1
|
Samudio O, Hernández-Ortiz M, Clement H, Encarnación-Guevara S, Cleghorn J, Acosta H, Corzo G, Salazar MH. Revisiting toxins with transcriptomics-informed proteomics of venom glands and crude venom from Centruroides bicolor from Panama. J Proteomics 2025; 316:105415. [PMID: 40057025 DOI: 10.1016/j.jprot.2025.105415] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2024] [Revised: 02/21/2025] [Accepted: 02/23/2025] [Indexed: 03/18/2025]
Abstract
The sting of the scorpion Centruroides bicolor causes a large morbidity in Panama. To characterize its venom, transcriptomic and proteomic analyses of the venom glands and the crude venom were performed. These two approaches utilized high-throughput sequencing to enhance the likelihood of detecting a wide range of venom proteins correlated with the venom proteome. After RNA venom gland extraction, a cDNA library was constructed and sequenced by RNA-seq. Also, the crude venom was digested using trypsin and chymotrypsin, and the resulting peptides were analyzed using a nano-LC-MS/MS. Notably, transcriptomic and proteomic venom approaches identified a hyaluronidase, alpha- and beta-neurotoxins that affect Na+ channels, CRISP proteins, metalloproteinases, transferrin, monooxygenase alpha-peptidyl-glycine, serine proteases, alpha pancreatic amylase, lysozyme, neurotoxins targeting K+ channels, neprilysin, scorpine, angiotensin-converting enzyme, insulin-like growth factor-binding domain proteins, nucleobindin-like proteins, and uncharacterized proteins. Interestingly, some of the venom proteins such as nucleobindin and angiotensin-converting enzymes have been not reported in the proteome, their predicted presence has only been previously derived from the genomic sequence of Centruroides sculpturatus and C. vittatus. These newly identified components enhance the understanding of the venomous nature of C. bicolor. SIGNIFICANCE: The proteins and peptides found in Centruroides bicolor venom by transcriptomic and proteomic analyses were assessed according to the protein and toxin databases available on public domains. Notably, some of the venom proteins such as nucleobindin and angiotensin-converting enzymes have been not reported in the proteome, their predicted presence has only been previously derived from the genomic sequence of Centruroides sculpturatus and C. vittatus. Moreover, enzymatic assays, including hyaluronidase, phospholipase A2, and proteolytic activity were conducted to confirm the presence or absence of those enzymes. Interestingly, neurotoxins from C. limbatus, a related species in the region, were found in the proteome but no mRNAs were identified in the transcriptome. These newly identified components enhance the understanding of the venomous nature of Centruroides bicolor.
Collapse
Affiliation(s)
- Octavio Samudio
- Universidad de Panamá, Facultad de Medicina, Centro de Investigación e Información de Medicamentos y Tóxicos, Ciudad de Panamá, Panama; Universidad de Panamá, Facultad de Ciencias Naturales, Exactas y Tecnología, Departamento de Bioquímica, Ciudad de Panamá, Panama
| | | | - Herlinda Clement
- Departamento de Medicina Molecular y Bioprocesos, Instituto de Biotecnología, Universidad Nacional Autónoma de México, Cuernavaca, Morelos, Mexico
| | | | - John Cleghorn
- Universidad de Panamá, Facultad de Medicina, Centro de Investigación e Información de Medicamentos y Tóxicos, Ciudad de Panamá, Panama
| | - Hildaura Acosta
- Universidad de Panamá, Facultad de Medicina, Centro de Investigación e Información de Medicamentos y Tóxicos, Ciudad de Panamá, Panama
| | - Gerardo Corzo
- Departamento de Medicina Molecular y Bioprocesos, Instituto de Biotecnología, Universidad Nacional Autónoma de México, Cuernavaca, Morelos, Mexico.
| | - Marcos H Salazar
- Universidad de Panamá, Facultad de Medicina, Centro de Investigación e Información de Medicamentos y Tóxicos, Ciudad de Panamá, Panama; Universidad de Panamá, Facultad de Ciencias Naturales, Exactas y Tecnología, Departamento de Bioquímica, Ciudad de Panamá, Panama.
| |
Collapse
|
2
|
Bejarano-Mendoza FO, Gómez-Ramírez IV, Cortés Guzmán AJ, Becerril B, Possani LD, Cid-Uribe JI, González-Santillán E. Disparity among venom components, and morphometrics in Centruroides baergi Hoffmann, 1932, a medically relevant scorpion species from Mexico. Toxicon 2025; 259:108370. [PMID: 40280445 DOI: 10.1016/j.toxicon.2025.108370] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2024] [Revised: 04/17/2025] [Accepted: 04/22/2025] [Indexed: 04/29/2025]
Abstract
Centruroides baergi is a scorpion species distributed in the biogeographical province of the Balsas Basin in Mexico. Health officials have reported acute envenomation in human populations living on the western side of this scorpion's range, but none in the eastern region. This disparity in toxicity suggested that there may be two distinct species. We used two different approaches, including venom analysis and morphometric specimens from both regions, to test our hypothesis. We performed chromatographic, electrophoretic, and mass spectrometry analysis to identify the known β-toxins involved in the intoxication. The most remarkable finding was the absence of Cb3 β-toxin in the eastern population. Consequently, the LD50 of the eastern population was lower than that of the western population. We analyzed linear and ratio body measurements with parametric and nonparametric statistics to test species limits. These analyses indicated that all putative populations of C. baergi are significantly similar, suggesting that they may represent a single species. Unexpectedly, the population of scorpions in the center of the study area, Suchixtlahuaca, previously identified as C. baergi, showed significant morphological and venom composition differences. We provided empirical evidence of an abrupt change of highly toxic peptides around the 98th meridian that limits populations of Centruroides baergi to the east of Mexico.
