1
|
Alqudah MAY, Yaseen MM, Alzoubi KH, Al-Husein BA, Bardaweel SK, Abuhelwa AY, Semreen AM, Zenati RA, El-Awady R, Shara M, Bustanji Y, Soares NC, Abu-Gharbieh E, Ramadan WS, Semreen MH. Metabolomic Analysis, Antiproliferative, Anti-Migratory, and Anti-Invasive Potential of Amlodipine in Lung Cancer Cells. Drug Des Devel Ther 2025; 19:1215-1229. [PMID: 39991087 PMCID: PMC11847429 DOI: 10.2147/dddt.s484561] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2024] [Accepted: 02/06/2025] [Indexed: 02/25/2025] Open
Abstract
Background and Objective Lung cancer stands as the leading cause of cancer-related fatalities worldwide. While chemotherapy remains a crucial treatment option for managing lung cancer in both early-stage and advanced cases, it is accompanied by significant drawbacks, including severe side effects and the development of chemoresistance. Overcoming chemoresistance represents a considerable challenge in lung cancer treatment. Amlodipine cytotoxicity was previously demonstrated and could make lung cancer cells more susceptible to chemotherapies. This research aims to examine the metabolomics changes that may occur due to amlodipine's anticancer effects on non-small cell lung cancer (NSCLC) cells. Methods Amlodipine's effects on A549 and H1299 NSCLC were evaluated using a colorimetric MTT assay, a scratch wound-healing assay and Matrigel invasion chambers to measure cell viability, cell migration and cell invasion. Ultra-high-performance liquid chromatography-electrospray ionization quadrupole time-of-flight mass spectrometry (UHPLC-ESI-QTOF-MS) was used for the untargeted metabolomics investigation. Results Our study revealed that amlodipine significantly reduced proliferation of cancer cells in a dose-dependent fashion with IC50 values of 23 and 25.66 µM in A549 and H1299 cells, respectively. Furthermore, amlodipine reduced the invasiveness and migration of cancer cells. Metabolomics analysis revealed distinct metabolites to be significantly dysregulated (Citramalic acid, L-Proline, dGMP, L-Glutamic acid, Niacinamide, and L-Acetylcarnitine) in amlodipine-treated cells. Conclusion The present study illustrates the anticancer effects of amlodipine on lung cancer proliferation, migration, and invasion in vitro and enhance our understanding of how amlodipine exerts its anticancer potential by casting light on these mechanisms.
Collapse
Affiliation(s)
- Mohammad A Y Alqudah
- Department of Pharmacy Practice and Pharmacotherapeutics, University of Sharjah, Sharjah, United Arab Emirates
- Department of Clinical Pharmacy, Jordan University of Science and Technology, Irbid, Jordan
| | - Mahmoud M Yaseen
- Department of Medical Laboratory Sciences, Jordan University of Science and Technology, Irbid, Jordan
| | - Karem H Alzoubi
- Department of Pharmacy Practice and Pharmacotherapeutics, University of Sharjah, Sharjah, United Arab Emirates
- Department of Clinical Pharmacy, Jordan University of Science and Technology, Irbid, Jordan
| | - Belal A Al-Husein
- Department of Clinical Pharmacy, Jordan University of Science and Technology, Irbid, Jordan
| | - Sanaa K Bardaweel
- Department of Pharmaceutical Sciences, School of Pharmacy, the University of Jordan, Amman, Jordan
| | - Ahmad Y Abuhelwa
- Department of Pharmacy Practice and Pharmacotherapeutics, University of Sharjah, Sharjah, United Arab Emirates
| | - Ahlam M Semreen
- Research Institute of Medical and Health Sciences, University of Sharjah, Sharjah, United Arab Emirates
| | - Ruba A Zenati
- Research Institute of Medical and Health Sciences, University of Sharjah, Sharjah, United Arab Emirates
| | - Raafat El-Awady
- Department of Pharmacy Practice and Pharmacotherapeutics, University of Sharjah, Sharjah, United Arab Emirates
- Research Institute of Medical and Health Sciences, University of Sharjah, Sharjah, United Arab Emirates
| | - Mohd Shara
- Department of Pharmacy Practice and Pharmacotherapeutics, University of Sharjah, Sharjah, United Arab Emirates
| | - Yasser Bustanji
- Research Institute of Medical and Health Sciences, University of Sharjah, Sharjah, United Arab Emirates
- Department of Clinical Sciences, University of Sharjah, Sharjah, United Arab Emirates
- Department of Biopharmaceutics and Clinical Pharmacy, the University of Jordan, Amman, Jordan
| | - Nelson C Soares
- Department of Medicinal Chemistry, University of Sharjah, Sharjah, United Arab Emirates
- Center for Applied and Translational Genomics (CATG), Mohammed Bin Rashid University Medicine and Health Sciences (MBRU), Dubai Health, Dubai, United Arab Emirates
- College of Medicine, Mohammed Bin Rashid University of Medicine and Health Sciences (MBRU), Dubai Health, Dubai, United Arab Emirates
| | - Eman Abu-Gharbieh
- Research Institute of Medical and Health Sciences, University of Sharjah, Sharjah, United Arab Emirates
- Department of Clinical Sciences, University of Sharjah, Sharjah, United Arab Emirates
- Department of Biopharmaceutics and Clinical Pharmacy, the University of Jordan, Amman, Jordan
| | - Wafaa S Ramadan
- Research Institute of Medical and Health Sciences, University of Sharjah, Sharjah, United Arab Emirates
| | - Mohammad H Semreen
- Research Institute of Medical and Health Sciences, University of Sharjah, Sharjah, United Arab Emirates
- Department of Medicinal Chemistry, University of Sharjah, Sharjah, United Arab Emirates
| |
Collapse
|
2
|
Chang YY, Yang TY, Sheu GT. Association of Wild-Type TP53 with Downregulation of Lovastatin Sensitivity in Human Non-Small Cell Lung Cancer Cells. Curr Issues Mol Biol 2024; 46:10130-10139. [PMID: 39329956 PMCID: PMC11430132 DOI: 10.3390/cimb46090604] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2024] [Revised: 08/31/2024] [Accepted: 09/10/2024] [Indexed: 09/28/2024] Open
Abstract
Statins inhibit 3-hydroxy-3-methylglutaryl-CoA reductase (HMGCR), the rate-limiting enzyme of the mevalonate pathway, and reduce cholesterol synthesis. They also have been demonstrated to improve prognosis in patients with various cancers, suggesting a potential anti-cancer effect of statins. However, there is no consensus on the molecular targets of statins for their anti-cancer effects. Docetaxel (DOC) is a microtubule-stabilizing agent currently used as a chemotherapeutic drug in several cancers, including lung cancer. Interestingly, the anti-cancer effects of either drug that are related to abnormal or wild-type TP53 gene have been implied. Therefore, the drug sensitivity of DOC and lovastatin in human lung cancer cells was evaluated. We found that H1355 (mutant TP53-E285K), CL1 (mutant TP53-R248W), and H1299 (TP53-null) human non-small cell lung cancer cells were more sensitive to lovastatin than A549 and H460 cells expressing wild-type TP53. Conversely, A549 and H460 cells showed higher sensitivity to DOC than H1299 and CL1 cells, as demonstrated by the MTT assay. When endogenous TP53 activity was inhibited by pifithrin-α in A549 and H460 cells, lovastatin sensitivities significantly increased, and cancer cell viabilities markedly reduced. These results indicate that TP53 status is associated with the anti-cancer effect of statins in human lung cancer cells. Mutated or null TP53 status is correlated with higher statin sensitivity. Furthermore, DOC-resistant H1299 (H1299/D8) cells showed significant sensitivity to lovastatin treatment compared to DOC-resistant A549 (A549/D16) cells, indicating a potential application of statins/chemotherapy combination therapy to control wild-type and abnormal TP53-containing human lung tumors.
Collapse
Affiliation(s)
- Yu-Yao Chang
- Institute of Medicine, Chung Shan Medical University, Taichung 402, Taiwan
- Division of Colon and Rectal Surgery, Department of Surgery, Changhua Christian Hospital, 135 Nanhsiao Street, Changhua 500, Taiwan
| | - Tsung-Ying Yang
- Department of Chest Medicine, Taichung Veterans General Hospital, No. 1650, Sect. 4, Taiwan Boulevard, Taichung 407, Taiwan
- Department of Life Sciences, National Chung Hsing University, No. 145, Xingda Rd., South Dist., Taichung 402, Taiwan
| | - Gwo-Tarng Sheu
- Institute of Medicine, Chung Shan Medical University, Taichung 402, Taiwan
- Department of Medical Oncology and Chest Medicine, Chung Shan Medical University Hospital, No. 110, Sec. 1, Jianguo N. Road, Taichung 402, Taiwan
| |
Collapse
|
3
|
Ji R, Chang L, An C, Zhang J. Proton-sensing ion channels, GPCRs and calcium signaling regulated by them: implications for cancer. Front Cell Dev Biol 2024; 12:1326231. [PMID: 38505262 PMCID: PMC10949864 DOI: 10.3389/fcell.2024.1326231] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2023] [Accepted: 02/14/2024] [Indexed: 03/21/2024] Open
Abstract
Extracellular acidification of tumors is common. Through proton-sensing ion channels or proton-sensing G protein-coupled receptors (GPCRs), tumor cells sense extracellular acidification to stimulate a variety of intracellular signaling pathways including the calcium signaling, which consequently exerts global impacts on tumor cells. Proton-sensing ion channels, and proton-sensing GPCRs have natural advantages as drug targets of anticancer therapy. However, they and the calcium signaling regulated by them attracted limited attention as potential targets of anticancer drugs. In the present review, we discuss the progress in studies on proton-sensing ion channels, and proton-sensing GPCRs, especially emphasizing the effects of calcium signaling activated by them on the characteristics of tumors, including proliferation, migration, invasion, metastasis, drug resistance, angiogenesis. In addition, we review the drugs targeting proton-sensing channels or GPCRs that are currently in clinical trials, as well as the relevant potential drugs for cancer treatments, and discuss their future prospects. The present review aims to elucidate the important role of proton-sensing ion channels, GPCRs and calcium signaling regulated by them in cancer initiation and development. This review will promote the development of drugs targeting proton-sensing channels or GPCRs for cancer treatments, effectively taking their unique advantage as anti-cancer drug targets.
Collapse
Affiliation(s)
- Renhui Ji
- Foundational and Translational Medical Research Center, Department of Allergy and General Surgery, Hohhot First Hospital, Hohhot, China
- Department of Pathophysiology, Basic Medicine College of Inner Mongolia Medical University, Hohhot, China
| | - Li Chang
- Foundational and Translational Medical Research Center, Department of Allergy and General Surgery, Hohhot First Hospital, Hohhot, China
- Department of Pathophysiology, Basic Medicine College of Inner Mongolia Medical University, Hohhot, China
| | - Caiyan An
- Foundational and Translational Medical Research Center, Department of Allergy and General Surgery, Hohhot First Hospital, Hohhot, China
| | - Junjing Zhang
- Foundational and Translational Medical Research Center, Department of Allergy and General Surgery, Hohhot First Hospital, Hohhot, China
| |
Collapse
|
4
|
Huang YH, Chiu LY, Tseng JS, Hsu KH, Chen CH, Sheu GT, Yang TY. Attenuation of PI3K-Akt-mTOR Pathway to Reduce Cancer Stemness on Chemoresistant Lung Cancer Cells by Shikonin and Synergy with BEZ235 Inhibitor. Int J Mol Sci 2024; 25:616. [PMID: 38203787 PMCID: PMC10779050 DOI: 10.3390/ijms25010616] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2023] [Revised: 12/15/2023] [Accepted: 12/27/2023] [Indexed: 01/12/2024] Open
Abstract
Lung cancer is considered the number one cause of cancer-related deaths worldwide. Although current treatments initially reduce the lung cancer burden, relapse occurs in most cases; the major causes of mortality are drug resistance and cancer stemness. Recent investigations have provided evidence that shikonin generates various bioactivities related to the treatment of cancer. We used shikonin to treat multi-resistant non-small lung cancer cells (DOC-resistant A549/D16, VCR-resistant A549/V16 cells) and defined the anti-cancer efficacy of shikonin. Our results showed shikonin induces apoptosis in these ABCB1-dependent and independent chemoresistance cancer sublines. Furthermore, we found that low doses of shikonin inhibit the proliferation of lung cancer stem-like cells by inhibiting spheroid formation. Concomitantly, the mRNA level and protein of stemness genes (Nanog and Oct4) were repressed significantly on both sublines. Shikonin reduces the phosphorylated Akt and p70s6k levels, indicating that the PI3K/Akt/mTOR signaling pathway is downregulated by shikonin. We further applied several signaling pathway inhibitors that have been used in anti-cancer clinical trials to test whether shikonin is suitable as a sensitizer for various signaling pathway inhibitors. In these experiments, we found that low doses shikonin and dual PI3K-mTOR inhibitor (BEZ235) have a synergistic effect that inhibits the spheroid formation from chemoresistant lung cancer sublines. Inhibiting the proliferation of lung cancer stem cells is believed to reduce the recurrence of lung cancer; therefore, shikonin's anti-drug resistance and anti-cancer stem cell activities make it a highly interesting molecule for future combined lung cancer therapy.
Collapse
Affiliation(s)
- Yen-Hsiang Huang
- Division of Chest Medicine, Department of Internal Medicine, Taichung Veterans General Hospital, Taichung 407, Taiwan; (Y.-H.H.); (L.-Y.C.); (J.-S.T.)
- Faculty of Medicine, School of Medicine, National Yang Ming Chiao Tung University, Taipei 112, Taiwan
| | - Ling-Yen Chiu
- Division of Chest Medicine, Department of Internal Medicine, Taichung Veterans General Hospital, Taichung 407, Taiwan; (Y.-H.H.); (L.-Y.C.); (J.-S.T.)
| | - Jeng-Sen Tseng
- Division of Chest Medicine, Department of Internal Medicine, Taichung Veterans General Hospital, Taichung 407, Taiwan; (Y.-H.H.); (L.-Y.C.); (J.-S.T.)
- Faculty of Medicine, School of Medicine, National Yang Ming Chiao Tung University, Taipei 112, Taiwan
- Department of Post-Baccalaureate Medicine, College of Medicine, National Chung Hsing University, Taichung 402, Taiwan
| | - Kuo-Hsuan Hsu
- Division of Critical Care and Respiratory Therapy, Department of Internal Medicine, Taichung Veterans General Hospital, Taichung 407, Taiwan;
| | - Chang-Han Chen
- Department of Applied Chemistry, Graduate Institute of Biomedicine and Biomedical Technology, National Chi Nan University, Nantou 545, Taiwan;
- Department of Medical Research, Taichung Veterans General Hospital, Taichung 407, Taiwan
| | - Gwo-Tarng Sheu
- Institute of Medicine, Chung Shan Medical University, Taichung 402, Taiwan
- Department of Medical Oncology and Chest Medicine, Chung Shan Medical University Hospital, Taichung 402, Taiwan
| | - Tsung-Ying Yang
- Division of Chest Medicine, Department of Internal Medicine, Taichung Veterans General Hospital, Taichung 407, Taiwan; (Y.-H.H.); (L.-Y.C.); (J.-S.T.)
