1
|
Goldstein JM, Konishi K, Aroner S, Lee H, Remington A, Chitnis T, Buka SL, Hornig M, Tobet SA. Prenatal immune origins of brain aging differ by sex. Mol Psychiatry 2025; 30:1887-1896. [PMID: 39567743 PMCID: PMC12014477 DOI: 10.1038/s41380-024-02798-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/07/2023] [Revised: 10/10/2024] [Accepted: 10/16/2024] [Indexed: 11/22/2024]
Abstract
With an increasing aging population and Alzheimer's disease tsunami, it is critical to identify early antecedents of brain aging to target for intervention and prevention. Women and men develop and age differently, thus using a sex differences lens can contribute to identification of early risk biomarkers and resilience. There is growing evidence for fetal antecedents to adult memory impairments, potentially through disruption of maternal prenatal immune pathways. Here, we hypothesized that in utero exposure to maternal pro-inflammatory cytokines will have sex-dependent effects on specific brain circuitry regulating offspring's memory and immune function that will be retained across the lifespan. Using a unique prenatal cohort, we tested this in 204 adult offspring, equally divided by sex, who were exposed/unexposed to an adverse in utero maternal immune environment and followed into early midlife (~age 50). Functional magnetic resonance imaging results showed exposure to pro-inflammatory cytokines in utero (i.e., higher maternal IL-6 and TNF-α levels) was significantly associated with sex differences in brain activity and connectivity underlying memory circuitry and performance and with a hyperimmune state, 50 years later. In contrast, the anti-inflammatory cytokine, IL-10 alone, was not significantly associated with memory circuitry in midlife. Predictive validity of prenatal exposure was underscored by significant associations with age 7 academic achievement, also associated with age 50 memory performance. Results uniquely demonstrated that adverse levels of maternal in utero pro-inflammatory cytokines during a critical period of the sexual differentiation of the brain produced long-lasting effects on immune function and memory circuitry/function from childhood to midlife that were sex-dependent, brain region-specific, and, within women, reproductive stage-dependent.
Collapse
Affiliation(s)
- Jill M Goldstein
- Department of Psychiatry, Massachusetts General Hospital (MGH), Harvard Medical School, Boston, MA, USA.
- Department of Medicine, Harvard Medical School, Boston, MA, USA.
- Innovation Center on Sex Differences in Medicine, Massachusetts General Hospital, Boston, MA, USA.
| | - Kyoko Konishi
- Department of Psychiatry, Massachusetts General Hospital (MGH), Harvard Medical School, Boston, MA, USA
- Innovation Center on Sex Differences in Medicine, Massachusetts General Hospital, Boston, MA, USA
| | - Sarah Aroner
- Department of Psychiatry, Massachusetts General Hospital (MGH), Harvard Medical School, Boston, MA, USA
- Innovation Center on Sex Differences in Medicine, Massachusetts General Hospital, Boston, MA, USA
| | - Hang Lee
- Department of Medicine, Harvard Medical School, Boston, MA, USA
- Innovation Center on Sex Differences in Medicine, Massachusetts General Hospital, Boston, MA, USA
- Division of Biostatistics, Massachusetts General Hospital, Boston, MA, USA
| | - Anne Remington
- Department of Psychiatry, Massachusetts General Hospital (MGH), Harvard Medical School, Boston, MA, USA
- Innovation Center on Sex Differences in Medicine, Massachusetts General Hospital, Boston, MA, USA
| | - Tanuja Chitnis
- Innovation Center on Sex Differences in Medicine, Massachusetts General Hospital, Boston, MA, USA
- Department of Neurology, Brigham and Women's Hospital and MGH, Harvard Medical School, Boston, MA, USA
| | - Stephen L Buka
- Innovation Center on Sex Differences in Medicine, Massachusetts General Hospital, Boston, MA, USA
- Department of Epidemiology and Population Health, Brown University, Providence, RI, USA
| | - Mady Hornig
- Department of Epidemiology, Columbia University Mailman School of Public Health, New York, NY, USA
| | - Stuart A Tobet
- Department of Psychiatry, Massachusetts General Hospital (MGH), Harvard Medical School, Boston, MA, USA
- Innovation Center on Sex Differences in Medicine, Massachusetts General Hospital, Boston, MA, USA
- Department of Biomedical Sciences and School of Biomedical Engineering, Colorado State University, Fort Collins, CO, USA
| |
Collapse
|
2
|
Guma E, Chakravarty MM. Immune Alterations in the Intrauterine Environment Shape Offspring Brain Development in a Sex-Specific Manner. Biol Psychiatry 2025; 97:12-27. [PMID: 38679357 PMCID: PMC11511788 DOI: 10.1016/j.biopsych.2024.04.012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/07/2023] [Revised: 03/20/2024] [Accepted: 04/17/2024] [Indexed: 05/01/2024]
Abstract
Exposure to immune dysregulation in utero or in early life has been shown to increase risk for neuropsychiatric illness. The sources of inflammation can be varied, including acute exposures due to maternal infection or acute stress, or persistent exposures due to chronic stress, obesity, malnutrition, or autoimmune diseases. These exposures may cause subtle alteration in brain development, structure, and function that can become progressively magnified across the lifespan, potentially increasing the likelihood of developing a neuropsychiatric conditions. There is some evidence that males are more susceptible to early-life inflammatory challenges than females. In this review, we discuss the various sources of in utero or early-life immune alteration and the known effects on fetal development with a sex-specific lens. To do so, we leveraged neuroimaging, behavioral, cellular, and neurochemical findings. Gaining clarity about how the intrauterine environment affects offspring development is critically important for informing preventive and early intervention measures that may buffer against the effects of these early-life risk factors.
Collapse
Affiliation(s)
- Elisa Guma
- Section on Developmental Neurogenomics, Human Genetics Branch, National Institute of Mental Health, Bethesda, Maryland; Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital, Harvard Medical School, Charlestown, Massachusetts.
| | - M Mallar Chakravarty
- Computational Brain Anatomy Laboratory, Cerebral Imaging Centre, Douglas Mental Health University Institute, Montreal, Quebec, Canada; Cerebral Imaging Centre, Douglas Mental Health University Institute, Montreal, Quebec, Canada; Department of Psychiatry, McGill University, Montreal, Quebec, Canada; Department of Biomedical Engineering, McGill University, Montreal, Quebec, Canada
| |
Collapse
|
3
|
Abu-Ata S, Shukha ON, Awad-Igbaria Y, Ginat K, Palzur E, Golani I, Shamir A. Blocking the ErbB pathway during adolescence affects the induction of anxiety-like behavior in young adult maternal immune activation offspring. Pharmacol Biochem Behav 2023; 222:173497. [PMID: 36460130 DOI: 10.1016/j.pbb.2022.173497] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/06/2022] [Revised: 11/14/2022] [Accepted: 11/21/2022] [Indexed: 12/02/2022]
Abstract
Epidemiological and experimental evidence demonstrates that maternal exposure to infection during gestation increases the offspring's risk of developing schizophrenia and other neurodevelopmental disorders. In addition, the NRG-ErbB4 signaling pathway is involved in brain development and neuropsychiatric disorders. Specifically, this pathway modulates the dopaminergic and GABAergic systems and is expressed in the early stages of prenatal development. We recently demonstrated that maternal immune activation (MIA) at late gestation altered the expression of NRG1, its receptor ErbB4, and the dopamine D2 receptor four hours post-injection of viral or LPS in the fetal brain. We also reported that blocking the ErbB pathway during adolescence resulted in increased striatal DA content and reduced preference for sweetness and alcohol that persists into adulthood. However, the combined effects of MIA, re-activation of the immune system, and disruption of the ErbB signaling during adolescence would affect young adult mice's behavioral phenotype is unknown. Here, we report that the expression levels of the NRG1, ErbB4, GAD67, and BDNF were changed as responses to MIA and blocked the ErbB signaling in the frontal cortex of adolescent mice. MIA-Offspring during late gestation and immune system re-activation during adolescence spent less time in the open arms of the elevated plus-maze in adulthood. At the same time, MIA-offspring administrated with the pan-ErbB inhibitor during adolescence spent the same amount of time in the opened arm as the control mice. Combining the ErbB signaling disruption during adolescence leads to a social interaction impairment in female offspring, but not male, without affecting the offspring's motor activity, long-term recognition, and working memory. These results imply that blocking the ErbB signaling during adolescence prevents the development of anxiety-like behavior of the MIA offspring later in life and suggest that this interaction does not reduce the risk of female MIA offspring developing impaired social behavior.
Collapse
Affiliation(s)
- Saher Abu-Ata
- Psychobiology Research Laboratory, Mazor Mental Health Center, Akko, Israel; The Ruth and Bruce Rappaport Faculty of Medicine, Technion - Israel Institute of Technology, Haifa, Israel
| | - Orya Noa Shukha
- Psychobiology Research Laboratory, Mazor Mental Health Center, Akko, Israel; The Ruth and Bruce Rappaport Faculty of Medicine, Technion - Israel Institute of Technology, Haifa, Israel
| | - Yaseen Awad-Igbaria
- Faculty of Medicine in the Galilee, Bar-Ilan University, Safed, Israel; The Research Institute of Galilee Medical Center, Nahariya, Israel
| | - Karen Ginat
- Psychobiology Research Laboratory, Mazor Mental Health Center, Akko, Israel
| | - Eilam Palzur
- The Research Institute of Galilee Medical Center, Nahariya, Israel
| | - Idit Golani
- Department of Biotechnology Engineering, Braude - College of Engineering, Karmiel, Israel
| | - Alon Shamir
- Psychobiology Research Laboratory, Mazor Mental Health Center, Akko, Israel; The Ruth and Bruce Rappaport Faculty of Medicine, Technion - Israel Institute of Technology, Haifa, Israel.
| |
Collapse
|
4
|
Intrauterine Inflammation Leads to Select Sex- and Age-Specific Behavior and Molecular Differences in Mice. Int J Mol Sci 2022; 24:ijms24010032. [PMID: 36613475 PMCID: PMC9819857 DOI: 10.3390/ijms24010032] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2022] [Revised: 11/30/2022] [Accepted: 12/15/2022] [Indexed: 12/24/2022] Open
Abstract
Sex-specific differences in behavior have been observed in anxiety and learning in children exposed to prenatal inflammation; however, whether these behaviors manifest differently by age is unknown. This study assesses possible behavioral changes due to in utero inflammation as a function of age in neonatal, juvenile, and adult animals and presents potential molecular targets for observed differences. CD-1 timed pregnant dams were injected in utero with lipopolysaccharide (LPS, 50 μg/animal) or saline at embryonic day 15. No differences in stress responses were measured by neonatal ultrasonic vocalizations between LPS- and saline-exposed groups of either sex. By contrast, prenatal inflammation caused a male-specific increase in anxiety in mature but not juvenile animals. Juvenile LPS-exposed females had decreased movement in open field testing that was not present in adult animals. We additionally observed improved memory retrieval after in utero LPS in the juvenile animals of both sexes, which in males may be related to a perseverative phenotype. However, there was an impairment of long-term memory in only adult LPS-exposed females. Finally, gene expression analyses revealed that LPS induced sex-specific changes in genes involved in hippocampal neurogenesis. In conclusion, intrauterine inflammation has age- and sex-specific effects on anxiety and learning that may correlate to sex-specific disruption of gene expression associated with neurogenesis in the hippocampus.
Collapse
|
5
|
Ni MZ, Zhang YM, Li Y, Wu QT, Zhang ZZ, Chen J, Luo BL, Li XW, Chen GH. Environmental enrichment improves declined cognition induced by prenatal inflammatory exposure in aged CD-1 mice: Role of NGPF2 and PSD-95. Front Aging Neurosci 2022; 14:1021237. [PMID: 36479357 PMCID: PMC9720164 DOI: 10.3389/fnagi.2022.1021237] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2022] [Accepted: 11/03/2022] [Indexed: 12/08/2023] Open
Abstract
INTRODUCTION Research suggests that prenatal inflammatory exposure could accelerate age-related cognitive decline that may be resulted from neuroinflammation and synaptic dysfunction during aging. Environmental enrichment (EE) may mitigate the cognitive and synaptic deficits. Neurite growth-promoting factor 2 (NGPF2) and postsynaptic density protein 95 (PSD-95) play critical roles in neuroinflammation and synaptic function, respectively. METHODS We examined whether this adversity and EE exposure can cause alterations in Ngpf2 and Psd-95 expression. In this study, CD-1 mice received intraperitoneal injection of lipopolysaccharide (50 μg/kg) or normal saline from gestational days 15-17. After weaning, half of the male offspring under each treatment were exposed to EE. The Morris water maze was used to assess spatial learning and memory at 3 and 15 months of age, whereas quantitative real-time polymerase chain reaction and Western blotting were used to measure hippocampal mRNA and protein levels of NGPF2 and PSD-95, respectively. Meanwhile, serum levels of IL-6, IL-1β, and TNF-α were determined by enzyme-linked immunosorbent assay. RESULTS The results showed that aged mice exhibited poor spatial learning and memory ability, elevated NGPF2 mRNA and protein levels, and decreased PSD-95 mRNA and protein levels relative to their young counterparts during natural aging. Embryonic inflammatory exposure accelerated age-related changes in spatial cognition, and in Ngpf2 and Psd-95 expression. Additionally, the levels of Ngpf2 and Psd-95 products were significantly positively and negatively correlated with cognitive dysfunction, respectively, particularly in prenatal inflammation-exposed aged mice. Changes in serum levels of IL-6, IL-1β, and TNF-α reflective of systemic inflammation and their correlation with cognitive decline during accelerated aging were similar to those of hippocampal NGPF2. EE exposure could partially restore the accelerated decline in age-related cognitive function and in Psd-95 expression, especially in aged mice. DISCUSSION Overall, the aggravated cognitive disabilities in aged mice may be related to the alterations in Ngpf2 and Psd-95 expression and in systemic state of inflammation due to prenatal inflammatory exposure, and long-term EE exposure may ameliorate this cognitive impairment by upregulating Psd-95 expression.