Collapse
Affiliation(s)
- Fernando O Bejarano-Mendoza
- Colección Nacional de Arácnidos, Departamento de Zoología, Instituto de Biología, Universidad Nacional Autónoma de México, Tercer Circuito, S/N Ciudad Universitaria Coyoacán, CDMX, C.P. 04510, Mexico; Posgrado en Ciencias Biológicas, Universidad Nacional Autónoma de México, Tercer Circuito, S/N Ciudad Universitaria Coyoacán, CDMX, C.P. 04510, Mexico
| | - Ilse Viridiana Gómez-Ramírez
- Departamento de Medicina Molecular y Bioprocesos, Instituto de Biotecnología, Universidad Nacional Autónoma de México, Av. Universidad 2001, Chamilpa, 62210, Cuernavaca, Morelos, Mexico
| | - Antonio Juan Cortés Guzmán
- Facultad de Ciencias Químico-Biológicas, Universidad Autónoma de Guerrero Lázaro Cárdenas, El Centenario, 39086, Chilpancingo de los Bravo, Guerrero, Mexico
| | - Baltazar Becerril
- Departamento de Medicina Molecular y Bioprocesos, Instituto de Biotecnología, Universidad Nacional Autónoma de México, Av. Universidad 2001, Chamilpa, 62210, Cuernavaca, Morelos, Mexico
| | - Lourival D Possani
- Departamento de Medicina Molecular y Bioprocesos, Instituto de Biotecnología, Universidad Nacional Autónoma de México, Av. Universidad 2001, Chamilpa, 62210, Cuernavaca, Morelos, Mexico
| | - Jimena I Cid-Uribe
- Departamento de Medicina Molecular y Bioprocesos, Instituto de Biotecnología, Universidad Nacional Autónoma de México, Av. Universidad 2001, Chamilpa, 62210, Cuernavaca, Morelos, Mexico.
| | - Edmundo González-Santillán
- Colección Nacional de Arácnidos, Departamento de Zoología, Instituto de Biología, Universidad Nacional Autónoma de México, Tercer Circuito, S/N Ciudad Universitaria Coyoacán, CDMX, C.P. 04510, Mexico.
| |
Collapse
|
3
|
Covali-Pontes HR, Lima Fernandes MM, Corrêa de Lima L, Rodrigues Macedo ML, Giannesi GC, Bastos de Oliveira MA, Teixeira Ferreira AM, Farias Frihling BE, Migliolo L, Pereira Dos Santos NG, Abreu Falla MV, Coelho GR, Neilson de Lucena M. Tityus paraguayensis, a scorpion from the Brazilian Cerrado: First assessment of venom and hemolymph composition and biological activity. Toxicon 2025; 258:108332. [PMID: 40157652 DOI: 10.1016/j.toxicon.2025.108332] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2025] [Revised: 03/23/2025] [Accepted: 03/24/2025] [Indexed: 04/01/2025]
Abstract
Scorpionism is a serious public health problem in Brazil, where scorpion stings are the most frequent accidents caused by venomous animals. Scorpion venoms comprise a complex mixture of different classes of molecules, some of which may possess pharmacological properties. This study aimed to investigate the biological activity and composition of the venom and hemolymph of Tityus paraguayensis, an endemic species found in Mato Grosso do Sul State. The hemolymph showed proteolytic and lipase activities associated with innate immunity and digestive processes, respectively. Although these activities are not believed to be involved in the manifestations of envenomation, they might prove valuable in the prospection of compounds with antimicrobial activity. The venom exhibited phospholipase and lipase activities and stimulated (Na+,K+)-ATPase activity. The venom was also analyzed for activity against epimastigote forms of Trypanosoma cruzi. In this assay, T. paraguayensis venom inhibited parasite growth. The venom did not cause cytotoxicity to Vero cells. SDS-PAGE analysis revealed proteins ranging from 10 to 140 kDa, as well as bands with molecular mass <10 kDa, possibly corresponding to neurotoxic peptides. HPLC analysis of T. paraguayensis venom revealed that the highest number of peaks had retention times of 1-20 min (0-35 % acetonitrile). The partial sequence of peak 10 was determined by Q-TOF analysis and was partially identified as a peptide (Tp10) that possible act as a K+ channel ligand (KTx). Additionally, 5 toxins related to potassium channel toxins, 3 toxins related to sodium channel toxins and a metalloproteinase were identified by shotgun proteomic of T. paraguayensis venom. This is the first report of the biological activities, HPLC profile, electrophoretic pattern and proteomic analysis of T. paraguayensis venom. These findings suggest that T. paraguayensis venom may be a valuable source for the identification of molecules with pharmacological applications.
Collapse
Affiliation(s)
| | - Mila Marluce Lima Fernandes
- Faculty of Pharmaceutical Sciences, Food and Nutrition, Federal University of Mato Grosso do Sul, Campo Grande, MS, Brazil
| | - Laís Corrêa de Lima
- Institute of Biosciences, Federal University of Mato Grosso do Sul, Campo Grande, MS, Brazil
| | - Maria Ligia Rodrigues Macedo
- Faculty of Pharmaceutical Sciences, Food and Nutrition, Federal University of Mato Grosso do Sul, Campo Grande, MS, Brazil
| | | | | | | | | | | | | | | | | | | |
Collapse
|
4
|
Díaz C, Lomonte B, Chang-Castillo A, Bonilla F, Alfaro-Chinchilla A, Triana F, Angulo D, Fernández J, Sasa M. Venomics of Scorpion Ananteris platnicki (Lourenço, 1993), a New World Buthid That Inhabits Costa Rica and Panama. Toxins (Basel) 2024; 16:327. [PMID: 39195737 PMCID: PMC11360313 DOI: 10.3390/toxins16080327] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2024] [Revised: 07/12/2024] [Accepted: 07/18/2024] [Indexed: 08/29/2024] Open
Abstract
Ananteris is a scorpion genus that inhabits dry and seasonal areas of South and Central America. It is located in a distinctive morpho-group of Buthids, the 'Ananteris group', which also includes species distributed in the Old World. Because of the lack of information on venom composition, the study of Ananteris species could have biological and medical relevance. We conducted a venomics analysis of Ananteris platnicki, a tiny scorpion that inhabits Panama and Costa Rica, which shows the presence of putative toxins targeting ion channels, as well as proteins with similarity to hyaluronidases, proteinases, phospholipases A2, members of the CAP-domain family, and hemocyanins, among others. Venom proteolytic and hyaluronidase activities were corroborated. The determination of the primary sequences carried out by mass spectrometry evidences that several peptides are similar to the toxins present in venoms from Old World scorpion genera such as Mesobuthus, Lychas, and Isometrus, but others present in Tityus and Centruroides toxins. Even when this venom displays the characteristic protein families found in all Buthids, with a predominance of putative Na+-channel toxins and proteinases, some identified partial sequences are not common in venoms of the New World species, suggesting its differentiation into a distinctive group separated from other Buthids.
Collapse
Affiliation(s)
- Cecilia Díaz
- Instituto Clodomiro Picado, Facultad de Microbiología, Universidad de Costa Rica, San José 11501-2060, Costa Rica; (B.L.); (A.C.-C.); (F.B.); (A.A.-C.); (F.T.); (D.A.); (J.F.); (M.S.)
