1
|
Emir SM, Karaoğlan BS, Kaşmer R, Şirin HB, Sarıyıldız B, Karakaş N. Hunting glioblastoma recurrence: glioma stem cells as retrospective targets. Am J Physiol Cell Physiol 2025; 328:C1045-C1061. [PMID: 39818986 DOI: 10.1152/ajpcell.00344.2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2024] [Revised: 06/11/2024] [Accepted: 01/07/2025] [Indexed: 01/19/2025]
Abstract
Glioblastoma (GBM) remains one of the most aggressive and treatment-resistant brain malignancies in adults. Standard approaches, including surgical resection followed by adjuvant radio- and chemotherapy with temozolomide (TMZ), provide only transient control, as GBM frequently recurs due to its infiltrative nature and the presence of therapy-resistant subpopulations such as glioma stem cells (GSCs). GSCs, with their quiescent state and robust resistance mechanisms, evade conventional therapies, contributing significantly to relapse. Consequently, current treatment methods for GBM face significant limitations in effectively targeting GSCs. In this review, we emphasize the relationship between GBM recurrence and GSCs, discuss the current limitations, and provide future perspectives to overwhelm the challenges associated with targeting GSCs. Eliminating GSCs may suppress recurrence, achieve durable responses, and improve therapeutic outcomes for patients with GBM.
Collapse
Affiliation(s)
- Sümeyra Mengüç Emir
- Cancer Research Center, Research Institute for Health Sciences and Technologies (SABITA), İstanbul Medipol University, Istanbul, Türkiye
| | - Birnur Sinem Karaoğlan
- Cancer Research Center, Research Institute for Health Sciences and Technologies (SABITA), İstanbul Medipol University, Istanbul, Türkiye
| | - Ramazan Kaşmer
- Cancer Research Center, Research Institute for Health Sciences and Technologies (SABITA), İstanbul Medipol University, Istanbul, Türkiye
| | - Hilal Buse Şirin
- Cancer Research Center, Research Institute for Health Sciences and Technologies (SABITA), İstanbul Medipol University, Istanbul, Türkiye
| | - Batuhan Sarıyıldız
- Cancer Research Center, Research Institute for Health Sciences and Technologies (SABITA), İstanbul Medipol University, Istanbul, Türkiye
| | - Nihal Karakaş
- Cancer Research Center, Research Institute for Health Sciences and Technologies (SABITA), İstanbul Medipol University, Istanbul, Türkiye
- Department of Medical Biology, International School of Medicine, İstanbul Medipol University, Istanbul, Türkiye
| |
Collapse
|
2
|
Chmelyuk N, Kordyukova M, Sorokina M, Sinyavskiy S, Meshcheryakova V, Belousov V, Abakumova T. Inhibition of Thioredoxin-Reductase by Auranofin as a Pro-Oxidant Anticancer Strategy for Glioblastoma: In Vitro and In Vivo Studies. Int J Mol Sci 2025; 26:2084. [PMID: 40076706 PMCID: PMC11900239 DOI: 10.3390/ijms26052084] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2025] [Revised: 02/19/2025] [Accepted: 02/20/2025] [Indexed: 03/14/2025] Open
Abstract
Reactive oxygen species (ROS) play a key role in cancer progression and antitumor therapy. Glioblastoma is a highly heterogeneous tumor with different cell populations exhibiting various redox statuses. Elevated ROS levels in cancer cells promote tumor growth and simultaneously make them more sensitive to anticancer drugs, but further elevation leads to cell death and apoptosis. Meanwhile, various subsets of tumor cells, such a glioblastoma stem cells (GSC) or the cells in tumor microenvironment (TME), demonstrate adaptive mechanisms to excessive ROS production by developing effective antioxidant systems such as glutathione- and thioredoxin-dependent. GSCs demonstrate higher chemoresistance and lower ROS levels than other glioma cells, while TME cells create a pro-oxidative environment and have immunosuppressive effects. Both subpopulations have become an attractive target for developing therapies. Increased expression of thioredoxin reductase (TrxR) is often associated with tumor progression and poor patient survival. Various TrxR inhibitors have been investigated as potential anticancer therapies, including nitrosoureas, flavonoids and metallic complexes. Gold derivatives are irreversible inhibitors of TrxR. Among them, auranofin (AF), a selective TrxR inhibitor, has proven its effectiveness as a drug for the treatment of rheumatoid arthritis and its efficacy as an anticancer agent has been demonstrated in preclinical studies in vitro and in vivo. However, further clinical application of AF could be challenging due to the low solubility and insufficient delivery to glioblastoma. Different delivery strategies for hydrophobic drugs could be used to increase the concentration of AF in the brain. Combining different therapeutic approaches that affect the redox status of various glioma cell populations could become a new strategy for treating brain tumor diseases.
Collapse
Affiliation(s)
- Nelly Chmelyuk
- Department of Synthetic Neurotechnologies, Pirogov Russian National Research Medical University, 117997 Moscow, Russia
- Laboratory of Biomedical nanomaterials, National Research Technological University “MISIS”, Leninskiy Prospekt 4, 119049 Moscow, Russia
| | - Maria Kordyukova
- Neurotechnology Laboratory, Federal Center of Brain Research and Neurotechnologies, Federal Medical Biological Agency, 117513 Moscow, Russia
| | - Maria Sorokina
- Department of Synthetic Neurotechnologies, Pirogov Russian National Research Medical University, 117997 Moscow, Russia
- Neurotechnology Laboratory, Federal Center of Brain Research and Neurotechnologies, Federal Medical Biological Agency, 117513 Moscow, Russia
| | - Semyon Sinyavskiy
- Department of Synthetic Neurotechnologies, Pirogov Russian National Research Medical University, 117997 Moscow, Russia
| | - Valeriya Meshcheryakova
- Department of Synthetic Neurotechnologies, Pirogov Russian National Research Medical University, 117997 Moscow, Russia
| | - Vsevolod Belousov
- Department of Synthetic Neurotechnologies, Pirogov Russian National Research Medical University, 117997 Moscow, Russia
- Neurotechnology Laboratory, Federal Center of Brain Research and Neurotechnologies, Federal Medical Biological Agency, 117513 Moscow, Russia
| | - Tatiana Abakumova
- Department of Synthetic Neurotechnologies, Pirogov Russian National Research Medical University, 117997 Moscow, Russia
| |
Collapse
|
3
|
Yuan B, Kikuchi H. Harnessing Arsenic Derivatives and Natural Agents for Enhanced Glioblastoma Therapy. Cells 2024; 13:2138. [PMID: 39768226 PMCID: PMC11674460 DOI: 10.3390/cells13242138] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2024] [Revised: 12/17/2024] [Accepted: 12/21/2024] [Indexed: 01/05/2025] Open
Abstract
Glioblastoma (GBM) is the most common and lethal intracranial tumor in adults. Despite advances in the understanding of the molecular events responsible for disease development and progression, survival rates and mortality statistics for GBM patients have been virtually unchanged for decades and chemotherapeutic drugs used to treat GBM are limited. Arsenic derivatives, known as highly effective anticancer agents for leukemia therapy, has been demonstrated to exhibit cytocidal effects toward GBM cells by inducing cell death, cell cycle arrest, inhibition of migration/invasion, and angiogenesis. Differentiation induction of glioma stem-like cells (GSCs) and inhibition of neurosphere formation have also been attributed to the cytotoxicity of arsenic derivatives. Intriguingly, similar cytotoxic effects against GBM cells and GSCs have also been observed in natural agents such as anthocyanidins, tetrandrine, and bufadienolides. In the current review, we highlight the available data on the molecular mechanisms underlying the multifaceted anticancer activity of arsenic compounds and natural agents against cancer cells, especially focusing on GBM cells and GCSs. We also outline possible strategies for developing anticancer therapy by combining natural agents and arsenic compounds, as well as temozolomide, an alkylating agent used to treat GBM, in terms of improvement of chemotherapy sensitivity and minimization of side effects.
Collapse
Affiliation(s)
- Bo Yuan
- Laboratory of Pharmacology, Graduate School of Pharmaceutical Sciences, Josai University, Keyakidai, Sakado 350-0295, Saitama, Japan
| | - Hidetomo Kikuchi
- Laboratory of Pharmacotherapy, Graduate School of Pharmaceutical Sciences, Josai University, Keyakidai, Sakado 350-0295, Saitama, Japan;
| |
Collapse
|
4
|
Komorowicz I, Hanć A. Can arsenic do anything good? Arsenic nanodrugs in the fight against cancer - last decade review. Talanta 2024; 276:126240. [PMID: 38754186 DOI: 10.1016/j.talanta.2024.126240] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2024] [Revised: 05/07/2024] [Accepted: 05/09/2024] [Indexed: 05/18/2024]
Abstract
Arsenic has been an element of great interest among scientists for many years as it is a widespread metalloid in our ecosystem. Arsenic is mostly recognized with negative connotations due to its toxicity. Surely, most of us know that a long time ago, arsenic trioxide was used in medicine to treat, mainly, skin diseases. However, not everyone knows about its very wide and promising use in the treatment of cancer. Initially, in the seventies, it was used to treat leukemia, but new technological possibilities and the development of nanotechnology have made it possible to use arsenic trioxide for the treatment of solid tumours. The most toxic arsenic compound - arsenic trioxide - as the basis of anticancer drugs in which they function as a component of nanoparticles is used in the fight against various types of cancer. This review aims to present the current solutions in various cancer treatment using arsenic compounds with different binding motifs and methods of preparation to create targeted nanoparticles, nanodiamonds, nanohybrids, nanodrugs, or nanovehicles.
Collapse
Affiliation(s)
- Izabela Komorowicz
- Department of Trace Analysis, Faculty of Chemistry, Adam Mickiewicz University in Poznań, 8 Uniwersytetu Poznańskiego Street, 61-614, Poznań, Poland.
| | - Anetta Hanć
- Department of Trace Analysis, Faculty of Chemistry, Adam Mickiewicz University in Poznań, 8 Uniwersytetu Poznańskiego Street, 61-614, Poznań, Poland
| |
Collapse
|
5
|
Wang S, Gu S, Chen J, Yuan Z, Liang P, Cui H. Mechanism of Notch Signaling Pathway in Malignant Progression of Glioblastoma and Targeted Therapy. Biomolecules 2024; 14:480. [PMID: 38672496 PMCID: PMC11048644 DOI: 10.3390/biom14040480] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2024] [Revised: 04/04/2024] [Accepted: 04/08/2024] [Indexed: 04/28/2024] Open
Abstract
Glioblastoma multiforme (GBM) is the most aggressive form of glioma and the most common primary tumor of the central nervous system. Despite significant advances in clinical management strategies and diagnostic techniques for GBM in recent years, it remains a fatal disease. The current standard of care includes surgery, radiation, and chemotherapy, but the five-year survival rate for patients is less than 5%. The search for a more precise diagnosis and earlier intervention remains a critical and urgent challenge in clinical practice. The Notch signaling pathway is a critical signaling system that has been extensively studied in the malignant progression of glioblastoma. This highly conserved signaling cascade is central to a variety of biological processes, including growth, proliferation, self-renewal, migration, apoptosis, and metabolism. In GBM, accumulating data suggest that the Notch signaling pathway is hyperactive and contributes to GBM initiation, progression, and treatment resistance. This review summarizes the biological functions and molecular mechanisms of the Notch signaling pathway in GBM, as well as some clinical advances targeting the Notch signaling pathway in cancer and glioblastoma, highlighting its potential as a focus for novel therapeutic strategies.
Collapse
Affiliation(s)
- Shenghao Wang
- Cancer Center, Medical Research Institute, Southwest University, Chongqing 400716, China;
| | - Sikuan Gu
- State Key Laboratory of Resource Insects, Southwest University, Chongqing 400716, China; (S.G.); (J.C.); (Z.Y.)
| | - Junfan Chen
- State Key Laboratory of Resource Insects, Southwest University, Chongqing 400716, China; (S.G.); (J.C.); (Z.Y.)
| | - Zhiqiang Yuan
- State Key Laboratory of Resource Insects, Southwest University, Chongqing 400716, China; (S.G.); (J.C.); (Z.Y.)
| | - Ping Liang
- Department of Neurosurgery, Children’s Hospital of Chongqing Medical University, Chongqing 400014, China
| | - Hongjuan Cui
- Cancer Center, Medical Research Institute, Southwest University, Chongqing 400716, China;
- State Key Laboratory of Resource Insects, Southwest University, Chongqing 400716, China; (S.G.); (J.C.); (Z.Y.)
