1
|
von Domaros M, Tobias DJ. Molecular Dynamics Simulations of the Interactions of Organic Compounds at Indoor Relevant Surfaces. Annu Rev Phys Chem 2025; 76:231-250. [PMID: 39899840 DOI: 10.1146/annurev-physchem-083122-123017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2025]
Abstract
With markedly different reaction conditions compared to the chemistry of the outside atmosphere, indoor air chemistry poses new challenges to the scientific community that require combined experimental and computational efforts. Here, we review molecular dynamics simulations that have contributed to the mechanistic understanding of the complex dynamics of organic compounds at indoor surfaces and their interplay with experiments and indoor air models. We highlight the rich interactions between volatile organic compounds and silica and titanium dioxide surfaces, serving as proxies for glasses and paints, as well as the dynamics of skin oil lipids and their oxidation products, which sensitively affect the quality of indoor air in crowded environments. As the studies we review here are pioneering in the rapidly emerging field of indoor chemistry, we provide suggestions for increasing the potentially important role that molecular simulations can continue to play.
Collapse
Affiliation(s)
| | - Douglas J Tobias
- Department of Chemistry, University of California, Irvine, California, USA;
| |
Collapse
|
2
|
Thomas R, Prabhakar PR, Tobias DJ, von Domaros M. Insights into Dermal Permeation of Skin Oil Oxidation Products from Enhanced Sampling Molecular Dynamics Simulation. J Phys Chem B 2025; 129:1784-1794. [PMID: 39901666 PMCID: PMC11831647 DOI: 10.1021/acs.jpcb.4c08090] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2024] [Revised: 01/22/2025] [Accepted: 01/23/2025] [Indexed: 02/05/2025]
Abstract
The oxidation of human sebum, a lipid mixture covering our skin, generates a range of volatile and semivolatile carbonyl compounds that contribute largely to indoor air pollution in crowded environments. Kinetic models have been developed to gain a deeper understanding of this complex multiphase chemistry, but they rely partially on rough estimates of kinetic and thermodynamic parameters, especially those describing skin permeation. Here, we employ atomistic molecular dynamics simulations to study the translocation of selected skin oil oxidation products through a model stratum corneum membrane. We find these simulations to be nontrivial, requiring extensive sampling with up to microsecond simulation times, in spite of employing enhanced sampling techniques. We identify the high degree of order and stochastic, long-lived temporal asymmetries in the membrane structure as the leading causes for the slow convergence of the free energy computations. We demonstrate that statistical errors due to insufficient sampling are substantial and propagate to membrane permeabilities. These errors are independent of the enhanced sampling technique employed and very likely independent of the precise membrane model.
Collapse
Affiliation(s)
- Rinto Thomas
- Fachbereich
Chemie, Philipps-Universität Marburg, Marburg 35032, Germany
| | | | - Douglas J. Tobias
- Department
of Chemistry, University of California,
Irvine, Irvine, California 92697, United States
| | | |
Collapse
|
3
|
Deng X, He J, Zou Z, Yang X. A model of the spatiotemporal distribution of ozone-squalene reaction and ozonolysis by-products from human body. JOURNAL OF HAZARDOUS MATERIALS 2024; 479:135648. [PMID: 39191011 DOI: 10.1016/j.jhazmat.2024.135648] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/06/2024] [Revised: 08/23/2024] [Accepted: 08/23/2024] [Indexed: 08/29/2024]
Abstract
Emissions of ozone and its by-products from ozonolysis on human surfaces lead to indoor air pollution. However, the spatiotemporal distribution of such emissions in indoor environments remains unclear, which may introduce bias when assessing human exposure to ozone and ozonolysis byproducts. This study developed a computational fluid dynamics model to describe the physical and chemical processes involved in the emission of ozone-dependent volatile organic compounds from the human body. The results showed that the reaction probability of ozone in the human body depends on the ozone concentration in the bulk air. For ozone concentrations ranging from 28 ppb to 200 ppb, the reaction probabilities ranged from 5.9 × 10-5 to 1.5 × 10-4. The concentrations of ozone and ozonolysis byproducts obtained from the experimental measurements were used for model validation. The ozonolysis by-products were found to be uniformly distributed in the chamber, whereas the ozone distribution showed less uniformity. The ozone concentration near the human surface was approximately 30 %∼50 % of that in the ambient air. Overall, a model was developed to understand the effect of ozone-surface interactions on indoor air quality. This model can be applied to analyze human exposure to ozone and ozonolysis byproducts and for health risk assessment in built environments.
Collapse
Affiliation(s)
- Xiaorui Deng
- Department of Building Science, Tsinghua University, Beijing, China
| | - Junzhou He
- Department of Power Engineering, North China Electric Power University, Baoding, China.
| | - Ziwei Zou
- Department of Building Science, Tsinghua University, Beijing, China
| | - Xudong Yang
- Department of Building Science, Tsinghua University, Beijing, China.
| |
Collapse
|
4
|
Verstraelen S, Maes F, Jacobs A, Remy S, Frijns E, Goelen E, Nelissen I. In vitro assessment of acute airway effects from real-life mixtures of ozone-initiated oxidation products of limonene and printer exhaust. JOURNAL OF ENVIRONMENTAL SCIENCE AND HEALTH. PART A, TOXIC/HAZARDOUS SUBSTANCES & ENVIRONMENTAL ENGINEERING 2024; 59:403-419. [PMID: 39327753 DOI: 10.1080/10934529.2024.2406113] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/14/2024] [Revised: 09/13/2024] [Accepted: 09/14/2024] [Indexed: 09/28/2024]
Abstract
In indoor air the reaction of ozone (O3) with terpenes may lead to the formation of irritating gas-phase products which may induce acute airway effects (i.e. sudden, short-term changes or symptoms related to the respiratory system). We aimed to perform an in vitro study on possible health effects of products from the O3-initiated reaction of limonene with printer exhaust, representing real-life mixtures in offices. Human bronchial epithelial cells were exposed for 1 hour (h) to limonene and O3, combined with printer exhaust. The resulting concentrations represented 34% and 6% of the generated initial concentrations of limonene (400 µg/m³) and O3 (417 µg/cm³), respectively, which were in range of high end realistic indoor concentrations. We observed that the reaction of limonene with O3 generated an increase of ultrafine particles within 1 h, with a significant increase of secondary reaction products 4-oxopentanal and 3-isopropenyl-6-oxo-heptanal at high end indoor air levels. Simultaneous printing activity caused the additional release of micron-sized particles and a further increase in reaction products. Relevant cellular endpoints to evaluate the possible induction of acute airway effects were measured. However, none of the test atmospheres representing office air was observed to induce these effects.
Collapse
Affiliation(s)
- Sandra Verstraelen
- Environmental Intelligence Unit, Flemish Institute for Technological Research (VITO nv), Mol, Belgium
| | - Frederick Maes
- Environmental Intelligence Unit, Flemish Institute for Technological Research (VITO nv), Mol, Belgium
| | - An Jacobs
- Environmental Intelligence Unit, Flemish Institute for Technological Research (VITO nv), Mol, Belgium
| | - Sylvie Remy
- Environmental Intelligence Unit, Flemish Institute for Technological Research (VITO nv), Mol, Belgium
- Department of Biomedical Sciences, University of Antwerp, Antwerp, Belgium
| | - Evelien Frijns
- Environmental Intelligence Unit, Flemish Institute for Technological Research (VITO nv), Mol, Belgium
| | - Eddy Goelen
- Environmental Intelligence Unit, Flemish Institute for Technological Research (VITO nv), Mol, Belgium
| | - Inge Nelissen
- Environmental Intelligence Unit, Flemish Institute for Technological Research (VITO nv), Mol, Belgium
| |
Collapse
|
5
|
Downey JP, Lakey PSJ, Shiraiwa M, Abbatt JPD. Ozone Loss on Painted Surfaces: Dependence on Relative Humidity, Aging, and Exposure to Reactive SVOCs. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2024; 58:12073-12081. [PMID: 38923518 DOI: 10.1021/acs.est.4c02208] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/28/2024]
Abstract
Ozone and its oxidation products result in negative health effects when inhaled. Despite painted surfaces being the most abundant surface in indoor spaces, surface loss remains one of the largest uncertainties in the indoor ozone budget. Here, ozone uptake coefficients (γO3) on painted surfaces were measured in a flow-through reactor where 79% of the inner surfaces were removable painted glass sheets. Flat white paint initially had a high uptake coefficient (8.3 × 10-6) at 20% RH which plateaued to 1.1 × 10-6 as the paint aged in an indoor office over weeks. Increasing the RH from 0 to 75% increased γO3 by a factor of 3.0, and exposure to 134 ppb of α-terpineol for 1 h increased γO3 by a factor of 1.6 at 20% RH. RH also increases α-terpineol partitioning to paint, further increasing ozone loss, but the type of paint (flat, eggshell, satin, semigloss) had no significant effect. A kinetic multilayer model captures the dependence of γO3 on RH and the presence of α-terpineol, indicating the reacto-diffusive depth for O3 is 1 to 2 μm. Given the similarity of the kinetics on aged surfaces across many paint types and the sustained reactivity during aging, these results suggest a mechanism for catalytic loss.
Collapse
Affiliation(s)
- Jillian P Downey
- Department of Chemistry, University of Toronto, Toronto, Ontario M5S 3H6, Canada
| | - Pascale S J Lakey
- Department of Chemistry, University of California, Irvine, California 92697, United States
| | - Manabu Shiraiwa
- Department of Chemistry, University of California, Irvine, California 92697, United States
| | - Jonathan P D Abbatt
- Department of Chemistry, University of Toronto, Toronto, Ontario M5S 3H6, Canada
| |
Collapse
|
6
|
Deng H, Qiu J, Zhang R, Xu J, Qu Y, Wang J, Liu Y, Gligorovski S. Ozone Chemistry on Greasy Glass Surfaces Affects the Levels of Volatile Organic Compounds in Indoor Environments. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2024; 58:8393-8403. [PMID: 38691770 DOI: 10.1021/acs.est.3c08196] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/03/2024]
Abstract
The chemistry of ozone (O3) on indoor surfaces leads to secondary pollution, aggravating the air quality in indoor environments. Here, we assess the heterogeneous chemistry of gaseous O3 with glass plates after being 1 month in two different kitchens where Chinese and Western styles of cooking were applied, respectively. The uptake coefficients of O3 on the authentic glass plates were measured in the dark and under UV light irradiation typical for indoor environments (320 nm < λ < 400 nm) at different relative humidities. The gas-phase product compounds formed upon reactions of O3 with the glass plates were evaluated in real time by a proton-transfer-reaction quadrupole-interface time-of-flight mass spectrometer. We observed typical aldehydes formed by the O3 reactions with the unsaturated fatty acid constituents of cooking oils. The formation of decanal, 6-methyl-5-hepten-2-one (6-MHO), and 4-oxopentanal (4-OPA) was also observed. The employed dynamic mass balance model shows that the estimated mixing ratios of hexanal, octanal, nonanal, decanal, undecanal, 6-MHO, and 4-OPA due to O3 chemistry with authentic grime-coated kitchen glass surfaces are higher in the kitchen where Chinese food was cooked compared to that where Western food was cooked. These results show that O3 chemistry on greasy glass surfaces leads to enhanced VOC levels in indoor environments.
Collapse
Affiliation(s)
- Huifan Deng
- State Key Laboratory of Organic Geochemistry and Guangdong Provincial Key Laboratory of Environmental Protection and Resources Utilization, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou 510640, China
- Guangdong-Hong Kong-Macao Joint Laboratory for Environmental Pollution and Control, Guangzhou Institute of Geochemistry, Chinese Academy of Science, Guangzhou 510640, China
- Chinese Academy of Science, Center for Excellence in Deep Earth Science, Guangzhou 510640, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Jia Qiu
- Key Joint Laboratory of Environmental Simulation and Pollution Control, College of Environmental Sciences and Engineering and Center for Environment and Health, Peking University, Beijing 100871, China
| | - Runqi Zhang
- Department of Materials Environmental Engineering, Shanxi Polytechnic College, Shanxi 237016, China
| | - Jinli Xu
- State Key Laboratory of Organic Geochemistry and Guangdong Provincial Key Laboratory of Environmental Protection and Resources Utilization, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou 510640, China
- Guangdong-Hong Kong-Macao Joint Laboratory for Environmental Pollution and Control, Guangzhou Institute of Geochemistry, Chinese Academy of Science, Guangzhou 510640, China
- Chinese Academy of Science, Center for Excellence in Deep Earth Science, Guangzhou 510640, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yuekun Qu
- Key Joint Laboratory of Environmental Simulation and Pollution Control, College of Environmental Sciences and Engineering and Center for Environment and Health, Peking University, Beijing 100871, China
| | - Jixuan Wang
- Key Joint Laboratory of Environmental Simulation and Pollution Control, College of Environmental Sciences and Engineering and Center for Environment and Health, Peking University, Beijing 100871, China
| | - Yingjun Liu
- Key Joint Laboratory of Environmental Simulation and Pollution Control, College of Environmental Sciences and Engineering and Center for Environment and Health, Peking University, Beijing 100871, China
| | - Sasho Gligorovski
- State Key Laboratory of Organic Geochemistry and Guangdong Provincial Key Laboratory of Environmental Protection and Resources Utilization, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou 510640, China
- Guangdong-Hong Kong-Macao Joint Laboratory for Environmental Pollution and Control, Guangzhou Institute of Geochemistry, Chinese Academy of Science, Guangzhou 510640, China
- Chinese Academy of Science, Center for Excellence in Deep Earth Science, Guangzhou 510640, China
| |
Collapse
|
7
|
Api AM, Belsito D, Botelho D, Bruze M, Burton GA, Cancellieri MA, Chon H, Dagli ML, Date M, Dekant W, Deodhar C, Fryer AD, Jones L, Joshi K, Kumar M, Lapczynski A, Lavelle M, Lee I, Liebler DC, Moustakas H, Na M, Penning TM, Ritacco G, Romine J, Sadekar N, Schultz TW, Selechnik D, Siddiqi F, Sipes IG, Sullivan G, Thakkar Y, Tokura Y. RIFM fragrance ingredient safety assessment, 2-sec-butylcyclohexanone, CAS Registry Number 14765-30-1. Food Chem Toxicol 2024; 183 Suppl 1:114434. [PMID: 38181899 DOI: 10.1016/j.fct.2023.114434] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2022] [Revised: 12/14/2023] [Accepted: 12/28/2023] [Indexed: 01/07/2024]
Affiliation(s)
- A M Api
- Research Institute for Fragrance Materials, Inc., 50 Tice Boulevard, Woodcliff Lake, NJ, 07677, USA
| | - D Belsito
- Member Expert Panel for Fragrance Safety, Columbia University Medical Center, Department of Dermatology, 161 Fort Washington Ave., New York, NY, 10032, USA
| | - D Botelho
- Research Institute for Fragrance Materials, Inc., 50 Tice Boulevard, Woodcliff Lake, NJ, 07677, USA
| | - M Bruze
- Member Expert Panel for Fragrance Safety, Malmo University Hospital, Department of Occupational & Environmental Dermatology, Sodra Forstadsgatan 101, Entrance 47, Malmo, SE-20502, Sweden
| | - G A Burton
- Member Expert Panel for Fragrance Safety, School of Natural Resources & Environment, University of Michigan, Dana Building G110, 440 Church St., Ann Arbor, MI, 58109, USA
| | - M A Cancellieri
- Research Institute for Fragrance Materials, Inc., 50 Tice Boulevard, Woodcliff Lake, NJ, 07677, USA
| | - H Chon
- Research Institute for Fragrance Materials, Inc., 50 Tice Boulevard, Woodcliff Lake, NJ, 07677, USA
| | - M L Dagli
- Member Expert Panel for Fragrance Safety, University of Sao Paulo, School of Veterinary Medicine and Animal Science, Department of Pathology, Av. Prof. dr. Orlando Marques de Paiva, 87, Sao Paulo, CEP 05508-900, Brazil
| | - M Date
- Research Institute for Fragrance Materials, Inc., 50 Tice Boulevard, Woodcliff Lake, NJ, 07677, USA
| | - W Dekant
- Member Expert Panel for Fragrance Safety, University of Wuerzburg, Department of Toxicology, Versbacher Str. 9, 97078, Würzburg, Germany
| | - C Deodhar
- Research Institute for Fragrance Materials, Inc., 50 Tice Boulevard, Woodcliff Lake, NJ, 07677, USA
| | - A D Fryer
- Member Expert Panel for Fragrance Safety, Oregon Health & Science University, 3181 SW Sam Jackson Park Rd., Portland, OR, 97239, USA
| | - L Jones
- Research Institute for Fragrance Materials, Inc., 50 Tice Boulevard, Woodcliff Lake, NJ, 07677, USA
| | - K Joshi
- Research Institute for Fragrance Materials, Inc., 50 Tice Boulevard, Woodcliff Lake, NJ, 07677, USA
| | - M Kumar
- Research Institute for Fragrance Materials, Inc., 50 Tice Boulevard, Woodcliff Lake, NJ, 07677, USA
| | - A Lapczynski
- Research Institute for Fragrance Materials, Inc., 50 Tice Boulevard, Woodcliff Lake, NJ, 07677, USA
| | - M Lavelle
- Research Institute for Fragrance Materials, Inc., 50 Tice Boulevard, Woodcliff Lake, NJ, 07677, USA
| | - I Lee
- Research Institute for Fragrance Materials, Inc., 50 Tice Boulevard, Woodcliff Lake, NJ, 07677, USA
| | - D C Liebler
- Member Expert Panel for Fragrance Safety, Vanderbilt University School of Medicine, Department of Biochemistry, Center in Molecular Toxicology, 638 Robinson Research Building, 2200 Pierce Avenue, Nashville, TN, 37232-0146, USA
| | - H Moustakas
- Research Institute for Fragrance Materials, Inc., 50 Tice Boulevard, Woodcliff Lake, NJ, 07677, USA
| | - M Na
- Research Institute for Fragrance Materials, Inc., 50 Tice Boulevard, Woodcliff Lake, NJ, 07677, USA
| | - T M Penning
- Member of Expert Panel for Fragrance Safety, University of Pennsylvania, Perelman School of Medicine, Center of Excellence in Environmental Toxicology, 1316 Biomedical Research Building (BRB) II/III, 421 Curie Boulevard, Philadelphia, PA, 19104-3083, USA
| | - G Ritacco
- Research Institute for Fragrance Materials, Inc., 50 Tice Boulevard, Woodcliff Lake, NJ, 07677, USA
| | - J Romine
- Research Institute for Fragrance Materials, Inc., 50 Tice Boulevard, Woodcliff Lake, NJ, 07677, USA
| | - N Sadekar
- Research Institute for Fragrance Materials, Inc., 50 Tice Boulevard, Woodcliff Lake, NJ, 07677, USA
| | - T W Schultz
- Member Expert Panel for Fragrance Safety, The University of Tennessee, College of Veterinary Medicine, Department of Comparative Medicine, 2407 River Dr., Knoxville, TN, 37996- 4500, USA
| | - D Selechnik
- Research Institute for Fragrance Materials, Inc., 50 Tice Boulevard, Woodcliff Lake, NJ, 07677, USA
| | - F Siddiqi
- Research Institute for Fragrance Materials, Inc., 50 Tice Boulevard, Woodcliff Lake, NJ, 07677, USA
| | - I G Sipes
- Member Expert Panel for Fragrance Safety, Department of Pharmacology, University of Arizona, College of Medicine, 1501 North Campbell Avenue, P.O. Box 245050, Tucson, AZ, 85724-5050, USA
| | - G Sullivan
- Research Institute for Fragrance Materials, Inc., 50 Tice Boulevard, Woodcliff Lake, NJ, 07677, USA.
