1
|
Xing WY, Liu FH, Wang DD, Liu JM, Zheng WR, Liu JX, Wu L, Zhao YY, Xu HL, Li YZ, Wei YF, Huang DH, Li XY, Gao S, Ma QP, Gong TT, Wu QJ. Association between plasma perfluoroalkyl substances and high-grade serous ovarian cancer overall survival: A nested case-control study. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2025; 291:117825. [PMID: 39884014 DOI: 10.1016/j.ecoenv.2025.117825] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/13/2024] [Revised: 01/19/2025] [Accepted: 01/27/2025] [Indexed: 02/01/2025]
Abstract
BACKGROUND Although evidence suggests that perfluoroalkyl and polyfluoroalkyl substances (PFASs) are positively correlated to several disease risks, no studies have proven if plasma PFASs are related to ovarian cancer survival. OBJECTIVE To explore the association between plasma PFASs and high-grade serous ovarian cancer (HGSOC) overall survival (OS) in the population who did not smoke. METHODS We conducted a nested case-control study within the Ovarian Cancer Follow-Up Study, matching 159 dead patients and 159 survival ones based on body mass index, sample date, and age at diagnosis. Nine plasma PFASs were extracted by solid phase extraction and measured using a liquid chromatography system coupled with tandem mass spectrometry. Baseline plasma concentrations of perfluorinated carboxylic acids (PFCAs) [perfluorooctanoic acid (PFOA), perfluorononanoic acid (PFNA), perfluorodecanoic acid (PFDA), and perfluoroheptanoic acid (PFHpA)] and perfluorinated sulfonic acids (PFSAs) [perfluorooctane sulfonic acid (PFOS) and perfluorohexane sulfonic acid (PFHxS)] were calculated. Odds ratios (ORs) and corresponding 95 % confidence intervals (CIs) were calculated via conditional logistic regression models. To elucidate the combined effects, Bayesian kernel machine (BKMR), and regression quantile g-computation (QGC) models were utilized. RESULT In full-adjusted model, significant differences were observed between HGSOC survival and perfluorobutane sulfonic acid, PFHpA, PFHxS, PFOS, PFCA, and PFSA. ORs and 95 %CIs were 2.74 (1.41-5.31), 1.97 (1.03-3.76), 2.13 (1.15-3.95), 2.28 (1.16-4.47), 3.74 (1.78-7.85), and 2.56 (1.31-5.01), respectively for the highest tertile compared with the lowest tertile. The QGC and BKMR models indicated that elevated concentrations of PFAS mixtures were associated with poor OS in HGSOC. CONCLUSIONS Both individual and mixed plasma PFASs may relate to poor OS of HGSOC. Further research is necessary to establish causality, and it is recommended to reinforce environmental risk mitigation strategies to minimize PFAS exposure.
Collapse
Affiliation(s)
- Wei-Yi Xing
- Department of Clinical Epidemiology, Shengjing Hospital of China Medical University, Shenyang, China; Clinical Research Center, Shengjing Hospital of China Medical University, Shenyang, China; Key Laboratory of Precision Medical Research on Major Chronic Disease, Shengjing Hospital of China Medical University, Shenyang, China
| | - Fang-Hua Liu
- Department of Clinical Epidemiology, Shengjing Hospital of China Medical University, Shenyang, China; Clinical Research Center, Shengjing Hospital of China Medical University, Shenyang, China; Key Laboratory of Precision Medical Research on Major Chronic Disease, Shengjing Hospital of China Medical University, Shenyang, China
| | - Dong-Dong Wang
- Department of Clinical Epidemiology, Shengjing Hospital of China Medical University, Shenyang, China; Clinical Research Center, Shengjing Hospital of China Medical University, Shenyang, China; Key Laboratory of Precision Medical Research on Major Chronic Disease, Shengjing Hospital of China Medical University, Shenyang, China; Department of Obstetrics and Gynecology, Shengjing Hospital of China Medical University, Shenyang, China
| | - Jia-Ming Liu
- Department of Obstetrics and Gynecology, Shengjing Hospital of China Medical University, Shenyang, China; Department of Epidemiology, School of Public Health, China Medical University, Shenyang, China
| | - Wen-Rui Zheng
- Department of Clinical Epidemiology, Shengjing Hospital of China Medical University, Shenyang, China; Clinical Research Center, Shengjing Hospital of China Medical University, Shenyang, China; Key Laboratory of Precision Medical Research on Major Chronic Disease, Shengjing Hospital of China Medical University, Shenyang, China
| | - Jia-Xin Liu
- Department of Clinical Epidemiology, Shengjing Hospital of China Medical University, Shenyang, China; Clinical Research Center, Shengjing Hospital of China Medical University, Shenyang, China; Key Laboratory of Precision Medical Research on Major Chronic Disease, Shengjing Hospital of China Medical University, Shenyang, China
| | - Lang Wu
- Cancer Epidemiology Division, Population Sciences in the Pacific Program, University of Hawaii Cancer Center, University of Hawaii at Manoa, Honolulu, HI, USA
| | - Yue-Yang Zhao
- Department of Clinical Epidemiology, Shengjing Hospital of China Medical University, Shenyang, China; Clinical Research Center, Shengjing Hospital of China Medical University, Shenyang, China; Key Laboratory of Precision Medical Research on Major Chronic Disease, Shengjing Hospital of China Medical University, Shenyang, China
| | - He-Li Xu
- Department of Clinical Epidemiology, Shengjing Hospital of China Medical University, Shenyang, China; Clinical Research Center, Shengjing Hospital of China Medical University, Shenyang, China; Key Laboratory of Precision Medical Research on Major Chronic Disease, Shengjing Hospital of China Medical University, Shenyang, China
| | - Yi-Zi Li
- Department of Clinical Epidemiology, Shengjing Hospital of China Medical University, Shenyang, China; Clinical Research Center, Shengjing Hospital of China Medical University, Shenyang, China; Key Laboratory of Precision Medical Research on Major Chronic Disease, Shengjing Hospital of China Medical University, Shenyang, China
| | - Yi-Fan Wei
- Department of Clinical Epidemiology, Shengjing Hospital of China Medical University, Shenyang, China; Clinical Research Center, Shengjing Hospital of China Medical University, Shenyang, China; Key Laboratory of Precision Medical Research on Major Chronic Disease, Shengjing Hospital of China Medical University, Shenyang, China
| | - Dong-Hui Huang
- Department of Clinical Epidemiology, Shengjing Hospital of China Medical University, Shenyang, China; Clinical Research Center, Shengjing Hospital of China Medical University, Shenyang, China; Key Laboratory of Precision Medical Research on Major Chronic Disease, Shengjing Hospital of China Medical University, Shenyang, China
| | - Xiao-Ying Li
- Department of Clinical Epidemiology, Shengjing Hospital of China Medical University, Shenyang, China; Clinical Research Center, Shengjing Hospital of China Medical University, Shenyang, China; Key Laboratory of Precision Medical Research on Major Chronic Disease, Shengjing Hospital of China Medical University, Shenyang, China
| | - Song Gao
- Department of Obstetrics and Gynecology, Shengjing Hospital of China Medical University, Shenyang, China
| | - Qi-Peng Ma
- Department of Obstetrics and Gynecology, Shengjing Hospital of China Medical University, Shenyang, China.
| | - Ting-Ting Gong
- Department of Obstetrics and Gynecology, Shengjing Hospital of China Medical University, Shenyang, China.
| | - Qi-Jun Wu
- Department of Clinical Epidemiology, Shengjing Hospital of China Medical University, Shenyang, China; Clinical Research Center, Shengjing Hospital of China Medical University, Shenyang, China; Key Laboratory of Precision Medical Research on Major Chronic Disease, Shengjing Hospital of China Medical University, Shenyang, China; Department of Obstetrics and Gynecology, Shengjing Hospital of China Medical University, Shenyang, China; NHC Key Laboratory of Advanced Reproductive Medicine and Fertility (China Medical University), National Health Commission, Shenyang, China.
| |
Collapse
|
2
|
Lejeune N, Rouxel E, Monfort C, Tillaut H, Rouget F, Costet N, Giton F, Gaudreau É, Lainé F, Garlantézec R, Cordier S, Chevrier C, Warembourg C. Associations between prenatal exposure to PFAS and cardiometabolic health in preadolescents. ENVIRONMENTAL RESEARCH 2025; 266:120607. [PMID: 39672492 DOI: 10.1016/j.envres.2024.120607] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/11/2024] [Revised: 11/21/2024] [Accepted: 12/10/2024] [Indexed: 12/15/2024]
Abstract
INTRODUCTION While a number of studies have examined the effects of prenatal exposure to per- and polyfluoroalkyl substances (PFAS) on childhood obesity, the results reported have been inconsistent and few studies have integrated biological markers. The aim of this study was to investigate the associations between prenatal exposure to PFAS and cardiometabolic health parameters at age 12, taking pubertal stage into consideration. METHOD This study included 394 mother-child pairs enrolled in the PELAGIE mother-child cohort (France). Nine PFAS were measured in umbilical cord blood, and the children attended a clinical examination at age 12. Anthropometry, blood metabolic markers, and blood pressure were measured and used to build an internal cardiometabolic score. Linear regression and Quantile G-computation models were used to evaluate individual and mixture PFAS effects, adjusting for confounders and stratifying by sex and pubertal stage. RESULTS No statistically significant association was observed between prenatal exposure to PFAS and cardiometabolic score at age 12. In post-menarche girls, perfluorohexane sulfonate (PFHxS) and perfluorodecanoic acid (PFDA) were statistically significantly associated with a decrease in a number of adiposity parameters (e.g., Body mass index z-score: beta [95%CI] = -0.37 [-0.67; -0.07]), as well as a decrease in low-density lipoproteins (LDL) and leptin levels. Similar results were observed with PFAS mixture, with statistically significantly decreased tricipital skinfolds (beta [95%CI] = -1.30 [(-2.54;-0.06)]). Isolated associations, including higher systolic blood pressure, changes in cholesterol levels, and lower adiponectin levels were observed in specific subgroups. CONCLUSION There is no clear evidence of an association between prenatal exposure to PFAS and the cardiometabolic health at earlier stage of pubertal development. However, inverse associations between PFAS and anthropometric measures have been observed in post-menarche girls. While the literature on this topic is scarce in pre-adolescents, these results suggest the importance of considering sex and pubertal stage in these associations.
Collapse
Affiliation(s)
- Naomi Lejeune
- Institut de recherche en santé, environnement et travail (Irset), Univ Rennes, Inserm, EHESP, 9 Av. Professeur Léon Bernard, Rennes, France
| | - Elke Rouxel
- Institut de recherche en santé, environnement et travail (Irset), Univ Rennes, Inserm, EHESP, 9 Av. Professeur Léon Bernard, Rennes, France
| | - Christine Monfort
- Institut de recherche en santé, environnement et travail (Irset), Univ Rennes, Inserm, EHESP, 9 Av. Professeur Léon Bernard, Rennes, France
| | - Hélène Tillaut
- Institut de recherche en santé, environnement et travail (Irset), Univ Rennes, Inserm, EHESP, 9 Av. Professeur Léon Bernard, Rennes, France
| | - Florence Rouget
- Université de Rennes, CHU Rennes, Inserm UMR S 1085, Irset, France
| | - Nathalie Costet
- Institut de recherche en santé, environnement et travail (Irset), Univ Rennes, Inserm, EHESP, 9 Av. Professeur Léon Bernard, Rennes, France
| | - Frank Giton
- AP-HP, Pôle Biologie-Pathologie Henri Mondor, Inserm, IMRB, 1 rue Gustave Eiffel, 94000, Créteil, France
| | - Éric Gaudreau
- Centre de Toxicologie du Québec (CTQ), Institut national de santé publique du Québec (INSPQ), 945 Av. Wolfe, G1V 5B3, Québec, QC, Canada
| | - Fabrice Lainé
- Centre d'Investigation Clinique CHU-Rennes (CIC 1414), CHU Rennes, Institut National de la Santé et de la Recherche Médicale, Inserm, 2 rue Henri Le Guilloux 35033, Rennes, France
| | | | - Sylvaine Cordier
- Institut de recherche en santé, environnement et travail (Irset), Univ Rennes, Inserm, EHESP, 9 Av. Professeur Léon Bernard, Rennes, France
| | - Cécile Chevrier
- Institut de recherche en santé, environnement et travail (Irset), Univ Rennes, Inserm, EHESP, 9 Av. Professeur Léon Bernard, Rennes, France
| | - Charline Warembourg
- Institut de recherche en santé, environnement et travail (Irset), Univ Rennes, Inserm, EHESP, 9 Av. Professeur Léon Bernard, Rennes, France.
| |
Collapse
|
3
|
Zhang Y, Tu L, Chen J, Zhou L. Interference Mechanisms of Endocrine System and Other Systems of Endocrine-Disrupting Chemicals in Cosmetics-In Vitro Studies. Int J Endocrinol 2024; 2024:2564389. [PMID: 39659890 PMCID: PMC11631346 DOI: 10.1155/ije/2564389] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/23/2024] [Revised: 10/07/2024] [Accepted: 11/02/2024] [Indexed: 12/12/2024] Open
Abstract
Endocrine-disrupting chemicals (EDCs), found in various cosmetic products, interfere with the normal functioning of the endocrine system, impacting hormone regulation and posing risks to human health. Common cosmetic EDCs, such as ultraviolet (UV) filters, parabens, and triclosan, can enter the human body through different routes, including skin absorption. Their presence has been linked to adverse effects on reproduction, immune function, and development. High-throughput in vitro assays, using various human cell lines, were employed to assess the effects of common cosmetic EDCs such as ethylhexyl methoxycinnamate (EHMC), benzophenone-3 (BP-3), homosalate, and parabens. Despite ongoing regulatory efforts, gaps persist in understanding their long-term impacts, particularly when they are present as mixtures or degradation products in the environment. This study focuses on recent in vitro research to investigate the mechanisms through which cosmetic-related EDCs disrupt the endocrine system and other physiological systems. The in vitro findings highlight the broader systemic impact of these chemicals, extending beyond the endocrine system to include immune, reproductive, and cardiovascular effects. This research underscores the importance of developing safer cosmetic formulations and enhancing public health protection, emphasizing the need for stricter regulations.
Collapse
Affiliation(s)
- Yixuan Zhang
- NMPA Key Laboratory for Monitoring and Evaluation of Cosmetics, Shanghai Innovation R&D, Testing and Evaluation Technical Service Platform of Cosmetics (22DZ2292100), Department of Evaluation of Cosmetics, Shanghai Municipal Center for Disease Control and Prevention, 1380 Zhongshan Rd. W., Changning, Shanghai 200336, China
| | - Lihong Tu
- Division of Public Health Service and Safety Assessment, Shanghai Institute of Preventive Medicine, 1380 Zhongshan Rd. W., Changning, Shanghai 200336, China
| | - Jian Chen
- NMPA Key Laboratory for Monitoring and Evaluation of Cosmetics, Shanghai Innovation R&D, Testing and Evaluation Technical Service Platform of Cosmetics (22DZ2292100), Department of Evaluation of Cosmetics, Shanghai Municipal Center for Disease Control and Prevention, 1380 Zhongshan Rd. W., Changning, Shanghai 200336, China
| | - Lihong Zhou
- Division of Public Health Service and Safety Assessment, Shanghai Institute of Preventive Medicine, 1380 Zhongshan Rd. W., Changning, Shanghai 200336, China
| |
Collapse
|
4
|
Zhang Y, Martin L, Mustieles V, Ghaly M, Archer M, Sun Y, Torres N, Coburn-Sanderson A, Souter I, Petrozza JC, Botelho JC, Calafat AM, Wang YX, Messerlian C. Per- and polyfluoroalkyl substances exposure is associated with polycystic ovary syndrome risk among women attending a fertility clinic. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 950:175313. [PMID: 39117221 PMCID: PMC11357523 DOI: 10.1016/j.scitotenv.2024.175313] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/18/2024] [Revised: 07/26/2024] [Accepted: 08/04/2024] [Indexed: 08/10/2024]
Abstract
Previous studies reported that exposures to per- and polyfluoroalkyl substances (PFAS), largely in higher exposed populations, were associated with elevated risk of polycystic ovary syndrome (PCOS). However, studies evaluating PCOS risk in populations with lower background exposures to PFAS are limited. This study aimed to examine the associations between serum PFAS concentrations and PCOS risk among women attending a U.S. academic fertility clinic during 2005-2019. A total of 502 females who sought fertility evaluation and assisted reproduction treatments were included. Nine PFAS were quantified in non-fasting serum samples collected at study entry. Diagnosis of PCOS was based on the Rotterdam criteria. We used logistic regression to examine the odds ratio (OR) of PCOS in relation to individual PFAS concentrations (continuous and by tertiles) and quantile g-computation (QGC) and Bayesian Kernel Machine Regression (BKMR) to examine the joint associations of PFAS mixture with PCOS. Most participants were White and had a graduate degree or higher. Per doubling of serum perfluorooctane sulfonate (PFOS) and perfluorohexane sulfonate (PFHxS) concentrations were associated with higher odds of PCOS [OR (95%CI): 1.70 (1.06, 2.81) and 1.45 (1.02, 2.08) for PFOS and PFHxS respectively]. There was a dose-response relationship of PFOS with PCOS risk (p of trend by PFOS tertiles = 0.07). Both QGC and BKMR identified PFOS as the most important contributor among the mixture to PCOS risk. No clear joint effects were found for other PFAS or PFAS mixtures on PCOS risk. Our findings are consistent with existing evidence in populations with higher background PFAS concentrations and highlight the adverse effects of PFAS exposure on reproductive health. Findings can inform public health measures and clinical care to protect populations vulnerable to PCOS, in part, due to environmental exposures.
Collapse
Affiliation(s)
- Yu Zhang
- Department of Environmental Health, Harvard T.H. Chan School of Public Health, Boston, MA, USA.
| | - Leah Martin
- Department of Environmental Health, Harvard T.H. Chan School of Public Health, Boston, MA, USA
| | - Vicente Mustieles
- Instituto de Investigación Biosanitaria Ibs GRANADA, Spain; University of Granada, Center for Biomedical Research (CIBM), Spain.; Consortium for Biomedical Research in Epidemiology and Public Health (CIBERESP), Spain
| | - Mina Ghaly
- Department of Environmental Health, Harvard T.H. Chan School of Public Health, Boston, MA, USA
| | - Madeleine Archer
- Department of Environmental Health, Harvard T.H. Chan School of Public Health, Boston, MA, USA
| | - Yang Sun
- Department of Environmental Health, Harvard T.H. Chan School of Public Health, Boston, MA, USA
| | - Nicole Torres
- Department of Environmental Health, Harvard T.H. Chan School of Public Health, Boston, MA, USA
| | - Ayanna Coburn-Sanderson
- Department of Environmental Health, Harvard T.H. Chan School of Public Health, Boston, MA, USA
| | - Irene Souter
- Department of Obstetrics and Gynecology, Vincent Center for Reproductive Biology, Massachusetts General Hospital Fertility Center, Boston, MA, USA
| | - John C Petrozza
- Department of Obstetrics and Gynecology, Vincent Center for Reproductive Biology, Massachusetts General Hospital Fertility Center, Boston, MA, USA
| | - Julianne C Botelho
- National Center for Environmental Health, Centers for Disease Control and Prevention, Atlanta, GA, USA
| | - Antonia M Calafat
- National Center for Environmental Health, Centers for Disease Control and Prevention, Atlanta, GA, USA
| | - Yi-Xin Wang
- Department of Environmental Health, School of Public Health, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Carmen Messerlian
- Department of Environmental Health, Harvard T.H. Chan School of Public Health, Boston, MA, USA; Department of Obstetrics and Gynecology, Vincent Center for Reproductive Biology, Massachusetts General Hospital Fertility Center, Boston, MA, USA; Department of Epidemiology, Harvard T.H. Chan School of Public Health, Boston, MA, USA
| |
Collapse
|
5
|
Strand D, Nylander E, Höglund A, Lundgren B, Martin JW, Karlsson O. Screening persistent organic pollutants for effects on testosterone and estrogen synthesis at human-relevant concentrations using H295R cells in 96-well plates. Cell Biol Toxicol 2024; 40:69. [PMID: 39136868 PMCID: PMC11322491 DOI: 10.1007/s10565-024-09902-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2024] [Accepted: 07/18/2024] [Indexed: 08/16/2024]
Abstract
Many persistent organic pollutants (POPs) are suspected endocrine disruptors and it is important to investigate their effects at low concentrations relevant to human exposure. Here, the OECD test guideline #456 steroidogenesis assay was downscaled to a 96-well microplate format to screen 24 POPs for their effects on viability, and testosterone and estradiol synthesis using the human adrenocortical cell line H295R. The compounds (six polyfluoroalkyl substances, five organochlorine pesticides, ten polychlorinated biphenyls and three polybrominated diphenyl ethers) were tested at human-relevant levels (1 nM to 10 µM). Increased estradiol synthesis, above the OECD guideline threshold of 1.5-fold solvent control, was shown after exposure to 10 µM PCB-156 (153%) and PCB-180 (196%). Interestingly, the base hormone synthesis varied depending on the cell batch. An alternative data analysis using a linear mixed-effects model that include multiple independent experiments and considers batch-dependent variation was therefore applied. This approach revealed small but statistically significant effects on estradiol or testosterone synthesis for 17 compounds. Increased testosterone levels were demonstrated even at 1 nM for PCB-74 (18%), PCB-99 (29%), PCB-118 (16%), PCB-138 (19%), PCB-180 (22%), and PBDE-153 (21%). The MTT assay revealed significant effects on cell viability after exposure to 1 nM of perfluoroundecanoic acid (12%), 3 nM PBDE-153 (9%), and 10 µM of PCB-156 (6%). This shows that some POPs can interfere with endocrine signaling at concentrations found in human blood, highlighting the need for further investigation into the toxicological mechanisms of POPs and their mixtures at low concentrations relevant to human exposure.