- Departamento de Bioquímica, Escuela de Medicina, Universidad de Costa Rica, San José 11501-2060, Costa Rica
| | - Bruno Lomonte
- Instituto Clodomiro Picado, Facultad de Microbiología, Universidad de Costa Rica, San José 11501-2060, Costa Rica; (B.L.); (A.C.-C.); (F.B.); (A.A.-C.); (F.T.); (D.A.); (J.F.); (M.S.)
| | - Arturo Chang-Castillo
- Instituto Clodomiro Picado, Facultad de Microbiología, Universidad de Costa Rica, San José 11501-2060, Costa Rica; (B.L.); (A.C.-C.); (F.B.); (A.A.-C.); (F.T.); (D.A.); (J.F.); (M.S.)
| | - Fabián Bonilla
- Instituto Clodomiro Picado, Facultad de Microbiología, Universidad de Costa Rica, San José 11501-2060, Costa Rica; (B.L.); (A.C.-C.); (F.B.); (A.A.-C.); (F.T.); (D.A.); (J.F.); (M.S.)
| | - Adriana Alfaro-Chinchilla
- Instituto Clodomiro Picado, Facultad de Microbiología, Universidad de Costa Rica, San José 11501-2060, Costa Rica; (B.L.); (A.C.-C.); (F.B.); (A.A.-C.); (F.T.); (D.A.); (J.F.); (M.S.)
| | - Felipe Triana
- Instituto Clodomiro Picado, Facultad de Microbiología, Universidad de Costa Rica, San José 11501-2060, Costa Rica; (B.L.); (A.C.-C.); (F.B.); (A.A.-C.); (F.T.); (D.A.); (J.F.); (M.S.)
| | - Diego Angulo
- Instituto Clodomiro Picado, Facultad de Microbiología, Universidad de Costa Rica, San José 11501-2060, Costa Rica; (B.L.); (A.C.-C.); (F.B.); (A.A.-C.); (F.T.); (D.A.); (J.F.); (M.S.)
| | - Julián Fernández
- Instituto Clodomiro Picado, Facultad de Microbiología, Universidad de Costa Rica, San José 11501-2060, Costa Rica; (B.L.); (A.C.-C.); (F.B.); (A.A.-C.); (F.T.); (D.A.); (J.F.); (M.S.)
| | - Mahmood Sasa
- Instituto Clodomiro Picado, Facultad de Microbiología, Universidad de Costa Rica, San José 11501-2060, Costa Rica; (B.L.); (A.C.-C.); (F.B.); (A.A.-C.); (F.T.); (D.A.); (J.F.); (M.S.)
- Museo de Zoología, Centro de investigación de Biodiversidad y Ecología Tropical, Universidad de Costa Rica, San José 11501-2060, Costa Rica
| |
Collapse
|
5
|
Borges A, Lomonte B. Proteomic analysis and lethality of the venom of Aegaeobuthus nigrocinctus, a scorpion of medical significance in the Middle East. Acta Trop 2024; 255:107230. [PMID: 38714240 DOI: 10.1016/j.actatropica.2024.107230] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2024] [Revised: 04/24/2024] [Accepted: 04/25/2024] [Indexed: 05/09/2024]
Abstract
The scorpion Aegaeobuthus nigrocinctus inhabits areas in Turkey and the Levant region of the Middle East where severe/lethal envenomings have been reported. Previous research indicated its extreme venom lethality to vertebrates and distinct envenomation syndrome. We report on the composition of A. nigrocinctus venom from Lebanese specimens using nESI-MS/MS, MALDI-TOF MS, SDS-PAGE and RP-HPLC. Venom lethality in mice was also assessed (LD50 = 1.05 (0.19-1.91) mg/kg, i.p), confirming A. nigrocinctus venom toxicity from Levantine populations. Forty-seven peaks were resolved using RP-HPLC, 25 of which eluted between 20 and 40 % acetonitrile. In reducing SDS-PAGE, most predominant components were <10 kDa, with minor components at higher molecular masses of 19.6, 26.1, 46.3 and 57.7 kDa. MALDI-TOF venom fingerprinting detected 20 components within the 1,000-12,000 m/z range. Whole venom 'shotgun' bottom-up nLC-MS/MS approach, combined with in-gel tryptic digestion of SDS-PAGE bands, identified at least 67 different components belonging to 15 venom families, with ion channel-active components (K+ toxins (23); Na+ toxins (20); Cl- toxins (2)) being predominant. The sequence of a peptide (named α-KTx9.13) ortholog to Leiurus hebraeus putative α-KTx9.3 toxin was fully determined, which exhibited 81-96 % identity to other members of the α-KTx9 subfamily targeting Kv1.x and Ca2+-activated K+ channels. Chlorotoxin-like peptides were also identified. Our study underscores the medical significance of A. nigrocinctus in the region and reveals the potential value of its venom components as lead templates for biomedical applications. Future work should address whether available antivenoms in the Middle East are effective against A. nigrocinctus envenoming in the Levant area.
Collapse
Affiliation(s)
- Adolfo Borges
- Centro para el Desarrollo de la Investigación Científica, Manduvirá 635, Asunción, 1255, Paraguay; Instituto de Medicina Experimental, Universidad Central de Venezuela, Caracas, 50587, Venezuela.
| | - Bruno Lomonte
- Instituto Clodomiro Picado, Facultad de Microbiología, Universidad de Costa Rica, San José, 11501, Costa Rica
| |
Collapse
|
6
|
Mendoza-Tobar LL, Clement H, Arenas I, Sepulveda-Arias JC, Vargas JAG, Corzo G. An overview of some enzymes from buthid scorpion venoms from Colombia: Centruroides margaritatus, Tityus pachyurus, and Tityus n. sp. aff. metuendus. J Venom Anim Toxins Incl Trop Dis 2024; 30:e20230063. [PMID: 38505508 PMCID: PMC10950367 DOI: 10.1590/1678-9199-jvatitd-2023-0063] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2023] [Accepted: 12/04/2023] [Indexed: 03/21/2024] Open
Abstract
Background In Colombia, several species of Buthidae scorpions belonging to the genera Centruroides and Tityus coexist, and their stings are considered life-threatening to humans because of their venom neurotoxins. Despite previous studies focusing on neurotoxins from these scorpion genera, little is known about the enzymes present in their venoms and their relationship with whole venom toxicity. Methods Here, using proteomic and biochemical protocols the enzymatic activities of the venoms of three Colombian scorpion species, C. margaritatus, T. pachyurus, and T. n. sp. aff. metuendus, were compared to establish the presence and absence of enzymes such as phospholipases, hyaluronidases, and proteases that could be related to venom toxicity. Results: C. margaritatus was positive for hyaluronidases, T. n. sp. aff. metuendus for proteases, and T. pachyurus exhibited activity for all three mentioned enzymes. Conclusion This information provides valuable insights into the specific enzyme diversity of each species' venom and their potential role in venom toxicity, which could contribute to the development of better treatments and prevention strategies for scorpion envenomation.