| | - Y Thakkar
- Research Institute for Fragrance Materials, Inc., 50 Tice Boulevard, Woodcliff Lake, NJ, 07677, USA
| | - Y Tokura
- Member Expert Panel for Fragrance Safety, The Journal of Dermatological Science (JDS), Department of Dermatology, Hamamatsu University School of Medicine, 1-20-1 Handayama, Higashi-ku, Hamamatsu, 431-3192, Japan
| |
Collapse
|
8
|
Qu Y, Zou Z, Weschler CJ, Liu Y, Yang X. Quantifying Ozone-Dependent Emissions of Volatile Organic Compounds from the Human Body. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2023; 57:13104-13113. [PMID: 37610659 DOI: 10.1021/acs.est.3c02340] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/24/2023]
Abstract
Ozone reactions on human body surfaces produce volatile organic compounds (VOCs) that influence indoor air quality. However, the dependence of VOC emissions on the ozone concentration has received limited attention. In this study, we conducted 36 sets of single-person chamber experiments with three volunteers exposed to ozone concentrations ranging from 0 to 32 ppb. Emission fluxes from human body surfaces were measured for 11 targeted skin-oil oxidation products. For the majority of these products, the emission fluxes linearly correlated with ozone concentration, indicating a constant surface yield (moles of VOC emitted per mole of ozone deposited). However, for the second-generation oxidation product 4-oxopentanal, a higher surface yield was observed at higher ozone concentrations. Furthermore, many VOCs have substantial emissions in the absence of ozone. Overall, these results suggest that the complex surface reactions and mass transfer processes involved in ozone-dependent VOC emissions from the human body can be represented using a simplified parametrization based on surface yield and baseline emission flux. Values of these two parameters were quantified for targeted products and estimated for other semiquantified VOC signals, facilitating the inclusion of ozone/skin oil chemistry in indoor air quality models and providing new insights on skin oil chemistry.
Collapse
Affiliation(s)
- Yuekun Qu
- Key Joint Laboratory of Environmental Simulation and Pollution Control, College of Environmental Sciences and Engineering, Peking University, Beijing 100871, People's Republic of China
| | - Ziwei Zou
- Beijing Key Laboratory of Indoor Air Quality Evaluation and Control, Department of Building Science, Tsinghua University, Beijing 100084, People's Republic of China
| | - Charles J Weschler
- Environmental and Occupational Health Sciences Institute, Rutgers University, Piscataway, New Jersey 08854, United States
- International Centre for Indoor Environment and Energy, Technical University of Denmark, Lyngby 2800, Denmark
| | - Yingjun Liu
- Key Joint Laboratory of Environmental Simulation and Pollution Control, College of Environmental Sciences and Engineering, Peking University, Beijing 100871, People's Republic of China
- Center for Environment and Health, Peking University, Beijing 100871, People's Republic of China
| | - Xudong Yang
- Beijing Key Laboratory of Indoor Air Quality Evaluation and Control, Department of Building Science, Tsinghua University, Beijing 100084, People's Republic of China
| |
Collapse
|
9
|
Liu J, Zhang R, Xiong J. Machine learning approach for estimating the human-related VOC emissions in a university classroom. BUILDING SIMULATION 2023; 16:915-925. [PMID: 37192916 PMCID: PMC10009360 DOI: 10.1007/s12273-022-0976-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/30/2022] [Revised: 11/17/2022] [Accepted: 12/06/2022] [Indexed: 05/18/2023]
Abstract
Indoor air quality becomes increasingly important, partly because the COVID-19 pandemic increases the time people spend indoors. Research into the prediction of indoor volatile organic compounds (VOCs) is traditionally confined to building materials and furniture. Relatively little research focuses on estimation of human-related VOCs, which have been shown to contribute significantly to indoor air quality, especially in densely-occupied environments. This study applies a machine learning approach to accurately estimate the human-related VOC emissions in a university classroom. The time-resolved concentrations of two typical human-related (ozone-related) VOCs in the classroom over a five-day period were analyzed, i.e., 6-methyl-5-hepten-2-one (6-MHO), 4-oxopentanal (4-OPA). By comparing the results for 6-MHO concentration predicted via five machine learning approaches including the random forest regression (RFR), adaptive boosting (Adaboost), gradient boosting regression tree (GBRT), extreme gradient boosting (XGboost), and least squares support vector machine (LSSVM), we find that the LSSVM approach achieves the best performance, by using multi-feature parameters (number of occupants, ozone concentration, temperature, relative humidity) as the input. The LSSVM approach is then used to predict the 4-OPA concentration, with mean absolute percentage error (MAPE) less than 5%, indicating high accuracy. By combining the LSSVM with a kernel density estimation (KDE) method, we further establish an interval prediction model, which can provide uncertainty information and viable option for decision-makers. The machine learning approach in this study can easily incorporate the impact of various factors on VOC emission behaviors, making it especially suitable for concentration prediction and exposure assessment in realistic indoor settings.
Collapse
Affiliation(s)
- Jialong Liu
- School of Mechanical Engineering, Beijing Institute of Technology, Beijing, 100081 China
| | - Rui Zhang
- School of Mechanical Engineering, Beijing Institute of Technology, Beijing, 100081 China
| | - Jianyin Xiong
- School of Mechanical Engineering, Beijing Institute of Technology, Beijing, 100081 China
- Department of Environmental Science, Policy and Management, University of California, Berkeley, CA 94720 USA
- State Key Laboratory of Green Building in Western China, Xi’an University of Architecture and Technology, Xi’an, 710055 China
| |
Collapse
|
10
|
Xu J, Deng H, Wang Y, Li P, Zeng J, Pang H, Xu X, Li X, Yang Y, Gligorovski S. Heterogeneous chemistry of ozone with floor cleaning agent: Implications of secondary VOCs in the indoor environment. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 862:160867. [PMID: 36521626 DOI: 10.1016/j.scitotenv.2022.160867] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/25/2022] [Revised: 12/07/2022] [Accepted: 12/07/2022] [Indexed: 06/17/2023]
Abstract
Human daily activities such as cooking, and cleaning can affect the indoor air quality by releasing primary emitted volatile organic compounds (VOCs), as well as by the secondary product compounds formed through reactions with ozone (O3) and hydroxyl radicals (OH). However, our knowledge about the formation processes of the secondary VOCs is still incomplete. We performed real-time measurements of primary VOCs released by commercial floor-cleaning detergent and the secondary product compounds formed by heterogeneous reaction of O3 with the constituents of the cleaning agent by use of high-resolution mass spectrometry. We measured the uptake coefficients of O3 on the cleaning detergent at different relative humidities in dark and under different light intensities (320 nm < λ < 400 nm) relevant for the indoor environment. On the basis of the detected compounds we developed tentative reaction mechanisms describing the formation of the secondary VOCs. Intriguingly, under light irradiation the formation of valeraldehyde was observed based on the photosensitized chemistry of acetophenone which is a constituent of the cleaning agent. Finally, we modeled the observed mixing ratios of three aldehydes, glyoxal, methylglyoxal, and 4-oxopentanal with respect to real-life indoor environment. The results suggest that secondary VOCs initiated by ozone chemistry can additionally impact the indoor air pollution.
Collapse
Affiliation(s)
- Jinli Xu
- State Key Laboratory of Organic Geochemistry and Guangdong Provincial Key Laboratory of Environmental Protection and Resources Utilization, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou 510640, China; Guangdong-Hong Kong-Macao Joint Laboratory for Environmental Pollution and Control, Guangzhou Institute of Geochemistry, Chinese Academy of Science, Guangzhou 510640, China; Chinese Academy of Science, Center for Excellence in Deep Earth Science, Guangzhou 510640, China; University of Chinese Academy of Sciences, Beijing, China
| | - Huifan Deng
- State Key Laboratory of Organic Geochemistry and Guangdong Provincial Key Laboratory of Environmental Protection and Resources Utilization, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou 510640, China; Guangdong-Hong Kong-Macao Joint Laboratory for Environmental Pollution and Control, Guangzhou Institute of Geochemistry, Chinese Academy of Science, Guangzhou 510640, China; Chinese Academy of Science, Center for Excellence in Deep Earth Science, Guangzhou 510640, China; University of Chinese Academy of Sciences, Beijing, China
| | - Yiqun Wang
- State Key Laboratory of Organic Geochemistry and Guangdong Provincial Key Laboratory of Environmental Protection and Resources Utilization, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou 510640, China; Guangdong-Hong Kong-Macao Joint Laboratory for Environmental Pollution and Control, Guangzhou Institute of Geochemistry, Chinese Academy of Science, Guangzhou 510640, China; Chinese Academy of Science, Center for Excellence in Deep Earth Science, Guangzhou 510640, China; University of Chinese Academy of Sciences, Beijing, China
| | - Pan Li
- State Key Laboratory of Organic Geochemistry and Guangdong Provincial Key Laboratory of Environmental Protection and Resources Utilization, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou 510640, China; Guangdong-Hong Kong-Macao Joint Laboratory for Environmental Pollution and Control, Guangzhou Institute of Geochemistry, Chinese Academy of Science, Guangzhou 510640, China; Chinese Academy of Science, Center for Excellence in Deep Earth Science, Guangzhou 510640, China; University of Chinese Academy of Sciences, Beijing, China
| | - Jianqiang Zeng
- State Key Laboratory of Organic Geochemistry and Guangdong Provincial Key Laboratory of Environmental Protection and Resources Utilization, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou 510640, China; Guangdong-Hong Kong-Macao Joint Laboratory for Environmental Pollution and Control, Guangzhou Institute of Geochemistry, Chinese Academy of Science, Guangzhou 510640, China; Chinese Academy of Science, Center for Excellence in Deep Earth Science, Guangzhou 510640, China; University of Chinese Academy of Sciences, Beijing, China
| | - Hongwei Pang
- State Key Laboratory of Organic Geochemistry and Guangdong Provincial Key Laboratory of Environmental Protection and Resources Utilization, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou 510640, China; Guangdong-Hong Kong-Macao Joint Laboratory for Environmental Pollution and Control, Guangzhou Institute of Geochemistry, Chinese Academy of Science, Guangzhou 510640, China; Chinese Academy of Science, Center for Excellence in Deep Earth Science, Guangzhou 510640, China
| | - Xin Xu
- Institute of Mass Spectrometry and Atmospheric, Environment, Jinan University, Guangzhou 510632, China
| | - Xue Li
- Institute of Mass Spectrometry and Atmospheric, Environment, Jinan University, Guangzhou 510632, China
| | - Yan Yang
- School of Environmental Science and Engineering, Guangdong University of Technology, Guangzhou 510006, Guangdong, China; Jieyang Branch of Chemistry and Chemical Engineering Guangdong Laboratory (Rongjiang Laboratory), Jieyang 515200, China; Synergy Innovation Institute of GDUT, Shantou 515041, Guangdong, China.
| | - Sasho Gligorovski
- State Key Laboratory of Organic Geochemistry and Guangdong Provincial Key Laboratory of Environmental Protection and Resources Utilization, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou 510640, China; Guangdong-Hong Kong-Macao Joint Laboratory for Environmental Pollution and Control, Guangzhou Institute of Geochemistry, Chinese Academy of Science, Guangzhou 510640, China; Chinese Academy of Science, Center for Excellence in Deep Earth Science, Guangzhou 510640, China.
| |
Collapse
|
11
|
Frank ES, Fan H, Grassian VH, Tobias DJ. Adsorption of 6-MHO on two indoor relevant surface materials: SiO 2 and TiO 2. Phys Chem Chem Phys 2023; 25:3930-3941. [PMID: 36648281 DOI: 10.1039/d2cp04876k] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
The compound 6-methyl-5-hepten-2-one (6-MHO) is a product of skin oil ozonolysis and is of significance in understanding the role of human occupants in the indoor environment. We present a joint computational and experimental study investigating the adsorption of 6-MHO on two model indoor relevant surfaces, SiO2, a model for a glass window, and TiO2, a component of paint and self-cleaning surfaces. Our classical force field-based molecular dynamics, ab initio molecular dynamics simulations, and FTIR absorption spectra indicate 6-MHO can adsorb on to both of these surfaces via hydrogen and π-hydrogen bonds and is quite stable due to the linear geometry of 6-MHO. Detailed analysis of 6-MHO on the SiO2 surface shows that relative humidity does not impact surface adsorption and adsorbed water does not displace 6-MHO from the hydroxylated SiO2 surface. Additionally, the desorption kinetics of 6-MHO from the hydroxylated SiO2 surface is compared to other compounds found in indoor environments and 6-MHO is shown to desorb with a first order rate constant that is approximately four times slower than that of limonene, but six times faster than that of carvone. In addition, our joint results indicate 6-MHO forms a stronger interaction with the TiO2 surface compared to the SiO2 surface. This study suggests that skin oil ozonolysis products can partition to indoor surfaces leading to the formation of organic films.
