1
|
Kim Y, Koopman JJ, Choi M, Feldman CH, Costenbader KH. Environmental Risk Factors for Systemic Lupus Erythematosus Through the Lens of Social Determinants of Health. Arthritis Care Res (Hoboken) 2025; 77:689-699. [PMID: 39800912 PMCID: PMC12122242 DOI: 10.1002/acr.25497] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2024] [Accepted: 12/11/2024] [Indexed: 01/28/2025]
Abstract
Systemic lupus erythematosus (SLE) is a serious multisystem autoimmune disease, marked by alarming sociodemographic inequities. In the United States and around the world, social disadvantage is strongly tied to higher prevalence, more severe disease, and poorer outcomes. A growing list of environmental exposures that contribute to the risk and incidence of SLE have been investigated, and many are now established. However, these environmental exposures-including exposure to air pollution and other contaminants, lifestyle and behavioral factors, and psychologic stress and distress-are not evenly distributed in any population. Individuals of lower socioeconomic status and historically minoritized groups suffer from an imbalanced burden of adverse environmental exposures. In research, clinical practice, and policy making, the strong association of social determinants of health (SDoH) with these exposures has not been given adequate spotlight. In this narrative review, we examine known associations between environmental exposures and SLE risk through the lens of SDoH, laying the foundation for future research and policies to target the environmental risk factors for SLE with awareness of the populations disproportionately affected and the contributing SDoH.
Collapse
Affiliation(s)
- Youngmin Kim
- Brigham and Women’s Hospital, Harvard Medical School, Boston, Massachusetts
| | - Jacob J.E. Koopman
- Brigham and Women’s Hospital, Harvard Medical School, Boston, Massachusetts
| | - May Choi
- University of Calgary, Calgary, Alberta, Canada
| | - Candace H Feldman
- Brigham and Women’s Hospital, Harvard Medical School, Boston, Massachusetts
| | | |
Collapse
|
2
|
Yang Y, Huang P, Yang J, Wang J, Huang Q. Therapeutic effect and concomitant toxicity of hydrargyrum chloratum compositum on chronic difficult-to-heal wounds in rats. JOURNAL OF ETHNOPHARMACOLOGY 2025; 347:119749. [PMID: 40216041 DOI: 10.1016/j.jep.2025.119749] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/07/2025] [Revised: 03/30/2025] [Accepted: 04/03/2025] [Indexed: 04/15/2025]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Hydrargyrum chloratum compositum(Hcc) is a traditional Chinese medicine for external use, with the efficacy of 'transforming corrosion and pulling out toxins, removing corrosion and regenerating muscles'. The main components are mercuric chloride (HgCl2) and mercurous chloride (Hg2Cl2), which have antibacterial, corrosive and tissue repairing effects. However, the therapeutic mechanism and toxicity risk of its topical application for treating difficult-to-heal wounds have not been clearly explained. AIMS OF THE STUDY To investigate the therapeutic mechanism of Baishuidan on chronic non-healing wounds in rats and to assess the risk of mercury toxicity. METHODS The antimicrobial activity of Hcc against Staphylococcus aureus, Candida albicans, Pseudomonas aeruginosa, and Streptococcus-β haemolyticus was assessed by the circle of inhibition assay, Minimum inhibitory concentration(MIC) and Minimum bactericidal concentration(MBC) assay and 24-h inhibition curve. SD rats were used to establish a chronic difficult-to-heal wound model. The efficacy of C. albicans and its effects on inflammatory and angiogenic factors were assessed by wound healing rate, histopathological analysis, immunohistochemical staining, and Elisa assay. The pathological effects of Hcc on the principal organs of rats and the accumulation of mercury ions were detected by hematoxylin-eosin (H&E) staining and atomic absorption spectrophotometry (AAS). RESULTS Hcc showed different degrees of bacteriostatic effects on Staphylococcus aureus, Streptococcus-β haemolyticus, Pseudomonas aeruginosa, and Candida albicans. Among them, the most significant inhibitory effect was on S. aureus (MIC 4 μg/mL, MBC 8 μg/mL). Hcc significantly promoted the healing of skin wounds in rats, with the best effect in the middle-dose group. Pathological analysis showed that collagen fibre production and neocapillary formation increased and inflammatory cell infiltration decreased in the treatment group. Hcc improved the microenvironment of wounds by decreasing the level of the pro-inflammatory factor IL-6 and increasing the level of the anti-inflammatory factor IL-10. By activating the Pi3k - Akt and Notch1 - Vegfa signalling pathways, Hcc promotes cell proliferation and angiogenesis, accelerating wound healing. Hcc did not cause significant pathological damage to the major organs of rats at the therapeutic dose. However, a significant accumulation of mercury ions was detected in the kidneys, suggesting that long-term use may cause damage to renal function. CONCLUSION This study is the first to systematically investigate the multi-target, multi-pathway mechanism of action of Hydrargyrum Chloratum Compositum (Hcc) in treating chronic hard-to-heal wounds and to comprehensively assess its potential mercury toxicity risk. Through in vitro antimicrobial assays, animal models, histopathological analyses, protein expression and mercury ion accumulation assays, the present study revealed the unique mechanisms of Hcc in promoting wound healing, including inhibition of bacterial growth, modulation of immune-inflammatory responses, promotion of angiogenesis, and activation of key signalling pathways (Pi3k-Akt and Notch1-Vegfa pathways). In addition, this study is the first to evaluate the accumulation of mercury ions in Hcc in different organs, especially the significant accumulation in the kidney, which provides important safety data for clinical application. Compared with the existing literature, the present study verified the antimicrobial activity of Hcc, and revealed its specific mechanism in promoting wound healing, providing a scientific basis for the clinical use of Hcc.
Collapse
Affiliation(s)
- Yu Yang
- School of Pharmacy, Chengdu University of Traditional Chinese Medicine, China; State Key Laboratory of Southwestern Chinese Medicine Resources, China.
| | - Ping Huang
- School of Pharmacy, Chengdu University of Traditional Chinese Medicine, China; State Key Laboratory of Southwestern Chinese Medicine Resources, China.
| | - Jingjing Yang
- School of Pharmacy, Chengdu University of Traditional Chinese Medicine, China; State Key Laboratory of Southwestern Chinese Medicine Resources, China.
| | - Jin Wang
- School of Ethnic Medicine, Chengdu University of Traditional Chinese Medicine, China.
| | - Qinwan Huang
- School of Pharmacy, Chengdu University of Traditional Chinese Medicine, China; State Key Laboratory of Southwestern Chinese Medicine Resources, China.
| |
Collapse
|
3
|
Kushawaha B, Yadav R, Garg SK, Pelosi E. The impact of mercury exposure on male reproduction: Mechanistic insights. J Trace Elem Med Biol 2025; 87:127598. [PMID: 39827527 DOI: 10.1016/j.jtemb.2025.127598] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/12/2024] [Revised: 12/04/2024] [Accepted: 01/13/2025] [Indexed: 01/22/2025]
Abstract
Mercury is a pervasive environmental toxin with significant negative effects on human health. In occupational settings, incidents such as the Minamata and Niigata disease in Japan and the large-scale methylmercury poisoning in Iraq have highlighted the severe health impacts of mercury exposure. It is widely accepted that all forms of mercury including methylmercury and mercuric chloride have the potential to induce toxic effects in mammals, and there is increasing concern about the impact of environmentally relevant levels of mercury on reproductive functions. This review summarizes current knowledge on the mechanisms of mercury toxicity, focusing specifically on its impact on male reproductive health across species. We searched the literature and found that mercury exposure is associated with testicular degeneration, altered spermatogenesis, and Leydig cell deformation. In addition, mercury can disrupt sperm motility, steroidogenesis and interfere with the hypothalamic-pituitary-gonadal axis by generation of reactive oxygen species, inducing mitochondrial dysfunction, epigenetic changes, and DNA damage. At the molecular level, mercury has been found to dysregulate the expression of key steroidogenic and spermatogenic genes, significantly reducing overall fertility potential. However, specific mechanisms of action remain to be fully elucidated. Similarly, comprehensive data on the potential transgenerational effects of paternal mercury exposure are lacking. In this review, we discuss both animal and human studies, and highlight the need for further research due to lack of standardization and control for variables such as lifestyle, immune system function, and exposure concentrations.
Collapse
Affiliation(s)
- Bhawna Kushawaha
- Indiana University, Department of Biochemistry and Molecular Biology, Indianapolis, USA
| | - Rajkumar Yadav
- U.P. Pt. Deen Dayal Upadhyay Pashu Chikitsa Vigyan Vishwavidyalaya Evam Go-Ansundhan Sansthan (DUVASU), Mathura, India
| | - Satish Kumar Garg
- Rajasthan University of Veterinary and Animal Sciences Bikaner, India
| | - Emanuele Pelosi
- Indiana University, Department of Biochemistry and Molecular Biology, Indianapolis, USA.
| |
Collapse
|
4
|
Zhou J, Xing C, Chen Y, Shen J. Associations of exposure to blood heavy metal mixtures with Toxoplasma infection among U.S. adults: a cross-sectional study. Front Public Health 2024; 12:1463190. [PMID: 39628796 PMCID: PMC11611873 DOI: 10.3389/fpubh.2024.1463190] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2024] [Accepted: 11/04/2024] [Indexed: 12/06/2024] Open
Abstract
Introduction Research increasingly links environmental exposure to toxic metals with health risks, yet the effect of combined metal exposure on Toxoplasma infection remains underexplored. This study investigates the relationship between concurrent heavy metal exposure and Toxoplasma infection in adults. Methods We analyzed data from 10,746 adults aged 20-80 from NHANES, with 1,869 positive for Toxoplasma gondii IgG. The study assessed associations between lead (Pb), cadmium (Cd), and mercury (Hg) with Toxoplasma infection risk using single-metal logistic regression, RCS analysis, WQS regression, and qgcomp models. Results Each metal showed an independent association with Toxoplasma infection risk. Pb had a non-linear association, while Hg had a linear one. Analysis of multiple metals indicated a positive correlation between heavy metal exposure and infection risk, particularly in younger and middle-aged adults, with Pb showing the strongest link. Discussion Our findings reveal a significant association between heavy metal exposure and Toxoplasma infection risk, especially in younger demographics, with lead being a key factor. This highlights the importance of understanding environmental metal exposure's impact on public health and informs the development of prevention strategies.
Collapse
Affiliation(s)
- Jing Zhou
- Department of Clinical Laboratory, The First Affiliated Hospital of Anhui Medical University, Hefei, Anhui, China
- Department of Clinical Laboratory, Anhui Public Health Clinical Center, Hefei, Anhui, China
| | - Chen Xing
- Department of Microbiology, School of Basic Medical The Key Laboratory of Microbiology and Parasitology of Anhui Province, The Key Laboratory of Zoonoses of High Institutions in Anhui, Anhui Medical University, Hefei, Anhui, China
| | - Yuting Chen
- Department of Epidemiology and Biostatistics, School of Public Health, Anhui Medical University, Hefei, Anhui, China
| | - Jilu Shen
- Department of Clinical Laboratory, The First Affiliated Hospital of Anhui Medical University, Hefei, Anhui, China
- Department of Clinical Laboratory, Anhui Public Health Clinical Center, Hefei, Anhui, China
| |
Collapse
|
5
|
Lee DW, Oh J, Lee YM, Bae HJ, Lim YH. Association between heavy metal exposure and biomarkers for non-alcoholic fatty liver disease in Korean adolescents. Heliyon 2024; 10:e37840. [PMID: 39386834 PMCID: PMC11462472 DOI: 10.1016/j.heliyon.2024.e37840] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2024] [Revised: 09/07/2024] [Accepted: 09/11/2024] [Indexed: 10/12/2024] Open
Abstract
Objectives The global prevalence of non-alcoholic fatty liver disease (NAFLD) in adolescents has increased. In addition to childhood obesity, environmental risk factors, such as heavy metals that are known to be involved in hepatotoxicity, play role in NAFLD occurrence. However, their association with NAFLD remains unclear. This study aimed to investigate the association between heavy metal exposure and NAFLD biomarkers in adolescents. Methods In this cross-sectional study, we used the data of a total of 1505 adolescents aged 12-17 years who participated in the Korean National Environmental Health Survey III (2015-2017) and IV (2018-2020). The presence of blood lead (BPb), blood mercury (BHg), urinary mercury (UHg), and urinary cadmium (UCd) were measured. Liver enzymes including serum aspartate aminotransferase (AST), alanine aminotransferase (ALT), and gamma-glutamyl transferase (GGT) were evaluated. For NAFLD biomarkers, the hepatic steatosis index (HSI) was calculated. Multivariate linear regression models, weighted quantile sum (WQS) regression, and Bayesian kernel machine regression (BKMR) model were used to investigate the association between heavy metals and NAFLD biomarkers. Results Among heavy metals, mercury presence showed a significant association with NAFLD biomarkers. Two-fold increases in BHg and UHg were associated with 0.21 points (95 % confidence interval [CI]: 0.08-0.35) and 0.19 points (95 % CI: 0.09-0.30) higher HSI, respectively. In the WQS model, heavy metal mixture was significantly associated with increased HSI (β = 0.06, 95 % CI: 0.01-0.11). Similarly, in the BKMR model, heavy metal mixture was positively associated with NAFLD biomarkers, and BHg was the most important contributor in the association. Conclusions BHg and UHg were significantly associated with NAFLD biomarkers in adolescents, indicating that organic and inorganic mercury exposure could potentially be a risk factor for NAFLD. To mitigate and address the risk of NAFLD associated with heavy metal exposure, it is imperative to take measure to reduce avoidable mercury exposure is necessary.
Collapse
Affiliation(s)
- Dong-Wook Lee
- Department of Occupational and Environmental Medicine, Inha University Hospital, Inha University, Incheon, Republic of Korea
| | - Jongmin Oh
- Institute of Ewha-SCL for Environmental Health (IESEH), Ewha Womans University College of Medicine, Seoul, Republic of Korea
| | - Yu Min Lee
- Department of Occupational and Environmental Medicine, Severance Hospital, College of Medicine, Yonsei University, Seoul, Republic of Korea
| | - Hyun-Joo Bae
- Korea Environment Institute, Sejong, Republic of Korea
| | - Youn-Hee Lim
- Section of Environmental Health, Department of Public Health, University of Copenhagen, Copenhagen, Denmark
| |
Collapse
|
6
|
Qi M, Zhang H, He JQ. Higher blood manganese level associated with increased risk of adult latent tuberculosis infection in the US population. Front Public Health 2024; 12:1440287. [PMID: 39114509 PMCID: PMC11304084 DOI: 10.3389/fpubh.2024.1440287] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2024] [Accepted: 07/15/2024] [Indexed: 08/10/2024] Open
Abstract
Background The associations between blood heavy metal levels and latent tuberculosis infection (LTBI) have not been fully elucidated. The aim of this study was to investigate the potential association between blood heavy metal levels and LTBI in adults using National Health and Nutrition Examination Survey data from 2011 to 2012. Methods We enrolled 1710 participants in this study, and compared the baseline characteristics of participants involved. Multivariate logistic regression analysis, restricted cubic splines (RCS) analysis, along with subgroup analysis and interaction tests were utilized to explore the association between blood manganese (Mn) level and LTBI risk. Results Participants with LTBI had higher blood Mn level compared to non-LTBI individuals (p < 0.05), while the levels of lead, cadmium, total mercury, selenium, copper, and zinc did not differ significantly between the two groups (p > 0.05). In the fully adjusted model, a slight increase in LTBI risk was observed with each 1-unit increase in blood Mn level (OR = 1.00, 95% CI: 1.00-1.01, p = 0.02). Participants in the highest quartile of blood Mn level had a threefold increase in LTBI risk compared to those in the lowest quartile (OR = 4.01, 95% CI: 1.22-11.33, p = 0.02). RCS analysis did not show a non-linear relationship between blood Mn level and LTBI (non-linear p-value = 0.0826). Subgroup analyses and interaction tests indicated that age, alcohol consumption, and income-to-poverty ratio significantly influenced LTBI risk (interaction p-values<0.05). Conclusion Individuals with LTBI had higher blood Mn level compared to non-LTBI individuals, and higher blood Mn level associated with increased LTBI risk.