- Department of Life Sciences, National Chung Hsing University, Taichung 402, Taiwan
| |
Collapse
|
5
|
Zarrabi A, Perrin D, Kavoosi M, Sommer M, Sezen S, Mehrbod P, Bhushan B, Machaj F, Rosik J, Kawalec P, Afifi S, Bolandi SM, Koleini P, Taheri M, Madrakian T, Łos MJ, Lindsey B, Cakir N, Zarepour A, Hushmandi K, Fallah A, Koc B, Khosravi A, Ahmadi M, Logue S, Orive G, Pecic S, Gordon JW, Ghavami S. Rhabdomyosarcoma: Current Therapy, Challenges, and Future Approaches to Treatment Strategies. Cancers (Basel) 2023; 15:5269. [PMID: 37958442 PMCID: PMC10650215 DOI: 10.3390/cancers15215269] [Citation(s) in RCA: 28] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2023] [Revised: 10/18/2023] [Accepted: 10/29/2023] [Indexed: 11/15/2023] Open
Abstract
Rhabdomyosarcoma is a rare cancer arising in skeletal muscle that typically impacts children and young adults. It is a worldwide challenge in child health as treatment outcomes for metastatic and recurrent disease still pose a major concern for both basic and clinical scientists. The treatment strategies for rhabdomyosarcoma include multi-agent chemotherapies after surgical resection with or without ionization radiotherapy. In this comprehensive review, we first provide a detailed clinical understanding of rhabdomyosarcoma including its classification and subtypes, diagnosis, and treatment strategies. Later, we focus on chemotherapy strategies for this childhood sarcoma and discuss the impact of three mechanisms that are involved in the chemotherapy response including apoptosis, macro-autophagy, and the unfolded protein response. Finally, we discuss in vivo mouse and zebrafish models and in vitro three-dimensional bioengineering models of rhabdomyosarcoma to screen future therapeutic approaches and promote muscle regeneration.
Collapse
Affiliation(s)
- Ali Zarrabi
- Department of Biomedical Engineering, Faculty of Engineering and Natural Sciences, Istinye University, Sariyer, Istanbul 34396, Türkiye; (A.Z.); (A.Z.)
| | - David Perrin
- Section of Orthopaedic Surgery, Department of Surgery, University of Manitoba, Winnipeg, MB R3E 0V9, Canada; (D.P.); (M.S.)
| | - Mahboubeh Kavoosi
- Department of Human Anatomy and Cell Science, University of Manitoba College of Medicine, Winnipeg, MB R3E 0V9, Canada; (M.K.); (B.B.); (F.M.); (J.R.); (P.K.); (S.A.); (S.M.B.); (P.K.); (B.L.); (S.L.); (J.W.G.)
- Biotechnology Center, Silesian University of Technology, 8 Krzywousty St., 44-100 Gliwice, Poland;
| | - Micah Sommer
- Section of Orthopaedic Surgery, Department of Surgery, University of Manitoba, Winnipeg, MB R3E 0V9, Canada; (D.P.); (M.S.)
- Section of Physical Medicine and Rehabilitation, Department of Internal Medicine, University of Manitoba, Winnipeg, MB R3E 0V9, Canada
| | - Serap Sezen
- Faculty of Engineering and Natural Sciences, Sabanci University, Tuzla, Istanbul 34956, Türkiye; (S.S.); (N.C.); (B.K.)
| | - Parvaneh Mehrbod
- Department of Influenza and Respiratory Viruses, Pasteur Institute of Iran, Tehran 1316943551, Iran;
| | - Bhavya Bhushan
- Department of Human Anatomy and Cell Science, University of Manitoba College of Medicine, Winnipeg, MB R3E 0V9, Canada; (M.K.); (B.B.); (F.M.); (J.R.); (P.K.); (S.A.); (S.M.B.); (P.K.); (B.L.); (S.L.); (J.W.G.)
- Department of Anatomy and Cell Biology, School of Biomedical Sciences, Faculty of Science, McGill University, Montreal, QC H3A 0C7, Canada
| | - Filip Machaj
- Department of Human Anatomy and Cell Science, University of Manitoba College of Medicine, Winnipeg, MB R3E 0V9, Canada; (M.K.); (B.B.); (F.M.); (J.R.); (P.K.); (S.A.); (S.M.B.); (P.K.); (B.L.); (S.L.); (J.W.G.)
- Department of Physiology, Pomeranian Medical University, 70-111 Szczecin, Poland
- Department of Biochemistry and Molecular Biology, University of Chicago, Chicago, IL 60637, USA
| | - Jakub Rosik
- Department of Human Anatomy and Cell Science, University of Manitoba College of Medicine, Winnipeg, MB R3E 0V9, Canada; (M.K.); (B.B.); (F.M.); (J.R.); (P.K.); (S.A.); (S.M.B.); (P.K.); (B.L.); (S.L.); (J.W.G.)
- Department of Physiology, Pomeranian Medical University, 70-111 Szczecin, Poland
- Department of Chemistry, University of Chicago, Chicago, IL 60637, USA
| | - Philip Kawalec
- Department of Human Anatomy and Cell Science, University of Manitoba College of Medicine, Winnipeg, MB R3E 0V9, Canada; (M.K.); (B.B.); (F.M.); (J.R.); (P.K.); (S.A.); (S.M.B.); (P.K.); (B.L.); (S.L.); (J.W.G.)
- Section of Neurosurgery, Department of Surgery, University of Manitoba, Health Sciences Centre, Winnipeg, MB R3A 1R9, Canada
| | - Saba Afifi
- Department of Human Anatomy and Cell Science, University of Manitoba College of Medicine, Winnipeg, MB R3E 0V9, Canada; (M.K.); (B.B.); (F.M.); (J.R.); (P.K.); (S.A.); (S.M.B.); (P.K.); (B.L.); (S.L.); (J.W.G.)
| | - Seyed Mohammadreza Bolandi
- Department of Human Anatomy and Cell Science, University of Manitoba College of Medicine, Winnipeg, MB R3E 0V9, Canada; (M.K.); (B.B.); (F.M.); (J.R.); (P.K.); (S.A.); (S.M.B.); (P.K.); (B.L.); (S.L.); (J.W.G.)
| | - Peiman Koleini
- Department of Human Anatomy and Cell Science, University of Manitoba College of Medicine, Winnipeg, MB R3E 0V9, Canada; (M.K.); (B.B.); (F.M.); (J.R.); (P.K.); (S.A.); (S.M.B.); (P.K.); (B.L.); (S.L.); (J.W.G.)
| | - Mohsen Taheri
- Genetics of Non-Communicable Disease Research Center, Zahedan University of Medical Sciences, Zahedan 9816743463, Iran;
| | - Tayyebeh Madrakian
- Department of Analytical Chemistry, Faculty of Chemistry, Bu-Ali Sina University, Hamedan 6517838695, Iran; (T.M.); (M.A.)
| | - Marek J. Łos
- Biotechnology Center, Silesian University of Technology, 8 Krzywousty St., 44-100 Gliwice, Poland;
| | - Benjamin Lindsey
- Department of Human Anatomy and Cell Science, University of Manitoba College of Medicine, Winnipeg, MB R3E 0V9, Canada; (M.K.); (B.B.); (F.M.); (J.R.); (P.K.); (S.A.); (S.M.B.); (P.K.); (B.L.); (S.L.); (J.W.G.)
| | - Nilufer Cakir
- Faculty of Engineering and Natural Sciences, Sabanci University, Tuzla, Istanbul 34956, Türkiye; (S.S.); (N.C.); (B.K.)
| | - Atefeh Zarepour
- Department of Biomedical Engineering, Faculty of Engineering and Natural Sciences, Istinye University, Sariyer, Istanbul 34396, Türkiye; (A.Z.); (A.Z.)
| | - Kiavash Hushmandi
- Department of Food Hygiene and Quality Control, Division of Epidemiology, Faculty of Veterinary Medicine, University of Tehran, Tehran 1419963114, Iran;
| | - Ali Fallah
- Integrated Manufacturing Technologies Research and Application Center, Sabanci University, Tuzla, Istanbul 34956, Türkiye;
| | - Bahattin Koc
- Faculty of Engineering and Natural Sciences, Sabanci University, Tuzla, Istanbul 34956, Türkiye; (S.S.); (N.C.); (B.K.)
- Integrated Manufacturing Technologies Research and Application Center, Sabanci University, Tuzla, Istanbul 34956, Türkiye;
- Sabanci University Nanotechnology Research and Application Center (SUNUM), Tuzla, Istanbul 34956, Türkiye
| | - Arezoo Khosravi
- Department of Genetics and Bioengineering, Faculty of Engineering and Natural Sciences, Istanbul Okan University, Istanbul 34959, Türkiye;
| | - Mazaher Ahmadi
- Department of Analytical Chemistry, Faculty of Chemistry, Bu-Ali Sina University, Hamedan 6517838695, Iran; (T.M.); (M.A.)
| | - Susan Logue
- Department of Human Anatomy and Cell Science, University of Manitoba College of Medicine, Winnipeg, MB R3E 0V9, Canada; (M.K.); (B.B.); (F.M.); (J.R.); (P.K.); (S.A.); (S.M.B.); (P.K.); (B.L.); (S.L.); (J.W.G.)
| | - Gorka Orive
- NanoBioCel Research Group, School of Pharmacy, University of the Basque Country (UPV/EHU), 01007 Vitoria-Gasteiz, Spain;
- University Institute for Regenerative Medicine and Oral Implantology–UIRMI (UPV/EHU-Fundación Eduardo Anitua), 01007 Vitoria-Gasteiz, Spain
- Bioaraba, NanoBioCel Research Group, 01006 Vitoria-Gasteiz, Spain
| | - Stevan Pecic
- Department of Chemistry and Biochemistry, California State University Fullerton, Fullerton, CA 92831, USA;
| | - Joseph W. Gordon
- Department of Human Anatomy and Cell Science, University of Manitoba College of Medicine, Winnipeg, MB R3E 0V9, Canada; (M.K.); (B.B.); (F.M.); (J.R.); (P.K.); (S.A.); (S.M.B.); (P.K.); (B.L.); (S.L.); (J.W.G.)
- College of Nursing, Rady Faculty of Health Science, University of Manitoba, Winnipeg, MB R3E 0V9, Canada
| | - Saeid Ghavami
- Department of Human Anatomy and Cell Science, University of Manitoba College of Medicine, Winnipeg, MB R3E 0V9, Canada; (M.K.); (B.B.); (F.M.); (J.R.); (P.K.); (S.A.); (S.M.B.); (P.K.); (B.L.); (S.L.); (J.W.G.)
- Biology of Breathing Theme, Children Hospital Research Institute of Manitoba, University of Manitoba, Winnipeg, MB R3E 0V9, Canada
- Autophagy Research Center, Shiraz University of Medical Sciences, Shiraz 7134845794, Iran
- Academy of Silesia, Faculty of Medicine, Rolna 43, 40-555 Katowice, Poland
- Research Institutes of Oncology and Hematology, Cancer Care Manitoba-University of Manitoba, Winnipeg, MB R3E 0V9, Canada
| |
Collapse
|
6
|
Singh J, Meena A, Luqman S. New frontiers in the design and discovery of therapeutics that target calcium ion signaling: a novel approach in the fight against cancer. Expert Opin Drug Discov 2023; 18:1379-1392. [PMID: 37655549 DOI: 10.1080/17460441.2023.2251887] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2023] [Accepted: 08/22/2023] [Indexed: 09/02/2023]
Abstract
INTRODUCTION The Ca2+ signaling toolkit is currently under investigation as a potential target for addressing the threat of cancer. A growing body of evidence suggests that calcium signaling plays a crucial role in promoting various aspects of cancer, including cell proliferation, progression, drug resistance, and migration-related activities. Consequently, focusing on these altered Ca2+ transporting proteins has emerged as a promising area of research for cancer treatment. AREAS COVERED This review highlights the existing research on the role of Ca2+-transporting proteins in cancer progression. It discusses the current studies evaluating Ca2+ channel/transporter/pump blockers, inhibitors, or regulators as potential anticancer drugs. Additionally, the review addresses specific gaps in our understanding of the field that may require further investigation. EXPERT OPINION Targeting specific Ca2+ signaling cascades could disrupt normal cellular activities, making cancer therapy complex and elusive. Therefore, there is a need for improvements in current Ca2+ signaling pathway focused medicines. While synthetic molecules and plant compounds show promise, they also come with certain limitations. Hence, exploring the framework of targeted drug delivery, structure-rationale-based designing, and repurposing potential drugs to target Ca2+ transporting proteins could potentially lead to a significant breakthrough in cancer treatment.
Collapse
Affiliation(s)
- Jyoti Singh
- Bioprospection and Product Development Division, CSIR-Central Institute of Medicinal and Aromatic Plants, Lucknow, India
- Jawaharlal Nehru University, New Delhi, India
| | - Abha Meena
- Bioprospection and Product Development Division, CSIR-Central Institute of Medicinal and Aromatic Plants, Lucknow, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, India
| | - Suaib Luqman
- Bioprospection and Product Development Division, CSIR-Central Institute of Medicinal and Aromatic Plants, Lucknow, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, India
| |
Collapse
|
7
|
Qian X, Zhao Y, Zhang T, Fan P. Downregulation of MACC1 facilitates the reversal effect of verapamil on the chemoresistance to active metabolite of irinotecan in human colon cancer cells. Heliyon 2022; 8:e11294. [PMID: 36345514 PMCID: PMC9636468 DOI: 10.1016/j.heliyon.2022.e11294] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2022] [Revised: 09/13/2022] [Accepted: 10/24/2022] [Indexed: 11/09/2022] Open
Abstract
The aim of this study is to investigate the reversal effect of verapamil (VER) on chemoresistance to irinotecan (CPT-11) in human colon cancer cells and relevant mechanisms. Cell counting kit-8 (CCK-8) test and colony-forming unit (CFU) experiment results show that VER strengthens the sensitivity of human colon cancer cell line HT29 to CPT-11 but has a small effect on SW480 cells. High-throughput transcriptome sequencing, RT-PCR, and Western blot results show that the inhibition of metastasis-associated in colon cancer-1 (MACC1) expression by VER is the key factor for reversal effect on chemoresistance to CPT-11. Transfection experiments further show that VER can reverse the resistance of human colon cancer cells to SN-38, the active metabolite of CPT-11, when MACC1 is overexpressed. The nude mouse transplantation tumor experiment provides an in vivo proof that VER can strengthen sensitivity to CPT-11 in drug-resistant human colon cancer cells, and the effect might be related to the inhibited expression of MACC1. In summary, VER might strengthen the reversal effect of VER on chemoresistance to CPT-11 in human colon cancer cells and facilitate the apoptosis of human colon cancer cells by downregulating MACC1 expression.
