant systems (↓GPx, ↓TSOD, ↓Vit A, ↓Vit E, and ↓Vit C), and a higher oxidative damage to lipids (↑MDA) when compared with the control and deactivator-associated treatments. Our findings showed that the use of a mycotoxin deactivator can mitigate the negative impacts on performance and oxidative stress when animals are subjected to diets contaminated by different levels of mycotoxins.
Collapse
Affiliation(s)
- Erika Vivian Santos
- Institute of Agricultural Sciences/ICA, Universidade Federal de Minas Gerais (UFMG), Montes Claros, Minas Gerais, 39404-547, Brazil.,Veterinary School/VET, Universidade Federal de Minas Gerais (UFMG), Belo Horizonte, Minas Gerais, 31270-901, Brazil
| | - Dalton Oliveira Fontes
- Veterinary School/VET, Universidade Federal de Minas Gerais (UFMG), Belo Horizonte, Minas Gerais, 31270-901, Brazil
| | - Mara da Silveira Benfato
- Institute of Biosciences/IBIO, Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, Rio Grande do Sul, 90650-001, Brazil
| | - Fernanda Schäfer Hackenhaar
- Institute of Biosciences/IBIO, Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, Rio Grande do Sul, 90650-001, Brazil
| | - Tiago Salomon
- Institute of Biosciences/IBIO, Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, Rio Grande do Sul, 90650-001, Brazil
| | | | | | - Wagner Azis Garcia Araujo
- Animal Science Unit, Instituto Federal de Educação, Ciência e Tecnologia Norte de Minas Gerais (IFNMG), Januária, Minas Gerais, 39480-000, Brazil
| | - Eduardo Maria da Glória
- Biological Science Department, College of Agriculture Luiz de Queiroz/ESALQ, Universidade de São Paulo, 13418-900, Piracicaba, São Paulo, Brazil
| | | | - Idael Mateus Goes Lopes
- Institute of Agricultural Sciences/ICA, Universidade Federal de Minas Gerais (UFMG), Montes Claros, Minas Gerais, 39404-547, Brazil
| | - Lis Lorena Melúcio Guedes
- Institute of Agricultural Sciences/ICA, Universidade Federal de Minas Gerais (UFMG), Montes Claros, Minas Gerais, 39404-547, Brazil
| | - Valesca Ribeiro Lima
- Institute of Agricultural Sciences/ICA, Universidade Federal de Minas Gerais (UFMG), Montes Claros, Minas Gerais, 39404-547, Brazil
| | - Larissa Alves Cardoso
- Institute of Agricultural Sciences/ICA, Universidade Federal de Minas Gerais (UFMG), Montes Claros, Minas Gerais, 39404-547, Brazil
| | - Bruno Alexander Nunes Silva
- Institute of Agricultural Sciences/ICA, Universidade Federal de Minas Gerais (UFMG), Montes Claros, Minas Gerais, 39404-547, Brazil
| |
Collapse
|
31
|
Ruan H, Lu Q, Wu J, Qin J, Sui M, Sun X, Shi Y, Luo J, Yang M. Hepatotoxicity of food-borne mycotoxins: molecular mechanism, anti-hepatotoxic medicines and target prediction. Crit Rev Food Sci Nutr 2021; 62:2281-2308. [PMID: 34346825 DOI: 10.1080/10408398.2021.1960794] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Mycotoxins are metabolites produced by fungi. The widespread contamination of food and feed by mycotoxins is a global food safety problem and a serious threat to people's health. Most food-borne mycotoxins have strong hepatotoxicity. However, no effective methods have been found to prevent or treat Mycotoxin- Induced Liver Injury (MILI) in clinical and animal husbandry. In this paper, the molecular mechanisms and potential anti-MILI medicines of six food-borne MILI are reviewed, and their targets are predicted by network toxicology, which provides a theoretical basis for further study of the toxicity mechanism of MILI and the development of effective strategies to manage MILI-related health problems in the future and accelerate the development of food safety.
Collapse
Affiliation(s)
- Haonan Ruan
- Key Laboratory of Bioactive Substances and Resources Utilization of Chinese Herbal Medicine, Ministry of Education, Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
| | - Qian Lu
- Key Laboratory of Bioactive Substances and Resources Utilization of Chinese Herbal Medicine, Ministry of Education, Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
| | - Jiashuo Wu
- Key Laboratory of Bioactive Substances and Resources Utilization of Chinese Herbal Medicine, Ministry of Education, Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
| | - Jiaan Qin
- Key Laboratory of Bioactive Substances and Resources Utilization of Chinese Herbal Medicine, Ministry of Education, Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
| | - Ming Sui
- Key Laboratory of Bioactive Substances and Resources Utilization of Chinese Herbal Medicine, Ministry of Education, Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
| | - Xinqi Sun
- Key Laboratory of Bioactive Substances and Resources Utilization of Chinese Herbal Medicine, Ministry of Education, Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
| | - Yue Shi
- Key Laboratory of Bioactive Substances and Resources Utilization of Chinese Herbal Medicine, Ministry of Education, Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
| | - Jiaoyang Luo
- Key Laboratory of Bioactive Substances and Resources Utilization of Chinese Herbal Medicine, Ministry of Education, Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
| | - Meihua Yang
- Key Laboratory of Bioactive Substances and Resources Utilization of Chinese Herbal Medicine, Ministry of Education, Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
| |
Collapse
|
32
|
Zhao L, Zhang L, Xu Z, Liu X, Chen L, Dai J, Karrow NA, Sun L. Occurrence of Aflatoxin B 1, deoxynivalenol and zearalenone in feeds in China during 2018-2020. J Anim Sci Biotechnol 2021; 12:74. [PMID: 34243805 PMCID: PMC8272344 DOI: 10.1186/s40104-021-00603-0] [Citation(s) in RCA: 127] [Impact Index Per Article: 31.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2021] [Accepted: 05/09/2021] [Indexed: 01/13/2023] Open
Abstract
BACKGROUND The current study was conducted to investigate the individual and combined occurrence of aflatoxin B1 (AFB1), deoxynivalenol (DON) and zearalenone (ZEN) in feeds from various Provinces of China during 2018 to 2020. A total of 3,507 feed samples, including 2,090 feed ingredients and 1,417 complete feed samples, were collected from different areas of China for mycotoxins analysis. RESULTS The individual contamination of AFB1, DON and ZEN were present in more than 81.9%, 96.4% and 96.9% of feed samples, respectively, with average concentration ranges of AFB1 between 1.2-27.4 μg/kg, DON between 458.0-1,925.4 μg/kg and ZEN between 48.1-326.8 μg/kg. Notably, 0.9%, 0.5% and 0.1% of feed ingredients, and 1.2-12.8%, 0.9-2.9% and 0-8.9% of complete feeds for pigs, poultry and ruminants with AFB1, ZEN and DON that exceeded China's safety standards, respectively. Moreover, more than 81.5% of feed ingredients and 95.7% of complete feeds were co-contaminated with various combinations of these mycotoxins. CONCLUSION This study indicates that the feeds in China were universally contaminated with AFB1, DON and ZEN during the past 3 years. These findings highlight the significance of monitoring mycotoxin contaminant levels in the domestic animal feed, and the importance of carrying out feed administration and remediation strategies for mycotoxin control.