Collapse
Affiliation(s)
- Leydy Lorena Mendoza-Tobar
- Grupo de Investigaciones Herpetológicas y Toxinológicas, Facultad de
Ciencias Naturales, Exactas y de la Educación, Universidad del Cauca, Popayán,
Colombia
| | - Herlinda Clement
- Departamento de Medicina Molecular y Bioprocesos, Instituto de
Biotecnología, Universidad Nacional Autónoma de México (UNAM), Cuernavaca Morelos,
México
| | - Iván Arenas
- Departamento de Medicina Molecular y Bioprocesos, Instituto de
Biotecnología, Universidad Nacional Autónoma de México (UNAM), Cuernavaca Morelos,
México
| | - Juan Carlos Sepulveda-Arias
- Grupo de Infección e Inmunidad, Facultad Ciencias de la Salud,
Universidad Tecnológica de Pereira, Pereira, Colombia
| | - Jimmy Alexander Guerrero Vargas
- Grupo de Investigaciones Herpetológicas y Toxinológicas, Facultad de
Ciencias Naturales, Exactas y de la Educación, Universidad del Cauca, Popayán,
Colombia
| | - Gerardo Corzo
- Departamento de Medicina Molecular y Bioprocesos, Instituto de
Biotecnología, Universidad Nacional Autónoma de México (UNAM), Cuernavaca Morelos,
México
| |
Collapse
|
7
|
Borges A, Lomonte B. Venomics of Leiurus abdullahbayrami, the most lethal scorpion in the Levant region of the Middle East. Toxicon 2024; 237:107548. [PMID: 38065256 DOI: 10.1016/j.toxicon.2023.107548] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2023] [Revised: 11/14/2023] [Accepted: 12/01/2023] [Indexed: 12/24/2023]
Abstract
The scorpion Leiurus abdullahbayrami has been associated with severe/lethal envenomings throughout the Levant region of the Middle East, encompassing Turkey, Syria, and Lebanon, and only scarce information is available on its venom composition, activity, and antigenicity. We report on the composition of L. abdullahbayrami venom collected from Lebanese specimens using nESI-MS/MS, MALDI-TOF MS, SDS-PAGE and RP-HPLC. Venom lethality, through LD50 determination in mice (intraperitoneal), was also assessed (0.75 (0.16-1.09) mg/kg), confirming L.abdullahbayrami venom vertebrate toxicity. Fifty-four peaks were detected using RP-HPLC, half of which eluted in the gradient region between 20 and 40% acetonitrile. In reducing SDS-PAGE, most predominant components were <10 kDa, with minor components at higher molecular masses of 24.4, 43.1, and 48.9 kDa. Venom mass fingerprint by MALDI-TOF detected 21 components within the 1000-12,000 m/z range. Whole venom 'shotgun' bottom-up nLC-MS/MS approach, combined with in-gel tryptic digestion of SDS-PAGE bands, identified at least 113 different components belonging to 15 venom families and uncharacterized proteins, with ion channel-active components (K+ channel toxins (28); Na+ channel toxins (42); Cl- channel toxins (4); Ca+2 toxins (2)) being predominant. A single match for a L. adbullahbayrami NaTx was found in the UniProt database with other congeneric species, toxin h3.1 from Leiurus hebraeus, suggesting this might be an indication of venom divergence within Leiurus, eventhough this warrants further investigation involving venom proteomics and transcriptomics of relevant species. Considering such potential interspecific venom variation, future work should address whether preparation of a specific anti-L. abdullahbayrami antivenom is justified.
Collapse
Affiliation(s)
- Adolfo Borges
- Centro para el Desarrollo de la Investigación Científica, Manduvirá 635, Asunción, 1255, Paraguay; Institute of Experimental Medicine, Central University of Venezuela, Caracas 50587, Venezuela.
| | - Bruno Lomonte
- Instituto Clodomiro Picado, Facultad de Microbiología, Universidad de Costa Rica, San José, 11501, Costa Rica
| |
Collapse
|
8
|
Díaz C, Serna-Gonzalez M, Chang-Castillo A, Lomonte B, Bonilla F, Alfaro-Chinchilla A, Triana F, Sasa M. Proteomic profile of the venom of three dark-colored Tityus (Scorpiones: Buthidae) from the tropical rainforests of Costa Rica. Acta Trop 2023; 248:107031. [PMID: 37777039 DOI: 10.1016/j.actatropica.2023.107031] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2023] [Revised: 09/21/2023] [Accepted: 09/22/2023] [Indexed: 10/02/2023]
Abstract
OBJECTIVE We aimed to elucidate the potential differences in the venom peptide sequences of three Tityus species from Costa Rican rainforests: T. jaimei, T. championi and T. dedoslargos, compared to T. cf. asthenes from Colombia, which could explain the low level of scorpionism in Costa Rica, evidenced by the lack of epidemiological data. METHODOLOGY We applied venom proteomics of peptides purified by RP-HPLC and compared the obtained sequences from venoms of these Tityus species to the sequences previously identified from Tityus inhabiting other Central and South American regions. RESULTS Venom proteome analysis evidences that most of the putative peptide toxins identified in Costa Rican dark-colored Tityus are very similar to those present in other T. (Atreus) from the region. CONCLUSIONS Our study suggests that, in the case of potential envenomation by Tityus in Costa Rica, the same level of toxicity should be observed, compared to other cases caused by members of the subgenus from other geographical localities. On the other hand, compared to countries with more accelerated urban expansion, Costa Rican Tityus still inhabit secondary rainforests and do not commonly share the same spaces with humans, so the lack of epidemiological evidence of medical emergencies caused by envenoming by this scorpion group could be more related to ecological and demographic factors and less attributed to the characteristics of the venom.
Collapse
Affiliation(s)
- Cecilia Díaz
- Instituto Clodomiro Picado, Facultad de Microbiología, Universidad de Costa Rica, San José, Costa Rica; Departamento de Bioquímica, Escuela de Medicina, Universidad de Costa Rica, San José, Costa Rica.