Collapse
Affiliation(s)
- Elianna S Frank
- Department of Chemistry, University of California, Irvine, California, 92697, USA.
| | - Hanyu Fan
- Department of Chemistry and Biochemistry, University of California San Diego, La Jolla, California, 92093, USA.
| | - Vicki H Grassian
- Department of Chemistry and Biochemistry, University of California San Diego, La Jolla, California, 92093, USA.
| | - Douglas J Tobias
- Department of Chemistry, University of California, Irvine, California, 92697, USA.
| |
Collapse
|
12
|
Xu X, Pang H, Liu C, Wang K, Loisel G, Li L, Gligorovski S, Li X. Real-time measurements of product compounds formed through the reaction of ozone with breath exhaled VOCs. ENVIRONMENTAL SCIENCE. PROCESSES & IMPACTS 2022; 24:2237-2248. [PMID: 36472140 DOI: 10.1039/d2em00339b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/17/2023]
Abstract
Human presence can affect indoor air quality because of secondary organic compounds formed upon reactions between gaseous oxidant species, e.g., ozone (O3), hydroxyl radicals (OH), and chemical compounds from skin, exhaled breath, hair and clothes. We assess the gas-phase product compounds generated by reactions of gaseous O3 with volatile organic compounds (VOCs) from exhaled human breath by real time analysis using a high-resolution quadrupole-orbitrap mass spectrometer (HRMS) coupled to a secondary electrospray ionization (SESI) source. Based on the product compounds identified we propose a reaction mechanism initiated by O3 oxidation of the most common breath constituents, isoprene, α-terpinene and ammonia (NH3). The reaction of O3 with isoprene and α-terpinene generates ketones and aldehydes such as 3,4-dihydroxy-2-butanone, methyl vinyl ketone, 3-carbonyl butyraldehyde, formaldehyde and toxic compounds such as 3-methyl furan. Formation of compounds with reduced nitrogen containing functional groups such as amines, imines and imides is highly plausible through NH3 initiated cleavage of the C-O bond. The detected gas-phase product compounds suggest that human breath can additionally affect indoor air quality through the formation of harmful secondary products and future epidemiological studies should evaluate the potential health effects of these compounds.
Collapse
Affiliation(s)
- Xin Xu
- Institute of Mass Spectrometry and Atmospheric Environment, Jinan University, Guangzhou 510632, China.
- Guangdong Provincial Engineering Research Center for On-line Source Apportionment System of Air Pollution, Guangzhou, 510632, China
- Guangdong-Hongkong-Macau Joint Laboratory of Collaborative Innovation for Environmental Quality, Guangzhou, 510632, China
| | - Hongwei Pang
- State Key Laboratory of Organic Geochemistry, Guangdong Provincial Key Laboratory of Environmental Protection and Resources Utilization, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou 510640, China.
- Guangdong-Hong Kong-Macao Joint Laboratory for Environmental Pollution and Control, Guangzhou Institute of Geochemistry, Chinese Academy of Science, Guangzhou 510640, China
- Chinese Academy of Science, Center for Excellence in Deep Earth Science, Guangzhou, 510640, China
| | - Chao Liu
- Institute of Mass Spectrometry and Atmospheric Environment, Jinan University, Guangzhou 510632, China.
- Guangdong Provincial Engineering Research Center for On-line Source Apportionment System of Air Pollution, Guangzhou, 510632, China
- Guangdong-Hongkong-Macau Joint Laboratory of Collaborative Innovation for Environmental Quality, Guangzhou, 510632, China
| | - Kangyi Wang
- Institute of Mass Spectrometry and Atmospheric Environment, Jinan University, Guangzhou 510632, China.
- Guangdong Provincial Engineering Research Center for On-line Source Apportionment System of Air Pollution, Guangzhou, 510632, China
- Guangdong-Hongkong-Macau Joint Laboratory of Collaborative Innovation for Environmental Quality, Guangzhou, 510632, China
| | - Gwendal Loisel
- State Key Laboratory of Organic Geochemistry, Guangdong Provincial Key Laboratory of Environmental Protection and Resources Utilization, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou 510640, China.
- Guangdong-Hong Kong-Macao Joint Laboratory for Environmental Pollution and Control, Guangzhou Institute of Geochemistry, Chinese Academy of Science, Guangzhou 510640, China
- Chinese Academy of Science, Center for Excellence in Deep Earth Science, Guangzhou, 510640, China
| | - Lei Li
- Institute of Mass Spectrometry and Atmospheric Environment, Jinan University, Guangzhou 510632, China.
- Guangdong Provincial Engineering Research Center for On-line Source Apportionment System of Air Pollution, Guangzhou, 510632, China
- Guangdong-Hongkong-Macau Joint Laboratory of Collaborative Innovation for Environmental Quality, Guangzhou, 510632, China
| | - Sasho Gligorovski
- State Key Laboratory of Organic Geochemistry, Guangdong Provincial Key Laboratory of Environmental Protection and Resources Utilization, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou 510640, China.
- Guangdong-Hong Kong-Macao Joint Laboratory for Environmental Pollution and Control, Guangzhou Institute of Geochemistry, Chinese Academy of Science, Guangzhou 510640, China
- Chinese Academy of Science, Center for Excellence in Deep Earth Science, Guangzhou, 510640, China
| | - Xue Li
- Institute of Mass Spectrometry and Atmospheric Environment, Jinan University, Guangzhou 510632, China.
- Guangdong Provincial Engineering Research Center for On-line Source Apportionment System of Air Pollution, Guangzhou, 510632, China
- Guangdong-Hongkong-Macau Joint Laboratory of Collaborative Innovation for Environmental Quality, Guangzhou, 510632, China
| |
Collapse
|
13
|
You B, Zhou W, Li J, Li Z, Sun Y. A review of indoor Gaseous organic compounds and human chemical Exposure: Insights from Real-time measurements. ENVIRONMENT INTERNATIONAL 2022; 170:107611. [PMID: 36335895 DOI: 10.1016/j.envint.2022.107611] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/31/2022] [Revised: 10/29/2022] [Accepted: 10/31/2022] [Indexed: 06/16/2023]
Abstract
Gaseous organic compounds, mainly volatile organic compounds (VOCs), have become a wide concern in various indoor environments where we spend the majority of our daily time. The sources, compositions, variations, and sinks of indoor VOCs are extremely complex, and their potential impacts on human health are less understood. Owing to the deployment of the state-of-the-art real-time mass spectrometry during the last two decades, our understanding of the sources, dynamic changes and chemical transformations of VOCs indoors has been significantly improved. This review aims to summarize the key findings from mass spectrometry measurements in recent indoor studies including residence, classroom, office, sports center, etc. The sources and sinks, compositions and distributions of indoor VOCs, and the factors (e.g., human activities, air exchange rate, temperature and humidity) driving the changes in indoor VOCs are discussed. The physical and chemical processes of gas-particle partitioning and secondary oxidation processes of VOCs, and their impacts on human health are summarized. Finally, the recommendations for future research directions on indoor VOCs measurements and indoor chemistry are proposed.
Collapse
Affiliation(s)
- Bo You
- State Key Laboratory of Atmospheric Boundary Layer Physics and Atmospheric Chemistry, Institute of Atmospheric Physics, Chinese Academy of Sciences, Beijing 100029, China; College of Earth and Planetary Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Wei Zhou
- State Key Laboratory of Atmospheric Boundary Layer Physics and Atmospheric Chemistry, Institute of Atmospheric Physics, Chinese Academy of Sciences, Beijing 100029, China
| | - Junyao Li
- State Key Laboratory of Atmospheric Boundary Layer Physics and Atmospheric Chemistry, Institute of Atmospheric Physics, Chinese Academy of Sciences, Beijing 100029, China; College of Earth and Planetary Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Zhijie Li
- State Key Laboratory of Atmospheric Boundary Layer Physics and Atmospheric Chemistry, Institute of Atmospheric Physics, Chinese Academy of Sciences, Beijing 100029, China; College of Earth and Planetary Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yele Sun
- State Key Laboratory of Atmospheric Boundary Layer Physics and Atmospheric Chemistry, Institute of Atmospheric Physics, Chinese Academy of Sciences, Beijing 100029, China; College of Earth and Planetary Sciences, University of Chinese Academy of Sciences, Beijing 100049, China.
| |
Collapse
|
14
|
Deng H, Xu X, Wang K, Xu J, Loisel G, Wang Y, Pang H, Li P, Mai Z, Yan S, Li X, Gligorovski S. The Effect of Human Occupancy on Indoor Air Quality through Real-Time Measurements of Key Pollutants. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2022; 56:15377-15388. [PMID: 36279129 DOI: 10.1021/acs.est.2c04609] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
The primarily emitted compounds by human presence, e.g., skin and volatile organic compounds (VOCs) in breath, can react with typical indoor air oxidants, ozone (O3), and hydroxyl radicals (OH), leading to secondary organic compounds. Nevertheless, our understanding about the formation processes of the compounds through reactions of indoor air oxidants with primary emitted pollutants is still incomplete. In this study we performed real-time measurements of nitrous acid (HONO), nitrogen oxides (NOx = NO + NO2), O3, and VOCs to investigate the contribution of human presence and human activity, e.g., mopping the floor, to secondary organic compounds. During human occupancy a significant increase was observed of 1-butene, isoprene, and d-limonene exhaled by the four adults in the room and an increase of methyl vinyl ketone/methacrolein, methylglyoxal, and 3-methylfuran, formed as secondary compounds through reactions of OH radicals with isoprene. Intriguingly, the level of some compounds (e.g., m/z 126, 6-methyl-5-hepten-2-one, m/z 152, dihydrocarvone, and m/z 194, geranyl acetone) formed through reactions of O3 with the primary compounds was higher in the presence of four adults than during the period of mopping the floor with commercial detergent. These results indicate that human presence can additionally degrade the indoor air quality.
Collapse
Affiliation(s)
- Huifan Deng
- State Key Laboratory of Organic Geochemistry and Guangdong Provincial Key Laboratory of Environmental Protection and Resources Utilization, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou510640, China
- University of Chinese Academy of Sciences, Beijing100864, China
| | - Xin Xu
- Institute of Mass Spectrometry and Atmospheric Environment, Jinan University, Guangzhou510632, China
| | - Kangyi Wang
- Institute of Mass Spectrometry and Atmospheric Environment, Jinan University, Guangzhou510632, China
| | - Jinli Xu
- State Key Laboratory of Organic Geochemistry and Guangdong Provincial Key Laboratory of Environmental Protection and Resources Utilization, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou510640, China
- University of Chinese Academy of Sciences, Beijing100864, China
| | - Gwendal Loisel
- State Key Laboratory of Organic Geochemistry and Guangdong Provincial Key Laboratory of Environmental Protection and Resources Utilization, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou510640, China
| | - Yiqun Wang
- State Key Laboratory of Organic Geochemistry and Guangdong Provincial Key Laboratory of Environmental Protection and Resources Utilization, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou510640, China
- University of Chinese Academy of Sciences, Beijing100864, China
| | - Hongwei Pang
- State Key Laboratory of Organic Geochemistry and Guangdong Provincial Key Laboratory of Environmental Protection and Resources Utilization, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou510640, China
| | - Pan Li
- State Key Laboratory of Organic Geochemistry and Guangdong Provincial Key Laboratory of Environmental Protection and Resources Utilization, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou510640, China
- University of Chinese Academy of Sciences, Beijing100864, China
| | - Zebin Mai
- Guangzhou Hexin Instrument Co., Ltd., Guangzhou510530, China
| | - Shichao Yan
- Guangzhou Hexin Instrument Co., Ltd., Guangzhou510530, China
| | - Xue Li
- Institute of Mass Spectrometry and Atmospheric Environment, Jinan University, Guangzhou510632, China
- Guangdong Provincial Engineering Research Center for On-line Source Apportionment System of Air Pollution, Guangzhou510632, China
- Guangdong-Hongkong-Macau Joint Laboratory of Collaborative Innovation for Environmental Quality, Guangzhou510632, China
| | - Sasho Gligorovski
- State Key Laboratory of Organic Geochemistry and Guangdong Provincial Key Laboratory of Environmental Protection and Resources Utilization, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou510640, China
- Guangdong-Hong Kong-Macao Joint Laboratory for Environmental Pollution and Control, Guangzhou Institute of Geochemistry, Chinese Academy of Science, Guangzhou510640, China
- Chinese Academy of Science, Center for Excellence in Deep Earth Science, Guangzhou510640, China
| |
Collapse
|
15
|
Pytel K, Marcinkowska R, Rutkowska M, Zabiegała B. Recent advances on SOA formation in indoor air, fate and strategies for SOA characterization in indoor air - A review. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 843:156948. [PMID: 35753459 DOI: 10.1016/j.scitotenv.2022.156948] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/21/2022] [Revised: 06/18/2022] [Accepted: 06/20/2022] [Indexed: 06/15/2023]
Abstract
Recent studies proves that indoor air chemistry differs in many aspects from atmospheric one. People send up to 90 % of their life indoors being exposed to pollutants present in gas, particle and solid phase. Particle phase indoor is composed of particles emitted from various sources, among which there is an indoor source - secondary chemical reactions leading to formation of secondary organic aerosol (SOA). Lately, researchers' attentions turned towards the ultrafine particles, for there are still a lot of gaps in knowledge concerning this field of study, while there is evidence of negative influence of ultrafine particles on human health. Presented review sums up current knowledge about secondary particle formation in indoor environment and development of analytical techniques applied to study those processes. The biggest concern today is studying ROS, for their lifetime in indoor air is very short due to reactions at the very beginning of terpene oxidation process. Another interesting aspect that is recently discovered is monoterpene autooxidation process that leads to HOMs formation that in turn can influence SOA formation yield. A complex studies covering gas phase and particle phase characterization, but also toxicological studies are crucial to fully understand indoor air chemistry leading to ultrafine particle formation.