Collapse
Affiliation(s)
- Ling Zhao
- Department of Animal Nutrition and Feed Science, College of Animal Science and Technology, Huazhong Agricultural University, Wuhan, 430070, Hubei, China
| | - Lei Zhang
- Department of Animal Nutrition and Feed Science, College of Animal Science and Technology, Huazhong Agricultural University, Wuhan, 430070, Hubei, China
| | - Zijian Xu
- Department of Animal Nutrition and Feed Science, College of Animal Science and Technology, Huazhong Agricultural University, Wuhan, 430070, Hubei, China
| | - Xingda Liu
- Guilin Li Yuan Grain and Oil Food Group Co., Ltd, Guilin, 541001, Guangxi, China
| | - Liyuan Chen
- Jiangsu Aomai Bio-Technology Co., Ltd, Nanjing, 211226, China
| | - Jiefan Dai
- Department of Agriculture of Sichuan Province, Chengdu, 610041, China
| | | | - Lvhui Sun
- Department of Animal Nutrition and Feed Science, College of Animal Science and Technology, Huazhong Agricultural University, Wuhan, 430070, Hubei, China.
| |
Collapse
|
33
|
Zhao L, Deng J, Xu ZJ, Zhang WP, Khalil MM, Karrow NA, Sun LH. Mitigation of Aflatoxin B 1 Hepatoxicity by Dietary Hedyotis diffusa Is Associated with Activation of NRF2/ARE Signaling in Chicks. Antioxidants (Basel) 2021; 10:878. [PMID: 34070870 PMCID: PMC8229166 DOI: 10.3390/antiox10060878] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2021] [Revised: 05/21/2021] [Accepted: 05/27/2021] [Indexed: 12/17/2022] Open
Abstract
The objective of this study was to explore the mechanism of Hedyotis diffusa (HD) in mediating the detoxification of aflatoxin B1 (AFB1)-induced hepatic injury in chicks. A total of 144 one-day-old male broilers (Cobb 500) were randomly assigned to four treatment groups (n = 6 cages/diet, 6 chicks/cage). After three days of acclimation, the broilers were fed either a control diet (Control), Control plus 0.5 mg/kg of AFB1, or Control plus 0.5 mg/kg AFB1 with 500 or 1000 mg/kg HD for two weeks. Both serum and liver were collected at the end of the feeding trial for biochemistry, histology, and NF-E2-related nuclear factor 2 (NRF2)/antioxidant response element (ARE) signaling analysis. Compared with Control, the AFB1 treatment caused liver injury and decreased (p < 0.05) body weight gain, feed intake, feed conversion ratio, and serum albumin and total protein by 6.2-20.7%. AFB1 also induced swelling, necrosis, and severe vacuolar degeneration in chicks' livers. Notably, HD supplementation at 500 and 1000 mg/kg mitigated (p < 0.05) the alterations induced by AFB1. HD supplementation alleviated (p < 0.05) AFB1-induced impairment in hepatic glutathione peroxidase activity, protein carbonyl, and exo-AFB1-8,9-epoxide (AFBO)-DNA concentrations by 57.7-100% and increased (p < 0.05) the activities of superoxide dismutase and catalase by 23.1-40.9% more than those of AFB1 treatment alone. Furthermore, HD supplementation at the two doses upregulated (p < 0.05) NRF2, NAD(P)H: quinone oxidoreductase-1, heme oxygenase-1, glutathione cysteine ligase catalytic subunit, and glutathione-S transferase A2 and A3 in livers relative to the AFB1 group by 0.99-3.4-fold. Overall, dietary supplementation of HD at a high dose displayed better protection effects against aflatoxicosis. In conclusion, a dietary HD supplementation at 500 and 1000 mg/kg protected broilers from AFB1-induced hepatotoxicity, potentially due to the activation of NRF2/ARE signaling in the chicks.
Collapse
Affiliation(s)
- Ling Zhao
- Department of Animal Nutrition and Feed Science, College of Animal Science and Technology, Huazhong Agricultural University, Wuhan 430070, China; (L.Z.); (J.D.); (Z.-J.X.)
| | - Jiang Deng
- Department of Animal Nutrition and Feed Science, College of Animal Science and Technology, Huazhong Agricultural University, Wuhan 430070, China; (L.Z.); (J.D.); (Z.-J.X.)
| | - Zi-Jian Xu
- Department of Animal Nutrition and Feed Science, College of Animal Science and Technology, Huazhong Agricultural University, Wuhan 430070, China; (L.Z.); (J.D.); (Z.-J.X.)
| | - Wan-Po Zhang
- Department of Veterinary Pathology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070, China;
| | - Mahmoud Mohamed Khalil
- Animal Production Department, Faculty of Agriculture, Benha University, Cairo 13736, Egypt;
| | | | - Lv-Hui Sun
- Department of Animal Nutrition and Feed Science, College of Animal Science and Technology, Huazhong Agricultural University, Wuhan 430070, China; (L.Z.); (J.D.); (Z.-J.X.)
| |
Collapse
|
34
|
Awapak D, Petchkongkaew A, Sulyok M, Krska R. Co-occurrence and toxicological relevance of secondary metabolites in dairy cow feed from Thailand. Food Addit Contam Part A Chem Anal Control Expo Risk Assess 2021; 38:1013-1027. [PMID: 33861173 DOI: 10.1080/19440049.2021.1905186] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
The occurrence of secondary metabolites and co-contaminants in dairy cow feed samples (n = 115), concentrate, roughage, and mixed feed, collected from Ratchaburi and Kanjanaburi provinces, Thailand, between August 2018 and March 2019 were investigated using LC-MS/MS based multi-toxin method. A total of 113 metabolites were found in the samples. Fungal metabolites were the predominant compounds, followed by plant metabolites. Among major mycotoxins, zearalenone and fumonisins were most frequently detected in concentrate and mixed feed samples, while deoxynivalenol and aflatoxin B1 were found at the frequency lower than 50%. Other metabolites, produced by Aspergillus, Fusarium, Penicillium, and Alternaria species, occurred in the samples. Flavoglaucin, 3-nitropropionic acid, averufin, and sterigmatocystin were the most prevalent Aspergillus metabolites. Common Fusarium metabolites occurring in the samples included moniliformin, beauvericin, and enniatins. For Penicillium metabolites, mycophenolic acid, questiomycin A, quinolactacin A, oxaline, citrinin, and dihydrocitrinone were frequently detected. The toxic Alternaria metabolites, alternariol, and alternariol monomethyl ether showed the high incidence in the samples. Plant metabolites were commonly found, mainly cyanogenic compounds and isoflavones, from cassava and soybean meal used as feed ingredients. Overall, 96.6% of feed samples contained at least two metabolites, in a range from 2 to 69. According to co-contamination of mycotoxins found in feed samples, zearalenone were mostly found in combination with fumonisin B1, deoxynivalenol, and aflatoxin B1. Fumonisin B1 co-occurred with aflatoxin B1 and deoxynivalenol. The mixtures of deoxynivalenol and aflatoxin B1, and of zearalenone, fumonisin B1 and deoxynivalenol were also found. Due to known individual toxicity of fungal and plant metabolites and possible additive or synergistic toxic effects of multi-mycotoxins, the occurrence of these metabolites and co-contaminants should be monitored continuously to ensure food safety through the dairy supply chain.