Collapse
Affiliation(s)
- Xiaotao Qian
- Cheeloo College of Medicine, Shandong University, Jinan, Shandong 250012, China,The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui, 230001, China,Department of Oncology, Hefei Cancer Hospital, Chinese Academy of Sciences, Hefei, Anhui, 230031, China
| | - Yongxin Zhao
- The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui, 230001, China
| | - Tengyue Zhang
- The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui, 230001, China
| | - Pingsheng Fan
- Cheeloo College of Medicine, Shandong University, Jinan, Shandong 250012, China,The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui, 230001, China,Corresponding author.
| |
Collapse
|
8
|
Chen YC, Wu CT, Chen JH, Tsai CF, Wu CY, Chang PC, Yeh WL. Diltiazem inhibits breast cancer metastasis via mediating growth differentiation factor 15 and epithelial-mesenchymal transition. Oncogenesis 2022; 11:48. [PMID: 35963873 PMCID: PMC9376069 DOI: 10.1038/s41389-022-00423-5] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2022] [Revised: 07/26/2022] [Accepted: 07/29/2022] [Indexed: 12/22/2022] Open
Abstract
Migration and metastasis commonly happen to triple-negative breast cancer (TNBC) patients with advanced diseases. In many studies, it has been suggested that epithelial-mesenchymal transition (EMT) is one of the key mechanisms triggering cancer metastasis. Accumulating evidence has proven that calcium channel blockers mediate cell motility. Therefore, we attempt to investigate the effects of diltiazem, which has been selected from several FDA-approved clinical calcium channel blockers, on EMT in TNBC. By using both mouse and human TNBC cell lines, we found that diltiazem decreases colony formation and cell migration in breast cancer cells. The expression of epithelial markers such as E-cadherin and ZO-1 were increased dose-dependently by diltiazem, while mesenchymal markers such as Snail and Twist were decreased. In addition, we found that the expression of growth differentiation factor-15 (GDF-15) was also increased by diltiazem. Administering recombinant GDF-15 also reverses EMT, inhibits colony formation and migration in breast cancer cells. Moreover, treatment with diltiazem in tumor-bearing mice also decreases cancer metastasis and nodule formation, with more GDF-15 expression in diltiazem-treated mice than saline-treated mice, respectively. These findings suggest that diltiazem regulates EMT and cell motility through elevating GDF-15 expression in breast cancers in vitro and in vivo.
Collapse
Affiliation(s)
- Yen-Chang Chen
- Institute of New Drug Development, China Medical University, No.91 Hsueh-Shih Road, Taichung, 404333, Taiwan
| | - Chen-Teng Wu
- Department of Surgery, China Medical University Hospital, No. 2, Yude Road, Taichung, 404332, Taiwan
| | - Jia-Hong Chen
- Department of General Surgery, Taichung Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, No. 88, Sec. 1, Fengxing Road, Taichung, 427213, Taiwan
| | - Cheng-Fang Tsai
- Department of Medical Laboratory Science and Biotechnology, Asia University, No.500 Lioufeng Road, Taichung, 413305, Taiwan
| | - Chen-Yun Wu
- Institute of New Drug Development, China Medical University, No.91 Hsueh-Shih Road, Taichung, 404333, Taiwan
| | - Pei-Chun Chang
- Department of Bioinformatics and Medical Engineering, Asia University, No.500 Lioufeng Road, Taichung, 413305, Taiwan
| | - Wei-Lan Yeh
- Institute of New Drug Development, China Medical University, No.91 Hsueh-Shih Road, Taichung, 404333, Taiwan.
- Department of Biochemistry, School of Medicine, China Medical University, No.91 Hsueh-Shih Road, Taichung, 404333, Taiwan.
| |
Collapse
|
9
|
Curcumin Induces Apoptosis of Chemoresistant Lung Cancer Cells via ROS-Regulated p38 MAPK Phosphorylation. Int J Mol Sci 2022; 23:ijms23158248. [PMID: 35897820 PMCID: PMC9367815 DOI: 10.3390/ijms23158248] [Citation(s) in RCA: 39] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2022] [Revised: 07/22/2022] [Accepted: 07/23/2022] [Indexed: 02/01/2023] Open
Abstract
This study aimed to challenge chemoresistance by curcumin (CUR) with drug-selected human lung cancer A549 sublines that continuously proliferate in the present of docetaxel (DOC) and vincristine (VCR). Their sensitivities to CUR were measured by MTT assay and the particular intracellular reactive oxygen species (ROS) was detected by fluorescence activated cell sorting (FACS) analysis. Apoptosis was analyzed by Annexin V assay of the flow cytometry. Inhibitors and RNA interference were used to examine the signaling pathway regulated by the kinases. The obtained data demonstrated that CUR induces chemoresistant cell apoptosis by generating ROS and application of N-acetylcysteine (NAC) blocks ROS production, resulting in apoptosis suppression. Phosphorylation of extracellular regulated kinase (ERK), p38 MAPK, and eIF-2α were increased but c-Jun N-terminal kinase (JNK) did not increase when chemoresistant cells were treated with CUR. Downregulation of ERK and p38 MAPK phosphorylation by their inhibitors had no effect on CUR-induced apoptosis. Interestingly, the knockdown of p38 MAPK with shRNA significantly reduced CUR-induced apoptosis on the chemoresistant sublines. Phosphorylation of the eIF-2α protein was inhibited when p38 MAPK was knocked down in DOC-resistant A549 cells, but a high level of phosphorylated eIF-2α protein remained on the VCR-resistant A549 cells when p38 MAPK was knocked down. These data confirmed that CUR-augmented ROS potently induced apoptosis via upregulated p38 MAPK phosphorylation. Therefore, activated p38 MAPK is considered a pro-apoptotic signal for CUR-induced apoptosis of chemoresistant human lung cancer cells.
Collapse
|
10
|
Principe DR, Aissa AF, Kumar S, Pham TND, Underwood PW, Nair R, Ke R, Rana B, Trevino JG, Munshi HG, Benevolenskaya EV, Rana A. Calcium channel blockers potentiate gemcitabine chemotherapy in pancreatic cancer. Proc Natl Acad Sci U S A 2022; 119:e2200143119. [PMID: 35476525 PMCID: PMC9170157 DOI: 10.1073/pnas.2200143119] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2022] [Accepted: 03/19/2022] [Indexed: 12/15/2022] Open
Abstract
There is currently no effective treatment for pancreatic ductal adenocarcinoma (PDAC). While palliative chemotherapy offers a survival benefit to most patients, nearly all will eventually progress on treatment and long-term survivability remains poor. Given the lack of subsequent line treatment options, in this study, we sought to identify novel strategies to prevent, delay, or overcome resistance to gemcitabine, one of the most widely used medications in PDAC. Using a combination of single-cell RNA sequencing and high-throughput proteomic analysis, we identified a subset of gemcitabine-resistant tumor cells enriched for calcium/calmodulin signaling. Pharmacologic inhibition of calcium-dependent calmodulin activation led to the rapid loss of drug-resistant phenotypes in vitro, which additional single-cell RNA sequencing identified was due to impaired activation of the RAS/ERK signaling pathway. Consistent with these observations, calcium chelation or depletion of calcium in the culture media also impaired ERK activation in gemcitabine-resistant cells, and restored therapeutic responses to gemcitabine in vitro. We observed similar results using calcium channel blockers (CCBs) such as amlodipine, which inhibited prosurvival ERK signaling in vitro and markedly enhanced therapeutic responses to gemcitabine in both orthotopic xenografts and transgenic models of PDAC. Combined, these results offer insight into a potential means of gemcitabine resistance and suggest that select CCBs may provide a clinical benefit to PDAC patients receiving gemcitabine-based chemotherapy.
Collapse
Affiliation(s)
- Daniel R. Principe
- Medical Scientist Training Program, University of Illinois College of Medicine, Chicago, IL 60612
- Department of Surgery, University of Illinois at Chicago, Chicago, IL 60612
- Department of Biochemistry and Molecular Genetics, University of Illinois at Chicago, Chicago, IL 60612
| | - Alexandre F. Aissa
- Department of Biochemistry and Molecular Genetics, University of Illinois at Chicago, Chicago, IL 60612
| | - Sandeep Kumar
- Department of Surgery, University of Illinois at Chicago, Chicago, IL 60612
| | - Thao N. D. Pham
- Department of Medicine, Feinberg School of Medicine, Northwestern University, Evanston, IL 60611
| | - Patrick W. Underwood
- Department of Surgery, University of Florida College of Medicine, Gainesville, FL 32611
| | - Rakesh Nair
- Department of Surgery, University of Illinois at Chicago, Chicago, IL 60612
| | - Rong Ke
- Department of Surgery, University of Illinois at Chicago, Chicago, IL 60612
| | - Basabi Rana
- Department of Surgery, University of Illinois at Chicago, Chicago, IL 60612
| | - Jose G. Trevino
- Division of Surgical Oncology, Department of Surgery, Virginia Commonwealth University, Richmond, VA 23284
| | - Hidayatullah G. Munshi
- Department of Medicine, Feinberg School of Medicine, Northwestern University, Evanston, IL 60611
- Jesse Brown VA Medical Center, Chicago, IL 60612
| | | | - Ajay Rana
- Department of Surgery, University of Illinois at Chicago, Chicago, IL 60612
- Jesse Brown VA Medical Center, Chicago, IL 60612
| |
Collapse
|
11
|
Ghorbanzadeh V, Aljaf KAH, Wasman HM, Pirzeh L, Azimi S, Dariushnejad H. Carvacrol Enhance Apoptotic Effect of 5-FU on MCF-7 Cell Line via inhibiting P-glycoprotein: An In-silco and In-vitro Study. Drug Res (Stuttg) 2022; 72:203-208. [PMID: 35253124 DOI: 10.1055/a-1766-5491] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
BACKGROUND P-glycoprotein (P-gp), is an ATP-dependent efflux transporter and overexpressed in cancer cells which is responsible for drug resistance and transportation of anticancer agents out of cells. Hence, P-gp inhibition is a promising way to reverse multi-drug resistance, finding a suitable inhibitor is essential. Carvacrol, an active compound of thyme, has been shown anticancer properties in several types of cancers but the mechanisms underlying this effect remain unclear. Here, we evaluated the inhibitory effects of carvacrol on P-gp by In-silco and in-vitro studies. METHOD carvacrol was docked against P-gp via autodock vina software to identify the potential binding of this agent. Verapamil, a well-known P-gp inhibitor, was selected as the control ligands. Cell proliferation and apoptosis were assessed using MTT assay and ELISA cell death assay, respectively. RESULTS It was observed that carvacrol exhibited appropriate affinity (-7 kcal/mol) to drug binding pocket of P-gp when compared with verapamil that showed binding affinities of -8 kcal/mol. The result of MTT assay showed a dose-dependent inhibitory effect of carvacrol and 5-FU. Data of apoptosis assay showed that combining carvacrol with 5-FU increased apoptotic effect of 5-FU 6.7-Fold rather than the control group. This ability to enhance apoptosis is more than the combination of verapamil and 5-FU (4.26-Fold). CONCLUSION These results provide important evidence that carvacrol may be a promising agent able to overcome P-gp-mediated MDR.
Collapse
Affiliation(s)
- Vajihe Ghorbanzadeh
- Cardiovascular Research Center, Shahid Rahimi Hospital, Lorestan University of Medical Sciences, Khorramabad, Iran
| | | | - Hunar Mustafa Wasman
- Medical Laboratory Science Department, University of Raparin, Kurdistan Region, Iraq
| | - Lale Pirzeh
- Institute for Vascular Signaling, Center for Molecular Medicine, Johann Wolfgang Goethe University Frankfurt, Frankfort am Main, Germany
| | - Saleh Azimi
- Razi Herbal Medicines Research Center, Lorestan University of Medical Sciences, Khorramabad, Iran
| | - Hassan Dariushnejad
- Cardiovascular Research Center, Shahid Rahimi Hospital, Lorestan University of Medical Sciences, Khorramabad, Iran.,Razi Herbal Medicines Research Center, Lorestan University of Medical Sciences, Khorramabad, Iran
| |
Collapse
|
12
|
Wu L, Lian W, Zhao L. Calcium signaling in cancer progression and therapy. FEBS J 2021; 288:6187-6205. [PMID: 34288422 DOI: 10.1111/febs.16133] [Citation(s) in RCA: 45] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2021] [Revised: 06/19/2021] [Accepted: 07/20/2021] [Indexed: 02/06/2023]
Abstract
The old Greek aphorism 'Panta Rhei' ('everything flows') is true for all living things in general. As a dynamic process, calcium signaling plays fundamental roles in cellular activities under both normal and pathological conditions, with recent researches uncovering its involvement in cell proliferation, migration, survival, gene expression, and more. The major question we address here is how calcium signaling affects cancer progression and whether it could be targeted to combine with classic chemotherapeutics or emerging immunotherapies to improve their efficacy.