Collapse
Affiliation(s)
- Klaudia Pytel
- Department of Analytical Chemistry, Faculty of Chemistry, Gdańsk University of Technology, 11/12 Narutowicza Str., 80-233 Gdańnsk, Poland
| | - Renata Marcinkowska
- Department of Analytical Chemistry, Faculty of Chemistry, Gdańsk University of Technology, 11/12 Narutowicza Str., 80-233 Gdańnsk, Poland
| | - Małgorzata Rutkowska
- Department of Analytical Chemistry, Faculty of Chemistry, Gdańsk University of Technology, 11/12 Narutowicza Str., 80-233 Gdańnsk, Poland
| | - Bożena Zabiegała
- Department of Analytical Chemistry, Faculty of Chemistry, Gdańsk University of Technology, 11/12 Narutowicza Str., 80-233 Gdańnsk, Poland.
| |
Collapse
|
16
|
Halios CH, Landeg-Cox C, Lowther SD, Middleton A, Marczylo T, Dimitroulopoulou S. Chemicals in European residences - Part I: A review of emissions, concentrations and health effects of volatile organic compounds (VOCs). THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 839:156201. [PMID: 35623519 DOI: 10.1016/j.scitotenv.2022.156201] [Citation(s) in RCA: 47] [Impact Index Per Article: 15.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/29/2022] [Revised: 05/16/2022] [Accepted: 05/20/2022] [Indexed: 06/15/2023]
Abstract
One of the more important classes of potentially toxic indoor air chemicals are the Volatile Organic Compounds (VOCs). However, due to a limited understanding of the relationships between indoor concentrations of individual VOCs and health outcomes, there are currently no universal health-based guideline values for VOCs within Europe including the UK. In this study, a systematic search was conducted designed to capture evidence on concentrations, emissions from indoor sources, and health effects for VOCs measured in European residences. We identified 65 individual VOCs, and the most commonly measured were aromatic hydrocarbons (14 chemicals), alkane hydrocarbons (9), aldehydes (8), aliphatic hydrocarbons (5), terpenes (6), chlorinated hydrocarbons (4), glycol and glycol ethers (3) and esters (2). The pathway of interest was inhalation and 8 individual aromatic hydrocarbons, 7 alkanes and 6 aldehydes were associated with respiratory health effects. Members of the chlorinated hydrocarbon family were associated with cardiovascular neurological and carcinogenic health effects and some were irritants as were esters and terpenes. Eight individual aromatic hydrocarbons, 7 alkanes and 6 aldehydes identified in European residences were associated with respiratory health effects. Of the 65 individual VOCs, 52 were from sources associated with building and construction materials (e.g. brick, wood products, adhesives and materials for flooring installation etc.), 41 were linked with consumer products (passive, electric and combustible air fresheners, hair sprays, deodorants) and 9 VOCs were associated with space heating, which may reflect the relatively small number of studies discussing emissions from this category of sources. A clear decrease in concentrations of formaldehyde was observed over the last few years, whilst acetone was found to be one of the most abundant but underreported species. A new approach based on the operational indoor air quality surveillance will both reveal trends in known VOCs and identify new compounds.
Collapse
Affiliation(s)
- Christos H Halios
- Air Quality & Public Health Group, Environmental Hazards and Emergencies Department, Radiation, Chemicals and Environmental Hazards, Science Group, UK Health Security Agency, Harwell Science and Innovation Campus, Chilton, UK
| | - Charlotte Landeg-Cox
- Air Quality & Public Health Group, Environmental Hazards and Emergencies Department, Radiation, Chemicals and Environmental Hazards, Science Group, UK Health Security Agency, Harwell Science and Innovation Campus, Chilton, UK
| | - Scott D Lowther
- Air Quality & Public Health Group, Environmental Hazards and Emergencies Department, Radiation, Chemicals and Environmental Hazards, Science Group, UK Health Security Agency, Harwell Science and Innovation Campus, Chilton, UK
| | - Alice Middleton
- Air Quality & Public Health Group, Environmental Hazards and Emergencies Department, Radiation, Chemicals and Environmental Hazards, Science Group, UK Health Security Agency, Harwell Science and Innovation Campus, Chilton, UK
| | - Tim Marczylo
- Toxicology Department, Radiation, Chemicals and Environmental Hazards, Science Group, UK Health Security Agency, Harwell Science and Innovation Campus, Chilton, UK
| | - Sani Dimitroulopoulou
- Air Quality & Public Health Group, Environmental Hazards and Emergencies Department, Radiation, Chemicals and Environmental Hazards, Science Group, UK Health Security Agency, Harwell Science and Innovation Campus, Chilton, UK.
| |
Collapse
|
17
|
Coffaro B, Weisel CP. Reactions and Products of Squalene and Ozone: A Review. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2022; 56:7396-7411. [PMID: 35648815 PMCID: PMC9231367 DOI: 10.1021/acs.est.1c07611] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/08/2021] [Revised: 05/13/2022] [Accepted: 05/13/2022] [Indexed: 05/15/2023]
Abstract
This critical review describes the squalene-ozone (SqOz) reaction, or squalene ozonolysis. Ambient ozone penetrates indoors and drives indoor air chemistry. Squalene, a component of human skin oil, contains six carbon-carbon double bonds and is very reactive with ozone. Bioeffluents from people contribute to indoor air chemistry and affect the indoor air quality, resulting in exposures because people spend the majority of their time indoors. The SqOz reaction proceeds through various formation pathways and produces compounds that include aldehydes, ketones, carboxylic acids, and dicarbonyl species, which have a range of volatilities. In this critical review of SqOz chemistry, information on the mechanism of reaction, reaction probability, rate constants, and reaction kinetics are compiled. Characterizations of SqOz reaction products have been done in laboratory experiments and real-world settings. The effect of multiple environmental parameters (ozone concentration, air exchange rate (AER), temperature, and relative humidity (RH)) in indoor settings are summarized. This critical review concludes by identifying the paucity of available exposure, health, and toxicological data for known reaction products. Key knowledge gaps about SqOz reactions leading to indoor exposures and adverse health outcomes are provided as well as an outlook on where the field is headed.
Collapse
Affiliation(s)
- Breann Coffaro
- Environmental
and Health Sciences Institute and Graduate Program in Exposure Science, Rutgers, The State University of New Jersey, Piscataway Township, New
Jersey 08854, United
States
| | - Clifford P. Weisel
- Environmental
and Health Sciences Institute and School of Public Health, Rutgers, The State University of New Jersey, Piscataway Township, New
Jersey 08854, United
States
| |
Collapse
|
18
|
Wang N, Ernle L, Bekö G, Wargocki P, Williams J. Emission Rates of Volatile Organic Compounds from Humans. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2022; 56:4838-4848. [PMID: 35389619 PMCID: PMC9022422 DOI: 10.1021/acs.est.1c08764] [Citation(s) in RCA: 35] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/22/2021] [Revised: 03/25/2022] [Accepted: 03/28/2022] [Indexed: 05/30/2023]
Abstract
Human-emitted volatile organic compounds (VOCs) are mainly from breath and the skin. In this study, we continuously measured VOCs in a stainless-steel environmentally controlled climate chamber (22.5 m3, air change rate at 3.2 h-1) occupied by four seated human volunteers using proton transfer reaction time-of-flight mass spectrometry and gas chromatography mass spectrometry. Experiments with human whole body, breath-only, and dermal-only emissions were performed under ozone-free and ozone-present conditions. In addition, the effect of temperature, relative humidity, clothing type, and age was investigated for whole-body emissions. Without ozone, the whole-body total emission rate (ER) was 2180 ± 620 μg h-1 per person (p-1), dominated by exhaled chemicals. The ERs of oxygenated VOCs were positively correlated with the enthalpy of the air. Under ozone-present conditions (∼37 ppb), the whole-body total ER doubled, with the increase mainly driven by VOCs resulting from skin surface lipids/ozone reactions, which increased with relative humidity. Long clothing (more covered skin) was found to reduce the total ERs but enhanced certain chemicals related to the clothing. The ERs of VOCs derived from this study provide a valuable data set of human emissions under various conditions and can be used in models to better predict indoor air quality, especially for highly occupied environments.
Collapse
Affiliation(s)
- Nijing Wang
- Atmospheric
Chemistry Department, Max Planck Institute
for Chemistry, Hahn-Meitner-Weg 1, 55128 Mainz, Germany
| | - Lisa Ernle
- Atmospheric
Chemistry Department, Max Planck Institute
for Chemistry, Hahn-Meitner-Weg 1, 55128 Mainz, Germany
| | - Gabriel Bekö
- International
Centre for Indoor Environment and Energy, Department of Environmental
and Resource Engineering, Technical University
of Denmark, Nils Koppels Alle 402, 2800 Lyngby, Denmark
| | - Pawel Wargocki
- International
Centre for Indoor Environment and Energy, Department of Environmental
and Resource Engineering, Technical University
of Denmark, Nils Koppels Alle 402, 2800 Lyngby, Denmark
| | - Jonathan Williams
- Atmospheric
Chemistry Department, Max Planck Institute
for Chemistry, Hahn-Meitner-Weg 1, 55128 Mainz, Germany
- Climate
& Atmosphere Research Centre, The Cyprus
Institute, 1645 Nicosia, Cyprus
| |
Collapse
|
19
|
Carslaw N, Shaw D. Modification of cleaning product formulations could improve indoor air quality. INDOOR AIR 2022; 32:e13021. [PMID: 35347794 PMCID: PMC9314617 DOI: 10.1111/ina.13021] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/06/2022] [Revised: 03/08/2022] [Accepted: 03/10/2022] [Indexed: 06/14/2023]
Abstract
Cleaning products contain numerous individual chemicals, which can be liberated on use. These species can react in air to form new chemical species, some of which are harmful to health. This paper uses a detailed chemical model for indoor air chemistry, to understand the chemical reactions that can occur following cleaning, assuming cleaning products with different proportions of limonene, α-pinene, and β-pinene are used. The tests included the pure compounds, 50:50 mixtures and mixtures in proportion to the rates of reaction with ozone and the hydroxyl radical. For the 3 h following cleaning, pure α-pinene was most efficient at producing particles, pure limonene for nitrated organic material, and a 50:50 mixture of β-pinene and limonene for formaldehyde, leading to enhancements of 1.1 μg/m3 , 400 ppt, and 1.8 ppb, respectively, compared to no cleaning. Cleaning in the afternoon enhanced concentrations of secondary pollutants for all the mixtures, owing to higher outdoor and hence indoor ozone compared to the morning. These enhancements in concentrations lasted several hours, despite the cleaning emissions only lasting for 10 min. Doubling the air exchange rate enhanced concentrations of formaldehyde and particulate matter by ~15% while reducing that of nitrated organic material by 13%. Changing product formulations has the potential to change the resulting indoor air quality and consequently, impacts on health.
Collapse
Affiliation(s)
- Nicola Carslaw
- Department of Environment and GeographyUniversity of YorkYorkUK
| | - David Shaw
- Department of Environment and GeographyUniversity of YorkYorkUK
| |
Collapse
|
20
|
Zhang M, Gao Y, Xiong J. Characterization of the off-body squalene ozonolysis on indoor surfaces. CHEMOSPHERE 2022; 291:132772. [PMID: 34742760 DOI: 10.1016/j.chemosphere.2021.132772] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/02/2021] [Revised: 10/09/2021] [Accepted: 11/01/2021] [Indexed: 06/13/2023]
Abstract
Chemical reaction and physical transport characteristics of indoor surfaces play an important role in indoor air quality. This study presents a kinetic model to describe the reaction of ozone with squalene on indoor surfaces in a family house, by incorporating external and internal mass transfer, surface partitioning, and chemical reaction on indoor surfaces. Field experiments were performed in the family house. The first 3-days of data, collected when the house was unoccupied, are used to derive the key parameters in the model, which are then used for predicting the concentrations in other unoccupied days. Comparison of squalene oxidation products during the occupied and unoccupied periods shows that even if the house is unoccupied for several days, the indoor concentrations of 6-methyl-5-hepten-2-one (6-MHO) and 4-oxopentanal (4-OPA) remain substantial, demonstrating that surface reaction of ozone with off-body squalene can significantly impact the composition of indoor air. Model predictions of the three compounds (ozone, 6-MHO, and 4-OPA) agree well with the experimental observations for all test days. Furthermore, we make the first attempt to estimate the duration of typical polyunsaturated aldehydes (TOP, TOT, and TTT), which indicated that these compounds, as well as off-body squalene, can persist on indoor surfaces for a relatively long period in the examined residence.
Collapse
Affiliation(s)
- Meixia Zhang
- School of Mechanical Engineering, Beijing Institute of Technology, Beijing, 100081, China
| | - Ying Gao
- School of Mechanical Engineering, Beijing Institute of Technology, Beijing, 100081, China
| | - Jianyin Xiong
- School of Mechanical Engineering, Beijing Institute of Technology, Beijing, 100081, China; Department of Environmental Science, Policy and Management, University of California, Berkeley, CA, 94720, United States.
| |
Collapse
|
21
|
Ooi YJ, Aung KNG, Chong JW, Tan RR, Aviso KB, Chemmangattuvalappil NG. Design of fragrance molecules using computer-aided molecular design with machine learning. Comput Chem Eng 2022. [DOI: 10.1016/j.compchemeng.2021.107585] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
|
22
|
Api AM, Belsito D, Botelho D, Bruze M, Burton GA, Buschmann J, Cancellieri MA, Dagli ML, Date M, Dekant W, Deodhar C, Fryer AD, Jones L, Joshi K, Kumar M, Lapczynski A, Lavelle M, Lee I, Liebler DC, Moustakas H, Na M, Penning TM, Ritacco G, Romine J, Sadekar N, Schultz TW, Selechnik D, Siddiqi F, Sipes IG, Sullivan G, Thakkar Y, Tokura Y. RIFM fragrance ingredient safety assessment, 6-methyl-5-hepten-2-one, CAS registry number 110-93-0. Food Chem Toxicol 2021; 156 Suppl 1:112558. [PMID: 34555470 DOI: 10.1016/j.fct.2021.112558] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2021] [Revised: 08/27/2021] [Accepted: 09/13/2021] [Indexed: 11/18/2022]
Affiliation(s)
- A M Api
- Research Institute for Fragrance Materials, Inc., 50 Tice Boulevard, Woodcliff Lake, NJ, 07677, USA
| | - D Belsito
- Member Expert Panel, Columbia University Medical Center, Department of Dermatology, 161 Fort Washington Ave., New York, NY, 10032, USA
| | - D Botelho
- Research Institute for Fragrance Materials, Inc., 50 Tice Boulevard, Woodcliff Lake, NJ, 07677, USA
| | - M Bruze
- Member Expert Panel, Malmo University Hospital, Department of Occupational & Environmental Dermatology, Sodra Forstadsgatan 101, Entrance 47, Malmo, SE-20502, Sweden
| | - G A Burton
- Member Expert Panel, School of Natural Resources & Environment, University of Michigan, Dana Building G110, 440 Church St., Ann Arbor, MI, 58109, USA
| | - J Buschmann
- Member Expert Panel, Fraunhofer Institute for Toxicology and Experimental Medicine, Nikolai-Fuchs-Strasse 1, 30625, Hannover, Germany
| | - M A Cancellieri
- Research Institute for Fragrance Materials, Inc., 50 Tice Boulevard, Woodcliff Lake, NJ, 07677, USA
| | - M L Dagli
- Member Expert Panel, University of Sao Paulo, School of Veterinary Medicine and Animal Science, Department of Pathology, Av. Prof. dr. Orlando Marques de Paiva, 87, Sao Paulo, CEP 05508-900, Brazil
| | - M Date
- Research Institute for Fragrance Materials, Inc., 50 Tice Boulevard, Woodcliff Lake, NJ, 07677, USA
| | - W Dekant
- Member Expert Panel, University of Wuerzburg, Department of Toxicology, Versbacher Str. 9, 97078, Würzburg, Germany
| | - C Deodhar
- Research Institute for Fragrance Materials, Inc., 50 Tice Boulevard, Woodcliff Lake, NJ, 07677, USA
| | - A D Fryer
- Member Expert Panel, Oregon Health Science University, 3181 SW Sam Jackson Park Rd., Portland, OR, 97239, USA
| | - L Jones
- Research Institute for Fragrance Materials, Inc., 50 Tice Boulevard, Woodcliff Lake, NJ, 07677, USA
| | - K Joshi
- Research Institute for Fragrance Materials, Inc., 50 Tice Boulevard, Woodcliff Lake, NJ, 07677, USA
| | - M Kumar
- Research Institute for Fragrance Materials, Inc., 50 Tice Boulevard, Woodcliff Lake, NJ, 07677, USA
| | - A Lapczynski
- Research Institute for Fragrance Materials, Inc., 50 Tice Boulevard, Woodcliff Lake, NJ, 07677, USA
| | - M Lavelle
- Research Institute for Fragrance Materials, Inc., 50 Tice Boulevard, Woodcliff Lake, NJ, 07677, USA
| | - I Lee
- Research Institute for Fragrance Materials, Inc., 50 Tice Boulevard, Woodcliff Lake, NJ, 07677, USA
| | - D C Liebler
- Member Expert Panel, Vanderbilt University School of Medicine, Department of Biochemistry, Center in Molecular Toxicology, 638 Robinson Research Building, 2200 Pierce Avenue, Nashville, TN, 37232-0146, USA
| | - H Moustakas
- Research Institute for Fragrance Materials, Inc., 50 Tice Boulevard, Woodcliff Lake, NJ, 07677, USA
| | - M Na
- Research Institute for Fragrance Materials, Inc., 50 Tice Boulevard, Woodcliff Lake, NJ, 07677, USA
| | - T M Penning
- Member of Expert Panel, University of Pennsylvania, Perelman School of Medicine, Center of Excellence in Environmental Toxicology, 1316 Biomedical Research Building (BRB) II/III, 421 Curie Boulevard, Philadelphia, PA, 19104-3083, USA
| | - G Ritacco
- Research Institute for Fragrance Materials, Inc., 50 Tice Boulevard, Woodcliff Lake, NJ, 07677, USA
| | - J Romine
- Research Institute for Fragrance Materials, Inc., 50 Tice Boulevard, Woodcliff Lake, NJ, 07677, USA
| | - N Sadekar
- Research Institute for Fragrance Materials, Inc., 50 Tice Boulevard, Woodcliff Lake, NJ, 07677, USA
| | - T W Schultz
- Member Expert Panel, The University of Tennessee, College of Veterinary Medicine, Department of Comparative Medicine, 2407 River Dr., Knoxville, TN, 37996- 4500, USA
| | - D Selechnik
- Research Institute for Fragrance Materials, Inc., 50 Tice Boulevard, Woodcliff Lake, NJ, 07677, USA
| | - F Siddiqi
- Research Institute for Fragrance Materials, Inc., 50 Tice Boulevard, Woodcliff Lake, NJ, 07677, USA
| | - I G Sipes
- Member Expert Panel, Department of Pharmacology, University of Arizona, College of Medicine, 1501 North Campbell Avenue, P.O. Box 245050, Tucson, AZ, 85724-5050, USA
| | - G Sullivan
- Research Institute for Fragrance Materials, Inc., 50 Tice Boulevard, Woodcliff Lake, NJ, 07677, USA.