Collapse
Affiliation(s)
- Darika Awapak
- School of Food Science and Technology, Faculty of Science and Technology, Thammasat University (Rangsit Campus), Khong Luang, Thailand
| | - Awanwee Petchkongkaew
- School of Food Science and Technology, Faculty of Science and Technology, Thammasat University (Rangsit Campus), Khong Luang, Thailand
| | - Michael Sulyok
- Institute of Bioanalytics and Agro-Metabolomics, Department of Agrobiotechnology (IFA-Tulln), University of Natural Resources and Life Sciences Vienna (BOKU), Tulln, Austria
| | - Rudolf Krska
- Institute of Bioanalytics and Agro-Metabolomics, Department of Agrobiotechnology (IFA-Tulln), University of Natural Resources and Life Sciences Vienna (BOKU), Tulln, Austria
| |
Collapse
|
35
|
Kócsó DJ, Ali O, Kovács M, Mézes M, Balogh K, Kachlek ML, Bóta B, Zeebone YY, Szabó A. A preliminary study on changes in heat shock protein 70 levels induced by Fusarium mycotoxins in rats: in vivo study. Mycotoxin Res 2021; 37:141-148. [PMID: 33665736 PMCID: PMC8163673 DOI: 10.1007/s12550-021-00425-z] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2020] [Revised: 02/17/2021] [Accepted: 02/21/2021] [Indexed: 01/08/2023]
Abstract
The heat shock protein (Hsp70) level was assessed after 14 days of oral gavage-exposure to fumonisin B1 (FB1: 150 µg/animal/day), deoxynivalenol (DON: 30 µg/animal/day) and zearalenone (ZEN: 150 µg/animal/day), alone or in combinations (in additive manner: FD = FB1 + DON, FZ = FB1 + ZEN, DZ = DON + ZEN and FDZ = FB1 + DON + ZEN) in the liver, kidneys and lung of 24 adult male Wistar rats (n = 3/group). The liver was the most responsive tissue, as compared with kidney and lung. Except of DZ-treatment, mycotoxins elevated the Hsp70 levels in livers. The highest Hsp70-levels (≈ twofold) were in the DON, FD, FZ and FDZ treatments (additive effects). In the kidney, alterations (↑ ≈ twofold) were detected in ZEN, FD, FZ and DZ treatments. The least responsive organ was the lung (↑ only in FDZ, antagonistic effect). DON and ZEA exposures have altered the reduced glutathione concentration (↓) and glutathione peroxidase activity (↓) in the blood serum. The serum malondialdehyde level increased only after exposure to FD (synergistic effect), as compared with the DZ group (antagonistic effect). When the blood clinical chemistry was assessed, significant alterations were in alanine aminotransferase (80% increase in FDZ, antagonistic effect) and total protein (↓ ZEN). Results varied according to the organ, toxin type and interactions. Furthermore, oxidative stress was not the only key player behind the Hsp70 increase, in which another mechanism is suggested.
Collapse
Affiliation(s)
- Dániel J Kócsó
- Institute of Physiology and Nutrition, Department of Physiology and Animal Health, Hungarian University of Agriculture and Life Sciences, MTA-KE-SZIE Mycotoxins in the Food Chain Research Group, Kaposvár Campus, Kaposvár, Hungary
| | - Omeralfaroug Ali
- Institute of Physiology and Nutrition, Department of Physiology and Animal Health, Hungarian University of Agriculture and Life Sciences, Kaposvár Campus, Kaposvár, Hungary.
| | - Melinda Kovács
- Institute of Physiology and Nutrition, Department of Physiology and Animal Health, Hungarian University of Agriculture and Life Sciences, MTA-KE-SZIE Mycotoxins in the Food Chain Research Group, Kaposvár Campus, Kaposvár, Hungary.,Institute of Physiology and Nutrition, Department of Physiology and Animal Health, Hungarian University of Agriculture and Life Sciences, Kaposvár Campus, Kaposvár, Hungary
| | - Miklós Mézes
- Institute of Physiology and Nutrition, Department of Physiology and Animal Health, Hungarian University of Agriculture and Life Sciences, MTA-KE-SZIE Mycotoxins in the Food Chain Research Group, Kaposvár Campus, Kaposvár, Hungary.,Institute of Physiology and Nutrition, Department of Feed Safety, Hungarian University of Agriculture and Life Sciences, Gödöllő Campus, Gödöllő, Hungary
| | - Krisztián Balogh
- Institute of Physiology and Nutrition, Department of Feed Safety, Hungarian University of Agriculture and Life Sciences, Gödöllő Campus, Gödöllő, Hungary
| | - Mariam L Kachlek
- Institute of Physiology and Nutrition, Department of Physiology and Animal Health, Hungarian University of Agriculture and Life Sciences, MTA-KE-SZIE Mycotoxins in the Food Chain Research Group, Kaposvár Campus, Kaposvár, Hungary
| | - Brigitta Bóta
- Institute of Physiology and Nutrition, Department of Physiology and Animal Health, Hungarian University of Agriculture and Life Sciences, MTA-KE-SZIE Mycotoxins in the Food Chain Research Group, Kaposvár Campus, Kaposvár, Hungary
| | - Yarsmin Y Zeebone
- Institute of Physiology and Nutrition, Department of Physiology and Animal Health, Hungarian University of Agriculture and Life Sciences, Kaposvár Campus, Kaposvár, Hungary
| | - András Szabó
- Institute of Physiology and Nutrition, Department of Physiology and Animal Health, Hungarian University of Agriculture and Life Sciences, MTA-KE-SZIE Mycotoxins in the Food Chain Research Group, Kaposvár Campus, Kaposvár, Hungary.,Institute of Physiology and Nutrition, Department of Physiology and Animal Health, Hungarian University of Agriculture and Life Sciences, Kaposvár Campus, Kaposvár, Hungary
| |
Collapse
|
36
|
Al-Saeedi FJ. Mangiferin protect oxidative stress against deoxynivalenol induced damages through Nrf2 signalling pathways in endothelial cells. Clin Exp Pharmacol Physiol 2021; 48:389-400. [PMID: 33124065 DOI: 10.1111/1440-1681.13432] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2020] [Revised: 09/28/2020] [Accepted: 10/21/2020] [Indexed: 01/19/2023]
Abstract
Several cereal grains contain a mycotoxin food contaminant called deoxynivalenol (DON), which presents a significant health risk as it is one of the most commonly found mycotoxins. The current paper examines the ameliorative effect of mangiferin (MAN) in vascular endothelial cells induced through activating the Nrf2 signalling pathway on dietary DON-induced oxidative changes. The study infers that the intercellular reactive oxygen species (ROS) levels and malondialdehyde decrease due to MAN. Other effects include in human umbilical vein endothelial cells (HUVECs), the oxidative stress-induced cell damage is reduced due to protective effects and superoxide dismutase (SOD), and catalase (CAT) activities also reveal an improvement. In HUVECs, the Nrf2-regulated antioxidant enzyme genes' expression is activated by Nrf2 nuclear translocation induction and this activity suppresses the oxidative stress damage. The genes in HUVECs include HO-1 and NQO1. Moreover, in HUVECs, the nucleus translocation of Nrf2 reduces the Nrf2, HO-1, whereas NQO1 expression decreases the cytoprotective effects against oxidative stress reduce with the rejection of Nrf2 with siRNA. This paper pioneers in inferring that oxidative stress-induced HUVECs' cell injury is suppressed by MAN through Nrf2, signalling pathway activation.