Collapse
Affiliation(s)
- Min Qi
- Department of Pulmonary and Critical Care Medicine, West China Hospital, Sichuan University, Chengdu, China
- State Key Laboratory of Respiratory Health and Multimorbidity, West China Hospital, Sichuan University, Chengdu, China
| | - Huan Zhang
- Department of Pulmonary and Critical Care Medicine, West China Hospital, Sichuan University, Chengdu, China
- State Key Laboratory of Respiratory Health and Multimorbidity, West China Hospital, Sichuan University, Chengdu, China
| | - Jian-Qing He
- Department of Pulmonary and Critical Care Medicine, West China Hospital, Sichuan University, Chengdu, China
- State Key Laboratory of Respiratory Health and Multimorbidity, West China Hospital, Sichuan University, Chengdu, China
| |
Collapse
|
7
|
Zangiabadian M, Jolfayi AG, Nejadghaderi SA, Amirkhosravi L, Sanjari M. The association between heavy metal exposure and obesity: A systematic review and meta-analysis. J Diabetes Metab Disord 2024; 23:11-26. [PMID: 38932800 PMCID: PMC11196503 DOI: 10.1007/s40200-023-01307-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/30/2023] [Accepted: 09/05/2023] [Indexed: 06/28/2024]
Abstract
Background Obesity and metabolic syndrome are global health concerns associated with development of different types of diseases and serious health threats in the long term. Their metabolic imbalance can be attributable to inherited and environmental factors. As a considerable environmental agent, heavy metals exposure can predispose individuals to diseases like obesity. This systematic review and meta-analysis aimed to evaluate the association between heavy metals exposure and the risk of obesity. Methods PubMed/MEDLINE, EMBASE and Web of Science were systematically searched until December 17, 2022. Only observational studies that evaluated heavy metals exposure and obesity were included. Studies were excluded if they assessed maternal or prenatal exposure, the mixture of heavy metals and other chemicals, reported the association with overweight or other diseases, and undesirable study designs. The Joanna Briggs Institute checklist was used for quality assessment. The pooled adjusted odds ratio (aOR) and the pooled standardized mean difference (SMD) with their 95% confidence intervals (CIs) were calculated, respectively. The publication bias was evaluated using Egger's and Begg's tests. Results Twenty studies (n = 127755), four case-control and sixteen analytical cross-sectional studies, were included. Lead exposure was significantly associated with a lower risk of obesity (aOR: 0.705, 95% CI: 0.498-0.997), while mercury (aOR: 1.458, 95% CI: 1.048-2.031) and barium (aOR: 1.439, 95% CI: 1.142-1.813) exposure increased the risk of obesity. No significant publication bias was found and the studies had a low risk of bias. Conclusion Overall, lead exposure reduced obesity risk, while mercury and barium exposure raised it. Further large-scale observational studies are recommended to determine the roles of heavy metals in obesity.Study registration ID: CRD42023394865. Supplementary information The online version contains supplementary material available at 10.1007/s40200-023-01307-0.
Collapse
Affiliation(s)
- Moein Zangiabadian
- Endocrinology and Metabolism Re-Search Center, Institute of Basic and Clinical Physiology Sciences, Kerman University of Medical Sciences, Kerman, Iran
| | | | - Seyed Aria Nejadghaderi
- School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
- Systematic Review and Meta-Analysis Expert Group (SRMEG), Universal Scientific Education and Research Network (USERN), Tehran, Iran
| | - Ladan Amirkhosravi
- Endocrinology and Metabolism Re-Search Center, Institute of Basic and Clinical Physiology Sciences, Kerman University of Medical Sciences, Kerman, Iran
| | - Mojgan Sanjari
- Endocrinology and Metabolism Re-Search Center, Institute of Basic and Clinical Physiology Sciences, Kerman University of Medical Sciences, Kerman, Iran
| |
Collapse
|
8
|
Saldaña-Villanueva K, González-Palomo AK, Méndez-Rodríguez KB, Gavilán-García A, Benítez-Arvizu G, Diaz-Barriga F, Alcantara-Quintana L, Pérez-Vázquez FJ. Serum levels of inflammatory cytokines in mercury mining workers in a precarious situation: A preliminary study. Toxicol Ind Health 2024; 40:134-143. [PMID: 38289205 DOI: 10.1177/07482337241229471] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2024]
Abstract
Mercury is a ubiquitous environmental xenobiotic; the primary sources of exposure to this metal are artisanal gold mining and the direct production of mercury. In Mexico, artisanal mercury mining continues to be an important activity in different regions of the country. Exposure to mercury vapors releases can have severe health impacts, including immunotoxic effects such as alterations in cytokine profiling. Therefore, in the present work, we evaluated the inflammatory cytokines profile in the blood serum of miners exposed to mercury. A cross-sectional observational study was performed on 27 mining workers (exposed group) and 20 control subjects (nonexposed group) from central Mexico. The mercury urine concentration (U-Hg) was determined by atomic absorption spectrometry, and IL-2, IL-6, IL-8, IL-10, and TNF-α were measured using a Multiplex Assay. The results showed that the U-Hg in the miners had a median value of 552.70 μg/g creatinine. All cytokines showed a significant increase in the miner group compared with the control group, except for TNF-α. In addition, we observed a positive correlation between U-Hg concentration and cytokine levels. In conclusion, mercury exposure correlated with cytokine levels (considered acute inflammatory marker) in miners; therefore, workers exposed to this metal show an acute systemic inflammation that could lead to alterations in other organs and systems.
Collapse
Affiliation(s)
- Kelvin Saldaña-Villanueva
- Coordinación Para la Innovación y la Aplicación de la Ciencia y la Tecnología (CIACyT), Universidad Autónoma de San Luis Potosí, San Luis Potosí, México
| | - Ana K González-Palomo
- Coordinación Para la Innovación y la Aplicación de la Ciencia y la Tecnología (CIACyT), Universidad Autónoma de San Luis Potosí, San Luis Potosí, México
| | - Karen B Méndez-Rodríguez
- Coordinación Para la Innovación y la Aplicación de la Ciencia y la Tecnología (CIACyT), Universidad Autónoma de San Luis Potosí, San Luis Potosí, México
| | - Arturo Gavilán-García
- Instituto Nacional de Ecología y Cambio Climático, Secretaría de Medio Ambiente y Recursos Naturales, Ciudad de México, México
| | - Gamaliel Benítez-Arvizu
- Banco de Sangre Unidad Médica de Alta Especialidad (UMAE), Hospital de Especialidades Centro Medico Nacional Siglo XXI, Ciudad de México, México
| | - Fernando Diaz-Barriga
- Coordinación Para la Innovación y la Aplicación de la Ciencia y la Tecnología (CIACyT), Universidad Autónoma de San Luis Potosí, San Luis Potosí, México
| | - Luz Alcantara-Quintana
- Coordinación Para la Innovación y la Aplicación de la Ciencia y la Tecnología (CIACyT), Universidad Autónoma de San Luis Potosí, San Luis Potosí, México
| | - Francisco J Pérez-Vázquez
- Coordinación Para la Innovación y la Aplicación de la Ciencia y la Tecnología (CIACyT), Universidad Autónoma de San Luis Potosí, San Luis Potosí, México
| |
Collapse
|
9
|
Lee JY, Choi YH, Choi HI, Moon KW. Association between environmental mercury exposure and allergic disorders in Korean children: Korean National Environmental Health Survey (KoNEHS) cycles 3-4 (2015-2020). Sci Rep 2024; 14:1472. [PMID: 38233475 PMCID: PMC10794242 DOI: 10.1038/s41598-024-51811-3] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2023] [Accepted: 01/09/2024] [Indexed: 01/19/2024] Open
Abstract
Although previous studies have suggested potential adverse effects of mercury on a child's immune system, the associations have been inconsistent. We aimed to determine the association between urinary mercury levels and allergic diseases in Korean children with high mercury exposure. Data from 853 and 710 children aged 6-11 years in the Korean National Environmental Health Survey (KoNEHS) cycle 3 (2015-2017) and cycle 4 (2018-2020) were analyzed. We examined the association between mercury exposure and the prevalence of atopic dermatitis (AD), asthma, allergic rhinitis (AR), and allergic multimorbidity. After adjusting for all covariates, the urinary mercury level was positively associated with AD in the 2015-2017 study (OR = 1.34, 95% CI = 1.01, 1.79) and AR in 2018-2020 study (OR = 1.46, 95% CI = 1.01, 2.10). Pooled effects showed OR of 1.34 (95% CI = 1.01, 1.79) for AD and 1.47 (95% CI = 1.01, 2.12) for allergic multimorbidity. The association with allergic multimorbidity was greater in boys (OR = 1.88, 95% CI = 1.01, 3.49) than in girls (OR = 1.25, 95% CI = 0.73, 2.14). These results suggest that environmental mercury exposure may exacerbate symptoms of atopic dermatitis and allergic multimorbidity in children.
Collapse
Affiliation(s)
- Ji-Youn Lee
- School of Health and Environmental Science, Korea University, Anam-ro 145, Seongbuk-gu, Seoul, 02841, South Korea
| | - Yun-Hee Choi
- Department of Ophthalmology, Korea University, Anam-ro 145, Seongbuk-gu, Seoul, 02841, South Korea
| | - Hyeon-Il Choi
- Department of Infection Biology, College of Medicine, Chungnam National University, Munhwa-ro 266, Jung-gu, Daejeon, 35015, South Korea.
| | - Kyong Whan Moon
- School of Health and Environmental Science, Korea University, Anam-ro 145, Seongbuk-gu, Seoul, 02841, South Korea
- BK21 FOUR R&E Center for Learning Health System, Korea University, Anam-ro 145, Seongbuk-gu, Seoul, 02841, South Korea
| |
Collapse
|
10
|
Kamal MM, El-Abhar HS, Abdallah DM, Ahmed KA, Aly NES, Rabie MA. Mirabegron, dependent on β3-adrenergic receptor, alleviates mercuric chloride-induced kidney injury by reversing the impact on the inflammatory network, M1/M2 macrophages, and claudin-2. Int Immunopharmacol 2024; 126:111289. [PMID: 38016347 DOI: 10.1016/j.intimp.2023.111289] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2023] [Revised: 11/21/2023] [Accepted: 11/22/2023] [Indexed: 11/30/2023]
Abstract
The β3-adrenergic receptor (β3-AR) agonism mirabegron is used to treat overactive urinary bladder syndrome; however, its role against acute kidney injury (AKI) is not unveiled, hence, we aim to repurpose mirabegron in the treatment of mercuric chloride (HgCl2)-induced AKI. Rats were allocated into normal, normal + mirabegron, HgCl2 untreated, HgCl2 + mirabegron, and HgCl2 + the β3-AR blocker SR59230A + mirabegron. The latter increased the mRNA of β3-AR and miR-127 besides downregulating NF-κB p65 protein expression and the contents of its downstream targets iNOS, IL-4, -13, and -17 but increased that of IL-10 to attest its anti-inflammatory capacity. Besides, mirabegron downregulated the protein expression of STAT-6, PI3K, and ERK1/2, the downstream targets of the above cytokines. Additionally, it enhanced the transcription factor PPAR-α but turned off the harmful hub HNF-4α/HNF-1α and the lipid peroxide marker MDA. Mirabegron also downregulated the CD-163 protein expression, which besides the inhibited correlated cytokines of M1 (NF-κB p65, iNOS, IL-17) and M2 (IL-4, IL-13, CD163, STAT6, ERK1/2), inactivated the macrophage phenotypes. The crosstalk between these parameters was echoed in the maintenance of claudin-2, kidney function-related early (cystatin-C, KIM-1, NGAL), and late (creatinine, BUN) injury markers, besides recovering the microscopic structures. Nonetheless, the pre-administration of SR59230A has nullified the beneficial effects of mirabegron on the aforementioned parameters. Here we verified that mirabegron can berepurposedto treat HgCl2-induced AKI by activating the β3-AR. Mirabegron signified its effect by inhibiting inflammation, oxidative stress, and the activated M1/M2 macrophages, events that preserved the proximal tubular tight junction claudin-2 via the intersection of several trajectories.
Collapse
Affiliation(s)
- Mahmoud M Kamal
- Research Institute of Medical Entomology, General Organization for Teaching Hospitals and Institutes, Cairo, Egypt
| | - Hanan S El-Abhar
- Department of Pharmacology, Toxicology, and Biochemistry, Faculty of Pharmacy, Future University in Egypt (FUE), 11835 Cairo, Egypt
| | - Dalaal M Abdallah
- Pharmacology and Toxicology Department, Faculty of Pharmacy, Cairo University, 11562 Cairo, Egypt.
| | - Kawkab A Ahmed
- Pathology Department, Faculty of Veterinary Medicine, Cairo University, Cairo, Egypt
| | - Nour Eldin S Aly
- Research Institute of Medical Entomology, General Organization for Teaching Hospitals and Institutes, Cairo, Egypt
| | - Mostafa A Rabie
- Pharmacology and Toxicology Department, Faculty of Pharmacy, Cairo University, 11562 Cairo, Egypt; Faculty of Pharmacy and Drug Technology, Egyptian Chinese University (ECU), 19346, Egypt
| |
Collapse
|
11
|
Eissa F, Elhawat N, Alshaal T. Comparative study between the top six heavy metals involved in the EU RASFF notifications over the last 23 years. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2023; 265:115489. [PMID: 37738770 DOI: 10.1016/j.ecoenv.2023.115489] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/27/2023] [Revised: 09/13/2023] [Accepted: 09/14/2023] [Indexed: 09/24/2023]
Abstract
From the Rapid Alert System for Food and Feed (RASFF) database, a total of 4728 notifications regarding the six most frequently notified heavy metals (i.e., arsenic, cadmium, lead, mercury, chromium, and nickel) were tracked from January 1, 2000, to December 31, 2022, and analyzed based on year, notification classification, notifying countries, countries of origin, product types, product categories, risk decision, and action taken. Human risk assessment owing to consumption of mercury- and cadmium-contaminated seafood was estimated as well. Results revealed that the highest numbers of notifications were on mercury (36.6%), cadmium (25.1%), and lead (14.1%). Interestingly, the number of total notifications was at its peak between 2011 and 2014; from 2015 onward, it started to decrease considerably. Alert, border rejection, and information notifications represented 29.6%, 21.9%, and 48.5% of the total notifications, respectively. Chromium and nickel resulted in 33.8% and 23.3% of border rejection notifications, respectively. About 52.0% of the alert notifications were on mercury. Serious notifications represented 34.9% of the total notifications. Mercury and cadmium notifications accounted for 54.9% and 25.8% of serious notifications, respectively. Italy was the most notifying country, recording the highest number of notifications on cadmium (29.0%), mercury (52.6%), chromium (81.0%), and nickel (78.7%). China was the most notified origin country with regards to arsenic (18.7%), cadmium (12.8%), lead (27.6%), chromium (71.2%), and nickel (66.9%) notifications. Notifications on food, food contact materials (FCM), and feed represented 71.9%, 23.4%, and 4.7%, respectively, of the total notifications. About 91.5% of mercury notifications were on fish and fish products; 24.3% of arsenic notifications related to fruits and vegetables; and 20.1% of cadmium notifications corresponded to cephalopods and products thereof. Notified products were largely withdrawn from the markets according to arsenic (20.3%), lead (17.9%), and mercury (18.0%) notifications and re-dispatched because of cadmium (20.5%), chromium (42.1%), and nickel (49.5%) notifications. The target hazard quotient (THQ) values for mercury in swordfish, sharks, and tuna and cadmium in squid were all also below the threshold value of 1, implying that there is no significant risk for consumers. Overall, media coverage of RASFF alerts and actions may raise awareness of heavy metal contamination among the general public and industry professionals. The primary dietary advice of our study is to stay away from species with high mercury contents. Also, identifying the most dangerous heavy metals (HMs) and the most polluting products can help researchers prioritize their efforts in finding sustainable solutions for them.
Collapse
Affiliation(s)
- Fawzy Eissa
- Environment and Bio-agriculture Department, Faculty of Agriculture, Al-Azhar University, 11884 Nasr City, Cairo, Egypt
| | - Nevien Elhawat
- Department of Applied Plant Biology, Institute of Crop Sciences, University of Debrecen, Böszörményi str. 138, 4032 Debrecen, Hungary; Department of Biological and Environmental Sciences, Faculty of Home Economic, Al-Azhar University, Tanta 31732, Egypt
| | - Tarek Alshaal
- Department of Applied Plant Biology, Institute of Crop Sciences, University of Debrecen, Böszörményi str. 138, 4032 Debrecen, Hungary; Soil and Water Science Department, Faculty of Agriculture, Kafrelsheikh University, 33516 Kafr El-Sheikh, Egypt.
| |
Collapse
|
12
|
de Souza Prestes A, Vargas JLS, Dos Santos MM, Druzian GT, da Rocha JT, Aschner M, Barbosa NV. EtHg is more toxic than MeHg to human peripheral blood mononuclear cells: Involvement of apoptotic, mitochondrial, oxidative and proliferative parameters. Biochim Biophys Acta Gen Subj 2023; 1867:130446. [PMID: 37619690 DOI: 10.1016/j.bbagen.2023.130446] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2023] [Revised: 08/15/2023] [Accepted: 08/21/2023] [Indexed: 08/26/2023]
Abstract
BACKGROUND Methylmercury (MeHg) and ethylmercury (EtHg) are potent toxicants affecting the environment and human healthy. In this way, the present study aimed to investigate and compare the effects of MeHg and EtHg exposure on human peripheral blood mononuclear cells (PBMCs), which are critical components of the mammalian immune system. METHODS PBMCs were exposed to 2.5 μM MeHg or 2.5 μM EtHg. The number of cells and incubation times varied according to each assay. After exposures, the PBMCs were subjected to different evaluations, including cell viability, morphological aspects, cell cycle phases, indices of apoptosis and necrosis, reactive species (RS) production, and mitochondrial functionality. RESULTS PBMCs exposed to EtHg were characterized by decreased viability and size, increased granularity, RS production, and apoptotic indexes accompanied by an intensification of Sub-G1 and reduction in G0-G1 cell cycle phases. Preceding these effects, we found mitochondrial dysfunctions, namely a reduction in the electron transport system related to mitochondrial complex I. In contrast, PBMCs exposed to MeHg showed only reduced viability. By ICP-MS, we found that PBMCs treated with EtHg accumulated Hg + levels ∼1.8-fold greater than MeHg-exposed cells. CONCLUSIONS AND SIGNIFICANCE Taken together, our findings provide important insights about mercury immunotoxicity, showing that EtHg is more immunotoxic to human PBMCs than MeHg.