Collapse
Affiliation(s)
- Ming-Zhu Ni
- Department of Neurology (Sleep Disorders), The Affiliated Chaohu Hospital of Anhui Medical University, Hefei, China
| | - Yue-Ming Zhang
- Department of Neurology (Sleep Disorders), The Affiliated Chaohu Hospital of Anhui Medical University, Hefei, China
| | - Yun Li
- Department of Neurology (Sleep Disorders), The Affiliated Chaohu Hospital of Anhui Medical University, Hefei, China
| | - Qi-Tao Wu
- Department of Neurology (Sleep Disorders), The Affiliated Chaohu Hospital of Anhui Medical University, Hefei, China
| | - Zhe-Zhe Zhang
- Department of Neurology (Sleep Disorders), The Affiliated Chaohu Hospital of Anhui Medical University, Hefei, China
| | - Jing Chen
- Department of Neurology (Sleep Disorders), The Affiliated Chaohu Hospital of Anhui Medical University, Hefei, China
| | - Bao-Ling Luo
- Department of Neurology (Sleep Disorders), The Affiliated Chaohu Hospital of Anhui Medical University, Hefei, China
| | - Xue-Wei Li
- Department of Neurology, The First Affiliated Hospital, Hengyang Medical School, University of South China, Hengyang, China
| | - Gui-Hai Chen
- Department of Neurology (Sleep Disorders), The Affiliated Chaohu Hospital of Anhui Medical University, Hefei, China
| |
Collapse
|
6
|
Noel SC, Fortin-Hamel L, Haque M, Scott ME. Maternal gastrointestinal nematode infection enhances spatial memory of uninfected juvenile mouse pups. Sci Rep 2022; 12:9796. [PMID: 35697723 PMCID: PMC9192650 DOI: 10.1038/s41598-022-13971-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2022] [Accepted: 05/31/2022] [Indexed: 11/17/2022] Open
Abstract
The developing brain is particularly vulnerable to factors including maternal infection during pregnancy. Establishment of neural networks critical for memory and cognition begins during the perinatal period, when Heligmosomoides bakeri, a gastrointestinal (GI) nematode restricted to the maternal mouse intestine, has been shown to upregulate expression of long-term potentiation genes in the young rodent pup brain. We explored the impact of maternal infection during pregnancy and early lactation on the spatial behavior of uninfected male and female juvenile mice. Pre-weaned pups of H. bakeri infected dams exhibited less exploratory behaviour compared to pups of uninfected dams on postnatal day (PD) 16 but not PD 17, possibly reflecting a transient fear of an unfamiliar environment and/or a brief neurodevelopmental delay. Our two spatial memory tests show for the first time an enhancement of spatial memory in response to maternal nematode infection regardless of pup sex. At PD 17, pups of infected dams expressed object location memories after 3 h in the Object Location Test whereas offspring of uninfected mothers did not. In addition, at PD 34, juveniles of infected mothers retained their ability to find the escape hole in the Barnes Maze Test for one week whereas offspring from uninfected mothers did not. This finding is even more striking given that spatial memory was positively associated with pup length, yet this maternal infection impaired linear growth of pups. Thus, the positive impact of maternal infection on spatial memory countered any impairment associated with the shorter length of the pups. Overall, these novel findings indicate that a maternal GI nematode infection during pregnancy and lactation positively influences the spatial memory of uninfected juvenile offspring with potential fitness implications for the next generation.
Collapse
Affiliation(s)
- Sophia C Noel
- Institute of Parasitology, McGill University (Macdonald Campus), 21,111 Lakeshore Road, Ste-Anne de Bellevue, Quebec, H9X 3V9, Canada
| | - Liana Fortin-Hamel
- Institute of Parasitology, McGill University (Macdonald Campus), 21,111 Lakeshore Road, Ste-Anne de Bellevue, Quebec, H9X 3V9, Canada
| | - Manjurul Haque
- Institute of Parasitology, McGill University (Macdonald Campus), 21,111 Lakeshore Road, Ste-Anne de Bellevue, Quebec, H9X 3V9, Canada
| | - Marilyn E Scott
- Institute of Parasitology, McGill University (Macdonald Campus), 21,111 Lakeshore Road, Ste-Anne de Bellevue, Quebec, H9X 3V9, Canada.
| |
Collapse
|
7
|
da Conceição Pereira S, Manhães-de-Castro R, Visco DB, de Albuquerque GL, da Silva Calado CMS, da Silva Souza V, Toscano AE. Locomotion is impacted differently according to the perinatal brain injury model: Meta-analysis of preclinical studies with implications for cerebral palsy. J Neurosci Methods 2021; 360:109250. [PMID: 34116077 DOI: 10.1016/j.jneumeth.2021.109250] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2021] [Revised: 06/03/2021] [Accepted: 06/05/2021] [Indexed: 10/21/2022]
Abstract
BACKGROUND Different approaches to reproduce cerebral palsy (CP) in animals, contribute to the knowledge of the pathophysiological mechanism of this disease and provide a basis for the development of intervention strategies. Locomotion and coordination are the main cause of disability in CP, however, few studies highlight the quantitative differences of CP models, on locomotion parameters, considering the methodologies to cause brain lesions in the perinatal period. METHODS Studies with cerebral palsy animal models that assess locomotion parameters were systematically retrieved from Medline/PubMed, SCOPUS, LILACS, and Web of Science. Methodological evaluation of included studies and quantitative assessment of locomotion parameters were performed after eligibility screening. RESULTS CP models were induced by hypoxia-ischemia (HI), Prenatal ischemia (PI), lipopolysaccharide inflammation (LPS), intraventricular haemorrhage (IVH), anoxia (A), sensorimotor restriction (SR), and a combination of different models. Overall, 63 studies included in qualitative synthesis showed a moderate quality of evidence. 16 studies were included in the quantitative meta-analysis. Significant reduction was observed in models that combined LPS with HI related to distance traveled (SMD -7.24 95 % CI [-8.98, -5.51], Z = 1.18, p < 0.00001) and LPS with HI or anoxia with sensory-motor restriction (SMD -6.01, 95 % CI [-7.67, -4.35], Z = 7.11), or IVH (SMD -4.91, 95 % CI [-5.84, -3.98], Z = 10.31, p < 0.00001) related to motor coordination. CONCLUSION The combination of different approaches to reproduce CP in animals causes greater deficits in locomotion and motor coordination from the early stages of life to adulthood. These findings contribute to methodological refinement, reduction, and replacement in animal experimentation, favoring translational purposes.
Collapse
Affiliation(s)
- Sabrina da Conceição Pereira
- Posgraduate Program in Neuropsychiatry and Behavior Sciences, Federal University of Pernambuco, Recife, Pernambuco, Brazil
| | - Raul Manhães-de-Castro
- Posgraduate Program in Neuropsychiatry and Behavior Sciences, Federal University of Pernambuco, Recife, Pernambuco, Brazil; Studies in Nutrition and Phenotypic Plasticity Unit, Department of Nutrition, Federal University of Pernambuco, Recife, Pernambuco, Brazil; Postgraduate Program in Nutrition, Federal University of Pernambuco, Recife, Pernambuco, Brazil
| | - Diego Bulcão Visco
- Studies in Nutrition and Phenotypic Plasticity Unit, Department of Nutrition, Federal University of Pernambuco, Recife, Pernambuco, Brazil; Postgraduate Program in Nutrition, Federal University of Pernambuco, Recife, Pernambuco, Brazil
| | | | | | - Vanessa da Silva Souza
- Posgraduate Program in Neuropsychiatry and Behavior Sciences, Federal University of Pernambuco, Recife, Pernambuco, Brazil
| | - Ana Elisa Toscano
- Posgraduate Program in Neuropsychiatry and Behavior Sciences, Federal University of Pernambuco, Recife, Pernambuco, Brazil; Studies in Nutrition and Phenotypic Plasticity Unit, Department of Nutrition, Federal University of Pernambuco, Recife, Pernambuco, Brazil; Postgraduate Program in Nutrition, Federal University of Pernambuco, Recife, Pernambuco, Brazil; Department of Nursing, CAV, Federal University of Pernambuco, Vitória de Santo Antão, Pernambuco, Brazil.
| |
Collapse
|
8
|
Harshaw C, Warner AG. Interleukin-1β injection causes loss of tail tips in neonatal mice. Birth Defects Res 2020; 113:382-387. [PMID: 33382198 DOI: 10.1002/bdr2.1862] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2020] [Revised: 10/16/2020] [Accepted: 12/20/2020] [Indexed: 11/12/2022]
Abstract
Early-life immune challenges and inflammation are risk factors for a range of developmental disorders. During the course of a study examining interactions between the common antipyretic acetaminophen (APAP; paracetamol) and interleukin-1β (IL-1β)-induced inflammation in neonatal mice we observed that subcutaneous (s.c.) injection of IL-1β often leads to significantly shorter, blunt-tipped tails. Three times during early development, on postnatal day 5 (P5), P8, and P11, C57BL/6J pups were given s.c. injection of either .2 μg/kg IL-1β or 5 cc/kg injection of saline vehicle followed, after a 45 min delay, by a second injection, of either 103.9 mg/kg APAP or saline. IL-1β was observed to reduce tail length-via a blunting of the tail tip-in treated vs. untreated mice, an effect that was significant as early as P11 and persisted through the end of the study (~P74). Interestingly, IL-1β-induced tail blunting was significantly lessened by APAP, an interaction that may have occurred as a result of the opposing actions of APAP and IL-1β on cyclooxygenase-2. Although this specific hypothesis and the mechanisms underlying the effects of IL-1β on tail length require further study, they add to the literature suggesting that IL-1β may be a critical mediator of specific adverse effects of early-life inflammation.
Collapse
Affiliation(s)
- Christopher Harshaw
- Department of Psychology, University of New Orleans, New Orleans, Louisiana, USA
| | - Anna G Warner
- Department of Psychology, University of New Orleans, New Orleans, Louisiana, USA
| |
Collapse
|
9
|
Wu YF, Zhang YM, Ge HH, Ren CY, Zhang ZZ, Cao L, Wang F, Chen GH. Effects of Embryonic Inflammation and Adolescent Psychosocial Environment on Cognition and Hippocampal Staufen in Middle-Aged Mice. Front Aging Neurosci 2020; 12:578719. [PMID: 33024434 PMCID: PMC7516039 DOI: 10.3389/fnagi.2020.578719] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2020] [Accepted: 08/24/2020] [Indexed: 12/21/2022] Open
Abstract
Accumulating evidence has indicated that embryonic inflammation could accelerate age-associated cognitive impairment, which can be attributed to dysregulation of synaptic plasticity-associated proteins, such as RNA-binding proteins (RBPs). Staufen is a double-stranded RBP that plays a critical role in the modulation of synaptic plasticity and memory. However, relatively few studies have investigated how embryonic inflammation affects cognition and neurobiology during aging, or how the adolescent psychosocial environment affects inflammation-induced remote cognitive impairment. Consequently, the aim of this study was to investigate whether these adverse factors can induce changes in Staufen expression, and whether these changes are correlated with cognitive impairment. In our study, CD-1 mice were administered lipopolysaccharides (LPS, 50 μg/kg) or an equal amount of saline (control) intraperitoneally during days 15–17 of gestation. At 2 months of age, male offspring were randomly exposed to stress (S), an enriched environment (E), or not treated (CON) and then assigned to five groups: LPS, LPS+S, LPS+E, CON, and CON+S. Mice were evaluated at 3-month-old (young) and 15-month-old (middle-aged). Cognitive function was assessed using the Morris water maze test, while Staufen expression was examined at both the protein and mRNA level using immunohistochemistry/western blotting and RNAscope technology, respectively. The results showed that the middle-aged mice had worse cognitive performance and higher Staufen expression than young mice. Embryonic inflammation induced cognitive impairment and increased Staufen expression in the middle-aged mice, whereas adolescent stress/an enriched environment would accelerated/mitigated these effects. Meanwhile, Staufen expression was closely correlated with cognitive performance. Our findings suggested embryonic inflammation can accelerate age-associated learning and memory impairments, and these effects may be related to the Staufen expression.
Collapse
Affiliation(s)
- Yong-Fang Wu
- Department of Neurology (Sleep Disorders), The Affiliated Chaohu Hospital of Anhui Medical University, Hefei, China
| | - Yue-Ming Zhang
- Department of Neurology (Sleep Disorders), The Affiliated Chaohu Hospital of Anhui Medical University, Hefei, China
| | - He-Hua Ge
- Department of Neurology (Sleep Disorders), The Affiliated Chaohu Hospital of Anhui Medical University, Hefei, China
| | - Chong-Yang Ren
- Department of Neurology (Sleep Disorders), The Affiliated Chaohu Hospital of Anhui Medical University, Hefei, China
| | - Zhe-Zhe Zhang
- Department of Neurology and Critical Care, The First Affiliated Hospital of Anhui Medical University, Hefei, China
| | - Lei Cao
- Department of Neurology, The Second Affiliated Hospital of Anhui Medical University, Hefei, China
| | - Fang Wang
- Department of Neurology and Critical Care, The First Affiliated Hospital of Anhui Medical University, Hefei, China
| | - Gui-Hai Chen
- Department of Neurology (Sleep Disorders), The Affiliated Chaohu Hospital of Anhui Medical University, Hefei, China
| |
Collapse
|
10
|
Yang Y, Zhan F, Wang YC, Wang B, Shi MX, Guo C, Xu DX, Meng XH. Pubertal fenvalerate exposure impairs cognitive and behavioral development partially through down-regulating hippocampal thyroid hormone receptor signaling. Toxicol Lett 2020; 332:192-201. [PMID: 32693020 DOI: 10.1016/j.toxlet.2020.07.020] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2019] [Revised: 07/10/2020] [Accepted: 07/17/2020] [Indexed: 12/18/2022]
Abstract
Fenvalerate, a synthetic pyrethroid insecticide, is an environmental endocrine disruptor and neurodevelopmental toxicant. An early report found that pubertal exposure to high-dose fenvalerate impaired cognitive and behavioral development. Here, we aimed to further investigate the effect of pubertal exposure to low-dose fenvalerate on cognitive and behavioral development. Mice were orally administered with fenvalerate (0.2, 1.0 and 5.0 mg/kg) daily from postnatal day (PND) 28 to PND56. Learning and memory were assessed by Morris water maze. Anxiety-related activities were detected by open-field and elevated plus-maze. Increased anxiety activities were observed only in females exposed to fenvalerate. Spatial learning and memory were damaged only in females exposed to fenvalerate. Histopathology observed numerous scattered shrinking neurons and nuclear pyknosis in hippocampal CA1 region. Neuronal density was reduced in hippocampal CA1 region of fenvalerate-exposed mice. Mechanistically, hippocampal thyroid hormone receptor (TR)β1 was down-regulated in a dose-dependent manner in females. In addition, TRα1 was declined only in females exposed to 5.0 mg/kg fenvalerate. Taken together, these suggests that pubertal exposure to low-dose fenvalerate impairs cognitive and behavioral development in a gender-dependent manner. Hippocampal TR signaling may be, at least partially, involved in fenvalerate-induced impairment of cognitive and behavioral development.