Collapse
Affiliation(s)
- Fatma J Al-Saeedi
- Department of Nuclear Medicine, Faculty of Medicine, Kuwait University, Safat, Kuwait
| |
Collapse
|
37
|
Mitigation Effects of Bentonite and Yeast Cell Wall Binders on AFB 1, DON, and OTA Induced Changes in Laying Hen Performance, Egg Quality, and Health. Toxins (Basel) 2021; 13:toxins13020156. [PMID: 33671260 PMCID: PMC7922626 DOI: 10.3390/toxins13020156] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2021] [Revised: 02/11/2021] [Accepted: 02/15/2021] [Indexed: 12/16/2022] Open
Abstract
The objective of this study was to evaluate the efficacy of mycotoxin binders in reducing the adverse effects of co-occurring dietary aflatoxin B1 (AFB1), deoxynivalenol (DON) and ochratoxin A (OTA) on laying hens. Three hundred and sixty 26-week-old Roman laying hens were randomly allocated into four experimental groups with 10 replicates of nine birds each. The four groups received either a basal diet (BD; Control), a BD supplemented with 0.15 mg/kg AFB1 + 1.5 mg/kg DON + 0.12 mg/kg OTA (Toxins), a BD + Toxins with Toxo-HP binder (Toxins + HP), or a BD + Toxins with TOXO XL binder (Toxins + XL) for 12 weeks. Compared to the control, dietary supplementation of mycotoxins decreased (P < 0.10) total feed intake, total egg weight, and egg-laying rate, but increased feed/egg ratio by 2.5–6.1% and mortality during various experimental periods. These alterations induced by mycotoxins were alleviated by supplementation with both TOXO HP and XL binders (P < 0.10). Furthermore, dietary mycotoxins reduced (P < 0.05) eggshell strength by 12.3% and caused an accumulation of 249 μg/kg of DON in eggs at week 12, while dietary supplementation with TOXO HP or XL mitigated DON-induced changes on eggshell strength and prevented accumulation of DON in eggs (P < 0.05). Moreover, dietary mycotoxins increased relative liver weight, but decreased spleen and proventriculus relative weights by 11.6–22.4% (P < 0.05). Mycotoxin exposure also increased alanine aminotransferase activity and reduced immunoglobulin (Ig) A, IgM, and IgG concentrations in serum by 9.2–26.1% (P < 0.05). Additionally, mycotoxin exposure induced histopathological damage and reduced villus height, villus height/crypt depth, and crypt depth in duodenum, jejunum and (or) ileum (P < 0.05). Notably, most of these histological changes were mitigated by supplementation with both TOXO HP and XL (P < 0.05). In conclusion, the present study demonstrated that the mycotoxin binders TOXO HP and XL can help to mitigate the combined effects of AFB1, DON, and OTA on laying hen performance, egg quality, and health.
Collapse
|
38
|
Garai E, Risa A, Varga E, Cserháti M, Kriszt B, Urbányi B, Csenki Z. Evaluation of the Multimycotoxin-Degrading Efficiency of Rhodococcus erythropolis NI1 Strain with the Three-Step Zebrafish Microinjection Method. Int J Mol Sci 2021; 22:ijms22020724. [PMID: 33450918 PMCID: PMC7828439 DOI: 10.3390/ijms22020724] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2020] [Revised: 01/08/2021] [Accepted: 01/11/2021] [Indexed: 12/13/2022] Open
Abstract
The multimycotoxin-degrading efficiency of the Rhodococcus erythropolis NI1 strain was investigated with a previously developed three-step method. NI1 bacterial metabolites, single and combined mycotoxins and their NI1 degradation products, were injected into one cell stage zebrafish embryos in the same doses. Toxic and interaction effects were supplemented with UHPLC-MS/MS measurement of toxin concentrations. Results showed that the NI1 strain was able to degrade mycotoxins and their mixtures in different proportions, where a higher ratio of mycotoxins were reduced in combination than single ones. The NI1 strain reduced the toxic effects of mycotoxins and mixtures, except for the AFB1+T-2 mixture. Degradation products of the AFB1+T-2 mixture by the NI1 strain were more toxic than the initial AFB1+T-2 mixture, while the analytical results showed very high degradation, which means that the NI1 strain degraded this mixture to toxic degradation products. The NI1 strain was able to detoxify the AFB1, ZEN, T-2 toxins and mixtures (except for AFB1+T-2 mixture) during the degradation experiments, which means that the NI1 strain degraded these to non-toxic degradation products. The results demonstrate that single exposures of mycotoxins were very toxic. The combined exposure of mycotoxins had synergistic effects, except for ZEN+T-2 and AFB1+ZEN +T-2, whose mixtures had very strong antagonistic effects.
Collapse
Affiliation(s)
- Edina Garai
- Department of Aquaculture, Institute for Conservation of Natural Resources, Faculty of Agricultural and Environmental Sciences, Szent István University, H-2100 Gödöllő, Hungary; (E.G.); (B.U.)
- Institute of Aquaculture and Environmental Safety, Hungarian University of Agriculture and Life Sciences, H-2100 Gödöllő, Hungary; (A.R.); (M.C.); (B.K.)
| | - Anita Risa
- Institute of Aquaculture and Environmental Safety, Hungarian University of Agriculture and Life Sciences, H-2100 Gödöllő, Hungary; (A.R.); (M.C.); (B.K.)
- Department of Environmental Safety and Ecotoxicology, Institute for Conservation of Natural Resources, Faculty of Agricultural and Environmental Sciences, Szent István University, H-2100 Gödöllő, Hungary
| | - Emese Varga
- Department of Applied Chemistry, Faculty of Food Science, Szent István University, H-1118 Budapest, Hungary;
| | - Mátyás Cserháti
- Institute of Aquaculture and Environmental Safety, Hungarian University of Agriculture and Life Sciences, H-2100 Gödöllő, Hungary; (A.R.); (M.C.); (B.K.)
- Department of Environmental Safety and Ecotoxicology, Institute for Conservation of Natural Resources, Faculty of Agricultural and Environmental Sciences, Szent István University, H-2100 Gödöllő, Hungary
| | - Balázs Kriszt
- Institute of Aquaculture and Environmental Safety, Hungarian University of Agriculture and Life Sciences, H-2100 Gödöllő, Hungary; (A.R.); (M.C.); (B.K.)
- Department of Environmental Safety and Ecotoxicology, Institute for Conservation of Natural Resources, Faculty of Agricultural and Environmental Sciences, Szent István University, H-2100 Gödöllő, Hungary
| | - Béla Urbányi
- Department of Aquaculture, Institute for Conservation of Natural Resources, Faculty of Agricultural and Environmental Sciences, Szent István University, H-2100 Gödöllő, Hungary; (E.G.); (B.U.)
- Institute of Aquaculture and Environmental Safety, Hungarian University of Agriculture and Life Sciences, H-2100 Gödöllő, Hungary; (A.R.); (M.C.); (B.K.)
| | - Zsolt Csenki
- Department of Aquaculture, Institute for Conservation of Natural Resources, Faculty of Agricultural and Environmental Sciences, Szent István University, H-2100 Gödöllő, Hungary; (E.G.); (B.U.)