| | | | - Arturo Chang-Castillo
- Instituto Clodomiro Picado, Facultad de Microbiología, Universidad de Costa Rica, San José, Costa Rica
| | - Bruno Lomonte
- Instituto Clodomiro Picado, Facultad de Microbiología, Universidad de Costa Rica, San José, Costa Rica
| | - Fabián Bonilla
- Instituto Clodomiro Picado, Facultad de Microbiología, Universidad de Costa Rica, San José, Costa Rica
| | - Adriana Alfaro-Chinchilla
- Instituto Clodomiro Picado, Facultad de Microbiología, Universidad de Costa Rica, San José, Costa Rica
| | - Felipe Triana
- Instituto Clodomiro Picado, Facultad de Microbiología, Universidad de Costa Rica, San José, Costa Rica
| | - Mahmood Sasa
- Instituto Clodomiro Picado, Facultad de Microbiología, Universidad de Costa Rica, San José, Costa Rica; Museo de Zoología, Centro de Investigación en Biodiversidad y Ecología Tropical, Universidad de Costa Rica, San José, Costa Rica
| |
Collapse
|
9
|
Vaucel JA, Larréché S, Paradis C, Courtois A, Pujo JM, Elenga N, Résière D, Caré W, de Haro L, Gallart JC, Torrents R, Schmitt C, Chevalier J, Labadie M, Kallel H. French Scorpionism (Mainland and Oversea Territories): Narrative Review of Scorpion Species, Scorpion Venom, and Envenoming Management. Toxins (Basel) 2022; 14:toxins14100719. [PMID: 36287987 PMCID: PMC9611377 DOI: 10.3390/toxins14100719] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2022] [Revised: 10/15/2022] [Accepted: 10/19/2022] [Indexed: 11/05/2022] Open
Abstract
Sixty-seven scorpion species have been described in France and its territories, where they have been found to be heterogeneously distributed. Indeed, only one species can be found on Réunion Island, while 38 species exist in French Guiana. The number of stings is also heterogenous, with up to 90 stings per 100,000 inhabitants occurring annually. Scorpion species can frequently be determined through simple visual factors, including species of medical importance (i.e., Buthus, Centruroides and Tityus). Scorpion venom is composed of local enzymes and peptides with a cysteine-stabilized α/β motif (NaTxs, Ktxs, Calcines), which allow for venom diffusion and the prey's incapacitation, respectively. Harmful scorpion species are limited to Centruroides pococki in the French West Indies, which can induce severe envenoming, and the Tityus obscurus and Tityus silvestris in French Guiana, which can cause fatalities in children and can induce severe envenoming, respectively. Envenomation by one of these scorpions requires hospital monitoring as long as systemic symptoms persist. Typical management includes the use of a lidocaine patch, pain killers, and local antiseptic. In the case of heart failure, the use of dobutamine can improve survival, and pregnant women must consult an obstetrician because of the elevated risk of preterm birth or stillbirth. France does not have scorpion antivenom, as scorpion stings are generally not fatal.
Collapse
Affiliation(s)
- Jules-Antoine Vaucel
- Bordeaux Poison Control Centre, Centre Hospitalier et Universitaire Bordeaux Pellegrin, 33000 Bordeaux, France
- Correspondence: ; Tel.: +33-05-5679-8776
| | - Sébastien Larréché
- Medical Biology Department, Hôpital d’Instruction Des Armées Bégin, 94160 Saint-Mandé, France
- Institut National de la Santé et de la Recherche Médicale (INSERM) UMR-S 1144, Université de Paris, 75000 Paris, France
| | - Camille Paradis
- Bordeaux Poison Control Centre, Centre Hospitalier et Universitaire Bordeaux Pellegrin, 33000 Bordeaux, France
| | - Arnaud Courtois
- Bordeaux Poison Control Centre, Centre Hospitalier et Universitaire Bordeaux Pellegrin, 33000 Bordeaux, France
| | - Jean-Marc Pujo
- Emergency Department, Centre Hospitalier de Cayenne, 97300 Cayenne, France
| | - Narcisse Elenga
- Pediatric Unit, Centre Hospitalier de Cayenne, 97300 Cayenne, France
| | - Dabor Résière
- Intensive Care Unit, Centre Hospitalier et Universitaire Martinique, 97200 Fort de France, France
| | - Weniko Caré
- Institut National de la Santé et de la Recherche Médicale (INSERM) UMR-S 1144, Université de Paris, 75000 Paris, France
- Paris Poison Control Center, Fédération de Toxicologie (FeTox), Hôpital Fernand Widal, AP-HP, 75000 Paris, France
- Internal Medicine Department, Hôpital d’Instruction des Armées Bégin, 94160 Val-de-Marne, France
| | - Luc de Haro
- Marseille Poison Control Centre, Assistance Public des Hôpitaux de Marseille, 13000 Marseille, France
| | - Jean-Christophe Gallart
- Toulouse Poison Control Centre, Centre Hospitalier et Universitaire de Toulouse, 31000 Toulouse, France
| | - Romain Torrents
- Marseille Poison Control Centre, Assistance Public des Hôpitaux de Marseille, 13000 Marseille, France
| | - Corinne Schmitt
- Marseille Poison Control Centre, Assistance Public des Hôpitaux de Marseille, 13000 Marseille, France
| | | | - Magali Labadie
- Bordeaux Poison Control Centre, Centre Hospitalier et Universitaire Bordeaux Pellegrin, 33000 Bordeaux, France
| | - Hatem Kallel
- Intensive Care Unit, Centre Hospitalier de Cayenne, 97300 Cayenne, France
| | | |
Collapse
|
10
|
Zhang Q, Xu J, Zhou X, Liu Z. CAP superfamily proteins from venomous animals: Who we are and what to do? Int J Biol Macromol 2022; 221:691-702. [PMID: 36099994 DOI: 10.1016/j.ijbiomac.2022.09.079] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2022] [Accepted: 09/08/2022] [Indexed: 11/24/2022]
Abstract
Cysteine-rich secretory proteins (CRISPs), antigen 5 (Ag5), and pathogenesis-related (PR-1) superfamily proteins (CAP superfamily proteins) are found in diverse species across the bacterial, fungal, plant, mammalian, and venomous animal kingdoms. Notably, CAP proteins are found in a remarkable range of species across the venomous animal kingdom and are present almost ubiquitously in venoms, even when venoms are produced in very small quantities. Meanwhile, in comparison to mammals, venomous animals are underappreciated and easy to ignore. Overwhelming evidence suggests that CAP proteins derived from venomous animals exhibit diverse activities, including ion channel, inflammatory, proteolysis, and immune regulatory activities. To understand the potential biological functions of CAP proteins in venom more effectively, we need to examine the significance of the evolution of venomous animals in the animal kingdom, for their survival. In this article, we will review the current status of research on CAP proteins in venomous animals, including their isolation, characterization, known biological activities, and sequence alignments. We will also discuss the rapid evolution of CAP proteins with varied subtypes in venomous animals. A treasure trove of information can be obtained by studying the CAP proteins in venomous animals; hence, it is necessary to explore these proteins further.