Collapse
Affiliation(s)
- Ling Wu
- Department of Pathology, Nanfang Hospital, Southern Medical University, Guangzhou, China.,Department of Pathology, School of Basic Medical Sciences, Southern Medical University, Guangzhou, China.,Guangdong Province Key Laboratory of Molecular Tumor Pathology, Southern Medical University, Guangzhou, China
| | - Weidong Lian
- Department of Pathology, Nanfang Hospital, Southern Medical University, Guangzhou, China.,Department of Pathology, School of Basic Medical Sciences, Southern Medical University, Guangzhou, China.,Guangdong Province Key Laboratory of Molecular Tumor Pathology, Southern Medical University, Guangzhou, China
| | - Liang Zhao
- Department of Pathology, Nanfang Hospital, Southern Medical University, Guangzhou, China.,Department of Pathology, School of Basic Medical Sciences, Southern Medical University, Guangzhou, China.,Guangdong Province Key Laboratory of Molecular Tumor Pathology, Southern Medical University, Guangzhou, China
| |
Collapse
|
13
|
Wong BS, Chiu LY, Tu DG, Sheu GT, Chan TT. Anticancer Effects of Antihypertensive L-Type Calcium Channel Blockers on Chemoresistant Lung Cancer Cells via Autophagy and Apoptosis. Cancer Manag Res 2020; 12:1913-1927. [PMID: 32214849 PMCID: PMC7078713 DOI: 10.2147/cmar.s228718] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2019] [Accepted: 02/13/2020] [Indexed: 12/16/2022] Open
Abstract
Purpose Hypertension and cancer are frequently found comorbidity occurring in same individual. This study was intended to evaluate the anticancer effects of commonly used antihypertensive medications and chemotherapy on chemoresistant lung cancer cells. Methods Calcium channel blockers (CCBs), including Verapamil, Diltiazem, and Nifedipine, either alone or combined with docetaxel (DOC) or vincristine (VCR) were used to treat A549 lung adenocarcinoma chemoresistant sublines. Cell viability was determined by MTT assay, and colony formation assay was used to demonstrate the long-term effect of CCBs on proliferation of the sublines. Apoptosis was evaluated by Annexin V assay and autophagy intensity was quantitated from acidic vesicular organelle formation. Pan-caspase inhibitor, shATG5 interference and chloroquine were applied to study the roles of Verapamil on apoptosis and autophagy, with related proteins verified by Western blot analysis. Results Results show that 10 μM of Verapamil and Diltiazem, but not Nifedipine, differentially induce autophagy in DOC-resistant or VCR-resistant A549 cells, respectively. When CCBs are combined with DOC or VCR to treat the sublines, 10 μM of Verapamil induces autophagy more significantly than Diltiazem and Nifedipine, respectively, in DOC-resistant (54.91±0.76, 18.03±0.69, 7.05±0.30) or VCR-resistant A549 (32.41±1.04, 21.51±0.63, 7.14±0.24) cells. Inhibition of apoptosis by pan-caspase inhibitor partly reduced cell death indicates association of caspase-dependent cell death but with persistence of autophagy. Inhibition of autophagy by interfering ATG5 expression reduced c-PARP level and apoptotic cells suggest a pro-death role of autophagy. Chloroquine treatment enhanced autophagosome accumulation and cell death but with reduced c-PARP level suggests that mechanism of caspase-independent cell death also contributes to Verapamil/chemotherapy-induced anticancer effects. Conclusion Verapamil combined with DOC or VCR induces chemoresistant lung cancer cells to death through autophagy burst and apoptosis more strongly than Diltiazem and Nifedipine. Administering Verapamil or Diltiazem individually with chemotherapy, but not Nifedipine, can be considered in lung cancer patients with hypertension.
Collapse
Affiliation(s)
- Bing-Sang Wong
- Division of Neurosurgery, Antai Medical Care Corporation Antai Tian-Sheng Memorial Hospital, Pingtung County, Taiwan
| | - Ling-Yen Chiu
- Department of Nuclear Medicine, Ditmanson Medical Foundation, Chia-Yi Christian Hospital, Chiayi City, Taiwan
| | - Dom-Gene Tu
- Department of Nuclear Medicine, Ditmanson Medical Foundation, Chia-Yi Christian Hospital, Chiayi City, Taiwan.,Department of Biomedical Sciences, National Chung Cheng University, Chiayi 62102, Taiwan
| | - Gwo-Tarng Sheu
- Institute of Medicine, Chung Shan Medical University, Taichung, Taiwan.,Immunology Research Center, Chung Shan Medical University, Taichung, Taiwan.,Department of Medical Oncology and Chest Medicine, Chung Shan Medical University Hospital, Taichung, Taiwan
| | - Ting-Tat Chan
- Palliative Care Unit, Department of Family Medicine, Ditmanson Medical Foundation, Chia-Yi Christian Hospital, Chiayi City, Taiwan
| |
Collapse
|
14
|
Al-malky HS, Damanhouri ZA, Al Aama JY, Al Qahtani AA, Ramadan WS, AlKreathy HM, Al Harthi SE, Osman AMM. Diltiazem potentiation of doxorubicin cytotoxicity and cellular uptake in human breast cancer cells. BREAST CANCER MANAGEMENT 2019. [DOI: 10.2217/bmt-2019-0018] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Aim: Breast cancer is the most common cancer among Arab women and also around the world. Chronic cardiotoxicity and multidrug resistance are potential limiting factors of doxorubicin (DOX), a known anthracycline antibiotic. Materials & methods: DOX cytotoxicity was evaluated by the sulforhodamine method. DOX cellular uptake, detection of P-glycoprotein activity and the photomicrograph of MCF-7 cells were also determined. Results: Diltiazem (DIL) treatment improved DOX cytotoxic activity and increased the cellular uptake of DOX significantly and aggregation of rhodamine 123, reflecting inhibition of P-glycoprotein pump. Cytopathological investigation of MCF-7 cells revealed marked cytotoxic activity of DOX in the presence of DIL. Conclusion: DIL treatment enhanced DOX cytotoxic effect and reduced multidrug resistance, which increased the drug accumulation intracellularly.
Collapse
Affiliation(s)
- Hamdan S Al-malky
- Department of Pharmacology, Faculty of Medicine, King Abdulaziz University, Saudi Arabia
| | - Zoheir A Damanhouri
- Department of Pharmacology, Faculty of Medicine, King Abdulaziz University, Saudi Arabia
| | - Jumana Y Al Aama
- Department of Genetics, Faculty of Medicine, King Abdulaziz University, Saudi Arabia
| | - Ali A Al Qahtani
- Department of Pharmacology, Faculty of Medicine, King Abdulaziz University, Saudi Arabia
| | - Wafaa S Ramadan
- Department of Pharmacology, Faculty of Medicine, King Abdulaziz University, Saudi Arabia
- Department of Anatomy, Faculty of Medicine, Ain Shams University, Egypt
| | - Huda M AlKreathy
- Department of Pharmacology, Faculty of Medicine, King Abdulaziz University, Saudi Arabia
| | - Sameer E Al Harthi
- Department of Pharmacology, Faculty of Medicine, King Abdulaziz University, Saudi Arabia
| | - Abdel-Moneim M Osman
- Department of Pharmacology, Faculty of Medicine, King Abdulaziz University, Saudi Arabia
- Pharmacology Unit, National Cancer Institute, Cairo University, Egypt
| |
Collapse
|
15
|
Yang L, Li D, Tang P, Zuo Y. Curcumin increases the sensitivity of K562/DOX cells to doxorubicin by targeting S100 calcium-binding protein A8 and P-glycoprotein. Oncol Lett 2019; 19:83-92. [PMID: 31897118 PMCID: PMC6924120 DOI: 10.3892/ol.2019.11083] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2018] [Accepted: 06/04/2019] [Indexed: 12/17/2022] Open
Abstract
The development of multidrug resistance (MDR) has seriously impeded the efficacy of drug treatment of chronic myeloid leukemia (CML). Recent studies have indicated that S100 calcium-binding protein A8 (S100A8) is associated with the occurrence and development of MDR. Traditional Chinese medicine may provide drugs with the potential to be used as multidrug resistance reversal agents with low toxicity and multi-target characteristics. The present study selected K562/DOX cells, a CML drug-resistant cell line, as a research model, and aimed to examine whether curcumin was able to reverse the resistance to doxorubicin (DOX), and elucidate the underlying molecular mechanisms. An MTT cytotoxicity assay indicated that curcumin at 0.5–2 µM reversed DOX resistance with a reversal index of 1.3–9.3. Western blot analysis revealed that curcumin treatment caused a downregulation of the expression of P-glycoprotein (P-gp) and S100A8 in a dose- and time-dependent manner. To study the internal association between S100A8 and P-gp, and the S100A8 role in drug resistance reversal, an RNA knockdown assay was conducted; however, S100A8 did not regulate the expression of P-gp or vice versa. After inhibiting the expression of S100A8 with specific small interfering RNA (si-S100A8), the sensitivity of K562/DOX cells to DOX was enhanced. In addition, si-S100A8 did not increase the intracellular accumulation of DOX, but increased the intracellular free calcium ion content, and the expression and activity of apoptosis-associated proteins, thereby inducing apoptosis. In conclusion, the present study suggested that inhibition of S100A8 expression increased DOX-induced apoptosis, and curcumin acted independently on S100A8 and P-gp to exert its drug resistance reversal effects
Collapse
Affiliation(s)
- Liu Yang
- Center for Post-doctoral Research, Dalian Medical University, Dalian, Liaoning 116044, P.R. China.,Department of Clinical Biochemistry, School of Laboratory Medicine, Dalian Medical University, Dalian, Liaoning 116044, P.R. China
| | - Duo Li
- College of Stomatology, Dalian Medical University, Dalian, Liaoning 116044, P.R. China
| | - Peiyan Tang
- College of Stomatology, Dalian Medical University, Dalian, Liaoning 116044, P.R. China
| | - Yunfei Zuo
- Center for Post-doctoral Research, Dalian Medical University, Dalian, Liaoning 116044, P.R. China.,Department of Clinical Biochemistry, School of Laboratory Medicine, Dalian Medical University, Dalian, Liaoning 116044, P.R. China
| |
Collapse
|
16
|
Lee MY, Wu MF, Cherng SH, Chiu LY, Yang TY, Sheu GT. Tissue transglutaminase 2 expression is epigenetically regulated in human lung cancer cells and prevents reactive oxygen species-induced apoptosis. Cancer Manag Res 2018; 10:2835-2848. [PMID: 30197536 PMCID: PMC6112806 DOI: 10.2147/cmar.s155582] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
Abstract
Purpose Tissue transglutaminase 2 (TG2) is a stress-regulated protein and associated with cancer cell survival. However, the effects of TG2 expression in human non-small-cell lung cancer (NSCLC) cells on reactive oxygen species (ROS) production and redox homeostasis have not been fully elucidated. Materials and methods We investigated the TG2 expression and activity in A549, H1299, H1355, and H460 lung cancer cells by Western blots and quantitative polymerase chain reaction assay. The enzyme-linked immunosorbent assay was used for transglutaminase activity. The epigenetic expression was characterized with histone deacetylase inhibitor trichostatin A and DNA methyltransferase inhibitor 5-Aza treatment. TG2 expression was inhibited by siRNA transfection and the intracellular calcium was measured by Flow-3AM assay, apoptosis was analyzed by Annexin V/propidium iodide assay, and intracellular ROS was detected by fluorescence-activated cell sorting analysis. The ROS scavenger N-acetyl-L-cysteine (NAC) was applied to reduce TG2-knockdown-induced oxidative stress. Results Only A549 cells expressing high levels of TG2 correlated with high TG2 activity. The expression of TG2 can be regulated by epigenetic regulation in A549, H1299, and H1355 cells. The data also show that TG2 reduction induces apoptosis in A549 and H1299 cells. Furthermore, increased intracellular ROS and calcium levels were both detected in TG2-reduced cells. Moreover, endoplasmic reticulum stress inhibitor (salubrinal) and antioxidant NAC were able to reduce ROS and calcium levels to recover cell viability. Interestingly, the extrinsic and intrinsic apoptosis pathways were activated with a p53 independence upon TG2 reduction. TG2 reduction not only attenuated AKT activation but also reduced superoxide dismutase 2 (SOD2) expression. Exogenous NAC partially recovered SOD2 expression, indicating that mitochondrial-mediated apoptosis accounts for a part of but not all of the TG2-reduction-related death. Conclusion TG2 plays a protection role in NSCLC cell lines. Regardless of the endogenous level of TG2 and p53 status, reduction of TG2 may result in oxidative stress that induces apop-tosis. Therefore, target TG2 expression represents a logical strategy for NSCLC management.
Collapse
Affiliation(s)
- Ming-Yang Lee
- Department of Internal Medicine, Ditmanson Medical Foundation Chia-Yi Christian Hospital, Chiayi City, Taiwan.,Department of Medical Laboratory Science and Biotechnology, Chung Hwa University of Medical Technology, Chiayi City, Taiwan.,Graduate Institute of Natural Healing Science, Nanhua University, Chiayi City, Taiwan
| | - Ming-Fang Wu
- School of Medicine, Chung Shan Medical University, Taichung, Taiwan.,Divisions of Medical Oncology and Chest Medicine, Chung Shan Medical University Hospital, Taichung, Taiwan,
| | - Shur-Hueih Cherng
- Department of Biotechnology, Hung Kuang University, Taichung, Taiwan
| | - Ling-Yen Chiu
- Institute of Medicine, Chung Shan Medical University, Taichung, Taiwan,
| | - Tsung-Ying Yang
- Division of Chest Medicine, Department of Internal Medicine, Taichung Veterans General Hospital, Taichung, Taiwan.,Faculty of Medicine, School of Medicine, National Yang-Ming University, Taipei, Taiwan
| | - Gwo-Tarng Sheu
- Divisions of Medical Oncology and Chest Medicine, Chung Shan Medical University Hospital, Taichung, Taiwan, .,Institute of Medicine, Chung Shan Medical University, Taichung, Taiwan, .,Immunology Research Center, Chung Shan Medical University, Taichung, Taiwan,
| |
Collapse
|
17
|
Cheng Q, Chen A, Du Q, Liao Q, Shuai Z, Chen C, Yang X, Hu Y, Zhao J, Liu S, Wen GR, An J, Jing H, Tuo B, Xie R, Xu J. Novel insights into ion channels in cancer stem cells (Review). Int J Oncol 2018; 53:1435-1441. [PMID: 30066845 DOI: 10.3892/ijo.2018.4500] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2018] [Accepted: 06/28/2018] [Indexed: 11/06/2022] Open
Abstract
Cancer stem cells (CSCs) are immortal cells in tumor tissues that have been proposed as the driving force of tumorigenesis and tumor invasion. Previously, ion channels were revealed to contribute to cancer cell proliferation, migration and apoptosis. Recent studies have demonstrated that ion channels are present in various CSCs; however, the functions of ion channels and their mechanisms in CSCs remain unknown. The present review aimed to focus on the roles of ion channels in the regulation of CSC behavior and the CSC-like properties of cancer cells. Evaluation of the relationship between ion channels and CSCs is critically important for understanding malignancy.
