1
|
Antoniazzi MM, Mailho-Fontana PL, Nomura F, Azevedo HB, Pimenta DC, Sciani JM, Carvalho FR, Rossa-Feres DC, Jared C. Reproductive behaviour, cutaneous morphology, and skin secretion analysis in the anuran Dermatonotus muelleri. iScience 2022; 25:104073. [PMID: 35372815 PMCID: PMC8968045 DOI: 10.1016/j.isci.2022.104073] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2021] [Revised: 12/10/2021] [Accepted: 03/11/2022] [Indexed: 11/26/2022] Open
Abstract
Despite the common poison and mucous glands, some amphibian groups have differentiated glands associated with reproduction and usually present on the male ventral surface. Known as breeding glands or sexually dimorphic skin glands (SDSGs), they are related to intraspecific chemical communication during mating. Until recently, reproduction associated with skin glands was recognized only in salamanders and caecilians and remained unexplored among anurans. The Brazilian microhylid Dermatonotus muelleri (Muller's termite frog) is known for its very toxic skin secretion. Despite the slippery body, the male adheres to the female back during reproduction, as they have differentiated ventral glands. In this paper, we have gathered data proposing an integrative approach correlated with the species' biology and biochemical properties of their skin secretions. Furthermore, we suggest that the adhesion phenomenon is related to arm shortening and rounded body that make amplexus inefficient, although constituting important adaptive factors to life underground. Dermatonotus muelleri mating involves peculiar male adherence to the female’s back Adhesion phenomenon is possibly related to arm shortening and round-shaped body Differentiated adhesive glands are distributed in the male’s anterior ventral skin Male skin secretion contains compounds related to the adhesive properties
Collapse
Affiliation(s)
| | | | - Fausto Nomura
- Departamento de Ecologia, Universidade Federal de Goiás, Goiânia, GO, Brazil
| | | | | | | | | | - Denise Cerqueira Rossa-Feres
- Instituto de Biociências, Letras e Ciências Exatas, Universidade Estadual Paulista, São José do Rio Preto, São Paulo, Brazil
| | - Carlos Jared
- Laboratório de Biologia Estrutural, Instituto Butantan, São Paulo, Brazil
| |
Collapse
|
2
|
Li M, Du C, Wang J, Gao Z, Yang X, Chen D, Tong J, Ren L. Morphology and mechanical performance between the skin surface of
Rana dybowskii
and
Bufo gargarizans. BIOSURFACE AND BIOTRIBOLOGY 2021. [DOI: 10.1049/bsb2.12018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Affiliation(s)
- Mo Li
- College of Biological and Agricultural Engineering Jilin University Changchun China
- The Key Laboratory of Bionic Engineering Ministry of Education Jilin University Changchun China
| | - Chunyu Du
- College of Biological and Agricultural Engineering Jilin University Changchun China
- The Key Laboratory of Bionic Engineering Ministry of Education Jilin University Changchun China
| | - Jili Wang
- School of Mechanical and Aerospace Engineering Jilin University Changchun China
| | - Zibo Gao
- College of Biological and Agricultural Engineering Jilin University Changchun China
- The Key Laboratory of Bionic Engineering Ministry of Education Jilin University Changchun China
| | - Xiao Yang
- College of Biological and Agricultural Engineering Jilin University Changchun China
- The Key Laboratory of Bionic Engineering Ministry of Education Jilin University Changchun China
| | - Donghui Chen
- College of Biological and Agricultural Engineering Jilin University Changchun China
- The Key Laboratory of Bionic Engineering Ministry of Education Jilin University Changchun China
| | - Jin Tong
- College of Biological and Agricultural Engineering Jilin University Changchun China
- The Key Laboratory of Bionic Engineering Ministry of Education Jilin University Changchun China
| | - Lili Ren
- College of Biological and Agricultural Engineering Jilin University Changchun China