- Institute of Aquaculture and Environmental Safety, Hungarian University of Agriculture and Life Sciences, H-2100 Gödöllő, Hungary; (A.R.); (M.C.); (B.K.)
- Correspondence:
| |
Collapse
|
39
|
Hua Z, Liu R, Chen Y, Liu G, Li C, Song Y, Cao Z, Li W, Li W, Lu C, Liu Y. Contamination of Aflatoxins Induces Severe Hepatotoxicity Through Multiple Mechanisms. Front Pharmacol 2021; 11:605823. [PMID: 33505311 PMCID: PMC7830880 DOI: 10.3389/fphar.2020.605823] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2020] [Accepted: 11/20/2020] [Indexed: 12/15/2022] Open
Abstract
Aflatoxins (AFs) are commonly contaminating mycotoxins in foods and medicinal materials. Since they were first discovered to cause “turkey X” disease in the United Kingdom in the early 1960s, the extreme toxicity of AFs in the human liver received serious attention. The liver is the major target organ where AFs are metabolized and converted into extremely toxic forms to engender hepatotoxicity. AFs influence mitochondrial respiratory function and destroy normal mitochondrial structure. AFs initiate damage to mitochondria and subsequent oxidative stress. AFs block cellular survival pathways, such as autophagy that eliminates impaired cellular structures and the antioxidant system that copes with oxidative stress, which may underlie their high toxicities. AFs induce cell death via intrinsic and extrinsic apoptosis pathways and influence the cell cycle and growth via microribonucleic acids (miRNAs). Furthermore, AFs induce the hepatic local inflammatory microenvironment to exacerbate hepatotoxicity via upregulation of NF-κB signaling pathway and inflammasome assembly in the presence of Kupffer cells (liver innate immunocytes). This review addresses the mechanisms of AFs-induced hepatotoxicity from various aspects and provides background knowledge to better understand AFs-related hepatoxic diseases.
Collapse
Affiliation(s)
- Zhenglai Hua
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, China
| | - Rui Liu
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, China
| | - Youwen Chen
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, China
| | - Guangzhi Liu
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, China
| | - Chenxi Li
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, China
| | - Yurong Song
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, China
| | - Zhiwen Cao
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, China
| | - Wen Li
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, China
| | - Weifeng Li
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, China
| | - Cheng Lu
- Institute of Basic Research in Clinical Medicine, China Academy of Chinese Medical Sciences, Beijing, China
| | - Yuanyan Liu
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, China
| |
Collapse
|
40
|
Mézes M, Kovács M, Szabó A. Mycotoxin exposure, oxidative stress, and lipid peroxidation. Toxicology 2021. [DOI: 10.1016/b978-0-12-819092-0.00020-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
41
|
Zhao L, Deng J, Ma LB, Zhang WP, Khalil MM, Karrow NA, Qi DS, Sun LH. Dietary Se deficiency dysregulates metabolic and cell death signaling in aggravating the AFB1 hepatotoxicity of chicks. Food Chem Toxicol 2020; 149:111938. [PMID: 33348051 DOI: 10.1016/j.fct.2020.111938] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2020] [Revised: 12/09/2020] [Accepted: 12/15/2020] [Indexed: 12/31/2022]
Abstract
The objective of this study was to use isobaric tags for relative and absolute quantitation (iTRAQ) proteomic technology to systematically analyze the hepatotoxic mechanism of aflatoxin B1 (AFB1) and its prevention by Se in broilers. Four groups of day-old broilers were allocated into a 2 × 2 factorial design trial that fed a Se-deficient based diet (BD) or the BD + 1.0 mg AFB1/kg, 0.3 mg Se/kg, or 1.0 mg AFB1/kg plus 0.3 mg Se/kg for 3 wk. Dietary AFB1 increased serum ALT and decreased total protein and albumin concentrations, and induced hepatic histopathological lesions in Se adequate groups. Notably, Se deficiency exacerbated these AFB1-induced changes. Furthermore, Se deficiency reduced hepatic glutathione peroxidase but increased thioredoxin reductase and glutathione S-transferase activities and 8-hydroxydeoxyguanosine concentration in AFB1 administrated groups. Moreover, AFB1 dysregulated 261 co-differentially expressed proteins (DEPs) in both Se adequate and deficiency diets, and Se deficiency dysregulated 64 DEPs in AFB1 administrated diets. These DEPs are mainly related to phase I and II metabolizing enzymes, heat shock proteins, DNA repair, fatty acid metabolism and apoptosis. The in vitro study has verified that aldo-keto reductase family1, member10 plays an important role in AFB1-induced hepatotoxicity and Se-mediated detoxification of AFB1 in a chicken leghorn male hepatoma cells. Conclusively, this study has analyzed the hepatic proteome response to dietary AFB1 and Se, and thus shed new light on the mechanisms of hepatotoxicity of AFB1 and its detoxification by Se in broilers.
Collapse
Affiliation(s)
- Ling Zhao
- Department of Animal Nutrition and Feed Science, College of Animal Science and Technology, Huazhong Agricultural University, Wuhan, Hubei, 430070, China
| | - Jiang Deng
- Department of Animal Nutrition and Feed Science, College of Animal Science and Technology, Huazhong Agricultural University, Wuhan, Hubei, 430070, China
| | - Li-Bao Ma
- Department of Animal Nutrition and Feed Science, College of Animal Science and Technology, Huazhong Agricultural University, Wuhan, Hubei, 430070, China
| | - Wan-Po Zhang
- Department of Veterinary Pathology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, 430070, China
| | | | | | - De-Sheng Qi
- Department of Animal Nutrition and Feed Science, College of Animal Science and Technology, Huazhong Agricultural University, Wuhan, Hubei, 430070, China.
| | - Lv-Hui Sun
- Department of Animal Nutrition and Feed Science, College of Animal Science and Technology, Huazhong Agricultural University, Wuhan, Hubei, 430070, China.
| |
Collapse
|
42
|
Choi SY, Kim TH, Hong MW, Park TS, Lee H, Lee SJ. Transcriptomic alterations induced by aflatoxin B1 and ochratoxin A in LMH cell line. Poult Sci 2020; 99:5265-5274. [PMID: 33142442 PMCID: PMC7647754 DOI: 10.1016/j.psj.2020.05.058] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2020] [Revised: 04/09/2020] [Accepted: 05/22/2020] [Indexed: 12/23/2022] Open
Abstract
Aflatoxin B1 (AFB1) and ochratoxin A (OTA), which are toxic metabolites of ubiquitously occurring molds, show diverse toxicological effects such as hepatotoxicity, genotoxicity, and immunotoxicity in human and animals. Despite poultry show sensitivity to AFB1 and OTA, the mechanism of these mycotoxins in chickens has not been fully investigated. Here, we aimed to elucidate the molecular mechanism induced by AFB1 and/or OTA in chicken hepatic cells using transcriptomic analysis. Aflatoxin B1 and OTA induced cytotoxic effects in a dose-dependent manner at 48 h after exposure. Furthermore, correlation effect indicated an antagonism between the 2 toxins. The mRNA sequencing of AFB1-treated or OTA-treated chicken hepatocarcinoma and functional analysis revealed the pathways that were commonly regulated by both mycotoxins, especially PPAR signaling, focal adhesion, and MAPK signaling. Based on these findings, a possible hypothesis is that AFB1 and OTA have similar toxic mechanisms and compete for some steps in the chicken liver, and it is expected that the mycotoxins would have antagonistic effects. In addition, genes identified through transcriptome analysis provide candidates for further study of AFB1 and OTA toxicity and targets for efforts to improve the health of chickens exposed to mycotoxins.