Collapse
Affiliation(s)
- Qianqian Zhang
- The National & Local Joint Engineering Laboratory of Animal Peptide Drug Development, College of Life Sciences, Hunan Normal University, Changsha, Hunan 410081, China; Peptide and small molecule drug R&D plateform, Furong Laboratory, Hunan Normal University, Changsha, 410081, Hunan, China
| | - Jiawei Xu
- The National & Local Joint Engineering Laboratory of Animal Peptide Drug Development, College of Life Sciences, Hunan Normal University, Changsha, Hunan 410081, China; Peptide and small molecule drug R&D plateform, Furong Laboratory, Hunan Normal University, Changsha, 410081, Hunan, China
| | - Xi Zhou
- The National & Local Joint Engineering Laboratory of Animal Peptide Drug Development, College of Life Sciences, Hunan Normal University, Changsha, Hunan 410081, China; Peptide and small molecule drug R&D plateform, Furong Laboratory, Hunan Normal University, Changsha, 410081, Hunan, China.
| | - Zhonghua Liu
- The National & Local Joint Engineering Laboratory of Animal Peptide Drug Development, College of Life Sciences, Hunan Normal University, Changsha, Hunan 410081, China; Peptide and small molecule drug R&D plateform, Furong Laboratory, Hunan Normal University, Changsha, 410081, Hunan, China.
| |
Collapse
|
11
|
Freeman M, Palmer A, West G, Goe A. Successful management of Arizona bark scorpion (
Centruroides sculpturatus
) envenomation in a Gray's monitor (
Varanus olivaceus
). VETERINARY RECORD CASE REPORTS 2022. [DOI: 10.1002/vrc2.471] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
| | | | | | - Alexandra Goe
- Department of Specialty Medicine College of Veterinary Medicine Midwestern University Glendale Arizona USA
| |
Collapse
|
12
|
Cunha HP, Santos AB, Foerster SÍA, Moura GJB, Lira AFA. Can contrasting habitats influence predatory behavior in tropical forest scorpions? Acta Ethol 2022. [DOI: 10.1007/s10211-022-00390-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
13
|
Marchi FC, Mendes-Silva E, Rodrigues-Ribeiro L, Bolais-Ramos LG, Verano-Braga T. Toxinology in the proteomics era: a review on arachnid venom proteomics. J Venom Anim Toxins Incl Trop Dis 2022; 28:20210034. [PMID: 35291269 PMCID: PMC8893269 DOI: 10.1590/1678-9199-jvatitd-2021-0034] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2021] [Accepted: 06/01/2021] [Indexed: 11/22/2022] Open
Abstract
The word venomics was coined to acknowledge the studies that use omics to investigate venom proteins and peptides. Venomics has evolved considerably over the last 20 years. The first works on scorpion or spider venomics were published in the early 2000's. Such studies relied on peptide mass fingerprinting (PMF) to characterize venom complexity. After the introduction of new mass spectrometers with higher resolution, sensitivity and mass accuracy, and the next-generation nucleotide sequencing, the complexity of data reported in research on scorpion and spider venomics increased exponentially, which allowed more comprehensive studies. In the present review article, we covered key publications on scorpion venomics and spider venomics, presenting historical grounds and implemented technologies over the last years. The literature presented in this review was selected after searching the PubMed database using the terms "(scorpion venom) AND (proteome)" for scorpion venomics, and "(spider venom) AND (proteome)" for publications on spider venomics. We presented the key aspects related to proteomics in the covered papers including, but not restricted to, the employed proteomic strategy (i.e., PMF, two-dimensional gel electrophoresis, shotgun/bottom-up and/or top-down/peptidome), and the type of mass spectrometer used. Some conclusions can be drawn from the present study. For example, the scorpion genus Tityus is the most studied concerning venomics, followed by Centruroides; whereas for spiders the studied genera were found more equally distributed. Another interesting conclusion is the lack of high throughput studies on post-translational modifications (PTMs) of scorpion and spider proteins. In our opinion, PTMs should be more studied as they can modulate the activity of scorpion and spider toxins.
Collapse
Affiliation(s)
- Filipi Calbaizer Marchi
- Department of Physiology and Biophysics, Institute of Biological Sciences, Federal University of Minas Gerais (UFMG), Belo Horizonte, MG, Brazil
| | - Edneia Mendes-Silva
- Department of Physiology and Biophysics, Institute of Biological Sciences, Federal University of Minas Gerais (UFMG), Belo Horizonte, MG, Brazil
| | - Lucas Rodrigues-Ribeiro
- Department of Physiology and Biophysics, Institute of Biological Sciences, Federal University of Minas Gerais (UFMG), Belo Horizonte, MG, Brazil
| | - Lucas Gabriel Bolais-Ramos
- Department of Physiology and Biophysics, Institute of Biological Sciences, Federal University of Minas Gerais (UFMG), Belo Horizonte, MG, Brazil
| | - Thiago Verano-Braga
- Department of Physiology and Biophysics, Institute of Biological Sciences, Federal University of Minas Gerais (UFMG), Belo Horizonte, MG, Brazil
| |
Collapse
|
14
|
Bermúdez-Guzmán MJ, Jiménez-Vargas JM, Possani LD, Zamudio F, Orozco-Gutiérrez G, Oceguera-Contreras E, Enríquez-Vara JN, Vazquez-Vuelvas OF, García-Villalvazo PE, Valdez-Velázquez LL. Biochemical characterization and insecticidal activity of isolated peptides from the venom of the scorpion Centruroides tecomanus. Toxicon 2022; 206:90-102. [PMID: 34973996 DOI: 10.1016/j.toxicon.2021.12.015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2021] [Revised: 12/16/2021] [Accepted: 12/20/2021] [Indexed: 11/19/2022]
Abstract
The venom of scorpions is a mixture of components that constitute a source of bioactive molecules. The venom of the scorpion Centruroides tecomanus contains peptides toxic to insects, however, to date no toxin responsible for this activity has yet been isolated and fully characterized. This communication describes two new peptides Ct-IT1 and Ct-IT2 purified from this scorpion. Both peptides contain 63 amino acids with molecular weight 6857.85 for Ct-IT1 and 6987.77 Da for Ct-IT2. The soluble venom was separated using chromatographic techniques of molecular size exclusion, cationic exchange, and reverse phase chromatography, allowing the identification of at least 99 components of which in 53 the insecticidal activity was evaluated. The LD50 determined for Ct-IT1 is 3.81 μg/100 mg of cricket weight, but low amounts of peptides (0.8 μg of peptide) already cause paralysis in crickets. The relative abundance of these two peptides in the venom is 2.1% for Ct-IT1 and 1% for Ct-IT2. The molecular masses and N-terminal sequences of both insecticidal toxins were determined by mass spectrometry and Edman degradation. The primary structure of both toxins was compared with other known peptides isolated from other scorpion venoms. The analysis of the sequence alignments revealed the position of a highly conserved amino acid residue, Gly39, exclusively present in anti-insect selective depressant β-toxins (DBTXs), which in Ct-IT1 and Ct-IT2 is at position Gly40. Similarly, a three-dimensional structure of this toxins was obtained by homology modeling and compared to the structure of known insect toxins of scorpions. An important similarity of the cavity formed by the trapping apparatus region of the depressant toxin LqhIT2, isolated from the scorpion Leiurus quinquestriatus hebraeus, was found in the toxins described here. These results indicate that Ct-IT1 and Ct-IT2 toxins have a high potential to be evaluated on pests that affect economically important crops to eventually consider them as a potential biological control method.
