1
|
Liu K, Kadannagari S, Deruiter J, Pathak S, Abbott KL, Salamat JM, Pondugula SR, Akingbemi BT, Dhanasekaran M. Effects of developmental exposures to Bisphenol-A and Bisphenol-S on hepatocellular function in male Long-Evans rats. Life Sci 2023; 326:121752. [PMID: 37172818 DOI: 10.1016/j.lfs.2023.121752] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2023] [Revised: 04/26/2023] [Accepted: 04/30/2023] [Indexed: 05/15/2023]
Abstract
Bisphenol-S (BPS) is a current substitute for Bisphenol-A (BPA) in various commercial products (paper, plastics, protective can-coatings, etc.) used by all age groups globally. The current literature indicates that a drastic surge in pro-oxidants, pro-apoptotic, and pro-inflammatory biomarkers in combination with diminished mitochondrial activity can potentially decrease hepatic function leading to morbidity and mortality. Consequently, there are increasing public health concerns that substantial Bisphenol-mediated effects may impact hepatocellular functions, particularly in newborns exposed to BPA and BPS postnatally. However, the acute postnatal impact of BPA and BPS and the molecular mechanisms affecting hepatocellular functions are unknown. Therefore, the current study investigated the acute postnatal effect of BPA and BPS on the biomarkers of hepatocellular functions, including oxidative stress, inflammation, apoptosis, and mitochondrial activity in male Long-Evans rats. BPA and BPS (5 and 20 microgram/Liter (μg/L) of drinking water) were administered to 21-day-old male rats for 14 days. BPS had no significant effect on apoptosis, inflammation, and mitochondrial function but significantly reduced the reactive oxygen species (51-60 %, **p < 0.01) and nitrite content (36 %, *p < 0.05), exhibiting hepatoprotective effects. As expected, based on the current scientific literature, BPA induced significant hepatoxicity, as seen by significant glutathione depletion (50 %, *p < 0.05). The in-silico analysis indicated that BPS is effectively absorbed in the gastrointestinal tract without crossing the blood-brain barrier (whereas BPA crosses the blood-brain barrier) and is not a substrate of p-Glycoprotein and Cytochrome P450 enzymes. Thus, the current in-silico and in vivo findings revealed that acute postnatal exposure to BPS had no significant hepatotoxicity.
Collapse
Affiliation(s)
- Keyi Liu
- Department of Drug Discovery and Development, Harrison College of Pharmacy, Auburn University, AL, USA
| | - Surekha Kadannagari
- Department of Drug Discovery and Development, Harrison College of Pharmacy, Auburn University, AL, USA
| | - Jack Deruiter
- Department of Drug Discovery and Development, Harrison College of Pharmacy, Auburn University, AL, USA
| | - Suhrud Pathak
- Department of Drug Discovery and Development, Harrison College of Pharmacy, Auburn University, AL, USA
| | - Kodye L Abbott
- Department of Anatomy, Physiology and Pharmacology, College of Veterinary Medicine, Auburn University, Auburn, AL, USA
| | - Julia M Salamat
- Department of Anatomy, Physiology and Pharmacology, College of Veterinary Medicine, Auburn University, Auburn, AL, USA
| | - Satyanarayana R Pondugula
- Department of Anatomy, Physiology and Pharmacology, College of Veterinary Medicine, Auburn University, Auburn, AL, USA
| | - Benson T Akingbemi
- Department of Anatomy, Physiology and Pharmacology, College of Veterinary Medicine, Auburn University, Auburn, AL, USA
| | | |
Collapse
|
2
|
Jeminiwa BO, Knight RC, Abbot KL, Pondugula SR, Akingbemi BT. Gonadal sex steroid hormone secretion after exposure of male rats to estrogenic chemicals and their combinations. Mol Cell Endocrinol 2021; 533:111332. [PMID: 34038751 PMCID: PMC9310441 DOI: 10.1016/j.mce.2021.111332] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/02/2020] [Revised: 05/17/2021] [Accepted: 05/19/2021] [Indexed: 11/21/2022]
Abstract
Environmental chemicals can interfere with the endocrine axis hence they are classified as endocrine disrupting chemicals (EDCs). Bisphenol S (BPS) is used in the manufacture of consumer products because of its superior thermal stability and is thought to be a safe replacement chemical for its analog bisphenol A (BPA). However, the safety profile of these compounds alone or in the presence of other EDCs is yet to be fully investigated. Also, the estrogenic chemical 17α-ethinyl estradiol (EE2) and a constituent of female oral contraceptives for women, is present in water supplies. To simulate concurrent exposure of the population to chemical mixtures, we investigated the effects of BPA, BPS, EE2, and their combinations on sex steroid secretion in the growing male rat gonad. Prepubertal and pubertal male rats at 21 and 35 days of age were provided test chemicals in drinking water (parts per billion) for 14 days. At termination of exposure, some individual chemical effects were modified by exposure to chemical combinations. Single chemical exposures markedly decreased androgen secretion but their combination (e.g., BPA + BPS + EE2) caused the opposite effect, i.e., increased Leydig cell T secretion. Also, the test chemicals acting alone or in combination increased testicular and Leydig cell 17β-estradiol (E2) secretion. Chemical-induced changes in T and E2 secretion were associated with altered testicular expression of the cholesterol side-chain cleavage (Cyp11a1) and 17β-hydroxysteroid dehydrogenase (Hsd17β) enzyme protein. Additional studies are warranted to understand the mechanisms by which single and chemical combinations impact function of testicular cells and disrupt their paracrine regulation.