- Department of Neurosurgery, Children’s Hospital of Chongqing Medical University, Chongqing 400014, China
| |
Collapse
|
6
|
Shahcheraghi SH, Asl ER, Lotfi M, Ayatollahi J, Khaleghinejad SH, Aljabali AAA, Bakshi HA, El-Tanani M, Charbe NB, Serrano-Aroca Á, Mishra V, Mishra Y, Goyal R, Hromić-Jahjefendić A, Uversky VN, Lotfi M, Tambuwala MM. Non-coding RNAs as Key Regulators of the Notch Signaling Pathway in Glioblastoma: Diagnostic, Prognostic, and Therapeutic Targets. CNS & NEUROLOGICAL DISORDERS DRUG TARGETS 2024; 23:1203-1216. [PMID: 38279763 DOI: 10.2174/0118715273277458231213063147] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/02/2023] [Revised: 10/20/2023] [Accepted: 10/31/2023] [Indexed: 01/28/2024]
Abstract
Glioblastoma multiforme (GBM) is a highly invasive brain malignancy originating from astrocytes, accounting for approximately 30% of central nervous system malignancies. Despite advancements in therapeutic strategies including surgery, chemotherapy, and radiopharmaceutical drugs, the prognosis for GBM patients remains dismal. The aggressive nature of GBM necessitates the identification of molecular targets and the exploration of effective treatments to inhibit its proliferation. The Notch signaling pathway, which plays a critical role in cellular homeostasis, becomes deregulated in GBM, leading to increased expression of pathway target genes such as MYC, Hes1, and Hey1, thereby promoting cellular proliferation and differentiation. Recent research has highlighted the regulatory role of non-coding RNAs (ncRNAs) in modulating Notch signaling by targeting critical mRNA expression at the post-transcriptional or transcriptional levels. Specifically, various types of ncRNAs, including long non-coding RNAs (lncRNAs) and microRNAs (miRNAs), have been shown to control multiple target genes and significantly contribute to the carcinogenesis of GBM. Furthermore, these ncRNAs hold promise as prognostic and predictive markers for GBM. This review aims to summarize the latest studies investigating the regulatory effects of ncRNAs on the Notch signaling pathway in GBM.
Collapse
Affiliation(s)
- Seyed Hossein Shahcheraghi
- Department of Medical Genetics, School of Medicine, Shahid Sadoughi University of Medical Sciences, Yazd, Iran
- Infectious Diseases Research Center, Shahid Sadoughi Hospital, Shahid Sadoughi University of Medical Sciences, Yazd, Iran
| | - Elmira Roshani Asl
- Social Determinants of Health Research Center, Saveh University of Medical Sciences, Saveh, Iran
| | - Malihe Lotfi
- Department of Medical Genetics and Molecular Medicine, School of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Jamshid Ayatollahi
- Infectious Diseases Research Center, Shahid Sadoughi Hospital, Shahid Sadoughi University of Medical Sciences, Yazd, Iran
- Hematology and Oncology Research Center, Shahid Sadoughi University of Medical Sciences, Yazd, Iran
| | | | - Alaa A A Aljabali
- Department of Pharmaceutics and Pharmaceutical Technology, Yarmouk University, Irbid, Jordan
| | - Hamid A Bakshi
- The Hormel Institute, University of Minnesota, Austin, MN 55912, USA
| | - Mohamed El-Tanani
- Ras Al Khaimah Medical and Health Sciences University, Ras Al Khaimah, United Arab Emirates
| | - Nitin B Charbe
- Center for Pharmacometrics & Systems Pharmacology, Department of Pharmaceutics (Lake Nona), University of Florida, Orlando, FL, USA
| | - Ángel Serrano-Aroca
- Biomaterials & Bioengineering Lab, Centro de Investigación Traslacional San Alberto Magno, Universidad Católica de Valencia, San Vicente Mártir, Valencia, 46001, Spain
| | - Vijay Mishra
- School of Pharmaceutical Sciences, Lovely Professional University, Phagwara, Punjab, 144411, India
| | - Yachana Mishra
- Department of Zoology, School of Bioengineering and Biosciences, Lovely Professional University, Phagwara, Punjab, 144411, India
| | - Rohit Goyal
- School of Pharmaceutical Sciences, Shoolini University of Biotechnology & Management Sciences, Solan, India
| | - Altijana Hromić-Jahjefendić
- Department of Genetics and Bioengineering, Faculty of Engineering and Natural Sciences, International University of Sarajevo, Hrasnicka cesta 15, 71000 Sarajevo, Bosnia and Herzegovina
| | - Vladimir N Uversky
- Department of Molecular Medicine and USF Health Byrd Alzheimer's Institute, Morsani College of Medicine, University of South Florida, Tampa, FL 33612, USA
| | - Marzieh Lotfi
- Abortion Research Center, Reproductive Sciences Institute, Shahid Sadoughi University of Medical Sciences, Yazd, Iran
| | - Murtaza M Tambuwala
- Lincoln Medical School, University of Lincoln, Brayford Pool Campus, Lincoln LN6 7TS, UK
| |
Collapse
|
7
|
Current Opportunities for Targeting Dysregulated Neurodevelopmental Signaling Pathways in Glioblastoma. Cells 2022; 11:cells11162530. [PMID: 36010607 PMCID: PMC9406959 DOI: 10.3390/cells11162530] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2022] [Revised: 08/06/2022] [Accepted: 08/09/2022] [Indexed: 11/29/2022] Open
Abstract
Glioblastoma (GBM) is the most common and highly lethal type of brain tumor, with poor survival despite advances in understanding its complexity. After current standard therapeutic treatment, including tumor resection, radiotherapy and concomitant chemotherapy with temozolomide, the median overall survival of patients with this type of tumor is less than 15 months. Thus, there is an urgent need for new insights into GBM molecular characteristics and progress in targeted therapy in order to improve clinical outcomes. The literature data revealed that a number of different signaling pathways are dysregulated in GBM. In this review, we intended to summarize and discuss current literature data and therapeutic modalities focused on targeting dysregulated signaling pathways in GBM. A better understanding of opportunities for targeting signaling pathways that influences malignant behavior of GBM cells might open the way for the development of novel GBM-targeted therapies.
Collapse
|
8
|
Yang MH, Li B, Chang KJ. Notch pathway inhibition mediated by arsenic trioxide depletes tumor initiating cells in small cell lung cancer. Mol Biol Rep 2022; 49:2245-2253. [PMID: 35028858 DOI: 10.1007/s11033-021-07046-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2021] [Accepted: 12/02/2021] [Indexed: 11/27/2022]
Abstract
BACKGROUND Small cell lung cancer (SCLC) is the most malignant type of lung cancer. We previously reported that arsenic trioxide (As2O3) inhibited tumor initiating cells (TICs) of SCLC in vitro. In the present study, we aimed to identify the above effect in vivo and shed light on its underlying mechanism. METHODS AND RESULTS TICs were enriched by culturing human SCLC cell line as sphere cells in specified serum-free medium. The expression of stem cell markers, CD133 and CD44, and the in vivo tumorigenicity of both TICs and their parental cells were examined. To demonstrate the inhibitory effect of As2O3 on TICs, cell proliferation, clone formation and sphere formation assays were performed. CD133 and Notch pathway-related factors were also measured after As2O3 treatment. Xenograft models were established by injecting TICs into nude mice. Mice were treated with As2O3 for 14 days. Afterwards, the tumor volume and the expression of CD133 and Notch1 were evaluated. TICs obtained by the above-mentioned method showed elevated levels of stem cell markers and increased tumorigenicity compared with their parental cells. As2O3 treatment largely inhibited TICs proliferation, sphere formation and clonogenic capacity. As2O3 also reduced the expression of CD133 and down-regulated Notch pathway in TICs. Furthermore, As2O3 potently inhibited tumor growth, decreased the expression of CD133 and down-regulated Notch1 in tumors originating from TICs. CONCLUSIONS Our data demonstrate that As2O3 has a remarkable inhibitory effect on TICs of SCLC both in vitro and in vivo, and the mechanism might involve the down-regulation of Notch pathway.
Collapse
Affiliation(s)
- Meng-Hang Yang
- Department of Oncology, Shanghai Pulmonary Hospital, School of Medicine, Tongji University, Shanghai, 200433, China
| | - Bing Li
- Department of Respiratory and Critical Care Medicine, Shanghai Fourth People's Hospital, School of Medicine, Tongji University, Shanghai, 200434, China. .,Department of Respiratory and Critical Care Medicine, Changzheng Hospital, Naval Medical University, Shanghai, 200003, China.
| | - Ke-Jie Chang
- Department of Thoracic Oncology, Cancer Center of the Fifth Affiliated Hospital of Sun Yat-Sen University, Zhuhai, 519000, Guangdong, China.
| |
Collapse
|
9
|
Medeiros M, Candido MF, Valera ET, Brassesco MS. The multifaceted NF-kB: are there still prospects of its inhibition for clinical intervention in pediatric central nervous system tumors? Cell Mol Life Sci 2021; 78:6161-6200. [PMID: 34333711 PMCID: PMC11072991 DOI: 10.1007/s00018-021-03906-7] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2021] [Revised: 07/20/2021] [Accepted: 07/23/2021] [Indexed: 12/16/2022]
Abstract
Despite advances in the understanding of the molecular mechanisms underlying the basic biology and pathogenesis of pediatric central nervous system (CNS) malignancies, patients still have an extremely unfavorable prognosis. Over the years, a plethora of natural and synthetic compounds has emerged for the pharmacologic intervention of the NF-kB pathway, one of the most frequently dysregulated signaling cascades in human cancer with key roles in cell growth, survival, and therapy resistance. Here, we provide a review about the state-of-the-art concerning the dysregulation of this hub transcription factor in the most prevalent pediatric CNS tumors: glioma, medulloblastoma, and ependymoma. Moreover, we compile the available literature on the anti-proliferative effects of varied NF-kB inhibitors acting alone or in combination with other therapies in vitro, in vivo, and clinical trials. As the wealth of basic research data continues to accumulate, recognizing NF-kB as a therapeutic target may provide important insights to treat these diseases, hopefully contributing to increase cure rates and lower side effects related to therapy.
Collapse
Affiliation(s)
- Mariana Medeiros
- Department of Cell Biology, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, São Paulo, Brazil
| | - Marina Ferreira Candido
- Department of Cell Biology, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, São Paulo, Brazil
| | - Elvis Terci Valera
- Department of Pediatrics, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, São Paulo, Brazil
| | - María Sol Brassesco
- Department of Biology, Faculty of Philosophy, Sciences and Letters at Ribeirão Preto, FFCLRP-USP, University of São Paulo, Av. Bandeirantes, 3900, Bairro Monte Alegre, Ribeirão Preto, São Paulo, CEP 14040-901, Brazil.
| |
Collapse
|
10
|
Fang Y, Zhang Z. Arsenic trioxide as a novel anti-glioma drug: a review. Cell Mol Biol Lett 2020; 25:44. [PMID: 32983240 PMCID: PMC7517624 DOI: 10.1186/s11658-020-00236-7] [Citation(s) in RCA: 36] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2020] [Accepted: 09/15/2020] [Indexed: 02/08/2023] Open
Abstract
Arsenic trioxide has shown a strong anti-tumor effect with little toxicity when used in the treatment of acute promyelocytic leukemia (APL). An effect on glioma has also been shown. Its mechanisms include regulation of apoptosis and autophagy; promotion of the intracellular production of reactive oxygen species, causing oxidative damage; and inhibition of tumor stem cells. However, glioma cells and tissues from other sources show different responses to arsenic trioxide. Researchers are working to enhance its efficacy in anti-glioma treatments and reducing any adverse reactions. Here, we review recent research on the efficacy and mechanisms of action of arsenic trioxide in the treatment of gliomas to provide guidance for future studies.