- The Key Laboratory of Bionic Engineering Ministry of Education Jilin University Changchun China
| |
Collapse
|
3
|
Li M, Gao Z, Dai T, Chen D, Tong J, Guo L, Wang C. Comparative research on morphology and mechanical property of integument of Rana dybowskii, Xenopus laevis and Ambystoma mexicanum. J Mech Behav Biomed Mater 2021; 117:104382. [PMID: 33607570 DOI: 10.1016/j.jmbbm.2021.104382] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2020] [Revised: 02/01/2021] [Accepted: 02/02/2021] [Indexed: 10/22/2022]
Abstract
Amphibians' integument is a multifunctional organ offering protection from the exterior surroundings and facilitating the physiological change of gas, water and salts with the environment, which is a natural biomaterial with multifunctional features. Interspecies comparison of biomechanical characters and microstructure possibly related to them were performed on the integument of three species of amphibians, two anurans(Rana dybowskii and Xenopus laevis) and one urodeles(Ambystoma mexicanum) using tensile testing and morphological characterization. It was found that the integument of Rana dybowskii and Xenopus laevis was covered by polygonal epidermal cells, while the trunk surface of Ambystoma mexicanum presented irregular microstructure with the lack of keratinization. The integument of Rana dybowskii and Xenopus laevis exhibited good performance on stiffness and strength, which showed quite high mean elastic modulus, 931MPa and 1048MPa,respectively.
Collapse
Affiliation(s)
- Mo Li
- College of Biological and Agricultural Engineering, Jilin University, Changchun, 130025, China; The Key Laboratory of Bionic Engineering, Ministry of Education, Jilin University, Changchun, 130025, China
| | - Zibo Gao
- College of Biological and Agricultural Engineering, Jilin University, Changchun, 130025, China; The Key Laboratory of Bionic Engineering, Ministry of Education, Jilin University, Changchun, 130025, China
| | - Taidong Dai
- College of Biological and Agricultural Engineering, Jilin University, Changchun, 130025, China; The Key Laboratory of Bionic Engineering, Ministry of Education, Jilin University, Changchun, 130025, China
| | - Donghui Chen
- College of Biological and Agricultural Engineering, Jilin University, Changchun, 130025, China; The Key Laboratory of Bionic Engineering, Ministry of Education, Jilin University, Changchun, 130025, China
| | - Jin Tong
- College of Biological and Agricultural Engineering, Jilin University, Changchun, 130025, China; The Key Laboratory of Bionic Engineering, Ministry of Education, Jilin University, Changchun, 130025, China
| | - Li Guo
- College of Biological and Agricultural Engineering, Jilin University, Changchun, 130025, China; The Key Laboratory of Bionic Engineering, Ministry of Education, Jilin University, Changchun, 130025, China
| | - Chaofei Wang
- College of Biological and Agricultural Engineering, Jilin University, Changchun, 130025, China; The Key Laboratory of Bionic Engineering, Ministry of Education, Jilin University, Changchun, 130025, China.
| |
Collapse
|
4
|
Fusco LS, Cajade R, Piñeiro JM, Torres AM, da Silva IRF, Hyslop S, Leiva LC, Pimenta DC, Bustillo S. Biochemical characterization and cytotoxic effect of the skin secretion from the red-spotted Argentina frog Argenteohyla siemersi (Anura: Hylidae). J Venom Anim Toxins Incl Trop Dis 2020; 26:e20190078. [PMID: 32280338 PMCID: PMC7112748 DOI: 10.1590/1678-9199-jvatitd-2019-0078] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
Background: Argenteohyla siemersi (red-spotted Argentina frog) is a
casque-headed tree frog species belonging to the Hylidae family. This
species has a complex combination of anti-predator defense mechanisms that
include a highly lethal skin secretion. However, biochemical composition and
biological effects of this secretion have not yet been studied. Methods: The A. siemersi skin secretion samples were analyzed by mass
spectrometry and chromatographic analysis (MALDI-TOF/MS, RP-HPLC and GC-MS).