| | - Y Thakkar
- Research Institute for Fragrance Materials, Inc., 50 Tice Boulevard, Woodcliff Lake, NJ, 07677, USA
| | - Y Tokura
- Member Expert Panel, The Journal of Dermatological Science (JDS), Editor-in-Chief, Professor and Chairman, Department of Dermatology, Hamamatsu University School of Medicine, 1-20-1 Handayama, Higashi-ku, Hamamatsu, 431-3192, Japan
| |
Collapse
|
23
|
Zhang M, Xiong J, Liu Y, Misztal PK, Goldstein AH. Physical-Chemical Coupling Model for Characterizing the Reaction of Ozone with Squalene in Realistic Indoor Environments. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2021; 55:1690-1698. [PMID: 33464056 DOI: 10.1021/acs.est.0c06216] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/28/2023]
Abstract
Squalene can react with indoor ozone to generate a series of volatile and semi-volatile organic compounds, some of which may be skin or respiratory irritants, causing adverse health effects. Better understanding of the ozone/squalene reaction and product transport characteristics is thus important. In this study, we developed a physical-chemical coupling model to describe the behavior of ozone/squalene reaction products, that is, 6-methyl-5-hepten-2-one (6-MHO) and 4-oxopentanal (4-OPA) in the gas phase and skin, by considering the chemical reaction and physical transport processes (external convection, internal diffusion, and surface uptake). Experiments without intervention were performed in a single-family house in California utilizing time- and space-resolved measurements. The key parameters in the model were extracted from 5 day data and then used to predict the behaviors in some other days. Predictions from the present model can reproduce the concentration profiles of the three compounds (ozone, 6-MHO, and 4-OPA) well (R2 = 0.82-0.89), indicating high accuracy of the model. Exposure analysis shows that the total amount of 6-MHO and 4-OPA entering the blood capillaries in 4 days can reach 14.6 and 30.1 μg, respectively. The contribution of different sinks to ozone removal in the tested realistic indoor environment was also analyzed.
Collapse
Affiliation(s)
- Meixia Zhang
- School of Mechanical Engineering, Beijing Institute of Technology, Beijing 100081, China
| | - Jianyin Xiong
- School of Mechanical Engineering, Beijing Institute of Technology, Beijing 100081, China
- Department of Environmental Science, Policy and Management, University of California, Berkeley, California 94720, United States
| | - Yingjun Liu
- Department of Environmental Science, Policy and Management, University of California, Berkeley, California 94720, United States
- BIC-ESAT and SKL-ESPC, College of Environmental Sciences and Engineering, Peking University, Beijing 100871, China
| | - Pawel K Misztal
- Department of Environmental Science, Policy and Management, University of California, Berkeley, California 94720, United States
- Department of Civil, Architectural and Environmental Engineering, University of Texas at Austin, Austin, Texas 78712, United States
| | - Allen H Goldstein
- Department of Environmental Science, Policy and Management, University of California, Berkeley, California 94720, United States
- Department of Civil and Environmental Engineering, University of California, Berkeley, California 94720, United States
| |
Collapse
|
24
|
Couch JR, Grimes GR, Green BJ, Wiegand DM, King B, Methner MM. Review of NIOSH Cannabis-Related Health Hazard Evaluations and Research. Ann Work Expo Health 2021; 64:693-704. [PMID: 32053725 DOI: 10.1093/annweh/wxaa013] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2019] [Revised: 01/15/2020] [Accepted: 01/21/2020] [Indexed: 11/13/2022] Open
Abstract
Since 2004, the National Institute for Occupational Safety and Health (NIOSH) has received 10 cannabis-related health hazard evaluation (HHE) investigation requests from law enforcement agencies (n = 5), state-approved cannabis grow operations (n = 4), and a coroner's office (n = 1). Earlier requests concerned potential illicit drug exposures (including cannabis) during law enforcement activities and criminal investigations. Most recently HHE requests have involved state-approved grow operations with potential occupational exposures during commercial cannabis production for medicinal and non-medical (recreational) use. As of 2019, the United States Drug Enforcement Administration has banned cannabis as a Schedule I substance on the federal level. However, cannabis legalization at the state level has become more common in the USA. In two completed cannabis grow operation HHE investigations (two investigations are still ongoing as of 2019), potential dermal exposures were evaluated using two distinct surface wipe sample analytical methods. The first analyzed for delta-9-tetrahydrocannabinol (Δ9-THC) using a liquid chromatography and tandem mass spectrometry (LC-MS-MS) method with a limit of detection (LOD) of 4 nanograms (ng) per sample. A second method utilized high performance liquid chromatography with diode-array detection to analyze for four phytocannabinoids (Δ9-THC, Δ9-THC acid, cannabidiol, and cannabinol) with a LOD (2000 ng per sample) which, when comparing Δ9-THC limits, was orders of magnitude higher than the LC-MS-MS method. Surface wipe sampling results for both methods illustrated widespread contamination of all phytocannabinoids throughout the tested occupational environments, highlighting the need to consider THC form (Δ9-THC or Δ9-THC acid) as well as other biologically active phytocannabinoids in exposure assessments. In addition to potential cannabis-related dermal exposures, ergonomic stressors, and psychosocial issues, the studies found employees in cultivation, harvesting, and processing facilities could potentially be exposed to allergens and respiratory hazards through inhalation of organic dusts (including fungus, bacteria, and endotoxin) and volatile organic compounds (VOCs) such as diacetyl and 2,3-pentanedione. These hazards were most evident during the decarboxylation and grinding of dried cannabis material, where elevated job-specific concentrations of VOCs and endotoxin were generated. Additionally, utilization of contemporary gene sequencing methods in NIOSH HHEs provided a more comprehensive characterization of microbial communities sourced during cannabis cultivation and processing. Internal Transcribed Spacer region sequencing revealed over 200 fungal operational taxonomic units and breathing zone air samples were predominantly composed of Botrytis cinerea, a cannabis plant pathogen. B. cinerea, commonly known as gray mold within the industry, has been previously associated with hypersensitivity pneumonitis. This work elucidates new occupational hazards related to cannabis production and the evolving occupational safety and health landscape of an emerging industry, provides a summary of cannabis-related HHEs, and discusses critical lessons learned from these previous HHEs.
Collapse
Affiliation(s)
- James R Couch
- NIOSH, Division of Science Integration, Cincinnati, OH, USA
| | | | - Brett J Green
- NIOSH, Health Effects Laboratory Division, Morgantown, WV, USA
| | - Douglas M Wiegand
- NIOSH, Division of Field Studies and Engineering, Cincinnati, OH, USA
| | | | - Mark M Methner
- NIOSH, Division of Field Studies and Engineering, Cincinnati, OH, USA
| |
Collapse
|
25
|
Morrison GC, Eftekhari A, Majluf F, Krechmer JE. Yields and Variability of Ozone Reaction Products from Human Skin. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2021; 55:179-187. [PMID: 33337871 DOI: 10.1021/acs.est.0c05262] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/28/2023]
Abstract
The skin of 20 human participants was exposed to ∼110 ppb O3 and volatile products of the resulting chemistry were quantified in real time. Yields (ppb product emitted/ppb ozone consumed) for 40 products were quantified. Major products of the primary reaction of ozone-squalene included 6-methyl 5-hepten-2-one (6-MHO) and geranyl acetone (GA) with average yields of 0.22 and 0.16, respectively. Other major products included decanal, methacrolein (or methyl vinyl ketone), nonanal, and butanal. Yields varied widely among participants; summed yields ranged from 0.33 to 0.93. The dynamic increase in emission rates during ozone exposure also varied among participants, possibly indicative of differences in the thickness of the skin lipid layer. Factor analysis indicates that much of the variability among participants is due to factors associated with the relative abundance of (1) "fresh" skin lipid constituents (such as squalene and fatty acids), (2) oxidized skin lipids, and (3) exogenous compounds. This last factor appears to be associated with the presence of oleic and linoleic acids and could be accounted for by uptake of cooking oils or personal care products to skin lipids.
Collapse
Affiliation(s)
- Glenn C Morrison
- Department of Environmental Sciences and Engineering, Gillings School of Global Public Health, The University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, United States
| | - Azin Eftekhari
- Department of Environmental Sciences and Engineering, Gillings School of Global Public Health, The University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, United States
| | - Francesca Majluf
- Aerodyne Research Inc., Billerica, Massachusetts 01821, United States
| | - Jordan E Krechmer
- Aerodyne Research Inc., Billerica, Massachusetts 01821, United States
| |
Collapse
|
26
|
Santana HSR, de Carvalho FO, Silva ER, Santos NGL, Shanmugam S, Santos DN, Wisniewski JO, Junior JSC, Nunes PS, Araujo AAS, de Albuquerque Junior RLC, Dos Santos MRV. Anti-Inflammatory Activity of Limonene in the Prevention and Control of Injuries in the Respiratory System: A Systematic Review. Curr Pharm Des 2020; 26:2182-2191. [PMID: 32220222 DOI: 10.2174/1381612826666200320130443] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2019] [Accepted: 01/10/2020] [Indexed: 11/22/2022]
Abstract
INTRODUCTION The pulmonary inflammatory response results from exposure to injurious factors and is associated with oxidative stress, which intensifies the pathological reaction. In this context, limonene, a monoterpene found in citrus fruits, can be a therapeutic alternative for the treatment of this pathology, as it presents known anti-inflammatory and antioxidant actions. OBJECTIVE The purpose of this article is to provide an overview of the anti-inflammatory activity of limonene and its capacity to prevent and control respiratory system injuries. SEARCH STRATEGY A comprehensive literature search of the Cochrane, Scopus, MEDLINE-PubMed, Web of Science, and Lilacs databases was performed using the keywords: "limonene", "lung", "pulmonary", "airway", "trachea", "lung injury", "respiratory system", "respiratory tract diseases". SELECTION CRITERIA Studies on the use of limonene in disorders of the respiratory system, published until August 2019, were included. Those that did not use limonene alone or treated lesions in different systems other than the respiratory system, without targeting its anti-inflammatory action were excluded. In addition, review articles, meta-analyses, abstracts, conference papers, editorials/letters and case reports were also excluded. RESULTS Of the 561 articles found, 64 were in the Cochrane database, 235 in Scopus, 99 in Web of science, 150 in PubMed and 13 in Lilacs. After completing the systematic steps, 25 articles were selected for full reading, after which 7 papers remained in the review. An article was added after a manual literature search, resulting in a total of 8 papers. There was a high level of agreement on inclusion/exclusion among the researchers who examined the papers (Kappa index > 88%). CONCLUSION Limonene has effective anti-inflammatory activity in both preventing and controlling respiratory system injuries.
Collapse
Affiliation(s)
- Hericalizandra S R Santana
- Postgraduate in Health Sciences, Federal University of Sergipe (UFS), Claudio Batista St, s/n, Sanatorio, Aracaju-SE, Brazil
| | - Fernanda O de Carvalho
- Postgraduate in Health Sciences, Federal University of Sergipe (UFS), Claudio Batista St, s/n, Sanatorio, Aracaju-SE, Brazil
| | - Erika R Silva
- Department of Physiotherapy, Federal University of Sergipe (UFS), Gov. Marcelo Deda Avenue, 300, Lagarto, SE, Brazil
| | - Nayara G L Santos
- Postgraduate in Health Sciences, Federal University of Sergipe (UFS), Claudio Batista St, s/n, Sanatorio, Aracaju-SE, Brazil
| | - Saravanan Shanmugam
- Postgraduate in Health Sciences, Federal University of Sergipe (UFS), Claudio Batista St, s/n, Sanatorio, Aracaju-SE, Brazil
| | - Debora N Santos
- Department of Physiotherapy, Federal University of Sergipe (UFS), Gov. Marcelo Deda Avenue, 300, Lagarto, SE, Brazil
| | - Julio O Wisniewski
- Department of Medicine, Federal University of Sergipe (UFS), Marechal Rondom Avenue s/n, Sao Cristovao, SE, Brazil
| | - José S Cardoso Junior
- Department of Medicine, Federal University of Sergipe (UFS), Marechal Rondom Avenue s/n, Sao Cristovao, SE, Brazil
| | - Paula S Nunes
- Postgraduate in Health Sciences, Federal University of Sergipe (UFS), Claudio Batista St, s/n, Sanatorio, Aracaju-SE, Brazil.,Department of Morphology, Federal University of Sergipe (UFS), Marechal Rondom Avenue s/n, São Cristóvão, SE, Brazil
| | - Adriano A S Araujo
- Postgraduate in Health Sciences, Federal University of Sergipe (UFS), Claudio Batista St, s/n, Sanatorio, Aracaju-SE, Brazil.,Department of Pharmacy, Federal University of Sergipe (UFS), Marechal Rondom Avenue s/n, São Cristóvão, SE, Brazil
| | - Ricardo L C de Albuquerque Junior
- Postgraduate in Health Sciences, Federal University of Sergipe (UFS), Claudio Batista St, s/n, Sanatorio, Aracaju-SE, Brazil.,Sergipe Institute of Technology and Research, Tiradentes University (UNIT), Murilo Dantas Avenue, 300, Farolandia, Aracaju, SE, Brazil
| | - Marcio R V Dos Santos
- Postgraduate in Health Sciences, Federal University of Sergipe (UFS), Claudio Batista St, s/n, Sanatorio, Aracaju-SE, Brazil.,Department of Physiology, Federal University of Sergipe (UFS), Marechal Rondom Avenue s/n, São Cristóvão, SE, Brazil
| |
Collapse
|
27
|
Zeng J, Mekic M, Xu X, Loisel G, Zhou Z, Gligorovski S, Li X. A Novel Insight into the Ozone-Skin Lipid Oxidation Products Observed by Secondary Electrospray Ionization High-Resolution Mass Spectrometry. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2020; 54:13478-13487. [PMID: 33085459 DOI: 10.1021/acs.est.0c05100] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/28/2023]
Abstract
Emissions of secondary products through reactions of oxidants, ozone (O3), and hydroxyl radical (·OH) with human skin lipids have become increasingly important in indoor environments. Here, we evaluate the secondary organic compounds formed through heterogeneous reactions of gaseous O3 with hand skin lipids by using a high-resolution quadrupole Orbitrap mass spectrometer coupled to a commercial secondary electrospray ionization (SESI) source. More than 600 ions were detected over a period of less than 40 min real-time measurements, among which 53 ions were characterized with a significant increasing trend in signal intensity at the presence of O3. Based on the detected ions, we suggest detailed reaction pathways initiated by ozone oxidation of squalene that results in primary and secondary ozonides; we noticed for the first time that these products may be further cleaved by direct reaction of nucleophilic ammonia (NH3), emitted from human skin. Finally, we estimate the fate of secondarily formed carbonyl compounds with respect to their gas-phase reactions with ·OH, O3, and NO3 and compared with their removal by air exchange rate (AER) with outdoors. The obtained results suggest that human presence is a source of an important number of organic compounds, which can significantly influence the air quality in indoor environments.