Collapse
Affiliation(s)
- Yang Yang
- Department of Maternal, Child and Adolescent Health, School of Public Health, Anhui Medical University, Hefei, Anhui, China; Key Laboratory of Population Health Across Life Cycle, Ministry of Education of the People's Republic of China; Anhui Provincial Key Laboratory of Population Health & Aristogenics, Hefei, Anhui, China
| | - Feng Zhan
- Department of Maternal, Child and Adolescent Health, School of Public Health, Anhui Medical University, Hefei, Anhui, China; Key Laboratory of Population Health Across Life Cycle, Ministry of Education of the People's Republic of China; Anhui Provincial Key Laboratory of Population Health & Aristogenics, Hefei, Anhui, China
| | - Ye-Cheng Wang
- Department of Maternal, Child and Adolescent Health, School of Public Health, Anhui Medical University, Hefei, Anhui, China; Key Laboratory of Population Health Across Life Cycle, Ministry of Education of the People's Republic of China; Anhui Provincial Key Laboratory of Population Health & Aristogenics, Hefei, Anhui, China
| | - Bo Wang
- Department of Maternal, Child and Adolescent Health, School of Public Health, Anhui Medical University, Hefei, Anhui, China; Key Laboratory of Population Health Across Life Cycle, Ministry of Education of the People's Republic of China; Anhui Provincial Key Laboratory of Population Health & Aristogenics, Hefei, Anhui, China
| | - Meng-Xing Shi
- Department of Maternal, Child and Adolescent Health, School of Public Health, Anhui Medical University, Hefei, Anhui, China; Key Laboratory of Population Health Across Life Cycle, Ministry of Education of the People's Republic of China; Anhui Provincial Key Laboratory of Population Health & Aristogenics, Hefei, Anhui, China
| | - Ce Guo
- Department of Maternal, Child and Adolescent Health, School of Public Health, Anhui Medical University, Hefei, Anhui, China; Key Laboratory of Population Health Across Life Cycle, Ministry of Education of the People's Republic of China; Anhui Provincial Key Laboratory of Population Health & Aristogenics, Hefei, Anhui, China
| | - De-Xiang Xu
- Department of Maternal, Child and Adolescent Health, School of Public Health, Anhui Medical University, Hefei, Anhui, China; Key Laboratory of Population Health Across Life Cycle, Ministry of Education of the People's Republic of China; Department of Toxicology, School of Public Health, Anhui Medical University, Hefei, Anhui, China.
| | - Xiu-Hong Meng
- Department of Maternal, Child and Adolescent Health, School of Public Health, Anhui Medical University, Hefei, Anhui, China; Key Laboratory of Population Health Across Life Cycle, Ministry of Education of the People's Republic of China; Anhui Provincial Key Laboratory of Population Health & Aristogenics, Hefei, Anhui, China.
| |
Collapse
|
11
|
Aguilar-Valles A, Rodrigue B, Matta-Camacho E. Maternal Immune Activation and the Development of Dopaminergic Neurotransmission of the Offspring: Relevance for Schizophrenia and Other Psychoses. Front Psychiatry 2020; 11:852. [PMID: 33061910 PMCID: PMC7475700 DOI: 10.3389/fpsyt.2020.00852] [Citation(s) in RCA: 37] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/06/2020] [Accepted: 08/04/2020] [Indexed: 12/21/2022] Open
Abstract
Prenatal infections have been linked to the development of schizophrenia (SCZ) and other neurodevelopmental disorders in the offspring, and work in animal models indicates that this is to occur through the maternal inflammatory response triggered by infection. Several studies in animal models demonstrated that acute inflammatory episodes are sufficient to trigger brain alterations in the adult offspring, especially in the mesolimbic dopamine (DA) system, involved in the pathophysiology of SCZ and other disorders involving psychosis. In the current review, we synthesize the literature on the clinical studies implicating prenatal infectious events in the development of SCZ. Then, we summarize evidence from animal models of maternal immune activation (MIA) and the behavioral and molecular alterations relevant for the function of the DAergic system. Furthermore, we discuss the evidence supporting the involvement of maternal cytokines, such as interleukin 6 (IL-6) and leptin (a hormone with effects on inflammation) in mediating the effects of MIA on the fetal brain, leading to the long-lasting effects on the offspring. In particular, IL-6 has been involved in mediating the effects of MIA animal models in the offspring through actions on the placenta, induction of IL-17a, or triggering the decrease in non-heme iron (hypoferremia). Maternal infection is very likely interacting with additional genetic and environmental risk factors in the development of SCZ; systematically investigating how these interactions produce specific phenotypes is the next step in understanding the etiology of complex psychiatric disorders.
Collapse
Affiliation(s)
| | - Brandon Rodrigue
- Department of Neuroscience, Carleton University, Ottawa, ON, Canada
| | | |
Collapse
|
12
|
Mac Giollabhui N, Breen EC, Murphy SK, Maxwell SD, Cohn BA, Krigbaum NY, Cirillo PM, Perez C, Alloy LB, Drabick DAG, Ellman LM. Maternal inflammation during pregnancy and offspring psychiatric symptoms in childhood: Timing and sex matter. J Psychiatr Res 2019; 111:96-103. [PMID: 30690329 PMCID: PMC6644717 DOI: 10.1016/j.jpsychires.2019.01.009] [Citation(s) in RCA: 52] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/29/2018] [Revised: 11/21/2018] [Accepted: 01/07/2019] [Indexed: 12/21/2022]
Abstract
OBJECTIVE Maternal infection during pregnancy has been associated with increased risk of offspring psychopathology, including depression. As most infections do not cross the placenta, maternal immune responses to infection have been considered as potentially contributing to this relationship. This study examined whether gestational timing of maternal inflammation during pregnancy is associated with offspring internalizing and/or externalizing symptoms during childhood and, further, whether fetal sex moderated this relationship. METHOD Participants were 737 pregnant women and their offspring who were continuously followed through late childhood. Archived first and second trimester sera were analyzed for markers of inflammation [interleukin 8 (IL-8), IL-6, IL-1 receptor antagonist (IL-1ra), and soluble tumor necrosis factor receptor-II (sTNF-RII)]. When offspring were aged 9-11, mothers completed a questionnaire assessing psychological symptoms. RESULTS Multivariate regression analyses indicated that elevated IL-8 in the first trimester was associated with significantly higher levels of externalizing symptoms in offspring. Higher IL-1ra in the second trimester was associated with higher offspring internalizing symptoms. Further, second trimester IL-1ra was associated with increased internalizing symptoms in females only. CONCLUSION These findings demonstrate that elevated maternal inflammation during pregnancy is associated with the emergence of separate psychological phenotypes and that timing of exposure and fetal sex matter for offspring outcomes. Given that internalizing and externalizing symptoms in childhood increase risk for a variety of mental disorders later in development, these findings potentially have major implications for early intervention and prevention work.
Collapse
Affiliation(s)
| | - Elizabeth C Breen
- Cousins Center for Psychoneuroimmunology, Dept. of Psychiatry and Biobehavioral Sciences, University of California, Los Angeles, Los Angeles, USA
| | - Shannon K Murphy
- Department of Psychology, Temple University, Philadelphia, PA, USA
| | - Seth D Maxwell
- Department of Psychology, Temple University, Philadelphia, PA, USA
| | - Barbara A Cohn
- Child Health and Development Studies, Public Health Institute, Oakland, CA, USA
| | - Nickilou Y Krigbaum
- Child Health and Development Studies, Public Health Institute, Oakland, CA, USA
| | - Piera M Cirillo
- Child Health and Development Studies, Public Health Institute, Oakland, CA, USA
| | - Christian Perez
- Cousins Center for Psychoneuroimmunology, Dept. of Psychiatry and Biobehavioral Sciences, University of California, Los Angeles, Los Angeles, USA
| | - Lauren B Alloy
- Department of Psychology, Temple University, Philadelphia, PA, USA
| | | | - Lauren M Ellman
- Department of Psychology, Temple University, Philadelphia, PA, USA.
| |
Collapse
|
13
|
Bergdolt L, Dunaevsky A. Brain changes in a maternal immune activation model of neurodevelopmental brain disorders. Prog Neurobiol 2018; 175:1-19. [PMID: 30590095 DOI: 10.1016/j.pneurobio.2018.12.002] [Citation(s) in RCA: 169] [Impact Index Per Article: 24.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2018] [Revised: 12/13/2018] [Accepted: 12/20/2018] [Indexed: 12/11/2022]
Abstract
The developing brain is sensitive to a variety of insults. Epidemiological studies have identified prenatal exposure to infection as a risk factor for a range of neurological disorders, including autism spectrum disorder and schizophrenia. Animal models corroborate this association and have been used to probe the contribution of gene-environment interactions to the etiology of neurodevelopmental disorders. Here we review the behavior and brain phenotypes that have been characterized in MIA offspring, including the studies that have looked at the interaction between maternal immune activation and genetic risk factors for autism spectrum disorder or schizophrenia. These phenotypes include behaviors relevant to autism, schizophrenia, and other neurological disorders, alterations in brain anatomy, and structural and functional neuronal impairments. The link between maternal infection and these phenotypic changes is not fully understood, but there is increasing evidence that maternal immune activation induces prolonged immune alterations in the offspring's brain which could underlie epigenetic alterations which in turn may mediate the behavior and brain changes. These concepts will be discussed followed by a summary of the pharmacological interventions that have been tested in the maternal immune activation model.
Collapse
Affiliation(s)
- Lara Bergdolt
- University of Nebraska Medical Center, Neurological Sciences, 985960 Nebraska Medical Center, 68105, Omaha, NE, United States
| | - Anna Dunaevsky
- University of Nebraska Medical Center, Neurological Sciences, 985960 Nebraska Medical Center, 68105, Omaha, NE, United States.
| |
Collapse
|
14
|
Maternal fenvalerate exposure during pregnancy impairs growth and neurobehavioral development in mouse offspring. PLoS One 2018; 13:e0205403. [PMID: 30321209 PMCID: PMC6188755 DOI: 10.1371/journal.pone.0205403] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2018] [Accepted: 09/25/2018] [Indexed: 01/08/2023] Open
Abstract
Although use of fenvalerate has increased dramatically over the past decade, little is known about their potential adverse effects on growth and development. The purpose of this study was to examine the effects of maternal fenvalerate exposure during pregnancy on growth and neurobehavioral development in the offspring. Pregnant mice were orally administered to fenvalerate (0.2, 2.0, and 20 mg/kg) daily throughout pregnancy. The tests of growth and neurobehavioral development were performed during lactation period. A series of neurobehavioral tasks were carried out from lactation to puberty. Anxiety-related behaviors were evaluated by open-field and elevated plus maze. Morris Water Maze was used to assess spatial learning and memory ability. Results showed that maternal fenvalerate exposure during pregnancy markedly delayed growth development of neonatal offspring during lactation. In addition, anxiety-like behaviors were increased in fenvalerate-exposed male offspring. Moreover, spatial learning and memory was severely impaired in female offspring. Taken together, maternal fenvalerate exposure during pregnancy delayed growth and neurobehavioral development in a gender-dependent manner. Additional study is required to explore the underlying mechanism through which maternal fenvalerate exposure during pregnancy induces impairment of growth and neurobehavioral development.
Collapse
|
15
|
Domínguez Rubio AP, Correa F, Aisemberg J, Dorfman D, Bariani MV, Rosenstein RE, Zorrilla Zubilete M, Franchi AM. Maternal administration of melatonin exerts short- and long-term neuroprotective effects on the offspring from lipopolysaccharide-treated mice. J Pineal Res 2017; 63. [PMID: 28776755 DOI: 10.1111/jpi.12439] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/09/2017] [Accepted: 07/31/2017] [Indexed: 01/02/2023]
Abstract
Preterm birth is a major contributor to early and delayed physical and cognitive impairment. Epidemiological and experimental data indicate that maternal infections are a significant and preventable cause of preterm birth. Recently, melatonin has been suggested to exert neuroprotective effects in several models of brain injury. Here, we sought to investigate whether the administration of melatonin is able to prevent lipopolysaccharide (LPS)-induced fetal brain damage in a model of LPS-induced preterm labor. For this purpose, 15-day pregnant BALB/c mice received intraperitoneally 2 doses of LPS or vehicle: the first one at 10:00 hours (0.26 mg/kg) and the second at 13:00 hours (0.52 mg/kg). On day 14 of pregnancy, a group of mice was subcutaneously implanted with a pellet of 25 mg melatonin. This experimental protocol resulted in 100% of preterm birth and pup death in the LPS group and a 50% of term birth and pup survival in the melatonin + LPS group. In the absence of melatonin, fetuses from LPS-treated mothers showed histological signs of brain damage, microglial/macrophage activation, and higher levels of IL-1β, inducible nitric oxide synthase (NOS), and neuronal NOS mRNAs as well as increased histone acetyltransferase activity and histone H3 hyperacetylation. In contrast, antenatal administration of melatonin prevented LPS-induced fetal brain damage. Moreover, when behavioral traits were analyzed in the offspring from control, melatonin, and melatonin + LPS, no significant differences were found, suggesting that melatonin prevented LPS-induced long-term neurodevelopmental impairments. Collectively, our results suggest that melatonin could be a new therapeutic tool to prevent fetal brain damage and its long-term consequences induced by maternal inflammation.