Collapse
Affiliation(s)
- Denise Strand
- Science for Life Laboratory, Department of Environmental Science, Stockholm University, 114 18, Stockholm, Sweden
| | - Erik Nylander
- Science for Life Laboratory, Department of Environmental Science, Stockholm University, 114 18, Stockholm, Sweden
| | - Andrey Höglund
- Science for Life Laboratory, Department of Environmental Science, Stockholm University, 114 18, Stockholm, Sweden
| | - Bo Lundgren
- Science for Life Laboratory, Biochemical and Cellular Assay unit, Dept. of Biochemistry and Biophysics, Stockholm University, 106 91, Stockholm, Sweden
| | - Jonathan W Martin
- Science for Life Laboratory, Department of Environmental Science, Stockholm University, 114 18, Stockholm, Sweden
| | - Oskar Karlsson
- Science for Life Laboratory, Department of Environmental Science, Stockholm University, 114 18, Stockholm, Sweden.
| |
Collapse
|
6
|
Wu B, Sheng N, Li Z, Wang J, Ji S, Zhao F, Pan Y, Qu Y, Wei Y, Xie L, Li Y, Hu X, Wu C, Zhang Z, Qiu Y, Zheng X, Zhang W, Hu X, Song H, Cai J, Cao Z, Ji JS, Lv Y, Dai J, Shi X. Positive Associations of Perfluoroalkyl and Polyfluoroalkyl Substances With Hypertension May Be Attenuated by Endogenous Sex Hormones: A Nationally Representative Cross-Sectional Study. Hypertension 2024; 81:1799-1810. [PMID: 38853753 DOI: 10.1161/hypertensionaha.123.22127] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2023] [Accepted: 05/06/2024] [Indexed: 06/11/2024]
Abstract
BACKGROUND Perfluoroalkyl and polyfluoroalkyl substance (PFAS) has endocrine-disrupting properties and may affect blood pressure. Endogenous hormones also play a crucial role in the progression of hypertension. However, their interaction with hypertension remains to be explored. METHODS This study included 10 794 adults aged ≥18 years from the China National Human Biomonitoring program. Weighted multiple logistic regression and linear regression were used to examine the associations of serum PFAS with hypertension, diastolic blood pressure, and systolic blood pressure. Joint effects of PFAS mixtures on hypertension, diastolic blood pressure, and systolic blood pressure were evaluated using quantile-based g-computation. Additive and multiplicative interactions were used to assess the role of PFAS with testosterone and estradiol on hypertension. RESULTS The prevalence of hypertension in Chinese adults was 35.50%. Comparing the fourth quartile with the first quartile, odds ratio (95% CI) of hypertension were 1.53 (1.13-2.09) for perfluorononanoic acid, 1.40 (1.03-1.91) for perfluorodecanoic acid, 1.34 (1.02-1.78) for perfluoroheptane sulfonic acid, and 1.46 (1.07-1.99) for perfluorooctane sulfonic acid. Moreover, PFAS mixtures, with perfluorononanoic acid contributing the most, were positively associated with hypertension, diastolic blood pressure, and systolic blood pressure. PFAS and endogenous hormones had an antagonistic interaction in hypertension. For example, the relative excess risk ratio, attributable proportion, and synergy index for perfluorononanoic acid and estradiol were -3.61 (-4.68 to -2.53), -1.65 (-2.59 to -0.71), and 0.25 (0.13-0.47), respectively. CONCLUSIONS Perfluorononanoic acid, perfluorodecanoic acid, perfluoroheptane sulfonic acid, perfluorooctane sulfonic acid, and PFAS mixtures showed positive associations with hypertension, systolic blood pressure, and diastolic blood pressure. Positive associations of PFAS with hypertension might be attenuated by increased levels of endogenous sex hormones.
Collapse
Affiliation(s)
- Bing Wu
- China CDC Key Laboratory of Environment and Population Health, National Institute of Environmental Health, Chinese Center for Disease Control and Prevention, Beijing (B.W., Z.L., S.J., F.Z., Y.Q., Y.W., L.X., Y.L., X.H., C.W., Z.Z., Y.Q., X.Z., W.Z., X.H., H.S., J.C., Z.C., Y.L., X.S.)
| | - Nan Sheng
- State Environmental Protection Key Laboratory of Environmental Health Impact Assessment of Emerging Contaminants, School of Environmental Science and Engineering, Shanghai Jiao Tong University, China (N.S., J.W., Y.P., J.D.)
| | - Zheng Li
- China CDC Key Laboratory of Environment and Population Health, National Institute of Environmental Health, Chinese Center for Disease Control and Prevention, Beijing (B.W., Z.L., S.J., F.Z., Y.Q., Y.W., L.X., Y.L., X.H., C.W., Z.Z., Y.Q., X.Z., W.Z., X.H., H.S., J.C., Z.C., Y.L., X.S.)
| | - Jinghua Wang
- State Environmental Protection Key Laboratory of Environmental Health Impact Assessment of Emerging Contaminants, School of Environmental Science and Engineering, Shanghai Jiao Tong University, China (N.S., J.W., Y.P., J.D.)
| | - Saisai Ji
- China CDC Key Laboratory of Environment and Population Health, National Institute of Environmental Health, Chinese Center for Disease Control and Prevention, Beijing (B.W., Z.L., S.J., F.Z., Y.Q., Y.W., L.X., Y.L., X.H., C.W., Z.Z., Y.Q., X.Z., W.Z., X.H., H.S., J.C., Z.C., Y.L., X.S.)
| | - Feng Zhao
- China CDC Key Laboratory of Environment and Population Health, National Institute of Environmental Health, Chinese Center for Disease Control and Prevention, Beijing (B.W., Z.L., S.J., F.Z., Y.Q., Y.W., L.X., Y.L., X.H., C.W., Z.Z., Y.Q., X.Z., W.Z., X.H., H.S., J.C., Z.C., Y.L., X.S.)
| | - Yitao Pan
- State Environmental Protection Key Laboratory of Environmental Health Impact Assessment of Emerging Contaminants, School of Environmental Science and Engineering, Shanghai Jiao Tong University, China (N.S., J.W., Y.P., J.D.)
| | - Yingli Qu
- China CDC Key Laboratory of Environment and Population Health, National Institute of Environmental Health, Chinese Center for Disease Control and Prevention, Beijing (B.W., Z.L., S.J., F.Z., Y.Q., Y.W., L.X., Y.L., X.H., C.W., Z.Z., Y.Q., X.Z., W.Z., X.H., H.S., J.C., Z.C., Y.L., X.S.)
| | - Yuan Wei
- China CDC Key Laboratory of Environment and Population Health, National Institute of Environmental Health, Chinese Center for Disease Control and Prevention, Beijing (B.W., Z.L., S.J., F.Z., Y.Q., Y.W., L.X., Y.L., X.H., C.W., Z.Z., Y.Q., X.Z., W.Z., X.H., H.S., J.C., Z.C., Y.L., X.S.)
| | - Linna Xie
- China CDC Key Laboratory of Environment and Population Health, National Institute of Environmental Health, Chinese Center for Disease Control and Prevention, Beijing (B.W., Z.L., S.J., F.Z., Y.Q., Y.W., L.X., Y.L., X.H., C.W., Z.Z., Y.Q., X.Z., W.Z., X.H., H.S., J.C., Z.C., Y.L., X.S.)
| | - Yawei Li
- China CDC Key Laboratory of Environment and Population Health, National Institute of Environmental Health, Chinese Center for Disease Control and Prevention, Beijing (B.W., Z.L., S.J., F.Z., Y.Q., Y.W., L.X., Y.L., X.H., C.W., Z.Z., Y.Q., X.Z., W.Z., X.H., H.S., J.C., Z.C., Y.L., X.S.)
| | - Xiaojian Hu
- China CDC Key Laboratory of Environment and Population Health, National Institute of Environmental Health, Chinese Center for Disease Control and Prevention, Beijing (B.W., Z.L., S.J., F.Z., Y.Q., Y.W., L.X., Y.L., X.H., C.W., Z.Z., Y.Q., X.Z., W.Z., X.H., H.S., J.C., Z.C., Y.L., X.S.)
| | - Changzi Wu
- China CDC Key Laboratory of Environment and Population Health, National Institute of Environmental Health, Chinese Center for Disease Control and Prevention, Beijing (B.W., Z.L., S.J., F.Z., Y.Q., Y.W., L.X., Y.L., X.H., C.W., Z.Z., Y.Q., X.Z., W.Z., X.H., H.S., J.C., Z.C., Y.L., X.S.)
| | - Zheng Zhang
- China CDC Key Laboratory of Environment and Population Health, National Institute of Environmental Health, Chinese Center for Disease Control and Prevention, Beijing (B.W., Z.L., S.J., F.Z., Y.Q., Y.W., L.X., Y.L., X.H., C.W., Z.Z., Y.Q., X.Z., W.Z., X.H., H.S., J.C., Z.C., Y.L., X.S.)
| | - Yidan Qiu
- China CDC Key Laboratory of Environment and Population Health, National Institute of Environmental Health, Chinese Center for Disease Control and Prevention, Beijing (B.W., Z.L., S.J., F.Z., Y.Q., Y.W., L.X., Y.L., X.H., C.W., Z.Z., Y.Q., X.Z., W.Z., X.H., H.S., J.C., Z.C., Y.L., X.S.)
| | - Xulin Zheng
- China CDC Key Laboratory of Environment and Population Health, National Institute of Environmental Health, Chinese Center for Disease Control and Prevention, Beijing (B.W., Z.L., S.J., F.Z., Y.Q., Y.W., L.X., Y.L., X.H., C.W., Z.Z., Y.Q., X.Z., W.Z., X.H., H.S., J.C., Z.C., Y.L., X.S.)
| | - Wenli Zhang
- China CDC Key Laboratory of Environment and Population Health, National Institute of Environmental Health, Chinese Center for Disease Control and Prevention, Beijing (B.W., Z.L., S.J., F.Z., Y.Q., Y.W., L.X., Y.L., X.H., C.W., Z.Z., Y.Q., X.Z., W.Z., X.H., H.S., J.C., Z.C., Y.L., X.S.)
| | - Xuehua Hu
- China CDC Key Laboratory of Environment and Population Health, National Institute of Environmental Health, Chinese Center for Disease Control and Prevention, Beijing (B.W., Z.L., S.J., F.Z., Y.Q., Y.W., L.X., Y.L., X.H., C.W., Z.Z., Y.Q., X.Z., W.Z., X.H., H.S., J.C., Z.C., Y.L., X.S.)
| | - Haocan Song
- China CDC Key Laboratory of Environment and Population Health, National Institute of Environmental Health, Chinese Center for Disease Control and Prevention, Beijing (B.W., Z.L., S.J., F.Z., Y.Q., Y.W., L.X., Y.L., X.H., C.W., Z.Z., Y.Q., X.Z., W.Z., X.H., H.S., J.C., Z.C., Y.L., X.S.)
| | - Jiayi Cai
- China CDC Key Laboratory of Environment and Population Health, National Institute of Environmental Health, Chinese Center for Disease Control and Prevention, Beijing (B.W., Z.L., S.J., F.Z., Y.Q., Y.W., L.X., Y.L., X.H., C.W., Z.Z., Y.Q., X.Z., W.Z., X.H., H.S., J.C., Z.C., Y.L., X.S.)
| | - Zhaojin Cao
- China CDC Key Laboratory of Environment and Population Health, National Institute of Environmental Health, Chinese Center for Disease Control and Prevention, Beijing (B.W., Z.L., S.J., F.Z., Y.Q., Y.W., L.X., Y.L., X.H., C.W., Z.Z., Y.Q., X.Z., W.Z., X.H., H.S., J.C., Z.C., Y.L., X.S.)
| | - John S Ji
- Vanke School of Public Health, Tsinghua University, Beijing, China (J.S.J.)
| | - Yuebin Lv
- China CDC Key Laboratory of Environment and Population Health, National Institute of Environmental Health, Chinese Center for Disease Control and Prevention, Beijing (B.W., Z.L., S.J., F.Z., Y.Q., Y.W., L.X., Y.L., X.H., C.W., Z.Z., Y.Q., X.Z., W.Z., X.H., H.S., J.C., Z.C., Y.L., X.S.)
| | - Jiayin Dai
- State Environmental Protection Key Laboratory of Environmental Health Impact Assessment of Emerging Contaminants, School of Environmental Science and Engineering, Shanghai Jiao Tong University, China (N.S., J.W., Y.P., J.D.)
- Center for Global Health, School of Public Health, Nanjing Medical University, China (J.D., X.S.)
| | - Xiaoming Shi
- China CDC Key Laboratory of Environment and Population Health, National Institute of Environmental Health, Chinese Center for Disease Control and Prevention, Beijing (B.W., Z.L., S.J., F.Z., Y.Q., Y.W., L.X., Y.L., X.H., C.W., Z.Z., Y.Q., X.Z., W.Z., X.H., H.S., J.C., Z.C., Y.L., X.S.)
- Center for Global Health, School of Public Health, Nanjing Medical University, China (J.D., X.S.)
| |
Collapse
|
7
|
Wei Y, He H, Han T, Wang B, Ji P, Wu X, Qian J, Shao P. Environmental explanation of prostate cancer progression based on the comprehensive analysis of perfluorinated compounds. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2023; 263:115267. [PMID: 37499384 DOI: 10.1016/j.ecoenv.2023.115267] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/05/2022] [Revised: 07/08/2023] [Accepted: 07/15/2023] [Indexed: 07/29/2023]
Abstract
Perfluorinated compounds (PFCs) are man-made chemicals used in the manufacture of many products with water and dirt repellent properties. Many diseases have been proved to be related to the exposure of PFCs, including breast fibroadenoma, hepatocellular carcinoma, breast cancer and leydig cell adenoma. However, whether the PFCs promote the progression of prostate cancer remains unclear. In this work, through comprehensive bioinformatics analysis, we discovered the correlation between the prostate cancer and five PFCs using Comparative Toxicogenomics Database (CTD), Gene Expression Omnibus (GEO) and The Cancer Genome Atlas (TCGA) databases. In addition, further analysis showed that several PFCs-related genes demonstrated strong prognostic value for prostate cancer patients. The survival analysis and receiver operating characteristic (ROC) curves revealed that PFCs-related genes based prognostic model held great predictive value for the prognosis of prostate cancer, which could potentially serve as an independent risk factor in the future. In vitro experiments verified the promotive role of perfluorooctanoic acid (PFOA) and perfluorononanoic acid (PFNA) in the growth of prostate cancer cells. This study provided novel insights into understanding the role of PFCs in prostate cancer and brought attention to the environmental association with cancer risks and progression.
Collapse
Affiliation(s)
- Yuang Wei
- Department of Urology, the First Affiliated Hospital of Nanjing Medical University, Nanjing 210029, China
| | - Haibing He
- Urology Department, Maanshan General Hospital of Ranger-Duree Healthcare, China
| | - Tian Han
- Department of Urology, the First Affiliated Hospital of Nanjing Medical University, Nanjing 210029, China
| | - Bao Wang
- Department of Urology, the First Affiliated Hospital of Nanjing Medical University, Nanjing 210029, China
| | - Peng Ji
- Department of Urology, the First Affiliated Hospital of Nanjing Medical University, Nanjing 210029, China
| | - Xiangzheng Wu
- Department of Urology, the First Affiliated Hospital of Nanjing Medical University, Nanjing 210029, China
| | - Jian Qian
- Department of Urology, the First Affiliated Hospital of Nanjing Medical University, Nanjing 210029, China.
| | - Pengfei Shao
- Department of Urology, the First Affiliated Hospital of Nanjing Medical University, Nanjing 210029, China.
| |
Collapse
|
8
|
Rivera-Núñez Z, Kinkade CW, Khoury L, Brunner J, Murphy H, Wang C, Kannan K, Miller RK, O'Connor TG, Barrett ES. Prenatal perfluoroalkyl substances exposure and maternal sex steroid hormones across pregnancy. ENVIRONMENTAL RESEARCH 2023; 220:115233. [PMID: 36621543 PMCID: PMC9977559 DOI: 10.1016/j.envres.2023.115233] [Citation(s) in RCA: 31] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/06/2022] [Revised: 12/08/2022] [Accepted: 01/03/2023] [Indexed: 06/14/2023]
Abstract
BACKGROUND Poly- and perfluoroalkyl substances (PFAS) are ubiquitous and persistent environmental contaminants that may act as endocrine disruptors in utero, but the specific endocrine pathways are unknown. OBJECTIVE We examined associations between maternal serum PFAS and sex steroid hormones at three time points during pregnancy. METHODS Pregnant women participating in the Understanding Pregnancy Signals and Infant Development (UPSIDE) study contributed biospecimens, questionnaire, and medical record data in each trimester (n = 285). PFAS (including perfluorooctanoic acid (PFOA), perfluorooctanesulfonic acid (PFOS), perfluorohexane sulfonic acid (PFHxS), perfluorononanoic acid (PFNA) and perfluorodecanoic acid (PFDA)) were analyzed in second-trimester serum samples by high-performance liquid chromatography and tandem mass spectrometry (LC-MS/MS). Total testosterone [TT], free testosterone [fT], estrone [E1], estradiol [E2], and estriol [E3]) were measured by LC-MS/MS in serum samples from each trimester. Linear mixed models with random intercepts were used to examine associations between log-transformed PFAS concentrations and hormone levels, adjusting for covariates, and stratifying by fetal sex. Results are presented as the mean percentage difference (Δ%) in hormone levels per ln-unit increase in PFAS concentration. RESULTS In adjusted models, PFHxS was associated with higher TT (%Δ = 20.0, 95%CI: 1.7, 41.6), particularly among women carrying male fetuses (%Δ = 15.3, 95%CI: 1.2, 30.7); this association strengthened as the pregnancy progressed. PFNA (%Δ = 7.9, 95%CI: 3.4, 12.5) and PFDA (%Δ = 7.2, 95%CI: 4.9, 9.7) were associated with higher fT, with associations again observed only in women carrying male fetuses. PFHxS was associated with higher levels of E2 and E3 in women carrying female fetuses (%Δ = 13.2, 95%CI: 0.5, 29.1; %Δ = 17.9, 95%CI: 3.2, 34.8, respectively). No associations were observed for PFOS and PFOA. CONCLUSION PFHxS, PFNA, and PFDA may disrupt androgenic and estrogenic pathways in pregnancy in a sex-dependent manner.