Collapse
Affiliation(s)
- Qijiao Cheng
- Department of Gastroenterology, Affiliated Hospital of Zunyi Medical College, Zunyi, Guizhou 563003, P.R. China
| | - Anhai Chen
- Department of Gastroenterology, Affiliated Hospital of Zunyi Medical College, Zunyi, Guizhou 563003, P.R. China
| | - Qian Du
- Department of Gastroenterology, Affiliated Hospital of Zunyi Medical College, Zunyi, Guizhou 563003, P.R. China
| | - Qiushi Liao
- Department of Gastroenterology, Affiliated Hospital of Zunyi Medical College, Zunyi, Guizhou 563003, P.R. China
| | - Zhangli Shuai
- Department of Gastroenterology, Affiliated Hospital of Zunyi Medical College, Zunyi, Guizhou 563003, P.R. China
| | - Changmei Chen
- Department of Gastroenterology, Affiliated Hospital of Zunyi Medical College, Zunyi, Guizhou 563003, P.R. China
| | - Xinrong Yang
- Department of Gastroenterology, Affiliated Hospital of Zunyi Medical College, Zunyi, Guizhou 563003, P.R. China
| | - Yaxia Hu
- Department of Gastroenterology, Affiliated Hospital of Zunyi Medical College, Zunyi, Guizhou 563003, P.R. China
| | - Ju Zhao
- Department of Gastroenterology, Affiliated Hospital of Zunyi Medical College, Zunyi, Guizhou 563003, P.R. China
| | - Songpo Liu
- Department of Gastroenterology, Affiliated Hospital of Zunyi Medical College, Zunyi, Guizhou 563003, P.R. China
| | - Guo Rong Wen
- Department of Gastroenterology, Affiliated Hospital of Zunyi Medical College, Zunyi, Guizhou 563003, P.R. China
| | - Jiaxin An
- Department of Gastroenterology, Affiliated Hospital of Zunyi Medical College, Zunyi, Guizhou 563003, P.R. China
| | - Hai Jing
- Department of Gastroenterology, Affiliated Hospital of Zunyi Medical College, Zunyi, Guizhou 563003, P.R. China
| | - Biguang Tuo
- Department of Gastroenterology, Affiliated Hospital of Zunyi Medical College, Zunyi, Guizhou 563003, P.R. China
| | - Rui Xie
- Department of Gastroenterology, Affiliated Hospital of Zunyi Medical College, Zunyi, Guizhou 563003, P.R. China
| | - Jingyu Xu
- Department of Gastroenterology, Affiliated Hospital of Zunyi Medical College, Zunyi, Guizhou 563003, P.R. China
| |
Collapse
|
18
|
Yang G, Fan G, Zhang T, Ma K, Huang J, Liu M, Teng X, Xu K, Fan P, Cheng D. Upregulation of Ubiquitin Carboxyl-Terminal Hydrolase L1 (UCHL1) Mediates the Reversal Effect of Verapamil on Chemo-Resistance to Adriamycin of Hepatocellular Carcinoma. Med Sci Monit 2018; 24:2072-2082. [PMID: 29627846 PMCID: PMC5909418 DOI: 10.12659/msm.908925] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023] Open
Abstract
BACKGROUND The aim of this study was to investigate the role of ubiquitin carboxyl-terminal hydrolase L1 (UCHL1) in the reversal effect of verapamil (VER) on chemo-resistance to Adriamycin (ADM) in treatment of hepatocellular carcinoma (HCC). MATERIAL AND METHODS HCC cell lines SMMC-7721 and BEL-7402 were used as model cell lines. High-throughput transcriptome sequencing based on Illumina technology was used to screen whether UCHL1 mediated the reversal effect of VER on chemo-resistance. Quantitative real-time PCR (qRT-PCR) was performed to determine the expression level of UCHL1 mRNA in HCC cells, and western blot analysis was performed to examine the protein expression of UCHL1 protein in HCC cells. Immunohistochemistry assay was performed to determine the protein expression of UCHL1 in tissue samples from patients presenting with either positive or negative responses to the reversal therapeutic regimen of VER. Moreover, cell models with UCHL1 knockdown and overexpression were established to examine the reversal effect of VER on chemo-resistance to ADM in HCC cells. Cell apoptosis was determined by flow cytometry following Annexin V-PI staining. RESULTS The expression levels of UCHL1 genes correlated with the level of apoptosis induced by ADM+VER. Overexpression of UCHL1 genes promoted apoptosis in cells treated with VER+ADM. UCHL1 knockdown using siRNA weakened the effect of ADM+VER, indicating that ADM+VER promotes HCC cell apoptosis and that UCHL1 genes participate in VER-mediated promotion in tumor cell apoptosis. CONCLUSIONS Upregulation of UCHL1 enhanced the reversal effect of VER on chemo-resistance to ADM and promoted cell apoptosis. The underlying mechanism of the function of UCHL1 and the signaling pathway involved in its effect are to be investigated in our future research.
Collapse
Affiliation(s)
- Guangshan Yang
- School of Clinical Medicine, Shan Dong University, Jinan, Shandong, China (mainland).,The Cancer Hospital of Anhui Province, Hefei, Anhui, China (mainland).,Anhui Provincial Hospital, Hefei, Anhui, China (mainland)
| | - Gaofei Fan
- The Cancer Hospital of Anhui Province, Hefei, Anhui, China (mainland)
| | - Tengyue Zhang
- The Cancer Hospital of Anhui Province, Hefei, Anhui, China (mainland)
| | - Kelong Ma
- Clinical College of Integrated Traditional Chinese and Western Medicine, Anhui University of Chinese Medicine, Hefei, Anhui, China (mainland)
| | - Jin Huang
- The Cancer Hospital of Anhui Province, Hefei, Anhui, China (mainland)
| | - Miao Liu
- The Cancer Hospital of Anhui Province, Hefei, Anhui, China (mainland)
| | - Xiaolu Teng
- The Cancer Hospital of Anhui Province, Hefei, Anhui, China (mainland)
| | - Kun Xu
- The Cancer Hospital of Anhui Province, Hefei, Anhui, China (mainland)
| | - Pingsheng Fan
- School of Clinical Medicine, Shan Dong University, Jinan, Shandong, China (mainland).,The Cancer Hospital of Anhui Province, Hefei, Anhui, China (mainland)
| | - Dongmiao Cheng
- Department of Radiotherapy, The First People's Hospital of Huainan City, Huainan, Anhui, China (mainland)
| |
Collapse
|
19
|
Zhang ZL, Jiang QC, Wang SR. Schisandrin A reverses doxorubicin-resistant human breast cancer cell line by the inhibition of P65 and Stat3 phosphorylation. Breast Cancer 2017; 25:233-242. [PMID: 29181822 DOI: 10.1007/s12282-017-0821-9] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2017] [Accepted: 11/15/2017] [Indexed: 01/07/2023]
Abstract
BACKGROUND Multidrug resistance (MDR) in breast cancer therapy occurs frequently. Thus, anti-MDR agents from natural products or synthetic compounds were tested extensively. We have also explored the reverse effect and mechanism of Schisandrin A (Sch A), a natural product, on MCF-7 breast cancer doxorubicin (DOX)-resistant subline MCF-7/DOX. METHODS MTT assay was performed to measure the viability of MCF-7 cells to assess the reverse effect of Sch A. Western blot analysis was used to study the protein levels. Laser scanning confocal microscopy was performed to detect the intercellular DOX and Rhodamine 123 accumulation. The qRT-PCR was used to analysis the target gene expression. Dual-luciferase reporter assay was performed to test the transcriptional activity of P-glycoprotein (P-gp). RESULTS Sch A, at the concentration of 20 µM, showed selective reverse effect (better than the positive control, verapamil at 5 µM) on MCF-7/DOX cell line but not on BEL-7402/DOX, Hep G2/DOX, and K-562/DOX cells. In addition, Sch A enhanced DOX-induced cleavage of Caspase-9 and PARP levels by increasing intracellular DOX accumulation and inhibiting P-gp function. Furthermore, Sch A selectively suppressed P-gp at gene and protein levels in MCF-7/DOX cells which express high level of MDR1 but not MRP1, MRP3, or BCRP. Besides, Sch A showed inhibitory effect on P-gp transcriptional activity. Sch A significantly reduced p-IκB-α (Ser32) and p-Stat3 (Tyr705) levels which mediate P-gp expression. In addition, Stat3 knockdown enhanced the reverse effect of siP65. The combined effect of siStat3 and siP65 was better than Sch A single treatment in MCF-7/DOX cells. CONCLUSION Sch A specifically reverses P-gp-mediated DOX resistance in MCF-7/DOX cells by blocking P-gp, NF-κB, and Stat3 signaling. Inhibition of P65 and Stat3 shows potent anti-MDR effect on MCF-7/DOX cells.
Collapse
Affiliation(s)
- Zong-Lin Zhang
- Department of Pharmacy, Linyi People's Hospital, Linyi, Shandong, China
| | - Qing-Cheng Jiang
- Department of Pharmacy, First People's Hospital of Tancheng County, Tancheng, Shandong, China
| | - Su-Rong Wang
- Department of Gynecology and Obstetrics, Linyi People's Hospital, 27# Jie fang lu dong duan, Linyi, Shandong, China.
| |
Collapse
|
20
|
Zhang T, Ma K, Huang J, Wang S, Liu Y, Fan G, Liu M, Yang G, Wang C, Fan P. CDKN2B is critical for verapamil-mediated reversal of doxorubicin resistance in hepatocellular carcinoma. Oncotarget 2017; 8:110052-110063. [PMID: 29299129 PMCID: PMC5746364 DOI: 10.18632/oncotarget.22123] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2017] [Accepted: 10/05/2017] [Indexed: 01/15/2023] Open
Abstract
In this study, we explored the function and mechanism of CDKN2B genes in verapamil (VER)-induced reversal of resistance to doxorubicin (ADM) chemotherapy in hepatocellular carcinoma (HCC). We examined 4 HCC cell lines and found that the expression levels of CDKN2B genes correlated with the level of apoptosis induced by ADM+VER. Overexpression of CDKN2B genes promoted apoptosis in cells treated with VER+ADM. CDKN2B knockdown using siRNA weakened the effect of ADM+VER, indicating that ADM+VER promotes HCC cell apoptosis and that CDKN2B genes participate in VER-mediated promotion in tumor cell apoptosis. Future research will further explore the functional mechanism, and the associated signal transduction pathways via which CDKN2B affects HCC drug resistance.
Collapse
Affiliation(s)
- Tengyue Zhang
- School of Clinical Medicine, Shan Dong University, Jinan 250100, China.,The Cancer Hospital of Anhui Province, Provincial Hospital of Anhui Medical University, Hefei 230032, China
| | - Kelong Ma
- Clinical College of Integrated Traditional Chinese and Western Medicine, Anhui University of Chinese Medicine, Hefei 230032, China
| | - Jin Huang
- The Cancer Hospital of Anhui Province, Provincial Hospital of Anhui Medical University, Hefei 230032, China
| | - Shitang Wang
- Department of General Surgery, Provincial Hospital of Anhui Medical University, Hefei 230032, China
| | - Yabei Liu
- The Cancer Hospital of Anhui Province, Provincial Hospital of Anhui Medical University, Hefei 230032, China
| | - Gaofei Fan
- The Cancer Hospital of Anhui Province, Provincial Hospital of Anhui Medical University, Hefei 230032, China
| | - Miao Liu
- The Cancer Hospital of Anhui Province, Provincial Hospital of Anhui Medical University, Hefei 230032, China
| | - Guangshan Yang
- The Cancer Hospital of Anhui Province, Provincial Hospital of Anhui Medical University, Hefei 230032, China
| | - Cheng Wang
- Department of General Surgery, Provincial Hospital of Anhui Medical University, Hefei 230032, China
| | - Pingsheng Fan
- School of Clinical Medicine, Shan Dong University, Jinan 250100, China.,The Cancer Hospital of Anhui Province, Provincial Hospital of Anhui Medical University, Hefei 230032, China
| |
Collapse
|
21
|
Zhou XW, Xia YZ, Zhang YL, Luo JG, Han C, Zhang H, Zhang C, Yang L, Kong LY. Tomentodione M sensitizes multidrug resistant cancer cells by decreasing P-glycoprotein via inhibition of p38 MAPK signaling. Oncotarget 2017; 8:101965-101983. [PMID: 29254218 PMCID: PMC5731928 DOI: 10.18632/oncotarget.21949] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2017] [Accepted: 10/03/2017] [Indexed: 12/13/2022] Open
Abstract
In this study, we investigated the mechanism by which tomentodione M (TTM), a novel natural syncarpic acid-conjugated monoterpene, reversed multi-drug resistance (MDR) in cancer cells. TTM increased the cytotoxicity of chemotherapeutic drugs such as docetaxel and doxorubicin in MCF-7/MDR and K562/MDR cells in a dose- and time-dependent manner. TTM reduced colony formation and enhanced apoptosis in docetaxel-treated MCF-7/MDR and K562/MDR cells, and it enhanced intracellular accumulation of doxorubicin and rhodamine 123 in MDR cancer cells by reducing drug efflux mediated by P-gp. TTM decreased expression of both P-gp mRNA and protein by inhibiting p38 MAPK signaling. Similarly, the p38 MAPK inhibitor SB203580 reversed MDR in cancer cells by decreasing P-gp expression. Conversely, p38 MAPK-overexpressing MCF-7 and K562 cells showed higher P-gp expression than controls. These observations indicate that TTM reverses MDR in cancer cells by decreasing P-gp expression via p38 MAPK inhibition.
Collapse
Affiliation(s)
- Xu-Wei Zhou
- Jiangsu Key Laboratory of Bioactive Natural Product Research and State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing 210009, China
| | - Yuan-Zheng Xia
- Jiangsu Key Laboratory of Bioactive Natural Product Research and State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing 210009, China
| | - Ya-Long Zhang
- Jiangsu Key Laboratory of Bioactive Natural Product Research and State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing 210009, China
| | - Jian-Guang Luo
- Jiangsu Key Laboratory of Bioactive Natural Product Research and State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing 210009, China
| | - Chao Han
- Jiangsu Key Laboratory of Bioactive Natural Product Research and State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing 210009, China
| | - Hao Zhang
- Jiangsu Key Laboratory of Bioactive Natural Product Research and State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing 210009, China
| | - Chao Zhang
- Jiangsu Key Laboratory of Bioactive Natural Product Research and State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing 210009, China
| | - Lei Yang
- Jiangsu Key Laboratory of Bioactive Natural Product Research and State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing 210009, China
| | - Ling-Yi Kong
- Jiangsu Key Laboratory of Bioactive Natural Product Research and State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing 210009, China
| |
Collapse
|
22
|
Kuo WT, Tu DG, Chiu LY, Sheu GT, Wu MF. High pemetrexed sensitivity of docetaxel-resistant A549 cells is mediated by TP53 status and downregulated thymidylate synthase. Oncol Rep 2017; 38:2787-2795. [PMID: 28901493 PMCID: PMC5780031 DOI: 10.3892/or.2017.5951] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2017] [Accepted: 08/02/2017] [Indexed: 01/08/2023] Open
Abstract
The chemoresistance of non-small cell lung cancer (NSCLC) that occurs in docetaxel (DOC) chemotherapy substantially decreases the survival of patients. To overcome DOC-induced chemoresistance, we established DOC-selected A549 lung cancer sublines (A549/D16 and A549/D32) and revealed that both sublines were cross-resistant to vincristine (VCR) and doxorubicin (DXR). Notably, both sublines were more sensitive to pemetrexed (PEM) than parental cells according to MTT and clonogenic assays. The expression levels of thymidylate synthase (TS) and γ-glutamyl hydrolase (GGH) were downregulated in DOC-resistant sublines. When exogenous TS was overexpressed in A549/D16 cells, PEM sensitivity was significantly decreased, however it was not decreased by overexpression of exogenous GGH. PEM treatment induced more apoptotic sub-G1 cells in both DOC-resistant sublines and in the in vivo PEM sensitivities of A549/D16 cells. These findings were further confirmed by a xenografted tumor model. To unmask the mediator of TS downregulation, we investigated human lung cancer cell lines that have various TP53 statuses using DOC treatment. The level of TS protein was significantly decreased in wild-type TP53-containing cells with DOC treatment; TS expression levels were not affected in mutant-TP53 and TP53-null cells under the same conditions. Furthermore, when the expression of TP53 was inhibited in A549 cells, the expression level of TS was increased. Our data indicated that DOC activated wild-type TP53 and suppressed TS expression under continuous DOC exposure. Therefore, the expression of TS remained at low levels in DOC-resistant A549 cancer cells. Our data revealed that for lung cancer with DOC resistance and wild-type TP53 status, the administration of PEM as a second-line agent to overcome DOC-resistance may benefit patients.