Collapse
Affiliation(s)
- Ana Paula Domínguez Rubio
- Laboratorio de Fisiopatología de la Preñez y el Parto, Facultad de Medicina, Centro de Estudios Farmacológicos y Botánicos (CEFyBO), Consejo Nacional de Investigaciones Científicas y Técnicas, Universidad de Buenos Aires, Ciudad Autónoma de Buenos Aires, Argentina
| | - Fernando Correa
- Laboratorio de Fisiopatología de la Preñez y el Parto, Facultad de Medicina, Centro de Estudios Farmacológicos y Botánicos (CEFyBO), Consejo Nacional de Investigaciones Científicas y Técnicas, Universidad de Buenos Aires, Ciudad Autónoma de Buenos Aires, Argentina
| | - Julieta Aisemberg
- Laboratorio de Fisiopatología de la Preñez y el Parto, Facultad de Medicina, Centro de Estudios Farmacológicos y Botánicos (CEFyBO), Consejo Nacional de Investigaciones Científicas y Técnicas, Universidad de Buenos Aires, Ciudad Autónoma de Buenos Aires, Argentina
| | - Damián Dorfman
- Laboratorio de Neuroquimíca Retiniana y Oftalmología Experimental, Departamento de Bioquímica Humana, Facultad de Medicina, Centro de Estudios Farmacológicos y Botánicos (CEFyBO), Consejo Nacional de Investigaciones Científicas y Técnicas, Universidad de Buenos Aires, Ciudad Autónoma de Buenos Aires, Argentina
| | - María Victoria Bariani
- Laboratorio de Fisiopatología de la Preñez y el Parto, Facultad de Medicina, Centro de Estudios Farmacológicos y Botánicos (CEFyBO), Consejo Nacional de Investigaciones Científicas y Técnicas, Universidad de Buenos Aires, Ciudad Autónoma de Buenos Aires, Argentina
| | - Ruth Estela Rosenstein
- Laboratorio de Neuroquimíca Retiniana y Oftalmología Experimental, Departamento de Bioquímica Humana, Facultad de Medicina, Centro de Estudios Farmacológicos y Botánicos (CEFyBO), Consejo Nacional de Investigaciones Científicas y Técnicas, Universidad de Buenos Aires, Ciudad Autónoma de Buenos Aires, Argentina
| | - María Zorrilla Zubilete
- Laboratorio de Neuropsicofarmacología del Estrés, Departamento de Farmacología, Facultad de Medicina, Centro de Estudios Farmacológicos y Botánicos (CEFyBO), Consejo Nacional de Investigaciones Científicas y Técnicas, Universidad de Buenos Aires, Ciudad Autónoma de Buenos Aires, Argentina
| | - Ana María Franchi
- Laboratorio de Fisiopatología de la Preñez y el Parto, Facultad de Medicina, Centro de Estudios Farmacológicos y Botánicos (CEFyBO), Consejo Nacional de Investigaciones Científicas y Técnicas, Universidad de Buenos Aires, Ciudad Autónoma de Buenos Aires, Argentina
| |
Collapse
|
16
|
Zhang Y, Wu J, Feng X, Wang R, Chen A, Shao L. Current understanding of the toxicological risk posed to the fetus following maternal exposure to nanoparticles. Expert Opin Drug Metab Toxicol 2017; 13:1251-1263. [PMID: 29086601 DOI: 10.1080/17425255.2018.1397131] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
INTRODUCTION With the broad use of nanotechnology, the number and variety of nanoparticles that humans can be exposed to has further increased. Consequently, there is growing concern about the potential effect of maternal exposure to various nanoparticles during pregnancy on a fetus. However, the nature of this risk is not fully known. Areas covered: In this review, materno-fetal transfer of nanoparticles through the placenta is described. Both prenatal and postnatal adverse effects, such as fetal resorption, malformation and injury to various organs in mice exposed to nanoparticles are reviewed. The potential mechanisms of toxicity are also discussed. Expert opinion: The toxicology and safe application of recently developed nanoparticles has attracted much attention in the past few years. Although many studies have demonstrated the toxicology of nanoparticles in various species, only a small number of studies have examined the effect on a fetus after maternal exposure to nanoparticles. This is particularly important, because the developing fetus is especially vulnerable to the toxic effects of nanoparticles during fetal development due to the unique physical stage of the fetus. Nanoparticles may directly or indirectly impair fetal development and growth after maternal exposure to nanoparticles.
Collapse
Affiliation(s)
- Yanli Zhang
- a Department of Stomatology , Nanfang Hospital, Southern Medical University , Guangzhou , PR China
| | - Junrong Wu
- a Department of Stomatology , Nanfang Hospital, Southern Medical University , Guangzhou , PR China
| | - Xiaoli Feng
- a Department of Stomatology , Nanfang Hospital, Southern Medical University , Guangzhou , PR China
| | - Ruolan Wang
- a Department of Stomatology , Nanfang Hospital, Southern Medical University , Guangzhou , PR China
| | - Aijie Chen
- a Department of Stomatology , Nanfang Hospital, Southern Medical University , Guangzhou , PR China
| | - Longquan Shao
- a Department of Stomatology , Nanfang Hospital, Southern Medical University , Guangzhou , PR China
| |
Collapse
|
17
|
Puberty as a vulnerable period to the effects of immune challenges: Focus on sex differences. Behav Brain Res 2016; 320:374-382. [PMID: 27836584 DOI: 10.1016/j.bbr.2016.11.006] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2016] [Revised: 11/02/2016] [Accepted: 11/04/2016] [Indexed: 12/16/2022]
Abstract
Puberty is a critical period of development during which sexual maturity is attained. It is also a critical period for brain reorganization and it is vulnerable to exposure to certain environmental factors. Exposure to stress during this period can cause enduring neural and behavioral alterations. More specifically, exposure to an immune challenge during this period can alter reproductive as well as a number of non-reproductive behaviors and can permanently alter the brain's response to gonadal hormones. The present review examines the enduring effect of exposure to LPS and poly(I:C) during the pubertal period. Age and sex differences in acute response to LPS are discussed as possible mechanisms of vulnerability to adverse effects. Moreover, this review suggests new research directions to improve our understanding of the vulnerability of the pubertal period to immunological stressors.
Collapse
|
18
|
Chen YH, Hu XG, Zhou Y, Yu Z, Fu L, Zhang GB, Bo QL, Wang H, Zhang C, Xu DX. Obeticholic Acid Protects against Lipopolysaccharide-Induced Fetal Death and Intrauterine Growth Restriction through Its Anti-Inflammatory Activity. THE JOURNAL OF IMMUNOLOGY 2016; 197:4762-4770. [PMID: 27821667 DOI: 10.4049/jimmunol.1601331] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Subscribe] [Scholar Register] [Received: 08/02/2016] [Accepted: 10/08/2016] [Indexed: 12/16/2022]
Abstract
Farnesoid X receptor (FXR) is expressed in human and rodent placentas. Nevertheless, its function remains obscure. This study investigated the effects of obeticholic acid (OCA), a novel synthetic FXR agonist, on LPS-induced fetal death and intrauterine growth restriction. All pregnant mice except controls were i.p. injected with LPS (100 μg/kg) daily from gestational day (GD) 15 to GD17. Some pregnant mice were orally administered with OCA (5 mg/kg) daily from GD13 to GD17. As expected, placental FXR signaling was activated by OCA. OCA pretreatment protected against LPS-induced fetal death. In addition, OCA pretreatment alleviated LPS-induced reduction of fetal weight and crown-rump length. Additional experiments showed that OCA inhibited LPS-evoked TNF-α in maternal serum and amniotic fluid. Moreover, OCA significantly attenuated LPS-induced upregulation of placental proinflammatory genes including Tnf-α, Il-1β, IL-6, Il-12, Mip-2, Kc, and Mcp-1 By contrast, OCA elevated anti-inflammatory cytokine IL-10 in maternal serum, amniotic fluid, and placenta. Further analysis showed that OCA blocked nuclear translocation of NF-κB p65 and p50 subunits in trophoblast giant cells of the labyrinth zone. These results provide a mechanistic explanation for placental FXR-mediated anti-inflammatory activity. Overall, this study provides evidence for roles of FXR as an important regulator of placental inflammation.
Collapse
Affiliation(s)
- Yuan-Hua Chen
- Department of Toxicology, Anhui Medical University, Hefei 230032, China.,Laboratory of Environmental Toxicology, Hefei 230032, China; and.,Department of Histology and Embryology, Anhui Medical University, Hefei 230032, China
| | - Xiao-Guang Hu
- Department of Toxicology, Anhui Medical University, Hefei 230032, China.,Laboratory of Environmental Toxicology, Hefei 230032, China; and
| | - Yan Zhou
- Department of Toxicology, Anhui Medical University, Hefei 230032, China.,Laboratory of Environmental Toxicology, Hefei 230032, China; and
| | - Zhen Yu
- Department of Toxicology, Anhui Medical University, Hefei 230032, China.,Laboratory of Environmental Toxicology, Hefei 230032, China; and
| | - Lin Fu
- Department of Toxicology, Anhui Medical University, Hefei 230032, China
| | - Gui-Bin Zhang
- Department of Toxicology, Anhui Medical University, Hefei 230032, China
| | - Qing-Li Bo
- Department of Toxicology, Anhui Medical University, Hefei 230032, China.,Laboratory of Environmental Toxicology, Hefei 230032, China; and
| | - Hua Wang
- Department of Toxicology, Anhui Medical University, Hefei 230032, China.,Laboratory of Environmental Toxicology, Hefei 230032, China; and
| | - Cheng Zhang
- Department of Toxicology, Anhui Medical University, Hefei 230032, China
| | - De-Xiang Xu
- Department of Toxicology, Anhui Medical University, Hefei 230032, China; .,Laboratory of Environmental Toxicology, Hefei 230032, China; and
| |
Collapse
|
19
|
Cope ZA, Powell SB, Young JW. Modeling neurodevelopmental cognitive deficits in tasks with cross-species translational validity. GENES BRAIN AND BEHAVIOR 2016; 15:27-44. [PMID: 26667374 DOI: 10.1111/gbb.12268] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/31/2015] [Revised: 10/14/2015] [Accepted: 10/27/2015] [Indexed: 12/24/2022]
Abstract
Numerous psychiatric disorders whose cognitive dysfunction links to functional outcome have neurodevelopmental origins including schizophrenia, autism and bipolar disorder. Treatments are needed for these cognitive deficits, which require development using animal models. Models of neurodevelopmental disorders are as varied and diverse as the disorders themselves, recreating some but not all aspects of the disorder. This variety may in part underlie why purported procognitive treatments translated from these models have failed to restore functioning in the targeted patient populations. Further complications arise from environmental factors used in these models that can contribute to numerous disorders, perhaps only impacting specific domains, while diagnostic boundaries define individual disorders, limiting translational efficacy. The Research Domain Criteria project seeks to 'develop new ways to classify mental disorders based on behavioral dimensions and neurobiological measures' in hopes of facilitating translational research by remaining agnostic toward diagnostic borders derived from clinical presentation in humans. Models could therefore recreate biosignatures of cognitive dysfunction irrespective of disease state. This review highlights work within the field of neurodevelopmental models of psychiatric disorders tested in cross-species translational cognitive paradigms that directly inform this newly developing research strategy. By expounding on this approach, the hopes are that a fuller understanding of each model may be attainable in terms of the cognitive profile elicited by each manipulation. Hence, conclusions may begin to be drawn on the nature of cognitive neuropathology on neurodevelopmental and other disorders, increasing the chances of procognitive treatment development for individuals affected in specific cognitive domains.
Collapse
Affiliation(s)
- Z A Cope
- Department of Psychiatry, University of California San Diego, La Jolla
| | - S B Powell
- Department of Psychiatry, University of California San Diego, La Jolla.,Research Service, VA San Diego Healthcare System, San Diego, CA, USA
| | - J W Young
- Department of Psychiatry, University of California San Diego, La Jolla.,Research Service, VA San Diego Healthcare System, San Diego, CA, USA
| |
Collapse
|
20
|
Chao MW, Chen CP, Yang YH, Chuang YC, Chu TY, Tseng CY. N-acetylcysteine attenuates lipopolysaccharide-induced impairment in lamination of Ctip2-and Tbr1- expressing cortical neurons in the developing rat fetal brain. Sci Rep 2016; 6:32373. [PMID: 27577752 PMCID: PMC5006028 DOI: 10.1038/srep32373] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2016] [Accepted: 08/03/2016] [Indexed: 02/02/2023] Open
Abstract
Oxidative stress and inflammatory insults are the major instigating events of bacterial intrauterine infection that lead to fetal brain injury. The purpose of this study is to investigate the remedial effects of N-acetyl-cysteine (NAC) for inflammation-caused deficits in brain development. We found that lipopolysaccharide (LPS) induced reactive oxygen species (ROS) production by RAW264.7 cells. Macrophage-conditioned medium caused noticeable cortical cell damage, specifically in cortical neurons. LPS at 25 μg/kg caused more than 75% fetal loss in rats. An increase in fetal cortical thickness was noted in the LPS-treated group. In the enlarged fetal cortex, laminar positioning of the early born cortical cells expressing Tbr1 and Ctip2 was disrupted, with a scattered distribution. The effect was similar, but minor, in later born Satb2-expressing cortical cells. NAC protected against LPS-induced neuron toxicity in vitro and counteracted pregnancy loss and alterations in thickness and lamination of the neocortex in vivo. Fetal loss and abnormal fetal brain development were due to LPS-induced ROS production. NAC is an effective protective agent against LPS-induced damage. This finding highlights the key therapeutic impact of NAC in LPS-caused abnormal neuronal laminar distribution during brain development.