Collapse
Affiliation(s)
- Zorimar Rivera-Núñez
- Department of Biostatistics and Epidemiology, Rutgers School of Public Health, Piscataway, NJ, USA; Environmental and Occupational Health Sciences Institute, Rutgers University, Piscataway, NJ, USA.
| | - Carolyn W Kinkade
- Environmental and Occupational Health Sciences Institute, Rutgers University, Piscataway, NJ, USA
| | - Leena Khoury
- Departments of Psychiatry, Psychology, Neuroscience, University of Rochester, NY, USA; Department of Obstetrics and Gynecology, University of Rochester, Rochester, NY, USA
| | - Jessica Brunner
- Departments of Psychiatry, Psychology, Neuroscience, University of Rochester, NY, USA; Department of Obstetrics and Gynecology, University of Rochester, Rochester, NY, USA
| | - Hannah Murphy
- Department of Obstetrics and Gynecology, University of Rochester, Rochester, NY, USA
| | - Christina Wang
- Clinical and Translational Science Institute, The Lundquist Institute at Harbor -UCLA Medical Center, Torrance, CA, USA
| | - Kurunthachalam Kannan
- Department of Pediatrics, And Department of Environmental Medicine, New York University, Grossman School of Medicine, NY, NY, USA
| | - Richard K Miller
- Department of Obstetrics and Gynecology, University of Rochester, Rochester, NY, USA
| | - Thomas G O'Connor
- Departments of Psychiatry, Psychology, Neuroscience, University of Rochester, NY, USA; Department of Obstetrics and Gynecology, University of Rochester, Rochester, NY, USA
| | - Emily S Barrett
- Department of Biostatistics and Epidemiology, Rutgers School of Public Health, Piscataway, NJ, USA; Environmental and Occupational Health Sciences Institute, Rutgers University, Piscataway, NJ, USA; Department of Obstetrics and Gynecology, University of Rochester, Rochester, NY, USA
| |
Collapse
|
9
|
Rickard BP, Rizvi I, Fenton SE. Per- and poly-fluoroalkyl substances (PFAS) and female reproductive outcomes: PFAS elimination, endocrine-mediated effects, and disease. Toxicology 2022; 465:153031. [PMID: 34774661 PMCID: PMC8743032 DOI: 10.1016/j.tox.2021.153031] [Citation(s) in RCA: 150] [Impact Index Per Article: 50.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2021] [Revised: 09/29/2021] [Accepted: 11/08/2021] [Indexed: 01/17/2023]
Abstract
Per- and poly-fluoroalkyl substances (PFAS) are widespread environmental contaminants frequently detected in drinking water supplies worldwide that have been linked to a variety of adverse reproductive health outcomes in women. Compared to men, reproductive health effects in women are generally understudied while global trends in female reproduction rates are declining. Many factors may contribute to the observed decline in female reproduction, one of which is environmental contaminant exposure. PFAS have been used in home, food storage, personal care and industrial products for decades. Despite the phase-out of some legacy PFAS due to their environmental persistence and adverse health effects, alternative, short-chain and legacy PFAS mixtures will continue to pollute water and air and adversely influence women's health. Studies have shown that both long- and short-chain PFAS disrupt normal reproductive function in women through altering hormone secretion, menstrual cyclicity, and fertility. Here, we summarize the role of a variety of PFAS and PFAS mixtures in female reproductive tract dysfunction and disease. Since these chemicals may affect reproductive tissues directly or indirectly through endocrine disruption, the role of PFAS in breast, thyroid, and hypothalamic-pituitary-gonadal axis function are also discussed as the interplay between these tissues may be critical in understanding the long-term reproductive health effects of PFAS in women. A major research gap is the need for mechanism of action data - the targets for PFAS in the female reproductive and endocrine systems are not evident, but the effects are many. Given the global decline in female fecundity and the ability of PFAS to negatively impact female reproductive health, further studies are needed to examine effects on endocrine target tissues involved in the onset of reproductive disorders of women.
Collapse
Affiliation(s)
- Brittany P Rickard
- Curriculum in Toxicology & Environmental Medicine, School of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA; Joint Department of Biomedical Engineering, University of North Carolina at Chapel Hill, Chapel Hill, NC, North Carolina State University, Raleigh, NC 27599, USA
| | - Imran Rizvi
- Joint Department of Biomedical Engineering, University of North Carolina at Chapel Hill, Chapel Hill, NC, North Carolina State University, Raleigh, NC 27599, USA; Lineberger Comprehensive Cancer Center, School of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Suzanne E Fenton
- Division of the National Toxicology Program, National Institute of Environmental Health Sciences, 111 TW Alexander Dr., Rm E121A, Research Triangle Park, NC 27709, USA.
| |
Collapse
|
10
|
Hammarstrand S, Jakobsson K, Andersson E, Xu Y, Li Y, Olovsson M, Andersson EM. Perfluoroalkyl substances (PFAS) in drinking water and risk for polycystic ovarian syndrome, uterine leiomyoma, and endometriosis: A Swedish cohort study. ENVIRONMENT INTERNATIONAL 2021; 157:106819. [PMID: 34391986 DOI: 10.1016/j.envint.2021.106819] [Citation(s) in RCA: 38] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/25/2021] [Revised: 07/14/2021] [Accepted: 08/05/2021] [Indexed: 06/13/2023]
Abstract
BACKGROUND Perfluorinated substances (PFAS) are chemicals with endocrine disruptive properties that may interfere with the female reproductive system. However, few studies have explored the association between benign gynecological diseases and high PFAS exposure. OBJECTIVES The aim of this study was to investigate the possible associations between PFAS exposure and subsequent diagnosis of polycystic ovarian syndrome (PCOS), uterine leiomyoma (fibroids), and endometriosis in a cohort exposed to PFAS through drinking water. MATERIAL AND METHODS In 2013, high levels (with sum of PFAS above 10,000 ng/L), dominated by perfluorooctanesulfonic acid (PFOS) and perfluorohexane sulfonic acid (PFHxS), were found in the drinking water from one of the two waterworks in Ronneby, Sweden. The contamination came from firefighting foams used at a nearby airfield. Females of all ages (n = 29,106) who had ever resided in the municipality between 1985 and 2013 formed a cohort. Individual exposure was assessed based on municipality waterworks distribution data linked to annual residential address data; 27% of the females had ever lived at an address with PFAS-contaminated water. Gynecological health outcomes were retrieved from the Swedish National Patient Register. The Cox proportional hazards model was used to estimate the association between exposure and each diagnosis. RESULTS There were in all 161 cases of PCOS, 1,122 cases of uterine leiomyoma, and 373 cases of endometriosis. In women aged 20-50 years (n = 18,503), those with the highest estimated PFAS exposure had increased hazard ratios (HR) for PCOS (HR = 2.18; 95% confidence interval (CI) 1.43, 3.34) and uterine leiomyoma (HR = 1.28; 95% CI 0.95, 1.74). No increased HR for endometriosis was found (HR = 0.74; 95% CI 0.42, 1.29). CONCLUSIONS Exposure to high levels of PFAS in drinking water was associated with increased risk of PCOS and possibly uterine leiomyoma, but not endometriosis. The findings for PCOS are consistent with prior studies reporting positive associations between PCOS and PFAS exposure at background levels.
Collapse
Affiliation(s)
- Sofia Hammarstrand
- Occupational and Environmental Medicine, Sahlgrenska University Hospital, Gothenburg, Sweden; Occupational and Environmental Medicine, School of Public Health and Community Medicine, Institute of Medicine, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden.
| | - Kristina Jakobsson
- Occupational and Environmental Medicine, Sahlgrenska University Hospital, Gothenburg, Sweden; Occupational and Environmental Medicine, School of Public Health and Community Medicine, Institute of Medicine, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - Eva Andersson
- Occupational and Environmental Medicine, Sahlgrenska University Hospital, Gothenburg, Sweden; Occupational and Environmental Medicine, School of Public Health and Community Medicine, Institute of Medicine, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - Yiyi Xu
- Occupational and Environmental Medicine, School of Public Health and Community Medicine, Institute of Medicine, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - Ying Li
- Occupational and Environmental Medicine, School of Public Health and Community Medicine, Institute of Medicine, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - Matts Olovsson
- Department of Women's and Children's Health, Uppsala University, Uppsala, Sweden
| | - Eva M Andersson
- Occupational and Environmental Medicine, Sahlgrenska University Hospital, Gothenburg, Sweden; Occupational and Environmental Medicine, School of Public Health and Community Medicine, Institute of Medicine, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| |
Collapse
|
11
|
Alam MN, Han X, Nan B, Liu L, Tian M, Shen H, Huang Q. Chronic low-level perfluorooctane sulfonate (PFOS) exposure promotes testicular steroidogenesis through enhanced histone acetylation. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2021; 284:117518. [PMID: 34261222 DOI: 10.1016/j.envpol.2021.117518] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/04/2021] [Revised: 04/30/2021] [Accepted: 05/18/2021] [Indexed: 06/13/2023]
Abstract
Perfluorooctane sulfonate (PFOS), an artificial perfluorinated compound, has been associated with male reproductive disorders. Histone modifications are important epigenetic mediators; however, the impact of PFOS exposure on testicular steroidogenesis through histone modification regulations remains to be elucidated. In this study, we examined the roles of histone modifications in regulating steroid hormone production in male rats chronically exposed to low-level PFOS. The results indicate that PFOS exposure significantly up-regulated the expressions of StAR, CYP11A1 and 3β-HSD, while CYP17A1 and 17β-HSD were down-regulated, thus contributing to the elevated progesterone and testosterone levels. Furthermore, PFOS significantly increased the histones H3K9me2, H3K9ac and H3K18ac while reduced H3K9me3 in rat testis. It is known that histone modifications are closely involved in gene transcription. Therefore, to investigate the association between histone modifications and steroidogenic gene regulation, the levels of these histone marks were further measured in steroidogenic gene promoter regions by ChIP. It was found that H3K18ac was augmented in Cyp11a1 promoter, and H3K9ac was increased in Hsd3b after PFOS exposure, which is proposed to result in the activation of CYP11A1 and 3β-HSD, respectively. To sum up, chronic low-level PFOS exposure activated key steroidogenic gene expression through enhancing histone acetylation (H3K9ac and H3K18ac), ultimately stimulating steroid hormone biosynthesis in rat testis.
Collapse
Affiliation(s)
- Md Nur Alam
- Key Laboratory of Urban Environment and Health, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen, 361021, China; University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Xuejingping Han
- Key Laboratory of Urban Environment and Health, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen, 361021, China
| | - Bingru Nan
- Key Laboratory of Urban Environment and Health, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen, 361021, China
| | - Liangpo Liu
- School of Public Health, Shanxi Medical University, Taiyuan, 030001, China
| | - Meiping Tian
- Key Laboratory of Urban Environment and Health, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen, 361021, China
| | - Heqing Shen
- Key Laboratory of Urban Environment and Health, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen, 361021, China; State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, School of Public Health, Xiamen University, Xiamen, 361102, China
| | - Qingyu Huang
- Key Laboratory of Urban Environment and Health, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen, 361021, China.
| |
Collapse
|
12
|
Alharthy SA, Hardej D. The role of transcription factor Nrf2 in the toxicity of perfluorooctane sulfonate (PFOS) and perfluorooctanoic acid (PFOA) in C57BL/6 mouse astrocytes. ENVIRONMENTAL TOXICOLOGY AND PHARMACOLOGY 2021; 86:103652. [PMID: 33812015 DOI: 10.1016/j.etap.2021.103652] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/17/2021] [Revised: 03/24/2021] [Accepted: 03/26/2021] [Indexed: 05/14/2023]
Abstract
Perfluorooctane sulfonate (PFOS) and perfluorooctanoic acid (PFOA) are members of perfluoroalkyl substances (PFAS). This study aimed to determine the protective role of Nrf2 against the toxicity of these agents. Nrf2-/- and wild-type astrocytes were exposed to PFOS (75-600 μM) and PFOA (400-1000 μM) for 24 h. Lactate dehydrogenase (LDH) release was significantly higher in nrf2-/- than in the wild-type astrocytes. Exposure to 600 μM PFOS and 800 μM PFOA showed significant increases in reactive oxygen species, lipid peroxidation, and apoptosis in nrf2-/- astrocytes as compared to wild-type astrocytes. The GSH/GSSG ratio was significantly decreased in nrf2-/- astrocytes when compared to wild-type astrocytes. Additionally, PFOS and PFOS caused dramatic ultrastructural alterations to the mitochondria. BHT pretreatment in wild-type cells decreased ROS production with exposure to both agents. Results of the present study conclude that PFOS and PFOA are cytotoxic to astrocytes and that nrf2 -/- cells are more sensitive to toxicity by these agents.
Collapse
Affiliation(s)
- Saif A Alharthy
- Department of Pharmaceutical Sciences, College of Pharmacy and Health Sciences, St. John's University, Jamaica, NY, 11439, USA; Department of Medical Laboratory Technology, Faculty of Applied Medical Sciences, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Diane Hardej
- Department of Pharmaceutical Sciences, College of Pharmacy and Health Sciences, St. John's University, Jamaica, NY, 11439, USA.
| |
Collapse
|
13
|
Ding N, Karvonen-Gutierrez CA, Herman WH, Calafat AM, Mukherjee B, Park SK. Associations of perfluoroalkyl and polyfluoroalkyl substances (PFAS) and PFAS mixtures with adipokines in midlife women. Int J Hyg Environ Health 2021; 235:113777. [PMID: 34090141 DOI: 10.1016/j.ijheh.2021.113777] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2021] [Revised: 05/11/2021] [Accepted: 05/21/2021] [Indexed: 02/08/2023]
Abstract
BACKGROUND Perfluoroalkyl and polyfluoroalkyl substances (PFAS) exposure have been associated with obesity and related comorbidities, possibly through disrupting signaling pathways of adipokines. Both leptin and adiponectin can modulate metabolic processes. However, the effects of PFAS on adipokines are not well understood. OBJECTIVE We determined if serum PFAS concentrations were associated with adipokine profiles in midlife women. METHODS We examined 1245 women aged 45-56 years from the Study of Women's Health Across the Nation. Concentrations of 11 PFAS were quantified in baseline serum samples collected in 1999-2000. Linear and branched perfluorooctane sulfonic acid isomers (n-PFOS and Sm-PFOS) and their sum (PFOS), linear perfluorooctanoic acid (n-PFOA), perfluorononanoic acid (PFNA), perfluorohexane sulfonic acid (PFHxS), 2-(N-methyl-perfluorooctane sulfonamido) acetic acid (MeFOSAA), and 2-(N-ethyl-perfluorooctane sulfonamido) acetic acid (EtFOSAA) with detection frequencies >60% were included in the analysis. Adipokines including leptin, soluble leptin receptor (sOB-R), free leptin index (FLI, the ratio of leptin to sOB-R), total and high molecular weight (HMW) adiponectin were assessed in 2002-2003. We utilized multivariable linear regressions and Bayesian kernel machine regression (BKMR) to assess individual and overall joint effects of PFAS on adipokines with adjustment for age, race/ethnicity, study site, education, smoking status, physical activity, menopausal status, and waist circumference. RESULTS A doubling of PFAS concentrations was associated with 7.8% (95% CI: 2.5%, 13.4%) higher FLI for PFOS, 9.4% (95% CI: 3.7%, 15.3%) for n-PFOA, 5.5% (95% CI: 2.2%, 9.0%) for EtFOSAA and 7.4% (95% CI: 2.8%, 12.2%) for MeFOSAA. Similar associations were found for leptin. Only EtFOSAA was associated with lower sOB-R concentrations (-1.4%, 95% CI: -2.7%, -0.1%). Results remained in women with overweight or obesity but not those with normal weight or underweight. No statistically significant associations were observed with total or HMW adiponectin, except for PFNA with total and HMW adiponectin observed in women with normal weight or underweight. In BKMR analysis, women with PFAS concentrations at the median and the 90th percentile had 30.9% (95% CI: 15.6%, 48.3%) and 52.1% (95% CI: 27.9%, 81.0%) higher FLI, respectively, compared with those with concentrations fixed at the 10th percentile. CONCLUSION Some PFAS may alter circulating levels of leptin. Understanding associations between PFAS and adipokines may help elucidate whether PFAS can influence obesity and metabolic disease.
Collapse
Affiliation(s)
- Ning Ding
- Department of Epidemiology, School of Public Health, University of Michigan, Ann Arbor, MI, USA
| | | | - William H Herman
- Department of Epidemiology, School of Public Health, University of Michigan, Ann Arbor, MI, USA; Department of Internal Medicine, University of Michigan, Ann Arbor, MI, USA
| | - Antonia M Calafat
- Division of Laboratory Sciences, National Center for Environmental Health, Centers for Disease Control and Prevention, Atlanta, GA, USA
| | - Bhramar Mukherjee
- Department of Biostatistics, School of Public Health, University of Michigan, Ann Arbor, MI, USA
| | - Sung Kyun Park
- Department of Epidemiology, School of Public Health, University of Michigan, Ann Arbor, MI, USA; Department of Environmental Health Sciences, School of Public Health, University of Michigan, Ann Arbor, MI, USA.
| |
Collapse
|
14
|
Environmental Factors-Induced Oxidative Stress: Hormonal and Molecular Pathway Disruptions in Hypogonadism and Erectile Dysfunction. Antioxidants (Basel) 2021; 10:antiox10060837. [PMID: 34073826 PMCID: PMC8225220 DOI: 10.3390/antiox10060837] [Citation(s) in RCA: 40] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2021] [Revised: 05/19/2021] [Accepted: 05/20/2021] [Indexed: 01/09/2023] Open
Abstract
Hypogonadism is an endocrine disorder characterized by inadequate serum testosterone production by the Leydig cells of the testis. It is triggered by alterations in the hypothalamic–pituitary–gonadal axis. Erectile dysfunction (ED) is another common disorder in men that involves an alteration in erectile response–organic, relational, or psychological. The incidence of hypogonadism and ED is common in men aged over 40 years. Hypogonadism (including late-onset hypogonadism) and ED may be linked to several environmental factors-induced oxidative stresses. The factors mainly include exposure to pesticides, radiation, air pollution, heavy metals and other endocrine-disrupting chemicals. These environmental risk factors may induce oxidative stress and lead to hormonal dysfunctions. To better understand the subject, the study used many keywords, including “hypogonadism”, “late-onset hypogonadism”, “testosterone”, “erectile dysfunction”, “reactive oxygen species”, “oxidative stress”, and “environmental pollution” in major online databases, such as SCOPUS and PUBMED to extract relevant scientific information. Based on these parameters, this review summarizes a comprehensive insight into the important environmental issues that may have a direct or indirect association with hypogonadism and ED in men. The study concludes that environmental factors-induced oxidative stress may cause infertility in men. The hypothesis and outcomes were reviewed critically, and the mechanistic approaches are applied through oxidant-sensitive pathways. This study also provides reccomendations on future therapeutic interventions and protective measures against such adverse environmental factors-induced hypogonadism and ED.
Collapse
|
15
|
Liu X, Zhang L, Chen L, Li J, Wang J, Zhao Y, Liu L, Wu Y. Identification and prioritization of the potent components for combined exposure of multiple persistent organic pollutants associated with gestational diabetes mellitus. JOURNAL OF HAZARDOUS MATERIALS 2021; 409:124905. [PMID: 33412473 DOI: 10.1016/j.jhazmat.2020.124905] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/16/2020] [Revised: 12/09/2020] [Accepted: 12/16/2020] [Indexed: 06/12/2023]
Abstract
Persistent organic pollutants (POPs) remain a major point of concern worldwide, and surveillance monitoring of these contaminants presents a significant challenge. Here, we conducted an assessment of combined exposure to multiple POPs components [10 perfluoroalkyl acids (PFAAs), seven polybrominated diphenyl ethers (PBDEs), six polychlorinated biphenyls (PCBs) and 29 dioxin-like compounds (DLCs)] in relation to gestational diabetes mellitus (GDM) risk, and determined the identification and prioritization of potent components in these POPs mixtures. The results indicated a significant mixture effect and the combined exposure index estimated from multiple POPs components was associated with GDM and glucose homeostasis (P < 0.001). Based on the mixture effects on GDM, the procedure of prioritization identified DLCs as the components of the greatest concern, although at the lowest body burden in the population compared with PBDEs, PFAAs, and PCBs. For glucose homeostasis, BDE-153 was the chemical of top-ranked priority of concern. The final effect-based prioritized list of POPs was DLCs > PBDEs >PFAAs > PCBs. This prioritization is important for developing a more cost-effective regulation framework focusing on the POPs components of the greatest concern to human health.