Collapse
Affiliation(s)
- B O Jeminiwa
- Department of Anatomy, Physiology, and Pharmacology, College of Veterinary Medicine, Auburn University, Auburn, AL 36849, USA
| | - R C Knight
- Department of Anatomy, Physiology, and Pharmacology, College of Veterinary Medicine, Auburn University, Auburn, AL 36849, USA
| | - K L Abbot
- Department of Anatomy, Physiology, and Pharmacology, College of Veterinary Medicine, Auburn University, Auburn, AL 36849, USA
| | - S R Pondugula
- Department of Anatomy, Physiology, and Pharmacology, College of Veterinary Medicine, Auburn University, Auburn, AL 36849, USA
| | - B T Akingbemi
- Department of Anatomy, Physiology, and Pharmacology, College of Veterinary Medicine, Auburn University, Auburn, AL 36849, USA.
| |
Collapse
|
3
|
Chen L, Zhao Y, Li L, Xie L, Chen X, Liu J, Li X, Jin L, Li X, Ge RS. Bisphenol A stimulates differentiation of rat stem Leydig cells in vivo and in vitro. Mol Cell Endocrinol 2018. [PMID: 29524480 DOI: 10.1016/j.mce.2018.03.003] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
Abstract
Bisphenol A (BPA) is widely used in consumer products and a potential endocrine disruptor linked with sexual precocity. However, its action and underlying mechanisms on male sexual maturation is unclear. In the present study, we used a unique in vivo ethane dimethane sulfonate (EDS)-induced Leydig cell regeneration model that mimics the pubertal development of Leydig cells and an in vitro stem Leydig cell differentiation model to examine the roles of BPA in Leydig cell development in rats. Intratesticular exposure to doses (100 and 1000 pmol/testis) of BPA from post-EDS day 14-28 stimulated Leydig cell developmental regeneration process by increasing serum testosterone level and Leydig cell-specific gene (Lhcgr, Star, Cyp11a1, Hsd3b1, Cyp17a1, Hsd17b3, and Hsd11b1) and their protein expression levels. BPA did not alter serum luteinizing hormone and follicle-stimulating hormone levels as well as the proliferative capacity of Leydig cells in vivo. In vitro study demonstrated that BPA (100 nmol/L) stimulated the differentiation of stem Leydig cells by increasing medium testosterone levels and up-regulating Leydig cell-specific gene (Lhcgr, Cyp11a1, Hsd3b1, Cyp17a1, and Hsd17b3) and their proteins but did not affect their proliferation measured by EdU incorporation. In conclusion, BPA stimulates the differentiation of stem Leydig cells in rat testes, thus possibly causing sexual precocity in the male.