Collapse
Affiliation(s)
- Ming-Wei Chao
- Department of Bioscience Technology, Chung Yuan Christian University, Zhongli district, Taoyuan City, Taiwan
| | - Chie-Pein Chen
- Division of High Risk Pregnancy, Mackay Memorial Hospital, Taipei, Taiwan
| | - Yu-Hsiu Yang
- Department of Biomedical Engineering, Chung Yuan Christian University, Zhongli district, Taoyuan City, Taiwan
| | - Yu-Chen Chuang
- Department of Biomedical Engineering, Chung Yuan Christian University, Zhongli district, Taoyuan City, Taiwan
| | - Tzu-Yun Chu
- Division of High Risk Pregnancy, Mackay Memorial Hospital, Taipei, Taiwan
| | - Chia-Yi Tseng
- Department of Biomedical Engineering, Chung Yuan Christian University, Zhongli district, Taoyuan City, Taiwan
- International Master Program of Biomedical Material and Technology, Chung Yuan Christian University, Zhongli district, Taoyuan City, Taiwan
- Center for Nano-Technology, Chung Yuan Christian University, Zhongli district, Taoyuan City, Taiwan
| |
Collapse
|
21
|
Santos-Toscano R, Borcel É, Ucha M, Orihuel J, Capellán R, Roura-Martínez D, Ambrosio E, Higuera-Matas A. Unaltered cocaine self-administration in the prenatal LPS rat model of schizophrenia. Prog Neuropsychopharmacol Biol Psychiatry 2016; 69:38-48. [PMID: 27089985 DOI: 10.1016/j.pnpbp.2016.04.008] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/02/2016] [Revised: 04/06/2016] [Accepted: 04/14/2016] [Indexed: 10/21/2022]
Abstract
Although cocaine abuse is up to three times more frequent among schizophrenic patients, it remains unclear why this should be the case and whether sex influences this relationship. Using a maternal immune activation model of schizophrenia, we tested whether animals at higher risk of developing a schizophrenia-like state are more prone to acquire cocaine self-administration behavior, and whether they show enhanced sensitivity to the reinforcing actions of cocaine or if they are resistant to extinction. Pregnant rats were injected with lipopolysaccharide on gestational day 15 and 16, and the offspring (both male and female) were tested in working memory (T-maze), social interaction and sensorimotor gating (prepulse inhibition of the acoustic startle response) paradigms. After performing these tests, the rats were subjected to cocaine self-administration regimes (0.5mg/kg), assessing their dose-response and extinction. Male rats born to dams administered lipopolysaccharide showed impaired working memory but no alterations to their social interactions, and both male and female rats showed prepulse inhibition deficits. Moreover, similar patterns of cocaine self-administration acquisition, responsiveness to dose shifts and extinction curves were observed in both control and experimental rats. These results suggest that the higher prevalence of cocaine abuse among schizophrenic individuals is not due to a biological vulnerability directly associated to the disease and that other factors (social, educational, economic, familial, etc.) should be considered given the multifactorial nature of this illness.
Collapse
Affiliation(s)
- Raquel Santos-Toscano
- Department of Psychobiology, School of Psychology, Universidad Nacional de Educación a Distancia (UNED), Madrid, Spain
| | - Érika Borcel
- Department of Psychobiology, School of Psychology, Universidad Nacional de Educación a Distancia (UNED), Madrid, Spain
| | - Marcos Ucha
- Department of Psychobiology, School of Psychology, Universidad Nacional de Educación a Distancia (UNED), Madrid, Spain
| | - Javier Orihuel
- Department of Psychobiology, School of Psychology, Universidad Nacional de Educación a Distancia (UNED), Madrid, Spain
| | - Roberto Capellán
- Department of Psychobiology, School of Psychology, Universidad Nacional de Educación a Distancia (UNED), Madrid, Spain
| | - David Roura-Martínez
- Department of Psychobiology, School of Psychology, Universidad Nacional de Educación a Distancia (UNED), Madrid, Spain
| | - Emilio Ambrosio
- Department of Psychobiology, School of Psychology, Universidad Nacional de Educación a Distancia (UNED), Madrid, Spain.
| | - Alejandro Higuera-Matas
- Department of Psychobiology, School of Psychology, Universidad Nacional de Educación a Distancia (UNED), Madrid, Spain.
| |
Collapse
|
22
|
Aavani T, Rana SA, Hawkes R, Pittman QJ. Maternal immune activation produces cerebellar hyperplasia and alterations in motor and social behaviors in male and female mice. THE CEREBELLUM 2016; 14:491-505. [PMID: 25863812 DOI: 10.1007/s12311-015-0669-5] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
There have been suggestions that maternal immune activation is associated with alterations in motor behavior in offspring. To explore this further, we treated pregnant mice with polyinosinic:polycytidylic acid (poly(I:C)), a viral mimetic that activates the innate immune system, or saline on embryonic days 13-15. At postnatal day (P) 18, offspring cerebella were collected from perfused brains and immunostained as whole-mounts for zebrin II. Measurements of zebrin II+/- stripes in both sexes indicated that prenatal poly(I:C)-exposed offspring had significantly wider stripes; this difference was also seen in similarly treated offspring in adulthood (~P120). When sagittal sections of the cerebellum were immunostained for calbindin and Purkinje cell numbers were counted, we observed greater numbers of Purkinje cells in poly(I:C) offspring at both P18 and ~ P120. In adolescence (~P40), both male and female prenatal poly(I:C)-exposed offspring exhibited poorer performance on the rotarod and ladder rung tests; deficits in performance on the latter test persisted into adulthood. Offspring of both sexes from poly(I:C) dams also exhibited impaired social interaction in adolescence, but this difference was no longer apparent in adulthood. Our results suggest that maternal immune exposure at a critical time of cerebellum development can enhance neuronal survival or impair normal programmed cell death of Purkinje cells, with lasting consequences on cerebellar morphology and a variety of motor and non-motor behaviors.
Collapse
Affiliation(s)
- Tooka Aavani
- Department of Physiology and Pharmacology, Hotchkiss Brain Institute, Cumming School of Medicine, Health Sciences Centre, University of Calgary, 3330 Hospital Drive NW, Calgary, T2N 4N1, Alberta, Canada
| | - Shadna A Rana
- Department of Physiology and Pharmacology, Hotchkiss Brain Institute, Cumming School of Medicine, Health Sciences Centre, University of Calgary, 3330 Hospital Drive NW, Calgary, T2N 4N1, Alberta, Canada
| | - Richard Hawkes
- Department of Cell Biology & Anatomy, Genes & Development Research Group, Hotchkiss Brain Institute, Cumming School of Medicine, Health Sciences Centre, University of Calgary, 3330 Hospital Drive NW, Calgary, Alberta, T2N 4N1, Canada
| | - Quentin J Pittman
- Department of Physiology and Pharmacology, Hotchkiss Brain Institute, Cumming School of Medicine, Health Sciences Centre, University of Calgary, 3330 Hospital Drive NW, Calgary, T2N 4N1, Alberta, Canada.
| |
Collapse
|
23
|
Blaustein JD, Ismail N, Holder MK. Review: Puberty as a time of remodeling the adult response to ovarian hormones. J Steroid Biochem Mol Biol 2016; 160:2-8. [PMID: 26004504 PMCID: PMC4654988 DOI: 10.1016/j.jsbmb.2015.05.007] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/02/2015] [Revised: 05/11/2015] [Accepted: 05/17/2015] [Indexed: 12/11/2022]
Abstract
During pubertal development, an animal's response to stress changes and sexual differentiation of the brain and behavior continue. We discovered that particular stressors, such as shipping from suppliers or an immune challenge with lipopolysaccharide, during the prolonged pubertal period of female mice result in long-term changes in behavioral responsiveness of the brain to estradiol assessed in adulthood. All behaviors influenced by estradiol and/or progesterone that we have studied are compromised by a stressor during pubertal development. Depending on the behavior, immune challenge or shipping from suppliers during pubertal development decreases, eliminates, or even reverses the effects of estradiol. Shipping during this period causes changes in the number of estrogen receptor-immunoreactive cells in key brain areas suggesting one cellular mechanism for this remodeling of the brain's response to hormones. We suggest that particular adverse experiences in girls may cause long-term alterations in the brain's response to estradiol and/or progesterone via activation of the immune system. This in turn could lead to an alteration in any aspect of mental health that is influenced by estradiol.
Collapse
Affiliation(s)
- Jeffrey D Blaustein
- Department of Psychological and Brain Sciences, Center for Neuroendocrine Studies, University of Massachusetts, Amherst, MA 01003-9271, USA.
| | - Nafissa Ismail
- Department of Psychological and Brain Sciences, Center for Neuroendocrine Studies, University of Massachusetts, Amherst, MA 01003-9271, USA.
| | - Mary K Holder
- Department of Psychological and Brain Sciences, Center for Neuroendocrine Studies, University of Massachusetts, Amherst, MA 01003-9271, USA.
| |
Collapse
|
24
|
Kim KC, Gonzales EL, Lázaro MT, Choi CS, Bahn GH, Yoo HJ, Shin CY. Clinical and Neurobiological Relevance of Current Animal Models of Autism Spectrum Disorders. Biomol Ther (Seoul) 2016; 24:207-43. [PMID: 27133257 PMCID: PMC4859786 DOI: 10.4062/biomolther.2016.061] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2016] [Accepted: 04/05/2016] [Indexed: 12/24/2022] Open
Abstract
Autism spectrum disorder (ASD) is a neurodevelopmental disorder characterized by social and communication impairments, as well as repetitive and restrictive behaviors. The phenotypic heterogeneity of ASD has made it overwhelmingly difficult to determine the exact etiology and pathophysiology underlying the core symptoms, which are often accompanied by comorbidities such as hyperactivity, seizures, and sensorimotor abnormalities. To our benefit, the advent of animal models has allowed us to assess and test diverse risk factors of ASD, both genetic and environmental, and measure their contribution to the manifestation of autistic symptoms. At a broader scale, rodent models have helped consolidate molecular pathways and unify the neurophysiological mechanisms underlying each one of the various etiologies. This approach will potentially enable the stratification of ASD into clinical, molecular, and neurophenotypic subgroups, further proving their translational utility. It is henceforth paramount to establish a common ground of mechanistic theories from complementing results in preclinical research. In this review, we cluster the ASD animal models into lesion and genetic models and further classify them based on the corresponding environmental, epigenetic and genetic factors. Finally, we summarize the symptoms and neuropathological highlights for each model and make critical comparisons that elucidate their clinical and neurobiological relevance.
Collapse
Affiliation(s)
- Ki Chan Kim
- Department of Neuroscience, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA.,Center for Neuroscience Research, SMART Institute of Advanced Biomedical Sciences, Konkuk University, Seoul 05029, Republic of Korea
| | - Edson Luck Gonzales
- Center for Neuroscience Research, SMART Institute of Advanced Biomedical Sciences, Konkuk University, Seoul 05029, Republic of Korea.,School of Medicine, Konkuk University, Seoul 05029, Republic of Korea
| | - María T Lázaro
- Program in Neurogenetics, Department of Neurology, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA 90095, USA
| | - Chang Soon Choi
- Center for Neuroscience Research, SMART Institute of Advanced Biomedical Sciences, Konkuk University, Seoul 05029, Republic of Korea.,School of Medicine, Konkuk University, Seoul 05029, Republic of Korea
| | - Geon Ho Bahn
- Department of Neuropsychiatry, School of Medicine, Kyung Hee University, Seoul 02447, Republic of Korea
| | - Hee Jeong Yoo
- Department of Neuropsychiatry, Seoul National University Bungdang Hospital, Seongnam 13620, Republic of Korea
| | - Chan Young Shin
- Center for Neuroscience Research, SMART Institute of Advanced Biomedical Sciences, Konkuk University, Seoul 05029, Republic of Korea.,School of Medicine, Konkuk University, Seoul 05029, Republic of Korea
| |
Collapse
|
25
|
Gilman SE, Cherkerzian S, Buka SL, Hahn J, Hornig M, Goldstein JM. Prenatal immune programming of the sex-dependent risk for major depression. Transl Psychiatry 2016; 6:e822. [PMID: 27244231 PMCID: PMC5545649 DOI: 10.1038/tp.2016.91] [Citation(s) in RCA: 63] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/18/2015] [Revised: 12/23/2015] [Accepted: 01/14/2016] [Indexed: 01/01/2023] Open
Abstract
Maternal immune functioning during pregnancy contributes to sex-dependent deficits in neurodevelopment and to behaviors associated with affective traits in preclinical studies, and has been indirectly associated with offspring depression in epidemiologic studies. We therefore investigated the association between immune activity during pregnancy and the risk of depression among male and female offspring. We conducted a case-control study of depression (n=484 cases and n=774 controls) using data from the New England Family Study, a pregnancy cohort enrolled between 1959 and 1966 that assessed psychiatric outcomes in adult offspring (mean age=39.7 years). We assayed concentrations of three pro-inflammatory cytokines, interleukin (IL)-1β, IL-6 and tumor necrosis factor (TNF)-α, and the anti-inflammatory cytokine, IL-10, in maternal serum collected at the end of the second and beginning of the third trimesters. High maternal TNF-α was associated with reduced odds of depression among both male and female offspring (odds ratio (OR)=0.68; confidence interval (CI)=0.48, 0.98). However, when considering the TNF-α to IL-10 ratio, a measure of the ratio of pro- to anti-inflammatory loading, maternal immune effects on offspring depression differed significantly by sex (χ(2)=13.9, degrees of freedom=4, P=0.008). Among females, higher maternal TNF-α:IL-10 was associated with reduced odds of depression (OR=0.51; CI=0.32, 0.81), whereas, among males, high maternal TNF-α:IL-10 was associated with elevated odds of depression (OR=1.86; CI=1.02, 3.39). Thus, the balance between TNF-α and IL-10 in maternal prenatal serum was associated with depression in a sex-dependent manner. These findings are consistent with the role of TNF-α in the maturation of the sexually dimorphic fetal brain circuitry that regulates stress and affective responses, and support a prenatal stress-immune model of depression pathogenesis.