Collapse
Affiliation(s)
- Xin Liu
- NHC Key Laboratory of Food Safety Risk Assessment, Food Safety Research Unit (2019RU014) of Chinese Academy of Medical Science, China National Center for Food Safety Risk Assessment, Beijing 100021, China; Institute of Food Science and Engineering, Wuhan Polytechnic University, Wuhan 430023, China
| | - Lei Zhang
- NHC Key Laboratory of Food Safety Risk Assessment, Food Safety Research Unit (2019RU014) of Chinese Academy of Medical Science, China National Center for Food Safety Risk Assessment, Beijing 100021, China
| | - Liangkai Chen
- Ministry of Education Key Lab of Environment and Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430023, China
| | - Jingguang Li
- NHC Key Laboratory of Food Safety Risk Assessment, Food Safety Research Unit (2019RU014) of Chinese Academy of Medical Science, China National Center for Food Safety Risk Assessment, Beijing 100021, China.
| | - Jun Wang
- Shenzhen Center for Chronic Disease Control, Shenzhen 518020, China
| | - Yunfeng Zhao
- NHC Key Laboratory of Food Safety Risk Assessment, Food Safety Research Unit (2019RU014) of Chinese Academy of Medical Science, China National Center for Food Safety Risk Assessment, Beijing 100021, China
| | - Liegang Liu
- Ministry of Education Key Lab of Environment and Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430023, China
| | - Yongning Wu
- NHC Key Laboratory of Food Safety Risk Assessment, Food Safety Research Unit (2019RU014) of Chinese Academy of Medical Science, China National Center for Food Safety Risk Assessment, Beijing 100021, China; Institute of Food Science and Engineering, Wuhan Polytechnic University, Wuhan 430023, China
| |
Collapse
|
16
|
Xie X, Weng X, Liu S, Chen J, Guo X, Gao X, Fei Q, Hao G, Jing C, Feng L. Perfluoroalkyl and Polyfluoroalkyl substance exposure and association with sex hormone concentrations: Results from the NHANES 2015-2016. ENVIRONMENTAL SCIENCES EUROPE 2021; 33:69. [PMID: 36061407 PMCID: PMC9440377 DOI: 10.1186/s12302-021-00508-9] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/03/2023]
Abstract
BACKGROUND There is increasing global concern regarding the health impacts of perfluoroalkyl and polyfluoroalkyl substances (PFAS), which are emerging environmental endocrine disruptors. Results from previous epidemiological studies on the associations between PFAS exposure and sex hormone levels are inconsistent. OBJECTIVE We examined the associations between serum PFAS compounds (PFDeA, PFHxS, PFNA, PFOA, PFOS) and sex hormones, including total testosterone (TT), free testosterone (FT), estrogen (E), and serum hormone binding globulin (SHBG). RESULTS After adjusting for potential confounders, PFDeA, PFOS, and PFHxS exposures were significantly associated with increased serum testosterone concentrations in males. PFDeA, PFOA, and PFOS exposures were positively correlated with FT levels in 20-49 years old women while PFOS exposure was negatively associated with TT levels in 12-19 years old girls. PFAS exposure was negatively associated with estradiol levels including: PFDeA in all females, PFHxS, PFNA, PFOS, and PFOA in 12-19 years old girls, PFNA in women above 50 years old, and PFOA in 12-19 years old boys while PFDeA and PFOS exposures were positively associated with estradiol levels in these boys. n-PFOS exposure was positively associated with SHBG levels in men older than 20 and in all females. CONCLUSIONS Using a large cohort of males and females aged from 12-80, we found that PFAS exposure appears to disrupt sex hormones in a gender-, age-, and compound-specific manner. Future work is warranted to clarify the causality and mechanisms involved.
Collapse
Affiliation(s)
- Xin Xie
- Department of Epidemiology, School of Medicine, Jinan University, No.601 Huangpu Ave West, Guangzhou 510632, Guangdong, China
| | - Xueqiong Weng
- Department of Epidemiology, School of Medicine, Jinan University, No.601 Huangpu Ave West, Guangzhou 510632, Guangdong, China
| | - Shan Liu
- Department of Epidemiology, School of Medicine, Jinan University, No.601 Huangpu Ave West, Guangzhou 510632, Guangdong, China
| | - Jingmin Chen
- Department of Epidemiology, School of Medicine, Jinan University, No.601 Huangpu Ave West, Guangzhou 510632, Guangdong, China
| | - Xinrong Guo
- Department of Epidemiology, School of Medicine, Jinan University, No.601 Huangpu Ave West, Guangzhou 510632, Guangdong, China
| | - Xinyu Gao
- Department of Epidemiology, School of Medicine, Jinan University, No.601 Huangpu Ave West, Guangzhou 510632, Guangdong, China
| | - Qiaoyuan Fei
- Department of Epidemiology, School of Medicine, Jinan University, No.601 Huangpu Ave West, Guangzhou 510632, Guangdong, China
| | - Guang Hao
- Department of Epidemiology, School of Medicine, Jinan University, No.601 Huangpu Ave West, Guangzhou 510632, Guangdong, China
| | - Chunxia Jing
- Department of Epidemiology, School of Medicine, Jinan University, No.601 Huangpu Ave West, Guangzhou 510632, Guangdong, China
- Guangdong Key Laboratory of Environmental Exposure and Health, Jinan University, Guangzhou 510632, Guangdong, China
| | - Liping Feng
- Department of Obstetrics and Gynecology, Duke University School of Medicine, Durham, North Carolina, USA
| |
Collapse
|
17
|
Bonato M, Corrà F, Bellio M, Guidolin L, Tallandini L, Irato P, Santovito G. PFAS Environmental Pollution and Antioxidant Responses: An Overview of the Impact on Human Field. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2020; 17:8020. [PMID: 33143342 PMCID: PMC7663035 DOI: 10.3390/ijerph17218020] [Citation(s) in RCA: 84] [Impact Index Per Article: 16.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/04/2020] [Revised: 10/23/2020] [Accepted: 10/27/2020] [Indexed: 01/09/2023]
Abstract
Due to their unique properties, perfluorinated substances (PFAS) are widely used in multiple industrial and commercial applications, but they are toxic for animals, humans included. This review presents some available data on the PFAS environmental distribution in the world, and in particular in Europe and in the Veneto region of Italy, where it has become a serious problem for human health. The consumption of contaminated food and drinking water is considered one of the major source of exposure for humans. Worldwide epidemiological studies report the negative effects that PFAS have on human health, due to environmental pollution, including infertility, steroid hormone perturbation, thyroid, liver and kidney disorders, and metabolic disfunctions. In vitro and in vivo researches correlated PFAS exposure to oxidative stress effects (in mammals as well as in other vertebrates of human interest), produced by a PFAS-induced increase of reactive oxygen species formation. The cellular antioxidant defense system is activated by PFAS, but it is only partially able to avoid the oxidative damage to biomolecules.
Collapse
Affiliation(s)
| | | | | | | | | | - Paola Irato
- Department of Biology, University of Padova, 35131 Padova, Italy; (M.B.); (F.C.); (M.B.); (L.G.); (L.T.)
| | - Gianfranco Santovito
- Department of Biology, University of Padova, 35131 Padova, Italy; (M.B.); (F.C.); (M.B.); (L.G.); (L.T.)
| |
Collapse
|
18
|
Boesen SAH, Long M, Wielsøe M, Mustieles V, Fernandez MF, Bonefeld-Jørgensen EC. Exposure to Perflouroalkyl acids and foetal and maternal thyroid status: a review. Environ Health 2020; 19:107. [PMID: 33050930 PMCID: PMC7557068 DOI: 10.1186/s12940-020-00647-1] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2019] [Accepted: 08/19/2020] [Indexed: 05/15/2023]
Abstract
BACKGROUND Exposure to perfluorinated-alkyl-acids (PFAAs) is ubiquitous. PFAAs are hormone-disrupting compounds that are strongly suspected to affect mother-child-health such as fetal growth. Thyroid disruption is a plausible mechanism of action. We aim to summarize the epidemiological evidence for the relation between prenatal and postnatal exposure to PFAAs and disruption of thyroid homeostasis in mothers and/or infants. METHOD Fifteen original publications on PFAAs concentrations and thyroid hormones (TH) in pregnant women and/or infants were found upon a literature search in the PubMed database. Information on exposure to seven PFAAs congeners [Perfluorooctane sulfonate (PFOS), Perfluorooctanoate (PFOA), Perfluorohexane sulfonate (PFHxS), Perfluorononanoic acid (PFNA), Perfluorodecanoic acid (PFDA), Perfluoroundecanoic acid (PFUnA), and Perfluorododecanoic acid (PFDoA)] and thyroid stimulating hormone (TSH), free and total thyroxine (FT4 and TT4), free and total triiodothyronine (FT3 and TT3), T3RU (Free triiodothyronine resin uptake) and FT4-index (FT4I) levels were recorded. We evaluated sampling of maternal TH by trimester, and infant TH by sex stratification. Reported associations between mother or infant PFAAs and TH were not uniformly assessed in the selected studies. RESULTS Ten out of the fifteen studies examined maternal PFAAs concentration and TSH level. Seven studies showed significant associations between TSH and exposure to six PFAAs congeners, most of them were positive. Maternal T4 and T3 were investigated in nine studies and five studies found inverse associations between exposure to six PFAAs congeners and TH (TT3, TT4, FT3, FT4 and FT4I) levels. Eight of the fifteen studies investigated PFAAs concentrations and infant TSH. Infant TSH level was significantly affected in four studies, positively in three studies. Nine studies investigated infant T4 and T3 and seven studies found significant associations with PFAAs exposure. However, both inverse and positive significant associations with infant TH were found eliciting no clear direction. CONCLUSION Results indicate a mainly positive relationship between maternal PFAAs concentrations and TSH levels, and suggestion of an inverse association with T4 and/or T3 levels. Associations of infant TH with PFAAs concentration were less consistent.
Collapse
Affiliation(s)
- Sophie A H Boesen
- Centre for Arctic Health and Molecular Epidemiology, Department of Public Health, Aarhus University, Aarhus, Denmark
| | - Manhai Long
- Centre for Arctic Health and Molecular Epidemiology, Department of Public Health, Aarhus University, Aarhus, Denmark
| | - Maria Wielsøe
- Centre for Arctic Health and Molecular Epidemiology, Department of Public Health, Aarhus University, Aarhus, Denmark
| | - Vicente Mustieles
- School of Medicine, Center of Biomedical Research, University of Granada, Granada, Spain
- Consortium for Biomedical Research in Epidemiology & Public Health (CIBERESP), Madrid, Spain
| | - Mariana F Fernandez
- School of Medicine, Center of Biomedical Research, University of Granada, Granada, Spain
- Consortium for Biomedical Research in Epidemiology & Public Health (CIBERESP), Madrid, Spain
| | - Eva C Bonefeld-Jørgensen
- Centre for Arctic Health and Molecular Epidemiology, Department of Public Health, Aarhus University, Aarhus, Denmark.
- Greenland Centre for Health Research, University of Greenland, Nuuk, Greenland.
| |
Collapse
|
19
|
Ding N, Park SK. Perfluoroalkyl substances exposure and hearing impairment in US adults. ENVIRONMENTAL RESEARCH 2020; 187:109686. [PMID: 32474307 PMCID: PMC7331829 DOI: 10.1016/j.envres.2020.109686] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/02/2020] [Revised: 05/12/2020] [Accepted: 05/14/2020] [Indexed: 05/22/2023]
Abstract
BACKGROUND Per- and polyfluoroalkyl substances (PFAS) are widely applied in consumer and industrial products such as nonstick cookware, waterproof clothing, food packaging materials, and fire-fighting foams. These "forever chemicals" are hypothesized to impact neurobehavioral functions. Yet no previous study has explored the role of PFAS on audiometrically determined hearing impairment (HI). OBJECTIVES To investigate the associations of serum concentrations of perfluoroalkyl substances with low-frequency HI (LFHI) and high-frequency HI (HFHI) in US adults. METHODS We evaluated the cross-sectional associations in 2371 adults aged 20-69 years who participated in the National Health and Nutrition Examination Survey (NHANES) 2003-2004, 2011-2012 and 2015-2016; and 449 adults aged ≥70 years from NHANES 2005-2006 and 2009-2010. Serum concentrations of perfluorohexane sulfonic acid (PFHxS), perfluorooctane sulfonic acid (PFOS), perfluorooctanoic acid (PFOA), perfluorononanoic acid (PFNA) and perfluorodecanoic acid (PFDA), were measured using solid-phase extraction coupled to High Performance Liquid Chromatography-Turbo Ion Spray ionization-tandem Mass Spectrometry. LFHI was defined as a pure-tone average (PTA) of thresholds across 0.5-1-2 kHz >25 dB; HFHI defined as a PTA across 3-4-6 kHz >25 dB in the worse ear. Survey-weighted logistic regression models were used to compute odds ratios (ORs) and 95% confidence intervals (CIs) with adjustment for age, age-squared, sex, race/ethnicity, education, poverty-to-income ratio, body mass index, smoking status, exposures to occupational, recreational and firearm noises, and NHANES cycles. RESULTS There were no significant associations when perfluoroalkyl variables were fitted as a linear (log-transformed) term. However, statistically significant associations of HFHI with PFNA (OR = 1.70, 95% CI: 1.13-2.56) and PFDA (OR = 1.75, 95% CI: 1.00-3.05) were observed when comparing participants with serum concentrations ≥90th vs. <90th percentiles of PFNA (90th percentile = 1.8 ng/mL) and PFDA (90th percentile = 0.5 ng/mL), respectively, in adults aged 20-69 years. No significant associations were observed for other compounds in adults aged 20-69 years and for all compounds in adults ≥70 years. CONCLUSIONS Our study does not provide strong evidence to support the ototoxicity of PFAS exposure. Non-linear threshold dose-response associations between serum concentrations of PFNA and PFDA and HFHI need further investigation.
Collapse
Affiliation(s)
- Ning Ding
- Department of Epidemiology, University of Michigan School of Public Health, Ann Arbor, MI, USA
| | - Sung Kyun Park
- Department of Epidemiology, University of Michigan School of Public Health, Ann Arbor, MI, USA; Department of Environmental Health Sciences, University of Michigan School of Public Health, Ann Arbor, MI, USA.
| |
Collapse
|
20
|
Wang G, Sun S, Wu X, Yang S, Wu Y, Zhao J, Zhang H, Chen W. Intestinal environmental disorders associate with the tissue damages induced by perfluorooctane sulfonate exposure. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2020; 197:110590. [PMID: 32283409 DOI: 10.1016/j.ecoenv.2020.110590] [Citation(s) in RCA: 59] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/13/2019] [Revised: 03/31/2020] [Accepted: 04/01/2020] [Indexed: 05/26/2023]
Abstract
Perfluorooctane sulfonate (PFOS) is a recently identified and persistent organic pollutant that becomes enriched in living organisms via bioaccumulation and the food chain. PFOS can induce various disorders, including liver toxicity, neurotoxicity and metabolic dysregulation. Most recent studies have shown a close association of the gut microbiota with the occurrence of diseases. However, few studies have explored the effects of PFOS on the gut environment, including the intestinal flora and barrier. In this study, we evaluated the effects of PFOS in C57BL/6J male mice and explored the relationship between tissue damage and the gut environment. Mice were orally exposed to PFOS for 16 days. Liver damage was assessed by examining the inflammatory reaction in the liver and serum liver enzyme concentrations. Metabolic function was assessed by the hepatic cholesterol level and the serum concentrations of glucose, high-density lipoprotein cholesterol, total cholesterol and triglycerides. Intestinal environmental disorders were assessed by evaluating the gut microbiota, SCFAs production, inflammatory reactions and intestinal tight junction protein expression. Our results indicated that PFOS affected inflammatory reactions in the liver and colon and promoted the development of metabolic disorders (especially of cholesterol and glucose metabolism). Moreover, PFOS dysregulated various populations in the gut microbiota (e.g., Firmicutes, Bacteroides, Proteobacteria, Gammaproteobacteria, Clostridiales, Enterobacteriales, Lactobacillales, Erysipelotrichaceae, Rikenellaceae, Ruminococcaceae and Blautia) and induced a loss of gut barrier integrity by reducing short-chain fatty acids (SCFAs) production and intestinal tight junction protein expression. A Phylogenetic Investigation of Communities by Reconstruction of Unobserved States (PICRUSt) analysis mainly identified metabolic pathways (e.g., the adipocytokine signalling pathway), endocrine system pathways (e.g., steroid hormone biosynthesis, flavonoid biosynthesis), the latter of which is widely considered to be associated with metabolism. Overall, our results suggest that PFOS damages various aspects of the gut environment, including the microbiota, SCFAs and barrier function, and thereby exacerbates the toxicity associated with liver, gut and metabolic disorders.
Collapse
Affiliation(s)
- Gang Wang
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, 214122, PR China; School of Food Science and Technology, Jiangnan University, Wuxi, 214122, PR China
| | - Shanshan Sun
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, 214122, PR China; School of Food Science and Technology, Jiangnan University, Wuxi, 214122, PR China
| | - Xiaobing Wu
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, 214122, PR China; School of Food Science and Technology, Jiangnan University, Wuxi, 214122, PR China
| | - Shurong Yang
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, 214122, PR China; School of Food Science and Technology, Jiangnan University, Wuxi, 214122, PR China
| | - Yanmin Wu
- Department of Gastroenterology, Affiliated Hospital of Jiangnan University, Wuxi, 214122, PR China.
| | - Jianxin Zhao
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, 214122, PR China; School of Food Science and Technology, Jiangnan University, Wuxi, 214122, PR China; International Joint Research Laboratory for Probiotics, Jiangnan University, Wuxi, 214122, PR China; (Yangzhou) Institute of Food Biotechnology, Jiangnan University, Yangzhou, 225004, PR China.
| | - Hao Zhang
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, 214122, PR China; School of Food Science and Technology, Jiangnan University, Wuxi, 214122, PR China; (Yangzhou) Institute of Food Biotechnology, Jiangnan University, Yangzhou, 225004, PR China; National Engineering Research Center for Functional Food, Jiangnan University, Wuxi, 214122, PR China; Wuxi Translational Medicine Research Center and Jiangsu Translational Medicine Research Institute Wuxi Branch, Wuxi, 214122, PR China
| | - Wei Chen
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, 214122, PR China; School of Food Science and Technology, Jiangnan University, Wuxi, 214122, PR China; National Engineering Research Center for Functional Food, Jiangnan University, Wuxi, 214122, PR China; Beijing Innovation Centre of Food Nutrition and Human Health, Beijing Technology and Business University (BTBU), Beijing, 100048, PR China
| |
Collapse
|
21
|
Huda Bhuiyan MN, Kang H, Kim JH, Kim S, Kho Y, Choi K. Endocrine disruption by several aniline derivatives and related mechanisms in a human adrenal H295R cell line and adult male zebrafish. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2019; 180:326-332. [PMID: 31100596 DOI: 10.1016/j.ecoenv.2019.05.003] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/19/2019] [Revised: 04/27/2019] [Accepted: 05/01/2019] [Indexed: 06/09/2023]
Abstract
Aniline and aniline derivatives have been widely used in the production of pesticides, pharmaceuticals, cosmetic, dyes, rubber, and adhesives products. These chemicals can easily be released into the environment through industrial and municipal discharges or as degradation byproducts. Several studies have suggested that aniline and some of its derivatives could cause reproductive toxicity in aquatic organisms. However, knowledge on the endocrine disruption potentials of these chemicals is limited only to aniline and associated mechanisms are rarely investigated. The objective of this study was to investigate the potential of major aniline derivatives, i.e., 3,4-dichloroaniline (3,4-DCA), 1-naphthylamine (1-NPA), and 4,4'-methylenedianiline (4,4'-MDA), to disrupt sex steroid production and other biological processes. For this purpose, the human adrenal H295R cell line and adult male zebrafish (Danio rerio) were used. In the H295R cell line, all tested aniline derivatives decreased testosterone (T) levels. Regulatory changes of several steroidogenic genes, i.e., down-regulation of StAR or CYP17 genes, and up-regulation of CYP19A, observed in the H295R cells could explain the sex hormone disruption. In male zebrafish, generally similar directions of changes, i.e., decreases in T levels and increased E2/T ratios, were observed. Again, down-regulation of key steroidogenic genes such as cyp17 or 3β-hsd, but slight up-regulation of cyp19a gene observed in the fish could explain the sex hormone changes. The results of our study demonstrate that all tested aniline derivatives could influence steroidogenesis and disrupt sex hormone balance toward reduced androgenicity. Consequences of anti-androgenicity following long-term exposure warrant further investigation.