Collapse
Affiliation(s)
- M J Bermúdez-Guzmán
- Facultad de Ciencias Químicas, Universidad de Colima, Km. 9 Carretera Colima-Coquimatlán, C.P. 28400, Coquimatlán, Colima, México; Instituto Nacional de Investigaciones Forestales, Agrícolas y Pecuarias (INIFAP), Km. 35 Carretera Colima-Manzanillo, C.P. 28100, Tecomán, Colima, México
| | - J M Jiménez-Vargas
- CONACYT-Facultad de Ciencias Químicas, Universidad de Colima, Km. 9 Carretera-Coquimatlán, C.P. 28400, Coquimatlán, Colima, México
| | - L D Possani
- Instituto de Biotecnología, Universidad Nacional Autónoma de México, Av. Universidad, 2001, Colonia Chamilpa, C.P. 510-3, Cuernavaca, Morelos, México
| | - F Zamudio
- Instituto de Biotecnología, Universidad Nacional Autónoma de México, Av. Universidad, 2001, Colonia Chamilpa, C.P. 510-3, Cuernavaca, Morelos, México
| | - G Orozco-Gutiérrez
- Instituto Nacional de Investigaciones Forestales, Agrícolas y Pecuarias (INIFAP), Km. 35 Carretera Colima-Manzanillo, C.P. 28100, Tecomán, Colima, México
| | - E Oceguera-Contreras
- Centro Universitario de los Valles, Universidad de Guadalajara, Km. 45.5 Carretera Guadalajara-Ameca, Ameca, Jalisco, México
| | - J N Enríquez-Vara
- CONACYT-Centro de Investigación y Asistencia en Tecnología y Diseño del Estado de Jalisco A.C., Camino Arenero 1227, Col. El Bajío C.P. 45019, Zapopan, Jalisco, México
| | - O F Vazquez-Vuelvas
- Facultad de Ciencias Químicas, Universidad de Colima, Km. 9 Carretera Colima-Coquimatlán, C.P. 28400, Coquimatlán, Colima, México
| | - P E García-Villalvazo
- Facultad de Ciencias Químicas, Universidad de Colima, Km. 9 Carretera Colima-Coquimatlán, C.P. 28400, Coquimatlán, Colima, México
| | - L L Valdez-Velázquez
- Facultad de Ciencias Químicas, Universidad de Colima, Km. 9 Carretera Colima-Coquimatlán, C.P. 28400, Coquimatlán, Colima, México.
| |
Collapse
|
15
|
Arroyave-Muñoz A, Meijden AVD, Estrada-Gómez S, García LF. Linking toxicity and predation in a venomous arthropod: the case of Tityus fuhrmanni (Scorpiones: Buthidae), a generalist predator scorpion. J Venom Anim Toxins Incl Trop Dis 2022; 28:e20210036. [PMID: 35082841 PMCID: PMC8747031 DOI: 10.1590/1678-9199-jvatitd-2021-0036] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2021] [Accepted: 07/12/2021] [Indexed: 11/21/2022] Open
Abstract
Background: Scorpions are arachnids that have a generalist diet, which use venom to
subdue their prey. The study of their trophic ecology and capture behavior
is still limited compared to other organisms, and aspects such as trophic
specialization in this group have been little explored. Methods: In order to determine the relationship between feeding behavior and venom
toxicity in the scorpion species Tityus fuhrmanni, 33
specimens were offered prey with different morphologies and defense
mechanisms: spiders, cockroaches and crickets. In each of the experiments we
recorded the following aspects: acceptance rate, immobilization time and the
number of capture attempts. The median lethal dose of T.
fuhrmanni venom against the three different types of prey was
also evaluated. Results: We found that this species does not have a marked difference in acceptance
for any of the evaluated prey, but the number of capture attempts of spiders
is higher when compared to the other types of prey. The immobilization time
is shorter in spiders compared to other prey and the LD50 was
higher for cockroaches. Conclusions: These results indicate that T. fuhrmanni is a scorpion with
a generalist diet, has a venom with a different potency among prey and is
capable of discriminating between prey types and employing distinct
strategies to subdue them.
Collapse
|
16
|
García LF, Valenzuela-Rojas JC, González-Gómez JC, Lacava M, van der Meijden A. Pinching or stinging? Comparing prey capture among scorpions with contrasting morphologies. J Venom Anim Toxins Incl Trop Dis 2022; 28:e20210037. [PMID: 35432495 PMCID: PMC8985449 DOI: 10.1590/1678-9199-jvatitd-2021-0037] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2021] [Accepted: 08/20/2021] [Indexed: 11/25/2022] Open
Abstract
Background: Scorpions can use their pincers and/or stingers to subdue and immobilize their prey. A scorpion can thus choose between strategies involving force or venom, or both, depending on what is required to subdue its prey. Scorpions vary greatly in the size and strength of their pincers, and in the efficacy of their venom. Whether this variability is driven by their defensive or prey incapacitation functionis unknown. In this study, we test if scorpion species with different pincer morphologies and venom efficacies use these weapons differently during prey subjugation. To that end, we observed Opisthacanthus elatus and Chactas sp. with large pincers and Centruroides edwardsii and Tityus sp. with slender pincers. Methods: The scorpion pinch force was measured, and behavioral experiments were performed with hard and soft prey (Blaptica dubia and Acheta domesticus). Stinger use, sting frequency and immobilization time were measured. Results: We found that scorpions with large pincers such as O. elatus produce more force and use the stinger less, mostly subjugating prey by crushing them with the pincers. In C. edwardsii and Tityus sp. we found they use their slender and relatively weak pincers for holding the prey, but seem to predominantly use the stinger to subjugate them. On the other hand, Chactas sp. uses both strategies although it has a high pinch force. Conclusions: Our results show that scorpionspecies with massive pincers and high pinch force as O. elatus use the stinger less for prey subjugation than scorpionspecies with slenderpincers.