Collapse
Affiliation(s)
- S E Gilman
- Health Behavior Branch, Division of Intramural Population Health Research, Eunice Kennedy Shriver National Institute of Child Health and Human Development, Rockville, MD, USA,Department of Social and Behavioral Sciences, Harvard T. H. Chan School of Public Health, Boston, MA, USA,Department of Epidemiology, Harvard T. H. Chan School of Public Health, Boston, MA, USA,Department of Psychiatry, Massachusetts General Hospital, Boston, MA, USA,Health Behavior Branch, Division of Intramural Population Health Research, Eunice Kennedy Shriver National Institute of Child Health and Human Development, 6100 Executive Boulevard, Room 7B13M, Rockville, MD 20852, USA. E-mail
| | - S Cherkerzian
- Connors Center for Women’s Health and Gender Biology, Boston, MA, USA,Departments of Psychiatry and Medicine, Harvard Medical School, Boston, MA, USA
| | - S L Buka
- Department of Epidemiology, Brown University School of Public Health, Providence, RI, USA
| | - J Hahn
- Department of Social and Behavioral Sciences, Harvard T. H. Chan School of Public Health, Boston, MA, USA
| | - M Hornig
- Center for Infection and Immunity, Columbia University Mailman School of Public Health, New York, NY, USA,Department of Epidemiology, Columbia University Mailman School of Public Health, New York, NY, USA
| | - J M Goldstein
- Connors Center for Women’s Health and Gender Biology, Boston, MA, USA,Departments of Psychiatry and Medicine, Harvard Medical School, Boston, MA, USA,Division of Psychiatric Neuroscience, Massachusetts General Hospital, Boston, MA, USA
| |
Collapse
|
26
|
Bo QL, Chen YH, Yu Z, Fu L, Zhou Y, Zhang GB, Wang H, Zhang ZH, Xu DX. Rosiglitazone pretreatment protects against lipopolysaccharide-induced fetal demise through inhibiting placental inflammation. Mol Cell Endocrinol 2016; 423:51-9. [PMID: 26773728 DOI: 10.1016/j.mce.2016.01.004] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/30/2015] [Revised: 12/25/2015] [Accepted: 01/06/2016] [Indexed: 01/19/2023]
Abstract
Peroxisome proliferator-activated receptor (PPAR)-γ is highly expressed in human and rodent placentas. Nevertheless, its function remains obscure. The present study investigated the effects of rosiglitazone, a PPAR-γ agonist, on LPS-induced fetal death. All pregnant mice except controls were intraperitoneally injected with LPS (150 μg/kg) daily from gestational day (GD)15 to GD17. As expected, maternal LPS injection caused placental inflammation and resulted in 63.6% fetal death in dams that completed the pregnancy. Interestingly, LPS-induced fetal mortality was reduced to 16.0% when pregnant mice were pretreated with RSG. Additional experiment showed that rosiglitazone pretreatment inhibited LPS-induced expressions of tumor necrosis factor (Tnf)-α, interleukin (Il)-1β, Il-6, macrophage inflammatory protein (Mip)-2 and keratinocyte-derived chemokine (Kc) in mouse placenta. Although rosiglitazone had little effect on LPS-evoked elevation of IL-10 in amniotic fluid, it alleviated LPS-evoked release of TNF-α and MIP-2 in amniotic fluid. Further analysis showed that pretreatment with rosiglitazone, which activated placental PPAR-γ signaling, simultaneously suppressed LPS-evoked nuclear factor kappa B (NF-κB) activation and blocked nuclear translocation of NF-κB p65 and p50 subunits in trophoblast giant cells of the labyrinth layer. These results provide a mechanistic explanation for PPAR-γ-mediated anti-inflammatory activity in the placentas. Overall, the present study provides additional evidence for roles of PPAR-γ as an important regulator of placental inflammation.
Collapse
Affiliation(s)
- Qing-Li Bo
- Department of Toxicology, School of Public Health, Anhui Medical University, Hefei, 230032, China; Anhui Provincial Key Laboratory of Population Health & Aristogenics, Hefei, 230032, China
| | - Yuan-Hua Chen
- Department of Toxicology, School of Public Health, Anhui Medical University, Hefei, 230032, China; Anhui Provincial Key Laboratory of Population Health & Aristogenics, Hefei, 230032, China; Department of Histology and Embryology, Anhui Medical University, Hefei, 230032, China
| | - Zhen Yu
- Department of Toxicology, School of Public Health, Anhui Medical University, Hefei, 230032, China; Anhui Provincial Key Laboratory of Population Health & Aristogenics, Hefei, 230032, China
| | - Lin Fu
- Department of Toxicology, School of Public Health, Anhui Medical University, Hefei, 230032, China
| | - Yan Zhou
- Department of Toxicology, School of Public Health, Anhui Medical University, Hefei, 230032, China
| | - Gui-Bin Zhang
- Department of Toxicology, School of Public Health, Anhui Medical University, Hefei, 230032, China
| | - Hua Wang
- Department of Toxicology, School of Public Health, Anhui Medical University, Hefei, 230032, China; Anhui Provincial Key Laboratory of Population Health & Aristogenics, Hefei, 230032, China
| | - Zhi-Hui Zhang
- Department of Toxicology, School of Public Health, Anhui Medical University, Hefei, 230032, China
| | - De-Xiang Xu
- Department of Toxicology, School of Public Health, Anhui Medical University, Hefei, 230032, China; Anhui Provincial Key Laboratory of Population Health & Aristogenics, Hefei, 230032, China.
| |
Collapse
|
27
|
Chen YH, Yu Z, Fu L, Xia MZ, Zhao M, Wang H, Zhang C, Hu YF, Tao FB, Xu DX. Supplementation with vitamin D3 during pregnancy protects against lipopolysaccharide-induced neural tube defects through improving placental folate transportation. Toxicol Sci 2015; 145:90-7. [PMID: 25673501 PMCID: PMC4833037 DOI: 10.1093/toxsci/kfv036] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Several reports demonstrated that maternal lipopolysaccharide (LPS) exposure at middle gestational stage caused neural tube defects (NTDs). This study investigated the effects of supplementation with vitamin D3 (VitD3) during pregnancy on LPS-induced NTDs. Pregnant mice except controls were ip injected with LPS (25 μg/kg) daily from gestational day (GD)8 to GD12. In LPS+VitD3 group, pregnant mice were orally administered with VitD3 (25 μg/kg) before LPS injection. As expected, a 5-day LPS injection resulted in 62.5% (10/16) of dams and 20.3% of fetuses with NTDs. Additional experiment showed that a 5-day LPS injection downregulated placental proton-coupled folate transporter (pcft) and reduced folate carrier 1 (rfc1), 2 major folate transporters in placentas. Consistent with downregulation of placental folate transporters, folate transport from maternal circulation into embryos was disturbed in LPS-treated mice. Interestingly, VitD3 not only inhibited placental inflammation but also attenuated LPS-induced downregulation of placental folate transporters. Correspondingly, VitD3 markedly improved folate transport from maternal circulation into the embryos. Importantly, supplementation with VitD3 during pregnancy protected mice from LPS-induced NTDs. Taken together, these results suggest that supplementation with VitD3 during pregnancy prevents LPS-induced NTDs through inhibiting placental inflammation and improving folate transport from maternal circulation into the embryos.
Collapse
Affiliation(s)
- Yuan-Hua Chen
- *Department of Toxicology, Anhui Provincial Key Laboratory of Population Health & Aristogenics, School of Basic Medical Science and School of Life Science, Anhui Medical University, Hefei 230032, China *Department of Toxicology, Anhui Provincial Key Laboratory of Population Health & Aristogenics, School of Basic Medical Science and School of Life Science, Anhui Medical University, Hefei 230032, China *Department of Toxicology, Anhui Provincial Key Laboratory of Population Health & Aristogenics, School of Basic Medical Science and School of Life Science, Anhui Medical University, Hefei 230032, China
| | - Zhen Yu
- *Department of Toxicology, Anhui Provincial Key Laboratory of Population Health & Aristogenics, School of Basic Medical Science and School of Life Science, Anhui Medical University, Hefei 230032, China *Department of Toxicology, Anhui Provincial Key Laboratory of Population Health & Aristogenics, School of Basic Medical Science and School of Life Science, Anhui Medical University, Hefei 230032, China
| | - Lin Fu
- *Department of Toxicology, Anhui Provincial Key Laboratory of Population Health & Aristogenics, School of Basic Medical Science and School of Life Science, Anhui Medical University, Hefei 230032, China
| | - Mi-Zhen Xia
- *Department of Toxicology, Anhui Provincial Key Laboratory of Population Health & Aristogenics, School of Basic Medical Science and School of Life Science, Anhui Medical University, Hefei 230032, China
| | - Mei Zhao
- *Department of Toxicology, Anhui Provincial Key Laboratory of Population Health & Aristogenics, School of Basic Medical Science and School of Life Science, Anhui Medical University, Hefei 230032, China
| | - Hua Wang
- *Department of Toxicology, Anhui Provincial Key Laboratory of Population Health & Aristogenics, School of Basic Medical Science and School of Life Science, Anhui Medical University, Hefei 230032, China *Department of Toxicology, Anhui Provincial Key Laboratory of Population Health & Aristogenics, School of Basic Medical Science and School of Life Science, Anhui Medical University, Hefei 230032, China
| | - Cheng Zhang
- *Department of Toxicology, Anhui Provincial Key Laboratory of Population Health & Aristogenics, School of Basic Medical Science and School of Life Science, Anhui Medical University, Hefei 230032, China
| | - Yong-Fang Hu
- *Department of Toxicology, Anhui Provincial Key Laboratory of Population Health & Aristogenics, School of Basic Medical Science and School of Life Science, Anhui Medical University, Hefei 230032, China
| | - Fang-Biao Tao
- *Department of Toxicology, Anhui Provincial Key Laboratory of Population Health & Aristogenics, School of Basic Medical Science and School of Life Science, Anhui Medical University, Hefei 230032, China
| | - De-Xiang Xu
- *Department of Toxicology, Anhui Provincial Key Laboratory of Population Health & Aristogenics, School of Basic Medical Science and School of Life Science, Anhui Medical University, Hefei 230032, China *Department of Toxicology, Anhui Provincial Key Laboratory of Population Health & Aristogenics, School of Basic Medical Science and School of Life Science, Anhui Medical University, Hefei 230032, China
| |
Collapse
|
28
|
Majidi-Zolbanin J, Doosti MH, Kosari-Nasab M, Salari AA. Prenatal maternal immune activation increases anxiety- and depressive-like behaviors in offspring with experimental autoimmune encephalomyelitis. Neuroscience 2015; 294:69-81. [PMID: 25779966 DOI: 10.1016/j.neuroscience.2015.03.016] [Citation(s) in RCA: 45] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2014] [Revised: 03/06/2015] [Accepted: 03/07/2015] [Indexed: 11/15/2022]
Abstract
Multiple sclerosis (MS) is thought to result from a combination of genetics and environmental factors. Several lines of evidence indicate that significant prevalence of anxiety and depression-related disorders in MS patients can influence the progression of the disease. Although we and others have already reported the consequences of prenatal maternal immune activation on anxiety and depression, less is known about the interplay between maternal inflammation, MS and gender. We here investigated the effects of maternal immune activation with Poly I:C during mid-gestation on the progression of clinical symptoms of experimental autoimmune encephalomyelitis (EAE; a mouse model of MS), and then anxiety- and depressive-like behaviors in non-EAE and EAE-induced offspring were evaluated. Stress-induced corticosterone and tumor necrosis factor-alpha (TNF-α) levels in EAE-induced offspring were also measured. Maternal immune activation increased anxiety and depression in male offspring, but not in females. This immune challenge also resulted in an earlier onset of the EAE clinical signs in male offspring and enhanced the severity of the disease in both male and female offspring. Interestingly, the severity of the disease was associated with increased anxiety/depressive-like behaviors and elevated corticosterone or TNF-α levels in both sexes. Overall, these data suggest that maternal immune activation with Poly I:C during mid-pregnancy increases anxiety- and depressive-like behaviors, and the clinical symptoms of EAE in a sex-dependent manner in non-EAE or EAE-induced offspring. Finally, the progression of EAE in offspring seems to be linked to maternal immune activation-induced dysregulation in neuro-immune-endocrine system.
Collapse
Affiliation(s)
- J Majidi-Zolbanin
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - M-H Doosti
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - M Kosari-Nasab
- Drug Applied Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - A-A Salari
- Drug Applied Research Center, Tabriz University of Medical Sciences, Tabriz, Iran; Laboratory of Neuropsychopharmacology and Psychoneuroimmunology, Hayyan Research Institute, University of Tabriz, Tabriz, Iran.
| |
Collapse
|
29
|
Atypical antipsychotic paliperidone prevents behavioral deficits in mice prenatally challenged with bacterial endotoxin lipopolysaccharide. Eur J Pharmacol 2015; 747:181-9. [DOI: 10.1016/j.ejphar.2014.09.011] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2014] [Revised: 09/03/2014] [Accepted: 09/09/2014] [Indexed: 01/25/2023]
|
30
|
Wang H, Yang LL, Hu YF, Wang BW, Huang YY, Zhang C, Chen YH, Xu DX. Maternal LPS exposure during pregnancy impairs testicular development, steroidogenesis and spermatogenesis in male offspring. PLoS One 2014; 9:e106786. [PMID: 25255222 PMCID: PMC4177809 DOI: 10.1371/journal.pone.0106786] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2014] [Accepted: 07/31/2014] [Indexed: 11/18/2022] Open
Abstract
Lipopolysaccharide (LPS) is associated with adverse developmental outcomes including embryonic resorption, fetal death, congenital teratogenesis and fetal growth retardation. Here, we explored the effects of maternal LPS exposure during pregnancy on testicular development, steroidogenesis and spermatogenesis in male offspring. The pregnant mice were intraperitoneally injected with LPS (50 µg/kg) daily from gestational day (GD) 13 to GD 17. At fetal period, a significant decrease in body weight and abnormal Leydig cell aggregations were observed in males whose mothers were exposed to LPS during pregnancy. At postnatal day (PND) 26, anogenital distance (AGD), a sensitive index of altered androgen action, was markedly reduced in male pups whose mothers were exposed to LPS daily from GD13 to GD 17. At PND35, the weight of testes, prostates and seminal vesicles, and serum testosterone (T) level were significantly decreased in LPS-treated male pups. At adulthood, the number of sperm was significantly decreased in male offspring whose mothers were exposed to LPS on GD 13-17. Maternal LPS exposure during gestation obviously diminished the percent of seminiferous tubules in stages I-VI, increased the percent of seminiferous tubules in stages IX-XII, and caused massive sloughing of germ cells in seminiferous tubules in mouse testes. Moreover, maternal LPS exposure significantly reduced serum T level in male mice whose mothers were exposed to LPS challenge during pregnancy. Taken together, these results suggest that maternal LPS exposure during pregnancy disrupts T production. The decreased T synthesis might be associated with LPS-induced impairments for spermatogenesis in male offspring.