Collapse
Affiliation(s)
- Alessandro de Souza Prestes
- Department of Biochemistry and Molecular Biology, Federal University of Santa Maria, Santa Maria, RS, Brazil.
| | - João Luis Souza Vargas
- Department of Biochemistry and Molecular Biology, Federal University of Santa Maria, Santa Maria, RS, Brazil
| | - Matheus Mülling Dos Santos
- Department of Biochemistry and Molecular Biology, Federal University of Santa Maria, Santa Maria, RS, Brazil
| | | | - João Teixeira da Rocha
- Department of Biochemistry and Molecular Biology, Federal University of Santa Maria, Santa Maria, RS, Brazil
| | - Michael Aschner
- Department of Molecular Pharmacology, Albert Einstein College of Medicine, Bronx, NY, USA
| | - Nilda Vargas Barbosa
- Department of Biochemistry and Molecular Biology, Federal University of Santa Maria, Santa Maria, RS, Brazil.
| |
Collapse
|
13
|
Naphthalene-based silica nanoparticles as a highly sensitive fluorescent chemosensor for mercury detection in real seawater. J Mol Liq 2023. [DOI: 10.1016/j.molliq.2023.121294] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
|
14
|
Liu JL, Woo JMP, Parks CG, Costenbader KH, Jacobsen S, Bernatsky S. Systemic Lupus Erythematosus Risk: The Role of Environmental Factors. Rheum Dis Clin North Am 2022; 48:827-843. [PMID: 36332998 DOI: 10.1016/j.rdc.2022.06.005] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Systemic lupus erythematosus (SLE) is a complex, chronic autoimmune disease. The etiology of SLE is multifactorial and includes potential environmental triggers, which may occur sequentially (the "multi-hit" hypothesis). This review focuses on SLE risk potentially associated with environmental factors including infections, the microbiome, diet, respirable exposures (eg, crystalline silica, smoking, air pollution), organic pollutants, heavy metals, and ultraviolet radiation.
Collapse
Affiliation(s)
- Jia Li Liu
- McGill University, Montreal, Quebec, Canada
| | - Jennifer M P Woo
- Epidemiology Branch, Department of Health and Human Services, National Institutes of Environmental Health Sciences, National Institutes of Health, Research Triangle Park, NC, USA
| | - Christine G Parks
- Epidemiology Branch, Department of Health and Human Services, National Institutes of Environmental Health Sciences, National Institutes of Health, Research Triangle Park, NC, USA
| | - Karen H Costenbader
- Division of Rheumatology, Inflammation and Immunity, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - Søren Jacobsen
- Copenhagen Lupus and Vasculitis Clinic, Rigshospitalet, Copenhagen University Hospital, Denmark
| | - Sasha Bernatsky
- Centre for Outcomes Research and Evaluation, Research Institute of the McGill University Health Centre, Montreal, Quebec, Canada.
| |
Collapse
|
15
|
Rodríguez-Viso P, Domene A, Vélez D, Devesa V, Monedero V, Zúñiga M. Mercury toxic effects on the intestinal mucosa assayed on a bicameral in vitro model: Possible role of inflammatory response and oxidative stress. Food Chem Toxicol 2022; 166:113224. [PMID: 35700822 DOI: 10.1016/j.fct.2022.113224] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2022] [Revised: 05/18/2022] [Accepted: 06/06/2022] [Indexed: 11/18/2022]
Abstract
Exposure to mercury (Hg) mostly occurs through diet, where it is mainly found as inorganic Hg [Hg(II)] or methylmercury (MeHg). In vivo studies have linked its exposure with neurological and renal diseases, however, its toxic effects upon the gastrointestinal tract are largely unknown. In order to evaluate the effect of Hg on intestinal mucosa, a bicameral system was employed with co-cultures of Caco-2 and HT29-MTX intestinal epithelial cells and THP-1 macrophages. Cells were exposed to Hg(II) and MeHg (0.1, 0.5, 1 mg/L) during 11 days. The results evidenced a greater pro-inflammatory response in cells exposed to Hg with increments of IL-8 (15-126%) and IL-1β release (39-63%), mainly induced by macrophages which switched to a M1 phenotype. A pro-oxidant response was also observed in both cell types with an increase in ROS/RNS levels (44-140%) and stress proteins expression. Intestinal cells treated with Hg displayed structural abnormalities, hypersecretion of mucus and defective tight junctions. An increased paracellular permeability (123-170%) at the highest concentrations of Hg(II) and MeHg and decreased capacity to restore injuries in the cell monolayer were also observed. All these toxic effects were governed by various inflammatory signalling pathways (p38 MAPK, JNK and NF-κB).
Collapse
Affiliation(s)
- Pilar Rodríguez-Viso
- Instituto de Agroquímica y Tecnología de Alimentos (IATA-CSIC), Agustín Escardino 7, 46980, Paterna, Valencia, Spain.
| | - Adrián Domene
- Instituto de Agroquímica y Tecnología de Alimentos (IATA-CSIC), Agustín Escardino 7, 46980, Paterna, Valencia, Spain.
| | - Dinoraz Vélez
- Instituto de Agroquímica y Tecnología de Alimentos (IATA-CSIC), Agustín Escardino 7, 46980, Paterna, Valencia, Spain.
| | - Vicenta Devesa
- Instituto de Agroquímica y Tecnología de Alimentos (IATA-CSIC), Agustín Escardino 7, 46980, Paterna, Valencia, Spain.
| | - Vicente Monedero
- Instituto de Agroquímica y Tecnología de Alimentos (IATA-CSIC), Agustín Escardino 7, 46980, Paterna, Valencia, Spain.
| | - Manuel Zúñiga
- Instituto de Agroquímica y Tecnología de Alimentos (IATA-CSIC), Agustín Escardino 7, 46980, Paterna, Valencia, Spain.
| |
Collapse
|
16
|
Woo JMP, Parks CG, Jacobsen S, Costenbader KH, Bernatsky S. The role of environmental exposures and gene-environment interactions in the etiology of systemic lupus erythematous. J Intern Med 2022; 291:755-778. [PMID: 35143075 DOI: 10.1111/joim.13448] [Citation(s) in RCA: 67] [Impact Index Per Article: 22.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Systemic lupus erythematosus (SLE) is a complex, chronic autoimmune disease, whose etiology includes both genetic and environmental factors. Individual genetic risk factors likely only account for about one-third of observed heritability among individuals with a family history of SLE. A large portion of the remaining risk may be attributable to environmental exposures and gene-environment interactions. This review focuses on SLE risk associated with environmental factors, ranging from chemical and physical environmental exposures to lifestyle behaviors, with the weight of evidence supporting positive associations between SLE and occupational exposure to crystalline silica, current smoking, and exogenous estrogens (e.g., oral contraceptives and postmenopausal hormones). Other risk factors may include lifestyle behaviors (e.g., dietary intake and sleep) and other exposures (e.g., ultraviolet [UV] radiation, air pollution, solvents, pesticides, vaccines and medications, and infections). Alcohol use may be associated with decreased SLE risk. We also describe the more limited body of knowledge on gene-environment interactions and SLE risk, including IL-10, ESR1, IL-33, ITGAM, and NAT2 and observed interactions with smoking, UV exposure, and alcohol. Understanding genetic and environmental risk factors for SLE, and how they may interact, can help to elucidate SLE pathogenesis and its clinical heterogeneity. Ultimately, this knowledge may facilitate the development of preventive interventions that address modifiable risk factors in susceptible individuals and vulnerable populations.
Collapse
Affiliation(s)
- Jennifer M P Woo
- Epidemiology Branch, National Institutes of Environmental Health Sciences, National Institutes of Health, Department of Health and Human Services, Research Triangle Park, North Carolina, USA
| | - Christine G Parks
- Epidemiology Branch, National Institutes of Environmental Health Sciences, National Institutes of Health, Department of Health and Human Services, Research Triangle Park, North Carolina, USA
| | - Søren Jacobsen
- Copenhagen Lupus and Vasculitis Clinic, Rigshospitalet, Copenhagen University Hospital, Copenhagen, Denmark
| | - Karen H Costenbader
- Division of Rheumatology, Inflammation and Immunity, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | - Sasha Bernatsky
- Centre for Outcomes Research and Evaluation, Research Institute of the McGill University Health Centre, Montreal, Quebec, Canada
| |
Collapse
|
17
|
Spence T, Zavez A, Allsopp PJ, Conway MC, Yeates AJ, Mulhern MS, van Wijngaarden E, Strain JJ, Myers GJ, Watson GE, Davidson PW, Shamlaye CF, Thurston SW, McSorley EM. Serum cytokines are associated with n-3 polyunsaturated fatty acids and not with methylmercury measured in infant cord blood in the Seychelles child development study. ENVIRONMENTAL RESEARCH 2022; 204:112003. [PMID: 34492279 DOI: 10.1016/j.envres.2021.112003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/17/2021] [Revised: 08/30/2021] [Accepted: 09/01/2021] [Indexed: 06/13/2023]
Abstract
BACKGROUND Maternal fish consumption increases infant methylmercury (MeHg) exposure and polyunsaturated fatty acid (PUFA) concentrations. The n-3 PUFA are regulators of inflammation while MeHg may impact the cord cytokine profile and, subsequently, contribute to immune mediated outcomes. This study aimed to investigate associations between infant MeHg exposure and cord cytokine concentrations while adjusting for cord PUFA. METHODS We studied participants in the Seychelles Child Development Study (SCDS) Nutrition Cohort 2 (NC2), a large birth cohort in a high fish-eating population. Whole blood MeHg, serum PUFA and serum cytokine concentrations (IFN-γ, IL-1β, IL-2, IL-12p70, TNF-α, IL-4, IL-10, IL-13, IL-6 and IL-8) were measured in cord blood collected at delivery (n = 878). Linear regression examined associations between infant MeHg exposure and cord cytokines concentrations, with and without adjustment for cord PUFA. An interaction model examined cord MeHg, cytokines and tertiles of the n-6:n-3 ratio (low/medium/high). RESULTS There was no overall association between cord MeHg (34.08 ± 19.98 μg/L) and cytokine concentrations, with or without adjustment for PUFA. Increased total n-3 PUFA (DHA, EPA and ALA) was significantly associated with lower IL-10 (β = -0.667; p = 0.007) and lower total Th2 (IL-4, IL-10 and IL-13) (β = -0.715; p = 0.036). In the interaction model, MeHg and IL-1β was positive and significantly different from zero in the lowest n-6:n-3 ratio tertile (β = 0.002, p = 0.03). CONCLUSION Methylmercury exposure from fish consumption does not appear to impact markers of inflammation in cord blood. The association of cord n-3 PUFA with lower IL-10 and total Th2 cytokines suggests that they may have a beneficial influence on the regulation of the inflammatory milieu. These findings are important for public health advice and deserve to be investigated in follow up studies.
Collapse
Affiliation(s)
- Toni Spence
- Nutrition Innovation Centre for Food and Health, Ulster University, Coleraine, County Londonderry, BT52 1SA, UK.
| | - Alexis Zavez
- School of Medicine and Dentistry, University of Rochester, 601 Elmwood Avenue, Rochester, NY, 14642, USA.
| | - Philip J Allsopp
- Nutrition Innovation Centre for Food and Health, Ulster University, Coleraine, County Londonderry, BT52 1SA, UK
| | - Marie C Conway
- Nutrition Innovation Centre for Food and Health, Ulster University, Coleraine, County Londonderry, BT52 1SA, UK.
| | - Alison J Yeates
- Nutrition Innovation Centre for Food and Health, Ulster University, Coleraine, County Londonderry, BT52 1SA, UK.
| | - Maria S Mulhern
- Nutrition Innovation Centre for Food and Health, Ulster University, Coleraine, County Londonderry, BT52 1SA, UK.
| | - Edwin van Wijngaarden
- School of Medicine and Dentistry, University of Rochester, 601 Elmwood Avenue, Rochester, NY, 14642, USA.
| | - J J Strain
- Nutrition Innovation Centre for Food and Health, Ulster University, Coleraine, County Londonderry, BT52 1SA, UK.
| | - Gary J Myers
- School of Medicine and Dentistry, University of Rochester, 601 Elmwood Avenue, Rochester, NY, 14642, USA.
| | - Gene E Watson
- School of Medicine and Dentistry, University of Rochester, 601 Elmwood Avenue, Rochester, NY, 14642, USA.
| | - Philip W Davidson
- School of Medicine and Dentistry, University of Rochester, 601 Elmwood Avenue, Rochester, NY, 14642, USA.
| | | | - Sally W Thurston
- School of Medicine and Dentistry, University of Rochester, 601 Elmwood Avenue, Rochester, NY, 14642, USA.
| | - Emeir M McSorley
- Nutrition Innovation Centre for Food and Health, Ulster University, Coleraine, County Londonderry, BT52 1SA, UK.
| |
Collapse
|
18
|
Ekta, Utreja D. Fluorescence Based Comparative Sensing Behavior of the Nano-Composites of SiO 2 and TiO 2 towards Toxic Hg 2+ Ions. NANOMATERIALS (BASEL, SWITZERLAND) 2021; 11:3082. [PMID: 34835846 PMCID: PMC8621696 DOI: 10.3390/nano11113082] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/08/2021] [Revised: 10/26/2021] [Accepted: 10/27/2021] [Indexed: 11/16/2022]
Abstract
We have synthesized sulfonamide based nano-composites of SiO2 and TiO2 for selective and sensitive determination of toxic metal ion Hg2+ in aqueous medium. Nano-composites (11) and (12) were morphologically characterized with FT-IR, solid state NMR, UV-vis, FE SEM, TEM, EDX, BET, pXRD and elemental analysis. The comparative sensing behavior, pH effect and sensor concentrations were carried out with fluorescence signaling on spectrofluorometer and nano-composites (11) and (12), both were evaluated as "turn-on" fluorescence detector for the toxic Hg2+ ions. The LODs were calculated to be 41.2 and 18.8 nM, respectively of nano-composites (11) and (12). The detection limit of TiO2 based nano-composites was found comparatively lower than the SiO2 based nano-composites.
Collapse
Affiliation(s)
| | - Divya Utreja
- Department of Chemistry, Punjab Agricultural University, Ludhiana 141004, India;
| |
Collapse
|
19
|
Carrasco P, Estarlich M, Iñiguez C, Ferrero A, Murcia M, Esplugues A, Vioque J, Marina LS, Zabaleta C, Iriarte G, Fernández-Somoano A, Tardon A, Vrijheid M, Sunyer J, Ballester F, Llop S. Pre and postnatal exposure to mercury and respiratory health in preschool children from the Spanish INMA Birth Cohort Study. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 782:146654. [PMID: 33838378 DOI: 10.1016/j.scitotenv.2021.146654] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/17/2021] [Revised: 03/17/2021] [Accepted: 03/17/2021] [Indexed: 06/12/2023]
Abstract
Effects of mercury on maturing immune system have been reported, however the association with respiratory and allergy problems during infancy remains unclear. The aim of this study is to evaluate the association between pre and postnatal mercury exposure and respiratory and allergy problems among preschool children and to examine the role of potential modifying factors. Study subjects were children participant in Spanish Childhood and Environment Project (INMA, 2003-2008). We measured total mercury levels in cord blood (n = 1868) and hair at 4 years of age (n = 1347). Respiratory outcomes (wheezing, severe wheezing, chestiness, persistent cough, eczema and otitis) were obtained by questionnaires administered to parents. Associations were investigated by logistic regression adjusted for socio-demographic and lifestyle-related variables in each cohort and subsequent meta-analysis. We tested effect modification by factors related to individual susceptibility, diet and co-exposure with other pollutants. The geometric mean of cord blood and hair total mercury was 8.20 μg/L and 0.97 μg/g, respectively. No statistically significant association between pre or postnatal mercury exposure and respiratory and allergy outcomes was found. Notwithstanding, lower maternal intake of fruits and vegetables increased the risk of some respiratory outcomes due to the prenatal exposure to mercury (pint < 0.05). Moreover, an inverse association between prenatal mercury exposure and some respiratory outcomes was observed among children with higher maternal exposure to organocholorine compounds or smoking (pint < 0.05). Also, sex and postnatal smoking exposure modulated mercury postnatal effects on persistent cough (pint < 0.05). In conclusion, no association between pre and postnatal mercury exposure and respiratory and allergy problems among the whole population at study was found. However, diet and other toxicants could modulate this relation, especially during prenatal period. More research on this topic is warranted due to the limited evidence.