Collapse
Affiliation(s)
- So-Young Choi
- Department of Animal Life Science, Kangwon National University, Chuncheon-si, Gangwon-do 24341, Korea
| | - Tae Hyun Kim
- Department of Animal Science, University of California, Davis, Davis, CA 95616, USA
| | - Min-Wook Hong
- Department of Animal Life Science, Kangwon National University, Chuncheon-si, Gangwon-do 24341, Korea
| | - Tae Sub Park
- Graduate School of International Agricultural Technology and Institute of Green-Bio Science and Technology, Seoul National University, Pyeongchang-gun, Gangwon-do 25354, Korea
| | - Hyojeong Lee
- Department of Animal Life Science, Kangwon National University, Chuncheon-si, Gangwon-do 24341, Korea
| | - Sung-Jin Lee
- Department of Animal Life Science, Kangwon National University, Chuncheon-si, Gangwon-do 24341, Korea.
| |
Collapse
|
43
|
Ledur PC, Santurio JM. Cytoprotective effects of curcumin and silymarin on PK-15 cells exposed to ochratoxin A, fumonisin B 1 and deoxynivalenol. Toxicon 2020; 185:97-103. [PMID: 32622693 DOI: 10.1016/j.toxicon.2020.06.025] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2020] [Revised: 06/25/2020] [Accepted: 06/27/2020] [Indexed: 12/22/2022]
Abstract
Mycotoxins are toxic secondary metabolites produced by fungus which cause worldwide concern regarding food and feed safety. Ochratoxin A (OTA), fumonisin B1 (FB1) and deoxynivalenol (DON) are some of the main mycotoxins and oxidative stress is the main mechanism of toxicity. Thereby, this study investigates the in vitro cytoprotective effects of curcumin (CUR) and silymarin (SIL) - known for their strong antioxidant activity - in PK-15 cells exposed to OTA, FB1 and DON. Pretreatment with CUR and SIL enhanced the viability of cells exposed to the mycotoxins (P < 0.001) and attenuated reactive oxygen species (ROS) formation by DON (P < 0.01), partially reduced ROS formation by FB1 (P < 0.001), but not OTA. CUR significantly decreased apoptosis in cells exposed to DON (P < 0.01) but was not able to prevent apoptosis in cells exposed to OTA and FB1. Whereas SIL was able to prevent apoptosis in PK-15 cells exposed to FB1 and DON (P < 0.01) but was not able to decrease apoptosis in cells exposed to OTA. In summary, these data indicate that curcumin and silymarin are able to provide cytoprotection against toxicity induced by OTA, FB1 and DON in PK-15 cells.
Collapse
Affiliation(s)
- Pauline Christ Ledur
- Programa de Pós-graduação em Farmacologia, Centro de Ciências da Saúde, Universidade Federal de Santa Maria, Santa Maria, Brazil
| | - Janio M Santurio
- Programa de Pós-graduação em Farmacologia, Centro de Ciências da Saúde, Universidade Federal de Santa Maria, Santa Maria, Brazil.
| |
Collapse
|
44
|
Ren Z, He H, Zuo Z, Xu Z, Wei Z, Deng J. ROS: Trichothecenes’ handy weapon? Food Chem Toxicol 2020; 142:111438. [DOI: 10.1016/j.fct.2020.111438] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2019] [Revised: 03/23/2020] [Accepted: 05/13/2020] [Indexed: 02/08/2023]
|
45
|
Ochratoxin A and fumonisin B1 exhibit synergistic cytotoxic effects by inducing apoptosis on rat liver cells. Toxicon 2020; 181:19-27. [DOI: 10.1016/j.toxicon.2020.04.094] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2019] [Revised: 03/04/2020] [Accepted: 04/15/2020] [Indexed: 11/18/2022]
|
46
|
Liao Y, Peng Z, Wang L, Li D, Yue J, Liu J, Liang C, Liu S, Yan H, Nüssler AK, Rong S, Liu L, Hao L, Yang W. Long noncoding RNA Gm20319, acting as competing endogenous RNA, regulated GNE expression by sponging miR-7240-5p to involve in deoxynivalenol-induced liver damage in vitro. Food Chem Toxicol 2020; 141:111435. [PMID: 32439590 DOI: 10.1016/j.fct.2020.111435] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2020] [Revised: 05/06/2020] [Accepted: 05/11/2020] [Indexed: 12/19/2022]
Abstract
The regulatory effects of competing endogenous RNA (ceRNA) network have been highlighted on the occurrence and development of diseases. However, the effect of ceRNA network in liver with subchronic deoxynivalenol (DON) exposure has remained unclear so far. Here, lncRNA Gm20319-miR-7240-5p-GNE (glucosamine UDP-N-acetyl-2-epimerase/N-acetylmannosamine kinase) network was identified in DON exposed-liver tissues after DON exposure for 90 days. Subchronic DON exposure induced the mild inflammation in liver tissues. In DON-treated liver tissues and Hepa 1-6 cell line, the expression of Gm20319 and GNE were both downregulated while miR-7240-5p expression was upregulated. The gain- and loss-of-function expression in vitro revealed there was a mutual repression between Gm20319 and miR-7240-5p, and they regulated GNE expression in an opposite direction. Dual luciferase reporter assays showed miR-7240-5p inhibited Gm20319 and GNE expression by directly binding. Co-transfection experiment in vitro revealed Gm20319 and miR-7240-5p could indirectly regulate sialic acid level by directly modulating GNE expression, thereby also influencing the expression of SOD1 and IL-1β. This study revealed Gm20319-miR-7240-5p-GNE network reduced sialic acid level to influence the expression of SOD1 and IL-1β in liver, which might involve in liver damage induced by DON. Gm20319 might be a potential research molecular target for DON-induced liver damage.