Collapse
Affiliation(s)
- Md Nurul Huda Bhuiyan
- Graduate School of Public Health, Seoul National University, Seoul 08826, Republic of Korea
| | - Habyeong Kang
- Graduate School of Public Health, Seoul National University, Seoul 08826, Republic of Korea
| | - Ji Hyun Kim
- Graduate School of Public Health, Seoul National University, Seoul 08826, Republic of Korea
| | - Sungmin Kim
- Department of Health, Environment and Safety, Eulji University, Seongnam 34824, Republic of Korea
| | - Younglim Kho
- Department of Health, Environment and Safety, Eulji University, Seongnam 34824, Republic of Korea
| | - Kyungho Choi
- Graduate School of Public Health, Seoul National University, Seoul 08826, Republic of Korea.
| |
Collapse
|
22
|
Xu M, Wan J, Niu Q, Liu R. PFOA and PFOS interact with superoxide dismutase and induce cytotoxicity in mouse primary hepatocytes: A combined cellular and molecular methods. ENVIRONMENTAL RESEARCH 2019; 175:63-70. [PMID: 31103794 DOI: 10.1016/j.envres.2019.05.008] [Citation(s) in RCA: 74] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/26/2019] [Revised: 04/10/2019] [Accepted: 05/08/2019] [Indexed: 05/08/2023]
Abstract
This study investigated the adverse effects of perfluorooctanoic acid (PFOA) and perfluorooctanesulfonic acid (PFOS) on mouse primary hepatocytes by conducting cell viability, apoptosis, intracellular oxidative stress level, superoxide dismutase (SOD), catalase (CAT) activity and glutathione level assays. It was shown that PFOA and PFOS altered antioxidant enzymes activities and triggered oxidative stress, and thus exhibited cytotoxicity to the hepatocytes. Molecular mechanisms of SOD activities were measured and structural changes were explored by isothermal titration calorimetry and multiple spectroscopy. PFOA and PFOS bind to SOD via electrostatic forces with 7.634 ± 0.06 and 9.7 ± 0.4 sites, respectively, leading to structural and conformational changes. The overall results demonstrated that PFOS and PFOA are able to interact with SOD directly, resulting in producing oxidative stress and induce apoptosis.
Collapse
Affiliation(s)
- Mengchen Xu
- School of Environmental Science and Engineering, Shandong University, China-America CRC for Environment & Health, Shandong Province, 72# Jimo Binhai Road, Qingdao, Shandong, 266237, PR China
| | - Jingqiang Wan
- School of Environmental Science and Engineering, Shandong University, China-America CRC for Environment & Health, Shandong Province, 72# Jimo Binhai Road, Qingdao, Shandong, 266237, PR China
| | - Qigui Niu
- School of Environmental Science and Engineering, Shandong University, China-America CRC for Environment & Health, Shandong Province, 72# Jimo Binhai Road, Qingdao, Shandong, 266237, PR China
| | - Rutao Liu
- School of Environmental Science and Engineering, Shandong University, China-America CRC for Environment & Health, Shandong Province, 72# Jimo Binhai Road, Qingdao, Shandong, 266237, PR China.
| |
Collapse
|
23
|
Rendic SP, Peter Guengerich F. Human cytochrome P450 enzymes 5-51 as targets of drugs and natural and environmental compounds: mechanisms, induction, and inhibition - toxic effects and benefits. Drug Metab Rev 2019; 50:256-342. [PMID: 30717606 DOI: 10.1080/03602532.2018.1483401] [Citation(s) in RCA: 38] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Cytochrome P450 (P450, CYP) enzymes have long been of interest due to their roles in the metabolism of drugs, pesticides, pro-carcinogens, and other xenobiotic chemicals. They have also been of interest due to their very critical roles in the biosynthesis and metabolism of steroids, vitamins, and certain eicosanoids. This review covers the 22 (of the total of 57) human P450s in Families 5-51 and their substrate selectivity. Furthermore, included is information and references regarding inducibility, inhibition, and (in some cases) stimulation by chemicals. We update and discuss important aspects of each of these 22 P450s and questions that remain open.
Collapse
Affiliation(s)
| | - F Peter Guengerich
- b Department of Biochemistry , Vanderbilt University School of Medicine , Nashville , TN , USA
| |
Collapse
|
24
|
Kang JS, Ahn TG, Park JW. Perfluorooctanoic acid (PFOA) and perfluooctane sulfonate (PFOS) induce different modes of action in reproduction to Japanese medaka (Oryzias latipes). JOURNAL OF HAZARDOUS MATERIALS 2019; 368:97-103. [PMID: 30665113 DOI: 10.1016/j.jhazmat.2019.01.034] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/06/2018] [Revised: 12/08/2018] [Accepted: 01/13/2019] [Indexed: 06/09/2023]
Abstract
Perfluorooctanoic acid (PFOA) and perfluorooctane sulfonate (PFOS) have widely and frequently used in many industrial sectors, and thus have been frequently found in the environment. These chemicals may act as endocrine disrupting chemicals (EDCs), although the molecular mechanisms are still debated. In this study, Japanese medaka (Oryzias latipes) were exposed to 10 mg/l PFOA and 1 mg/l PFOS for 21 days, and the reproductive responses, such as the fecundity, secondary sexual characteristics and transcriptional levels of vitellogenin (vtg1 and vtg2) and choriogenin (chgh, chghm and chgl), were time-dependently evaluated (day 7, 14 and 21). PFOA and PFOS significantly reduced fecundity, and caused expression changes in the genes with time, although the patterns were different for each chemical and each sex. Different transcriptional regulations of vitellogenin and choriogenin in male suggest that PFOA and PFOS have different mode of actions in reproductive effects despite their similar chemical structure.
Collapse
Affiliation(s)
- Jae Soon Kang
- Gyeongnam Department of Environmental Toxicology and Chemistry, Korea Institute of Toxicology, Jin-Ju, Gyeongnam, Republic of Korea
| | - Tae-Gyu Ahn
- Gyeongnam Department of Environmental Toxicology and Chemistry, Korea Institute of Toxicology, Jin-Ju, Gyeongnam, Republic of Korea; Human and Environmental Toxicology Program, Korea University of Science and Technology (UST), Daejeon, Republic of Korea
| | - June-Woo Park
- Gyeongnam Department of Environmental Toxicology and Chemistry, Korea Institute of Toxicology, Jin-Ju, Gyeongnam, Republic of Korea; Human and Environmental Toxicology Program, Korea University of Science and Technology (UST), Daejeon, Republic of Korea.
| |
Collapse
|
25
|
Ahmed KEM, Frøysa HG, Karlsen OA, Blaser N, Zimmer KE, Berntsen HF, Verhaegen S, Ropstad E, Kellmann R, Goksøyr A. Effects of defined mixtures of POPs and endocrine disruptors on the steroid metabolome of the human H295R adrenocortical cell line. CHEMOSPHERE 2019; 218:328-339. [PMID: 30476764 DOI: 10.1016/j.chemosphere.2018.11.057] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/06/2018] [Revised: 11/07/2018] [Accepted: 11/08/2018] [Indexed: 06/09/2023]
Abstract
The presence of environmental pollutants in our ecosystem may impose harmful health effects to wildlife and humans. Several of these toxic chemicals have a potential to interfere with the endocrine system. The adrenal cortex has been identified as the main target organ affected by endocrine disrupting chemicals. The aim of this work was to assess exposure effects of defined and environmentally relevant mixtures of chlorinated, brominated and perfluorinated chemicals on steroidogenesis, using the H295R adrenocortical cell line model in combination with a newly developed liquid chromatography tandem mass spectrometry (LC-MS/MS) method. By using this approach, we could simultaneously analyze 19 of the steroids in the steroid biosynthesis pathway, revealing a deeper insight into possible disruption of steroidogenesis. Our results showed a noticeable down-regulation in steroid production when cells were exposed to the highest concentration of a mixture of brominated and fluorinated compounds (10,000-times human blood values). In contrast, up-regulation was observed with estrone under the same experimental condition, as well as with some other steroids when cells were exposed to a perfluorinated mixture (1000-times human blood values), and the mixture of chlorinated and fluorinated compounds. Interestingly, the low concentration of the perfluorinated mixture alone produced a significant, albeit small, down-regulation of pregnenolone, and the total mixture a similar effect on 17-hydroxypregnenolone. Other mixtures resulted in only slight deviations from the control. Indication of synergistic effects were noted when we used a statistical model to improve data interpretation. A potential for adverse outcomes of human exposures is indicated, pointing to the need for further investigation into these mixtures.
Collapse
Affiliation(s)
| | - Håvard G Frøysa
- Department of Mathematics, University of Bergen, P.O. Box 7803, N-5020 Bergen, Norway.
| | - Odd André Karlsen
- Department of Biological Sciences, University of Bergen, P.O. Box 7803, N-5020 Bergen, Norway.
| | - Nello Blaser
- Department of Mathematics, University of Bergen, P.O. Box 7803, N-5020 Bergen, Norway.
| | - Karin Elisabeth Zimmer
- Department of Basic Sciences and Aquatic Medicine, Faculty of Veterinary Medicine, Norwegian University of Life Sciences (NMBU), P.O. Box 8146 Dep. N-0033, Oslo, Norway.
| | - Hanne Friis Berntsen
- Department of Production Animal Clinical Sciences, Faculty of Veterinary Medicine, Norwegian University of Life Sciences (NMBU), P.O. Box 8146 Dep. N-0033, Oslo, Norway; Department of Administration, Lab Animal Unit, National Institute of Occupational Health, P.O. Box 5330 Majorstuen, N-0304, Oslo, Norway.
| | - Steven Verhaegen
- Department of Production Animal Clinical Sciences, Faculty of Veterinary Medicine, Norwegian University of Life Sciences (NMBU), P.O. Box 8146 Dep. N-0033, Oslo, Norway.
| | - Erik Ropstad
- Department of Production Animal Clinical Sciences, Faculty of Veterinary Medicine, Norwegian University of Life Sciences (NMBU), P.O. Box 8146 Dep. N-0033, Oslo, Norway.
| | - Ralf Kellmann
- Hormone Laboratory, Haukeland University Hospital, N-5021 Bergen, Norway.
| | - Anders Goksøyr
- Department of Biological Sciences, University of Bergen, P.O. Box 7803, N-5020 Bergen, Norway.
| |
Collapse
|
26
|
Donat-Vargas C, Bergdahl IA, Tornevi A, Wennberg M, Sommar J, Kiviranta H, Koponen J, Rolandsson O, Åkesson A. Perfluoroalkyl substances and risk of type II diabetes: A prospective nested case-control study. ENVIRONMENT INTERNATIONAL 2019; 123:390-398. [PMID: 30622063 DOI: 10.1016/j.envint.2018.12.026] [Citation(s) in RCA: 63] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/03/2018] [Revised: 12/12/2018] [Accepted: 12/13/2018] [Indexed: 05/27/2023]
Abstract
BACKGROUND Perfluoroalkyl substances (PFAS) have drawn much attention due to bioaccumulation potential and their current omnipresence in human blood. We assessed whether plasma PFAS, suspected to induce endocrine-disrupting effects, were prospectively associated with clinical type 2 diabetes (T2D) risk. METHODS We established a nested case-control study within the Swedish prospective population-based Västerbotten Intervention Programme cohort. Several PFAS were measured in plasma from a subset of 124 case-control pairs at baseline (during 1990-2003) and at 10-year follow-up. T2D cases were matched (1:1) according to gender, age and sample date with participants without T2D (controls). Conditional logistic regressions were used to prospectively assess risk of T2D by baseline PFAS plasma concentrations. Associations between long-term PFAS plasma levels (mean of baseline and follow-up) and insulin resistance (HOMA2-IR) and beta-cell function (HOMA2-B%) at follow-up were prospectively explored among 178 and 181 controls, respectively, by multivariable linear regressions. RESULTS After adjusting for gender, age, sample year, diet and body mass index, the odds ratio of T2D for the sum of PFAS (Σ z-score PFAS) was 0.52 (95% confidence interval, CI: 0.20, 1.36), comparing third with first tertile; and 0.92 (95% CI: 0.84, 1.00) per one standard deviation increment of sum of log-transformed PFAS. Among the controls, the adjusted β of HOMA2-IR and HOMA-B% for the sum of PFAS were -0.26 (95% CI: -0.52, -0.01) and -9.61 (95% CI: -22.60, 3.39) respectively comparing third with first tertile. CONCLUSIONS This prospective nested case-control study yielded overall inverse associations between individual PFAS and risk of T2D, although mostly non-significant. Among participants without T2D, long-term PFAS exposure was prospectively associated with lower insulin resistance.
Collapse
Affiliation(s)
- Carolina Donat-Vargas
- Cardiovascular and Nutritional Epidemiology, Institute of Environmental Medicine, Karolinska Institutet, Stockholm, Sweden
| | - Ingvar A Bergdahl
- Department of Public Health and Clinical Medicine, Occupational and Environmental Medicine, Umeå University, Umeå, Sweden
| | - Andreas Tornevi
- Department of Public Health and Clinical Medicine, Occupational and Environmental Medicine, Umeå University, Umeå, Sweden
| | - Maria Wennberg
- Department of Public Health and Clinical Medicine, Nutritional Research, Umeå University, Umeå, Sweden
| | - Johan Sommar
- Department of Public Health and Clinical Medicine, Occupational and Environmental Medicine, Umeå University, Umeå, Sweden
| | - Hannu Kiviranta
- Department for Health Security, Environmental Health Unit, National Institute for Health and Welfare, Kuopio, Finland
| | - Jani Koponen
- Department for Health Security, Environmental Health Unit, National Institute for Health and Welfare, Kuopio, Finland
| | - Olov Rolandsson
- Department of Public Health and Clinical Medicine, Family Medicine, Umeå University, Umeå, Sweden
| | - Agneta Åkesson
- Cardiovascular and Nutritional Epidemiology, Institute of Environmental Medicine, Karolinska Institutet, Stockholm, Sweden.
| |
Collapse
|
27
|
Knutsen HK, Alexander J, Barregård L, Bignami M, Brüschweiler B, Ceccatelli S, Cottrill B, Dinovi M, Edler L, Grasl-Kraupp B, Hogstrand C, Hoogenboom LR, Nebbia CS, Oswald IP, Petersen A, Rose M, Roudot AC, Vleminckx C, Vollmer G, Wallace H, Bodin L, Cravedi JP, Halldorsson TI, Haug LS, Johansson N, van Loveren H, Gergelova P, Mackay K, Levorato S, van Manen M, Schwerdtle T. Risk to human health related to the presence of perfluorooctane sulfonic acid and perfluorooctanoic acid in food. EFSA J 2018. [PMID: 32625773 DOI: 10.2903/j.efsa.2018.5194">10.2903/j.efsa.2018.5194] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [10.2903/j.efsa.2018.5194','32625773', '10.1016/j.toxlet.2011.05.230')">Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/20/2023] Open
10.2903/j.efsa.2018.5194" />
Abstract
The European Commission asked EFSA for a scientific evaluation on the risks to human health related to the presence of perfluorooctane sulfonic acid (PFOS) and perfluorooctanoic acid (PFOA) in food. Regarding PFOS and PFOA occurrence, the final data set available for dietary exposure assessment contained a total of 20,019 analytical results (PFOS n = 10,191 and PFOA n = 9,828). There were large differences between upper and lower bound exposure due to analytical methods with insufficient sensitivity. The CONTAM Panel considered the lower bound estimates to be closer to true exposure levels. Important contributors to the lower bound mean chronic exposure were 'Fish and other seafood', 'Meat and meat products' and 'Eggs and egg products', for PFOS, and 'Milk and dairy products', 'Drinking water' and 'Fish and other seafood' for PFOA. PFOS and PFOA are readily absorbed in the gastrointestinal tract, excreted in urine and faeces, and do not undergo metabolism. Estimated human half-lives for PFOS and PFOA are about 5 years and 2-4 years, respectively. The derivation of a health-based guidance value was based on human epidemiological studies. For PFOS, the increase in serum total cholesterol in adults, and the decrease in antibody response at vaccination in children were identified as the critical effects. For PFOA, the increase in serum total cholesterol was the critical effect. Also reduced birth weight (for both compounds) and increased prevalence of high serum levels of the liver enzyme alanine aminotransferase (ALT) (for PFOA) were considered. After benchmark modelling of serum levels of PFOS and PFOA, and estimating the corresponding daily intakes, the CONTAM Panel established a tolerable weekly intake (TWI) of 13 ng/kg body weight (bw) per week for PFOS and 6 ng/kg bw per week for PFOA. For both compounds, exposure of a considerable proportion of the population exceeds the proposed TWIs.
Collapse
|
28
|
Knutsen HK, Alexander J, Barregård L, Bignami M, Brüschweiler B, Ceccatelli S, Cottrill B, Dinovi M, Edler L, Grasl-Kraupp B, Hogstrand C, Hoogenboom LR, Nebbia CS, Oswald IP, Petersen A, Rose M, Roudot AC, Vleminckx C, Vollmer G, Wallace H, Bodin L, Cravedi JP, Halldorsson TI, Haug LS, Johansson N, van Loveren H, Gergelova P, Mackay K, Levorato S, van Manen M, Schwerdtle T. Risk to human health related to the presence of perfluorooctane sulfonic acid and perfluorooctanoic acid in food. EFSA J 2018; 16:e05194. [PMID: 32625773 PMCID: PMC7009575 DOI: 10.2903/j.efsa.2018.5194] [Citation(s) in RCA: 145] [Impact Index Per Article: 20.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023] Open
Abstract
The European Commission asked EFSA for a scientific evaluation on the risks to human health related to the presence of perfluorooctane sulfonic acid (PFOS) and perfluorooctanoic acid (PFOA) in food. Regarding PFOS and PFOA occurrence, the final data set available for dietary exposure assessment contained a total of 20,019 analytical results (PFOS n = 10,191 and PFOA n = 9,828). There were large differences between upper and lower bound exposure due to analytical methods with insufficient sensitivity. The CONTAM Panel considered the lower bound estimates to be closer to true exposure levels. Important contributors to the lower bound mean chronic exposure were 'Fish and other seafood', 'Meat and meat products' and 'Eggs and egg products', for PFOS, and 'Milk and dairy products', 'Drinking water' and 'Fish and other seafood' for PFOA. PFOS and PFOA are readily absorbed in the gastrointestinal tract, excreted in urine and faeces, and do not undergo metabolism. Estimated human half-lives for PFOS and PFOA are about 5 years and 2-4 years, respectively. The derivation of a health-based guidance value was based on human epidemiological studies. For PFOS, the increase in serum total cholesterol in adults, and the decrease in antibody response at vaccination in children were identified as the critical effects. For PFOA, the increase in serum total cholesterol was the critical effect. Also reduced birth weight (for both compounds) and increased prevalence of high serum levels of the liver enzyme alanine aminotransferase (ALT) (for PFOA) were considered. After benchmark modelling of serum levels of PFOS and PFOA, and estimating the corresponding daily intakes, the CONTAM Panel established a tolerable weekly intake (TWI) of 13 ng/kg body weight (bw) per week for PFOS and 6 ng/kg bw per week for PFOA. For both compounds, exposure of a considerable proportion of the population exceeds the proposed TWIs.