Collapse
Affiliation(s)
- Paula Carrasco
- Epidemiology and Environmental Health Joint Research Unit, Foundation for the Promotion of Health and Biomedical Research in the Valencian Region, FISABIO-Public Health, FISABIO-Universitat Jaume I-Universitat de València, Av. Catalunya 21, 46020 Valencia, Spain; Department of Medicine, Universitat Jaume I, Avenida de Vicent Sos Baynat s/n, 12071 Castellón de la Plana, Spain
| | - Marisa Estarlich
- Epidemiology and Environmental Health Joint Research Unit, Foundation for the Promotion of Health and Biomedical Research in the Valencian Region, FISABIO-Public Health, FISABIO-Universitat Jaume I-Universitat de València, Av. Catalunya 21, 46020 Valencia, Spain; Spanish Consortium for Research on Epidemiology and Public Health (CIBERESP), Av. Monforte de Lemos, 3-5. Pabellón 11, 28029 Madrid, Spain; Nursing School, Universitat de València, C/Jaume Roig s/n, 46010, Valencia, Spain.
| | - Carmen Iñiguez
- Epidemiology and Environmental Health Joint Research Unit, Foundation for the Promotion of Health and Biomedical Research in the Valencian Region, FISABIO-Public Health, FISABIO-Universitat Jaume I-Universitat de València, Av. Catalunya 21, 46020 Valencia, Spain; Spanish Consortium for Research on Epidemiology and Public Health (CIBERESP), Av. Monforte de Lemos, 3-5. Pabellón 11, 28029 Madrid, Spain; Department of Statistics and Computational Research. Universitat de València, València, Dr. Moliner, 50 46100, Spain
| | - Amparo Ferrero
- Epidemiology and Environmental Health Joint Research Unit, Foundation for the Promotion of Health and Biomedical Research in the Valencian Region, FISABIO-Public Health, FISABIO-Universitat Jaume I-Universitat de València, Av. Catalunya 21, 46020 Valencia, Spain; Spanish Consortium for Research on Epidemiology and Public Health (CIBERESP), Av. Monforte de Lemos, 3-5. Pabellón 11, 28029 Madrid, Spain
| | - Mario Murcia
- Epidemiology and Environmental Health Joint Research Unit, Foundation for the Promotion of Health and Biomedical Research in the Valencian Region, FISABIO-Public Health, FISABIO-Universitat Jaume I-Universitat de València, Av. Catalunya 21, 46020 Valencia, Spain; Spanish Consortium for Research on Epidemiology and Public Health (CIBERESP), Av. Monforte de Lemos, 3-5. Pabellón 11, 28029 Madrid, Spain; Servicio de Análisis de Sistemas de Información Sanitaria, Conselleria de Sanitat, Generalitat Valenciana. C/Micer Mascó, 31-33, 46010, Valencia, Spain
| | - Ana Esplugues
- Epidemiology and Environmental Health Joint Research Unit, Foundation for the Promotion of Health and Biomedical Research in the Valencian Region, FISABIO-Public Health, FISABIO-Universitat Jaume I-Universitat de València, Av. Catalunya 21, 46020 Valencia, Spain; Spanish Consortium for Research on Epidemiology and Public Health (CIBERESP), Av. Monforte de Lemos, 3-5. Pabellón 11, 28029 Madrid, Spain; Nursing School, Universitat de València, C/Jaume Roig s/n, 46010, Valencia, Spain
| | - Jesús Vioque
- Spanish Consortium for Research on Epidemiology and Public Health (CIBERESP), Av. Monforte de Lemos, 3-5. Pabellón 11, 28029 Madrid, Spain; Institute for Health and Biomedical Research (ISABIAL), Avda Pinto Baeza, 12, 03010 AlicanteAlicante, Spain
| | - Loreto Santa Marina
- Spanish Consortium for Research on Epidemiology and Public Health (CIBERESP), Av. Monforte de Lemos, 3-5. Pabellón 11, 28029 Madrid, Spain; Health Department of Basque Government, Sub-directorate of Public Health of Gipuzkoa, Avenida de Navarra 4, 20013 San Sebastián, Spain; Biodonostia Health Research Institute, Group of Environmental Epidemiology and Child Development, Public Health Division of Gipuzkoa, Doctor Begiristain, s/n, 20014 San Sebastián, Spain
| | - Carlos Zabaleta
- Biodonostia Health Research Institute, Group of Environmental Epidemiology and Child Development, Public Health Division of Gipuzkoa, Doctor Begiristain, s/n, 20014 San Sebastián, Spain; Nuestra señora de la Antigua Hospital, OSI Goierri-Alto Urola, OSAKIDETZA-Basque Health Service, Barrio Argixao, s/n, 20700 Zumarraga, Spain
| | - Gorka Iriarte
- Laboratorio de Salud Pública de Alava, Santiago 11, 01002 Vitoria Gasteiz, Spain
| | - Ana Fernández-Somoano
- Spanish Consortium for Research on Epidemiology and Public Health (CIBERESP), Av. Monforte de Lemos, 3-5. Pabellón 11, 28029 Madrid, Spain; IUOPA-Departamento de Medicina, University of Oviedo, Av. Julián Clavería, 6, 33006 Oviedo, Spain; Institute of Health Research of the Principality of Asturias - Foundation for Biosanitary Research of Asturias (ISPA-FINBA), Avenida Hospital Universitario s/n, 33011, Oviedo, Spain
| | - Adonina Tardon
- Spanish Consortium for Research on Epidemiology and Public Health (CIBERESP), Av. Monforte de Lemos, 3-5. Pabellón 11, 28029 Madrid, Spain; IUOPA-Departamento de Medicina, University of Oviedo, Av. Julián Clavería, 6, 33006 Oviedo, Spain; Institute of Health Research of the Principality of Asturias - Foundation for Biosanitary Research of Asturias (ISPA-FINBA), Avenida Hospital Universitario s/n, 33011, Oviedo, Spain
| | - Martine Vrijheid
- Spanish Consortium for Research on Epidemiology and Public Health (CIBERESP), Av. Monforte de Lemos, 3-5. Pabellón 11, 28029 Madrid, Spain; Barcelona Institute for Global Health (ISGlobal), Dr. Aiguader 88, 08003 Barcelona, Spain; Universitat Pompeu Fabra (UPF), Plaça de la Mercè 10-12, 08002 Barcelona, Spain
| | - Jordi Sunyer
- Spanish Consortium for Research on Epidemiology and Public Health (CIBERESP), Av. Monforte de Lemos, 3-5. Pabellón 11, 28029 Madrid, Spain; Barcelona Institute for Global Health (ISGlobal), Dr. Aiguader 88, 08003 Barcelona, Spain; Universitat Pompeu Fabra (UPF), Plaça de la Mercè 10-12, 08002 Barcelona, Spain; Municipal Institute of Medical Research, IMIM-Hospital del Mar, Dr. Aiguader 88, 08003 Barcelona, Spain
| | - Ferran Ballester
- Epidemiology and Environmental Health Joint Research Unit, Foundation for the Promotion of Health and Biomedical Research in the Valencian Region, FISABIO-Public Health, FISABIO-Universitat Jaume I-Universitat de València, Av. Catalunya 21, 46020 Valencia, Spain; Spanish Consortium for Research on Epidemiology and Public Health (CIBERESP), Av. Monforte de Lemos, 3-5. Pabellón 11, 28029 Madrid, Spain; Nursing School, Universitat de València, C/Jaume Roig s/n, 46010, Valencia, Spain
| | - Sabrina Llop
- Epidemiology and Environmental Health Joint Research Unit, Foundation for the Promotion of Health and Biomedical Research in the Valencian Region, FISABIO-Public Health, FISABIO-Universitat Jaume I-Universitat de València, Av. Catalunya 21, 46020 Valencia, Spain; Spanish Consortium for Research on Epidemiology and Public Health (CIBERESP), Av. Monforte de Lemos, 3-5. Pabellón 11, 28029 Madrid, Spain
| |
Collapse
|
20
|
Cañadas P, Lantigua Y, Enríquez-de-Salamanca A, Fernandez I, Pastor-Idoate S, Sobas EM, Dueñas-Laita A, Pérez-Castrillón JL, Pastor Jimeno JC, Calonge M. Ocular Surface Pathology in Patients Suffering from Mercury Intoxication. Diagnostics (Basel) 2021; 11:diagnostics11081326. [PMID: 34441261 PMCID: PMC8391177 DOI: 10.3390/diagnostics11081326] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2021] [Revised: 07/09/2021] [Accepted: 07/20/2021] [Indexed: 12/05/2022] Open
Abstract
Purpose: To report the ocular surface pathology of patients suffering from acute/subacute mercury vapor intoxication. Design: Cross-sectional study. Participants: Male workers intoxicated with inorganic mercury referred for ophthalmic involvement and healthy control subjects. Methods: The following tests were performed: dry eye (DE)-related symptoms indicated by the ocular surface disease (OSDI) index questionnaire; tear osmolarity; analysis of 23 tear cytokine concentrations and principal component and hierarchical agglomerative cluster analyses; tear break-up time (T-BUT); corneal fluorescein and conjunctival lissamine green staining; tear production by Schirmer and tear lysozyme tests; mechanical and thermal corneal sensitivity (non-contact esthesiometry); and corneal nerve analysis and dendritic cell density by in vivo confocal microscopy (IVCM). Results: Twenty-two out of 29 evaluated patients entered the study. Most had DE-related symptoms (OSDI values > 12), that were severe in 63.6% of them. Tear osmolarity was elevated (>308 mOsms/L) in 83.4% of patients (mean 336.23 (28.71) mOsm/L). Corneal and conjunctival staining were unremarkable. T-BUT was low (<7 s) in 22.7% of patients. Schirmer test and tear lysozyme concentration were low in 13.6% and 27.3% of cases, respectively. Corneal esthesiometry showed patient mechanical (mean 147.81 (53.36) mL/min) and thermal thresholds to heat (+2.35 (+1.10) °C) and cold (−2.57 (−1.24) °C) to be significantly higher than controls. Corneal IVCM revealed lower values for nerve density (6.4 (2.94) n/mm2), nerve branching density (2 (2.50) n/mm2), and dendritic cell density (9.1 (8.84) n/mm2) in patients. Tear levels of IL-12p70, IL-6, RANTES, and VEGF were increased, whereas EGF and IP-10/CXCL10 were decreased compared to controls. Based on cytokine levels, two clusters of patients were identified. Compared to Cluster 1, Cluster 2 patients had significantly increased tear levels of 18 cytokines, decreased tear lysozyme, lower nerve branching density, fewer dendritic cells, and higher urine mercury levels. Conclusions: Patients suffering from systemic mercury intoxication showed symptoms and signs of ocular surface pathology, mainly by targeting the trigeminal nerve, as shown by alterations in corneal sensitivity and sub-basal nerve morphology.
Collapse
Affiliation(s)
- Pilar Cañadas
- IOBA (Institute of Applied Ophthalmobiology), University of Valladolid, 47011 Valladolid, Spain; (Y.L.); (A.E.-d.-S.); (I.F.); (S.P.-I.); (E.M.S.); (J.C.P.J.); (M.C.)
- Correspondence: ; Tel.: +34-(98)-3184763
| | - Yrbani Lantigua
- IOBA (Institute of Applied Ophthalmobiology), University of Valladolid, 47011 Valladolid, Spain; (Y.L.); (A.E.-d.-S.); (I.F.); (S.P.-I.); (E.M.S.); (J.C.P.J.); (M.C.)
| | - Amalia Enríquez-de-Salamanca
- IOBA (Institute of Applied Ophthalmobiology), University of Valladolid, 47011 Valladolid, Spain; (Y.L.); (A.E.-d.-S.); (I.F.); (S.P.-I.); (E.M.S.); (J.C.P.J.); (M.C.)
- CIBER-BBN (Biomedical Research Networking Center Bioengineering, Biomaterials and Nanomedicine), Carlos III National Institute of Health, 28029 Madrid, Spain
| | - Itziar Fernandez
- IOBA (Institute of Applied Ophthalmobiology), University of Valladolid, 47011 Valladolid, Spain; (Y.L.); (A.E.-d.-S.); (I.F.); (S.P.-I.); (E.M.S.); (J.C.P.J.); (M.C.)
- CIBER-BBN (Biomedical Research Networking Center Bioengineering, Biomaterials and Nanomedicine), Carlos III National Institute of Health, 28029 Madrid, Spain
| | - Salvador Pastor-Idoate
- IOBA (Institute of Applied Ophthalmobiology), University of Valladolid, 47011 Valladolid, Spain; (Y.L.); (A.E.-d.-S.); (I.F.); (S.P.-I.); (E.M.S.); (J.C.P.J.); (M.C.)
| | - Eva M. Sobas
- IOBA (Institute of Applied Ophthalmobiology), University of Valladolid, 47011 Valladolid, Spain; (Y.L.); (A.E.-d.-S.); (I.F.); (S.P.-I.); (E.M.S.); (J.C.P.J.); (M.C.)
| | - Antonio Dueñas-Laita
- Department of Toxicology, Medical School, University of Valladolid, 47003 Valladolid, Spain;
| | | | - Jose C. Pastor Jimeno
- IOBA (Institute of Applied Ophthalmobiology), University of Valladolid, 47011 Valladolid, Spain; (Y.L.); (A.E.-d.-S.); (I.F.); (S.P.-I.); (E.M.S.); (J.C.P.J.); (M.C.)
| | - Margarita Calonge
- IOBA (Institute of Applied Ophthalmobiology), University of Valladolid, 47011 Valladolid, Spain; (Y.L.); (A.E.-d.-S.); (I.F.); (S.P.-I.); (E.M.S.); (J.C.P.J.); (M.C.)
- CIBER-BBN (Biomedical Research Networking Center Bioengineering, Biomaterials and Nanomedicine), Carlos III National Institute of Health, 28029 Madrid, Spain
| |
Collapse
|
21
|
Truzzi F, Mandrioli D, Gnudi F, Scheepers PTJ, Silbergeld EK, Belpoggi F, Dinelli G. Comparative Evaluation of the Cytotoxicity of Glyphosate-Based Herbicides and Glycine in L929 and Caco2 Cells. Front Public Health 2021; 9:643898. [PMID: 34026710 PMCID: PMC8138571 DOI: 10.3389/fpubh.2021.643898] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2020] [Accepted: 04/08/2021] [Indexed: 11/13/2022] Open
Abstract
Introduction: Glyphosate, an amino acid analog of glycine, is the most widely applied organophosphate pesticide worldwide and it is an active ingredient of all glyphosate-based herbicides (GBHs), including the formulation "Roundup. " While glycine is an essential amino acid generally recognized safe, both epidemiological and toxicological in vivo and in vitro studies available in literature report conflicting findings on the toxicity of GBHs. In our earlier in vivo studies in Sprague-Dawley rats we observed that exposure to GBHs at doses of glyphosate of 1.75 mg/kg bw/day, induced different toxic effects relating to sexual development, endocrine system, and the alteration of the intestinal microbiome. In the present work, we aimed to comparatively test in in vitro models the cytotoxicity of glycine and GBHs. Methods: We tested the cytotoxic effects of glycine, glyphosate, and its formulation Roundup Bioflow at different doses using MTT and Trypan Blue assays in human Caco2 and murine L929 cell lines. Results: Statistically significant dose-related cytotoxic effects were observed in MTT and Trypan Blue assays in murine (L929) and human (Caco2) cells treated with glyphosate or Roundup Bioflow. No cytotoxic effects were observed for glycine. In L929, Roundup Bioflow treatment showed a mean IC50 value that was significantly lower than glyphosate in both MTT and Trypan Blue assays. In Caco2, Roundup Bioflow treatment showed a mean IC50 value that was significantly lower than glyphosate in the MTT assays, while a comparable IC50 was observed for glyphosate and Roundup Bioflow in Trypan Blue assays. IC50 for glycine could not be estimated because of the lack of cytotoxic effects of the substance. Conclusion: Glyphosate and its formulation Roundup Bioflow, but not glycine, caused dose-related cytotoxic effects in in vitro human and murine models (Caco2 and L929). Our results showed that glycine and its analog glyphosate presented different cytotoxicity profiles. Glyphosate and Roundup Bioflow demonstrate cytotoxicity similar to other organophosphate pesticides (malathion, diazinon, and chlorpyriphos).