Collapse
Affiliation(s)
- Yuxiao Liao
- Department of Nutrition and Food Hygiene, Hubei Key Laboratory of Food Technology, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Hangkong Road 13, 430030, Wuhan, China; Department of Nutrition and Food Hygiene, MOE Key Lab of Environment and Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Hangkong Road 13, 430030, Wuhan, China
| | - Zhao Peng
- Department of Nutrition and Food Hygiene, Hubei Key Laboratory of Food Technology, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Hangkong Road 13, 430030, Wuhan, China; Department of Nutrition and Food Hygiene, MOE Key Lab of Environment and Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Hangkong Road 13, 430030, Wuhan, China
| | - Liangliang Wang
- Department of Nutrition and Food Hygiene, Hubei Key Laboratory of Food Technology, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Hangkong Road 13, 430030, Wuhan, China; Department of Nutrition and Food Hygiene, MOE Key Lab of Environment and Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Hangkong Road 13, 430030, Wuhan, China
| | - Dan Li
- Department of Nutrition and Food Hygiene, Hubei Key Laboratory of Food Technology, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Hangkong Road 13, 430030, Wuhan, China; Department of Nutrition and Food Hygiene, MOE Key Lab of Environment and Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Hangkong Road 13, 430030, Wuhan, China
| | - Junhong Yue
- Department of Nutrition and Food Hygiene, Hubei Key Laboratory of Food Technology, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Hangkong Road 13, 430030, Wuhan, China; Department of Nutrition and Food Hygiene, MOE Key Lab of Environment and Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Hangkong Road 13, 430030, Wuhan, China
| | - Jiayan Liu
- Department of Nutrition and Food Hygiene, Hubei Key Laboratory of Food Technology, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Hangkong Road 13, 430030, Wuhan, China; Department of Nutrition and Food Hygiene, MOE Key Lab of Environment and Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Hangkong Road 13, 430030, Wuhan, China
| | - Chaohan Liang
- Department of Nutrition and Food Hygiene, Hubei Key Laboratory of Food Technology, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Hangkong Road 13, 430030, Wuhan, China; Department of Nutrition and Food Hygiene, MOE Key Lab of Environment and Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Hangkong Road 13, 430030, Wuhan, China
| | - Shuang Liu
- Hubei Center for Disease Control and Prevention, 6 North Zhuodaoquan Road, Wuhan, 430079, China
| | - Hong Yan
- Department of Nutrition and Food Hygiene, Hubei Key Laboratory of Food Technology, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Hangkong Road 13, 430030, Wuhan, China; Department of Nutrition and Food Hygiene, MOE Key Lab of Environment and Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Hangkong Road 13, 430030, Wuhan, China
| | - Andreas K Nüssler
- Department of Traumatology, BG Trauma Center, University of Tübingen, Schnarrenbergstr. 95, 72076, Tübingen, Germany
| | - Shuang Rong
- Department of Nutrition and Food Hygiene, School of Public Health, Medical College, Wuhan University of Science and Technology, Wuhan, 430065, China
| | - Liegang Liu
- Department of Nutrition and Food Hygiene, Hubei Key Laboratory of Food Technology, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Hangkong Road 13, 430030, Wuhan, China; Department of Nutrition and Food Hygiene, MOE Key Lab of Environment and Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Hangkong Road 13, 430030, Wuhan, China
| | - Liping Hao
- Department of Nutrition and Food Hygiene, Hubei Key Laboratory of Food Technology, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Hangkong Road 13, 430030, Wuhan, China; Department of Nutrition and Food Hygiene, MOE Key Lab of Environment and Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Hangkong Road 13, 430030, Wuhan, China
| | - Wei Yang
- Department of Nutrition and Food Hygiene, Hubei Key Laboratory of Food Technology, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Hangkong Road 13, 430030, Wuhan, China; Department of Nutrition and Food Hygiene, MOE Key Lab of Environment and Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Hangkong Road 13, 430030, Wuhan, China.
| |
Collapse
|
47
|
Hammoudeh N, Soukkarieh C, Murphy DJ, Hanano A. Involvement of hepatic lipid droplets and their associated proteins in the detoxification of aflatoxin B 1 in aflatoxin-resistance BALB/C mouse. Toxicol Rep 2020; 7:795-804. [PMID: 32642446 PMCID: PMC7334552 DOI: 10.1016/j.toxrep.2020.06.005] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2019] [Revised: 06/04/2020] [Accepted: 06/11/2020] [Indexed: 12/14/2022] Open
Abstract
The highly potent carcinogen, Aflatoxin B1, induces liver cancer in many animals including humans but some mice strains are highly resistant. This murine resistance is due to a rapid detoxification of AFB1. Hepatic lipid droplets (LDs) ultimately impact the liver functions but their potential role in AFB1 detoxification has not been addressed. This study describes the structural and functional impacts on hepatic LDs in BALB/C mice after exposure to 44 (low dose) or 663 (high dose) μg AFB1/kg of body weight. After 7 days, the liver of AFB1-dosed mice did not accumulate any detectable AFB1 or its metabolites and this was associated with a net increase in gene transcripts of the AhR-mediating pathway. Of particular interest, the livers of high-dose mice accumulated many more LDs than those of low-dose mice. This was accompanied with a net increase in transcript levels of LD-associated protein-encoding genes including Plin2, Plin3 and Cideb and an alteration in the LDs lipid profiles that could be likely due to the induction of lipoxygenase and cyclooxygenase genes. Interestingly, our data suggest that hepatic LDs catalyze the in vitro activation of AFB1 into AFB1-exo-8,9-epoxide and subsequent hydrolysis of this epoxide into its corresponding dihydrodiol. Finally, transcript levels of CYP1A2, CYP1B1, GSTA3 and EH1 genes were elevated in livers of high-dose mice. These data suggest new roles for hepatic LDs in the trapping and detoxifying of aflatoxins.
Collapse
Affiliation(s)
- Nour Hammoudeh
- Department of Animal Biology, Damascus University, Damascus, Syria
| | - Chadi Soukkarieh
- Department of Animal Biology, Damascus University, Damascus, Syria
| | - Denis J Murphy
- Genomics and Computational Biology Group, University of South Wales, Wales, United Kingdom
| | - Abdulsamie Hanano
- Department of Molecular Biology and Biotechnology, Atomic Energy Commission of Syria (AECS), P.O. Box 6091, Damascus, Syria
| |
Collapse
|
48
|
Chang J, Wang T, Wang P, Yin Q, Liu C, Zhu Q, Lu F, Gao T. Compound probiotics alleviating aflatoxin B 1 and zearalenone toxic effects on broiler production performance and gut microbiota. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2020; 194:110420. [PMID: 32151861 DOI: 10.1016/j.ecoenv.2020.110420] [Citation(s) in RCA: 55] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/17/2019] [Revised: 02/28/2020] [Accepted: 03/01/2020] [Indexed: 06/10/2023]
Abstract
In order to alleviate toxic effects of aflatoxins B1 (AFB1) and zearalenone (ZEA) on broiler production performance and gut microbiota, three kinds of compound probiotics (CP) were selected. The optimal ratios of Bacillus subtilis, Lactobacillus casei and Candida utilis in broiler diets were 7, 5 and 6 log CFU/g for ZEA biodegradation (CP1); 6, 7 and 7 log CFU/g for AFB1 biodegradation (CP2); 7, 6 and 7 log CFU/g for ZEA + AFB1 biodegradation (CP3). A total of 350 1-day-old Ross broilers were randomly divided into 7 groups. Group A was the basal diet, group B-G contained ZEA, AFB1, ZEA + AFB1, ZEA + CP1, AFB1+CP2, ZEA + AFB1+CP3, respectively. The experiment showed that AFB1 or AFB1+ZEA significantly decreased broiler production performance, damaged liver and jejunum, increased mycotoxin residues in broiler body; however, three kinds of compound probiotics additions could alleviate mycotoxin negative effects on the above parameters (p < 0.05). The gut microbiota analysis indicated that AFB1+ZEA increased jejunal microbial richness, but which were decreased to almost the same level as the control group by CP3 addition. CP3 addition significantly increased jejunal Firmicutes and Lactobacillus aviarius abundances. The correlative analysis showed that gut Lactobacillus aviarius abundance was positively correlated with average daily gain (ADG) of broilers (p < 0.05), while AFB1+ZEA addition decreased its relative abundance, indicating that CP3 addition increased broiler growth by increasing Lactobacillus aviarius abundance. AFB1 and ZEA residues in broiler body were negatively correlated with the gut beneficial bacterial abundances (p < 0.01), but positively correlated with the potentially harmful bacterial abundances (p < 0.05), which inferred that CP3 addition could decrease mycotoxin residues through positively regulating gut relative bacterial abundances. In conclusion, compound probiotics could keep gut microbiota stable, degrade mycotoxins, alleviate histological lesions, increase production performance and reduce mycotoxin toxicity for broilers.