Proteins were also studied by SDS-PAGE. Among the biological activities
evaluated, several enzymatic activities (hemolytic, phospholipase
A2, clotting, proteolytic and amidolytic) were assessed.
Furthermore, the cytotoxic activity (cytolysis and fluorescence staining)
was evaluated on myoblasts of the C2C12 cell line. Results: The MALDI-TOF/MS analysis identified polypeptides and proteins in the aqueous
solution of A. siemersi skin secretion. SDS-PAGE revealed
the presence of proteins with molecular masses from 15 to 55 kDa. Steroids,
but no alkaloids or peptides (less than 5 KDa), were detected using mass
spectrometry. Skin secretion revealed the presence of lipids in methanolic
extract, as analyzed by CG-MS. This secretion showed hemolytic and
phospholipase A2 activities, but was devoid of amidolytic,
proteolytic or clotting activities. Moreover, dose-dependent cytotoxicity in
cultured C2C12 myoblasts of the skin secretion was demonstrated.
Morphological analysis, quantification of lactate dehydrogenase release and
fluorescence staining indicated that the cell death triggered by this
secretion involved necrosis. Conclusions: Results presented herein evidence the biochemical composition and biological
effects of A. siemersi skin secretion and contribute to the
knowledge on the defense mechanisms of casque-headed frogs.
Collapse
Affiliation(s)
- Luciano S Fusco
- Protein Research Laboratory (LabInPro), IQUIBA-NEA CONICET, National University of the Northeast, Corrientes, Argentina
| | - Rodrigo Cajade
- Herpetology Laboratory, National University of the Northeast, Corrientes, Argentina
| | - Jose M Piñeiro
- Herpetology Laboratory, National University of the Northeast, Corrientes, Argentina
| | - Ana M Torres
- Natural Products Laboratory, National University of the Northeast, Corrientes, Argentina
| | - Igor R F da Silva
- Department of Pharmacology, School of Medical Sciences, State University of Campinas (UNICAMP), Campinas, SP, Brazil
| | - Stephen Hyslop
- Department of Pharmacology, School of Medical Sciences, State University of Campinas (UNICAMP), Campinas, SP, Brazil
| | - Laura C Leiva
- Protein Research Laboratory (LabInPro), IQUIBA-NEA CONICET, National University of the Northeast, Corrientes, Argentina
| | - Daniel C Pimenta
- Laboratory of Biochemistry and Biophysics, Butantan Institute, São Paulo, SP, Brazil
| | - Soledad Bustillo
- Protein Research Laboratory (LabInPro), IQUIBA-NEA CONICET, National University of the Northeast, Corrientes, Argentina
| |
Collapse
|
5
|
Raaymakers C, Stijlemans B, Martin C, Zaman S, Ballet S, Martel A, Pasmans F, Roelants K. A New Family of Diverse Skin Peptides from the Microhylid Frog Genus Phrynomantis. Molecules 2020; 25:E912. [PMID: 32085597 PMCID: PMC7070584 DOI: 10.3390/molecules25040912] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2020] [Revised: 02/12/2020] [Accepted: 02/18/2020] [Indexed: 01/10/2023] Open
Abstract
A wide range of frogs produce skin poisons composed of bioactive peptides for defence against pathogens, parasites and predators. While several frog families have been thoroughly screened for skin-secreted peptides, others, like the Microhylidae, have remained mostly unexplored. Previous studies of microhylids found no evidence of peptide secretion, suggesting that this defence adaptation was evolutionarily lost. We conducted transcriptome analyses of the skins of Phrynomantis bifasciatus and Phrynomantis microps, two African microhylid species long suspected to be poisonous. Our analyses reveal 17 evolutionary related transcripts that diversified from to those of cytolytic peptides found in other frog families. The 19 peptides predicted to be processed from these transcripts, named phrynomantins, show a striking structural diversity that is distinct from any previously identified frog skin peptide. Functional analyses of five phrynomantins confirm the loss of a cytolytic function and the absence of insecticidal or proinflammatory activity, suggesting that they represent an evolutionary transition to a new, yet unknown function. Our study shows that peptides have been retained in the defence poison of at least one microhylid lineage and encourages research on similarly understudied taxa to further elucidate the diversity and evolution of skin defence molecules.