Collapse
|
29
|
Perfluorinated alkyl acids in the serum and follicular fluid of UK women with and without polycystic ovarian syndrome undergoing fertility treatment and associations with hormonal and metabolic parameters. Int J Hyg Environ Health 2018; 221:1068-1075. [DOI: 10.1016/j.ijheh.2018.07.009] [Citation(s) in RCA: 68] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2018] [Revised: 06/08/2018] [Accepted: 07/17/2018] [Indexed: 01/09/2023]
|
30
|
Zhang S, Tan R, Pan R, Xiong J, Tian Y, Wu J, Chen L. Association of Perfluoroalkyl and Polyfluoroalkyl Substances With Premature Ovarian Insufficiency in Chinese Women. J Clin Endocrinol Metab 2018; 103:2543-2551. [PMID: 29986037 DOI: 10.1210/jc.2017-02783] [Citation(s) in RCA: 73] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/26/2017] [Accepted: 05/01/2018] [Indexed: 01/30/2023]
Abstract
CONTEXT Perfluoroalkyl and polyfluoroalkyl substances (PFASs), a group of ubiquitous environmental chemicals with properties of endocrine disruption, are often detectable in humans. OBJECTIVE The current study investigated the association between exposure to PFAS and primary ovarian insufficiency (POI). DESIGN, PATIENTS, INTERVENTIONS, AND MAIN OUTCOME MEASURES Levels of plasma PFAS were measured in 120 Chinese women with overt POI and 120 healthy control subjects from 2013 to 2016. Associations between PFAS levels and odds of POI, as well as hormonal profiles, were evaluated using multiple logistic regression and multiple linear regression models. RESULTS Levels of perfluorooctanate (PFOA), perfluorooctane sulfonate (PFOS), and perfluorohexanesulfonate (PFHxS) were positively associated with the risks of POI (highest vs. lowest tertile, PFOA: OR, 3.80; 95% CI, 1.92-7.49; PFOS: OR, 2.81; 95% CI, 1.46-5.41; PFHxS: OR, 6.63; 95% CI, 3.22-13.65). In patients with POI, levels of PFOS and PFHxS exposure were positively associated with FSH (PFOS: adjusted β, 0.26; 95% CI, 0.15 to 0.38; PFHxS: adjusted β, 0.16; 95% CI, 0.04 to 0.28) and negatively associated with estradiol (PFOS: adjusted β, -0.30; 95% CI, -0.47 to -0.12; PFHxS: adjusted β, -0.19; 95% CI, -0.37 to -0.02). Exposure to PFOS and PFOA was associated with elevation of prolactin (PFOS: adjusted β, 0.17; 95% CI, 0.06 to 0.29; PFOA: adjusted β, 0.16; 95% CI, 0.01 to 0.30) or with a decrease of free triiodothyronine (PFOS: adjusted β, -0.88; 95% CI, -1.64 to -0.09; PFOA: adjusted β, -0.90; 95% CI, -1.88 to 0.09) and thyroxine (PFOS: adjusted β, -2.99; 95% CI, -4.52 to -1.46; PFOA: adjusted β, -3.42; 95% CI, -5.39 to -1.46). CONCLUSION High exposure to PFOA, PFOS, and PFHxS is associated with increased risk of POI in humans.
Collapse
Affiliation(s)
- Suyun Zhang
- State Key Laboratory of Reproductive Medicine, Nanjing Medical University, Nanjing, China
- Department of Obstetrics and Gynecology, the First Affiliated Hospital of Nanjing Medical University, Nanjing Medical University, Nanjing, China
| | - Rongrong Tan
- State Key Laboratory of Reproductive Medicine, Nanjing Medical University, Nanjing, China
- Department of Obstetrics and Gynecology, the First Affiliated Hospital of Nanjing Medical University, Nanjing Medical University, Nanjing, China
| | - Rui Pan
- Ministry of Education-Shanghai Key Laboratory of Children's Environmental Health, Xinhua Hospital, Shanghai JiaoTong University School of Medicine, Shanghai, China
| | - Jianwei Xiong
- State Key Laboratory of Reproductive Medicine, Nanjing Medical University, Nanjing, China
- Department of Obstetrics and Gynecology, the First Affiliated Hospital of Nanjing Medical University, Nanjing Medical University, Nanjing, China
| | - Ying Tian
- Ministry of Education-Shanghai Key Laboratory of Children's Environmental Health, Xinhua Hospital, Shanghai JiaoTong University School of Medicine, Shanghai, China
| | - Jie Wu
- State Key Laboratory of Reproductive Medicine, Nanjing Medical University, Nanjing, China
- Department of Obstetrics and Gynecology, the First Affiliated Hospital of Nanjing Medical University, Nanjing Medical University, Nanjing, China
| | - Ling Chen
- State Key Laboratory of Reproductive Medicine, Nanjing Medical University, Nanjing, China
- Department of Physiology, Nanjing Medical University, Nanjing, China
| |
Collapse
|
31
|
Hudecova AM, Hansen KEA, Mandal S, Berntsen HF, Khezri A, Bale TL, Fraser TWK, Zimmer KE, Ropstad E. A human exposure based mixture of persistent organic pollutants affects the stress response in female mice and their offspring. CHEMOSPHERE 2018; 197:585-593. [PMID: 29407821 DOI: 10.1016/j.chemosphere.2018.01.085] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/13/2017] [Revised: 01/15/2018] [Accepted: 01/16/2018] [Indexed: 06/07/2023]
Abstract
Persistent organic pollutants (POPs) are found in the food chain of both humans and animals and exert a wide spectrum of potentially adverse effects. The present experiment aimed to investigate whether a defined mixture of 29 POPs, based on the dietary intake of Scandinavians, could affect the stress response in female mice exposed through ingestion, and in their offspring. Female mice 129:C57BL/6F0 hybrids were exposed from weaning, throughout pregnancy, and up until necropsy, to either 5000 × or 100 000 × the estimated daily intake for Scandinavians. The offspring were fed a reference diet containing no POPs. Both the mothers and their offspring were tested for basal and stress responsive corticosterone levels, and in an open field test to measure locomotor activity and anxiety-like behaviours. We found mothers to have elevated basal corticosterone levels, as well as a prolonged stress response following POP exposure. In the offspring, there was no effect of POPs on the stress response in females, but the exposed males had an over-sensitised stress response. There was no effect on behaviour in either the mothers or the offspring. In conclusion, we found a human relevant POP mixture can lead to subtle dysregulation of the hypothalamus-pituitary-adrenal axis in mice. As HPA axis dysregulation is commonly associated with neurological disorders, further studies should explore the relevance of this outcome for humans.
Collapse
Affiliation(s)
- Alexandra M Hudecova
- Section for Experimental Biomedicine, Department of Production Animal Clinical Sciences, Norwegian University of Life Sciences, Norway
| | - Kristine E A Hansen
- Section for Experimental Biomedicine, Department of Production Animal Clinical Sciences, Norwegian University of Life Sciences, Norway
| | - Siddhartha Mandal
- Center for Environmental Health, Public Health Foundation of India, New Delhi, India
| | - Hanne F Berntsen
- Section for Experimental Biomedicine, Department of Production Animal Clinical Sciences, Norwegian University of Life Sciences, Norway; Department of Administration, Lab Animal Unit, National Institute of Occupational Health, Oslo, Norway
| | - Abdolrahman Khezri
- Section for Biochemistry and Physiology, Department of Basic Sciences and Aquatic Medicine, Norwegian University of Life Sciences, Norway
| | - Tracy L Bale
- Pereleman School of Medicine, University of Pennsylvania, USA
| | - Thomas W K Fraser
- Section for Experimental Biomedicine, Department of Production Animal Clinical Sciences, Norwegian University of Life Sciences, Norway.
| | - Karin E Zimmer
- Section for Biochemistry and Physiology, Department of Basic Sciences and Aquatic Medicine, Norwegian University of Life Sciences, Norway
| | - Erik Ropstad
- Section for Experimental Biomedicine, Department of Production Animal Clinical Sciences, Norwegian University of Life Sciences, Norway
| |
Collapse
|
32
|
Liu C, Gin KYH. Immunotoxicity in green mussels under perfluoroalkyl substance (PFAS) exposure: Reversible response and response model development. ENVIRONMENTAL TOXICOLOGY AND CHEMISTRY 2018; 37:1138-1145. [PMID: 29405365 DOI: 10.1002/etc.4060] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/26/2017] [Revised: 07/19/2017] [Accepted: 12/06/2017] [Indexed: 06/07/2023]
Abstract
The immunotoxicity of 4 commonly detected perfluoroalkyl substances (PFASs), namely, perfluorooctanesulfonate (PFOS), perfluorooctanoic acid (PFOA), perfluorononanoic acid (PFNA), and perfluorodecanoic acid (PFDA) was investigated by measuring biomarkers of the immune profile of green mussels, Perna viridis. The biomarkers included neutral red retention, phagocytosis, and spontaneous cytotoxicity, all of which were tested on mussel hemocytes. Hemocytes are an important component of the invertebrate immune system. We found that exposure to PFASs could lead to reduced hemocyte cell viability and suppress immune function by up to 50% of normal performance within the experimental exposure range. The results indicate that PFASs have an immunotoxic potential and thus could pose severe health risks to aquatic organisms. The reported immunotoxicity is likely to result from the compounds' direct and indirect interactions with the hemocyte membrane, and therefore likely to affect the functionality of these cells. The immunotoxic response was found to be related to the organism's burden of PFASs, and was reversible when the compounds were removed from the test organisms. Based on this relationship, models using an organism's PFAS concentration and bioaccumulation factor (BAF) as the independent variables were established to quantify PFAS-induced immunotoxicity. The models help us to gain a better understanding of the toxic mechanism of PFASs, and provide a tool to evaluate adverse effects for the whole group of compounds with one mathematical equation. Environ Toxicol Chem 2018;37:1138-1145. © 2018 SETAC.
Collapse
Affiliation(s)
- Changhui Liu
- NUS Environmental Research Institute, National University of Singapore, Singapore
| | - Karina Yew-Hoong Gin
- NUS Environmental Research Institute, National University of Singapore, Singapore
- Department of Civil and Environmental Engineering, National University of Singapore, Singapore
| |
Collapse
|
33
|
Behr AC, Lichtenstein D, Braeuning A, Lampen A, Buhrke T. Perfluoroalkylated substances (PFAS) affect neither estrogen and androgen receptor activity nor steroidogenesis in human cells in vitro. Toxicol Lett 2018; 291:51-60. [PMID: 29601859 DOI: 10.1016/j.toxlet.2018.03.029] [Citation(s) in RCA: 95] [Impact Index Per Article: 13.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2017] [Revised: 03/07/2018] [Accepted: 03/26/2018] [Indexed: 02/07/2023]
Abstract
The perfluoroalkylated substances (PFAS) perfluorooctanesulfonic acid (PFOS) and perfluorooctanoic acid (PFOA) are used for the fabrication of water- and dirt-repellent surfaces. The use of PFOS and PFOA was restricted due to their reprotoxic properties and their environmental persistence. Therefore, industry switches to alternative PFAS, however, in contrast to PFOA and PFOS only few toxicological data are available for their substitutes. The molecular mechanism(s) underlying reproductive toxicity of PFOA and PFOS are largely unknown. Here, the endocrine properties of PFOA, PFOS, and of six substitutes including perfluorohexanesulfonic acid (PFHxS), perfluorobutanesulfonic acid (PFBS), perfluorohexanoic acid (PFHxA), perfluorobutanoic acid (PFBA), ammonium perfluoro(2-methyl-3-oxahexanoate) (PMOH), and 3H-perfluoro-3-[(3-methoxypropoxy) propanoic acid] (PMPP) were examined in vitro by using human cell lines such as MCF-7, H295R, LNCaP and MDA-kb2. PFOA, PFOS and PMOH enhanced 17β-estradiol-stimulated estrogen receptor β activity, and PFOS, PMOH, PFHxA and PFBA enhanced dihydrotestosterone-stimulated androgen receptor activity. In the H295R steroidogenesis assay, PFOA and PFOS slightly enhanced estrone secretion, and progesterone secretion was marginally increased by PFOA. All these effects were only observed at concentrations above 10 μM, and none of the PFAS displayed any effect on any of the molecular endocrine endpoints at concentrations of 10 μM or below. Thus, as the blood serum concentrations of the different PFAS in the general Western population are in the range of 10 nM or below, the results suggest that PFAS might not exert endocrine effects in humans at exposure-relevant concentrations according to the molecular endpoints examined in this study.
Collapse
Affiliation(s)
- Anne-Cathrin Behr
- German Federal Institute for Risk Assessment, Department of Food Safety, Max-Dohrn-Str. 8-10, 10589, Berlin, Germany
| | - Dajana Lichtenstein
- German Federal Institute for Risk Assessment, Department of Food Safety, Max-Dohrn-Str. 8-10, 10589, Berlin, Germany
| | - Albert Braeuning
- German Federal Institute for Risk Assessment, Department of Food Safety, Max-Dohrn-Str. 8-10, 10589, Berlin, Germany
| | - Alfonso Lampen
- German Federal Institute for Risk Assessment, Department of Food Safety, Max-Dohrn-Str. 8-10, 10589, Berlin, Germany
| | - Thorsten Buhrke
- German Federal Institute for Risk Assessment, Department of Food Safety, Max-Dohrn-Str. 8-10, 10589, Berlin, Germany.
| |
Collapse
|
34
|
Sun Q, Zong G, Valvi D, Nielsen F, Coull B, Grandjean P. Plasma Concentrations of Perfluoroalkyl Substances and Risk of Type 2 Diabetes: A Prospective Investigation among U.S. Women. ENVIRONMENTAL HEALTH PERSPECTIVES 2018; 126:037001. [PMID: 29498927 PMCID: PMC6071816 DOI: 10.1289/ehp2619] [Citation(s) in RCA: 122] [Impact Index Per Article: 17.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/01/2017] [Revised: 02/06/2018] [Accepted: 02/07/2018] [Indexed: 05/18/2023]
Abstract
BACKGROUND Emerging evidence suggests that perfluoroalkyl substances (PFASs) are endocrine disruptors and may contribute to the etiology of type 2 diabetes (T2D), but this hypothesis needs to be clarified in prospective human studies. OBJECTIVES Our objective was to examine the associations between PFAS exposures and subsequent incidence of T2D in the Nurses' Health Study II (NHSII). In addition, we aimed to evaluate potential demographic and lifestyle determinants of plasma PFAS concentrations. METHODS A prospective nested case-control study of T2D was conducted among participants who were free of diabetes, cardiovascular disease, and cancer in 1995-2000 [(mean±SD): 45.3±4.4 y) of age]. We identified and ascertained 793 incident T2D cases through 2011 (mean±SD) years of follow-up: 6.7±3.7 y). Each case was individually matched to a control (on age, month and fasting status at sample collection, and menopausal status and hormone replacement therapy). Plasma concentrations of five major PFASs, including perfluorooctanesulfonic acid (PFOS), perfluorooctanoic acid (PFOA), perfluorohexanesulfonate, perfluorononanoic acid, and perfluorodecanoic acid were measured. Odds ratios (ORs) of T2D by PFAS tertiles were estimated by conditional logistic regression. RESULTS Shorter breastfeeding duration and higher intake of certain foods, such as seafood and popcorn, were significantly associated with higher plasma concentrations of PFASs among controls. After multivariate adjustment for T2D risk factors, including body mass index, family history, physical activity, and other covariates, higher plasma concentrations of PFOS and PFOA were associated with an elevated risk of T2D. Comparing extreme tertiles of PFOS or PFOA, ORs were 1.62 (95% CI: 1.09, 2.41; ptrend=0.02) and 1.54 (95% CI: 1.04, 2.28; ptrend=0.03), respectively. Other PFASs were not clearly associated with T2D risk. CONCLUSIONS Background exposures to PFASs in the late 1990s were associated with higher T2D risk during the following years in a prospective case-control study of women from the NHSII. These findings support a potential diabetogenic effect of PFAS exposures. https://doi.org/10.1289/EHP2619.
Collapse
Affiliation(s)
- Qi Sun
- Department of Nutrition, Harvard T.H. Chan School of Public Health , Boston, Massachusetts, USA
- Channing Division of Network Medicine, Department of Medicine, Brigham and Women's Hospital and Harvard Medical School , Boston, Massachusetts, USA
| | - Geng Zong
- Department of Nutrition, Harvard T.H. Chan School of Public Health , Boston, Massachusetts, USA
| | - Damaskini Valvi
- Department of Environmental Health, Harvard T.H. Chan School of Public Health, Boston, Massachusetts, USA
| | - Flemming Nielsen
- Institute of Public Health, University of Southern Denmark, Odense, Denmark
| | - Brent Coull
- Department of Environmental Health, Harvard T.H. Chan School of Public Health, Boston, Massachusetts, USA
- Department of Biostatistics, Harvard T.H. Chan School of Public Health , Boston, Massachusetts, USA
| | - Philippe Grandjean
- Department of Environmental Health, Harvard T.H. Chan School of Public Health, Boston, Massachusetts, USA
- Institute of Public Health, University of Southern Denmark, Odense, Denmark
| |
Collapse
|
35
|
Ma Y, Zhang K, Ren F, Wang J. Developmental fluoride exposure influenced rat's splenic development and cell cycle via disruption of the ERK signal pathway. CHEMOSPHERE 2017; 187:173-180. [PMID: 28846973 DOI: 10.1016/j.chemosphere.2017.08.067] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/04/2017] [Revised: 08/13/2017] [Accepted: 08/14/2017] [Indexed: 06/07/2023]
Abstract
Excessive fluoride exposure has been reported to cause damage to spleen. Neonatal period is characterized by rapid proliferation and differentiation of lymphocyte in the spleen. Children may be more sensitive to the toxicity of fluoride compared to the adults. The aim of this study was to investigate the effects of postnatal exposure (from neonatal period to early adulthood) to fluoride on the development of spleen on a regular basis and the underlying signal pathway. Results showed a marked decrease in spleen weight index and altered morphology in the spleen of fluoride-treated group on PND-84, which reflected fluoride inhibition of the development of spleen. Fluoride exposure induced cell cycle arrest of splenocytes and decreased the mRNA expression of IL-2, which indicated compromised baseline lymphocyte proliferation in the spleen. Time course research from 3-wk-of-age until 12-wk-of-age showed an adverse and cumulative impact of fluoride on the development of spleen. In view of the key role of MAPK/ERK pathway in lymphocyte development, Raf-1/MEK-1/ERK-2/c-fos mRNA expression and ERK/p-ERK protein expression were detected. Results showed despite a transitory increase in mRNA expression from PND-42 to PND-63 in fluoride-treated group, the expression of these genes on PND-84 decreased significantly compared with PND-42 or PND-63. NaF significantly inhibited the phosphorylation of ERK protein on PND-84. Taken together, these results emphasized the vital role of ERK pathway in the interfered development of spleen induced by a high dose of fluoride exposure in rats.