Collapse
Affiliation(s)
- Jiafa Zeng
- Institute of Mass Spectrometry and Atmospheric Environment, Jinan University, Guangzhou 510632, China
- Guangdong Provincial Engineering Research Center for On-line Source Apportionment System of Air Pollution, Guangzhou, 510632, China
- Guangdong-Hongkong-Macau Joint Laboratory of Collaborative Innovation for Environmental Quality, Guangzhou 511443, China
| | - Majda Mekic
- State Key Laboratory of Organic Geochemistry, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou 510640, China
- University of Chinese Academy of Sciences, Beijing 10069, China
| | - Xin Xu
- Institute of Mass Spectrometry and Atmospheric Environment, Jinan University, Guangzhou 510632, China
- Guangdong Provincial Engineering Research Center for On-line Source Apportionment System of Air Pollution, Guangzhou, 510632, China
- Guangdong-Hongkong-Macau Joint Laboratory of Collaborative Innovation for Environmental Quality, Guangzhou 511443, China
| | - Gwendal Loisel
- State Key Laboratory of Organic Geochemistry, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou 510640, China
| | - Zhen Zhou
- Institute of Mass Spectrometry and Atmospheric Environment, Jinan University, Guangzhou 510632, China
- Guangdong Provincial Engineering Research Center for On-line Source Apportionment System of Air Pollution, Guangzhou, 510632, China
- Guangdong-Hongkong-Macau Joint Laboratory of Collaborative Innovation for Environmental Quality, Guangzhou 511443, China
| | - Sasho Gligorovski
- State Key Laboratory of Organic Geochemistry, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou 510640, China
| | - Xue Li
- Institute of Mass Spectrometry and Atmospheric Environment, Jinan University, Guangzhou 510632, China
- Guangdong Provincial Engineering Research Center for On-line Source Apportionment System of Air Pollution, Guangzhou, 510632, China
- Guangdong-Hongkong-Macau Joint Laboratory of Collaborative Innovation for Environmental Quality, Guangzhou 511443, China
| |
Collapse
|
28
|
Yao M, Ke L, Liu Y, Luo Z, Zhao B. Measurement of ozone deposition velocity onto human surfaces of Chinese residents and estimation of corresponding production of oxidation products. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2020; 266:115215. [PMID: 32711189 DOI: 10.1016/j.envpol.2020.115215] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/08/2020] [Revised: 07/03/2020] [Accepted: 07/07/2020] [Indexed: 06/11/2023]
Abstract
China has been experiencing a sharp increase in outdoor ozone concentration. The deposition velocity of ozone onto human surfaces strongly affects the indoor ozone concentration, and the production of oxidation products. In this study, we measured the deposition velocity of ozone onto human surfaces in six Chinese residential rooms, each housing 1-3 occupants. In addition, we estimated the corresponding emission rate of oxidation products. The measured mean value of the deposition velocity is 14.8 (±10.1) m/h, which is close to those reported in earlier studies in western countries. We also find that the ozone deposition velocity onto human surfaces is positively correlated to the weighted duration from the last laundry and bath/facial-cleansing, and it is negatively correlated to the relative humidity of the indoor air. The estimated emission rates of 6-MHO, 4-OPA, acetone, geranyl acetone, 1,4-butanedial decanal, and all gas-phase products are 7.7 × 1016, 6.7 × 1016, 9.4 × 1016, 9.7 × 1015, 1.3 × 1016, 3.4 × 1016, and 4.8 × 1017 molecule per person h-1, respectively, with an indoor ozone concentration of 5 ppb at steady state. The measured deposition velocity of ozone onto human surfaces of Chinese residents, and the emission rates of the corresponding oxidation products may be applied for the estimation of human exposure to ozone and its oxidation products in China.
Collapse
Affiliation(s)
- Mingyao Yao
- Department of Building Science, School of Architecture, Tsinghua University, Beijing, 100084, PR China
| | - Lang Ke
- Department of Building Science, School of Architecture, Tsinghua University, Beijing, 100084, PR China
| | - Yuzhou Liu
- Department of Building Science, School of Architecture, Tsinghua University, Beijing, 100084, PR China
| | - Zhibin Luo
- Department of Building Science, School of Architecture, Tsinghua University, Beijing, 100084, PR China
| | - Bin Zhao
- Department of Building Science, School of Architecture, Tsinghua University, Beijing, 100084, PR China; Beijing Key Laboratory of Indoor Air Quality Evaluation and Control, Tsinghua University, Beijing, 100084, PR China.
| |
Collapse
|
29
|
Pytel K, Marcinkowska R, Zabiegała B. Investigation of the Dynamism of Nanosized SOA Particle Formation in Indoor Air by a Scanning Mobility Particle Sizer and Proton-Transfer-Reaction Mass Spectrometry. Molecules 2020; 25:E2202. [PMID: 32397186 PMCID: PMC7248949 DOI: 10.3390/molecules25092202] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2020] [Revised: 05/01/2020] [Accepted: 05/04/2020] [Indexed: 11/17/2022] Open
Abstract
Terpenes are VOCs of particular importance, since they are emitted from a wide range of indoor sources and are considered to be precursors of Secondary Organic Aerosol (SOA) formation. It has been proven that SOA particles, especially nanosized ones, pose a threat to human health. In this research, experiments with the application of an environmental chamber and real-time measurement techniques were carried out to investigate in a complimentary way the formation of monoterpene oxidation products and nanosized SOA particles initiated by monoterpene ozonolysis. Proton-Transfer-Reaction Mass Spectrometry with a Time-Of-Flight analyzer (PTR-TOF-MS) and a Scanning Mobility Particle Sizer (SMPS) were applied to determine in real time the dynamism of the formation of the corresponding terpene ozonolysis products and submicron SOA particles. Results proved that firstly, oxidation products were formed, and then, they underwent nucleation and condensation, forming particles whose diameters grew with time. The oxidation products formed were different depending on the type of terpenes applied. The comparison of the results obtained during the experiments with gaseous standard mixtures and real samples commonly present and used in indoor air revealed that the diversified chemical composition of the emission source had implications for both the particle formation initiated by the oxidation of essential oil components and the chemical reactions occurring via the oxidation process. With the instrumentation utilized, the concentration changes at the level of a few ppbv could be monitored.
Collapse
Affiliation(s)
| | - Renata Marcinkowska
- Department of Analytical Chemistry, Faculty of Chemistry, Gdańsk University of Technology, 11/12 Narutowicza Str. 80-233 Gdańsk, Poland; (K.P.); (B.Z.)
| | | |
Collapse
|
30
|
Yao M, Weschler CJ, Zhao B, Zhang L, Ma R. Breathing-rate adjusted population exposure to ozone and its oxidation products in 333 cities in China. ENVIRONMENT INTERNATIONAL 2020; 138:105617. [PMID: 32155513 DOI: 10.1016/j.envint.2020.105617] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/22/2019] [Revised: 02/26/2020] [Accepted: 02/27/2020] [Indexed: 05/28/2023]
Abstract
While PM2.5 (particles with aerodynamic diameter less than 2.5 µm) concentrations in China are beginning to decline because of pollution abatement measures, ozone (O3) concentrations continue to rise. In this study, we have used a Monte Carlo approach to estimate breathing-rate adjusted (BRA) population exposure to ozone and its oxidation products based on hourly O3 measurements collected in 2017 from monitoring stations in 333 Chinese cities. The median measured outdoor O3 concentration in these cities was 31 ppb, while the median calculated indoor concentrations of ozone and ozone-derived oxidation products were 7.5 ppb and 21 ppb, respectively. The median BRA O3 exposure concentration was 12 ppb, ranging from 2.2 ppb to 18 ppb among the cities. Eastern and central cities had higher exposure concentrations, while northeastern and western cities had lower. On average, the residents of these cities spent 88% of their time indoors. Consequently, even with breathing rate adjustments, indoor O3 exposure averaged 50% of the total O3 exposure nationwide. The median BRA exposure concentration for ozone-derived products was 18 ppb, ranging from 4.5 ppb to 32 ppb among the cities. On average, BRA exposure concentrations were 1.6 times larger for oxidation products than for ozone, while seasonal variations of exposure concentrations were smaller for oxidation products than for ozone. As many of the products of indoor ozone chemistry are toxic, the health consequences of exposure to such products should be further investigated.
Collapse
Affiliation(s)
- Mingyao Yao
- Department of Building Science, School of Architecture, Tsinghua University, Beijing 100084, China
| | - Charles J Weschler
- Department of Building Science, School of Architecture, Tsinghua University, Beijing 100084, China; Environmental and Occupational Health Sciences Institute, Rutgers University, Piscataway, NJ 08854, USA; International Centre for Indoor Environment and Energy, Technical University of Denmark, Lyngby, Denmark.
| | - Bin Zhao
- Department of Building Science, School of Architecture, Tsinghua University, Beijing 100084, China; Beijing Key Laboratory of Indoor Air Quality Evaluation and Control, Tsinghua University, Beijing 100084, China.
| | - Lin Zhang
- Tsinghua-Berkeley Shenzhen Institute, Tsinghua University, China
| | - Rui Ma
- Department of Electronic Engineering, Tsinghua University, China
| |
Collapse
|
31
|
Salthammer T. Emerging indoor pollutants. Int J Hyg Environ Health 2020; 224:113423. [DOI: 10.1016/j.ijheh.2019.113423] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2019] [Revised: 11/19/2019] [Accepted: 11/19/2019] [Indexed: 10/25/2022]
|
32
|
Wolkoff P. Indoor air chemistry: Terpene reaction products and airway effects. Int J Hyg Environ Health 2020; 225:113439. [PMID: 32044535 DOI: 10.1016/j.ijheh.2019.113439] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2019] [Revised: 12/04/2019] [Accepted: 12/18/2019] [Indexed: 12/15/2022]
Abstract
Reactive chemistry is ubiquitous indoors with a wealth of complex oxidation reactions; some of these are initiated by both homogeneous and heterogeneous reaction of ozone with unsaturated organic compounds and subsequent the hydroxyl radical, either in the gas-phase or on reactive surfaces. One major focus has been the reaction of common and abundant terpene-based fragrances in indoor air emitted from many wood-based materials, a variety of consumer products, and citrus fruits and flowers. Inhalation of the terpenes themselves are generally not considered a health concern (both acute and long-term) due to their low indoor air concentrations; however, their gas- and surface reactions with ozone and the hydroxyl radical produce a host of products, both gaseous, i. a. formaldehyde, and ultrafine particles formed by condensation/nucleation processes. These reaction products may be of health concern. Human cell bioassays with key reaction products from ozone-initiated terpene reactions have shown some inflammatory reactions, but results are difficult to interpret for human exposure and risk assessment. Acute effects like sensory irritation in eyes and airways are unlikely or present at very low intensity in real life conditions based on rodent and human exposure studies and known thresholds for sensory irritation in eyes and airways and derived human reference values for airflow limitation and pulmonary irritation. Some fragrances and their ozone-initiated reaction products may possess anti-inflammatory properties. However, long-term effects of the reaction products as ultrafine particles are poorly explored. Material and product surfaces with high ozone deposition velocities may significantly impact the perceived air quality by altered emissions from both homogeneous and heterogeneous surface reactions.
Collapse
Affiliation(s)
- Peder Wolkoff
- National Research Centre for the Working Environment, NRCWE, Lersø Parkallé 105, 2920, Copenhagen, Denmark.
| |
Collapse
|
33
|
Arata C, Heine N, Wang N, Misztal PK, Wargocki P, Bekö G, Williams J, Nazaroff WW, Wilson KR, Goldstein AH. Heterogeneous Ozonolysis of Squalene: Gas-Phase Products Depend on Water Vapor Concentration. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2019; 53:14441-14448. [PMID: 31757120 DOI: 10.1021/acs.est.9b05957] [Citation(s) in RCA: 39] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/18/2023]
Abstract
Previous work examining the condensed-phase products of squalene particle ozonolysis found that an increase in water vapor concentration led to lower concentrations of secondary ozonides, increased concentrations of carbonyls, and smaller particle diameter, suggesting that water changes the fate of the Criegee intermediate. To determine if this volume loss corresponds to an increase in gas-phase products, we measured gas-phase volatile organic compound (VOC) concentrations via proton-transfer-reaction time-of-flight mass spectrometry. Studies were conducted in a flow-tube reactor at atmospherically relevant ozone (O3) exposure levels (5-30 ppb h) with pure squalene particles. An increase in water vapor concentration led to strong enhancement of gas-phase oxidation products at all tested O3 exposures. An increase in water vapor from near zero to 70% relative humidity (RH) at high O3 exposure increased the total mass concentration of gas-phase VOCs by a factor of 3. The observed fraction of carbon in the gas-phase correlates with the fraction of particle volume lost. Experiments involving O3 oxidation of shirts soiled with skin oil confirms that the RH dependence of gas-phase reaction product generation occurs similarly on surfaces containing skin oil under realistic conditions. Similar behavior is expected for O3 reactions with other surface-bound organics containing unsaturated carbon bonds.