Collapse
Affiliation(s)
- Yi Fang
- Department of Ultrasound, First Affiliated Hospital of China Medical University, Shenyang, 110001 Liaoning People's Republic of China
| | - Zhen Zhang
- Department of Ultrasound, First Affiliated Hospital of China Medical University, Shenyang, 110001 Liaoning People's Republic of China
| |
Collapse
|
11
|
Chang KJ, Yin JZ, Huang H, Li B, Yang MH. Arsenic trioxide inhibits the growth of cancer stem cells derived from small cell lung cancer by downregulating stem cell-maintenance factors and inducing apoptosis via the Hedgehog signaling blockade. Transl Lung Cancer Res 2020; 9:1379-1396. [PMID: 32953511 PMCID: PMC7481635 DOI: 10.21037/tlcr-20-467] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Background Small cell lung cancer (SCLC) is the most deadly and aggressive type of primary lung cancer, with the 5-year survival rate lower than 5%. The FDA has approved arsenic trioxide (As2O3) for acute promyelocytic leukemia (APL) treatment. However, its role in SCLC-derived cancer stem cells (CSCs) remains largely unknown. Methods CSCs were enriched from SCLC cell lines by culturing them as spheres in conditioned serum-free medium. Then, qPCR, western blot, serial passage, limiting dilution, Transwell, and tumorigenesis assay were performed to verify the cells' stem phenotypic characteristics. Anticancer efficiency of As2O3 was assessed in these cells using CCK8, colony formation, sphere formation, flow cytometry, qPCR, western blot analysis in vitro, and tumor growth curve, immunofluorescence, and TUNEL staining analyses in vivo. Results The fifth-passage SCLC spheres showed a potent self-renewal capacity, higher clonal formation efficiency (CFE), SOX2, c-Myc, NANOG, and OCT4 levels, and invasion ability, and stronger tumorigenesis capacity than the parental SCLC cells, indicating that the SCLC sphere cells displayed CSC features. As2O3 inhibited the proliferation, clonality and sphere forming ability of SCLC-derived CSCs and suppressed the tumor growth of CSCs-derived xenograft tumors. As2O3 induced apoptosis and downregulation of SOX2 and c-Myc in vitro and in xenografts. Besides, SOX2 knockdown suppressed SCLC-derived CSCs to self-renew and induced apoptosis. Mechanistically, expression of GLI1 (a key transcription factor of Hedgehog pathway) and its downstream genes increased in SCLC-derived CSCs, compared to the parental cells. As2O3 dramatically downregulated GLI1 and its downstream genes in vitro and in vivo. The GLI inhibitor (GANT-61) recapitulated and enhanced the effects of As2O3 on SCLC-derived CSCs, including growth suppression, apoptosis induction, and GLI1, SOX2 and c-Myc downregulation. Conclusions Altogether, As2O3 effectively suppressed SCLC-derived CSCs growth by downregulating stem cell-maintenance factors and inducing apoptosis. These effects are mediated at least partly via the Hedgehog signaling blockade.
Collapse
Affiliation(s)
- Ke-Jie Chang
- Department of Respiratory and Critical Care Medicine, Changzheng Hospital, Second Military Medical University, Shanghai, China.,Department of Medical Oncology, The Fifth Affiliated Hospital of Sun-Yat-Sen University, Zhuhai, China
| | - Ji-Zhong Yin
- Department of Respiratory and Critical Care Medicine, Changzheng Hospital, Second Military Medical University, Shanghai, China
| | - Hai Huang
- Department of Respiratory and Critical Care Medicine, Changzheng Hospital, Second Military Medical University, Shanghai, China
| | - Bing Li
- Department of Respiratory and Critical Care Medicine, Changzheng Hospital, Second Military Medical University, Shanghai, China
| | - Meng-Hang Yang
- Department of Oncology, Shanghai Pulmonary Hospital, Tongji University School of Medicine, Shanghai, China
| |
Collapse
|
12
|
Gersey Z, Osiason AD, Bloom L, Shah S, Thompson JW, Bregy A, Agarwal N, Komotar RJ. Therapeutic Targeting of the Notch Pathway in Glioblastoma Multiforme. World Neurosurg 2019; 131:252-263.e2. [PMID: 31376551 DOI: 10.1016/j.wneu.2019.07.180] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2019] [Revised: 07/23/2019] [Accepted: 07/24/2019] [Indexed: 12/31/2022]
Abstract
BACKGROUND Glioblastoma (GBM) is the most common and deadly form of brain tumor. After standard treatment of resection, radiotherapy, and chemotherapy, the 5-year survival is <5%. In recent years, research has uncovered several potential targets within the Notch signaling pathway, which may lead to improved patient outcomes. METHODS A literature search was performed for articles containing the terms "Glioblastoma" and "Receptors, Notch" between 2003 and July 2015. Of the 62 articles retrieved, 46 met our criteria and were included in our review. Nine articles were identified from other sources and were subsequently included, leaving 55 articles reviewed. RESULTS Of the 55 articles reviewed, 47 used established human GBM cell lines. Seventeen articles used human GBM surgical samples. Forty-five of 48 articles that assessed Notch activity showed increased expression in GBM cell lines. Targeting the Notch pathway was carried out through Notch knockdown and overexpression and targeting δ-like ligand, Jagged, γ-secretase, ADAM10, ADAM17, and Mastermindlike protein 1. Arsenic trioxide, microRNAs, and several other compounds were shown to have an effect on the Notch pathway in GBM. Notch activity in GBM was also shown to be associated with hypoxia and certain cancer-related molecular pathways such as PI3K/AKT/mTOR and ERK/MAPK. Most articles concluded that Notch activity amplifies malignant characteristics in GBM and targeting this pathway can bring about amelioration of these effects. CONCLUSIONS Recent literature suggests targeting the Notch pathway has great potential for future therapies for GBM.
Collapse
Affiliation(s)
- Zachary Gersey
- Department of Neurological Surgery, University of Pittsburgh Medical Center, Pittsburgh, Pennsylvania, USA
| | - Adam D Osiason
- Department of Neurological Surgery, University of Miami Miller School of Medicine, Miami, Florida, USA
| | - Laura Bloom
- Department of Neurological Surgery, University of Miami Miller School of Medicine, Miami, Florida, USA
| | - Sumedh Shah
- Department of Neurological Surgery, University of Miami Miller School of Medicine, Miami, Florida, USA
| | - John W Thompson
- Department of Neurological Surgery, University of Miami Miller School of Medicine, Miami, Florida, USA
| | - Amade Bregy
- Department of Neurological Surgery, University of Miami Miller School of Medicine, Miami, Florida, USA
| | - Nitin Agarwal
- Department of Neurological Surgery, University of Pittsburgh Medical Center, Pittsburgh, Pennsylvania, USA
| | - Ricardo J Komotar
- Department of Neurological Surgery, University of Miami Miller School of Medicine, Miami, Florida, USA.
| |
Collapse
|
13
|
Wang HY, Zhang B, Zhou JN, Wang DX, Xu YC, Zeng Q, Jia YL, Xi JF, Nan X, He LJ, Yue W, Pei XT. Arsenic trioxide inhibits liver cancer stem cells and metastasis by targeting SRF/MCM7 complex. Cell Death Dis 2019; 10:453. [PMID: 31186405 PMCID: PMC6560089 DOI: 10.1038/s41419-019-1676-0] [Citation(s) in RCA: 52] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2019] [Revised: 05/07/2019] [Accepted: 05/16/2019] [Indexed: 12/12/2022]
Abstract
Hepatocellular carcinoma (HCC) has a high mortality rate due to the lack of effective treatments and drugs. Arsenic trioxide (ATO), which has been proved to successfully treat acute promyelocytic leukemia (APL), was recently reported to show therapeutic potential in solid tumors including HCC. However, its anticancer mechanisms in HCC still need further investigation. In this study, we demonstrated that ATO inhibits tumorigenesis and distant metastasis in mouse models, corresponding with a prolonged mice survival time. Also, ATO was found to significantly decrease the cancer stem cell (CSC)-associated traits. Minichromosome maintenance protein (MCM) 7 was further identified to be a potential target suppressed dramatically by ATO, of which protein expression is increased in patients and significantly correlated with tumor size, cellular differentiation, portal venous emboli, and poor patient survival. Moreover, MCM7 knockdown recapitulates the effects of ATO on CSCs and metastasis, while ectopic expression of MCM7 abolishes them. Mechanistically, our results suggested that ATO suppresses MCM7 transcription by targeting serum response factor (SRF)/MCM7 complex, which functions as an important transcriptional regulator modulating MCM7 expression. Taken together, our findings highlight the importance of ATO in the treatment of solid tumors. The identification of SRF/MCM7 complex as a target of ATO provides new insights into ATO’s mechanism, which may benefit the appropriate use of this agent in the treatment of HCC.
Collapse
Affiliation(s)
- Hai-Yang Wang
- Stem Cell and Regenerative Medicine Lab, Institute of Health Service and Transfusion Medicine, Beijing, 100850, China.,South China Research Center for Stem Cell & Regenerative Medicine, SCIB, Guangzhou, 510005, China
| | - Biao Zhang
- Stem Cell and Regenerative Medicine Lab, Institute of Health Service and Transfusion Medicine, Beijing, 100850, China.,South China Research Center for Stem Cell & Regenerative Medicine, SCIB, Guangzhou, 510005, China
| | - Jun-Nian Zhou
- Stem Cell and Regenerative Medicine Lab, Institute of Health Service and Transfusion Medicine, Beijing, 100850, China. .,South China Research Center for Stem Cell & Regenerative Medicine, SCIB, Guangzhou, 510005, China. .,Experimental Hematology and Biochemistry Lab, Beijing Institute of Radiation Medicine, Beijing, 100850, China.
| | - Dong-Xing Wang
- Stem Cell and Regenerative Medicine Lab, Institute of Health Service and Transfusion Medicine, Beijing, 100850, China.,South China Research Center for Stem Cell & Regenerative Medicine, SCIB, Guangzhou, 510005, China
| | - Ying-Chen Xu
- Department of Hepatobiliary Surgery, Beijing Tongren Hospital, Beijing, 100730, China
| | - Quan Zeng
- Stem Cell and Regenerative Medicine Lab, Institute of Health Service and Transfusion Medicine, Beijing, 100850, China.,South China Research Center for Stem Cell & Regenerative Medicine, SCIB, Guangzhou, 510005, China
| | - Ya-Li Jia
- Stem Cell and Regenerative Medicine Lab, Institute of Health Service and Transfusion Medicine, Beijing, 100850, China.,South China Research Center for Stem Cell & Regenerative Medicine, SCIB, Guangzhou, 510005, China.,Experimental Hematology and Biochemistry Lab, Beijing Institute of Radiation Medicine, Beijing, 100850, China
| | - Jia-Fei Xi
- Stem Cell and Regenerative Medicine Lab, Institute of Health Service and Transfusion Medicine, Beijing, 100850, China.,South China Research Center for Stem Cell & Regenerative Medicine, SCIB, Guangzhou, 510005, China
| | - Xue Nan
- Stem Cell and Regenerative Medicine Lab, Institute of Health Service and Transfusion Medicine, Beijing, 100850, China.,South China Research Center for Stem Cell & Regenerative Medicine, SCIB, Guangzhou, 510005, China
| | - Li-Juan He
- Stem Cell and Regenerative Medicine Lab, Institute of Health Service and Transfusion Medicine, Beijing, 100850, China.,South China Research Center for Stem Cell & Regenerative Medicine, SCIB, Guangzhou, 510005, China
| | - Wen Yue
- Stem Cell and Regenerative Medicine Lab, Institute of Health Service and Transfusion Medicine, Beijing, 100850, China. .,South China Research Center for Stem Cell & Regenerative Medicine, SCIB, Guangzhou, 510005, China.
| | - Xue-Tao Pei
- Stem Cell and Regenerative Medicine Lab, Institute of Health Service and Transfusion Medicine, Beijing, 100850, China. .,South China Research Center for Stem Cell & Regenerative Medicine, SCIB, Guangzhou, 510005, China.
| |
Collapse
|
14
|
Bazzoni R, Bentivegna A. Role of Notch Signaling Pathway in Glioblastoma Pathogenesis. Cancers (Basel) 2019; 11:cancers11030292. [PMID: 30832246 PMCID: PMC6468848 DOI: 10.3390/cancers11030292] [Citation(s) in RCA: 127] [Impact Index Per Article: 21.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2018] [Revised: 02/17/2019] [Accepted: 02/25/2019] [Indexed: 12/12/2022] Open
Abstract
Notch signaling is an evolutionarily conserved pathway that regulates important biological processes, such as cell proliferation, apoptosis, migration, self-renewal, and differentiation. In mammals, Notch signaling is composed of four receptors (Notch1–4) and five ligands (Dll1-3–4, Jagged1–2) that mainly contribute to the development and maintenance of the central nervous system (CNS). Neural stem cells (NSCs) are the starting point for neurogenesis and other neurological functions, representing an essential aspect for the homeostasis of the CNS. Therefore, genetic and functional alterations to NSCs can lead to the development of brain tumors, including glioblastoma. Glioblastoma remains an incurable disease, and the reason for the failure of current therapies and tumor relapse is the presence of a small subpopulation of tumor cells known as glioma stem cells (GSCs), characterized by their stem cell-like properties and aggressive phenotype. Growing evidence reveals that Notch signaling is highly active in GSCs, where it suppresses differentiation and maintains stem-like properties, contributing to Glioblastoma tumorigenesis and conventional-treatment resistance. In this review, we try to give a comprehensive view of the contribution of Notch signaling to Glioblastoma and its possible implication as a target for new therapeutic approaches.