Collapse
Affiliation(s)
- Yanqin Ma
- College of Life Science, Shanxi Agricultural University, Taigu, Shanxi 030801, China; Shanxi Key Laboratory of Environmental Veterinary Medicine, Shanxi Agricultural University, Taigu, Shanxi 030801, China
| | - Kankan Zhang
- Shanxi Key Laboratory of Environmental Veterinary Medicine, Shanxi Agricultural University, Taigu, Shanxi 030801, China
| | - Fengjun Ren
- Shanxi Key Laboratory of Environmental Veterinary Medicine, Shanxi Agricultural University, Taigu, Shanxi 030801, China
| | - Jundong Wang
- Shanxi Key Laboratory of Environmental Veterinary Medicine, Shanxi Agricultural University, Taigu, Shanxi 030801, China.
| |
Collapse
|
36
|
Wang B, Zhang R, Jin F, Lou H, Mao Y, Zhu W, Zhou W, Zhang P, Zhang J. Perfluoroalkyl substances and endometriosis-related infertility in Chinese women. ENVIRONMENT INTERNATIONAL 2017; 102:207-212. [PMID: 28283302 DOI: 10.1016/j.envint.2017.03.003] [Citation(s) in RCA: 60] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/15/2016] [Revised: 02/23/2017] [Accepted: 03/01/2017] [Indexed: 06/06/2023]
Abstract
Endometriosis is one of the main causes for female infertility. Previous studies suggested that perfluoroalkyl substances (PFASs), a group of ubiquitous environmental chemicals with properties of endocrine disruption and reproductive toxicity, were risk factors for endometriosis but there lacks direct evidence on the possible role of PFASs in endometriosis-related infertility. To fill this gap, we examined the association between PFASs and endometriosis-related infertility among Chinese reproductive-age women in a case-control study, which comprised 157 surgically confirmed endometriosis cases and 178 controls seeking infertility treatment because of male reproductive dysfunction in 2014 and 2015. Blood specimens were collected at the enrollment and analyzed for ten PFASs. Logistic regression was utilized to estimate the adjusted odds ratios (OR) and 95% confidence intervals (CI) for individual PFAS compound. Plasma concentrations of perfluorobutane sulfonic acid (PFBS) were associated with an increased risk of endometriosis-related infertility (second vs. lowest tertile: OR=3.74, 95% CI: 2.04, 6.84; highest vs. lowest tertile: OR=3.04, 95% CI: 1.65, 5.57). This association remained consistent when we restricted to subjects with no previous pregnancy (second vs. lowest tertile: OR=2.91, 95% CI: 1.28, 6.61; highest vs. lowest tertile: OR=3.41, 95% CI: 1.52, 7.65) or to subjects without other gynecologic pathology (second vs. lowest tertile: OR=4.65, 95% CI: 2.21, 9.82; highest vs. lowest tertile: OR=3.36, 95% CI: 1.58, 7.15). Plasma concentrations of perfluoroheptanoic acid (PFHpA), perfluorohexane sulfonic acid (PFHxS) and perfluorononanoic acid (PFNA) were inversely associated with endometriosis-related infertility, but the associations were attenuated in the sensitivity analyses. Our preliminary evidence suggests that exposure to PFBS may increase the risk of female infertility due to endometriosis. Future prospective studies are necessary to confirm these findings.
Collapse
Affiliation(s)
- Bin Wang
- MOE-Shanghai Key Laboratory of Children's Environmental Health, Xinhua Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200092, China
| | - Rongrong Zhang
- Department of Gynecology, Xinhua Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200092, China
| | - Fan Jin
- Department of Reproductive Endocrinology, Women's Hospital, School of Medicine, Zhejiang University, Hangzhou 310006, China
| | - Hangying Lou
- Department of Reproductive Endocrinology, Women's Hospital, School of Medicine, Zhejiang University, Hangzhou 310006, China
| | - Yuchan Mao
- Department of Reproductive Endocrinology, Women's Hospital, School of Medicine, Zhejiang University, Hangzhou 310006, China
| | - Wenting Zhu
- MOE-Shanghai Key Laboratory of Children's Environmental Health, Xinhua Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200092, China; Department of Reproductive Endocrinology, Women's Hospital, School of Medicine, Zhejiang University, Hangzhou 310006, China
| | - Wei Zhou
- MOE-Shanghai Key Laboratory of Children's Environmental Health, Xinhua Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200092, China
| | - Ping Zhang
- Department of Gynecology, Xinhua Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200092, China
| | - Jun Zhang
- MOE-Shanghai Key Laboratory of Children's Environmental Health, Xinhua Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200092, China.
| |
Collapse
|
37
|
Ghisari M, Long M, Røge DM, Olsen J, Bonefeld-Jørgensen EC. Polymorphism in xenobiotic and estrogen metabolizing genes, exposure to perfluorinated compounds and subsequent breast cancer risk: A nested case-control study in the Danish National Birth Cohort. ENVIRONMENTAL RESEARCH 2017; 154:325-333. [PMID: 28157646 DOI: 10.1016/j.envres.2017.01.020] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/31/2016] [Revised: 11/29/2016] [Accepted: 01/14/2017] [Indexed: 05/05/2023]
Abstract
UNLABELLED In the present case-cohort study based on prospective data from Danish women, we aimed to estimate the main effect of polymorphisms in genes known to be involved in the steroid hormone metabolic pathway and xenobiotic metabolism on the risk of developing breast cancer. We also studied a possible effect measure modification between genotypes and levels of serum perfluoroalkylated substances (PFASs) on the risk to breast cancer. We have previously reported a weak association between serum PFASs levels and the risk of breast cancer for this study population of Danish pregnant nulliparous women as well as in a smaller case-control study of Greenlandic women. The study population consisted of 178 breast cancer cases and 233 controls (tabnulliparous and frequency matched on age) nested within the Danish National Birth Cohort (DNBC), which was established in 1996-2002. Blood samples were drawn at the time of enrollment (6-14 week of gestation). Serum levels of 10 perfluorocarboxylated acids (PFCAs), 5 perfluorosulfonated acids (PFSAs) and 1 sulfonamide (perflurooctane-sulfonamide, PFOSA) were measured. Genotyping was conducted for CYP1A1 (Ile462Val; rs1048943), CYP1B1 (Leu432Val; rs1056836), COMT (Val158Met; rs4680), CYP17A1 (A1→ A2; rs743572); CYP19A1 (C→T; rs10046) by the TaqMan allelic discrimination method. In overall, no significant associations were found between the investigated polymorphisms and the risk of breast cancer in this study among Danish women. The previously found association between PFOSA and risk of breast cancer did vary between different genotypes, with significantly increased risk confined to homozygous carriers of the following alleles: COMT (Met), CYP17 (A1) and CYP19 (C). CONCLUSION Our results indicate that polymorphisms in COMT, CYP17 and CYP19 which are involved in estrogen biosynthesis and metabolism can modulate the potential effects of PFOSA exposure on the development of breast cancer.
Collapse
Affiliation(s)
- Mandana Ghisari
- Centre for Arctic Health & Molecular Epidemiology, Department of Public Health, Aarhus University, Denmark
| | - Manhai Long
- Centre for Arctic Health & Molecular Epidemiology, Department of Public Health, Aarhus University, Denmark
| | - Durita Mohr Røge
- Centre for Arctic Health & Molecular Epidemiology, Department of Public Health, Aarhus University, Denmark
| | - Jørn Olsen
- Section for Epidemiology, Department of Public Health, Aarhus University, Denmark
| | - Eva C Bonefeld-Jørgensen
- Centre for Arctic Health & Molecular Epidemiology, Department of Public Health, Aarhus University, Denmark.
| |
Collapse
|
38
|
Itoh S, Araki A, Mitsui T, Miyashita C, Goudarzi H, Sasaki S, Cho K, Nakazawa H, Iwasaki Y, Shinohara N, Nonomura K, Kishi R. Association of perfluoroalkyl substances exposure in utero with reproductive hormone levels in cord blood in the Hokkaido Study on Environment and Children's Health. ENVIRONMENT INTERNATIONAL 2016; 94:51-59. [PMID: 27209000 DOI: 10.1016/j.envint.2016.05.011] [Citation(s) in RCA: 89] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/25/2015] [Revised: 04/28/2016] [Accepted: 05/12/2016] [Indexed: 05/17/2023]
Abstract
BACKGROUND Exposure to perfluoroalkyl substances (PFASs) may disrupt reproductive function in animals and humans. Although PFASs can cross the human placental barrier, few studies evaluated the effects of prenatal PFAS exposure on the fetus' reproductive hormones. OBJECTIVE To explore the associations of prenatal exposure to perfluorooctane sulfonate (PFOS) and perfluorooctanoate (PFOA) with cord blood reproductive hormones. METHODS In the prospective birth cohort (Sapporo cohort of the Hokkaido study), we included 189 mother-infant pairs recruited in 2002-2005 with both prenatal maternal and cord blood samples. PFOS and PFOA levels in maternal blood after the second trimester were measured via liquid chromatography-tandem mass spectrometry. We also measured cord blood levels of the fetuses' reproductive hormones, including estradiol (E2), total testosterone (T), progesterone (P4), inhibin B, insulin-like factor 3, steroid hormone binding globulin, follicle-stimulating hormone, and luteinizing hormone, and prolactin (PRL). RESULTS The median PFOS and PFOA levels in maternal serum were 5.2ng/mL and 1.4ng/mL, respectively. In the fully adjusted linear regression analyses of the male infants, maternal PFOS levels were significantly associated with E2 and positively, and T/E2, P4, and inhibin B inversely; PFOA levels were positively associated with inhibin B levels. Among the female infants, there were significant inverse associations between PFOS levels and P4 and PRL levels, although there were no significant associations between PFOA levels and the female infants' reproductive hormone levels. CONCLUSIONS These results suggest that the fetal synthesis and secretion of reproductive hormones may be affected by in utero exposure to measurable levels of PFOS and PFOA.
Collapse
Affiliation(s)
- Sachiko Itoh
- Center for Environmental Health and Sciences, Hokkaido University, Sapporo, Japan
| | - Atsuko Araki
- Center for Environmental Health and Sciences, Hokkaido University, Sapporo, Japan
| | - Takahiko Mitsui
- Department of Urology, Hokkaido University Hospital, Sapporo, Japan
| | - Chihiro Miyashita
- Center for Environmental Health and Sciences, Hokkaido University, Sapporo, Japan
| | - Houman Goudarzi
- Center for Environmental Health and Sciences, Hokkaido University, Sapporo, Japan
| | - Seiko Sasaki
- Department of Public Health, Hokkaido University Graduate School of Medicine, Sapporo, Japan
| | - Kazutoshi Cho
- Department of Obstetrics and Genecology, Hokkaido University Hospital, Sapporo, Japan
| | - Hiroyuki Nakazawa
- Department of Analytical Chemistry, Faculty of Pharmaceutical Sciences, Hoshi University, Tokyo, Japan
| | - Yusuke Iwasaki
- Department of Analytical Chemistry, Faculty of Pharmaceutical Sciences, Hoshi University, Tokyo, Japan
| | - Nobuo Shinohara
- Department of Renal and Genitourinary Surgery, Hokkaido University Graduate School of Medicine, Sapporo, Japan
| | - Katsuya Nonomura
- Department of Renal and Genitourinary Surgery, Hokkaido University Graduate School of Medicine, Sapporo, Japan; Kushiro Rosai Hospital, Kushiro, Japan
| | - Reiko Kishi
- Center for Environmental Health and Sciences, Hokkaido University, Sapporo, Japan.
| |
Collapse
|
39
|
Halsne R, Tandberg JI, Lobert VH, Østby GC, Thoen E, Ropstad E, Verhaegen S. Effects of perfluorinated alkyl acids on cellular responses of MCF-10A mammary epithelial cells in monolayers and on acini formation in vitro. Toxicol Lett 2016; 259:95-107. [PMID: 27511595 DOI: 10.1016/j.toxlet.2016.08.004] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2016] [Revised: 06/29/2016] [Accepted: 08/05/2016] [Indexed: 11/26/2022]
Abstract
Perfluorinated alkyl acids (PFAAs) are stable chemicals detected in tissue and serum from various species, including humans, and have been linked to adverse health outcomes. Experimental PFAA exposure in rodents has been associated with changes in mammary gland development. The estrogen receptor (ER)-negative human breast epithelial cell line, MCF-10A, can be grown as monolayer, but also has the ability to form three-dimensional acini in vitro, reflecting aspects of mammary glandular morphogenesis. Cells were exposed to five different PFAAs, perfluorooctane sulfonate (PFOS), perfluorooctanoic acid (PFOA), perfluorononanoic acid (PFNA), perfluorodecanoic acid (PFDA), and perfluoroundecanoic acid (PFUnDA), both in monolayer and acini cultures. In monolayer cultures only the higher concentrations of PFOS, PFNA and PFDA (400-500μM) caused a significant increase in cell death, whereas PFOA and PFUnDA had no effect. Normal acini maturation was negatively impacted by PFOS, PFNA and PFDA already at the lowest concentration tested (0.6μM). Observed effects included loss of organization of the cell clusters and absence of a hollow lumen. Overall, this study demonstrated that PFAAs can interfere with cellular events related to normal development of glandular breast tissue through ER-independent mechanisms.
Collapse
Affiliation(s)
- Ruth Halsne
- Department of Production Animal Clinical Sciences, Faculty of Veterinary Medicine and Biosciences, Norwegian University of Life Sciences (NMBU), P.O. 8146 Dep., N-0033 Oslo, Norway.
| | - Julia Isabel Tandberg
- Department of Pharmaceutical Biosciences, School of Pharmacy, Oslo University, P.O. Box 1068, N-0316 Oslo, Norway
| | - Viola Hélène Lobert
- Department of Molecular Cell Biology, Institute for Cancer Research, The Norwegian Radium Hospital, Oslo University Hospital, Montebello, N-0379 Oslo, Norway
| | - Gunn Charlotte Østby
- Department of Production Animal Clinical Sciences, Faculty of Veterinary Medicine and Biosciences, Norwegian University of Life Sciences (NMBU), P.O. 8146 Dep., N-0033 Oslo, Norway
| | - Even Thoen
- Department of Production Animal Clinical Sciences, Faculty of Veterinary Medicine and Biosciences, Norwegian University of Life Sciences (NMBU), P.O. 8146 Dep., N-0033 Oslo, Norway; Norwegian Veterinary Institute, P.O. Box 750 Sentrum, N-0106 Oslo, Norway
| | - Erik Ropstad
- Department of Production Animal Clinical Sciences, Faculty of Veterinary Medicine and Biosciences, Norwegian University of Life Sciences (NMBU), P.O. 8146 Dep., N-0033 Oslo, Norway
| | - Steven Verhaegen
- Department of Production Animal Clinical Sciences, Faculty of Veterinary Medicine and Biosciences, Norwegian University of Life Sciences (NMBU), P.O. 8146 Dep., N-0033 Oslo, Norway
| |
Collapse
|
40
|
Qu JH, Lu CC, Xu C, Chen G, Qiu LL, Jiang JK, Ben S, Wang YB, Gu AH, Wang XR. Perfluorooctane sulfonate-induced testicular toxicity and differential testicular expression of estrogen receptor in male mice. ENVIRONMENTAL TOXICOLOGY AND PHARMACOLOGY 2016; 45:150-7. [PMID: 27310206 DOI: 10.1016/j.etap.2016.05.025] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/16/2016] [Revised: 05/27/2016] [Accepted: 05/29/2016] [Indexed: 05/15/2023]
Abstract
Perfluorooctane sulfonate (PFOS, CAS#1763-23-1) causes male reproductive toxicities, but the underlying mechanisms are still unclear. In this study, 0, 0.5 and 10mg/kg/day PFOS were given by oral gavage to adult mice for 5 weeks. In the 10mg/kg group, serum testosterone levels decreased significantly. Sperm counts declined which might be associated with the decreased proliferation and increased apoptosis of germ cells. In relation to increased apoptosis, bax, cleaved caspase-9 and cleaved caspase-3 levels elevated significantly, indicating that PFOS induced germ cell apoptosis by activating the mitochondrial pathway. In addition, the increase in levels of testicular estrogen receptor (ER) β was observed in both 0.5 and 10mg/kg group, whereas a decrease in ERα expression was only observed in 10mg/kg group. These results suggested that the alterations in testicular ERs expression, together with decreased proliferation and increased apoptosis of germ cells, might be involved in PFOS-induced testicular toxicity.
Collapse
Affiliation(s)
- Jian-Hua Qu
- School of Public Health, NanTong University, 9 Seyuan Road, Nantong 226019, China.
| | - Chun-Cheng Lu
- State Key Laboratory of Reproductive Medicine, Institute of Toxicology, Nanjing Medical University, Nanjing 211166, China; Key Laboratory of Modern Toxicology of Ministry of Education, School of Public Health, Nanjing Medical University, Nanjing 211166, China
| | - Cheng Xu
- State Key Laboratory of Reproductive Medicine, Institute of Toxicology, Nanjing Medical University, Nanjing 211166, China; Key Laboratory of Modern Toxicology of Ministry of Education, School of Public Health, Nanjing Medical University, Nanjing 211166, China
| | - Gang Chen
- School of Public Health, NanTong University, 9 Seyuan Road, Nantong 226019, China
| | - Liang-Lin Qiu
- School of Public Health, NanTong University, 9 Seyuan Road, Nantong 226019, China
| | - Jun-Kang Jiang
- School of Public Health, NanTong University, 9 Seyuan Road, Nantong 226019, China
| | - Shuai Ben
- School of Public Health, NanTong University, 9 Seyuan Road, Nantong 226019, China
| | - Yu-Bang Wang
- State Key Laboratory of Reproductive Medicine, Institute of Toxicology, Nanjing Medical University, Nanjing 211166, China; Key Laboratory of Modern Toxicology of Ministry of Education, School of Public Health, Nanjing Medical University, Nanjing 211166, China
| | - Ai-Hua Gu
- State Key Laboratory of Reproductive Medicine, Institute of Toxicology, Nanjing Medical University, Nanjing 211166, China; Key Laboratory of Modern Toxicology of Ministry of Education, School of Public Health, Nanjing Medical University, Nanjing 211166, China.
| | - Xin-Ru Wang
- State Key Laboratory of Reproductive Medicine, Institute of Toxicology, Nanjing Medical University, Nanjing 211166, China; Key Laboratory of Modern Toxicology of Ministry of Education, School of Public Health, Nanjing Medical University, Nanjing 211166, China.
| |
Collapse
|
41
|
Kang JS, Choi JS, Park JW. Transcriptional changes in steroidogenesis by perfluoroalkyl acids (PFOA and PFOS) regulate the synthesis of sex hormones in H295R cells. CHEMOSPHERE 2016; 155:436-443. [PMID: 27139122 DOI: 10.1016/j.chemosphere.2016.04.070] [Citation(s) in RCA: 74] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/25/2015] [Revised: 04/18/2016] [Accepted: 04/19/2016] [Indexed: 05/15/2023]
Abstract
Perfluorooctanoic acid (PFOA) and perfluorooctane sulfonate (PFOS) are two of the most widely used perfluoroalkyl acids (PFAAs). Because of their strong persistence, they have become widely distributed throughout the environment and human bodies. PFOA and PFOS are suspected to disrupt the endocrine system based upon many in vivo studies, but the underlying mechanisms are currently unclear. In this study, we investigated the endocrine-related effects of PFOA and PFOS using in vitro estrogen receptor (ER) and androgen receptor (AR) transactivation assays and steroidogenesis assay. The results showed that PFOA and PFOS exhibited weak antagonistic ER transactivation but did not exhibit agonistic ER or AR transactivation. In the steroidogenesis assay, PFOA and PFOS induced 17β-estradiol (E2) level and reduced testosterone level, which would be caused by the induction of aromatase activity. The qPCR analysis of genes involved in steroidogenesis indicates that PFOA and PFOS associate with sex hormone synthesis by the transcriptional induction of two genes, cyp19 and 3β-hsd2. Moreover, the transcriptional induction of cyp11b2 by PFOS suggests that this chemical may underlie the disruption of several physiological functions related to aldosterone. The results of the current study suggest that PFOA and PFOS are potential endocrine disrupting chemicals (EDCs) and provide information for further studies on the molecular events that initiate the adverse endocrine effects.