Collapse
Affiliation(s)
- Francesca Truzzi
- Department of Agricultural Sciences, University of Bologna, Bologna, Italy
| | - Daniele Mandrioli
- Department of Agricultural Sciences, University of Bologna, Bologna, Italy
- Cesare Maltoni Cancer Research Center (CMCRC), Ramazzini Institute (RI), Bologna, Italy
| | - Federica Gnudi
- Cesare Maltoni Cancer Research Center (CMCRC), Ramazzini Institute (RI), Bologna, Italy
| | - Paul T. J. Scheepers
- Radboud Institute for Health Sciences, Radboud University Medical Center (UMC), Nijmegen, Netherlands
| | - Ellen K. Silbergeld
- Bloomberg School of Public Health, Johns Hopkins University, Baltimore, MD, United States
| | - Fiorella Belpoggi
- Cesare Maltoni Cancer Research Center (CMCRC), Ramazzini Institute (RI), Bologna, Italy
| | - Giovanni Dinelli
- Department of Agricultural Sciences, University of Bologna, Bologna, Italy
| |
Collapse
|
22
|
Yang L, Zhang Y, Wang F, Luo Z, Guo S, Strähle U. Toxicity of mercury: Molecular evidence. CHEMOSPHERE 2020; 245:125586. [PMID: 31881386 DOI: 10.1016/j.chemosphere.2019.125586] [Citation(s) in RCA: 208] [Impact Index Per Article: 41.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/13/2019] [Revised: 11/28/2019] [Accepted: 12/08/2019] [Indexed: 05/25/2023]
Abstract
Minamata disease in Japan and the large-scale poisoning by methylmercury (MeHg) in Iraq caused wide public concerns about the risk emanating from mercury for human health. Nowadays, it is widely known that all forms of mercury induce toxic effects in mammals, and increasing evidence supports the concern that environmentally relevant levels of MeHg could impact normal biological functions in wildlife. The information of mechanism involved in mercurial toxicity is growing but knowledge gaps still exist between the adverse effects and mechanisms of action, especially at the molecular level. A body of data obtained from experimental studies on mechanisms of mercurial toxicity in vivo and in vitro points to that disruption of the antioxidant system may play an important role in the mercurial toxic effects. Moreover, the accumulating evidence indicates that signaling transduction, protein or/and enzyme activity, and gene regulation are involving in mediating toxic and adaptive response to mercury exposure. We conducted here a comprehensive review of mercurial toxic effects on wildlife and human, in particular synthesized key findings of molecular pathways involved in mercurial toxicity from the cells to human. We discuss the molecular evidence related mercurial toxicity to the adverse effects, with particular emphasis on the gene regulation. The further studies relying on Omic analysis connected to adverse effects and modes of action of mercury will aid in the evaluation and validation of causative relationship between health outcomes and gene expression.
Collapse
Affiliation(s)
- Lixin Yang
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, 100012, Beijing, China; Center for Global Health, School of Public Health, Nanjing Medical University, 211166, Nanjing, China.
| | - Yuanyuan Zhang
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, 100012, Beijing, China
| | - Feifei Wang
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, 100012, Beijing, China
| | - Zidie Luo
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, 100012, Beijing, China
| | - Shaojuan Guo
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, 100012, Beijing, China
| | - Uwe Strähle
- Toxicology and Genetics, Karlsruhe Institute of Technology (KIT), Hermann-von-Helmholtz-Platz 1, 76344, Eggenstein-Leopoldshafen, Germany
| |
Collapse
|
23
|
THONGSAW A, SANANMUANG R, UDNAN Y, AMPIAH-BONNEY RJ, CHAIYASITH WC. Immobilized Activated Carbon as Sorbent in Solid Phase Extraction with Cold Vapor Atomic Absorption Spectrometry for the Preconcentration and Determination of Mercury Species in Water and Freshwater Fish Samples. ANAL SCI 2019; 35:1195-1202. [DOI: 10.2116/analsci.19p164] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Affiliation(s)
- Arnon THONGSAW
- Department of Chemistry, Research Center for Academic Excellence in Petroleum, Petrochemical and Advanced Materials, Faculty of Science, Naresuan University
| | - Ratana SANANMUANG
- Department of Chemistry, Research Center for Academic Excellence in Petroleum, Petrochemical and Advanced Materials, Faculty of Science, Naresuan University
| | - Yuthapong UDNAN
- Department of Chemistry, Research Center for Academic Excellence in Petroleum, Petrochemical and Advanced Materials, Faculty of Science, Naresuan University
| | | | - Wipharat Chuachuad CHAIYASITH
- Department of Chemistry, Research Center for Academic Excellence in Petroleum, Petrochemical and Advanced Materials, Faculty of Science, Naresuan University
| |
Collapse
|
24
|
Chen R, Xu Y, Xu C, Shu Y, Ma S, Lu C, Mo X. Associations between mercury exposure and the risk of nonalcoholic fatty liver disease (NAFLD) in US adolescents. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2019; 26:31384-31391. [PMID: 31473923 DOI: 10.1007/s11356-019-06224-5] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/02/2018] [Accepted: 08/16/2019] [Indexed: 06/10/2023]
Abstract
Little is known regarding the effects of environmental mercury (Hg) exposure on liver dysfunction in adolescents. We aimed to explore the association between Hg exposure and the risk of nonalcoholic fatty liver disease (NAFLD) in the adolescent population. The cross-sectional associations between blood Hg concentrations and serum alanine aminotransferase (ALT) levels, a surrogate for suspected NAFLD, were evaluated using data from adolescents (aged 12-17 years old) who participated in the National Health and Nutrition Examination Survey (NHANES), 1999-2014. A final sample of 6389 adolescents was analysed. Elevated ALT was defined as > 25 IU/L and > 22 IU/L for boys and girls ≤ 17 years old, respectively. Odds ratios (ORs) of Hg levels in association with serum ALT levels were estimated using a logistic regression after adjusting for gender, age, ethnicity, serum cotinine, body mass index, the poverty income ratio, and NHANES cycles. The median blood Hg level was 0.73 ± 0.91 μg/L amongst US adolescents. In the adjusted model, the ORs of elevated ALT levels of those in the 4th quartile were higher amongst non-Hispanic white adolescents (OR = 1.76, 95% CI 1.20, 2.59; P = 0.035) and those who were normal or underweight (OR = 1.41, 95% CI 1.08, 1.85; P = 0.020). No association was observed for the other variables. Our results indicate that the positive association between blood Hg exposure and the risk of NAFLD in US adolescents is the highest amongst non-Hispanic white and those who are normal or underweight, regardless of ethnicity. More research is necessary to confirm this association and to clarify the potential mechanisms.
Collapse
Affiliation(s)
- Runsen Chen
- Department of Cardiothoracic Surgery, Children's Hospital of Nanjing Medical University, 72 Guangzhou Road, Nanjing, 210008, China
| | - Yang Xu
- Department of Cardiothoracic Surgery, Children's Hospital of Nanjing Medical University, 72 Guangzhou Road, Nanjing, 210008, China
| | - Cheng Xu
- Department of Cardiothoracic Surgery, Children's Hospital of Nanjing Medical University, 72 Guangzhou Road, Nanjing, 210008, China
| | - Yaqin Shu
- Department of Cardiothoracic Surgery, Children's Hospital of Nanjing Medical University, 72 Guangzhou Road, Nanjing, 210008, China
| | - Siyu Ma
- Department of Cardiothoracic Surgery, Children's Hospital of Nanjing Medical University, 72 Guangzhou Road, Nanjing, 210008, China
| | - Changgui Lu
- Department of Pediatric Surgery, Children's Hospital of Nanjing Medical University, Nanjing, China
| | - Xuming Mo
- Department of Cardiothoracic Surgery, Children's Hospital of Nanjing Medical University, 72 Guangzhou Road, Nanjing, 210008, China.
| |
Collapse
|
25
|
McSorley EM, Yeates AJ, Mulhern MS, van Wijngaarden E, Grzesik K, Thurston SW, Spence T, Crowe W, Davidson PW, Zareba G, Myers GJ, Watson GE, Shamlaye CF, Strain JJ. Associations of maternal immune response with MeHg exposure at 28 weeks' gestation in the Seychelles Child Development Study. Am J Reprod Immunol 2018; 80:e13046. [PMID: 30295973 PMCID: PMC6202202 DOI: 10.1111/aji.13046] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2018] [Revised: 08/07/2018] [Accepted: 08/09/2018] [Indexed: 12/30/2022] Open
Abstract
PROBLEM Maternal methylmercury (MeHg) exposure may be associated with immune response during pregnancy. METHOD OF STUDY In the high fish-eating Seychelles Child Development Study Nutrition Cohort 2, we examined the association between maternal MeHg, polyunsaturated fatty acids (PUFA), and immune markers (Th1:Th2; TNF-α, IL-1β, IFN-γ, IL-2, IL-4, IL-5, IL-10, MCP-1, TARC, sFlt-1, VEGF-D, CRP and IL-6) at 28 weeks' gestation. Linear regression examined associations between MeHg exposure and immune markers with and without adjustment for PUFA. RESULTS In all models, as MeHg concentrations increased, the Th1:Th2 ratio, total Th1 and individual Th1 (IL-1β, IL-2, TNF-α) concentrations decreased. MeHg was not associated with total Th2 cytokines but was associated with a decrease in IL-4 and IL-10. MeHg was positively associated with TARC and VEGF-D and negatively associated with CRP. There was a significant interaction between MeHg and the n-6:n-3 ratio, with MeHg associated with a larger decrease in Th1:Th2 at higher n-6:n-3 PUFA ratios. The n-3 PUFA were associated with lower CRP, IL-4 and higher IFN-γ. The n-6 PUFA were associated with higher IL-1β, IL-2, TNF-α, IL-4, IL-10, CRP and IL-6. CONCLUSION Maternal MeHg was associated with markers of immune function at 28 weeks' gestation. A significant interaction between MeHg and the n-6:n-3 ratio on the Th1:Th2 ratio suggests that the n-3 PUFA may mitigate any immunosuppressive associations of MeHg. The n-3 and n-6 PUFA were associated with suppressive and stimulatory immune responses, respectively. Overall, the associations were of small magnitude, and further research is required to determine the clinical significance.
Collapse
Affiliation(s)
- Emeir M. McSorley
- Nutrition Innovation Centre for Food and Health (NICHE)School of Biomedical SciencesUniversity of UlsterColeraineNorthern Ireland
| | - Alison J. Yeates
- Nutrition Innovation Centre for Food and Health (NICHE)School of Biomedical SciencesUniversity of UlsterColeraineNorthern Ireland
| | - Maria S. Mulhern
- Nutrition Innovation Centre for Food and Health (NICHE)School of Biomedical SciencesUniversity of UlsterColeraineNorthern Ireland
| | | | - Katherine Grzesik
- School of Medicine and DentistryUniversity of RochesterRochesterNew York
| | - Sally W. Thurston
- School of Medicine and DentistryUniversity of RochesterRochesterNew York
| | - Toni Spence
- Nutrition Innovation Centre for Food and Health (NICHE)School of Biomedical SciencesUniversity of UlsterColeraineNorthern Ireland
| | - William Crowe
- Nutrition Innovation Centre for Food and Health (NICHE)School of Biomedical SciencesUniversity of UlsterColeraineNorthern Ireland
| | - Philip W. Davidson
- School of Medicine and DentistryUniversity of RochesterRochesterNew York
| | - Grazyna Zareba
- School of Medicine and DentistryUniversity of RochesterRochesterNew York
| | - Gary J. Myers
- School of Medicine and DentistryUniversity of RochesterRochesterNew York
| | - Gene E. Watson
- School of Medicine and DentistryUniversity of RochesterRochesterNew York
| | | | - J. J. Strain
- Nutrition Innovation Centre for Food and Health (NICHE)School of Biomedical SciencesUniversity of UlsterColeraineNorthern Ireland
| |
Collapse
|
26
|
Inflammatory response following in vitro exposure to methylmercury with and without n-3 long chain polyunsaturated fatty acids in peripheral blood mononuclear cells from systemic lupus erythematosus patients compared to healthy controls. Toxicol In Vitro 2018; 52:272-278. [PMID: 29778720 DOI: 10.1016/j.tiv.2018.05.008] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2018] [Revised: 05/10/2018] [Accepted: 05/15/2018] [Indexed: 01/29/2023]
Abstract
Methylmercury (MeHg) is a proposed environmental stimulus in systemic lupus erythematosus (SLE). Humans are primarily exposed to MeHg through fish consumption. Fish are also important sources of n-3 long chain polyunsaturated fatty acids (n-3 LCPUFA). This in vitro study investigated the inflammatory response of isolated peripheral blood mononuclear cells (PBMCs), when exposed to either MeHg alone or with added n-3 LCPUFA, from SLE patients (N = 12) compared to healthy sex matched controls (N = 12). The PBMCs were isolated and exposed to 200 nM of MeHg for 24 h with or without pre-exposure to eicosapentaenoic acid (EPA) or docosahexaenoic acid (DHA) at a concentration of 100 μM each. Supernatants were analyzed for the inflammatory markers. Following exposure to MeHg, mean TNF-α concentrations were significantly higher in SLE patients (2226.01 ± 348.98pg/ml) compared to controls (701.40 ± 680.65 pg/ml) (P = .008). Pre-exposure of cells with MeHg and EPA resulted in a significantly higher concentration of IL-8 in supernatants from SLE patients (2137.83 ± 1559.01 pg/ml) compared to that of the controls (879.26 ± 979.49 pg/ml) (P = .030). EPA and DHA attenuated the pro-inflammatory inducing effects of MeHg in SLE and control cells. In summary, exposure to MeHg stimulated a higher TNF-α response in SLE patients compared with healthy controls; nevertheless the presence of n-3 LCPUFA reduced the overall inflammatory response, albeit to a lesser degree in SLE patients.
Collapse
|
27
|
Eagles-Smith CA, Silbergeld EK, Basu N, Bustamante P, Diaz-Barriga F, Hopkins WA, Kidd KA, Nyland JF. Modulators of mercury risk to wildlife and humans in the context of rapid global change. AMBIO 2018; 47:170-197. [PMID: 29388128 PMCID: PMC5794686 DOI: 10.1007/s13280-017-1011-x] [Citation(s) in RCA: 213] [Impact Index Per Article: 30.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/18/2023]
Abstract
Environmental mercury (Hg) contamination is an urgent global health threat. The complexity of Hg in the environment can hinder accurate determination of ecological and human health risks, particularly within the context of the rapid global changes that are altering many ecological processes, socioeconomic patterns, and other factors like infectious disease incidence, which can affect Hg exposures and health outcomes. However, the success of global Hg-reduction efforts depends on accurate assessments of their effectiveness in reducing health risks. In this paper, we examine the role that key extrinsic and intrinsic drivers play on several aspects of Hg risk to humans and organisms in the environment. We do so within three key domains of ecological and human health risk. First, we examine how extrinsic global change drivers influence pathways of Hg bioaccumulation and biomagnification through food webs. Next, we describe how extrinsic socioeconomic drivers at a global scale, and intrinsic individual-level drivers, influence human Hg exposure. Finally, we address how the adverse health effects of Hg in humans and wildlife are modulated by a range of extrinsic and intrinsic drivers within the context of rapid global change. Incorporating components of these three domains into research and monitoring will facilitate a more holistic understanding of how ecological and societal drivers interact to influence Hg health risks.
Collapse
Affiliation(s)
| | - Ellen K. Silbergeld
- Johns Hopkin Bloomberg School of Public Health, 615 N. Wolfe Street, E6644, Baltimore, MD 21205 USA
| | - Niladri Basu
- McGill University, 204-CINE Building, Montreal, QC H9X 3V9 Canada
| | - Paco Bustamante
- University of La Rochelle, laboratory of Littoral Environment and Societies, Littoral Environnement et Sociétés (LIENSs), LIENSs UMR 7266 CNRS-Université de La Rochelle, 2 rue Olympe de Gouges, 17000 La Rochelle, France
| | - Fernando Diaz-Barriga
- Center for Applied Research in Environment and Health at, Universidad Autonoma de San Luis Potosi, Avenida Venustiano Carranza No. 2405, Col Lomas los Filtros Código Postal, 78214 San Luis Potosí, SLP Mexico
| | - William A. Hopkins
- Department of Fish and Wildlife Conservation, 310 West Campus Drive Virginia Tech, Cheatham Hall, Room 106 (MC 0321), Blacksburg, VA 24061 USA
| | - Karen A. Kidd
- Department of Biology & School of Geography and Earth Sciences, McMaster University, 1280 Main Street W., Hamilton, ON L8S 4K1 Canada
| | - Jennifer F. Nyland
- Department of Biological Sciences, 1101 Camden Ave, Salisbury, MD 21801 USA
| |
Collapse
|
28
|
Lu Y, Yang D, Song X, Wang S, Song M, Hang T. Bioaccessibility and health risk assessment of mercury in cinnabar containing Traditional Chinese Medicines. J Trace Elem Med Biol 2017; 44:17-25. [PMID: 28965573 DOI: 10.1016/j.jtemb.2017.05.006] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/17/2017] [Revised: 04/25/2017] [Accepted: 05/19/2017] [Indexed: 11/19/2022]
Abstract
Cinnabar (α-HgS), has been formulated in Traditional Chinese Medicines (TCMs) for thousands of years. Since the total Hg content was accepted widely as the toxicity criteria, the safety alerts have been issued about the cinnabar containing TCMs for exceeding Hg limits. However, cinnabar is almost insoluble in water, the oral absorption is extremely low. Hence, it is not suitable to use the total Hg content alone to evaluate the toxicity of cinnabar containing TCMs. In instead, the bioaccessible Hg is a much reasonable safety indicator. In this study, bioaccessible Hg contents of 29 cinnabar containing TCMs were determined by cold vapor-atomic fluorescence spectrometry after in vitro extractions with the simulated gastrointestinal fluids, while the total Hg contents were determined after acid digestion. According to the daily dosages, the bioaccessible Hg exposures of these TCMs were evaluated, and most of them were within the permitted daily exposure set by the International Council for Harmonisation, demonstrating that these TCMs are safe when administrated following the instructions. However, the obtained results also suggested that the Hg exposure could also be influenced by the herbal ingredients in TCMs and the bioactivities in gastrointestinal tract, indicating the possible health risks after excessive or long-term medication of cinnabar containing TCMs. Considering the influencing factors of the Hg intakes after oral administration of cinnabar containing TCMs, the bioaccessible Hg exposure should be considered as a more rational criterion for evaluating the health risks than the total Hg content. Furthermore, precautions should also be taken to ensure safe usages of cinnabar containing TCMs from both the cinnabar contents and the processing procedures points of view, as well as the daily dosage regimen, for all of them are directly related with the bioaccessible Hg exposures.