Collapse
Affiliation(s)
- Riccardo Bazzoni
- Stem Cell Research Laboratory, Section of Hematology, Department of Medicine, University of Verona, Pz.le Scuro 10, 37134 Verona, Italy.
- Program in Clinical and Experimental Biomedical Sciences, University of Verona, 37134 Verona, Italy.
- NeuroMi, Milan Center for Neuroscience, Department of Neurology and Neuroscience, San Gerardo Hospital, University of Milano-Bicocca, 20900 Monza, Italy.
| | - Angela Bentivegna
- NeuroMi, Milan Center for Neuroscience, Department of Neurology and Neuroscience, San Gerardo Hospital, University of Milano-Bicocca, 20900 Monza, Italy.
- School of Medicine and Surgery, University of Milano-Bicocca, via Cadore 48, 20900 Monza, Italy.
| |
Collapse
|
15
|
Yan D, Hao C, Xiao-Feng L, Yu-Chen L, Yu-Bin F, Lei Z. Molecular mechanism of Notch signaling with special emphasis on microRNAs: Implications for glioma. J Cell Physiol 2018; 234:158-170. [PMID: 30076599 DOI: 10.1002/jcp.26775] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2018] [Accepted: 04/27/2018] [Indexed: 02/06/2023]
Abstract
Glioma is the most aggressive primary brain tumor and is notorious for resistance to chemoradiotherapy. Although its associated mechanisms are still not completely understood, Notch signaling, an evolutionarily conserved pathway, appears to be the key processes involved. Nevertheless, its mechanisms are sophisticated, due to a variety of targets and signal pathways, especially microRNA. MicroRNAs, which are small noncoding regulatory RNA molecules, have been proposed as one of the key mechanisms in glioma pathogenesis. Among the known glioma associated microRNA, microRNA-129, microRNA-34 family, and microRNA-326 have been shown to influence the progress of glioma through Notch signaling. Evidence also indicates that recurrence is due to development or persistence of the glioma stem-like cells and active angiogenesis, which are tightly regulated by a variety of factors, including Notch signaling. In this review, we summarize the recent progress regarding the functional roles of Notch signaling in glioma, including Notch ligand, microRNA, intracellular crosstalk, glioma stem-like cells and active angiogenesis and explore their clinical implications as diagnostic or prognostic biomarkers and molecular therapeutic targets for glioma.
Collapse
Affiliation(s)
- Du Yan
- Department of Basic and Clinical Pharmacology, School of Pharmacy, Anhui Medical University, Hefei, China.,Anhui Province Key Laboratory of Major Autoimmune Diseases, Hefei, China.,Anhui Institute of Innovative Drugs, Hefei, China
| | - Chen Hao
- Department of Basic and Clinical Pharmacology, School of Pharmacy, Anhui Medical University, Hefei, China.,Anhui Province Key Laboratory of Major Autoimmune Diseases, Hefei, China.,Anhui Institute of Innovative Drugs, Hefei, China
| | - Li Xiao-Feng
- Department of Basic and Clinical Pharmacology, School of Pharmacy, Anhui Medical University, Hefei, China.,Anhui Province Key Laboratory of Major Autoimmune Diseases, Hefei, China.,Anhui Institute of Innovative Drugs, Hefei, China
| | - Lu Yu-Chen
- Department of Basic and Clinical Pharmacology, School of Pharmacy, Anhui Medical University, Hefei, China.,Anhui Province Key Laboratory of Major Autoimmune Diseases, Hefei, China.,Anhui Institute of Innovative Drugs, Hefei, China
| | - Feng Yu-Bin
- Department of Basic and Clinical Pharmacology, School of Pharmacy, Anhui Medical University, Hefei, China.,Anhui Province Key Laboratory of Major Autoimmune Diseases, Hefei, China.,Anhui Institute of Innovative Drugs, Hefei, China
| | - Zhang Lei
- Department of Basic and Clinical Pharmacology, School of Pharmacy, Anhui Medical University, Hefei, China.,Anhui Province Key Laboratory of Major Autoimmune Diseases, Hefei, China.,Anhui Institute of Innovative Drugs, Hefei, China
| |
Collapse
|
16
|
Wang L, Habib AA, Mintz A, Li KC, Zhao D. Phosphatidylserine-Targeted Nanotheranostics for Brain Tumor Imaging and Therapeutic Potential. Mol Imaging 2018; 16:1536012117708722. [PMID: 28654387 PMCID: PMC5470144 DOI: 10.1177/1536012117708722] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Phosphatidylserine (PS), the most abundant anionic phospholipid in cell membrane, is strictly confined to the inner leaflet in normal cells. However, this PS asymmetry is found disruptive in many tumor vascular endothelial cells. We discuss the underlying mechanisms for PS asymmetry maintenance in normal cells and its loss in tumor cells. The specificity of PS exposure in tumor vasculature but not normal blood vessels may establish it a useful biomarker for cancer molecular imaging. Indeed, utilizing PS-targeting antibodies, multiple imaging probes have been developed and multimodal imaging data have shown their high tumor-selective targeting in various cancers. There is a critical need for improved diagnosis and therapy for brain tumors. We have recently established PS-targeted nanoplatforms, aiming to enhance delivery of imaging contrast agents across the blood-brain barrier to facilitate imaging of brain tumors. Advantages of using the nanodelivery system, in particular, lipid-based nanocarriers, are discussed here. We also describe our recent research interest in developing PS-targeted nanotheranostics for potential image-guided drug delivery to treat brain tumors.
Collapse
Affiliation(s)
- Lulu Wang
- 1 Department of Biomedical Engineering, Wake Forest School of Medicine, Winston-Salem, NC, USA
| | - Amyn A Habib
- 2 Department of Neurology and Neurotherapeutics, University of Texas Southwestern Medical Center, Dallas, TX, USA.,3 North Texas VA Medical Center, Dallas, TX, USA
| | - Akiva Mintz
- 4 Department of Cancer Biology, Wake Forest School of Medicine, Winston-Salem, NC, USA.,5 Department of Radiology, Wake Forest School of Medicine, Winston-Salem, NC, USA
| | - King C Li
- 4 Department of Cancer Biology, Wake Forest School of Medicine, Winston-Salem, NC, USA.,6 Clinical and Translational Science Institute, Wake Forest School of Medicine, Winston-Salem, NC, USA
| | - Dawen Zhao
- 1 Department of Biomedical Engineering, Wake Forest School of Medicine, Winston-Salem, NC, USA.,3 North Texas VA Medical Center, Dallas, TX, USA
| |
Collapse
|
17
|
Chen HY, Lin LT, Wang ML, Tsai KL, Huang PI, Yang YP, Lee YY, Chen YW, Lo WL, Lan YT, Chiou SH, Lin CM, Ma HI, Chen MT. Musashi-1 promotes chemoresistant granule formation by PKR/eIF2α signalling cascade in refractory glioblastoma. Biochim Biophys Acta Mol Basis Dis 2018; 1864:1850-1861. [PMID: 29486283 DOI: 10.1016/j.bbadis.2018.02.017] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2017] [Revised: 01/25/2018] [Accepted: 02/21/2018] [Indexed: 01/08/2023]
Abstract
Musashi-1 (MSI1), one of the RNA-binding proteins, is abundantly found not only in neural stem cells but also in several cancer tissues and has been reported to act as a positive regulator of cancer progression. Growing evidence indicates that PKR and eIF2α play pivotal roles in the stimulation of stress granule formation as well as in the subsequent translation modulation in response to stressful conditions; however, little is known about whether MSI1 is involved in this PKR/eIF2α cancer stem cell-enhancing machinery. In this study, we demonstrated that MSI1 promotes human glioblastoma multiforme (GBM) stem cells and enhances chemoresistance when exposed to sublethal stress. The overexpression of MSI1 leads to a protective effect in mitigating drug-induced cell death, thus facilitating the formation of chemoresistant stress granules (SGs) in response to arsenic trioxide (ATO) treatment. SG components, such as PKR and eIF2α, were dominantly activated and assembled, while ATO was engaged. The activated PKR and eIF2α contribute to the downstream enhancement of stem cell genes, thereby promoting the progression of GBM. The silencing of MSI1 or PKR both obviously withdrew the phenomena. Taken together, our findings indicate that MSI1 plays a leading role in stress granule formation that grants cancer stem cell properties and chemoresistant stress granules in GBM, in response to stressful conditions via the PKR/eIF2α signalling cascade.
Collapse
Affiliation(s)
- Hsiao-Yun Chen
- Institute of Clinical Medicine, National Yang-Ming University, Taipei, Taiwan; Department of Medical Research, Taipei Veterans General Hospital, Taipei, Taiwan
| | - Liang-Ting Lin
- Institute of Pharmacology, National Yang-Ming University, Taipei, Taiwan; Department of Health Technology and Informatics, The Hong Kong Polytechnic University, Hong Kong Special Administrative Region; Department of Medical Research, Taipei Veterans General Hospital, Taipei, Taiwan
| | - Mong-Lien Wang
- Institute of Pharmacology, National Yang-Ming University, Taipei, Taiwan; School of Medicine, National Yang-Ming University, Taipei, Taiwan; Department of Medical Research, Taipei Veterans General Hospital, Taipei, Taiwan
| | - Kun-Ling Tsai
- Department of Physical Therapy, National Cheng Kung University, Tainan, Taiwan; Department of Medical Research, Taipei Veterans General Hospital, Taipei, Taiwan
| | - Pin-I Huang
- Institute of Clinical Medicine, National Yang-Ming University, Taipei, Taiwan; School of Medicine, National Yang-Ming University, Taipei, Taiwan; Cancer Center, Taipei Veterans General Hospital, Taipei, Taiwan
| | - Yi-Ping Yang
- Institute of Clinical Medicine, National Yang-Ming University, Taipei, Taiwan; Cancer Center, Taipei Veterans General Hospital, Taipei, Taiwan; Department of Neurosurgery, Tri-Service General Hospital, National Defense Medical Center, Taipei, Taiwan
| | - Yi-Yen Lee
- Department of Neurosurgery, Neurological Institute, Taipei Veterans General Hospital, Taipei, Taiwan
| | - Yi-Wei Chen
- Institute of Clinical Medicine, National Yang-Ming University, Taipei, Taiwan; School of Medicine, National Yang-Ming University, Taipei, Taiwan; Cancer Center, Taipei Veterans General Hospital, Taipei, Taiwan
| | - Wen-Liang Lo
- Institute of Clinical Medicine, National Yang-Ming University, Taipei, Taiwan; Division of Oral and Maxillofacial Surgery, Department of Stomatology, Taipei Veterans General Hospital, Taipei, Taiwan
| | - Yuan-Tzu Lan
- Institute of Clinical Medicine, National Yang-Ming University, Taipei, Taiwan; School of Medicine, National Yang-Ming University, Taipei, Taiwan; Department of Medical Research, Taipei Veterans General Hospital, Taipei, Taiwan
| | - Shih-Hwa Chiou
- Institute of Clinical Medicine, National Yang-Ming University, Taipei, Taiwan; Institute of Pharmacology, National Yang-Ming University, Taipei, Taiwan; School of Medicine, National Yang-Ming University, Taipei, Taiwan; Department of Medical Research, Taipei Veterans General Hospital, Taipei, Taiwan
| | - Chien-Min Lin
- Department of Surgery, School of Medicine, College of Medicine, Taipei Medical University, Taipei, Taiwan; Department of Neurosurgery, Shuang Ho Hospital, Taipei Medical University, Taipei, Taiwan.