Collapse
Affiliation(s)
- Wei-Ting Kuo
- Institute of Clinical Medicine, National Yang-Ming University, Taipei 112, Taiwan, R.O.C
| | - Dom-Gene Tu
- Department of Nuclear Medicine, Ditmanson Medical Foundation, Chia‑Yi Christian Hospital, Chiayi City 60002, Taiwan, R.O.C
| | - Ling-Yen Chiu
- Institute of Medicine, Chung Shan Medical University Hospital, Taichung City 402, Taiwan, R.O.C
| | - Gwo-Tarng Sheu
- Institute of Medicine, Chung Shan Medical University Hospital, Taichung City 402, Taiwan, R.O.C
| | - Ming-Fang Wu
- School of Medicine, Chung Shan Medical University Hospital, Taichung City 402, Taiwan, R.O.C
| |
Collapse
|
23
|
Xiang M, Li R, Zhang Z, Song X. [Advances in the Research of the Regulation of Chinese Traditional Medicine Monomer and Its Derivatives on Autophagy in Non-small Cell Lung Cancer]. ZHONGGUO FEI AI ZA ZHI = CHINESE JOURNAL OF LUNG CANCER 2017; 20:205-212. [PMID: 28302224 PMCID: PMC5973305 DOI: 10.3779/j.issn.1009-3419.2017.03.10] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
The high morbidity and mortality of non-small cell lung cancer (NSCLC) did influence the quality of life of tumor patients world-wide. There is an urgent need to develop new therapies that have high anti-tumor activity and low toxicity side effects. It is widely accepted that autophagy can play diverse roles in carcinogenesis, such as induces pro-death of lung cancer cells or helps the escape from cell death, making it become a proper anticancer target. It's believed that various monomers of Chinese traditional medicine closely correlates to anti-NSCLC activities, and that even could affect the acquired multiple drug resistance (MDR). Furthermore, autophagy might be the underling mechanisms which could play a role as the candidate targets of natural active compounds. Recent studies of terpenoids, alkaloid, dietary polyphenols, saponins and other active ingredients that extracted from a large variety of herbs suggest that different monomer compounds could either regulate the activity of pro-death autophagy or influence the level of protective autophagy of NSCLC cells, thus changing their drug sensitivity and cell viability. This paper aims to give a systemic description of the latest advances about natural compounds and their derivatives that involved in tumorigenesis of NSCLC via inducing the autophagy.
Collapse
Affiliation(s)
- Meiyi Xiang
- Department of Cancer Biotherapy Center, the Third Affiliated Hospital of Kunming Medical University, Kunming 650500, China
| | - Ruilei Li
- Department of Cancer Biotherapy Center, the Third Affiliated Hospital of Kunming Medical University, Kunming 650500, China
| | - Zhiwei Zhang
- Department of Cancer Biotherapy Center, the Third Affiliated Hospital of Kunming Medical University, Kunming 650500, China
| | - Xin Song
- Department of Cancer Biotherapy Center, the Third Affiliated Hospital of Kunming Medical University, Kunming 650500, China
| |
Collapse
|
24
|
Lu Y, Li F, Xu T, Sun J. Tetrandrine prevents multidrug resistance in the osteosarcoma cell line, U-2OS, by preventing Pgp overexpression through the inhibition of NF-κB signaling. Int J Mol Med 2017; 39:993-1000. [DOI: 10.3892/ijmm.2017.2895] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2015] [Accepted: 01/16/2017] [Indexed: 11/06/2022] Open
|
25
|
Chiu LY, Hsin IL, Yang TY, Sung WW, Chi JY, Chang JT, Ko JL, Sheu GT. The ERK-ZEB1 pathway mediates epithelial-mesenchymal transition in pemetrexed resistant lung cancer cells with suppression by vinca alkaloids. Oncogene 2017; 36:242-253. [PMID: 27270426 PMCID: PMC5241427 DOI: 10.1038/onc.2016.195] [Citation(s) in RCA: 82] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2015] [Revised: 04/21/2016] [Accepted: 04/26/2016] [Indexed: 12/19/2022]
Abstract
High thymidylate synthase (TS) level in cancer tissue is considered to result in resistance to pemetrexed therapy for advanced stages of nonsquamous non-small cell lung cancers. To further investigate the mechanism of pemetrexed resistance and potential prognostic outcomes in lung cancer, we established pemetrexed-resistant lung adenocarcinoma cell sublines from CL1 harboring a mutated TP53 gene (R248W) and A549 harboring wild-type TP53. We found the TS expression is upregulated in both pemetrexed-resistant sublines and the reduced TS level achieved through shRNA inhibition resulted in higher pemetrexed sensitivity. We also demonstrated that the acquisitions of pemetrexed resistance enhances epithelial-mesenchymal transition (EMT) in vivo with a mice animal model and in vitro with CL1 and A549 sublines, which was associated with upregulation of ZEB1 which, in turn, downregulates E-cadherin and upregulates fibronectin. When ERK1/2 phosphorylation was reduced by an inhibitor (U0126) or siRNA inhibition, both pemetrexed-resistant sublines reduced their migration and invasion abilities. Therefore, the ERK-mediated pathways induce apoptosis with pemetrexed treatment, and may in turn mediate EMT when cancer cells are resistant to pemetrexed. We further demonstrated that the growth of pemetrexed-resistant tumors could be inhibited by vinblastine in vivo and vincristine in vitro. Our data indicate that pemetrexed resistance could be relieved by non-cross-resistant chemotherapeutic drugs such as vinca alkaloids and might be independent to TP53 status. Furthermore, the phosphorylation of ERK was reduced by vincristine. This finding provides a new insight for overcoming pemetrexed resistance and metastasis by application of vinca alkaloids.
Collapse
Affiliation(s)
- L-Y Chiu
- Institute of Medicine, Chung Shan Medical University, Taichung, Taiwan
| | - I-L Hsin
- Inflammation Research and Drug Development Center, Changhua Christian Hospital, Changhua, Taiwan
| | - T-Y Yang
- Division of Chest Medicine, Department of Internal Medicine, Taichung Veterans General Hospital, Taichung, Taiwan
| | - W-W Sung
- School of Medicine, Chung Shan Medical University, Taichung, Taiwan
- Department of Medical Education, Chung Shan Medical University Hospital, Taichung, Taiwan
- Department of Medical Technology, Jen-Teh Junior College of Medicine, Nursing and Management, Miaoli, Taiwan
| | - J-Y Chi
- Institute of Medicine, Chung Shan Medical University, Taichung, Taiwan
| | - J T Chang
- Institute of Medicine, Chung Shan Medical University, Taichung, Taiwan
| | - J-L Ko
- Institute of Medicine, Chung Shan Medical University, Taichung, Taiwan
- Department of Medical Oncology and Chest Medicine, Chung Shan Medical University Hospital, Taichung, Taiwan
| | - G-T Sheu
- Institute of Medicine, Chung Shan Medical University, Taichung, Taiwan
- Department of Medical Oncology and Chest Medicine, Chung Shan Medical University Hospital, Taichung, Taiwan
| |
Collapse
|
26
|
Guseman AJ, Miller K, Kunkle G, Dively GP, Pettis JS, Evans JD, vanEngelsdorp D, Hawthorne DJ. Multi-Drug Resistance Transporters and a Mechanism-Based Strategy for Assessing Risks of Pesticide Combinations to Honey Bees. PLoS One 2016; 11:e0148242. [PMID: 26840460 PMCID: PMC4740413 DOI: 10.1371/journal.pone.0148242] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2015] [Accepted: 01/16/2016] [Indexed: 11/25/2022] Open
Abstract
Annual losses of honey bee colonies remain high and pesticide exposure is one possible cause. Dangerous combinations of pesticides, plant-produced compounds and antibiotics added to hives may cause or contribute to losses, but it is very difficult to test the many combinations of those compounds that bees encounter. We propose a mechanism-based strategy for simplifying the assessment of combinations of compounds, focusing here on compounds that interact with xenobiotic handling ABC transporters. We evaluate the use of ivermectin as a model substrate for these transporters. Compounds that increase sensitivity of bees to ivermectin may be inhibiting key transporters. We show that several compounds commonly encountered by honey bees (fumagillin, Pristine, quercetin) significantly increased honey bee mortality due to ivermectin and significantly reduced the LC50 of ivermectin suggesting that they may interfere with transporter function. These inhibitors also significantly increased honey bees sensitivity to the neonicotinoid insecticide acetamiprid. This mechanism-based strategy may dramatically reduce the number of tests needed to assess the possibility of adverse combinations among pesticides. We also demonstrate an in vivo transporter assay that provides physical evidence of transporter inhibition by tracking the dynamics of a fluorescent substrate of these transporters (Rhodamine B) in bee tissues. Significantly more Rhodamine B remains in the head and hemolymph of bees pretreated with higher concentrations of the transporter inhibitor verapamil. Mechanism-based strategies for simplifying the assessment of adverse chemical interactions such as described here could improve our ability to identify those combinations that pose significantly greater risk to bees and perhaps improve the risk assessment protocols for honey bees and similar sensitive species.
Collapse
Affiliation(s)
- Alex J. Guseman
- Department of Entomology, University of Maryland, College Park, Maryland, United States of America
- Department of Chemistry, University of North Carolina, Chapel Hill, North Carolina, United States of America
| | - Kaliah Miller
- Department of Entomology, University of Maryland, College Park, Maryland, United States of America
| | - Grace Kunkle
- Department of Entomology, University of Maryland, College Park, Maryland, United States of America
| | - Galen P. Dively
- Department of Entomology, University of Maryland, College Park, Maryland, United States of America
| | - Jeffrey S. Pettis
- Bee Research Laboratory, United States Department of Agriculture–Agricultural Research Service, Beltsville, Maryland, United States of America
| | - Jay D. Evans
- Bee Research Laboratory, United States Department of Agriculture–Agricultural Research Service, Beltsville, Maryland, United States of America
| | - Dennis vanEngelsdorp
- Department of Entomology, University of Maryland, College Park, Maryland, United States of America
| | - David J. Hawthorne
- Department of Entomology, University of Maryland, College Park, Maryland, United States of America
- * E-mail:
| |
Collapse
|
27
|
Kocdor H, Ates H, Aydin S, Cehreli R, Soyarat F, Kemanli P, Harmanci D, Cengiz H, Kocdor MA. Zinc supplementation induces apoptosis and enhances antitumor efficacy of docetaxel in non-small-cell lung cancer. DRUG DESIGN DEVELOPMENT AND THERAPY 2015; 9:3899-909. [PMID: 26251569 PMCID: PMC4524380 DOI: 10.2147/dddt.s87662] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
BACKGROUND Exposure to exogenous zinc results in increased apoptosis, growth inhibition, and altered oxidative stress in cancer cells. Previous studies also suggested that zinc sensitizes some cancer cells to cytotoxic agents depending on the p53 status. Therefore, zinc supplementation may show anticancer efficacy solely and may increase docetaxel-induced cytotoxicity in non-small-cell lung cancer cells. METHODS Here, we report the effects of several concentrations of zinc combined with docetaxel on p53-wild-type (A549) and p53-null (H1299) cells. We evaluated cellular viability, apoptosis, and cell cycle progression as well as oxidative stress parameters, including superoxide dismutase, glutathione peroxidase, and malondialdehyde levels. RESULTS Zinc reduced the viability of A549 cells and increased the apoptotic response in both cell lines in a dose-dependent manner. Zinc also amplified the docetaxel effects and reduced its inhibitory concentration 50 (IC50) values. The superoxide dismutase levels increased in all treatment groups; however, glutathione peroxidase was slightly increased in the combination treatments. Zinc also caused malondialdehyde elevations at 50 μM and 100 μM. CONCLUSION Zinc has anticancer efficacy against non-small-cell lung cancer cells in the presence of functionally active p53 and enhances docetaxel efficacy in both p53-wild-type and p53-deficient cancer cells.
Collapse
Affiliation(s)
- Hilal Kocdor
- Institute of Oncology, Dokuz Eylul University, Izmir Turkey ; Department of Molecular Medicine, Institute of Health Sciences, Dokuz Eylul University, Izmir Turkey
| | - Halil Ates
- Institute of Oncology, Dokuz Eylul University, Izmir Turkey
| | - Suleyman Aydin
- Department of Biochemistry, Firat University School of Medicine, Elazig, Turkey
| | - Ruksan Cehreli
- Institute of Oncology, Dokuz Eylul University, Izmir Turkey
| | - Firat Soyarat
- Department of Molecular Medicine, Institute of Health Sciences, Dokuz Eylul University, Izmir Turkey
| | - Pinar Kemanli
- Department of Molecular Medicine, Institute of Health Sciences, Dokuz Eylul University, Izmir Turkey
| | - Duygu Harmanci
- Department of Molecular Medicine, Institute of Health Sciences, Dokuz Eylul University, Izmir Turkey
| | - Hakan Cengiz
- Department of Molecular Medicine, Institute of Health Sciences, Dokuz Eylul University, Izmir Turkey
| | - Mehmet Ali Kocdor
- Department of Surgery, School of Medicine, Dokuz Eylul University, Izmir, Turkey
| |
Collapse
|
28
|
Chiu LY, Hu ME, Yang TY, Hsin IL, Ko JL, Tsai KJ, Sheu GT. Immunomodulatory Protein from Ganoderma microsporum Induces Pro-Death Autophagy through Akt-mTOR-p70S6K Pathway Inhibition in Multidrug Resistant Lung Cancer Cells. PLoS One 2015; 10:e0125774. [PMID: 25946033 PMCID: PMC4422711 DOI: 10.1371/journal.pone.0125774] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2014] [Accepted: 03/26/2015] [Indexed: 12/19/2022] Open
Abstract
Chemoresistance in cancer therapy is an unfavorable prognostic factor in non-small cell lung cancer (NSCLC). Elevation of intracellular calcium level in multidrug resistant (MDR) sublines leads to sensitization of MDR sublines to cell death. We demonstrated that a fungal protein from Ganoderma microsporum, GMI, elevates the intracellular calcium level and reduces the growth of MDR subline via autophagy and apoptosis, regardless of p-glycoprotein (P-gp) overexpression, in mice xenograft tumors. In addition, we examined the roles of autophagy in the death of MDR A549 lung cancer sublines by GMI, thapsigargin (TG) and tunicamycin (TM) in vitro. Cytotoxicity of TG was inhibited by overexpressed P-gp. However, TM-induced death of MDR sublines was independent of P-gp level. Combinations of TG and TM with either docetaxel or vincristine showed no additional cytotoxic effects on MDR sublines. TG- and TM-mediated apoptosis of MDR sublines was demonstrated on Annexin-V assay and Western blot and repressed by pan-caspase inhibitor (Z-VAD-FMK). Treatment of MDR sublines with TG and TM also augmented autophagy with accumulation of LC3-II proteins, breakdown of p62 and formation of acidic vesicular organelles (AVOs). Inhibition of ATG5 by shRNA silencing significantly reduced autophagy and cell death but not apoptosis following TG or TM treatment. GMI treatment inhibited the phosphorylation of Akt/S473 and p70S6K/T389. Interestingly, the phosphorylation of ERK was not associated with GMI-induced autophagy. We conclude that autophagy plays a pro-death role in acquired MDR and upregulation of autophagy by GMI via Akt/mTOR inhibition provides a potential strategy for overcoming MDR in the treatment of lung cancers.