Collapse
Affiliation(s)
- Hua Wang
- Department of Toxicology, School of Public Health, Anhui Medical University, Hefei, Anhui, China
- Anhui Provincial Key Laboratory of Population Health & Aristogenics, Hefei, Anhui, China
| | - Lu-Lu Yang
- Department of Toxicology, School of Public Health, Anhui Medical University, Hefei, Anhui, China
| | - Yong-Fang Hu
- Department of Toxicology, School of Public Health, Anhui Medical University, Hefei, Anhui, China
| | - Bi-Wei Wang
- Department of Toxicology, School of Public Health, Anhui Medical University, Hefei, Anhui, China
| | - Yin-Yin Huang
- Department of Toxicology, School of Public Health, Anhui Medical University, Hefei, Anhui, China
| | - Cheng Zhang
- Department of Toxicology, School of Public Health, Anhui Medical University, Hefei, Anhui, China
- Anhui Provincial Key Laboratory of Population Health & Aristogenics, Hefei, Anhui, China
| | - Yuan-Hua Chen
- Department of Toxicology, School of Public Health, Anhui Medical University, Hefei, Anhui, China
- Anhui Provincial Key Laboratory of Population Health & Aristogenics, Hefei, Anhui, China
- Department of Histology and Embryology, Anhui Medical University, Hefei, Anhui, China
| | - De-Xiang Xu
- Department of Toxicology, School of Public Health, Anhui Medical University, Hefei, Anhui, China
- Anhui Provincial Key Laboratory of Population Health & Aristogenics, Hefei, Anhui, China
- * E-mail:
| |
Collapse
|
31
|
Richetto J, Riva MA. Prenatal maternal factors in the development of cognitive impairments in the offspring. J Reprod Immunol 2014; 104-105:20-5. [PMID: 24794049 DOI: 10.1016/j.jri.2014.03.005] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2013] [Revised: 03/11/2014] [Accepted: 03/17/2014] [Indexed: 01/16/2023]
Abstract
Different environmental factors acting during sensitive prenatal periods can have a negative impact on neurodevelopment and predispose the individual to the development of various psychiatric conditions that often share cognitive impairments as a common component. As cognitive symptoms remain one of the most challenging and resistant aspects of mental illness to be treated pharmacologically, it is important to investigate the mechanisms underlying such cognitive deficits, with particular focus on the impact of early life adverse events that predispose the individual to mental disorders. Multiple clinical studies have, in fact, repeatedly confirmed that prenatal maternal factors, such as infection, stress or malnutrition, are pivotal in shaping behavioral and cognitive functions of the offspring, and in the past decade many preclinical studies have investigated this hypothesis. The purpose of this review is to describe recent preclinical studies aimed at dissecting the relative impact of various prenatal maternal factors on the development of cognitive impairments in offspring, focusing on animal models of prenatal stress and prenatal infection. These recent studies point to the pivotal role of prenatal stressful experiences in shaping memory and learning functions associated with specific brain structures, such as the hippocampus and the prefrontal cortex. More importantly, such experimental evidence suggests that different insults converge on similar downstream functional targets, such as cognition, which may therefore represent an endophenotype for several pathological conditions. Future studies should thus focus on investigating the mechanisms contributing to the convergent action of different prenatal insults in order to identify targets for novel therapeutic intervention.
Collapse
Affiliation(s)
- Juliet Richetto
- Center of Neuropharmacology, Dipartimento di Scienze Farmacologiche e Biomolecolari, Università degli Studi di Milano, Milan, Italy
| | - Marco A Riva
- Center of Neuropharmacology, Dipartimento di Scienze Farmacologiche e Biomolecolari, Università degli Studi di Milano, Milan, Italy.
| |
Collapse
|
32
|
Holder MK, Blaustein JD. Puberty and adolescence as a time of vulnerability to stressors that alter neurobehavioral processes. Front Neuroendocrinol 2014; 35:89-110. [PMID: 24184692 PMCID: PMC3946873 DOI: 10.1016/j.yfrne.2013.10.004] [Citation(s) in RCA: 167] [Impact Index Per Article: 15.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/16/2013] [Revised: 10/03/2013] [Accepted: 10/23/2013] [Indexed: 01/30/2023]
Abstract
Puberty and adolescence are major life transitions during which an individual's physiology and behavior changes from that of a juvenile to that of an adult. Here we review studies documenting the effects of stressors during pubertal and adolescent development on the adult brain and behavior. The experience of complex or compound stressors during puberty/adolescence generally increases stress reactivity, increases anxiety and depression, and decreases cognitive performance in adulthood. These behavioral changes correlate with decreased hippocampal volumes and alterations in neural plasticity. Moreover, stressful experiences during puberty disrupt behavioral responses to gonadal hormones both in sexual performance and on cognition and emotionality. These behavioral changes correlate with altered estrogen receptor densities in some estrogen-concentrating brain areas, suggesting a remodeling of the brain's response to hormones. A hypothesis is presented that activation of the immune system results in chronic neuroinflammation that may mediate the alterations of hormone-modulated behaviors in adulthood.
Collapse
Affiliation(s)
- Mary K Holder
- Neuroscience and Behavior Program, Tobin Hall, University of Massachusetts, Amherst, MA 01003-9271, USA; Center for Neuroendocrine Studies, Tobin Hall, University of Massachusetts, Amherst, MA 01003-9271, USA.
| | - Jeffrey D Blaustein
- Neuroscience and Behavior Program, Tobin Hall, University of Massachusetts, Amherst, MA 01003-9271, USA; Center for Neuroendocrine Studies, Tobin Hall, University of Massachusetts, Amherst, MA 01003-9271, USA.
| |
Collapse
|
33
|
Ouellet J, Berthiaume M, Corriveau S, Rola-Pleszczynski M, Pasquier JC. Effect of interleukin-6 receptor blockade on feto-maternal outcomes in a rat model of intrauterine inflammation. J Obstet Gynaecol Res 2013; 39:1456-64. [PMID: 23855552 DOI: 10.1111/jog.12089] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2012] [Accepted: 01/23/2013] [Indexed: 11/29/2022]
Abstract
AIM To study the effect of blocking the inflammatory cascade with interleukin-6 receptor antibody (anti-IL-6R) on feto-maternal outcomes in a rat model. METHODS Pregnant Sprague-Dawley rats (n = 38) were injected intraperitoneally (day 22) (control, anti-IL-6R 30 μg/kg, lipopolysaccharide [LPS] 250 μg/kg or 500 μg/kg alone or combined with anti-IL-6R) followed by preterm caesarian performed 12 h later. Resuscitated pups (n = 179) were given to surrogate mothers. Primary outcomes were maternal and pup mortality. RESULTS Fifty percent of pregnant rats died after LPS 500 μg/kg + anti-IL-6R injection but none in other groups. Neonatal mortality at 24 h was 63% and 86% in LPS 500 μg/kg and LPS 500 μg/kg + anti-IL-6R groups, respectively (P < 0.05). Surviving pups in the latter group presented a severe growth deficit compared to the LPS 500 μg/kg group (P < 0.01) and showed no difference with controls for open field testing. Maternal cytokine analysis after LPS 500 μg/kg + anti-IL-6R injection showed a tendency for increased IL-1 production (P = 0.06). CONCLUSION Paradoxically, the association of pregnancy, inflammation and anti-IL-6R increases the inflammatory effects of LPS.
Collapse
Affiliation(s)
- Justine Ouellet
- Department of Obstetrics and Gynecology, CHUS and Faculty of Medicine and Health Sciences, Université de Sherbrooke, Sherbrooke, Quebec, Canada
| | | | | | | | | |
Collapse
|
34
|
Blaustein JD, Ismail N. Enduring influence of pubertal stressors on behavioral response to hormones in female mice. Horm Behav 2013; 64:390-8. [PMID: 23998680 PMCID: PMC3761225 DOI: 10.1016/j.yhbeh.2013.01.015] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/17/2012] [Revised: 12/02/2012] [Accepted: 01/28/2013] [Indexed: 01/19/2023]
Abstract
This article is part of a Special Issue "Puberty and Adolescence". The pubertal period is a time of change in an animal's response to stress, and it is a second period of sexual differentiation of the brain. Recently, it was discovered that particular stressors during the prolonged pubertal period of female mice result in enduring changes in behavioral responsiveness of the brain to estradiol and progesterone. Depending on the behavior, pubertal immune challenge or shipping from suppliers may decrease, eliminate, or even reverse the effects of estradiol. Pubertal immune challenge results in changes in the number of estrogen receptor-immunoreactive cells in key brain areas suggesting a cellular mechanism for this remodeling of the brain's response to hormones. A hypothesis is put forward that predicts that particular adverse experiences in girls may cause long-term alterations in the brain's response to estradiol and/or progesterone via activation of the immune system. This could lead to mood disorders or altered response to any behavior influenced by estradiol in humans.
Collapse
Affiliation(s)
- Jeffrey D Blaustein
- Neuroscience and Behavior Program and Center for Neuroendocrine Studies, University of Massachusetts-Amherst, MA 01003-9271, USA.
| | | |
Collapse
|
35
|
Ge JF, Qi CC, Qiao JP, Wang CW, Zhou NJ. Sex differences in ICR mice in the Morris water maze task. Physiol Res 2012; 62:107-17. [PMID: 23173685 DOI: 10.33549/physiolres.932371] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023] Open
Abstract
The Morris water maze (MWM) is one of the most common tasks used to assess spatial learning and memory ability in rodents. Genetic strain and gender are two prominent variants that influence spatial performance. Although it was reported that ICR (Institute of Cancer Research) mice exhibited an unchanged baseline performance in the training phase of the MWM task, this outbred strain has been widely used in learning and memory studies, and little is known regarding the effects of sex on behavioral performance. In this study, we demonstrated that both male and female ICR mice could complete the MWM task. Furthermore, a significant sex difference was observed, with females having shorter escape latencies and longer durations in the target quadrant in both the acquisition and test phases. Our findings emphasize the necessity of careful examination of not only the strain effect on behavioral performance but also the sex effect.
Collapse
Affiliation(s)
- J F Ge
- Department of Brain Function and Diseases, School of Life Science, University of Science and Technology of China, Anhui, China
| | | | | | | | | |
Collapse
|
36
|
Rana SA, Aavani T, Pittman QJ. Sex effects on neurodevelopmental outcomes of innate immune activation during prenatal and neonatal life. Horm Behav 2012; 62:228-36. [PMID: 22516179 PMCID: PMC3522744 DOI: 10.1016/j.yhbeh.2012.03.015] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/11/2012] [Revised: 03/25/2012] [Accepted: 03/28/2012] [Indexed: 11/15/2022]
Abstract
Humans are exposed to potentially harmful agents (bacteria, viruses, toxins) throughout our lifespan; the consequences of such exposure can alter central nervous system development. Exposure to immunogens during pregnancy increases the risk of developing neurological disorders such as schizophrenia and autism. Further, sex hormones, such as estrogen, have strong modulatory effects on immune function and have also been implicated in the development of neuropathologies (e.g., schizophrenia and depression). Similarly, animal studies have demonstrated that immunogen exposure in utero or during the neonatal period, at a time when the brain is undergoing maturation, can induce changes in learning and memory, as well as dopamine-mediated behaviors in a sex-specific manner. Literature that covers the effects of immunogens on innate immune activation and ultimately the development of the adult brain and behavior is riddled with contradictory findings, and the addition of sex as a factor only adds to the complexity. This review provides evidence that innate immune activation during critical periods of development may have effects on the adult brain in a sex-specific manner. Issues regarding sex bias in research as well as variability in animal models of immune function are discussed.
Collapse
Affiliation(s)
| | | | - Quentin J. Pittman
- Corresponding author at: Hotchkiss Brain Institute, Department of Physiology and Pharmacology, Faculty of Medicine, University of Calgary, Calgary, Alberta, Canada. Fax: +1 403 283 2700. (Q.J. Pittman)
| |
Collapse
|
37
|
Chen YH, Zhao M, Chen X, Zhang Y, Wang H, Huang YY, Wang Z, Zhang ZH, Zhang C, Xu DX. Zinc supplementation during pregnancy protects against lipopolysaccharide-induced fetal growth restriction and demise through its anti-inflammatory effect. THE JOURNAL OF IMMUNOLOGY 2012; 189:454-63. [PMID: 22661087 DOI: 10.4049/jimmunol.1103579] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
LPS is associated with adverse developmental outcomes, including preterm delivery, fetal death, teratogenicity, and intrauterine growth restriction (IUGR). Previous reports showed that zinc protected against LPS-induced teratogenicity. In the current study, we investigated the effects of zinc supplementation during pregnancy on LPS-induced preterm delivery, fetal death and IUGR. All pregnant mice except controls were i.p. injected with LPS (75 μg/kg) daily from gestational day (GD) 15 to GD17. Some pregnant mice were administered zinc sulfate through drinking water (75 mg elemental Zn per liter) throughout the pregnancy. As expected, an i.p. injection with LPS daily from GD15 to GD17 resulted in 36.4% (4/11) of dams delivered before GD18. In dams that completed the pregnancy, 63.2% of fetuses were dead. Moreover, LPS significantly reduced fetal weight and crown-rump length. Of interest, zinc supplementation during pregnancy protected mice from LPS-induced preterm delivery and fetal death. In addition, zinc supplementation significantly alleviated LPS-induced IUGR and skeletal development retardation. Further experiments showed that zinc supplementation significantly attenuated LPS-induced expression of placental inflammatory cytokines and cyclooxygenase-2. Zinc supplementation also significantly attenuated LPS-induced activation of NF-κB and MAPK signaling in mononuclear sinusoidal trophoblast giant cells of the labyrinth zone. It inhibited LPS-induced placental AKT phosphorylation as well. In conclusion, zinc supplementation during pregnancy protects against LPS-induced fetal growth restriction and demise through its anti-inflammatory effect.