| | - Hsin-I Ma
- Department of Neurological Surgery, Tri-Service General Hospital and National Defense Medical Center, Taipei, Taiwan
| | - Ming-Teh Chen
- School of Medicine, National Yang-Ming University, Taipei, Taiwan; Department of Neurosurgery, Neurological Institute, Taipei Veterans General Hospital, Taipei, Taiwan.
| |
Collapse
|
18
|
Mesbahi Y, Zekri A, Ahmadian S, Alimoghaddam K, Ghavamzadeh A, Ghaffari SH. Targeting of EGFR increase anti-cancer effects of arsenic trioxide: Promising treatment for glioblastoma multiform. Eur J Pharmacol 2018; 820:274-285. [DOI: 10.1016/j.ejphar.2017.12.041] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2017] [Revised: 12/08/2017] [Accepted: 12/19/2017] [Indexed: 10/18/2022]
|
19
|
Cheng Y, Li Y, Ma C, Song Y, Xu H, Yu H, Xu S, Mu Q, Li H, Chen Y, Zhao G. Arsenic trioxide inhibits glioma cell growth through induction of telomerase displacement and telomere dysfunction. Oncotarget 2017; 7:12682-92. [PMID: 26871293 PMCID: PMC4914314 DOI: 10.18632/oncotarget.7259] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2015] [Accepted: 01/24/2016] [Indexed: 12/22/2022] Open
Abstract
Glioblastomas are resistant to many kinds of treatment, including chemotherapy, radiation and other adjuvant therapies. As2O3 reportedly induces ROS generation in cells, suggesting it may be able to induce telomerase suppression and telomere dysfunction in glioblastoma cells. We show here that As2O3 induces ROS generation as well as telomerase phosphorylation in U87, U251, SHG4 and C6 glioma cells. It also induces translocation of telomerase from the nucleus to the cytoplasm, thereby decreasing total telomerase activity. These effects of As2O3 trigger an extensive DNA damage response at the telomere, which includes up-regulation of ATM, ATR, 53BP1, γ-H2AX and Mer11, in parallel with telomere fusion and 3′-overhang degradation. This ultimately results in induction of p53- and p21-mediated cell apoptosis, G2/M cell cycle arrest and cellular senescence. These results provide new insight into the antitumor effects of As2O3 and can perhaps contribute to solving the problem of glioblastoma treatment resistance.
Collapse
Affiliation(s)
- Ye Cheng
- Department of Neurosurgery, First Hospital of Jilin University, Changchun, P. R. China
| | - Yunqian Li
- Department of Neurosurgery, First Hospital of Jilin University, Changchun, P. R. China
| | - Chengyuan Ma
- Department of Neurosurgery, First Hospital of Jilin University, Changchun, P. R. China
| | - Yang Song
- Department of Neurosurgery, First Hospital of Jilin University, Changchun, P. R. China
| | - Haiyang Xu
- Department of Neurosurgery, First Hospital of Jilin University, Changchun, P. R. China
| | - Hongquan Yu
- Department of Neurosurgery, First Hospital of Jilin University, Changchun, P. R. China
| | - Songbai Xu
- Department of Neurosurgery, First Hospital of Jilin University, Changchun, P. R. China
| | - Qingchun Mu
- Department of Neurosurgery, First Hospital of Jilin University, Changchun, P. R. China
| | - Haisong Li
- Department of Neurosurgery, First Hospital of Jilin University, Changchun, P. R. China
| | - Yong Chen
- Department of Neurosurgery, First Hospital of Jilin University, Changchun, P. R. China
| | - Gang Zhao
- Department of Neurosurgery, First Hospital of Jilin University, Changchun, P. R. China
| |
Collapse
|
20
|
Shi Y, Cao T, Huang H, Lian C, Yang Y, Wang Z, Ma J, Xia J. Arsenic trioxide inhibits cell growth and motility via up-regulation of let-7a in breast cancer cells. Cell Cycle 2017; 16:2396-2403. [PMID: 28980872 DOI: 10.1080/15384101.2017.1387699] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Arsenic trioxide (ATO) has been reported to exert its anti-cancer activities in human cancers. However, the molecular mechanism of ATO-triggered anti-tumor activity has not been fully elucidated. Recently, multiple studies demonstrated that ATO could regulate miRNAs in human cancers. Therefore, in this study, we investigated whether ATO regulated let-7a in breast cancer cells. We found that ATO upregulated let-7a level in breast cancer cells. We also found that up-regulation of let-7a inhibited cell growth and induced apoptosis and retarded cell migration and invasion. We also observed that up-regulation of let-7a enhanced cell growth inhibition and invasion suppression induced by ATO treatment. Our findings suggest that ATO suppressed cell growth, stimulated apoptosis, and retarded cell invasion partly via upregulation of let-7a in breast cancer cells. Our study provides a new anti-tumor mechanism of ATO treatment in breast cancer.
Collapse
Affiliation(s)
- Ying Shi
- a Department of Biochemistry and Molecular Biology , Bengbu Medical College, Bengbu , Anhui , China
| | - Tong Cao
- b Research Center of Clinical Laboratory Science , Bengbu Medical College , Bengbu , Anhui , China
| | - Hua Huang
- a Department of Biochemistry and Molecular Biology , Bengbu Medical College, Bengbu , Anhui , China
| | - Chaoqun Lian
- a Department of Biochemistry and Molecular Biology , Bengbu Medical College, Bengbu , Anhui , China
| | - Ying Yang
- a Department of Biochemistry and Molecular Biology , Bengbu Medical College, Bengbu , Anhui , China
| | - Zhiwei Wang
- a Department of Biochemistry and Molecular Biology , Bengbu Medical College, Bengbu , Anhui , China.,c Department of Pathology , Beth Israel Deaconess Medical Center , Harvard Medical School , Boston , MA , USA.,d The Cyrus Tang Hematology Center and Collaborative Innovation Center of Hematology , Soochow University , Suzhou , Jiangsu , China
| | - Jia Ma
- a Department of Biochemistry and Molecular Biology , Bengbu Medical College, Bengbu , Anhui , China
| | - Jun Xia
- a Department of Biochemistry and Molecular Biology , Bengbu Medical College, Bengbu , Anhui , China
| |
Collapse
|
21
|
Cenciarelli C, Marei HE, Zonfrillo M, Casalbore P, Felsani A, Giannetti S, Trevisi G, Althani A, Mangiola A. The interference of Notch1 target Hes1 affects cell growth, differentiation and invasiveness of glioblastoma stem cells through modulation of multiple oncogenic targets. Oncotarget 2017; 8:17873-17886. [PMID: 28157712 PMCID: PMC5392293 DOI: 10.18632/oncotarget.15013] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2016] [Accepted: 01/25/2017] [Indexed: 12/29/2022] Open
Abstract
The invasive and lethal nature of Glioblastoma multiforme (GBM) necessitates the continuous identification of molecular targets and search of efficacious therapies to inhibit GBM growth. The GBM resistance to chemotherapy and radiation it is attributed to the existence of a rare fraction of cancer stem cells (CSC) that we have identified within the tumor core and in peritumor tissue of GBM. Since Notch1 pathway is a potential therapeutic target in brain cancer, earlier we highlighted that pharmacological inhibition of Notch1 signalling by γ-secretase inhibitor-X (GSI-X), reduced cell growth of some c-CSC than to their respective p-CSC, but produced negligible effects on cell cycle distribution, apoptosis and cell invasion. In the current study, we assessed the effects of Hes1-targeted shRNA, a Notch1 gene target, specifically on GBM CSC refractory to GSI-X. Depletion of Hes1 protein induces major changes in cell morphology, cell growth rate and in the invasive ability of shHes1-CSC in response to growth factor EGF. shHes1-CSC show a decrease of the stemness marker Nestin concurrently to a marked increase of neuronal marker MAP2 compared to pLKO.1-CSC. Those effects correlated with repression of EGFR protein and modulation of Stat3 phosphorylation at Y705 and S727 residues. In the last decade Stat3 has gained attention as therapeutic target in cancer but there is not yet any approved Stat3-based glioma therapy. Herein, we report that exposure to a Stat3/5 inhibitor, induced apoptosis either in shHes1-CSC or control cells. Taken together, Hes1 seems to be a favorable target but not sufficient itself to target GBM efficaciously, therefore a possible pharmacological intervention should provide for the use of anti-Stat3/5 drugs either alone or in combination regimen.
Collapse
Affiliation(s)
- Carlo Cenciarelli
- Institute of Translational Pharmacology (IFT), National Research Council (CNR), Roma, Italy
| | - Hany E. Marei
- Biomedical Research Center, Qatar University, Doha, Qatar
| | - Manuela Zonfrillo
- Institute of Translational Pharmacology (IFT), National Research Council (CNR), Roma, Italy
| | - Patrizia Casalbore
- Institute of Cell Biology and Neurobiology (IBCN), National Research Council (CNR), Roma, Italy
| | - Armando Felsani
- Institute of Cell Biology and Neurobiology (IBCN), National Research Council (CNR), Roma, Italy
| | - Stefano Giannetti
- Institute of Anatomy and Cell Biology, Catholic University-School of Medicine, Roma, Italy
| | - Gianluca Trevisi
- Department of Head and Neck, Institute of Neurosurgery, Catholic University-School of Medicine, Roma, Italy
| | - Asma Althani
- Biomedical Research Center, Qatar University, Doha, Qatar
| | - Annunziato Mangiola
- Department of Head and Neck, Institute of Neurosurgery, Catholic University-School of Medicine, Roma, Italy
| |
Collapse
|
22
|
Amini-Khoei H, Hosseini MJ, Momeny M, Rahimi-Balaei M, Amiri S, Haj-Mirzaian A, Khedri M, Jahanabadi S, Mohammadi-Asl A, Mehr SE, Dehpour AR. Morphine Attenuated the Cytotoxicity Induced by Arsenic Trioxide in H9c2 Cardiomyocytes. Biol Trace Elem Res 2016; 173:132-139. [PMID: 26815588 DOI: 10.1007/s12011-016-0631-5] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/19/2015] [Accepted: 01/20/2016] [Indexed: 11/25/2022]
Abstract
Arsenic trioxide (ATO) is an efficient drug for the treatment of the patients with acute promyelocytic leukemia (APL). Inhibition of proliferation as well as apoptosis, attenuation of migration, and induction of differentiation in tumor cells are the main mechanisms through which ATO acts against APL. Despite advantages of ATO in treatment of some malignancies, certain harmful side effects, such as cardiotoxicity, have been reported. It has been well documented that morphine has antioxidant, anti-apoptotic, and cytoprotective properties and is able to attenuate cytotoxicity. Therefore, in this study, we aimed to investigate the protective effects of morphine against ATO toxicity in H9c2 myocytes using multi-parametric assay including thiazolyl blue tetrazolium bromide (MTT) assay, reactive oxygen species (ROS) generation, caspase 3 activity, nuclear factor kappa B (NF-κB) phosphorylation assay, and expression of apoptotic markers. Our results showed that morphine (1 μM) attenuated cytotoxicity induced by ATO in H9c2 cells. Results of this study suggest that morphine may have protective properties in management of cardiac toxicity in patients who receive ATO as an anti-cancer treatment.