Collapse
Affiliation(s)
- Yuting Lu
- Key Laboratory of Drug Quality Control and Pharmacovigilance, Ministry of Education, Department of Pharmaceutical Analysis, China Pharmaceutical University, Nanjing 210009, China
| | - Danyi Yang
- Key Laboratory of Drug Quality Control and Pharmacovigilance, Ministry of Education, Department of Pharmaceutical Analysis, China Pharmaceutical University, Nanjing 210009, China
| | - Xiaoni Song
- Key Laboratory of Drug Quality Control and Pharmacovigilance, Ministry of Education, Department of Pharmaceutical Analysis, China Pharmaceutical University, Nanjing 210009, China
| | - Sheng Wang
- Key Laboratory of Drug Quality Control and Pharmacovigilance, Ministry of Education, Department of Pharmaceutical Analysis, China Pharmaceutical University, Nanjing 210009, China
| | - Min Song
- Key Laboratory of Drug Quality Control and Pharmacovigilance, Ministry of Education, Department of Pharmaceutical Analysis, China Pharmaceutical University, Nanjing 210009, China
| | - Taijun Hang
- Key Laboratory of Drug Quality Control and Pharmacovigilance, Ministry of Education, Department of Pharmaceutical Analysis, China Pharmaceutical University, Nanjing 210009, China.
| |
Collapse
|
29
|
Monastero RN, Karimi R, Nyland JF, Harrington J, Levine K, Meliker JR. Mercury exposure, serum antinuclear antibodies, and serum cytokine levels in the Long Island Study of Seafood Consumption: A cross-sectional study in NY, USA. ENVIRONMENTAL RESEARCH 2017; 156:334-340. [PMID: 28390301 DOI: 10.1016/j.envres.2017.03.037] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/07/2017] [Revised: 03/23/2017] [Accepted: 03/25/2017] [Indexed: 06/07/2023]
Abstract
Mercury (Hg) is a well-known neurotoxin, and has been more recently studied specifically as an immunotoxin. In experimental and a few epidemiologic studies, Hg has been associated with distinct cytokine profiles and antinuclear antibody (ANA) positivity, though patterns at lower levels of exposure, typical of seafood consumers with a western diet, are not well characterized. Seafood consumers (n=287) recruited on Long Island, NY completed food frequency and health questionnaires and provided blood for analysis of Hg, poly-unsaturated fatty acids (omega-3 and omega-6 fatty acids), selenium (Se), ANA, and several cytokines (IL-1β, IL-4, IL-10, TNF-α, IL-17, IFN-γ, and IL-1ra). Logistic and linear regression analyses were conducted to evaluate associations between serum Hg and cytokines and ANA. Adjusted models accounted for gender, age, ethnicity, income, education, smoking, BMI, selenium, omega-3 fatty acids, omega-6 fatty acids, omega-6/omega-3 ratio, and fish intake. Sex-stratified models were also generated with the expectation that immune profiles would differ between women and men. Median blood Hg was 4.58µg/L with 90th %ile =19.8µg/L. Nine individuals displayed ANA positivity at serum titers above 1:80; many of the cytokines were below detection limits, and the ability to detect was used in the logistic regression analyses. In linear and logistic regression analyses, Hg was not significantly associated with any of the seven investigated cytokines or with ANA-positivity. Therefore, Hg was not associated with altered immune profiles in this population of seafood consumers.
Collapse
Affiliation(s)
- Rebecca N Monastero
- Undergraduate Studies, Stony Brook University, Stony Brook, NY 11794-8338, United States of America; Stony Brook University, Stony Brook, NY 11794-8338, United States of America.
| | - Roxanne Karimi
- Stony Brook University, Stony Brook, NY 11794-8338, United States of America; School of Marine and Atmospheric Sciences, Stony Brook University, Stony Brook, NY 11794-5000, United States of America; Consortium for Inter-Disciplinary Environmental Research, Stony Brook University, Stony Brook, NY 11794-5000, United States of America.
| | - Jennifer F Nyland
- Salisbury University Department of Biological Sciences, Henson Science Hall, 232, Salisbury, MD 21801, United States of America.
| | - James Harrington
- RTI International, Trace Inorganics Laboratory, RTP, NC 27709, United States of America.
| | - Keith Levine
- RTI International, Trace Inorganics Laboratory, RTP, NC 27709, United States of America.
| | - Jaymie R Meliker
- Stony Brook University, Stony Brook, NY 11794-8338, United States of America; Consortium for Inter-Disciplinary Environmental Research, Stony Brook University, Stony Brook, NY 11794-5000, United States of America; Program in Public Health, Stony Brook University, Stony Brook, NY 11794-8338, United States of America; Department of Family, Population, and Preventive Medicine, Stony Brook University, Stony Brook, NY 11794-8338, United States of America.
| |
Collapse
|
30
|
Branco V, Caito S, Farina M, Teixeira da Rocha J, Aschner M, Carvalho C. Biomarkers of mercury toxicity: Past, present, and future trends. JOURNAL OF TOXICOLOGY AND ENVIRONMENTAL HEALTH. PART B, CRITICAL REVIEWS 2017; 20:119-154. [PMID: 28379072 PMCID: PMC6317349 DOI: 10.1080/10937404.2017.1289834] [Citation(s) in RCA: 136] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/20/2023]
Abstract
Mercury (Hg) toxicity continues to represent a global health concern. Given that human populations are mostly exposed to low chronic levels of mercurial compounds (methylmercury through fish, mercury vapor from dental amalgams, and ethylmercury from vaccines), the need for more sensitive and refined tools to assess the effects and/or susceptibility to adverse metal-mediated health risks remains. Traditional biomarkers, such as hair or blood Hg levels, are practical and provide a reliable measure of exposure, but given intra-population variability, it is difficult to establish accurate cause-effect relationships. It is therefore important to identify and validate biomarkers that are predictive of early adverse effects prior to adverse health outcomes becoming irreversible. This review describes the predominant biomarkers used by toxicologists and epidemiologists to evaluate exposure, effect and susceptibility to Hg compounds, weighing on their advantages and disadvantages. Most importantly, and in light of recent findings on the molecular mechanisms underlying Hg-mediated toxicity, potential novel biomarkers that might be predictive of toxic effect are presented, and the applicability of these parameters in risk assessment is examined.
Collapse
Affiliation(s)
- Vasco Branco
- a Research Institute for Medicines (iMed.ULisboa), Faculdade de Farmácia , Universidade de Lisboa , Lisboa , Portugal
| | - Sam Caito
- b Department of Molecular Pharmacology , Albert Einstein College of Medicine , Bronx , New York , USA
| | - Marcelo Farina
- c Departamento de Bioquímica, Centro de Ciências Biológicas , Universidade Federal de Santa Catarina , Florianópolis , Brazil
| | - João Teixeira da Rocha
- d Departamento Bioquímica e Biologia Molecular , Universidade Federal de Santa Maria , Santa Maria , RS , Brazil
| | - Michael Aschner
- b Department of Molecular Pharmacology , Albert Einstein College of Medicine , Bronx , New York , USA
| | - Cristina Carvalho
- a Research Institute for Medicines (iMed.ULisboa), Faculdade de Farmácia , Universidade de Lisboa , Lisboa , Portugal
| |
Collapse
|
31
|
Wyatt LH, Luz AL, Cao X, Maurer LL, Blawas AM, Aballay A, Pan WKY, Meyer JN. Effects of methyl and inorganic mercury exposure on genome homeostasis and mitochondrial function in Caenorhabditis elegans. DNA Repair (Amst) 2017; 52:31-48. [PMID: 28242054 PMCID: PMC5394729 DOI: 10.1016/j.dnarep.2017.02.005] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2016] [Revised: 12/05/2016] [Accepted: 02/06/2017] [Indexed: 12/21/2022]
Abstract
Mercury toxicity mechanisms have the potential to induce DNA damage and disrupt cellular processes, like mitochondrial function. Proper mitochondrial function is important for cellular bioenergetics and immune signaling and function. Reported impacts of mercury on the nuclear genome (nDNA) are conflicting and inconclusive, and mitochondrial DNA (mtDNA) impacts are relatively unknown. In this study, we assessed genotoxic (mtDNA and nDNA), metabolic, and innate immune impacts of inorganic and organic mercury exposure in Caenorhabditis elegans. Genotoxic outcomes measured included DNA damage, DNA damage repair (nucleotide excision repair, NER; base excision repair, BER), and genomic copy number following MeHg and HgCl2 exposure alone and in combination with known DNA damage-inducing agents ultraviolet C radiation (UVC) and hydrogen peroxide (H2O2), which cause bulky DNA lesions and oxidative DNA damage, respectively. Following exposure to both MeHg and HgCl2, low-level DNA damage (∼0.25 lesions/10kb mtDNA and nDNA) was observed. Unexpectedly, a higher MeHg concentration reduced damage in both genomes compared to controls. However, this observation was likely the result of developmental delay. In co-exposure treatments, both mercury compounds increased initial DNA damage (mtDNA and nDNA) in combination with H2O2 exposure, but had no impact in combination with UVC exposure. Mercury exposure both increased and decreased DNA damage removal via BER. DNA repair after H2O2 exposure in mercury-exposed nematodes resulted in damage levels lower than measured in controls. Impacts to NER were not detected. mtDNA copy number was significantly decreased in the MeHg-UVC and MeHg-H2O2 co-exposure treatments. Mercury exposure had metabolic impacts (steady-state ATP levels) that differed between the compounds; HgCl2 exposure decreased these levels, while MeHg slightly increased levels or had no impact. Both mercury species reduced mRNA levels for immune signaling-related genes, but had mild or no effects on survival on pathogenic bacteria. Overall, mercury exposure disrupted mitochondrial endpoints in a mercury-compound dependent fashion.
Collapse
Affiliation(s)
- Lauren H Wyatt
- Nicholas School of the Environment, Duke University, Durham, NC, United States.
| | - Anthony L Luz
- Nicholas School of the Environment, Duke University, Durham, NC, United States
| | - Xiou Cao
- Department of Molecular Genetics and Microbiology, Duke University Medical Center, Durham, NC, United States
| | - Laura L Maurer
- Nicholas School of the Environment, Duke University, Durham, NC, United States
| | - Ashley M Blawas
- Nicholas School of the Environment, Duke University, Durham, NC, United States
| | - Alejandro Aballay
- Department of Molecular Genetics and Microbiology, Duke University Medical Center, Durham, NC, United States
| | - William K Y Pan
- Nicholas School of the Environment, Duke University, Durham, NC, United States; Duke Global Health Institute, Duke University, Durham, NC, United States
| | - Joel N Meyer
- Nicholas School of the Environment, Duke University, Durham, NC, United States.
| |
Collapse
|
32
|
Lin X, Xu X, Zeng X, Xu L, Zeng Z, Huo X. Decreased vaccine antibody titers following exposure to multiple metals and metalloids in e-waste-exposed preschool children. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2017; 220:354-363. [PMID: 27692881 DOI: 10.1016/j.envpol.2016.09.071] [Citation(s) in RCA: 50] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/18/2016] [Revised: 09/22/2016] [Accepted: 09/23/2016] [Indexed: 02/07/2023]
Abstract
We explored acquired immunity resulting from vaccination in 3 to 7-year-old children, chronically exposed to multiple heavy metals and metalloids, in an e-waste recycling area (Guiyu, China). Child blood levels of ten heavy metals and metalloids, including lead (Pb), arsenic (As), mercury (Hg), chromium (Cr), cadmium (Cd), manganese (Mn), nickel (Ni), copper (Cu), zinc (Zn) and selenium (Se), and seven vaccine antibodies (diphtheria, pertussis, tetanus, hepatitis B, Japanese encephalitis, polio, measles) were measured. The exposed group had higher levels of blood Pb, Mn, Cu, Zn and Cr compared to the reference group (P < 0.05). Levels of all vaccine antibodies in the exposed group were significantly lower than in the reference group (P < 0.01). All vaccine antibodies negatively correlated with blood concentrations of Cu, Zn and Pb, based on spearman rank correlation analysis. Multiple logistic regression and univariate analyses identified the location of residence (Guiyu), high blood Pb (>10 μg/dL) and high blood Cu and Zn (upper median value of each group) to be inversely associated with seven antibody titers. Antibody titers increased with age, BMI, high blood Mn (>15 μg/L), and high blood Cd and Ni (upper median value of each group). Results suggest multiple heavy metal and metalloid exposure, especially to Pb, Zn and Cu, may be a risk factor inhibiting the development of child immunity, resulting in decreased child antibody levels against vaccines.
Collapse
Affiliation(s)
- Xinjiang Lin
- Laboratory of Environmental Medicine and Developmental Toxicology, Provincial Key Laboratory of Infectious Diseases and Molecular Immunopathology, Shantou University Medical College, 22 Xinling Road, Shantou 515041, China
| | - Xijin Xu
- Laboratory of Environmental Medicine and Developmental Toxicology, Provincial Key Laboratory of Infectious Diseases and Molecular Immunopathology, Shantou University Medical College, 22 Xinling Road, Shantou 515041, China; Department of Cell Biology and Genetics, Shantou University Medical College, 22 Xinling Road, Shantou 515041, China
| | - Xiang Zeng
- Laboratory of Environmental Medicine and Developmental Toxicology, Provincial Key Laboratory of Infectious Diseases and Molecular Immunopathology, Shantou University Medical College, 22 Xinling Road, Shantou 515041, China; University Medical Center Groningen, University of Groningen, 1 Hanzeplein, Groningen 9700RB, The Netherlands
| | - Long Xu
- Laboratory of Environmental Medicine and Developmental Toxicology, Provincial Key Laboratory of Infectious Diseases and Molecular Immunopathology, Shantou University Medical College, 22 Xinling Road, Shantou 515041, China
| | - Zhijun Zeng
- Laboratory of Environmental Medicine and Developmental Toxicology, Provincial Key Laboratory of Infectious Diseases and Molecular Immunopathology, Shantou University Medical College, 22 Xinling Road, Shantou 515041, China; University Medical Center Groningen, University of Groningen, 1 Hanzeplein, Groningen 9700RB, The Netherlands
| | - Xia Huo
- School of Environment, Guangzhou Key Laboratory of Environmental Exposure and Health, Guangdong Key Laboratory of Environmental Pollution and Health, Jinan University, Guangzhou 510632, China.
| |
Collapse
|
33
|
Crowe W, Allsopp PJ, Watson GE, Magee PJ, Strain JJ, Armstrong DJ, Ball E, McSorley EM. Mercury as an environmental stimulus in the development of autoimmunity - A systematic review. Autoimmun Rev 2016; 16:72-80. [PMID: 27666813 DOI: 10.1016/j.autrev.2016.09.020] [Citation(s) in RCA: 74] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2016] [Accepted: 08/13/2016] [Indexed: 12/24/2022]
Abstract
Autoimmune diseases result from an interplay of genetic predisposition and factors which stimulate the onset of disease. Mercury (Hg), a well-established toxicant, is an environmental factor reported to be linked with autoimmunity. Hg exists in several chemical forms and is encountered by humans in dental amalgams, certain vaccines, occupational exposure, atmospheric pollution and seafood. Several studies have investigated the effect of the various forms of Hg, including elemental (Hg0), inorganic (iHg) and organic mercury (oHg) and their association with autoimmunity. In vitro studies using peripheral blood mononuclear cells (PBMC) from healthy participants have shown that methylmercury (MeHg) causes cell death at lower concentrations than iHg albeit exposure to iHg results in a more enhanced pro-inflammatory profile in comparison to MeHg. In vivo research utilising murine models susceptible to the development of metal-induced autoimmunity report that exposure to iHg results in a lupus-like syndrome, whilst mice exposed to MeHg develop autoimmunity without the formation of immune complexes. Furthermore, lower concentrations of IgE are detected in MeHg-treated animals in comparison with those treated with iHg. It appears that, oHg has a negative impact on animal models with existing autoimmunity. The research conducted on humans in this area is diverse in study design and the results are conflicting. There is currently no evidence to implicate a role for Hg0 exposure from dental amalgams in the development or perpetuation of autoimmune disease, apart from some suggestion of individual sensitivity. Several studies have consistently shown a positive correlation between iHg exposure and serum autoantibody concentrations in gold miners, although the clinical impact of iHg remains unknown. Furthermore, a limited number of studies have reported individuals with autoimmune disease have higher concentrations of blood Hg compared to healthy controls. In summary, it appears that iHg perpetuates markers of autoimmunity to a greater extent than oHg, albeit the impact on clinical outcomes in humans is yet to be elucidated.