Collapse
|
17
|
Borges A, Rojas de Arias A, de Almeida Lima S, Lomonte B, Díaz C, Chávez-Olórtegui C, Graham MR, Kalapothakis E, Coronel C, de Roodt AR. Genetic and toxinological divergence among populations of Tityus trivittatus Kraepelin, 1898 (Scorpiones: Buthidae) inhabiting Paraguay and Argentina. PLoS Negl Trop Dis 2020; 14:e0008899. [PMID: 33315884 PMCID: PMC7769620 DOI: 10.1371/journal.pntd.0008899] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2020] [Revised: 12/28/2020] [Accepted: 10/20/2020] [Indexed: 11/22/2022] Open
Abstract
Envenoming by scorpions in genus Tityus is a public health problem in Tropical America. One of the most medically significant species is Tityus trivittatus, which is known to occur from southwest Brazil to central-northern and eastern Argentina. In this work, we studied the lethality, composition, antigenicity, and enzymatic activity of venom from a T. trivittatus population found further north in urban areas of eastern Paraguay, where it has caused serious envenomation of children. Our results indicate that the population is of medical importance as it produces a potently toxic venom with an LD50 around 1.19 mg/kg. Venom neutralization in preliminary mouse bioassays was complete when using Brazilian anti-T. serrulatus antivenom but only partial when using Argentinean anti-T. trivittatus antivenom. Venom competitive solid-phase enzyme immunoassays and immunoblotting from Argentinean and Paraguayan T. trivittatus populations indicated that antigenic differences exist across the species range. SDS-PAGE showed variations in type and relative amounts of venom proteins between T. trivitattus samples from Argentina and Paraguay. MALDI-TOF mass spectrometry indicated that while some sodium channel toxins are shared, including β-toxin Tt1g, others are population-specific. Proteolytic activity by zymography and peptide identification through nESI-MS/MS also point out that population-specific proteases may exist in T. trivitattus, which are postulated to be involved in the envenoming process. A time-calibrated molecular phylogeny of mitochondrial COI sequences revealed a significant (8.14%) genetic differentiation between the Argentinean and Paraguayan populations, which appeared to have diverged between the mid Miocene and early Pliocene. Altogether, toxinological and genetic evidence indicate that T. trivitattus populations from Paraguay and Argentina correspond to distinct, unique cryptic species, and suggest that further venom and taxonomic diversity exists in synanthropic southern South American Tityus than previously thought.
Collapse
Affiliation(s)
- Adolfo Borges
- Centro para el Desarrollo de la Investigación Científica (CEDIC), Asunción, Paraguay
- Laboratorio de Biología Molecular de Toxinas y Receptores, Instituto de Medicina Experimental, Facultad de Medicina, Universidad Central de Venezuela, Caracas, Venezuela
| | | | - Sabrina de Almeida Lima
- Laboratorio de Inmunoquimica, Departamento de Bioquímica e Inmunologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, Brasil
| | - Bruno Lomonte
- Instituto Clodomiro Picado, Universidad de Costa Rica, San José, Costa Rica
| | - Cecilia Díaz
- Instituto Clodomiro Picado, Universidad de Costa Rica, San José, Costa Rica
| | - Carlos Chávez-Olórtegui
- Laboratorio de Inmunoquimica, Departamento de Bioquímica e Inmunologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, Brasil
| | - Matthew R. Graham
- Department of Biology, Eastern Connecticut State University, Willimantic, Connecticut, United States of America
| | - Evanguedes Kalapothakis
- Departamento de Biologia Geral, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, Brasil
| | - Cathia Coronel
- Centro para el Desarrollo de la Investigación Científica (CEDIC), Asunción, Paraguay
| | - Adolfo R. de Roodt
- Instituto Nacional de Producción de Biológicos “Carlos G. Malbrán”, Buenos Aires, Argentina
| |
Collapse
|
18
|
Justa HCD, Matsubara FH, de-Bona E, Schemczssen-Graeff Z, Polli NLC, de Mari TL, Boia-Ferreira M, Minozzo JC, Wille ACM, Senff-Ribeiro A, Gremski LH, Veiga SS. LALLT (Loxosceles Allergen-Like Toxin) from the venom of Loxosceles intermedia: Recombinant expression in insect cells and characterization as a molecule with allergenic properties. Int J Biol Macromol 2020; 164:3984-3999. [DOI: 10.1016/j.ijbiomac.2020.08.212] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2020] [Revised: 08/27/2020] [Accepted: 08/27/2020] [Indexed: 12/13/2022]
|
19
|
Valdez-Velázquez LL, Cid-Uribe J, Romero-Gutierrez MT, Olamendi-Portugal T, Jimenez-Vargas JM, Possani LD. Transcriptomic and proteomic analyses of the venom and venom glands of Centruroides hirsutipalpus, a dangerous scorpion from Mexico. Toxicon 2020; 179:21-32. [PMID: 32126222 DOI: 10.1016/j.toxicon.2020.02.021] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2019] [Revised: 01/31/2020] [Accepted: 02/26/2020] [Indexed: 01/01/2023]
Abstract
Centruroides hirsutipalpus (Scorpiones: Buthidae) is related to the "striped scorpion" group inhabiting the western Pacific region of Mexico. Human accidents caused by this species are medically important due to the great number of people stung and the severity of the resulting intoxication. This communication reports an extensive venom characterization using high-throughput proteomic and Illumina transcriptomic sequencing performed with RNA purified from its venom glands. 2,553,529 reads were assembled into 44,579 transcripts. From these transcripts, 23,880 were successfully annoted using Trinotate. Using specialized databases and by performing bioinformatic searches, it was possible to identify 147 putative venom protein transcripts. These include α- and β-type sodium channel toxins (NaScTx), potassium channel toxins (KScTx) (α-, β-, δ-, γ- and λ-types), enzymes (metalloproteases, hyaluronidases, phospholipases, serine proteases, and monooxygenases), protease inhibitors, host defense peptides (HDPs) such as defensins, non-disulfide bridge peptides (NDBPs), anionic peptides, superfamily CAP proteins, insulin growth factor-binding proteins (IGFBPs), orphan peptides, and other venom components (La1 peptides). De novo tandem mass spectrometric sequencing of digested venom identificatied 50 peptides. The venom of C. hirsutipalpus contains the highest reported number (77) of transcripts encoding NaScTxs, which are the components responsible for human fatalities.
Collapse
Affiliation(s)
| | - Jimena Cid-Uribe
- Instituto de Biotecnología, Universidad Nacional Autónoma de México, Avenida Universidad, 2001, Colonia Chamilpa, Cuernavaca, Morelos, 62210, Mexico
| | - María Teresa Romero-Gutierrez
- Departamento de Ciencias Computacionales, Centro Universitario de Ciencias Exactas e Ingenierías, Universidad de Guadalajara, Boulevard Marcelino García Barragán 1421, Guadalajara, Jalisco, 44430, Mexico
| | - Timoteo Olamendi-Portugal
- Instituto de Biotecnología, Universidad Nacional Autónoma de México, Avenida Universidad, 2001, Colonia Chamilpa, Cuernavaca, Morelos, 62210, Mexico
| | | | - Lourival D Possani
- Instituto de Biotecnología, Universidad Nacional Autónoma de México, Avenida Universidad, 2001, Colonia Chamilpa, Cuernavaca, Morelos, 62210, Mexico.
| |
Collapse
|