Collapse
Affiliation(s)
- Constantijn Raaymakers
- Amphibian Evolution Lab, Biology Department, Vrije Universiteit Brussel, Pleinlaan 2, 1050 Elsene, Belgium; (C.R.); (S.Z.)
- Wildlife Health Ghent, Faculty of Veterinary Medicine, Ghent University, Salisburylaan 133, 9820 Merelbeke, Belgium; (A.M.); (F.P.)
| | - Benoit Stijlemans
- Unit of Cellular and Molecular Immunology, Vrije Universiteit Brussel, Pleinlaan 2, 1050 Elsene, Belgium;
- Myeloid Cell Immunology Lab, VIB Centre for Inflammation Research, Vrije Universiteit Brussel, Pleinlaan 2, 1050 Elsene, Belgium
| | - Charlotte Martin
- Research Group of Organic Chemistry, Department of Chemistry and Department of Bio-engineering Sciences, Vrije Universiteit Brussel, Pleinlaan 2, 1050 Elsene, Belgium; (C.M.); (S.B.)
| | - Shabnam Zaman
- Amphibian Evolution Lab, Biology Department, Vrije Universiteit Brussel, Pleinlaan 2, 1050 Elsene, Belgium; (C.R.); (S.Z.)
| | - Steven Ballet
- Research Group of Organic Chemistry, Department of Chemistry and Department of Bio-engineering Sciences, Vrije Universiteit Brussel, Pleinlaan 2, 1050 Elsene, Belgium; (C.M.); (S.B.)
| | - An Martel
- Wildlife Health Ghent, Faculty of Veterinary Medicine, Ghent University, Salisburylaan 133, 9820 Merelbeke, Belgium; (A.M.); (F.P.)
| | - Frank Pasmans
- Wildlife Health Ghent, Faculty of Veterinary Medicine, Ghent University, Salisburylaan 133, 9820 Merelbeke, Belgium; (A.M.); (F.P.)
| | - Kim Roelants
- Amphibian Evolution Lab, Biology Department, Vrije Universiteit Brussel, Pleinlaan 2, 1050 Elsene, Belgium; (C.R.); (S.Z.)
| |
Collapse
|
6
|
Mariano DO, Prezotto-Neto JP, Spencer PJ, Sciani JM, Pimenta DC. Proteomic analysis of soluble proteins retrieved from Duttaphrynus melanostictus skin secretion by IEx-batch sample preparation. J Proteomics 2019; 209:103525. [DOI: 10.1016/j.jprot.2019.103525] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2019] [Revised: 08/15/2019] [Accepted: 09/12/2019] [Indexed: 12/18/2022]
|
7
|
Mariano DOC, Messias MDG, Spencer PJ, Pimenta DC. Protein identification from the parotoid macrogland secretion of Duttaphrynus melanostictus. J Venom Anim Toxins Incl Trop Dis 2019; 25:e20190029. [PMID: 31467513 PMCID: PMC6707386 DOI: 10.1590/1678-9199-jvatitd-2019-0029] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2019] [Accepted: 07/11/2019] [Indexed: 11/24/2022] Open
Abstract
Background: Bufonid parotoid macrogland secretion contains several low molecular mass
molecules, such as alkaloids and steroids. Nevertheless, its protein content
is poorly understood. Herein, we applied a sample preparation methodology
that allows the analysis of viscous matrices in order to examine its
proteins. Methods: Duttaphrynus melanostictus parotoid macrogland secretion
was submitted to ion-exchange batch sample preparation, yielding two
fractions: salt-displaced fraction and acid-displaced fraction. Each sample
was then fractionated by anionic-exchange chromatography, followed by
in-solution proteomic analysis. Results: Forty-two proteins could be identified, such as acyl-CoA-binding protein,
alcohol dehydrogenase, calmodulin, galectin and histone. Moreover,
de novo analyses yielded 153 peptides, whereas BLAST
analyses corroborated some of the proteomic-identified proteins.