Collapse
Affiliation(s)
- Hossein Amini-Khoei
- Department of Pharmacology, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
- Experimental Medicine Research Center, Tehran University of Medical Sciences, Tehran, Iran
| | - Mir-Jamal Hosseini
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Zanjan University of Medical Sciences, Tehran, Iran
| | - Majid Momeny
- Department of Molecular Pathology, University of Queensland, Center for Clinical Research, Brisbane, QLD, Australia
| | - Maryam Rahimi-Balaei
- Department of Human Anatomy and Cell Science, College of Medicine, Faculty of Health Sciences, University of Manitoba, Winnipeg, MB, Canada
| | - Shayan Amiri
- Department of Pharmacology, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
- Experimental Medicine Research Center, Tehran University of Medical Sciences, Tehran, Iran
| | - Arya Haj-Mirzaian
- Department of Pharmacology, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
- Experimental Medicine Research Center, Tehran University of Medical Sciences, Tehran, Iran
| | - Mostafa Khedri
- Department of Immunology, Immunology Research Center, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Samane Jahanabadi
- Department of Pharmacology, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
- Experimental Medicine Research Center, Tehran University of Medical Sciences, Tehran, Iran
| | - Ali Mohammadi-Asl
- Department of Pharmacology, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
- Experimental Medicine Research Center, Tehran University of Medical Sciences, Tehran, Iran
| | - Shahram Ejtemaie Mehr
- Department of Pharmacology, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
- Experimental Medicine Research Center, Tehran University of Medical Sciences, Tehran, Iran
| | - Ahmad Reza Dehpour
- Department of Pharmacology, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran.
- Experimental Medicine Research Center, Tehran University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
23
|
Qu L, Gao Y, Sun H, Wang H, Liu X, Sun D. Role of PTEN-Akt-CREB Signaling Pathway in Nervous System impairment of Rats with Chronic Arsenite Exposure. Biol Trace Elem Res 2016; 170:366-72. [PMID: 26296331 DOI: 10.1007/s12011-015-0478-1] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/07/2015] [Accepted: 08/12/2015] [Indexed: 11/25/2022]
Abstract
The nervous system is a target of arsenic toxicity. Phosphatase and tensin homologue deleted on chromosome 10/protein kinase B/cAMP-response element binding protein (PTEN/Akt/CREB) signaling pathway has been reported to be involved in maintaining normal function of the nervous system, modulating growth and proliferation of neurocyte, regulating neuron synaptic plasticity, and long-term memory. And many studies have demonstrated that expressions of PTEN, Akt, and CREB protein were influenced by arsenic, but it is not clear whether this signaling pathway is involved in the nervous system impairment of rats induced by chronic arsenite exposure, and we have addressed this in this study. Eighty male Sprague-Dawley (SD) rats were randomly divided into eight groups (n = 10 each), four groups exposed to NaAsO2 (0, 5, 10, and 50 mg/L NaAsO2 in drinking water) for 3 months, the other four groups exposed to NaAsO2 (0, 5, 10, 50 mg/L NaAsO2 in drinking water) for 6 months. Hematoxylin and eosin (HE) staining showed that chronic arsenite exposure induced varying degrees of damage in cerebral neurons. And arsenite exposure increased arsenic amount in serum and brain samples in a dose- and time-dependent manner. Moreover, the protein levels of PTEN and Akt in brain tissue were not significantly changed compared with the control group, but p-Akt, CREB, and p-CREB were all significantly downregulated in arsenite-exposed groups with a dose-dependent pattern. These results suggested that chronic arsenite exposure negatively regulated the PTEN-Akt-CREB signaling pathway, and dysfunction of the signaling pathway might be one of the mechanisms of nervous system impairment induced by chronic arsenite exposure.
Collapse
Affiliation(s)
- Lisha Qu
- Center for Endemic Disease Control, Chinese Center for Disease Control and Prevention, Key Lab of Etiologic Epidemiology of Ministry of Health and Education Bureau of Heilongjiang Province(23618504), Harbin Medical University, 157 Baojian Road, Harbin, 150081, China
| | - Yanhui Gao
- Center for Endemic Disease Control, Chinese Center for Disease Control and Prevention, Key Lab of Etiologic Epidemiology of Ministry of Health and Education Bureau of Heilongjiang Province(23618504), Harbin Medical University, 157 Baojian Road, Harbin, 150081, China
| | - Hongna Sun
- Center for Endemic Disease Control, Chinese Center for Disease Control and Prevention, Key Lab of Etiologic Epidemiology of Ministry of Health and Education Bureau of Heilongjiang Province(23618504), Harbin Medical University, 157 Baojian Road, Harbin, 150081, China
| | - Hui Wang
- Center for Endemic Disease Control, Chinese Center for Disease Control and Prevention, Key Lab of Etiologic Epidemiology of Ministry of Health and Education Bureau of Heilongjiang Province(23618504), Harbin Medical University, 157 Baojian Road, Harbin, 150081, China
| | - Xiaona Liu
- Center for Endemic Disease Control, Chinese Center for Disease Control and Prevention, Key Lab of Etiologic Epidemiology of Ministry of Health and Education Bureau of Heilongjiang Province(23618504), Harbin Medical University, 157 Baojian Road, Harbin, 150081, China
| | - Dianjun Sun
- Center for Endemic Disease Control, Chinese Center for Disease Control and Prevention, Key Lab of Etiologic Epidemiology of Ministry of Health and Education Bureau of Heilongjiang Province(23618504), Harbin Medical University, 157 Baojian Road, Harbin, 150081, China.
| |
Collapse
|
24
|
An Y, Liu T, Liu X, Zhao L, Wang J. Rac1 and Cdc42 Play Important Roles in Arsenic Neurotoxicity in Primary Cultured Rat Cerebellar Astrocytes. Biol Trace Elem Res 2016; 170:173-82. [PMID: 26231544 DOI: 10.1007/s12011-015-0456-7] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/05/2015] [Accepted: 07/23/2015] [Indexed: 12/11/2022]
Abstract
This study aimed to explore whether Rac1 and Cdc42, representative members of Ras homologue guanosine triphosphatases (Rho GTPases), are involved in neurotoxicity induced by arsenic exposure in rat nervous system. Expressions of Rac1 and Cdc42 in rat cerebellum and cerebrum exposed to different doses of NaAsO2 (Wistar rats drank 0, 2, 10, and 50 mg/L NaAsO2 water for 3 months) were examined. Both Rac1 and Cdc42 expressions increased significantly in a dose-dependent manner in cerebellum (P < 0.01) by Western blot and immunohistochemistry assay, but in cerebrum, Rac1 and Cdc42 expressions only in 2 mg/L exposure groups were significantly higher than those in control groups (P < 0.01). Five to 50 μM NaAsO2 decreased cell viability in a dose-dependent manner in primary cultured rat astrocytes, whereas 1 μM NaAsO2 increased the cell viability in these cells. Rac1 inhibitor, NSC23766, decreased NaAsO2-induced apoptosis and increased the cell viability in primary cultured rat cerebellar astrocytes exposed to 30 μM NaAsO2. Cdc42 inhibitor, ZCL278, increased cell viability in the cells exposed to 30 μM NaAsO2. Taken together, our current studies in vivo and in vitro indicate that activations of Rac1 and Cdc42 play a very important role in arsenic neurotoxicity in rat cerebellum, providing a new insight into arsenic neurotoxicity.
Collapse
Affiliation(s)
- Yuan An
- Center for Endemic Disease Control, Chinese Center for Disease Control and Prevention, Key Lab of Etiology and Epidemiology, Education Bureau of Heilongjiang Province & Ministry of Health (23618504), Harbin Medical University, 157# Baojian Road, Harbin, 150081, People's Republic of China
| | - Tingting Liu
- Center for Endemic Disease Control, Chinese Center for Disease Control and Prevention, Key Lab of Etiology and Epidemiology, Education Bureau of Heilongjiang Province & Ministry of Health (23618504), Harbin Medical University, 157# Baojian Road, Harbin, 150081, People's Republic of China
| | - Xiaona Liu
- Center for Endemic Disease Control, Chinese Center for Disease Control and Prevention, Key Lab of Etiology and Epidemiology, Education Bureau of Heilongjiang Province & Ministry of Health (23618504), Harbin Medical University, 157# Baojian Road, Harbin, 150081, People's Republic of China
| | - Lijun Zhao
- Center for Endemic Disease Control, Chinese Center for Disease Control and Prevention, Key Lab of Etiology and Epidemiology, Education Bureau of Heilongjiang Province & Ministry of Health (23618504), Harbin Medical University, 157# Baojian Road, Harbin, 150081, People's Republic of China
| | - Jing Wang
- Center for Endemic Disease Control, Chinese Center for Disease Control and Prevention, Key Lab of Etiology and Epidemiology, Education Bureau of Heilongjiang Province & Ministry of Health (23618504), Harbin Medical University, 157# Baojian Road, Harbin, 150081, People's Republic of China.
| |
Collapse
|
25
|
SUN JIANJUN, WANG ZHENYU, LI LINGSONG, LIU BIN. Peking University - Juntendo University Joint Symposium on Brain and Skin Diseases. JUNTENDO MEDICAL JOURNAL 2016. [DOI: 10.14789/jmj.62.311] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Affiliation(s)
- JIANJUN SUN
- Department of Neurosurgery, Peking University Third Hospital
| | - ZHENYU WANG
- Department of Neurosurgery, Peking University Third Hospital
| | - LINGSONG LI
- China Stem Cell Research Center, Peking University Health Science Center
| | - BIN LIU
- Department of Neurosurgery, Peking University Third Hospital
| |
Collapse
|
26
|
Yoshimura Y, Shiino A, Muraki K, Fukami T, Yamada S, Satow T, Fukuda M, Saiki M, Hojo M, Miyamoto S, Onishi N, Saya H, Inubushi T, Nozaki K, Tanigaki K. Arsenic trioxide sensitizes glioblastoma to a myc inhibitor. PLoS One 2015; 10:e0128288. [PMID: 26038891 PMCID: PMC4454553 DOI: 10.1371/journal.pone.0128288] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2014] [Accepted: 04/27/2015] [Indexed: 12/15/2022] Open
Abstract
Glioblastoma multiforme (GBM) is associated with high mortality due to infiltrative growth and recurrence. Median survival of the patients is less than 15 months, increasing requirements for new therapies. We found that both arsenic trioxide and 10058F4, an inhibitor of Myc, induced differentiation of cancer stem-like cells (CSC) of GBM and that arsenic trioxide drastically enhanced the anti-proliferative effect of 10058F4 but not apoptotic effects. EGFR-driven genetically engineered GBM mouse model showed that this cooperative effect is higher in EGFRvIII-expressing INK4a/Arf-/- neural stem cells (NSCs) than in control wild type NSCs. In addition, treatment of GBM CSC xenografts with arsenic trioxide and 10058F4 resulted in significant decrease in tumor growth and increased differentiation with concomitant decrease of proneural and mesenchymal GBM CSCs in vivo. Our study was the first to evaluate arsenic trioxide and 10058F4 interaction in GBM CSC differentiation and to assess new opportunities for arsenic trioxide and 10058F4 combination as a promising approach for future differentiation therapy of GBM.