Collapse
Affiliation(s)
- Jae Soon Kang
- Gyeongnam Department of Environmental Toxicology and Chemistry, Korea Institute of Toxicology, Jin-Ju, Gyeongnam, Republic of Korea
| | - Jin-Soo Choi
- Gyeongnam Department of Environmental Toxicology and Chemistry, Korea Institute of Toxicology, Jin-Ju, Gyeongnam, Republic of Korea
| | - June-Woo Park
- Gyeongnam Department of Environmental Toxicology and Chemistry, Korea Institute of Toxicology, Jin-Ju, Gyeongnam, Republic of Korea; Human and Environmental Toxicology Program, Korea University of Science and Technology (UST), Daejeon, Republic of Korea.
| |
Collapse
|
42
|
Bach CC, Vested A, Jørgensen KT, Bonde JPE, Henriksen TB, Toft G. Perfluoroalkyl and polyfluoroalkyl substances and measures of human fertility: a systematic review. Crit Rev Toxicol 2016; 46:735-55. [DOI: 10.1080/10408444.2016.1182117] [Citation(s) in RCA: 72] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Affiliation(s)
- Cathrine Carlsen Bach
- Perinatal Epidemiology Research Unit, Aarhus University Hospital, Skejby, Denmark
- Horsens Regional Hospital, Horsens, Denmark
| | - Anne Vested
- Danish Ramazzini Center, Department of Occupational Medicine, Aarhus University Hospital, Aarhus, Denmark
- Department of Public Health, Section for Environment, Occupation and Health, Danish Ramazzini Centre, Aarhus University, Aarhus, Denmark
| | - Kristian Tore Jørgensen
- Department of Occupational and Environmental Medicine, Bispebjerg Hospital, Copenhagen University Hospital, Copenhagen, Denmark
| | - Jens Peter Ellekilde Bonde
- Department of Occupational and Environmental Medicine, Bispebjerg Hospital, Copenhagen University Hospital, Copenhagen, Denmark
| | - Tine Brink Henriksen
- Perinatal Epidemiology Research Unit, Aarhus University Hospital, Skejby, Denmark
- Department of Pediatrics, Aarhus University Hospital, Skejby, Denmark
| | - Gunnar Toft
- Department of Clinical Epidemiology, Aarhus University Hospital, Denmark
| |
Collapse
|
43
|
Domínguez A, Salazar Z, Arenas E, Betancourt M, Ducolomb Y, González-Márquez H, Casas E, Teteltitla M, Bonilla E. Effect of perfluorooctane sulfonate on viability, maturation and gap junctional intercellular communication of porcine oocytes in vitro. Toxicol In Vitro 2016; 35:93-9. [PMID: 27233358 DOI: 10.1016/j.tiv.2016.05.011] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2015] [Revised: 05/21/2016] [Accepted: 05/23/2016] [Indexed: 01/09/2023]
Abstract
Perfluorooctane sulfonate (PFOS) is a broadly used man-made surfactant whose long half-life has led to bioaccumulation. This perfluorinated compound is ubiquitous in human body fluids. PFOS concentrations as high as 26μM in plasma have been reported in occupationally exposed populations, and high levels of PFOS in human follicular fluid have been associated with subfertility. However, the effect of PFOS on the maturation of oocytes in mammals has not been reported to date. The aim of this study was to determine the effects of PFOS during oocyte maturation. Results indicate that PFOS inhibits oocyte viability (Lethal Concentration50=32μM) and maturation (inhibition of maturation50=22μM) at physiologically relevant concentrations. In order to evaluate the mechanisms of oocyte maturation inhibition by PFOS, gap junctional intercellular communication (GJIC) between oocytes and granulosa cells was assessed. GJIC between granulosa cells and the oocyte was significantly affected during the first 8h of maturation. However, the inhibitory effect of PFOS on GJIC was not due to an alteration on the expression of connexin genes Cx43, Cx45 and Cx60. These findings suggest that occupationally exposed populations could be at risk, and that PFOS might affect oocyte maturation by interfering the GJIC in the cumulus-oocyte complexes during the first hours of maturation.
Collapse
Affiliation(s)
- A Domínguez
- Departamento de Ciencias de la Salud, Universidad Autónoma Metropolitana-Iztapalapa, Av. San Rafael Atlixco 186, 09340 CDMX, Mexico; Maestría en Biología de la Reproducción Animal, División de Ciencias Biológicas y de la Salud, Universidad Autónoma Metropolitana-Iztapalapa, Av. San Rafael Atlixco 186, 09340 CDMX, Mexico
| | - Z Salazar
- Departamento de Ciencias de la Salud, Universidad Autónoma Metropolitana-Iztapalapa, Av. San Rafael Atlixco 186, 09340 CDMX, Mexico
| | - E Arenas
- Departamento de Biología de la Reproducción, Universidad Autónoma Metropolitana-Iztapalapa, Av. San Rafael Atlixco 186, 09340 CDMX, Mexico
| | - M Betancourt
- Departamento de Ciencias de la Salud, Universidad Autónoma Metropolitana-Iztapalapa, Av. San Rafael Atlixco 186, 09340 CDMX, Mexico
| | - Y Ducolomb
- Departamento de Ciencias de la Salud, Universidad Autónoma Metropolitana-Iztapalapa, Av. San Rafael Atlixco 186, 09340 CDMX, Mexico
| | - H González-Márquez
- Departamento de Ciencias de la Salud, Universidad Autónoma Metropolitana-Iztapalapa, Av. San Rafael Atlixco 186, 09340 CDMX, Mexico
| | - E Casas
- Departamento de Ciencias de la Salud, Universidad Autónoma Metropolitana-Iztapalapa, Av. San Rafael Atlixco 186, 09340 CDMX, Mexico
| | - M Teteltitla
- Departamento de Ciencias de la Salud, Universidad Autónoma Metropolitana-Iztapalapa, Av. San Rafael Atlixco 186, 09340 CDMX, Mexico; Maestría en Biología de la Reproducción Animal, División de Ciencias Biológicas y de la Salud, Universidad Autónoma Metropolitana-Iztapalapa, Av. San Rafael Atlixco 186, 09340 CDMX, Mexico
| | - E Bonilla
- Departamento de Ciencias de la Salud, Universidad Autónoma Metropolitana-Iztapalapa, Av. San Rafael Atlixco 186, 09340 CDMX, Mexico.
| |
Collapse
|
44
|
Rosenmai AK, Taxvig C, Svingen T, Trier X, van Vugt-Lussenburg BMA, Pedersen M, Lesné L, Jégou B, Vinggaard AM. Fluorinated alkyl substances and technical mixtures used in food paper-packaging exhibit endocrine-related activity in vitro. Andrology 2016; 4:662-72. [DOI: 10.1111/andr.12190] [Citation(s) in RCA: 69] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2015] [Revised: 02/25/2016] [Accepted: 03/02/2016] [Indexed: 01/02/2023]
Affiliation(s)
- A. K. Rosenmai
- Division of Diet, Disease Prevention, and Toxicology; National Food Institute; Technical University of Denmark; Søborg Denmark
| | - C. Taxvig
- Division of Diet, Disease Prevention, and Toxicology; National Food Institute; Technical University of Denmark; Søborg Denmark
| | - T. Svingen
- Division of Diet, Disease Prevention, and Toxicology; National Food Institute; Technical University of Denmark; Søborg Denmark
| | - X. Trier
- Research Group for Analytical Food Chemistry; National Food Institute; Technical University of Denmark; Søborg Denmark
| | | | - M. Pedersen
- Research Group for Analytical Food Chemistry; National Food Institute; Technical University of Denmark; Søborg Denmark
| | - L. Lesné
- Inserm (Institut national de la santé et de la recherche médicale); IRSET, U1085; Rennes CEDEX France
- Université de Rennes I; Rennes CEDEX France
| | - B. Jégou
- Inserm (Institut national de la santé et de la recherche médicale); IRSET, U1085; Rennes CEDEX France
- Université de Rennes I; Rennes CEDEX France
- EHESP - School of Public Health; Rennes CEDEX France
| | - A. M. Vinggaard
- Division of Diet, Disease Prevention, and Toxicology; National Food Institute; Technical University of Denmark; Søborg Denmark
| |
Collapse
|
45
|
Toft G, Jönsson BA, Bonde JP, Nørgaard-Pedersen B, Hougaard DM, Cohen A, Lindh CH, Ivell R, Anand-Ivell R, Lindhard MS. Perfluorooctane Sulfonate Concentrations in Amniotic Fluid, Biomarkers of Fetal Leydig Cell Function, and Cryptorchidism and Hypospadias in Danish Boys (1980-1996). ENVIRONMENTAL HEALTH PERSPECTIVES 2016; 124:151-6. [PMID: 26046833 PMCID: PMC4710602 DOI: 10.1289/ehp.1409288] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 10/02/2014] [Accepted: 06/01/2015] [Indexed: 05/19/2023]
Abstract
BACKGROUND Exposure to perfluorooctane sulfonate (PFOS) may potentially disturb fetal Leydig cell hormone production and male genital development. OBJECTIVES We aimed to study the associations between levels of amniotic fluid PFOS, fetal steroid hormone, and insulin-like factor 3 (INSL3) and the prevalence of cryptorchidism and hypospadias. METHODS Using the Danish National Patient Registry, we selected 270 cryptorchidism cases, 75 hypospadias cases, and 300 controls with stored maternal amniotic fluid samples available in a Danish pregnancy-screening biobank (1980-1996). We used mass spectrometry to measure PFOS in amniotic fluid from 645 persons and steroid hormones in samples from 545 persons. INSL3 was measured by immunoassay from 475 persons. Associations between PFOS concentration in amniotic fluid, hormone levels, and genital malformations were assessed by confounder-adjusted linear and logistic regression. RESULTS The highest tertile of PFOS exposure (> 1.4 ng/mL) in amniotic fluid was associated with a 40% (95% CI: -69, -11%) lower INSL3 level and an 18% (95% CI: 7, 29%) higher testosterone level compared with the lowest tertile (< 0.8 ng/mL). Amniotic fluid PFOS concentration was not associated with cryptorchidism or hypospadias. CONCLUSIONS Environmental PFOS exposure was associated with steroid hormone and INSL3 concentrations in amniotic fluid, but was not associated with cryptorchidism or hypospadias in our study population. Additional studies are needed to determine whether associations with fetal hormone levels may have long-term implications for reproductive health. CITATION Toft G, Jönsson BA, Bonde JP, Nørgaard-Pedersen B, Hougaard DM, Cohen A, Lindh CH, Ivell R, Anand-Ivell R, Lindhard MS. 2016. Perfluorooctane sulfonate concentrations in amniotic fluid, biomarkers of fetal Leydig cell function, and cryptorchidism and hypospadias in Danish boys (1980-1996). Environ Health Perspect 124:151-156; http://dx.doi.org/10.1289/ehp.1409288.
Collapse
Affiliation(s)
- Gunnar Toft
- Department of Occupational Medicine, and
- Department of Clinical Epidemiology, Aarhus University Hospital, Aarhus, Denmark
- Address correspondence to G. Toft, Department of Clinical Epidemiology, Aarhus University Hospital, Oluf Palmes Allé 43-45, 8200 Aarhus N, Denmark. Telephone: 45 871 68202. E-mail:
| | - Bo A.G. Jönsson
- Division of Occupational and Environmental Medicine, Lund University, Lund, Sweden
| | - Jens Peter Bonde
- Department of Occupational and Environmental Medicine, Copenhagen University Hospital, Bispebjerg, Copenhagen, Denmark
| | - Bent Nørgaard-Pedersen
- Danish Center for Neonatal Screening, Department of Clinical Biochemistry and Immunology, Statens Serum Institute, Copenhagen, Denmark
| | - David M. Hougaard
- Danish Center for Neonatal Screening, Department of Clinical Biochemistry and Immunology, Statens Serum Institute, Copenhagen, Denmark
| | - Arieh Cohen
- Danish Center for Neonatal Screening, Department of Clinical Biochemistry and Immunology, Statens Serum Institute, Copenhagen, Denmark
| | - Christian H. Lindh
- Division of Occupational and Environmental Medicine, Lund University, Lund, Sweden
| | - Richard Ivell
- School of Biosciences, University of Nottingham, Nottingham, United Kingdom
| | | | - Morten S. Lindhard
- Department of Pediatrics, Regional Hospital of Randers, Randers, Denmark
- Perinatal Epidemiology Research Unit, Department of Pediatrics, Aarhus University Hospital, Skejby, Denmark
| |
Collapse
|
46
|
Wang J, Cao X, Sun J, Huang Y, Tang X. Disruption of endocrine function in H295R cell in vitro and in zebrafish in vivo by naphthenic acids. JOURNAL OF HAZARDOUS MATERIALS 2015; 299:1-9. [PMID: 26073515 DOI: 10.1016/j.jhazmat.2015.06.004] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/24/2015] [Revised: 06/01/2015] [Accepted: 06/02/2015] [Indexed: 06/04/2023]
Abstract
Oil sands process-affected water (OSPW) have been reported to exhibit endocrine disrupting effects on aquatic organisms. Although the responsible compounds are unknown, naphthenic acids (NAs) have been considered to be implicated. The current study was designed to investigate the endocrine disruption of OSPW extracted NAs (OS-NAs) and commercial NAs (C-NAs) using a combination of in vitro and in vivo assays. The effects of OS-NAs and C-NAs on steroidogenesis were assessed both at hormone levels and expression levels of hormone-related genes in the H295R cells. The transcriptions of biomarker genes involved in endocrine systems in zebrafish larvae were investigated to detect the effects of OS-NAs and C-NAs on endocrine function in vivo. Exposure to OS-NAs and C-NAs significantly increased production of 17β-estradiol (E2) and progesterone (P4), and decreased production of testosterone (T). Both OS-NAs and C-NAs significantly induced the expression of several genes involved in steroidogenesis. The abundances of transcripts of biomarker gene CYP19b, ERα, and VTG were significantly up-regulated in zebrafish larvae exposed to OS-NAs and C-NAs, which indicated that NAs had negative effects on estrogen-responsive gene transcription in vivo. These results indicated that NAs should be partly responsible for the endocrine disrupting effects of OSPW.
Collapse
Affiliation(s)
- Jie Wang
- State Key Joint Laboratory of Environmental Simulation and Pollution Control, College of Environmental Sciences and Engineering, Peking University, Beijing 100871, China
| | - Xiaofeng Cao
- State Key Joint Laboratory of Environmental Simulation and Pollution Control, College of Environmental Sciences and Engineering, Peking University, Beijing 100871, China
| | - Jinhua Sun
- Chinese Research Academy of Environmental Sciences, Beijing 100012, China
| | - Yi Huang
- State Key Joint Laboratory of Environmental Simulation and Pollution Control, College of Environmental Sciences and Engineering, Peking University, Beijing 100871, China.
| | - Xiaoyan Tang
- State Key Joint Laboratory of Environmental Simulation and Pollution Control, College of Environmental Sciences and Engineering, Peking University, Beijing 100871, China
| |
Collapse
|
47
|
Wilson J, Berntsen HF, Zimmer KE, Verhaegen S, Frizzell C, Ropstad E, Connolly L. Do persistent organic pollutants interact with the stress response? Individual compounds, and their mixtures, interaction with the glucocorticoid receptor. Toxicol Lett 2015; 241:121-32. [PMID: 26599974 DOI: 10.1016/j.toxlet.2015.11.014] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2015] [Revised: 11/12/2015] [Accepted: 11/13/2015] [Indexed: 01/22/2023]
Abstract
Persistent organic pollutants (POPs) are toxic substances, highly resistant to environmental degradation, which can bio-accumulate and have long-range atmospheric transport potential (UNEP, 2001). The majority of studies on endocrine disruption have focused on interferences on the sexual steroid hormones and so have overlooked disruption to glucocorticoid hormones. Here the endocrine disrupting potential of individual POPs and their mixtures has been investigated in vitro to identify any disruption to glucocorticoid nuclear receptor transcriptional activity. POP mixtures were screened for glucocorticoid receptor (GR) translocation using a GR redistribution assay (RA) on a CellInsight™ NXT high content screening (HCS) platform. A mammalian reporter gene assay (RGA) was then used to assess the individual POPs, and their mixtures, for effects on glucocorticoid nuclear receptor transactivation. POP mixtures did not induce GR translocation in the GR RA or produce an agonist response in the GR RGA. However, in the antagonist test, in the presence of cortisol, an individual POP, p,p'-dichlorodiphenyldichloroethylene (p,p'-DDE), was found to decrease glucocorticoid nuclear receptor transcriptional activity to 72.5% (in comparison to the positive cortisol control). Enhanced nuclear transcriptional activity, in the presence of cortisol, was evident for the two lowest concentrations of perfluorodecanoic acid (PFOS) potassium salt (0.0147mg/ml and 0.0294mg/ml), the two highest concentrations of perfluorodecanoic acid (PFDA) (0.0025mg/ml and 0.005mg/ml) and the highest concentration of 2,2',4,4'-tetrabromodiphenyl ether (BDE-47) (0.0000858mg/ml). It is important to gain a better understanding of how POPs can interact with GRs as the disruption of glucocorticoid action is thought to contribute to complex diseases.
Collapse
Affiliation(s)
- Jodie Wilson
- Institute for Global Food Security, School of Biological Sciences, Queen's University Belfast, Northern Ireland, United Kingdom
| | | | | | | | - Caroline Frizzell
- Institute for Global Food Security, School of Biological Sciences, Queen's University Belfast, Northern Ireland, United Kingdom
| | - Erik Ropstad
- Norwegian University of Life Sciences, Oslo, Norway
| | - Lisa Connolly
- Institute for Global Food Security, School of Biological Sciences, Queen's University Belfast, Northern Ireland, United Kingdom.
| |
Collapse
|
48
|
Wielogórska E, Elliott CT, Danaher M, Connolly L. Endocrine disruptor activity of multiple environmental food chain contaminants. Toxicol In Vitro 2015; 29:211-20. [PMID: 25449125 DOI: 10.1016/j.tiv.2014.10.014] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2014] [Revised: 10/15/2014] [Accepted: 10/17/2014] [Indexed: 01/08/2023]
Abstract
Industrial chemicals, antimicrobials, drugs and personal care products have been reported as global pollutants which enter the food chain. Some of them have also been classified as endocrine disruptors based on results of various studies employing a number of in vitro/vivo tests. The present study employed a mammalian reporter gene assay to assess the effects of known and emerging contaminants on estrogen nuclear receptor transactivation. Out of fifty-nine compounds assessed, estrogen receptor agonistic activity was observed for parabens( n = 3), UV filters (n = 6), phthalates (n = 4) and a metabolite, pyrethroids (n = 9) and their metabolites (n = 3). Two compounds were estrogen receptor antagonists while some of the agonists enhanced 17b-estradiol mediated response.This study reports five new compounds (pyrethroids and their metabolites) possessing estrogen agonist activity and highlights for the first time that pyrethroid metabolites are of particular concern showing much greater estrogenic activity than their parent compounds.
Collapse
Affiliation(s)
- E Wielogórska
- Institute for Global Food Security, School of Biological Sciences, Queen’s University Belfast, Northern Ireland, United Kingdom
| | | | | | | |
Collapse
|
49
|
van den Dungen MW, Rijk JC, Kampman E, Steegenga WT, Murk AJ. Steroid hormone related effects of marine persistent organic pollutants in human H295R adrenocortical carcinoma cells. Toxicol In Vitro 2015; 29:769-78. [DOI: 10.1016/j.tiv.2015.03.002] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2014] [Revised: 02/23/2015] [Accepted: 03/01/2015] [Indexed: 01/06/2023]
|
50
|
Perfluoroalkyl substances and ovarian hormone concentrations in naturally cycling women. Fertil Steril 2015; 103:1261-70.e3. [PMID: 25747128 DOI: 10.1016/j.fertnstert.2015.02.001] [Citation(s) in RCA: 54] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2014] [Revised: 01/23/2015] [Accepted: 02/02/2015] [Indexed: 01/09/2023]
Abstract
OBJECTIVE To examine associations between environmental exposure to perfluoroalkyl substances (PFASs) and ovarian hormone concentrations in naturally cycling women. DESIGN E2 and P were measured in saliva samples collected daily for a single menstrual cycle and concentrations of PFASs (including perfluoroctane sulfonate [PFOS] and perfluoroctanoic acid) were measured in serum samples collected during the same cycle. SETTING Not applicable. PATIENT(S) A total of 178 healthy, naturally cycling women, aged 25-35 years. INTERVENTION(S) None. MAIN OUTCOME MEASURE(S) Mean follicular E2 (cycle days -7 to -1, where 0 is the day of ovulation); mean luteal P (cycle days +2 to 10). RESULT(S) Among nulliparous, but not parous women, PFOS concentrations were inversely associated with E2 (β = -0.025, 95% CI -0.043, -0.007) and P (β = -0.027, 95% CI -0.048, -0.007). Similar, but weaker results were observed for perfluorooctanesulfonic acid. No associations were observed between other PFASs (including perfluoroctanoic acid) and ovarian steroid concentrations, nor were any associations noted in parous women. CONCLUSION(S) Our results demonstrate that PFOS and perfluorooctanesulfonic acid may be associated with decreased production of E2 and P in reproductive age women. These results suggest a possible mechanism by which PFASs affect women's health, and underscore the importance of parity in research on PFASs and women's reproductive health.
Collapse
|