Collapse
MESH Headings
- ATP Binding Cassette Transporter, Subfamily B, Member 1/metabolism
- Amino Acid Chloromethyl Ketones/pharmacology
- Animals
- Antineoplastic Agents/therapeutic use
- Apoptosis/drug effects
- Autophagy/drug effects
- Autophagy-Related Protein 5
- Carcinoma, Non-Small-Cell Lung/drug therapy
- Cell Line, Tumor
- Docetaxel
- Drug Resistance, Multiple
- Drug Resistance, Neoplasm
- Fungal Proteins/therapeutic use
- Ganoderma
- Humans
- Lung Neoplasms/drug therapy
- Male
- Medicine, Chinese Traditional
- Mice
- Mice, Inbred NOD
- Microtubule-Associated Proteins/genetics
- Proto-Oncogene Proteins c-akt/antagonists & inhibitors
- RNA Interference
- RNA, Small Interfering
- Ribosomal Protein S6 Kinases, 70-kDa/antagonists & inhibitors
- TOR Serine-Threonine Kinases/antagonists & inhibitors
- Taxoids/therapeutic use
- Thapsigargin/therapeutic use
- Tunicamycin/therapeutic use
- Vincristine/therapeutic use
- Xenograft Model Antitumor Assays
Collapse
Affiliation(s)
- Ling-Yen Chiu
- Institute of Medicine, Chung Shan Medical University, Taichung, Taiwan
| | - Ming-E Hu
- Department of Anatomy, School of Medicine, Chung Shan Medical University, Taichung, Taiwan
| | - Tsung-Ying Yang
- Division of Chest Medicine, Department of Internal Medicine, Taichung Veterans General Hospital, Taichung, Taiwan
| | - I-Lun Hsin
- Institute of Medicine, Chung Shan Medical University, Taichung, Taiwan
| | - Jiunn-Liang Ko
- Institute of Medicine, Chung Shan Medical University, Taichung, Taiwan
- Department of Medical Oncology and Chest Medicine, Chung Shan Medical University Hospital, Taichung, Taiwan
| | - Kan-Jen Tsai
- School of Medical Laboratory and Biotechnology, Chung Shan Medical University, Taichung, Taiwan
| | - Gwo-Tarng Sheu
- Institute of Medicine, Chung Shan Medical University, Taichung, Taiwan
- Department of Medical Oncology and Chest Medicine, Chung Shan Medical University Hospital, Taichung, Taiwan
- * E-mail:
| |
Collapse
|
29
|
Thyroid hormone and P-glycoprotein in tumor cells. BIOMED RESEARCH INTERNATIONAL 2015; 2015:168427. [PMID: 25866761 PMCID: PMC4383522 DOI: 10.1155/2015/168427] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/05/2014] [Accepted: 09/04/2014] [Indexed: 12/18/2022]
Abstract
P-glycoprotein (P-gp; multidrug resistance pump 1, MDR1; ABCB1) is a plasma membrane efflux pump that when activated in cancer cells exports chemotherapeutic agents. Transcription of the P-gp gene (MDR1) and activity of the P-gp protein are known to be affected by thyroid hormone. A cell surface receptor for thyroid hormone on integrin αvβ3 also binds tetraiodothyroacetic acid (tetrac), a derivative of L-thyroxine (T4) that blocks nongenomic actions of T4 and of 3,5,3′-triiodo-L-thyronine (T3) at αvβ3. Covalently bound to a nanoparticle, tetrac as nanotetrac acts at the integrin to increase intracellular residence time of chemotherapeutic agents such as doxorubicin and etoposide that are substrates of P-gp. This action chemosensitizes cancer cells. In this review, we examine possible molecular mechanisms for the inhibitory effect of nanotetrac on P-gp activity. Mechanisms for consideration include cancer cell acidification via action of tetrac/nanotetrac on the Na+/H+ exchanger (NHE1) and hormone analogue effects on calmodulin-dependent processes and on interactions of P-gp with epidermal growth factor (EGF) and osteopontin (OPN), apparently via αvβ3. Intracellular acidification and decreased H+ efflux induced by tetrac/nanotetrac via NHE1 is the most attractive explanation for the actions on P-gp and consequent increase in cancer cell retention of chemotherapeutic agent-ligands of MDR1 protein.
Collapse
|
30
|
Xia YZ, Ni K, Guo C, Zhang C, Geng YD, Wang ZD, Yang L, Kong LY. Alopecurone B reverses doxorubicin-resistant human osteosarcoma cell line by inhibiting P-glycoprotein and NF-kappa B signaling. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2015; 22:344-351. [PMID: 25837271 DOI: 10.1016/j.phymed.2014.12.011] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/02/2014] [Revised: 12/12/2014] [Accepted: 12/21/2014] [Indexed: 06/04/2023]
Abstract
Doxorubicin (DOX) was first used in osteosarcoma in the early 1970s as a first-line antineoplastic drug. However, the occurrence of drug resistance in chemotherapeutic treatment has greatly restricted its use. When resistance to DOX treatment occurs, osteosarcoma may become not only resistant to the drug originally administered but also to a wide variety of structurally and mechanistically unrelated drugs. Thus, there is an urgent need to find ways of reversing DOX chemotherapy resistance in osteosarcoma. Plant-derived agents have great potential in preventing the onset of the carcinogenic process and enhancing the efficacy of conventional antitumor drugs. Alopecurone B (ALOB), a flavonoid, is isolated from Traditional Chinese Medicine Sophora alopecuroides L., and is reported to have potent inhibitory effect on multidrug resistance associated protein 1. In this study, a DOX-resistant osteosarcoma cell line (MG-63/DOX) was established by increasing the concentration gradient of DOX in a stepwise manner. MTT assay, flow cytometry analysis, dual-luciferase reporter gene assay, quantitative real-time polymerase chain reaction and Western blot analysis were applied to investigate the reversing effect of ALOB and its underlying mechanisms. The results indicated that ALOB mediated the resistance of MG-63/DOX cells to DOX by inhibiting P-glycoprotein function, transcription and expression. Besides, ALOB also enhanced the sensitivity of MG-63/DOX cells to other conventional chemotherapeutic drugs. Cell viability assay confirmed the reversing activity of ALOB. Furthermore, ALOB increased DOX-induced apoptosis at nontoxic concentration. In addition, ALOB showed inhibitory effect on NF-κB transcription in a DOX-independent manner. Furthermore, NF-κB signaling was suppressed by ALOB in an IKK-dependent manner. These studies not only demonstrate that ALOB is a potential agent for reversal of drug resistant cancers, but also testify that ALOB reverses multidrug resistance by inhibiting P-glycoprotein via NF-κB signaling.
Collapse
Affiliation(s)
- Yuan-Zheng Xia
- State Key Laboratory of Natural Medicines, Department of Natural Medicinal Chemistry, China Pharmaceutical University, 24 Tong Jia Xiang, NanJing 210009, People's Republic of China
| | - Kai Ni
- State Key Laboratory of Natural Medicines, Department of Natural Medicinal Chemistry, China Pharmaceutical University, 24 Tong Jia Xiang, NanJing 210009, People's Republic of China
| | - Chao Guo
- State Key Laboratory of Natural Medicines, Department of Natural Medicinal Chemistry, China Pharmaceutical University, 24 Tong Jia Xiang, NanJing 210009, People's Republic of China
| | - Chao Zhang
- State Key Laboratory of Natural Medicines, Department of Natural Medicinal Chemistry, China Pharmaceutical University, 24 Tong Jia Xiang, NanJing 210009, People's Republic of China
| | - Ya-Di Geng
- State Key Laboratory of Natural Medicines, Department of Natural Medicinal Chemistry, China Pharmaceutical University, 24 Tong Jia Xiang, NanJing 210009, People's Republic of China
| | - Zhen-Dong Wang
- State Key Laboratory of Natural Medicines, Department of Natural Medicinal Chemistry, China Pharmaceutical University, 24 Tong Jia Xiang, NanJing 210009, People's Republic of China
| | - Lei Yang
- State Key Laboratory of Natural Medicines, Department of Natural Medicinal Chemistry, China Pharmaceutical University, 24 Tong Jia Xiang, NanJing 210009, People's Republic of China.
| | - Ling-Yi Kong
- State Key Laboratory of Natural Medicines, Department of Natural Medicinal Chemistry, China Pharmaceutical University, 24 Tong Jia Xiang, NanJing 210009, People's Republic of China.
| |
Collapse
|
31
|
Cancer multidrug resistance-targeted therapy in both cancer and cardiovascular system with cardiovascular drugs. Int J Cardiol 2014; 176:1306-8. [PMID: 25131921 DOI: 10.1016/j.ijcard.2014.07.158] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/15/2014] [Accepted: 07/27/2014] [Indexed: 02/06/2023]
|
32
|
Hsieh MJ, Chen MK, Yu YY, Sheu GT, Chiou HL. Psoralen reverses docetaxel-induced multidrug resistance in A549/D16 human lung cancer cells lines. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2014; 21:970-977. [PMID: 24703328 DOI: 10.1016/j.phymed.2014.03.008] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/13/2013] [Revised: 01/18/2014] [Accepted: 03/02/2014] [Indexed: 06/03/2023]
Abstract
Chemotherapy is the recommended treatment for advanced-stage cancers. However, the emergence of multidrug resistance (MDR), the ability of cancer cells to become simultaneously resistant to different drugs, limits the efficacy of chemotherapy. Previous studies have shown that herbal medicine or natural food may be feasible for various cancers as potent chemopreventive drug. This study aims to explore the capablility of reversing the multidrug resistance of docetaxel (DOC)-resistant A549 cells (A549/D16) of psoralen and the underlying mechanisms. In this study, results showed that the cell viability of A549/D16 subline is decreased when treated with psoralen plus DOC, while psoralen has no effect on the cell proliferation on A549 and A549/D16 cells. Furthermore, mRNA and proteins levels of ABCB1 were decreased in the presence of psoralen, while decreased ABCB1 activity was also revealed by flow cytometry. Based on these results, we believe that psoralen may be feasible for reversing the multidrug resistance by inhibiting ABCB1 gene and protein expression. Such inhibition will lead to a decrease in ABCB1 activity and anti-cancer drug efflux, which eventually result in drug resistance reversal and therefore, sensitizing drug-resistant cells to death in combination with chemotherapeutic drugs.
Collapse
Affiliation(s)
- Ming-Ju Hsieh
- Cancer Research Center, Changhua Christian Hospital, Changhua 500, Taiwan; School of Optometry, Chung Shan Medical University, Taichung 40201, Taiwan; Institute of Medicine, Chung Shan Medical University, Taichung 40201, Taiwan
| | - Mu-Kuan Chen
- Department of Otorhinolaryngology-Head and Neck Surgery, Changhua Christian Hospital, Changhua 500, Taiwan
| | - Ya-Yen Yu
- Institute of Medicine, Chung Shan Medical University, Taichung 40201, Taiwan; Department of Laboratory, Chang-Hua Hospital, Department of Health, Changhua 513, Taiwan
| | - Gwo-Tarng Sheu
- Institute of Medical and Molecular Toxicology, Chung Shan Medical University, Taichung 40201, Taiwan.
| | - Hui-Ling Chiou
- School of Medical Laboratory and Biotechnology, Chung Shan Medical University, Taichung 40201, Taiwan; Department of Clinical Laboratory, Chung Shan Medical University Hospital, Taichung 40201, Taiwan.
| |
Collapse
|
33
|
By inhibiting Src, verapamil and dasatinib overcome multidrug resistance via increased expression of Bim and decreased expressions of MDR1 and survivin in human multidrug-resistant myeloma cells. Leuk Res 2014; 38:121-30. [DOI: 10.1016/j.leukres.2013.10.017] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2013] [Revised: 10/17/2013] [Accepted: 10/19/2013] [Indexed: 11/23/2022]
|
34
|
Holmes S, Griffith EJ, Musto G, Minuk GY. Antihypertensive medications and survival in patients with cancer: A population-based retrospective cohort study. Cancer Epidemiol 2013; 37:881-5. [DOI: 10.1016/j.canep.2013.09.001] [Citation(s) in RCA: 73] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2013] [Revised: 08/29/2013] [Accepted: 09/01/2013] [Indexed: 11/30/2022]
|
35
|
Hsieh MJ, Lin CW, Yang SF, Sheu GT, Yu YY, Chen MK, Chiou HL. A Combination of Pterostilbene With Autophagy Inhibitors Exerts Efficient Apoptotic Characteristics in Both Chemosensitive and Chemoresistant Lung Cancer Cells. Toxicol Sci 2013; 137:65-75. [DOI: 10.1093/toxsci/kft238] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
|
36
|
Frede J, Fraser SP, Oskay-Özcelik G, Hong Y, Ioana Braicu E, Sehouli J, Gabra H, Djamgoz MB. Ovarian cancer: Ion channel and aquaporin expression as novel targets of clinical potential. Eur J Cancer 2013; 49:2331-44. [DOI: 10.1016/j.ejca.2013.03.016] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2010] [Revised: 01/29/2013] [Accepted: 03/10/2013] [Indexed: 01/11/2023]
|
37
|
Li K, Sun Z, Zheng J, Lu Y, Bian Y, Ye M, Wang X, Nie Y, Zou H, Fan D. In-depth research of multidrug resistance related cell surface glycoproteome in gastric cancer. J Proteomics 2013; 82:130-40. [PMID: 23470797 DOI: 10.1016/j.jprot.2013.02.021] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2012] [Revised: 02/20/2013] [Accepted: 02/22/2013] [Indexed: 12/13/2022]
Abstract
UNLABELLED Human gastric cancer is a big public health problem. Multidrug resistance is a main obstacle to successful chemotherapeutic treatment in gastric cancers and the underlying mechanism is not clear. Glycosylation, one of the most important post translational modifications of proteins, plays a vital role in diverse aspects of tumor progression. In the present study, we applied two multidrug resistance cell lines and their parental drug sensitive gastric cancer cell line to a modified cell surface capturing strategy with triplex labeling to characterize MDR related cell surface glycoproteome. Finally, 56 cell membrane glycoproteins were successfully identified via combination of identification by glycopeptides and quantitation by non-glycopeptides, and 11 of them were found to be differentially expressed with the same trend in both drug resistant cell lines compared with that in sensitive cell line. The further analysis by western blot and in vitro drug sensitivity assay demonstrated that our approach is reliable and accurate and suggested that these glycoproteins may represent as biomarkers for multidrug resistance in gastric cancer. BIOLOGICAL SIGNIFICANCE In this study, we performed a cell surface glycoproteomics research of multidrug resistance in gastric cancer using a modified CSC approach. Totally we identified and quantified 11 membrane N-glycoproteins which were significantly changed in MDR gastric cancer cells. These glycoproteins are quite possible to be biomarkers for predicting MDR or key regulators for targeted therapy, and are also helpful for better interpreting the sophisticated mechanisms of MDR in gastric cancer. In addition to that, this approach used in this study can be well applied to screen aberrantly glycosylated biomarkers associated with other malignant phenotypes of various kinds of cancers.