Collapse
Affiliation(s)
- Yayoi Yoshimura
- Research Institute, Shiga Medical Center, Moriyama 5-4-30, Shiga 524–8524, Japan
- Department of Neurosurgery, Shiga University of Medical Science, Shiga 520–2192, Japan
| | - Akihiko Shiino
- Biomedical MR Science Center, Shiga University of Medical Science, Shiga 520–2192, Japan
- Department of Neurosurgery, Shiga University of Medical Science, Shiga 520–2192, Japan
| | - Kazue Muraki
- Research Institute, Shiga Medical Center, Moriyama 5-4-30, Shiga 524–8524, Japan
| | - Tadateru Fukami
- Department of Neurosurgery, Shiga University of Medical Science, Shiga 520–2192, Japan
| | - Shigeki Yamada
- Department of Neurosurgery, Shiga Medical Center, Shiga 524–8524, Japan
| | - Takeshi Satow
- Department of Neurosurgery, Shiga Medical Center, Shiga 524–8524, Japan
| | - Miyuki Fukuda
- Department of Neurosurgery, Shiga Medical Center, Shiga 524–8524, Japan
| | - Masaaki Saiki
- Department of Neurosurgery, Shiga Medical Center, Shiga 524–8524, Japan
| | - Masato Hojo
- Department of Neurosurgery, Shiga Medical Center, Shiga 524–8524, Japan
| | - Susumu Miyamoto
- Department of Neurosurgery, Graduate School of Medicine, Kyoto University, Kyoto 606–8507, Japan
| | - Nobuyuki Onishi
- Division of Gene Regulation, School of Medicine, Keio University, Tokyo 160–8582, Japan
| | - Hideyuki Saya
- Division of Gene Regulation, School of Medicine, Keio University, Tokyo 160–8582, Japan
| | - Toshiro Inubushi
- Biomedical MR Science Center, Shiga University of Medical Science, Shiga 520–2192, Japan
| | - Kazuhiko Nozaki
- Department of Neurosurgery, Shiga University of Medical Science, Shiga 520–2192, Japan
- * E-mail: (KN); (KT)
| | - Kenji Tanigaki
- Research Institute, Shiga Medical Center, Moriyama 5-4-30, Shiga 524–8524, Japan
- * E-mail: (KN); (KT)
| |
Collapse
|
27
|
Zhang L, Zhang Z, Mason RP, Sarkaria JN, Zhao D. Convertible MRI contrast: Sensing the delivery and release of anti-glioma nano-drugs. Sci Rep 2015; 5:9874. [PMID: 25962872 PMCID: PMC4428068 DOI: 10.1038/srep09874] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2014] [Accepted: 03/19/2015] [Indexed: 12/27/2022] Open
Abstract
There is considerable interest in developing nanohybrids of imaging contrast agents and drugs for image-guided drug delivery. We have developed a strategy of utilizing manganese (Mn) to enhance the nano-encapsulation of arsenic trioxide (ATO). Formation of arsenite (As3+)-Mn precipitates in liposomes generates magnetic susceptibility effects, reflected as dark contrast on T2-weighted MRI. Intriguingly, following cell uptake, the As-Mn complex decomposes in response to low pH in endosome-lysosome releasing ionic As3+, the active form of ATO, and Mn2+, the T1 contrast agent that gives a bright signal. Glioblastoma (GBM) is well known for its high resistance to chemotherapy, e.g., temozolomide (TMZ). Building upon the previously established phosphatidylserine (PS)-targeted nanoplatform that has excellent GBM-targeting specificity, we now demonstrate the effectiveness of the targeted nanoformulated ATO for treating TMZ-resistant GBM cells and the ability of the convertible Mn contrast as a surrogate revealing the delivery and release of ATO.
Collapse
Affiliation(s)
- Liang Zhang
- Radiology, UT Southwestern Medical Center, Dallas, TX
| | | | - Ralph P Mason
- Radiology, UT Southwestern Medical Center, Dallas, TX
| | | | - Dawen Zhao
- Radiology, UT Southwestern Medical Center, Dallas, TX
| |
Collapse
|
28
|
Sun JJ, Wang ZY, Li LS, Yu HY, Xu YS, Wu HB, Luo Y, Liu B, Zheng M, Mao JL, Lou XH. Prevention against diffuse spinal cord astrocytoma: can the Notch pathway be a novel treatment target? Neural Regen Res 2015; 10:244-51. [PMID: 25883623 PMCID: PMC4392672 DOI: 10.4103/1673-5374.152378] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/04/2014] [Indexed: 11/25/2022] Open
Abstract
This study was designed to investigate whether the Notch pathway is involved in the development of diffuse spinal cord astrocytomas. BALB/c nude mice received injections of CD133+ and CD133− cell suspensions prepared using human recurrent diffuse spinal cord astrocytoma tissue through administration into the right parietal lobe. After 7–11 weeks, magnetic resonance imaging was performed weekly. Xenografts were observed on the surfaces of the brains of mice receiving the CD133+ cell suspension, and Notch-immunopositive expression was observed in the xenografts. By contrast, no xenografts appeared in the identical position on the surfaces of the brains of mice receiving the CD133− cell suspension, and Notch-immunopositive expression was hardly detected either. Hematoxylin-eosin staining and immunohistochemical staining revealed xenografts on the convex surfaces of the brains of mice that underwent CD133+ astrocytoma transplantation. Some sporadic astroglioma cells showed pseudopodium-like structures, which extended into the cerebral white matter. However, it should be emphasized that the subcortex xenograft with Notch-immunopositive expression was found in the fourth mouse received injection of CD133− astrocytoma cells. However, these findings suggest that the Notch pathway plays an important role in the formation of astrocytomas, and can be considered a novel treatment target for diffuse spinal cord astrocytoma.
Collapse
Affiliation(s)
- Jian-Jun Sun
- Department of Neurosurgery, Peking University Third Hospital, Peking University, Beijing, China
| | - Zhen-Yu Wang
- Department of Neurosurgery, Peking University Third Hospital, Peking University, Beijing, China
| | - Ling-Song Li
- China Stem Cell Research Center, Peking University Health Science Center, Peking University, Beijing, China
| | - Hai-Yan Yu
- Clinical Stem Cell Center, Peking University Third Hospital, Peking University, Beijing, China
| | - Yong-Sheng Xu
- Clinical Stem Cell Center, Peking University Third Hospital, Peking University, Beijing, China ; Clinical Laboratory of Tissue & Cell Research Center, Department of Biotech Treatment, Logistics College of Chinese People's Armed Police Force, Tianjin, China
| | - Hai-Bo Wu
- Department of Neuroradiology, Peking University Third Hospital, Peking University, Beijing, China
| | - Yi Luo
- Department of Neurosurgery, Peking University Third Hospital, Peking University, Beijing, China
| | - Bin Liu
- Department of Neurosurgery, Peking University Third Hospital, Peking University, Beijing, China
| | - Mei Zheng
- Department of Neurology, Peking University Third Hospital, Peking University, Beijing, China
| | - Jin-Long Mao
- Neurosurgical Department, Peking Union Medical College Hospital, Beijing, China
| | - Xiao-Hui Lou
- Department of Neurosurgery, Rui'an People's Hospital, Wenzhou Medical University, Wenzhou, Zhejiang Province, China
| |
Collapse
|
29
|
Nanomedicine to overcome radioresistance in glioblastoma stem-like cells and surviving clones. Trends Pharmacol Sci 2015; 36:236-52. [PMID: 25799457 DOI: 10.1016/j.tips.2015.02.002] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2014] [Revised: 01/28/2015] [Accepted: 02/03/2015] [Indexed: 12/14/2022]
Abstract
Radiotherapy is one of the standard treatments for glioblastoma, but its effectiveness often encounters the phenomenon of radioresistance. This resistance was recently attributed to distinct cell contingents known as glioblastoma stem-like cells (GSCs) and dominant clones. It is characterized in particular by the activation of signaling pathways and DNA repair mechanisms. Recent advances in the field of nanomedicine offer new possibilities for radiosensitizing these cell populations. Several strategies have been developed in this direction, the first consisting of encapsulating a contrast agent or synthesizing metal-based nanocarriers to concentrate the dose gradient at the level of the target tissue. In the second strategy the physicochemical properties of the vectors are used to encapsulate a wide range of pharmacological agents which act in synergy with the ionizing radiation to destroy the cancerous cells. This review reports on the various molecular anomalies present in GSCs and the predominant role of nanomedicines in the development of radiosensitization strategies.
Collapse
|
30
|
Li Y, Jiang F, Liu Q, Shen J, Wang X, Li Z, Zhang J, Lu X. Inhibition of the cancer stem cells-like properties by arsenic trioxide, involved in the attenuation of endogenous transforming growth factor beta signal. Toxicol Sci 2015; 143:156-164. [PMID: 25304214 DOI: 10.1093/toxsci/kfu218] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
The elevation of cancer stem cells (CSCs)-like properties is involved in the initiation and progression of various human cancers. Current standard practices for treatment of cancers are less than satisfactory because of CSCs-mediated recurrence. For this reason, targeting the CSCs or the cancer cells with CSCs-like properties has become the new approach for the cancer treatments. In addition to treating leukemia, arsenic trioxide (As₂O₃) also suppresses other solid tumors. However, the roles of As₂O₃ in the regulation of CSCs-like properties remain largely uninvestigated. Here by using sphere formation assay, luciferase reporter assay, and some other molecular biology approaches, we found that As₂O₃ attenuated the CSCs-like properties in human hepatocellular carcinoma (HCC). Briefly, in HCC cells and mice xenograft models, As₂O₃ improved the expression of miR-491 by DNA-demethylation. MiR-491, which targeted the SMAD3-3'-UTR, decreased the expressions of SMAD3, and inhibited the CSCs-like properties in HCC cells. Knockdown of either miR-491 or SMAD3 attenuated the As₂O₃-induced inhibition of endogenous transforming growth factor beta signal and the CSCs-like properties. Further, in HCC patients, miR-491 is inversely correlated with the expressions of SMAD3, CD133, and the metastasis/recurrence outcome. By understanding a novel mechanism whereby As₂O₃ inhibits the CSCs-like properties in HCC, our study would help in the design of future strategies of developing As₂O₃ as a potential HCC chemopreventive agent when used alone or in combination with other current drugs.