Collapse
Affiliation(s)
| | - Nadja Heine
- Chemical Sciences Division , Lawrence Berkeley National Laboratory , Berkeley , California 94720 , United States
| | - Nijing Wang
- Air Chemistry Department , Max Planck Institute for Chemistry , 55128 Mainz , Germany
| | | | - Pawel Wargocki
- Department of Civil Engineering , Technical University of Denmark , 2800 Kgs. Lyngby , Denmark
| | - Gabriel Bekö
- Department of Civil Engineering , Technical University of Denmark , 2800 Kgs. Lyngby , Denmark
| | - Jonathan Williams
- Air Chemistry Department , Max Planck Institute for Chemistry , 55128 Mainz , Germany
| | | | - Kevin R Wilson
- Chemical Sciences Division , Lawrence Berkeley National Laboratory , Berkeley , California 94720 , United States
| | | |
Collapse
|
34
|
Salvador CM, Bekö G, Weschler CJ, Morrison G, Le Breton M, Hallquist M, Ekberg L, Langer S. Indoor ozone/human chemistry and ventilation strategies. INDOOR AIR 2019; 29:913-925. [PMID: 31420890 PMCID: PMC6856811 DOI: 10.1111/ina.12594] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/10/2019] [Revised: 07/01/2019] [Accepted: 08/11/2019] [Indexed: 05/20/2023]
Abstract
This study aimed to better understand and quantify the influence of ventilation strategies on occupant-related indoor air chemistry. The oxidation of human skin oil constituents was studied in a continuously ventilated climate chamber at two air exchange rates (1 h-1 and 3 h-1 ) and two initial ozone mixing ratios (30 and 60 ppb). Additional measurements were performed to investigate the effect of intermittent ventilation ("off" followed by "on"). Soiled t-shirts were used to simulate the presence of occupants. A time-of-flight-chemical ionization mass spectrometer (ToF-CIMS) in positive mode using protonated water clusters was used to measure the oxygenated reaction products geranyl acetone, 6-methyl-5-hepten-2-one (6-MHO) and 4-oxopentanal (4-OPA). The measurement data were used in a series of mass balance models accounting for formation and removal processes. Reactions of ozone with squalene occurring on the surface of the t-shirts are mass transport limited; ventilation rate has only a small effect on this surface chemistry. Ozone-squalene reactions on the t-shirts produced gas-phase geranyl acetone, which was subsequently removed almost equally by ventilation and further reaction with ozone. About 70% of gas-phase 6-MHO was produced in surface reactions on the t-shirts, the remainder in secondary gas-phase reactions of ozone with geranyl acetone. 6-MHO was primarily removed by ventilation, while further reaction with ozone was responsible for about a third of its removal. 4-OPA was formed primarily on the surfaces of the shirts (~60%); gas-phase reactions of ozone with geranyl acetone and 6-MHO accounted for ~30% and ~10%, respectively. 4-OPA was removed entirely by ventilation. The results from the intermittent ventilation scenarios showed delayed formation of the reaction products and lower product concentrations compared to continuous ventilation.
Collapse
Affiliation(s)
- Christian Mark Salvador
- Department of Chemistry and Molecular BiologyAtmospheric SciencesUniversity of GöteborgGöteborgSweden
| | - Gabriel Bekö
- International Centre for Indoor Environment and EnergyDepartment of Civil EngineeringTechnical University of DenmarkLyngbyDenmark
| | - Charles J. Weschler
- International Centre for Indoor Environment and EnergyDepartment of Civil EngineeringTechnical University of DenmarkLyngbyDenmark
- Environmental and Occupational Health Sciences InstituteRutgers UniversityPiscatawayNJUSA
| | - Glenn Morrison
- Department of Environmental Sciences and EngineeringGillings School of Global Public HealthThe University of North Carolina at Chapel HillChapel HillNCUSA
| | - Michael Le Breton
- Department of Chemistry and Molecular BiologyAtmospheric SciencesUniversity of GöteborgGöteborgSweden
- Present address:
Volvo Group Trucks and Technology Method and Technical DevelopmentGöteborgSweden
| | - Mattias Hallquist
- Department of Chemistry and Molecular BiologyAtmospheric SciencesUniversity of GöteborgGöteborgSweden
| | - Lars Ekberg
- CIT Energy Management ABGöteborgSweden
- Division of Building Services EngineeringDepartment of Architecture and Civil EngineeringChalmers University of TechnologyGöteborgSweden
| | - Sarka Langer
- Division of Building Services EngineeringDepartment of Architecture and Civil EngineeringChalmers University of TechnologyGöteborgSweden
- IVL Swedish Environmental Research InstituteGöteborgSweden
| |
Collapse
|
35
|
Carslaw N, Shaw D. Secondary product creation potential (SPCP): a metric for assessing the potential impact of indoor air pollution on human health. ENVIRONMENTAL SCIENCE. PROCESSES & IMPACTS 2019; 21:1313-1322. [PMID: 31140998 DOI: 10.1039/c9em00140a] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
Indoor air is subject to emissions of chemicals from numerous sources. Many of these emissions contain volatile organic compounds (VOCs), which react to form a wide range of secondary products, some with adverse health effects. However, at present we lack a robust, standardised approach to rank the potential for different VOCs to cause harm, which prevents effective action to improve indoor air quality and reduce impacts on human health. This paper uses a detailed chemical model to quantify the impact of 63 VOCs on indoor air quality. We define a novel method for ranking the VOCs in terms of potentially harmful product formation through a new metric, the Secondary Product Creation Potential (SPCP). We established SPCPs for a range of ventilation rates, different proportions of transmitted outdoor light, as well as for varying outdoor concentrations of ozone and nitrogen oxides. The species having the largest SPCPs are the alkenes, terpenes and aromatic VOCs. trans-2-Butene has the largest individual SPCP owing to the ratio of its rate coefficient for reaction with the hydroxy radical relative to ozone. Increasing the proportion of outdoor transmitted light increased most SPCPs markedly. This is because oxidant levels increased under these conditions and promoted more chemical processing, suggesting that there may be more harmful products closer to a window than further from the attenuated outdoor light. The SPCP is the first metric for assessing the impact of different VOCs on human health and will be an essential tool for guiding the composition of products commonly used indoors.
Collapse
Affiliation(s)
- Nicola Carslaw
- Department of Environment and Geography, University of York, York, UK.
| | | |
Collapse
|
36
|
Xiong J, He Z, Tang X, Misztal PK, Goldstein AH. Modeling the Time-Dependent Concentrations of Primary and Secondary Reaction Products of Ozone with Squalene in a University Classroom. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2019; 53:8262-8270. [PMID: 31260270 DOI: 10.1021/acs.est.9b02302] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/28/2023]
Abstract
Volatile organic chemicals are produced from reactions of ozone with squalene in human skin oil. Both primary and secondary reaction products, i.e., 6-methyl-5-hepten-2-one (6-MHO) and 4-oxopentanal (4-OPA), have been reported in indoor occupied spaces. However, the abundance of these products indoors is a function of many variables, including the amount of ozone and occupants present as well as indoor removal processes. In this study, we develop a time-dependent kinetic model describing the behavior of ozone/squalene reaction products indoors, including the reaction process and physical adsorption process of products on indoor surfaces. The key parameters in the model were obtained by fitting time-resolved concentrations of 6-MHO, 4-OPA, and ozone in a university classroom on 1 day with multiple class sessions. The model predictions were subsequently tested against observations from four additional measurement days in the same classroom. Model predictions and experimental data agreed well (R2 = 0.87-0.92) for all test days, including ∼7 class sessions covering a range of occupants (10-70) and ozone concentrations (0.09-32 ppb), demonstrating the effectiveness of the model. Accounting for surface uptake of 6-MHO and 4-OPA significantly improved model predictions (R2 = 0.52-0.76 without surface uptake), reflecting the importance of including surface interactions to quantitatively represent product behavior in indoor environments.
Collapse
Affiliation(s)
- Jianyin Xiong
- School of Mechanical Engineering , Beijing Institute of Technology , Beijing 100081 , People's Republic of China
| | - Zhangcan He
- School of Mechanical Engineering , Beijing Institute of Technology , Beijing 100081 , People's Republic of China
| | - Xiaochen Tang
- Indoor Environment Group, Energy Technologies Area , Lawrence Berkeley National Laboratory , Berkeley , California 94720 , United States
| | - Pawel K Misztal
- Centre for Ecology & Hydrology , Edinburgh , Midlothian EH26 0QB , United Kingdom
| | | |
Collapse
|
37
|
Rivas I, Fussell JC, Kelly FJ, Querol X. Indoor Sources of Air Pollutants. INDOOR AIR POLLUTION 2019. [DOI: 10.1039/9781788016179-00001] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Abstract
People spend an average of 90% of their time in indoor environments. There is a long list of indoor sources that can contribute to increased pollutant concentrations, some of them related to human activities (e.g. people's movement, cooking, cleaning, smoking), but also to surface chemistry reactions with human skin and building and furniture surfaces. The result of all these emissions is a heterogeneous cocktail of pollutants with varying degrees of toxicity, which makes indoor air quality a complex system. Good characterization of the sources that affect indoor air pollution levels is of major importance for quantifying (and reducing) the associated health risks. This chapter reviews some of the more significant indoor sources that can be found in the most common non-occupational indoor environments.
Collapse
|
38
|
Kruza M, Carslaw N. How do breath and skin emissions impact indoor air chemistry? INDOOR AIR 2019; 29:369-379. [PMID: 30663813 DOI: 10.1111/ina.12539] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/13/2018] [Revised: 01/15/2019] [Accepted: 01/16/2019] [Indexed: 05/16/2023]
Abstract
People are an important source of pollution indoors, through activities such as cleaning, and also from "natural" emissions from breath and skin. This paper investigates natural emissions in high-occupancy environments. Model simulations are performed for a school classroom during a typical summer in a polluted urban area. The results show that classroom occupants have a significant impact on indoor ozone, which increases from ~9 to ~20 ppb when the pupils leave for lunch and decreases to ~14 ppb when they return. The concentrations of 4-OPA, formic acid, and acetic acid formed as oxidation products following skin emissions attained maximum concentrations of 0.8, 0.5, and 0.1 ppb, respectively, when pupils were present, increasing from near-zero concentrations in their absence. For acetone, methanol, and ethanol from breath emissions, maximum concentrations were ~22.3, 6.6, and 21.5 ppb, respectively, compared to 7.4, 2.1, and 16.9 ppb in their absence. A rate of production analysis showed that occupancy reduced oxidant concentrations, while enhancing formation of nitrated organic compounds, owing to the chemistry that follows from increased aldehyde production. Occupancy also changes the peroxy radical composition, with those formed through isoprene oxidation becoming relatively more important, which also has consequences for subsequent oxidant concentrations.
Collapse
|
39
|
Lipsa D, Barrero-Moreno J, Coelhan M. Exposure to selected limonene oxidation products: 4-OPA, IPOH, 4-AMCH induces oxidative stress and inflammation in human lung epithelial cell lines. CHEMOSPHERE 2018; 191:937-945. [PMID: 29145138 PMCID: PMC5701770 DOI: 10.1016/j.chemosphere.2017.10.065] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/11/2017] [Revised: 10/08/2017] [Accepted: 10/10/2017] [Indexed: 05/16/2023]
Abstract
Limonene oxidation products (LOPs) have gained interest on their harmful health effects over time. Recently, studies have shown that the selected LOPs: 4-oxopentanal (4-OPA), 3-isopropenyl-6-oxo-heptanal (IPOH) and 4-acetyl-1-methylcyclohexene (4-AMCH) have sensory irritation effects in mice and inflammatory effects in human lung cells. This study was therefore undertaken to investigate the potential capacity of 4-OPA, IPOH and 4-AMCH to cause cell membrane damage, oxidative stress and inflammation in human bronchial (16HBE14o-) and alveolar (A549) epithelial cell lines. Overall results suggest that 4-OPA, IPOH have cytotoxic effects on human lung cells that might be mediated by ROS: the highest concentration applied of IPOH [500 μM] enhanced ROS generation by 100-fold ± 7.7 (A549) and 230-fold ± 19.9 (16HBE14o-) compared to the baseline. 4-OPA [500 μM] increased ROS levels by 1.4-fold ± 0.3 (A549) and by 127-fold ± 10.5 (16HBE14o-), while treatment with 4-AMCH [500 μM] led to 0.9-fold ± 0.2 (A549) and 49-fold ± 12.8 (16HBE14o-) increase. IPOH [500 μM] caused a decrease in the thiol-state balance (e.g. after 2 h, GSH:GSSG was reduced by 37% compared to the untreated 16HBE14o-cells). 4-OPA [500 μM] decreased the GSH:GSSG by 1.3-fold change in A549 cells and 1.4-fold change in 16HBE14o-cells. No statistically significant decrease in the GSH:GSSG in A549 and 16HBE14o-cell lines was observed for 4-AMCH [500 μM]. In addition, IPOH and 4-OPA [31.2 μM] increased the amount of the inflammatory markers: RANTES, VEGF and EGF. On the other hand, 4-AMCH [31.2 μM] did not show inflammatory effects in A549 or 16HBE14o-cells. The 4-OPA, IPOH and 4-AMCH treatment concentration and time-dependently induce oxidative stress and/or alteration of inflammatory markers on human bronchial and alveolar cell lines.
Collapse
Affiliation(s)
- Dorelia Lipsa
- Technische Universität München, Research Center Weihenstephan for Brewing and Food Quality, Alte Akademie 3, Freising-Weihenstephan, Germany; European Commission, DG Joint Research Centre, Ispra, Italy
| | | | - Mehmet Coelhan
- Technische Universität München, Research Center Weihenstephan for Brewing and Food Quality, Alte Akademie 3, Freising-Weihenstephan, Germany
| |
Collapse
|
40
|
Wells JR, Schoemaecker C, Carslaw N, Waring MS, Ham JE, Nelissen I, Wolkoff P. Reactive indoor air chemistry and health-A workshop summary. Int J Hyg Environ Health 2017; 220:1222-1229. [PMID: 28964679 PMCID: PMC6388628 DOI: 10.1016/j.ijheh.2017.09.009] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2017] [Revised: 09/18/2017] [Accepted: 09/22/2017] [Indexed: 12/23/2022]
Abstract
The chemical composition of indoor air changes due to the reactive nature of the indoor environment. Historically, only the stable parent compounds were investigated due to their ease of measurement by conventional methods. Today, however, scientists can better characterize oxidation products (gas and particulate-phase) formed by indoor chemistry. An understanding of occupant exposure can be developed through the investigation of indoor oxidants, the use of derivatization techniques, atmospheric pressure detection, the development of real-time technologies, and improved complex modeling techniques. Moreover, the connection between exposure and health effects is now receiving more attention from the research community. Nevertheless, a need still exists for improved understanding of the possible link between indoor air chemistry and observed acute or chronic health effects and long-term effects such as work-related asthma.
Collapse
Affiliation(s)
- J R Wells
- NIOSH/HELD/EAB, Morgantown, WV, USA.
| | | | - N Carslaw
- Environment Department, University of York, York, UK
| | - M S Waring
- Drexel University, Philadelphia, PA, USA
| | - J E Ham
- NIOSH/HELD/EAB, Morgantown, WV, USA
| | - I Nelissen
- Flemish Institute for Technological Research (VITO), Mol, Belgium
| | - P Wolkoff
- National Research Center for the Working Environment, Copenhagen, Denmark
| |
Collapse
|
41
|
Affiliation(s)
- Tunga Salthammer
- Fraunhofer WKI; Department of Material Analysis and Indoor Chemistry; Bienroder Weg 54 E 38108 Braunschweig Germany
| |
Collapse
|
42
|
Wolkoff P, Nielsen GD. Effects by inhalation of abundant fragrances in indoor air - An overview. ENVIRONMENT INTERNATIONAL 2017; 101:96-107. [PMID: 28126407 DOI: 10.1016/j.envint.2017.01.013] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/12/2016] [Revised: 12/30/2016] [Accepted: 01/18/2017] [Indexed: 06/06/2023]
Abstract
Odorous compounds (odors) like fragrances may cause adverse health effects. To assess their importance by inhalation, we have reviewed how the four major abundant and common airborne fragrances (α-pinene (APN), limonene (LIM), linalool (LIL), and eugenol (EUG)) impact the perceived indoor air quality as odor annoyance, sensory irritation and sensitization in the airways. Breathing and cardiovascular effects, and work performance, and the impact in the airways of ozone-initiated gas- and particle phase reactions products have also been assessed. Measured maximum indoor concentrations for APN, LIM and LIL are close to or above their odor thresholds, but far below their thresholds for sensory irritation in the eyes and upper airways; no information could be traced for EUG. Likewise, reported risk values for long-term effects are far above reported indoor concentrations. Human exposure studies with mixtures of APN and LIM and supported by animal inhalation models do not support sensitization of the airways at indoor levels by inhalation that include other selected fragrances. Human exposure studies, in general, indicate that reported lung function effects are likely due to the perception rather than toxic effects of the fragrances. In general, effects on the breathing rate and mood by exposure to the fragrances are inconclusive. The fragrances may increase the high-frequency heart rate variability, but aerosol exposure during cleaning activities may result in a reduction. Distractive effects influencing the work performance by fragrance/odor exposure are consistently reported, but their persistence over time is unknown. Mice inhalation studies indicate that LIM or its reaction mixture may possess anti-inflammatory properties. There is insufficient information that ozone-initiated reactions with APN or LIM at typical indoor levels cause airway effects in humans. Limited experimental information is available on long-term effects of ozone-initiated reaction products of APN and LIM at typical indoor levels.