Collapse
Affiliation(s)
- Kai Li
- State Key Laboratory of Cancer Biology and Xijing Hospital of Digestive Diseases, the Fourth Military Medical University, 127 Changle Western Road, Xi'an, Shaanxi Province, 710032, China
| | | | | | | | | | | | | | | | | | | |
Collapse
|
38
|
Cheng CY, Cherng SH, Wu WJ, Yang TY, Huang XY, Liao FT, Wu MF, Sheu GT. Reply to: Clusterin inhibition to enhance tumor chemosensitivity in systemic tumors. Cancer Chemother Pharmacol 2013; 71:1103-4. [PMID: 23377309 DOI: 10.1007/s00280-013-2085-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
39
|
Man S, Gao W, Wei C, Liu C. Anticancer drugs from traditional toxic Chinese medicines. Phytother Res 2012; 26:1449-65. [PMID: 22389143 DOI: 10.1002/ptr.4609] [Citation(s) in RCA: 97] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2011] [Revised: 12/12/2011] [Accepted: 12/19/2011] [Indexed: 02/06/2023]
Abstract
Many anticancer drugs are obtained from natural sources. Nature produces a variety of toxic compounds, which are often used as anticancer drugs. Up to now, there are at least 120 species of poisonous botanicals, animals and minerals, of which more than half have been found to possess significant anticancer properties. In spite of their clinical toxicity, they exhibit pharmacological effects and have been used as important traditional Chinese medicines for the different stages of cancer. The article reviews many structures such as alkaloids of Camptotheca acuminata, Catharanthus roseus and Cephalotaxus fortunei, lignans of Dysosma versipellis and Podophyllum emodi, ketones of Garcinia hanburyi, terpenoids of Mylabris and Ginkgo biloba, diterpenoids of Tripterygium wilfordii, Euphorbia fischeriana, Euphorbia lathyris, Euphorbia kansui, Daphne genkwa, Pseudolarix kaempferi and Brucea javanica, triterpenoids of Melia toosendan, steroids of Periploca sepium, Paris polyphylla and Venenum Bufonis, and arsenic compounds including Arsenicum and Realgar. By comparing their related phytochemistry, toxic effects and the recent advances in understanding the mechanisms of action, this review puts forward some ideals and examples about how to increase antitumour activity and/or reduce the side effects experienced with Chinese medicine.
Collapse
Affiliation(s)
- Shuli Man
- Key Laboratory of Industrial Fermentation Microbiology, (Tianjin University of Science and Technology), Ministry of Education, Tianjin, 300457, PR China
| | | | | | | |
Collapse
|
40
|
Phase II trials of imatinib mesylate and docetaxel in patients with metastatic non-small cell lung cancer and head and neck squamous cell carcinoma. J Thorac Oncol 2011; 6:2104-11. [PMID: 21892101 DOI: 10.1097/jto.0b013e31822e7256] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
PURPOSE Two phase II clinical trials in the aerodigestive tumors were undertaken to evaluate the efficacy of imatinib mesylate-docetaxel. We hypothesized that imatinib mesylate would inhibit platelet-derived growth factor receptor (PDGFR) on pericytes and increase docetaxel uptake into tumor cells for an additive antitumor effect. Baseline tumor specimens, serum, and perfusion computed tomography (CT) scans were obtained for supportive evaluation. MATERIALS AND METHODS Eligible patients with metastatic non-small cell lung cancer (NSCLC) treated with 1 prior therapy and chemonaive patients with head and neck squamous cell carcinoma (HNSCC) were enrolled in separate trials, which administered both docetaxel (60 mg/m every 3 weeks) and oral imatinib mesylate (400 mg daily). Both trials used interim analyses for efficacy and safety. RESULTS Twenty-two patients with NSCLC and seven patients with HNSCC were enrolled. Both trials were closed early due to lack of efficacy, significant toxicity, and a potential antagonistic effect. In the NSCLC study, the response rate was 4.5%, median progression-free survival (PFS) 7.9 weeks, and overall survival 35.6 weeks. The HNSCC trial yielded a response rate 0%, PFS 8.8 weeks, and overall survival 34.7 weeks. Baseline NSCLC tumor immunohistochemical biomarker analyses indicated that lower expression of stromal PDGFRβ correlated with a better PFS, whereas stromal PDGFRα and tumor cell PDGFRβ were associated with a worse clinical outcome when treated with imatinib mesylate-docetaxel. CONCLUSION We do not recommend further investigation of this regimen in the aerodigestive tumors. Future investigations in PDGFR tyrosine kinase inhibitors should be used with caution in combination with taxanes and validation of the potential predictive or prognostic biomarkers stromal PDGFRα/β, and tumor cell PDGFRβ are needed.
Collapse
|
41
|
Mallon R, Feldberg LR, Lucas J, Chaudhary I, Dehnhardt C, Santos ED, Chen Z, dos Santos O, Ayral-Kaloustian S, Venkatesan A, Hollander I. Antitumor efficacy of PKI-587, a highly potent dual PI3K/mTOR kinase inhibitor. Clin Cancer Res 2011; 17:3193-203. [PMID: 21325073 DOI: 10.1158/1078-0432.ccr-10-1694] [Citation(s) in RCA: 136] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
PURPOSE The aim of this study was to show preclinical efficacy and clinical development potential of PKI-587, a dual phosphoinositide 3-kinase (PI3K)/mTOR inhibitor. EXPERIMENTAL DESIGN In vitro class 1 PI3K enzyme and human tumor cell growth inhibition assays and in vivo five tumor xenograft models were used to show efficacy. RESULTS In vitro, PKI-587 potently inhibited class I PI3Ks (IC(50) vs. PI3K-α = 0.4 nmol/L), PI3K-α mutants, and mTOR. PKI-587 inhibited growth of 50 diverse human tumor cell lines at IC(50) values of less than 100 nmol/L. PKI-587 suppressed phosphorylation of PI3K/mTOR effectors (e.g., Akt), and induced apoptosis in human tumor cell lines with elevated PI3K/mTOR signaling. MDA-MB-361 [breast; HER2(+), PIK3CA mutant (E545K)] was particularly sensitive to this effect, with cleaved PARP, an apoptosis marker, induced by 30 nmol/L PKI-587 at 4 hours. In vivo, PKI-587 inhibited tumor growth in breast (MDA-MB-361, BT474), colon (HCT116), lung (H1975), and glioma (U87MG) xenograft models. In MDA-MB-361 tumors, PKI-587 (25 mg/kg, single dose i.v.) suppressed Akt phosphorylation [at threonine(T)308 and serine(S)473] for up to 36 hours, with cleaved PARP (cPARP) evident up to 18 hours. PKI-587 at 25 mg/kg (once weekly) shrank large (∼1,000 mm(3)) MDA-MB-361 tumors and suppressed tumor regrowth. Tumor regression correlated with suppression of phosphorylated Akt in the MDA-MB-361 model. PKI-587 also caused regression in other tumor models, and efficacy was enhanced when given in combination with PD0325901 (MEK 1/2 inhibitor), irinotecan (topoisomerase I inhibitor), or HKI-272 (neratinib, HER2 inhibitor). CONCLUSION Significant antitumor efficacy and a favorable pharmacokinetic/safety profile justified phase 1 clinical evaluation of PKI-587.
Collapse
Affiliation(s)
- Robert Mallon
- Department of Oncology, Discovery Medicinal Chemistry, and Drug Safety and Metabolism, Wyeth Research now Pfizer, Pearl River, New York 10965, USA.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
42
|
Desarnaud F, Geck P, Parkin C, Carpinito G, Makarovskiy AN. Gene expression profiling of the androgen independent prostate cancer cells demonstrates complex mechanisms mediating resistance to docetaxel. Cancer Biol Ther 2011; 11:204-12. [PMID: 21057205 DOI: 10.4161/cbt.11.2.13750] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
The molecular mechanisms conferring resistance to docetaxel in prostate cancer patients remain partially understood. We generated docetaxel resistant derivatives of the androgen independent prostate cancer cell lines PC-3 and DU-145. Docetaxel rapidly induces DU-145 cell death via apoptosis and the drug resistant cells were produced by periodically exposing proliferating DU-145 cultures to small doses of docetaxel. In PC-3 cells docetaxel induces delayed cell death via mitotic catastrophe evident by profound multinucleation and formation of giant cells. Mononucleated progeny of the giant PC-3 cells shows significant resistance to docetaxel. Gene expression profiling of these docetaxel resistant PC-3 cells revealed sets of docetaxel inducible and constitutively expressed genes associated with major cancer pathways. A contradictory overlap with DU-145 docetaxel resistant cells was also found. Analyses suggested significant changes associated with apoptotic function, DNA repair, cell growth, survival and proliferation, metabolism, maintenance of cytoskeleton and extracellular matrix formation. These cellular processes often contribute to drug resistance and our study identified a set of genes managing this phenotype. Additional analyses of the drug resistant PC-3 cells using shRNA constructs determined direct relevance of Cyclin G2 to docetaxel resistance as well as prevention of multinucleation, whereas the knockdown of upregulated CYP1B1 showed no effect on either of these processes. Downregulated GBP1 was explored by ectopic overexpression and even though GBP1 has a potential to mediate resistance to docetaxel, it was not utilized in PC-3 cells. The results suggest complex combination of gene expression pattern changes that enables resistance to docetaxel while preventing death via multinucleation.
Collapse
Affiliation(s)
- Frank Desarnaud
- Department of Urology, Tufts Medical Center/Tufts University School of Medicine, Boston, MA, USA
| | | | | | | | | |
Collapse
|
43
|
Braconi C, Swenson E, Kogure T, Huang N, Patel T. Targeting the IL-6 dependent phenotype can identify novel therapies for cholangiocarcinoma. PLoS One 2010; 5:e15195. [PMID: 21179572 PMCID: PMC3002961 DOI: 10.1371/journal.pone.0015195] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2010] [Accepted: 10/29/2010] [Indexed: 02/07/2023] Open
Abstract
Background The need for new therapies for cholangiocarcinoma is highlighted by their poor prognosis and refractoriness to chemotherapy. Increased production of Interleukin-6 promotes cholangiocarcinoma growth and contributes to chemoresistance by activating cell survival mechanisms. We sought to identify biologically active compounds capable of ameliorating the phenotypic effects of IL-6 expression and to explore their potential therapeutic use for cholangiocarcinoma. Methodology A genomic signature associated with Interleukin-6 expression in Mz-ChA-1 human malignant cholangiocytes was derived. Computational bioinformatics analysis was performed to identify compounds that induced inverse gene changes to the signature. The effect of these compounds on cholangiocarcinoma growth was then experimentally verified in vitro and in vivo. Interactions with other therapeutic agents were evaluated using median effects analysis. Principal Findings A group of structurally related compounds, nitrendipine, nifedipine and felodipine was identified. All three compounds were cytotoxic to Mz-ChA-1 cells with an IC50 for felodipine of 26 µM, nitrendipine, 44 µM and nifedipine, 15 µM. Similar results were observed in KMCH-1, CC-LP-1 and TFK-1 cholangiocarcinoma cell lines. At a fractional effect of 0.5, all three agents were synergistic with either camptothecin or gemcitabine in Mz-ChA-1 cells in vitro. Co-administration of felodipine and gemcitabine decreased the growth of Mz-ChA-1 cell xenografts in nude athymic mice. Conclusions Computational bioinformatics analysis of phenotype-based genomic expression can be used to identify therapeutic agents. Using this drug discovery approach based on targeting a defined tumor associated phenotype, we identified compounds with the potential for therapeutic use in cholangiocarcinoma.
Collapse
Affiliation(s)
- Chiara Braconi
- Department of Internal Medicine, College of Medicine, Ohio State University Comprehensive Cancer Center, Ohio State University, Columbus, Ohio, United States of America
| | | | | | | | | |
Collapse
|
44
|
Fechete R, Barth S, Olender T, Munteanu A, Bernthaler A, Inger A, Perco P, Lukas A, Lancet D, Cinatl J, Michaelis M, Mayer B. Synthetic lethal hubs associated with vincristine resistant neuroblastoma. MOLECULAR BIOSYSTEMS 2010; 7:200-14. [PMID: 21031175 DOI: 10.1039/c0mb00082e] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
Chemotherapy of cancer experiences a number of shortcomings including development of drug resistance. This fact also holds true for neuroblastoma utilizing chemotherapeutics as vincristine. We performed a comparative analysis of molecular and cellular mechanisms associated with vincristine resistance utilizing cell line as well as human tissue data. Differential gene expression analysis revealed molecular features, processes and pathways afflicted with drug resistance mechanisms in general, and specifically with vincristine significantly involving actin associated features. However, specific mode of resistance as well as underlying genotype of parental, vincristine sensitive cells apparently exhibited significant heterogeneity. No consensus profile for vincristine resistance could be derived, but resistance-associated changes on the level of individual neuroblastoma cell lines as well as individual patient profiles became clearly evident. Based on these prerequisites we utilized the concept of synthetic lethality aimed at identifying hub proteins which when inhibited promise to induce cell death due to a synthetic lethal interaction with down-regulated, chemoresistance associated features. Our screening procedure identified synthetic lethal hub proteins afflicted with actin associated processes holding synthetic lethal interactions to down-regulated features individually found in all chemoresistant cell lines tested, therefore promising an improved therapeutic window. Verification of such synthetic lethal hub candidates in human neuroblastoma tissue expression profiles indicated the feasibility of this screening approach for addressing vincristine resistance in neuroblastoma.
Collapse
Affiliation(s)
- Raul Fechete
- Emergentec Biodevelopment GmbH, Gersthofer Strasse 29-31, 1180 Vienna, Austria
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|