Collapse
Affiliation(s)
- William Crowe
- Northern Ireland Centre for Food and Health (NICHE), Ulster University, BT52 1SA, Northern, Ireland.
| | - Philip J Allsopp
- Northern Ireland Centre for Food and Health (NICHE), Ulster University, BT52 1SA, Northern, Ireland.
| | - Gene E Watson
- Eastman Institute for Oral Health and Department of Environmental Medicine, University of Rochester School of Medicine and Dentistry, Rochester, NY 14642, United States.
| | - Pamela J Magee
- Northern Ireland Centre for Food and Health (NICHE), Ulster University, BT52 1SA, Northern, Ireland.
| | - J J Strain
- Northern Ireland Centre for Food and Health (NICHE), Ulster University, BT52 1SA, Northern, Ireland.
| | - David J Armstrong
- Department of Rheumatology, Altnagelvin Area Hospital, Glenshane Road, Londonderry BT47 6SB, Northern, Ireland.
| | - Elizabeth Ball
- Department of Rheumatology, Musgrave Park Hospital, Stockman's Lane, Belfast, BT9 7JB, Northern, Ireland.
| | - Emeir M McSorley
- Northern Ireland Centre for Food and Health (NICHE), Ulster University, BT52 1SA, Northern, Ireland.
| |
Collapse
|
34
|
Oulhote Y, Shamim Z, Kielsen K, Weihe P, Grandjean P, Ryder LP, Heilmann C. Children's white blood cell counts in relation to developmental exposures to methylmercury and persistent organic pollutants. Reprod Toxicol 2016; 68:207-214. [PMID: 27497749 DOI: 10.1016/j.reprotox.2016.08.001] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2016] [Revised: 07/28/2016] [Accepted: 08/02/2016] [Indexed: 12/20/2022]
Abstract
BACKGROUND To explore possible markers of developmental immunotoxicity, we prospectively examined 56 children to determine associations between exposures to methylmercury and persistent organic pollutants since birth and the comprehensive differential counts of white blood cells (WBC) at age 5 years. MATERIALS AND METHODS Extended differential count included: neutrophils, eosinophils, basophils, lymphocytes (includingT cells, NK cells, and B cells), and monocytes. Organochlorine compounds (OCs) including polychlorinated biphenyls (PCBs) and pesticides, five perfluoroalkyl substances (PFASs), and total mercury (Hg) were measured in maternal (n=56) and children's blood at 18 months (n=42) and 5 years (n=54). We constructed latent functions for exposures at three different ages using factor analyses and applied structural equation models adjusted for covariates. RESULTS Prenatal mercury exposure was associated with depleted total WBC, especially for lymphocytes, where a one standard deviation (SD) increase in the exposure was associated with a decrease by 23% SD (95% CI: -43, -4) in the cell count. Prenatal exposure to OCs was marginally associated with decreases in neutrophil counts. In contrast, the 5-year PFASs concentrations were associated with higher basophil counts (B=46% SD, 95% CI: 13, 79). Significantly reduced subpopulations of lymphocytes such as B cells, CD4-positive T helper cells and CD4 positive recent thymic emigrants may suggest cellular immunity effects and dysregulation of T-cell mediated immunity. CONCLUSION Developmental exposure to environmental immunotoxicants appears to have different impacts on WBC counts in childhood.
Collapse
Affiliation(s)
- Y Oulhote
- Department of Environmental Health, Harvard T.H. Chan School of Public Health, Boston, MA, USA
| | - Z Shamim
- Institute for Inflammation Research, Department of Rheumatology, Copenhagen University Hospital Rigshospitalet, Copenhagen, Denmark; Department of Pediatrics and Adolescent Medicine, Copenhagen University Hospital Rigshospitalet, Copenhagen, Denmark
| | - K Kielsen
- Institute for Inflammation Research, Department of Rheumatology, Copenhagen University Hospital Rigshospitalet, Copenhagen, Denmark; Department of Pediatrics and Adolescent Medicine, Copenhagen University Hospital Rigshospitalet, Copenhagen, Denmark
| | - P Weihe
- Department of Occupational Medicine and Public Health, Faroese Hospital System, Tórshavn, Faroe Islands
| | - P Grandjean
- Department of Environmental Health, Harvard T.H. Chan School of Public Health, Boston, MA, USA; Department of Environmental Medicine, University of Southern Denmark, Odense, Denmark.
| | - L P Ryder
- Department of Clinical Immunology, Copenhagen University Hospital Rigshospitalet, Copenhagen, Denmark
| | - C Heilmann
- Department of Pediatrics and Adolescent Medicine, Copenhagen University Hospital Rigshospitalet, Copenhagen, Denmark
| |
Collapse
|
35
|
Abstract
BACKGROUND Mercury (Hg) has been reported to have adverse effects on the immune system. However, the association between Hg exposure and asthma remains unclear. We hypothesized that blood Hg concentrations are associated with asthma and immune system blood profile changes in school-age children. METHODS Between 2005 and 2010, we evaluated 4,350 Korean children at 7-8 years of age with no previous asthma diagnosis. Follow-up surveys were conducted twice, each 2 years apart, until 11-12 years of age. For every survey, we evaluated asthma through a questionnaire and blood profile. We analyzed the association of Hg concentration with asthma by logistic and Cox regression models and the association with blood profile by generalized additive and linear mixed models. RESULTS Blood Hg concentrations at 7-8 years of age were associated with an increased risk of asthma (odds ratio [OR] = 1.3; 95% confidence interval [CI] = 1.0, 1.6) at ages up to 11-12 years (n = 191). Hg concentration was also associated with wheezing (OR = 1.2; 95% CI = 1.0, 1.3), asthma medication use (OR = 1.4; 95% CI = 0.97, 2.0), and airway hyperresponsiveness (OR = 1.2; 95% CI = 1.0, 1.3). Further adjustment for fish consumption did not change the results appreciably. CONCLUSIONS Low-level Hg exposure was associated with asthma and blood profile changes in school-age children.
Collapse
|
36
|
Gribble MO, Karimi R, Feingold BJ, Nyland JF, O'Hara TM, Gladyshev MI, Chen CY. Mercury, selenium and fish oils in marine food webs and implications for human health. JOURNAL OF THE MARINE BIOLOGICAL ASSOCIATION OF THE UNITED KINGDOM. MARINE BIOLOGICAL ASSOCIATION OF THE UNITED KINGDOM 2016; 96:43-59. [PMID: 26834292 PMCID: PMC4720108 DOI: 10.1017/s0025315415001356] [Citation(s) in RCA: 54] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/27/2015] [Accepted: 07/23/2015] [Indexed: 05/04/2023]
Abstract
Humans who eat fish are exposed to mixtures of healthful nutrients and harmful contaminants that are influenced by environmental and ecological factors. Marine fisheries are composed of a multitude of species with varying life histories, and harvested in oceans, coastal waters and estuaries where environmental and ecological conditions determine fish exposure to both nutrients and contaminants. Many of these nutrients and contaminants are thought to influence similar health outcomes (i.e., neurological, cardiovascular, immunological systems). Therefore, our understanding of the risks and benefits of consuming seafood require balanced assessments of contaminants and nutrients found in fish and shellfish. In this paper, we review some of the reported benefits of fish consumption with a focus on the potential hazards of mercury exposure, and compare the environmental variability of fish oils, selenium and mercury in fish. A major scientific gap identified is that fish tissue concentrations are rarely measured for both contaminants and nutrients across a range of species and geographic regions. Interpreting the implications of seafood for human health will require a better understanding of these multiple exposures, particularly as environmental conditions in the oceans change.
Collapse
Affiliation(s)
- Matthew O. Gribble
- Department of Preventive Medicine, University of Southern California Keck School of Medicine, Los Angeles, CA, USA
| | - Roxanne Karimi
- School of Marine and Atmospheric Sciences, Stony Brook University, Stony Brook, NY, USA
| | - Beth J. Feingold
- Department of Environmental Health Sciences, University at Albany School of Public Health, State University of New York, Rensselaer, NY, USA
| | - Jennifer F. Nyland
- Department of Pathology, Microbiology and Immunology, University of South Carolina School of Medicine, Columbia, SC, USA
| | - Todd M. O'Hara
- Department of Veterinary Medicine, College of Natural Science and Mathematics, University of Alaska Fairbanks, Fairbanks, AK, USA
| | - Michail I. Gladyshev
- Institute of Biophysics of Siberian Branch of Russian Academy of Sciences, Akademgorodok, Krasnoyarsk, Russia
- Siberian Federal University, Krasnoyarsk, Russia
| | - Celia Y. Chen
- Department of Biological Sciences – Dartmouth College, Hanover, NH, USA
| |
Collapse
|
37
|
Abstract
BACKGROUND Mercury affects the nervous system and has been implicated in altering heart rhythm and function. We sought to better define its role in modulating heart rate variability, a well-known marker of cardiac autonomic function. DESIGN This is a systematic review study. METHODS We searched PubMed, Embase, TOXLINE, and DART databases without language restriction. We report findings as a qualitative systematic review because heterogeneity in study design and assessment of exposures and outcomes across studies, as well as other methodological limitations of the literature, precluded a quantitative meta-analysis. RESULTS We identified 12 studies of mercury exposure and heart rate variability in human populations (ten studies involving primarily environmental methylmercury exposure and two studies involving occupational exposure to inorganic mercury) conducted in Japan, the Faroe Islands, Canada, Korea, French Polynesia, Finland, and Egypt. The association of prenatal mercury exposure with lower high-frequency band scores (thought to reflect parasympathetic activity) in several studies, in particular the inverse association of cord blood mercury levels with the coefficient of variation of the R-R intervals and with low-frequency and high-frequency bands at 14 years of age in the Faroe Islands birth cohort study, suggests that early mercury exposure could have a long-lasting effect on cardiac parasympathetic activity. Studies with later environmental exposures to mercury in children or in adults were heterogeneous and did not show consistent associations. CONCLUSIONS The evidence was too limited to draw firm causal inferences. Additional research is needed to elucidate the effects of mercury on cardiac autonomic function, particularly as early-life exposures might have lasting impacts on cardiac parasympathetic function.
Collapse
|
38
|
Hui LL, Chan MHM, Lam HS, Chan PHY, Kwok KM, Chan IHS, Li AM, Fok TF. Impact of fetal and childhood mercury exposure on immune status in children. ENVIRONMENTAL RESEARCH 2016; 144:66-72. [PMID: 26562044 DOI: 10.1016/j.envres.2015.11.005] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/31/2015] [Revised: 10/27/2015] [Accepted: 11/03/2015] [Indexed: 06/05/2023]
Abstract
BACKGROUND Mercury exposure have been shown to affect immune status in animals as reflected by cytokine expression. It is unclear whether low levels of exposure during fetal and/or childhood periods could impact on immune status in humans. OBJECTIVES To test the hypothesis that fetal and childhood mercury exposure is associated with childhood cytokine profiles and to investigate whether childhood selenium levels interact with any of the associations found. METHODS Children were recruited from a previously established birth cohort between the ages of 6-9 years for assessment and measurement of blood mercury, selenium and cytokine profile (interleukin (IL)-4, IL-6, IL-8, IL-10, IL-13 and TNF-alpha). Multivariable linear regression models were used to assess the adjusted association of cord blood mercury concentration and current mercury concentrations with levels of the cytokine levels. We tested whether the association with current mercury level varied by current selenium level and cord blood mercury level. RESULTS IL-10 was negatively associated with current blood mercury concentration. The effect was greatest in cases with low cord blood mercury and low current selenium concentrations. None of the other cytokine levels were associated with either cord blood or current blood mercury concentrations, except that cord blood mercury was negatively associated with IL-6. CONCLUSIONS Childhood mercury exposure was negatively associated with childhood IL-10 levels. It is postulated that while selenium is protective, low levels of fetal mercury exposure may increase the degree of this negative association during childhood. Further studies into the clinical significance of these findings are required.
Collapse
Affiliation(s)
- Lai Ling Hui
- School of Public Health, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong
| | - Michael Ho Ming Chan
- Department of Chemical Pathology, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong
| | - Hugh Simon Lam
- Department of Paediatrics, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong.
| | - Peggy Hiu Ying Chan
- Department of Paediatrics, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong
| | - Ka Ming Kwok
- Department of Paediatrics, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong
| | - Iris Hiu Shuen Chan
- Department of Chemical Pathology, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong
| | - Albert Martin Li
- Department of Paediatrics, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong
| | - Tai Fai Fok
- Department of Paediatrics, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong
| |
Collapse
|
39
|
Mercury in Hair Is Inversely Related to Disease Associated Damage in Systemic Lupus Erythematosus. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2015; 13:ijerph13010075. [PMID: 26703710 PMCID: PMC4730466 DOI: 10.3390/ijerph13010075] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/01/2015] [Revised: 12/02/2015] [Accepted: 12/14/2015] [Indexed: 01/12/2023]
Abstract
Systemic lupus erythematosus (SLE) is an autoimmune inflammatory disease, and environmental factors are proposed to exacerbate existing symptoms. One such environmental factor is mercury. The aim of this study was to investigate the relationship between exposure to mercury (Hg) and disease activity and disease associated damage in Total Hg concentrations in hair and urine were measured in 52 SLE patients. Dental amalgams were quantified. Disease activity was assessed using three indexes including the British Isles Lupus Assessment Group Index (BILAG). Disease associated damage was measured using the Systemic Lupus International Collaborating Clinics/American College of Rheumatology SLICC/ACR Damage Index. Pearson’s correlation identified a significant negative correlation between hair Hg and BILAG (r = −0.323, p = 0.029) and SLICC/ACR (r = −0.377, p = 0.038). Multiple regression analysis identified hair Hg as a significant predictor of disease associated damage as determined by SLICC/ACR (β = −0.366, 95% confidence interval (CI): −1.769, −0.155 p = 0.019). Urinary Hg was not related to disease activity or damage. Fish consumption is the primary route of MeHg exposure in humans and the inverse association of hair Hg with disease activity observed here might be explained by the anti-inflammatory effects of n-3 long chain polyunsaturated fatty acids also found in fish.
Collapse
|
40
|
Wang H, Chen B, Zhu S, Yu X, He M, Hu B. Chip-Based Magnetic Solid-Phase Microextraction Online Coupled with MicroHPLC–ICPMS for the Determination of Mercury Species in Cells. Anal Chem 2015; 88:796-802. [DOI: 10.1021/acs.analchem.5b03130] [Citation(s) in RCA: 66] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Affiliation(s)
- Han Wang
- Key Laboratory of Analytical Chemistry
for Biology and Medicine, Ministry of Education, Department
of Chemistry, Wuhan University, Wuhan 430072, China
| | - Beibei Chen
- Key Laboratory of Analytical Chemistry
for Biology and Medicine, Ministry of Education, Department
of Chemistry, Wuhan University, Wuhan 430072, China
| | - Siqi Zhu
- Key Laboratory of Analytical Chemistry
for Biology and Medicine, Ministry of Education, Department
of Chemistry, Wuhan University, Wuhan 430072, China
| | - Xiaoxiao Yu
- Key Laboratory of Analytical Chemistry
for Biology and Medicine, Ministry of Education, Department
of Chemistry, Wuhan University, Wuhan 430072, China
| | - Man He
- Key Laboratory of Analytical Chemistry
for Biology and Medicine, Ministry of Education, Department
of Chemistry, Wuhan University, Wuhan 430072, China
| | - Bin Hu
- Key Laboratory of Analytical Chemistry
for Biology and Medicine, Ministry of Education, Department
of Chemistry, Wuhan University, Wuhan 430072, China
| |
Collapse
|
41
|
Siouda W, Abdennour C. Can Urtica dioica supplementation attenuate mercury intoxication in Wistar rats? Vet World 2015; 8:1458-65. [PMID: 27047060 PMCID: PMC4774826 DOI: 10.14202/vetworld.2015.1458-1465] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2015] [Revised: 10/21/2015] [Accepted: 11/29/2015] [Indexed: 11/16/2022] Open
Abstract
AIM The objective of this study was to investigate the possible protective role of nettle Urtica dioica (UD) against Hg-induced toxicity. MATERIALS AND METHODS A total of 28 rats were equally divided into four groups: the control, the Hg (0.8 g HgCl2/kg in the diet), the UD (1.5 ml UD/rat by gavage), and the Hg+UD group. HgCl2 was daily dissolved in distilled water and immediately mixed with the standard diet. A solution of daily infused fresh nettle leaves in boiling water (16 g in 25 ml) was obtained and then it was administrated by gavage. Biochemical and reproductive markers, in addition to glutathione (GSH) level (liver, kidney and testis) and the histological profiles (testis and epididymis) were evaluated after 1 month exposure. RESULTS Compared to the control, the levels of glucose, triglycerides, urea, creatinine, alanine aminotransferase (ALT), aspartate aminotransferase (AST), and alkaline phosphatase (ALP) were significantly raised in the Hg group. In the latter group, the concentrations of Mg, Fe, and Ca were significantly decreased. Besides, Hg+UD group has only showed raised AST activity and reduced Mg level. Concerning the fertility markers, Hg has provoked a significant decrease in the spermatozoa's concentration and motility and in plasma testosterone level as well. Furthermore, hepatic, renal and testicular GSH concentrations have declined significantly in the Hg treated rat compared to the control. A remarkable enhancement of the GSH level was observed in all organs of the UD group. The histological examinations of the Hg group have revealed marked testicular degeneration of the most seminiferous tubules, and showed few sperms in the lumen of epididymis ducts. However, the Hg+UD rats have demonstrated an improved histological structure with the presence of important numbers of sperms in the lumen. In addition, a clear stabilization of organized seminiferous tubules and an increased sperms' numbers were noted in the UD supplemented rats. CONCLUSION Nettle leaves have not only played a clear protective role during Hg intoxication, but it also enhanced hepatic, renal and testicular GSH level of Wistar rats.