Furthermore, the de novo peptide analyses indicate the
presence of proteins related to apoptosis, cellular structure, catalysis and
transport processes. Conclusions: Proper sample preparation allowed the proteomic and de novo
identification of different proteins in the D.
melanostictus parotoid macrogland secretion. These results may
increase the knowledge about the universe of molecules that compose
amphibian skin secretion, as well as to understand their
biological/physiological role in the granular gland.
Collapse
Affiliation(s)
| | | | - Patrick Jack Spencer
- Biotechnology Center, Nuclear and Energy Research Institute (IPEN), São Paulo, SP, Brazil
| | | |
Collapse
|
8
|
Klupczynska A, Pawlak M, Kokot ZJ, Matysiak J. Application of Metabolomic Tools for Studying Low Molecular-Weight Fraction of Animal Venoms and Poisons. Toxins (Basel) 2018; 10:toxins10080306. [PMID: 30042318 PMCID: PMC6116190 DOI: 10.3390/toxins10080306] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2018] [Revised: 06/29/2018] [Accepted: 07/23/2018] [Indexed: 01/11/2023] Open
Abstract
Both venoms and poisonous secretions are complex mixtures that assist in defense, predation, communication, and competition in the animal world. They consist of variable bioactive molecules, such as proteins, peptides, salts and also metabolites. Metabolomics opens up new perspectives for the study of venoms and poisons as it gives an opportunity to investigate their previously unexplored low molecular-weight components. The aim of this article is to summarize the available literature where metabolomic technologies were used for examining the composition of animal venoms and poisons. The paper discusses only the low molecular-weight components of venoms and poisons collected from snakes, spiders, scorpions, toads, frogs, and ants. An overview is given of the analytical strategies used in the analysis of the metabolic content of the samples. We paid special attention to the classes of compounds identified in various venoms and poisons and potential applications of the small molecules (especially bufadienolides) discovered. The issues that should be more effectively addressed in the studies of animal venoms and poisons include challenges related to sample collection and preparation, species-related chemical diversity of compounds building the metabolome and a need of an online database that would enhance identification of small molecule components of these secretions.
Collapse
Affiliation(s)
- Agnieszka Klupczynska
- Department of Inorganic & Analytical Chemistry, Poznan University of Medical Sciences, Grunwaldzka 6 Street, 60-780 Poznan, Poland.
| | - Magdalena Pawlak
- Department of Inorganic & Analytical Chemistry, Poznan University of Medical Sciences, Grunwaldzka 6 Street, 60-780 Poznan, Poland.
| | - Zenon J Kokot
- Department of Inorganic & Analytical Chemistry, Poznan University of Medical Sciences, Grunwaldzka 6 Street, 60-780 Poznan, Poland.
| | - Jan Matysiak
- Department of Inorganic & Analytical Chemistry, Poznan University of Medical Sciences, Grunwaldzka 6 Street, 60-780 Poznan, Poland.
| |
Collapse
|
9
|
Mariano DOC, Di Giacomo Messias M, Prezotto-Neto JP, Spencer PJ, Pimenta DC. Biochemical Analyses of Proteins from Duttaphrynus melanostictus (Bufo melanostictus) Skin Secretion: Soluble Protein Retrieval from a Viscous Matrix by Ion-Exchange Batch Sample Preparation. Protein J 2018; 37:380-389. [DOI: 10.1007/s10930-018-9780-z] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
|