Collapse
Affiliation(s)
- Yuan-Hua Chen
- Department of Toxicology, Anhui Medical University, Hefei 230032, China
| | | | | | | | | | | | | | | | | | | |
Collapse
|
38
|
Oskvig DB, Elkahloun AG, Johnson KR, Phillips TM, Herkenham M. Maternal immune activation by LPS selectively alters specific gene expression profiles of interneuron migration and oxidative stress in the fetus without triggering a fetal immune response. Brain Behav Immun 2012; 26:623-34. [PMID: 22310921 PMCID: PMC3285385 DOI: 10.1016/j.bbi.2012.01.015] [Citation(s) in RCA: 188] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/01/2011] [Revised: 01/12/2012] [Accepted: 01/20/2012] [Indexed: 01/07/2023] Open
Abstract
Maternal immune activation (MIA) is a risk factor for the development of schizophrenia and autism. Infections during pregnancy activate the mother's immune system and alter the fetal environment, with consequential effects on CNS function and behavior in the offspring, but the cellular and molecular links between infection-induced altered fetal development and risk for neuropsychiatric disorders are unknown. We investigated the immunological, molecular, and behavioral effects of MIA in the offspring of pregnant Sprague-Dawley rats given an intraperitoneal (0.25 mg/kg) injection of lipopolysaccharide (LPS) on gestational day 15. LPS significantly elevated pro-inflammatory cytokine levels in maternal serum, amniotic fluid, and fetal brain at 4 h, and levels decreased but remained elevated at 24 h. Offspring born to LPS-treated dams exhibited reduced social preference and exploration behaviors as juveniles and young adults. Whole genome microarray analysis of the fetal brain at 4 h post maternal LPS was performed to elucidate the possible molecular mechanisms by which MIA affects the fetal brain. We observed dysregulation of 3285 genes in restricted functional categories, with increased mRNA expression of cellular stress and cell death genes and reduced expression of developmentally-regulated and brain-specific genes, specifically those that regulate neuronal migration of GABAergic interneurons, including the Distal-less (Dlx) family of transcription factors required for tangential migration from progenitor pools within the ganglionic eminences into the cerebral cortex. Our results provide a novel mechanism by which MIA induces the widespread down-regulation of critical neurodevelopmental genes, including those previously associated with autism.
Collapse
Affiliation(s)
- Devon B. Oskvig
- Section on Functional Neuroanatomy, National Institute of Mental Health, NIH, Bethesda, MD 20892, USA
| | - Abdel G. Elkahloun
- Division of Intramural Research Programs Microarray Core Facility, NIH, Bethesda, MD, 20892 USA
| | - Kory R. Johnson
- Bioinformatics Section, National Institute of Neurological Disorders and Stroke, NIH, Bethesda, MD, 20892 USA
| | - Terry M. Phillips
- Ultramicro Immunodiagnostics Section, Laboratory of Bioengineering and Physical Science, National Institute of Biomedical Imaging and Bioengineering, NIH, Bethesda, MD, 20892, USA
| | - Miles Herkenham
- Section on Functional Neuroanatomy, National Institute of Mental Health, NIH, Bethesda, MD 20892, USA,Corresponding Author: Address: Bldg. 35, Rm. 1C913, Bethesda, MD 20892-3724, USA. (M. Herkenham)
| |
Collapse
|
39
|
Baharnoori M, Bhardwaj SK, Srivastava LK. Neonatal behavioral changes in rats with gestational exposure to lipopolysaccharide: a prenatal infection model for developmental neuropsychiatric disorders. Schizophr Bull 2012; 38:444-56. [PMID: 20805287 PMCID: PMC3329978 DOI: 10.1093/schbul/sbq098] [Citation(s) in RCA: 84] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Exposure to prenatal infections has been widely associated with the increased risk for neuropsychiatric disorders of developmental origin such as schizophrenia and autism. Although several behavioral and cognitive deficits have been detected during adulthood in rodent models of prenatal infections, early behavioral changes have not been well characterized. In a prenatal lipopolysaccharide (LPS) model, we have previously observed significant alterations in the neuronal cytoarchitecture during early postnatal life. In the present study, we aimed to investigate the potential effects of prenatal immune activation on early neurophenotypic presentations using a set of behavioral test battery. Female Sprague-Dawley rats were administered with 100 μg/kg LPS (intraperitoneally) at gestational days 15 and 16. During the first postnatal week, we found no significant effect on maternal behavior or mother-pup interaction by this treatment. Also, no major changes in physical developmental milestones of pups were noted from postnatal (P) days P6 to P16. Importantly, prenatal LPS-exposed pups had a significant decrease in the number and duration of ultrasonic vocalization calls at P3 and P5. Prenatal LPS treatment also led to impairments in nest-seeking behavior and odor-stroke associative learning in neonatal rats at P8 and P9. At the molecular level, we detected significant decrease in the expression of cortical 5HT1A and 5HT1B messenger RNA at P3. These data suggest that prenatal exposure to an immune activator can significantly impair the social/communicative behavior in the neonate offspring, which may be relevant to childhood and premorbid abnormalities reported in autism and schizophrenia subjects.
Collapse
Affiliation(s)
| | | | - Lalit K. Srivastava
- To whom correspondence should be addressed; tel: +514-761-6131, fax: +514-762-3034, e-mail:
| |
Collapse
|
40
|
Olesen KM, Ismail N, Merchasin ED, Blaustein JD. Long-term alteration of anxiolytic effects of ovarian hormones in female mice by a peripubertal immune challenge. Horm Behav 2011; 60:318-26. [PMID: 21722643 PMCID: PMC3166431 DOI: 10.1016/j.yhbeh.2011.06.005] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/19/2011] [Revised: 06/10/2011] [Accepted: 06/13/2011] [Indexed: 11/22/2022]
Abstract
Recent reports indicate that exposure to some stressors, such as shipping or immune challenge with the bacterial endotoxin, lipopolysaccharide (LPS), during the peripubertal period reduces sexual receptivity in response to ovarian hormones in adulthood. We hypothesized that a peripubertal immune challenge would also disrupt the response of a non-reproductive behavior, anxiety-like behavior, to ovarian hormones in adulthood. Female C57Bl/6 mice were injected with LPS during the peripubertal period and tested for anxiety-like behavior in adulthood, following ovariectomy and ovarian hormone treatment. Treatment with estradiol followed by progesterone reduced anxiety-like behavior in control, but not LPS-treated females. We next determined if the disruptive effect of LPS on adult behavior were limited to the peripubertal period by treating mice with LPS either during this period or in adulthood. LPS treatment during the peripubertal period disrupted the anxiolytic effect of ovarian hormones, whereas treatment in adulthood did not. We further tested if this model of peripubertal immune challenge was applicable to an outbred strain of mice (CD-1). Similar to C57Bl/6 mice, LPS treatment during the peripubertal period, but not later, disrupted the anxiolytic effect of estradiol and progesterone. These data suggest that a peripubertal immune challenge disrupts the regulation of anxiety-like behavior by ovarian hormones in a manner that persists at least for weeks after the termination of the immune challenge.
Collapse
Affiliation(s)
- Kristin M Olesen
- University of Massachusetts, Amherst, Center for Neuroendocrine Studies, Tobin Hall, 135 Hicks Way, Amherst, MA 01003, USA
| | | | | | | |
Collapse
|
41
|
Jackson P, Vogel U, Wallin H, Hougaard KS. Prenatal Exposure to Carbon Black (Printex 90): Effects on Sexual Development and Neurofunction. Basic Clin Pharmacol Toxicol 2011; 109:434-7. [DOI: 10.1111/j.1742-7843.2011.00745.x] [Citation(s) in RCA: 51] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
42
|
Meng XH, Liu P, Wang H, Zhao XF, Xu ZM, Chen GH, Xu DX. Gender-specific impairments on cognitive and behavioral development in mice exposed to fenvalerate during puberty. Toxicol Lett 2011; 203:245-51. [DOI: 10.1016/j.toxlet.2011.03.024] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2011] [Revised: 03/17/2011] [Accepted: 03/21/2011] [Indexed: 12/31/2022]
|
43
|
Wang H, Li L, Zhao M, Chen YH, Zhang ZH, Zhang C, Ji YL, Meng XH, Xu DX. Melatonin alleviates lipopolysaccharide-induced placental cellular stress response in mice. J Pineal Res 2011; 50:418-26. [PMID: 21355878 DOI: 10.1111/j.1600-079x.2011.00860.x] [Citation(s) in RCA: 54] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Melatonin protects mice from lipopolysaccharide (LPS)-induced fetal death and intra-uterine growth retardation. Nevertheless, its molecular mechanism remains obscure. In the present study, we investigated the effects of melatonin on LPS-induced cellular stress in placenta. Pregnant mice were given with melatonin [5.0 mg/kg, intraperitoneal (i.p.)] 30 min before and 150 min after LPS (300 μg/kg, i.p.) on gestational day 15. Oxidative stress, endoplasmic reticulum (ER) stress, hypoxic stress, and heat stress in placenta were analyzed at 4 hr after LPS. As expected, maternal LPS administration resulted in placental glutathione (GSH) depletion and up-regulated the expression of placental antioxidative enzymes. In addition, LPS significantly increased the level of inducible nitric oxide synthase (iNOS) and enhanced the intensity of placental 3-nitrotyrosine residues. An ER stress, as determined by a decreased GRP78 expression, an obvious eIF2α and JNK phosphorylation, and an increased CHOP expression, were observed in placenta of pregnant mice injected with LPS. In addition, LPS significantly increased mRNA level of placental HIF-1α, VEGF, and ET-1, the markers of hypoxic stress. Heme oxygenase (HO)-1, a marker of heat stress, was also up-regulated in placenta of LPS-treated pregnant mice. Interestingly, LPS-induced placental oxidative stress, hypoxic stress, and ER stress were significantly alleviated when pregnant mice were given with melatonin, whereas melatonin had little effect on LPS-evoked placental HO-1 expression. In conclusion, maternally administered melatonin alleviates LPS-induced cellular stress in the placenta. Melatonin may be useful as pharmacological agents to protect the fetuses against LPS-induced intra-uterine fetal death and intra-uterine growth restriction.
Collapse
Affiliation(s)
- Hua Wang
- Department of Toxicology, Anhui Medical University, Hefei, China
| | | | | | | | | | | | | | | | | |
Collapse
|
44
|
Chen GH, Wang H, Yang QG, Tao F, Wang C, Xu DX. Acceleration of age-related learning and memory decline in middle-aged CD-1 mice due to maternal exposure to lipopolysaccharide during late pregnancy. Behav Brain Res 2011; 218:267-79. [DOI: 10.1016/j.bbr.2010.11.001] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2010] [Revised: 08/24/2010] [Accepted: 11/01/2010] [Indexed: 10/18/2022]
|
45
|
Drexhage RC, Weigelt K, van Beveren N, Cohen D, Versnel MA, Nolen WA, Drexhage HA. Immune and neuroimmune alterations in mood disorders and schizophrenia. INTERNATIONAL REVIEW OF NEUROBIOLOGY 2011; 101:169-201. [PMID: 22050852 DOI: 10.1016/b978-0-12-387718-5.00007-9] [Citation(s) in RCA: 57] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
A large number of publications over the past 20 years have indicated that immune system function is altered in schizophrenia and mood disorder patients. This chapter reviews the evidence, which suggests that a proinflammatory state of the cytokine network induces psychopathologic symptoms and may be involved in the pathogenesis and pathophysiology of these major mental illnesses. The authors also present recent data, which relates immune activation to present theories on the influence of activated immune cells in altering brain function. They also focus on the role of the environment in immune activation and on the role of the microbiome and gut flora. Increased understanding of such factors could help in the development of novel treatment strategies and improved clinical management of mental disorders.
Collapse
|
46
|
Boksa P. Effects of prenatal infection on brain development and behavior: a review of findings from animal models. Brain Behav Immun 2010; 24:881-97. [PMID: 20230889 DOI: 10.1016/j.bbi.2010.03.005] [Citation(s) in RCA: 470] [Impact Index Per Article: 31.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/16/2009] [Revised: 03/09/2010] [Accepted: 03/10/2010] [Indexed: 12/31/2022] Open
Abstract
Epidemiological studies with human populations indicate associations between maternal infection during pregnancy and increased risk in offspring for central nervous system (CNS) disorders including schizophrenia, autism and cerebral palsy. Since 2000, a large number of studies have used rodent models of systemic prenatal infection or prenatal immune activation to characterize changes in brain function and behavior caused by the prenatal insult. This review provides a comprehensive summary of these findings, and examines consistencies and trends across studies in an effort to provide a perspective on our current state of understanding from this body of work. Results from these animal modeling studies clearly indicate that prenatal immune activation can cause both acute and lasting changes in behavior and CNS structure and function in offspring. Across laboratories, studies vary with respect to the type, dose and timing of immunogen administration during gestation, species used, postnatal age examined and specific outcome measure quantified. This makes comparison across studies and assessment of replicability difficult. With regard to mechanisms, evidence for roles for several acute mediators of effects of prenatal immune activation has emerged, including circulating interleukin-6, increased placental cytokines and oxidative stress in the fetal brain. However, information required to describe the complete mechanistic pathway responsible for acute effects of prenatal immune activation on fetal brain is lacking, and no studies have yet addressed the issue of how acute prenatal exposure to an immunogen is transduced into a long-term CNS change in the postnatal animal. Directions for further research are discussed.
Collapse
Affiliation(s)
- Patricia Boksa
- Department of Psychiatry, McGill University, Douglas Mental Health University Institute, Montreal, Verdun, Quebec, Canada.
| |
Collapse
|