Collapse
MESH Headings
- 3' Untranslated Regions
- AC133 Antigen
- Animals
- Antigens, CD/genetics
- Antigens, CD/metabolism
- Antineoplastic Agents/pharmacology
- Arsenic Trioxide
- Arsenicals/pharmacology
- Carcinoma, Hepatocellular/drug therapy
- Carcinoma, Hepatocellular/genetics
- Carcinoma, Hepatocellular/metabolism
- Carcinoma, Hepatocellular/mortality
- Carcinoma, Hepatocellular/pathology
- Cell Line, Tumor
- Down-Regulation
- Gene Expression Regulation, Neoplastic
- Glycoproteins/genetics
- Glycoproteins/metabolism
- Humans
- Kaplan-Meier Estimate
- Liver Neoplasms/drug therapy
- Liver Neoplasms/genetics
- Liver Neoplasms/metabolism
- Liver Neoplasms/mortality
- Liver Neoplasms/pathology
- Mice, Inbred BALB C
- Mice, Nude
- MicroRNAs/genetics
- MicroRNAs/metabolism
- Neoplastic Stem Cells/drug effects
- Neoplastic Stem Cells/metabolism
- Neoplastic Stem Cells/pathology
- Oxides/pharmacology
- Peptides/genetics
- Peptides/metabolism
- RNA Interference
- Signal Transduction/drug effects
- Smad3 Protein/genetics
- Smad3 Protein/metabolism
- Time Factors
- Transfection
- Transforming Growth Factor beta/metabolism
- Xenograft Model Antitumor Assays
Collapse
Affiliation(s)
- Yuan Li
- *The Key Laboratory of Modern Toxicology, Ministry of Education, School of Public Health, Nanjing Medical University, Nanjing 211166, Department of General Surgery and Department of Geriatrics, The Second Affiliated Hospital, Nanjing Medical University, Nanjing, 210011, China
| | - Fei Jiang
- *The Key Laboratory of Modern Toxicology, Ministry of Education, School of Public Health, Nanjing Medical University, Nanjing 211166, Department of General Surgery and Department of Geriatrics, The Second Affiliated Hospital, Nanjing Medical University, Nanjing, 210011, China
| | - Qinqiang Liu
- *The Key Laboratory of Modern Toxicology, Ministry of Education, School of Public Health, Nanjing Medical University, Nanjing 211166, Department of General Surgery and Department of Geriatrics, The Second Affiliated Hospital, Nanjing Medical University, Nanjing, 210011, China
| | - Jian Shen
- *The Key Laboratory of Modern Toxicology, Ministry of Education, School of Public Health, Nanjing Medical University, Nanjing 211166, Department of General Surgery and Department of Geriatrics, The Second Affiliated Hospital, Nanjing Medical University, Nanjing, 210011, China
| | - Xingxing Wang
- *The Key Laboratory of Modern Toxicology, Ministry of Education, School of Public Health, Nanjing Medical University, Nanjing 211166, Department of General Surgery and Department of Geriatrics, The Second Affiliated Hospital, Nanjing Medical University, Nanjing, 210011, China
| | - Zhong Li
- *The Key Laboratory of Modern Toxicology, Ministry of Education, School of Public Health, Nanjing Medical University, Nanjing 211166, Department of General Surgery and Department of Geriatrics, The Second Affiliated Hospital, Nanjing Medical University, Nanjing, 210011, China
| | - Jianping Zhang
- *The Key Laboratory of Modern Toxicology, Ministry of Education, School of Public Health, Nanjing Medical University, Nanjing 211166, Department of General Surgery and Department of Geriatrics, The Second Affiliated Hospital, Nanjing Medical University, Nanjing, 210011, China
| | - Xiang Lu
- *The Key Laboratory of Modern Toxicology, Ministry of Education, School of Public Health, Nanjing Medical University, Nanjing 211166, Department of General Surgery and Department of Geriatrics, The Second Affiliated Hospital, Nanjing Medical University, Nanjing, 210011, China
| |
Collapse
|
31
|
Ji H, Li Y, Jiang F, Wang X, Zhang J, Shen J, Yang X. Inhibition of transforming growth factor beta/SMAD signal by MiR-155 is involved in arsenic trioxide-induced anti-angiogenesis in prostate cancer. Cancer Sci 2014; 105:1541-9. [PMID: 25283513 PMCID: PMC4317958 DOI: 10.1111/cas.12548] [Citation(s) in RCA: 66] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2014] [Revised: 09/24/2014] [Accepted: 09/30/2014] [Indexed: 12/17/2022] Open
Abstract
Prostate cancer is the most common cause of cancer-related deaths in men. Current practices for treatment of prostate cancer are less than satisfactory because of metastasis and recurrence, which are primarily attributed to angiogenesis. Hence, anti-angiogenesis treatment is becoming a promising new approach for prostate cancer therapy. In addition to treating acute promyelocytic leukemia, arsenic trioxide (As2O3) suppresses other solid tumors, including prostate cancer. However, the effects of As2O3 on angiogenesis in prostate cancer cells, and the underlying molecular mechanisms remain unclear. In the present study, As2O3 attenuated angiogenic ability through microRNA-155 (miR-155)-mediated inhibition of transforming growth factor beta (TGF-β)/SMAD signal pathway in human prostate cancer PC-3 and LNCaP cells in vitro and in vivo. Briefly, As2O3 inhibited the activations/expressions of both TGFβ-induced and endogenous SMAD2/3. Furthermore, As2O3 improved the expression of miR-155 via DNA-demethylation. MiR-155, which targeted the SMAD2-3′UTR, decreased the expression and function of SMAD2. Knockdown of miR-155 abolished the As2O3-induced inhibitions of the TGF-β/SMAD2 signaling, the vascular endothelial growth factor secretion and angiogenesis. Through understanding a novel mechanism whereby As2O3 inhibits angiogenic potential of prostate cancer cells, our study would help in the development of As2O3 as a potential chemopreventive agent when used alone or in combination with other current anticancer drugs.
Collapse
Affiliation(s)
- Hui Ji
- Affiliated Nanjing Maternity and Child Health Care Hospital, Nanjing Medical University, Nanjing, China
| | | | | | | | | | | | | |
Collapse
|
32
|
Goffart N, Dedobbeleer M, Rogister B. Glioblastoma stem cells: new insights in therapeutic strategies. FUTURE NEUROLOGY 2014. [DOI: 10.2217/fnl.14.56] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
ABSTRACT Despite notable achievements in glioblastoma diagnosis and treatment, the prognosis of glioblastoma patients remains poor and reflects the failure of current therapeutic modalities. In this context, innovative therapeutic strategies have recently been developed to specifically target glioblastoma stem cells, a subpopulation of tumor cells involved in experimental tumorigenesis and known to be critical for tumor recurrence and therapeutic resistance. The current review summarizes the different trails which make glioblastoma stem cells resistant to treatments, mainly focusing on radio-, chemo- and immunotherapy. This broad overview might actually help to set up new bases for glioblastoma therapy in order to better fight tumor relapses and to improve the patients’ prognosis.
Collapse
Affiliation(s)
- Nicolas Goffart
- Laboratory of Developmental Neurobiology, GIGA-Neurosciences Research Center, University of Liège, Liège, Belgium
| | - Matthias Dedobbeleer
- Laboratory of Developmental Neurobiology, GIGA-Neurosciences Research Center, University of Liège, Liège, Belgium
| | - Bernard Rogister
- Laboratory of Developmental Neurobiology, GIGA-Neurosciences Research Center, University of Liège, Liège, Belgium
- Department of Neurology, CHU & University of Liège, Liège, Belgium
- GIGA-Development, Stem Cells & Regenerative Medicine, University of Liège, Liège, Belgium
| |
Collapse
|
33
|
Arsenic trioxide inhibits Hedgehog, Notch and stem cell properties in glioblastoma neurospheres. Acta Neuropathol Commun 2014; 2:31. [PMID: 24685274 PMCID: PMC3977902 DOI: 10.1186/2051-5960-2-31] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2014] [Accepted: 03/15/2014] [Indexed: 02/08/2023] Open
Abstract
Background Notch and Hedgehog signaling have been implicated in the pathogenesis and stem-like characteristics of glioblastomas, and inhibitors of the pathways have been suggested as new therapies for these aggressive tumors. It has also been reported that targeting both pathways simultaneously can be advantageous in treating glioblastoma neurospheres, but this is difficult to achieve in vivo using multiple agents. Since arsenic trioxide has been shown to inhibit both Notch and Hedgehog in some solid tumors, we examined its effects on these pathways and on stem cell phenotype in glioblastoma. Results We found that arsenic trioxide suppresses proliferation and promotes apoptosis in three stem-like glioblastoma neurospheres lines, while inhibiting Notch and Hedgehog target genes. Importantly, arsenic trioxide markedly reduced clonogenic capacity of the tumor neurospheres, and the stem-like CD133-positive fraction was also diminished along with expression of the stem cell markers SOX2 and CD133. Conclusions Our results suggest that arsenic trioxide may be effective in targeting stem-like glioblastoma cells in patients by inhibiting Notch and Hedgehog activity.
Collapse
|
34
|
Igissinov N, Akshulakov S, Igissinov S, Moore M, Adilbekov Y, Gaitova K, Kissaev Y, Mustafina M. Malignant tumours of the central nervous system in Kazakhstan--incidence trends from 2004-2011. Asian Pac J Cancer Prev 2014; 14:4181-6. [PMID: 23991973 DOI: 10.7314/apjcp.2013.14.7.4181] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022] Open
Abstract
In the article were observed the epidemiological aspects of malignant tumors of the central nervous system (MT CNS) in Kazakhstan in a retrospective study for the years 2004-2011. The material of the study was consolidated accounting data of oncology centers on patients with MT CNS (C70-72) with first time established diagnosis. Calculated were crude, age, standardized (world standard), aligned and predicted incidence of MT CNS among both male and female populations. It was found that over the studied period, there were 4,604 cases of MT CNS. The average annual crude incidence rate of MT CNS in total population was 3.7±0.10/0000. Trends in aligned incidence rates in the whole country had a tendency to increase (T=+0.9%). Defined levels of morbidity MT CNS in the whole population in different regions of Kazakhstan: low up to 2.870/0000, the average from 2.87 to 4.450/0000 and high from 4.450/0000 and above on the basis of which was given the space-time estimate. Age and sex differences in MT CNS incidence were also clearly established.
Collapse
|
35
|
Karsy M, Albert L, Murali R, Jhanwar-Uniyal M. The impact of arsenic trioxide and all-trans retinoic acid on p53 R273H-codon mutant glioblastoma. Tumour Biol 2014; 35:4567-80. [PMID: 24399651 DOI: 10.1007/s13277-013-1601-6] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2013] [Accepted: 12/23/2013] [Indexed: 02/07/2023] Open
Abstract
Glioblastoma (GBM) is the most common primary brain tumor in adults and demonstrates a 1-year median survival time. Codon-specific hotspot mutations of p53 result in constitutively active mutant p53, which promotes aberrant proliferation, anti-apoptosis, and cell cycle checkpoint failure in GBM. Recently identified CD133(+) cancer stem cell populations (CSC) within GBM also confer therapeutic resistance. We studied targeted therapy in a codon-specific p53 mutant (R273H) created by site-directed mutagenesis in U87MG. The effects of arsenic trioxide (ATO, 1 μM) and all-trans retinoic acid (ATRA, 10 μM), possible targeted treatments of CSCs, were investigated in U87MG neurospheres. The results showed that U87-p53(R273H) cells generated more rapid neurosphere growth than U87-p53(wt) but inhibition of neurosphere proliferation was seen with both ATO and ATRA. U87-p53(R273H) neurospheres showed resistance to differentiation into glial cells and neuronal cells with ATO and ATRA exposure. ATO was able to generate apoptosis at high doses and proliferation of U87-p53(wt) and U87-p53(R273H) cells was reduced with ATO and ATRA in a dose-dependent manner. Elevated pERK1/2 and p53 expression was seen in U87-p53(R273H) neurospheres, which could be reduced with ATO and ATRA treatment. Additionally, differential responses in pERK1/2 were seen with ATO treatment in neurospheres and non-neurosphere cells. In conclusion, codon-specific mutant p53 conferred a more aggressive phenotype to our CSC model. However, ATO and ATRA could potently suppress CSC properties in vitro and may support further clinical investigation of these agents.
Collapse
Affiliation(s)
- Michael Karsy
- Department of Neurosurgery, University of Utah, 175 North Medical Dr. East, Salt Lake City, UT, 84132, USA,
| | | | | | | |
Collapse
|
36
|
Characterization of arsenic trioxide resistant clones derived from Jurkat leukemia T cell line: focus on PI3K/Akt signaling pathway. Chem Biol Interact 2013; 205:198-211. [PMID: 23911876 DOI: 10.1016/j.cbi.2013.07.011] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2013] [Revised: 07/17/2013] [Accepted: 07/23/2013] [Indexed: 01/06/2023]
Abstract
In this study the role of PI3K/Akt signaling pathway in arsenic trioxide (ATO)-treated parental Jurkat cells and also in derived ATO-resistant clones grown in the presence of given ATO concentration was investigated. ATO-resistant clones (cultured for 8-12weeks in the presence of 1, 2.5 and 5μM ATO) were characterized by high viability in the presence of ATO but slower growth rate compared to the parental cells. Morphological and functional characterization of derived ATO-resistant clones revealed that they did not differ fundamentally from parental Jurkat cells in terms of cell size, level of GSH, the lysosomal fluorescence or CD95/Fas surface antigen expression. However, a slight increase in the mitochondrial potential (JC-1 staining) was detected in the clones compared to parental Jurkat cells. Side population analysis (Vybrant DyeCycle Violet™ staining) in ATO resistant clones did not indicate any enrichment withcancer stem cells. Akt1/2, AktV or wortmannin inhibitors decreased viability of ATO-resistant clones grown in the presence of ATO, with no effect on ATO-treated parental cells. Flow cytometry analysis showed that ATO decreased the level of p-Akt in ATO-treated parental cells, while the resistant clones exhibited higher levels of p-Akt immunostaining than parental Jurkat cells. Expression analysis of 84 genes involved in the PI3K/Akt pathway revealed that this pathway was predominantly active in ATO-resistant clones. c-JUN seems to play a key role in the induction of cell death in ATO-treated parental Jurkat cells, as dose-dependent strong up-regulation of JUN was specific for the ATO-treated parental Jurkat cells. On the other hand, changes in expression of cyclin D1 (CCND1), insulin receptor substrate 1 (IRS1) and protein kinase C isoforms (PRKCZ,PRKCB and PRKCA) may be responsible for the induction of resistance to ATO. The changes in expression of growth factor receptor-bound protein 10 (GRB10) observed in ATO-resistant clones suggest a possibility of induction of different mechanisms in development of resistance to ATO depending on the drug concentration and thus involvement of different signaling mediators.
Collapse
|