Collapse
Affiliation(s)
- Peder Wolkoff
- National Research Centre for the Working Environment, Copenhagen Ø, Denmark.
| | - Gunnar D Nielsen
- National Research Centre for the Working Environment, Copenhagen Ø, Denmark
| |
Collapse
|
43
|
Lipsa D, Leva P, Barrero-Moreno J, Coelhan M. Inflammatory effects induced by selected limonene oxidation products: 4-OPA, IPOH, 4-AMCH in human bronchial (16HBE14o-) and alveolar (A549) epithelial cell lines. Toxicol Lett 2016; 262:70-79. [PMID: 27575568 DOI: 10.1016/j.toxlet.2016.08.023] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2016] [Revised: 08/24/2016] [Accepted: 08/25/2016] [Indexed: 12/24/2022]
Abstract
Limonene, a monoterpene abundantly present in most of the consumer products (due to its pleasant citrus smell), easily undergoes ozonolysis leading to several limonene oxidation products (LOPs) such as 4-acetyl-1-methylcyclohexene (4-AMCH), 4-oxopentanal (4-OPA) and 3-isopropenyl-6-oxoheptanal (IPOH). Toxicological studies have indicated that human exposure to limonene and ozone can cause adverse airway effects. However, little attention has been paid to the potential health impact of specific LOPs, in particular of IPOH, 4-OPA and 4-AMCH. This study evaluates the cytotoxic effects of the selected LOPs on human bronchial epithelial (16HBE14o-) and alveolar epithelial (A549) cell lines by generating concentration-response curves using the neutral red uptake assay and analyzing the inflammatory response with a series of cytokines/chemokines. The cellular viability was mostly reduced by 4-OPA [IC50=1.6mM (A549) and 1.45mM (16HBE14o-)] when compared to IPOH [IC50=3.5mM (A549) and 3.4mM (16HBE14o-)] and 4-AMCH [IC50 could not be calculated]. As a result from the inflammatory response, IPOH [50μM] induced an increase of both IL-6 and IL-8 secretion in A549 (1.5-fold change) and in 16HBE14o- (2.8- and 7-fold change respectively). 4-OPA [50μM] treatment of A549 increased IL-6 (1.4-times) and IL-8 (1.3-times) levels, while in 16HBE14o- had an opposite effect. A549 treated with 4-AMCH [50μM] elevate both IL-6 and IL-8 levels by 1.2-times, while in 16HBE14o- had an opposite effect. Based on our results, lung cellular injury characterized by inflammatory cytokine release was observed for both cell lines treated with the selected chemicals at concentrations that did not affect their cellular viability.
Collapse
Affiliation(s)
- Dorelia Lipsa
- Technische Universität München, Research Center Weihenstephan for Brewing and Food Quality, Alte Akademie 3, Freising-Weihenstephan, Germany; European Commission, Joint Research Centre, Institute for Health and Consumer Protection, Chemical Assessment and Testing Unit, Ispra (VA), Italy.
| | - Paolo Leva
- European Commission, Joint Research Centre, Institute for Health and Consumer Protection, Chemical Assessment and Testing Unit, Ispra (VA), Italy
| | - Josefa Barrero-Moreno
- European Commission, Joint Research Centre, Institute for Health and Consumer Protection, Chemical Assessment and Testing Unit, Ispra (VA), Italy
| | - Mehmet Coelhan
- Technische Universität München, Research Center Weihenstephan for Brewing and Food Quality, Alte Akademie 3, Freising-Weihenstephan, Germany
| |
Collapse
|
44
|
Hansen JS, Nørgaard AW, Koponen IK, Sørli JB, Paidi MD, Hansen SWK, Clausen PA, Nielsen GD, Wolkoff P, Larsen ST. Limonene and its ozone-initiated reaction products attenuate allergic lung inflammation in mice. J Immunotoxicol 2016; 13:793-803. [DOI: 10.1080/1547691x.2016.1195462] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Affiliation(s)
- Jitka S. Hansen
- The National Research Centre for the Working Environment, Copenhagen, Denmark
| | - Asger W. Nørgaard
- The National Research Centre for the Working Environment, Copenhagen, Denmark
| | - Ismo K. Koponen
- The National Research Centre for the Working Environment, Copenhagen, Denmark
| | - Jorid B. Sørli
- The National Research Centre for the Working Environment, Copenhagen, Denmark
| | - Maya D. Paidi
- The National Research Centre for the Working Environment, Copenhagen, Denmark
| | - Søren W. K. Hansen
- Institute of Molecular Medicine, University of Southern Denmark, Odense, Denmark
| | - Per Axel Clausen
- The National Research Centre for the Working Environment, Copenhagen, Denmark
| | - Gunnar D. Nielsen
- The National Research Centre for the Working Environment, Copenhagen, Denmark
| | - Peder Wolkoff
- The National Research Centre for the Working Environment, Copenhagen, Denmark
| | - Søren Thor Larsen
- The National Research Centre for the Working Environment, Copenhagen, Denmark
| |
Collapse
|
45
|
Wolkoff P, Crump DR, Harrison PTC. Pollutant exposures and health symptoms in aircrew and office workers: Is there a link? ENVIRONMENT INTERNATIONAL 2016; 87:74-84. [PMID: 26641522 DOI: 10.1016/j.envint.2015.11.008] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/03/2015] [Revised: 11/04/2015] [Accepted: 11/09/2015] [Indexed: 06/05/2023]
Abstract
Sensory effects in eyes and airways are common symptoms reported by aircraft crew and office workers. Neurological symptoms, such as headache, have also been reported. To assess the commonality and differences in exposures and health symptoms, a literature search of aircraft cabin and office air concentrations of non-reactive volatile organic compounds (VOCs) and ozone-initiated terpene reaction products were compiled and assessed. Data for tricresyl phosphates, in particular tri-ortho-cresyl phosphate (ToCP), were also compiled, as well as information on other risk factors such as low relative humidity. A conservative health risk assessment for eye, airway and neurological effects was undertaken based on a "worst-case scenario" which assumed a simultaneous constant exposure for 8h to identified maximum concentrations in aircraft and offices. This used guidelines and reference values for sensory irritation for eyes and upper airways and airflow limitation; a tolerable daily intake value was used for ToCP. The assessment involved the use of hazard quotients or indexes, defined as the summed ratio(s) (%) of compound concentration(s) divided by their guideline value(s). The concentration data suggest that, under the assumption of a conservative "worst-case scenario", aircraft air and office concentrations of the compounds in question are not likely to be associated with sensory symptoms in eyes and airways. This is supported by the fact that maximum concentrations are, in general, associated with infrequent incidents and brief exposures. Sensory symptoms, in particular in eyes, appear to be exacerbated by environmental and occupational conditions that differ in aircraft and offices, e.g., ozone incidents, low relative humidity, low cabin pressure, and visual display unit work. The data do not support airflow limitation effects. For ToCP, in view of the conservative approach adopted here and the rareness of reported incidents, the health risk of exposure to this compound in aircraft is considered negligible.
Collapse
Affiliation(s)
- Peder Wolkoff
- National Research Centre for the Working Environment, Denmark.
| | | | | |
Collapse
|
46
|
|
47
|
Rösch C, Wissenbach DK, von Bergen M, Franck U, Wendisch M, Schlink U. The lasting effect of limonene-induced particle formation on air quality in a genuine indoor environment. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2015; 22:14209-14219. [PMID: 25966888 DOI: 10.1007/s11356-015-4663-8] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/24/2014] [Accepted: 05/04/2015] [Indexed: 06/04/2023]
Abstract
Atmospheric ozone-terpene reactions, which form secondary organic aerosol (SOA) particles, can affect indoor air quality when outdoor air mixes with indoor air during ventilation. This study, conducted in Leipzig, Germany, focused on limonene-induced particle formation in a genuine indoor environment (24 m(3)). Particle number, limonene and ozone concentrations were monitored during the whole experimental period. After manual ventilation for 30 min, during which indoor ozone levels reached up to 22.7 ppb, limonene was introduced into the room at concentrations of approximately 180 to 250 μg m(-3). We observed strong particle formation and growth within a diameter range of 9 to 50 nm under real-room conditions. Larger particles with diameters above 100 nm were less affected by limonene introduction. The total particle number concentrations (TPNCs) after limonene introduction clearly exceed outdoor values by a factor of 4.5 to 41 reaching maximum concentrations of up to 267,000 particles cm(-3). The formation strength was influenced by background particles, which attenuated the formation of new SOA with increasing concentration, and by ozone levels, an increase of which by 10 ppb will result in a six times higher TPNC. This study emphasizes indoor environments to be preferred locations for particle formation and growth after ventilation events. As a consequence, SOA formation can produce significantly higher amounts of particles than transported by ventilation into the indoor air.
Collapse
Affiliation(s)
- Carolin Rösch
- Department of Urban and Environmental Sociology, Helmholtz Centre for Environmental Research - UFZ, Permoserstrasse 15, 04318, Leipzig, Germany,
| | | | | | | | | | | |
Collapse
|
48
|
Farmer SA, Nelin TD, Falvo MJ, Wold LE. Ambient and household air pollution: complex triggers of disease. Am J Physiol Heart Circ Physiol 2015; 307:H467-76. [PMID: 24929855 DOI: 10.1152/ajpheart.00235.2014] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
Concentrations of outdoor air pollution are on the rise, particularly due to rapid urbanization worldwide. Alternatively, poor ventilation, cigarette smoke, and other toxic chemicals contribute to rising concentrations of indoor air pollution. The World Health Organization recently reported that deaths attributable to indoor and outdoor air pollutant exposure are more than double what was originally documented. Epidemiological, clinical, and animal data have demonstrated a clear connection between rising concentrations of air pollution (both indoor and outdoor) and a host of adverse health effects. During the past five years, animal, clinical, and epidemiological studies have explored the adverse health effects associated with exposure to both indoor and outdoor air pollutants throughout the various stages of life. This review provides a summary of the detrimental effects of air pollution through examination of current animal, clinical, and epidemiological studies and exposure during three different periods: maternal (in utero), early life, and adulthood. Additionally, we recommend future lines of research while suggesting conceivable strategies to curb exposure to indoor and outdoor air pollutants.
Collapse
|
49
|
Bekö G, Allen JG, Weschler CJ, Vallarino J, Spengler JD. Impact of cabin ozone concentrations on passenger reported symptoms in commercial aircraft. PLoS One 2015; 10:e0128454. [PMID: 26011001 PMCID: PMC4444275 DOI: 10.1371/journal.pone.0128454] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2014] [Accepted: 04/27/2015] [Indexed: 11/20/2022] Open
Abstract
Due to elevated ozone concentrations at high altitudes, the adverse effect of ozone on air quality, human perception and health may be more pronounced in aircraft cabins. The association between ozone and passenger-reported symptoms has not been investigated under real conditions since smoking was banned on aircraft and ozone converters became more common. Indoor environmental parameters were measured at cruising altitude on 83 US domestic and international flights. Passengers completed a questionnaire about symptoms and satisfaction with the indoor air quality. Average ozone concentrations were relatively low (median: 9.5 ppb). On thirteen flights (16%) ozone levels exceeded 60 ppb, while the highest peak level reached 256 ppb for a single flight. The most commonly reported symptoms were dry mouth or lips (26%), dry eyes (22.1%) and nasal stuffiness (18.9%). 46% of passengers reported at least one symptom related to the eyes or mouth. A third of the passengers reported at least one upper respiratory symptom. Using multivariate logistic (individual symptoms) and linear (aggregated continuous symptom variables) regression, ozone was consistently associated with symptoms related to the eyes and certain upper respiratory endpoints. A concentration-response relationship was observed for nasal stuffiness and eye and upper respiratory symptom indicators. Average ozone levels, as opposed to peak concentrations, exhibited slightly weaker associations. Medium and long duration flights were significantly associated with more symptoms compared to short flights. The relationship between ultrafine particles and ozone on flights without meal service was indicative of ozone-initiated chemistry.
Collapse
Affiliation(s)
- Gabriel Bekö
- International Centre for Indoor Environment and Energy, Department of Civil Engineering, Technical University of Denmark, Lyngby, Denmark
| | - Joseph G. Allen
- Department of Environmental Health, Harvard School of Public Health, Boston, Massachusetts, United States of America
| | - Charles J. Weschler
- International Centre for Indoor Environment and Energy, Department of Civil Engineering, Technical University of Denmark, Lyngby, Denmark
- Environmental and Occupational Health Sciences Institute, Rutgers University, Piscataway, New Jersey, United States of America
| | - Jose Vallarino
- Department of Environmental Health, Harvard School of Public Health, Boston, Massachusetts, United States of America
| | - John D. Spengler
- Department of Environmental Health, Harvard School of Public Health, Boston, Massachusetts, United States of America
| |
Collapse
|
50
|
Gall ET, Siegel JA, Corsi RL. Modeling ozone removal to indoor materials, including the effects of porosity, pore diameter, and thickness. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2015; 49:4398-406. [PMID: 25748309 DOI: 10.1021/acs.est.5b00023] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/13/2023]
Abstract
We develop an ozone transport and reaction model to determine reaction probabilities and assess the importance of physical properties such as porosity, pore diameter, and material thickness on reactive uptake of ozone to five materials. The one-dimensional model accounts for molecular diffusion from bulk air to the air-material interface, reaction at the interface, and diffusive transport and reaction through material pore volumes. Material-ozone reaction probabilities that account for internal transport and internal pore area, γ(ipa), are determined by a minimization of residuals between predicted and experimentally derived ozone concentrations. Values of γ(ipa) are generally less than effective reaction probabilities (γ(eff)) determined previously, likely because of the inclusion of diffusion into substrates and reaction with internal surface area (rather than the use of the horizontally projected external material areas). Estimates of γ(ipa) average 1 × 10(-7), 2 × 10(-7), 4 × 10(-5), 2 × 10(-5), and 4 × 10(-7) for two types of cellulose paper, pervious pavement, Portland cement concrete, and an activated carbon cloth, respectively. The transport and reaction model developed here accounts for observed differences in ozone removal to varying thicknesses of the cellulose paper, and estimates a near constant γ(ipa) as material thickness increases from 0.02 to 0.16 cm.
Collapse
Affiliation(s)
- Elliott T Gall
- †Nanyang Technological University and Berkeley Education Alliance for Research in Singapore, 1 Create Way #11-01 Create Tower, Singapore, 138602
| | - Jeffrey A Siegel
- ‡Department of Civil Engineering and Dalla Lana School of Public Health, University of Toronto, 35 St. George St., Toronto, Ontario M5S 1A4, Canada
| | - Richard L Corsi
- §Department of Civil, Architectural and Environmental Engineering, Cockrell School of Engineering, The University of Texas at Austin, 1 University Station C1786, Austin, Texas 78712, United States
| |
Collapse
|