Collapse
Affiliation(s)
- Juan Chang
- College of Animal Science and Veterinary Medicine, Henan Agricultural University, Zhengzhou, 450002, China.
| | - Tao Wang
- College of Animal Science and Veterinary Medicine, Henan Agricultural University, Zhengzhou, 450002, China.
| | - Ping Wang
- College of Animal Science and Veterinary Medicine, Henan Agricultural University, Zhengzhou, 450002, China.
| | - Qingqiang Yin
- College of Animal Science and Veterinary Medicine, Henan Agricultural University, Zhengzhou, 450002, China.
| | - Chaoqi Liu
- College of Animal Science and Veterinary Medicine, Henan Agricultural University, Zhengzhou, 450002, China.
| | - Qun Zhu
- Henan Delin Biological Product Co., Ltd., Xinxiang, 453000, China.
| | - Fushan Lu
- Henan Puai Feed Co., Ltd., Zhoukou, 466000, China.
| | - Tianzeng Gao
- Henan Guangan Biotechnology Co., Ltd., Zhengzhou, 450001, China.
| |
Collapse
|
49
|
Taroncher M, Pigni MC, Diana MN, Juan-García A, Ruiz MJ. Does low concentration mycotoxin exposure induce toxicity in HepG2 cells through oxidative stress? Toxicol Mech Methods 2020; 30:417-426. [PMID: 32306886 DOI: 10.1080/15376516.2020.1757000] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
The purpose of this study was to determine whether exposure to low concentrations of deoxynivalenol (DON), T-2 toxin (T-2) and patulin (PAT) in a human hepatocellular carcinoma cell line (HepG2) exerts toxic effects through mechanisms related to oxidative stress, and how cells deal with such exposure. Cell viability was determined by the MTT and protein content (PC) assays over 24, 48 and 72 h. The IC50 values detected ranged from >10 to 2.53 ± 0.21 μM (DON), 0.050 ± 0.025 to 0.034 ± 0.007 μM (T-2) and 2.66 ± 0.66 to 1.17 ± 0.21 µM (PAT). The key players in oxidative stress are the generation of reactive oxygen species (ROS), lipid peroxidation (LPO) and mitochondrial membrane potential (MMP) dysfunction. The results obtained showed that PAT, DON and T-2 did not significantly increase LPO or ROS production with respect to the controls. Moreover, PAT and DON did not alter MMP, though T-2 increased MMP at the higher concentrations tested (17 and 34 nM). In conclusion, the exposure of HepG2 cells to nontoxic concentrations of T-2 condition them against subsequent cellular oxidative conditions induced by even higher concentrations of mycotoxin.
Collapse
Affiliation(s)
- Mercedes Taroncher
- Laboratory of Toxicology, Faculty of Pharmacy, University of Valencia, Valencia, Spain
| | - Maria-Chiari Pigni
- Laboratory of Toxicology, Faculty of Pharmacy, University of Valencia, Valencia, Spain
| | - Maria-Natalia Diana
- Laboratory of Toxicology, Faculty of Pharmacy, University of Valencia, Valencia, Spain
| | - Ana Juan-García
- Laboratory of Toxicology, Faculty of Pharmacy, University of Valencia, Valencia, Spain
| | - Maria-Jose Ruiz
- Laboratory of Toxicology, Faculty of Pharmacy, University of Valencia, Valencia, Spain
| |
Collapse
|
50
|
Złoch M, Rogowska A, Pomastowski P, Railean-Plugaru V, Walczak-Skierska J, Rudnicka J, Buszewski B. Use of Lactobacillus paracasei strain for zearalenone binding and metabolization. Toxicon 2020; 181:9-18. [PMID: 32259554 DOI: 10.1016/j.toxicon.2020.03.011] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2019] [Revised: 03/24/2020] [Accepted: 03/31/2020] [Indexed: 01/25/2023]
Abstract
The study investigated the zearalenone (ZEA) neutralization process as a consequence of metabolization and binding process by the probiotic bacterial strain Lactobacillus paracasei using high performance liquid chromatography (HPLC). In order to determine the nature of the binding process the kinetic and spectroscopic approach were used. Moreover, the influence of ZEA on L. paracasei metabolism was examined by the determination of the proteome profile of cells and the profile of volatile compounds (VOCs) produced by bacteria cells. For this purpose the Matrix-Assisted Laser Desorption/Ionization-Time of Flight mass spectrometry (MALDI-TOF MS) and headspace solid-phase microextraction coupled to gas chromatography/mass spectrometry (HS-SPME/GC-MS) techniques were used. The obtained results indicate that in the mechanism of ZEA neutralization both - metabolization/biotransformation and binding/biosorption processes are involved. Furthermore, the biotransformation of ZEA to both α- and β-ZOL with a predominance of β-ZOL by lactic acid bacteria strain was recorded. The results suggest that the tested microorganism can be used as a potential detoxification agent for grain and feed.
Collapse
Affiliation(s)
- Michał Złoch
- Centre for Modern Interdisciplinary Technologies Nicolaus Copernicus University in Torun, Wileńska 4, 87-100, Torun, Poland
| | - Agnieszka Rogowska
- Centre for Modern Interdisciplinary Technologies Nicolaus Copernicus University in Torun, Wileńska 4, 87-100, Torun, Poland; Department of Environmental Chemistry and Bioanalytics, Faculty of Chemistry, Nicolaus Copernicus University in Torun, Gagarina 7, 87-100, Torun, Poland
| | - Paweł Pomastowski
- Centre for Modern Interdisciplinary Technologies Nicolaus Copernicus University in Torun, Wileńska 4, 87-100, Torun, Poland
| | - Viorica Railean-Plugaru
- Centre for Modern Interdisciplinary Technologies Nicolaus Copernicus University in Torun, Wileńska 4, 87-100, Torun, Poland; Department of Environmental Chemistry and Bioanalytics, Faculty of Chemistry, Nicolaus Copernicus University in Torun, Gagarina 7, 87-100, Torun, Poland
| | - Justyna Walczak-Skierska
- Department of Environmental Chemistry and Bioanalytics, Faculty of Chemistry, Nicolaus Copernicus University in Torun, Gagarina 7, 87-100, Torun, Poland
| | - Joanna Rudnicka
- Centre for Modern Interdisciplinary Technologies Nicolaus Copernicus University in Torun, Wileńska 4, 87-100, Torun, Poland; Department of Environmental Chemistry and Bioanalytics, Faculty of Chemistry, Nicolaus Copernicus University in Torun, Gagarina 7, 87-100, Torun, Poland
| | - Bogusław Buszewski
- Centre for Modern Interdisciplinary Technologies Nicolaus Copernicus University in Torun, Wileńska 4, 87-100, Torun, Poland; Department of Environmental Chemistry and Bioanalytics, Faculty of Chemistry, Nicolaus Copernicus University in Torun, Gagarina 7, 87-100, Torun, Poland.
| |
Collapse
|