Collapse
Affiliation(s)
- Wafa Siouda
- Department of Biology, Faculty of Sciences, Laboratory of Animal Ecophysiology, University Badji Mokhtar-Annaba, Annaba 3000, Algeria
| | - Cherif Abdennour
- Department of Biology, Faculty of Sciences, Laboratory of Animal Ecophysiology, University Badji Mokhtar-Annaba, Annaba 3000, Algeria
| |
Collapse
|
42
|
Tinkov AA, Ajsuvakova OP, Skalnaya MG, Popova EV, Sinitskii AI, Nemereshina ON, Gatiatulina ER, Nikonorov AA, Skalny AV. Mercury and metabolic syndrome: a review of experimental and clinical observations. Biometals 2015; 28:231-54. [DOI: 10.1007/s10534-015-9823-2] [Citation(s) in RCA: 66] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2014] [Accepted: 01/15/2015] [Indexed: 12/16/2022]
|
43
|
Milnerowicz H, Ściskalska M, Dul M. Pro-inflammatory effects of metals in persons and animals exposed to tobacco smoke. J Trace Elem Med Biol 2015; 29:1-10. [PMID: 24916792 DOI: 10.1016/j.jtemb.2014.04.008] [Citation(s) in RCA: 88] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/17/2013] [Revised: 04/23/2014] [Accepted: 04/28/2014] [Indexed: 02/01/2023]
Abstract
Metals present in tobacco smoke have the ability to cause a pro-oxidant/antioxidant imbalance through the direct generation of free radicals in accordance with the Fenton or Haber-Weiss reaction and redox properties. Metals can also interact with antioxidant enzymes (superoxide dismutase, catalase, glutathione peroxidase) and small molecular antioxidants (glutathione) through binding to SH groups or by replacement of metals ions in the catalytic center of enzymes. Excessive free radicals production can induce an inflammatory response. The aim of this study was to review the information on the induction of inflammation by metals present in tobacco smoke such as lead (Pb), cadmium (Cd), arsenic (As), aluminum (Al), nickel (Ni) and mercury (Hg). In cellular immune response, it was demonstrated that radicals induced by metals can disrupt the transcription signaling pathway mediated by the mitogen-activated protein kinase (induced by Pb), NLRP3-ASC-caspase 1 (induced by Ni), tyrosine kinase Src (induced by As) and the nuclear factor κB (induced by Pb, Ni, Hg). The result of this is a gene transcription for early inflammatory cytokines, such as Interleukine 1β, Interleukine 6, and Tumor necrosis factor α). These cytokines can cause leukocytes recruitment and secretions of other pro-inflammatory cytokines and chemokines, which intensifies the inflammatory response. Some metals, such as cadmium (Cd), can activate an inflammatory response through tissue damage induction mediated by free radicals, which also results in leukocytes recruitment and cytokines secretions. Inflammation generated by metals can be reduced by metallothionein, which has the ability to scavenge free radicals and bind toxic metals through the release of Zn and oxidation of SH groups.
Collapse
Affiliation(s)
- Halina Milnerowicz
- Department of Biomedical and Environmental Analysis, Faculty of Pharmacy, Wroclaw Medical University, Borowska 211, 50-556 Wroclaw, Poland
| | - Milena Ściskalska
- Department of Biomedical and Environmental Analysis, Faculty of Pharmacy, Wroclaw Medical University, Borowska 211, 50-556 Wroclaw, Poland.
| | - Magdalena Dul
- Department of Biomedical and Environmental Analysis, Faculty of Pharmacy, Wroclaw Medical University, Borowska 211, 50-556 Wroclaw, Poland
| |
Collapse
|
44
|
Sánchez Rodríguez LH, Flórez-Vargas O, Rodríguez-Villamizar LA, Vargas Fiallo Y, Stashenko EE, Ramírez G. Lack of autoantibody induction by mercury exposure in artisanal gold mining settings in Colombia: Findings and a review of the epidemiology literature. J Immunotoxicol 2014; 12:368-75. [DOI: 10.3109/1547691x.2014.986591] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
|
45
|
In vitro evaluation of inorganic mercury and methylmercury effects on the intestinal epithelium permeability. Food Chem Toxicol 2014; 74:349-59. [DOI: 10.1016/j.fct.2014.10.022] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2014] [Revised: 10/15/2014] [Accepted: 10/17/2014] [Indexed: 01/17/2023]
|
46
|
Bisphenol A exposure and asthma development in school-age children: a longitudinal study. PLoS One 2014; 9:e111383. [PMID: 25356742 PMCID: PMC4214730 DOI: 10.1371/journal.pone.0111383] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2014] [Accepted: 09/23/2014] [Indexed: 01/01/2023] Open
Abstract
BACKGROUND Although the effect of bisphenol A on various health outcomes has been extensively examined, few studies have investigated its effect on asthma. OBJECTIVE We hypothesized that exposure to bisphenol A in school-age children was associated with wheezing and asthma. METHODS Participants included 127 children aged 7-8 years without a previous asthma diagnosis in an elementary school in Seoul, Korea. Three surveys were conducted, each 2 years apart. Bisphenol A concentration was measured at the baseline survey, and PC20, which is defined as the methacholine concentration that induces a decrease in FEV1 of 20% from baseline, was measured at every survey. Associations between bisphenol A concentration at 7-8 years of age and wheezing, asthma, and PC20 at ages up to 11-12 years were examined using generalized estimating equations, a marginal Cox regression model, and a linear mixed model. RESULTS The log-transformed creatinine-adjusted urinary bisphenol A concentration at 7-8 years was positively associated with wheezing (odds ratio, 2.48; 95% confidence interval, 1.15-5.31; P = .02) and asthma (hazard ratio, 2.13; 95% confidence interval, 1.51-3.00; P<.001) at ages up to 11-12 years. Bisphenol A was also negatively associated with PC20 (ß = -2.33; P = .02). When stratified by sex, the association between bisphenol A and asthma remained significant only in girls (hazard ratio, 2.45; 95% confidence interval, 2.18-2.76; P<.001). CONCLUSION Increased urinary bisphenol A concentrations at 7-8 years old were positively associated with wheezing and asthma and negatively associated with PC20 at ages up to 11-12 years.
Collapse
|
47
|
Gump BB, Gabrikova E, Bendinskas K, Dumas AK, Palmer CD, Parsons PJ, MacKenzie JA. Low-level mercury in children: associations with sleep duration and cytokines TNF-α and IL-6. ENVIRONMENTAL RESEARCH 2014; 134:228-32. [PMID: 25173056 PMCID: PMC4262607 DOI: 10.1016/j.envres.2014.07.026] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/25/2014] [Revised: 07/21/2014] [Accepted: 07/31/2014] [Indexed: 05/23/2023]
Abstract
There is a sizeable literature suggesting that mercury (Hg) exposure affects cytokine levels in humans. In addition to their signaling role in the immune system, some cytokines are also integrally associated with sleep behavior. In this cross-sectional study of 9-11 year old children (N=100), we measured total blood Hg in whole blood, serum levels of tumor necrosis factor α (TNF-α) and interleukin 6 (IL-6), and objectively measured sleep and activity using actigraphy. Increasing blood Hg was associated with significantly shorter sleep duration and lower levels of TNF-α. IL-6 was not associated with sleep or blood Hg. This study is the first to document an association between total blood Hg and sleep (albeit a small effect), and the first to consider the associations of total blood Hg with cytokines TNF-α and IL-6 in a pediatric sample. Further research using alternative designs (e.g., time-series) is necessary to determine if there is a causal pathway linking low-level Hg exposure to sleep restriction and reduced cytokines.
Collapse
Affiliation(s)
- Brooks B Gump
- Department of Public Health, Food Studies, and Nutrition, Syracuse University, United States.
| | - Elena Gabrikova
- Departments of Biological Sciences, State University of New York College at Oswego, United States
| | - Kestutis Bendinskas
- Departments of Chemistry, State University of New York College at Oswego, United States
| | - Amy K Dumas
- Department of Public Health, Food Studies, and Nutrition, Syracuse University, United States
| | - Christopher D Palmer
- Laboratory of Inorganic and Nuclear Chemistry, Wadsworth Center, New York State Department of Health, United States; Department of Environmental Health Sciences, School of Public Health, The University at Albany, United States
| | - Patrick J Parsons
- Laboratory of Inorganic and Nuclear Chemistry, Wadsworth Center, New York State Department of Health, United States; Department of Environmental Health Sciences, School of Public Health, The University at Albany, United States
| | - James A MacKenzie
- Departments of Biological Sciences, State University of New York College at Oswego, United States
| |
Collapse
|
48
|
Motts JA, Shirley DL, Silbergeld EK, Nyland JF. Novel biomarkers of mercury-induced autoimmune dysfunction: a cross-sectional study in Amazonian Brazil. ENVIRONMENTAL RESEARCH 2014; 132:12-8. [PMID: 24742722 PMCID: PMC4060520 DOI: 10.1016/j.envres.2014.03.024] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/07/2013] [Revised: 01/30/2014] [Accepted: 03/18/2014] [Indexed: 05/23/2023]
Abstract
Mercury is a ubiquitous environmental contaminant, causing both neurotoxicity and immunotoxicity. Given its ability to amalgamate gold, mercury is frequently used in small-scale artisanal gold mining. We have previously reported that elevated serum titers of antinuclear autoantibodies (ANA) are associated with mercury exposures of miners in gold mining. The goal of this project was to identify novel serum biomarkers of mercury-induced immunotoxicity and autoimmune dysregulation. We conducted an analysis of serum samples from a cross-sectional epidemiological study on miners working in Amazonian Brazil. In proteomic screening analyses, samples were stratified based on mercury concentrations and ANA titer and a subset of serum samples (N=12) were profiled using Immune Response Biomarker Profiling ProtoArray protein microarray for elevated autoantibodies. Of the up-regulated autoantibodies in the mercury-exposed cohort, potential target autoantibodies were selected based on relevance to pro-inflammatory and macrophage activation pathways. ELISAs were developed to test the entire sample cohort (N=371) for serum titers to the highest of these autoantibodies (anti-glutathione S-transferase alpha, GSTA1) identified in the high mercury/high ANA group. We found positive associations between elevated mercury exposure and up-regulated serum titers of 3760 autoantibodies as identified by ProtoArray. Autoantibodies identified as potential novel biomarkers of mercury-induced immunotoxicity include antibodies to the following proteins: GSTA1, tumor necrosis factor ligand superfamily member 13, linker for activation of T cells, signal peptide peptidase like 2B, stimulated by retinoic acid 13, and interferon induced transmembrane protein. ELISA analyses confirmed that mercury-exposed gold miners had significantly higher serum titers of anti-GSTA1 autoantibody [unadjusted odds ratio=89.6; 95% confidence interval: 27.2, 294.6] compared to emerald miners (referent population). Mercury exposure was associated with increased titers of several autoantibodies in serum including anti-GSTA1. These proteins play a wide variety of roles, including as antioxidants, in the regulation of pro- and anti-inflammatory cytokines, as well as danger and oxidative stress signaling. Dysregulation of these proteins and pathways is believed to play a role in autoimmune diseases such as rheumatoid arthritis, Sjögren׳s syndrome, and multiple sclerosis. Taken together, these results suggest that mercury exposure can induce complex autoimmune dysfunction and the immunotoxic effects of this dysfunction may be measured by serum titers to autoantibodies such as anti-GSTA1.
Collapse
Affiliation(s)
- Jonathan A Motts
- Department of Biology, University of South Carolina, Columbia, SC 29209, USA
| | - Devon L Shirley
- Department of Pathology, Microbiology & Immunology, University of South Carolina, School of Medicine, Columbia, SC, USA
| | - Ellen K Silbergeld
- Department of Environmental Health Sciences, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD, USA
| | - Jennifer F Nyland
- Department of Pathology, Microbiology & Immunology, University of South Carolina, School of Medicine, Columbia, SC, USA.
| |
Collapse
|
49
|
Li X, Yin D, Li J, Wang R. Protective effects of selenium on mercury induced immunotoxic effects in mice by way of concurrent drinking water exposure. ARCHIVES OF ENVIRONMENTAL CONTAMINATION AND TOXICOLOGY 2014; 67:104-14. [PMID: 24519443 DOI: 10.1007/s00244-014-0001-2] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/26/2013] [Accepted: 01/20/2014] [Indexed: 05/24/2023]
Abstract
Selenium (Se) has been recognized as one key to understanding mercury (Hg) exposure risks. To explore the effects of Se on Hg-induced immunotoxicity, female Balb/c mice were exposed to HgCl2- or MeHgCl-contaminated drinking water (0.001, 0.01, and 0.1 mM as Hg) with coexisting Na2SeO3 at different Se/Hg molar ratios (0:1, 1/3:1, 1:1 and 3:1). The potential immunotoxicity induced by Na2SeO3 exposure alone (by way of drinking water) was also determined within a wide range of concentrations. After 14 days' exposure, the effects of Hg or Se on the immune system of Balb/c mice were investigated by determining the proliferation of T and B lymphocytes and the activity of natural killer cells. Hg exposure alone induced a dose-dependent suppression effect, whereas Se provided promotion effects at low exposure level (<0.01 mM) and inhibition effects at high exposure level (>0.03 mM). Under Hg and Se coexposure condition, the effects on immunotoxicity depended on the Hg species, Se/Hg ratio, and exposure concentration. At low Hg concentration (0.001 mM), greater Se ingestion exhibited stronger protective effects on Hg-induced suppression effect mainly by way of decreasing Hg concentrations in target organs. At greater Hg concentration (0.01 and 0.1 mM), immunotoxicity induced by Se (>0.03 mM) became evident, and the protective effects appeared more significant at an Se/Hg molar ratio of 1:1. The complex antagonistic effects between Se and Hg suggested that both Se/Hg molar ratio and concentration should be considered when evaluating the potential health risk of Hg-contaminated biota.
Collapse
Affiliation(s)
- Xuan Li
- State Key Laboratory of Pollution Control and Resources Reuse, College of Environmental Science and Engineering, Tongji University, 1239 Siping Road, Shanghai, 200092, China
| | | | | | | |
Collapse
|
50
|
Mercury, autoimmunity, and environmental factors on cheyenne river sioux tribal lands. Autoimmune Dis 2014; 2014:325461. [PMID: 24864198 PMCID: PMC4017878 DOI: 10.1155/2014/325461] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2013] [Accepted: 02/17/2014] [Indexed: 01/25/2023] Open
Abstract
Mercury (Hg), shown to induce autoimmune disease in rodents, is a ubiquitous toxicant throughout Cheyenne River Sioux Tribe (CRST) lands. CRST members may be exposed to Hg through fish consumption (FC), an important component of native culture that may supplement household subsistence. Our goals were to ascertain whether total blood Hg levels (THg) reflect Hg exposure through FC and smoking, and determine whether THg is associated with the presence of anti-nuclear antibody (ANA) and specific autoantibodies (sAuAb). We recruited 75 participants who regularly consume fish from CRST waters. Hg exposure through FC and smoking were assessed via questionnaires. Whole blood samples were collected from participants, and THg was measured using ICP-MS. ANA and sAuAb in serum were modeled using demographic and exposure information as predictors. Female gender, age, and FC were significant predictors of THg and sAuAb; self-reported smoking was not. 31% of participants tested positive for ANA ≥ 2+. Although ANA was not significantly associated with Hg, the interactions of gender with Hg and proximity to arsenic deposits were statistically significant (P < 0.05). FC resulted in a detectable body burden of Hg, but THg alone did not correlate with the presence of ANA or sAuAb in this population.
Collapse
|