Collapse
Affiliation(s)
- Lanlan Chen
- Department of Anesthiology, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, 325027, China
| | - Yu Zhao
- Department of Obstetrics and Gynecology, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, 325027, China
| | - Linchao Li
- Department of Anesthiology, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, 325027, China
| | - Lubin Xie
- Department of Obstetrics and Gynecology, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, 325027, China
| | - Xianwu Chen
- Department of Obstetrics and Gynecology, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, 325027, China
| | - Jianpeng Liu
- Department of Obstetrics and Gynecology, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, 325027, China
| | - Xiaoheng Li
- Department of Anesthiology, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, 325027, China
| | - Lixu Jin
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, 325000, China
| | - Xingwang Li
- Department of Anesthiology, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, 325027, China.
| | - Ren-Shan Ge
- Department of Anesthiology, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, 325027, China; Department of Obstetrics and Gynecology, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, 325027, China.
| |
Collapse
|
4
|
Hu W, Dong T, Wang L, Guan Q, Song L, Chen D, Zhou Z, Chen M, Xia Y, Wang X. Obesity aggravates toxic effect of BPA on spermatogenesis. ENVIRONMENT INTERNATIONAL 2017; 105:56-65. [PMID: 28501790 DOI: 10.1016/j.envint.2017.04.014] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/08/2017] [Revised: 04/27/2017] [Accepted: 04/27/2017] [Indexed: 06/07/2023]
Abstract
Both bisphenol A (BPA) and obesity affect male reproductive system. However, whether there is an interaction between them remains poorly understood. The aim of the present study was to evaluate the interaction between BPA exposure and obesity on semen quality and elucidate the mechanism in humans and animals. We firstly analyzed the interaction on semen volume, sperm count per ejaculate, sperm concentration and sperm motility in 357 men, and found that urinary BPA concentration was significantly correlated with sperm count per ejaculate in obese men (β=-34.62; 95% CI: -60.75, -8.48; P=0.01). Then we validated the interaction using lean and obese mice with administration of BPA. Significant interactions between BPA exposure and obesity on sperm count and sperm concentration was observed in mice. Finally, we conducted metabolomics analyses to identify metabolites related to the interaction. Metabolites related to the interaction, including capric acid, dodecanoic acid, l-palmitoylcarnitine, niacinamide, etc., are known to play critical roles in fatty acid oxidation and tricarboxylic acid cycle indicating increased oxidative stress associated with male reproductive dysfunction. Thus, our study finds an interaction between BPA exposure and obesity on sperm count and reveals potential metabolic mechanisms. It emphasizes the importance to study interactions between endocrine disrupting chemicals and obesity, and opens avenues for the possible use of animal models in identifying the interactions.
Collapse
Affiliation(s)
- Weiyue Hu
- State Key Laboratory of Reproductive Medicine, Institute of Toxicology, School of Public Health, Nanjing Medical University, Nanjing 211166, China; Key Laboratory of Modern Toxicology of Ministry of Education, School of Public Health, Nanjing Medical University, Nanjing 211166, China
| | - Tianyu Dong
- State Key Laboratory of Reproductive Medicine, Institute of Toxicology, School of Public Health, Nanjing Medical University, Nanjing 211166, China; Key Laboratory of Modern Toxicology of Ministry of Education, School of Public Health, Nanjing Medical University, Nanjing 211166, China
| | - Lingling Wang
- State Key Laboratory of Reproductive Medicine, Institute of Toxicology, School of Public Health, Nanjing Medical University, Nanjing 211166, China; Key Laboratory of Modern Toxicology of Ministry of Education, School of Public Health, Nanjing Medical University, Nanjing 211166, China
| | - Quanquan Guan
- State Key Laboratory of Reproductive Medicine, Institute of Toxicology, School of Public Health, Nanjing Medical University, Nanjing 211166, China; Key Laboratory of Modern Toxicology of Ministry of Education, School of Public Health, Nanjing Medical University, Nanjing 211166, China
| | - Ling Song
- State Key Laboratory of Reproductive Medicine, Institute of Toxicology, School of Public Health, Nanjing Medical University, Nanjing 211166, China; Key Laboratory of Modern Toxicology of Ministry of Education, School of Public Health, Nanjing Medical University, Nanjing 211166, China
| | - Daozhen Chen
- Wuxi Maternal and Child Health Hospital Affiliated to Nanjing Medical University, Wuxi 214002, China
| | - Zuomin Zhou
- State Key Laboratory of Reproductive Medicine, Nanjing Medical University, Nanjing 211166, China
| | - Minjian Chen
- State Key Laboratory of Reproductive Medicine, Institute of Toxicology, School of Public Health, Nanjing Medical University, Nanjing 211166, China; Key Laboratory of Modern Toxicology of Ministry of Education, School of Public Health, Nanjing Medical University, Nanjing 211166, China; Wuxi Maternal and Child Health Hospital Affiliated to Nanjing Medical University, Wuxi 214002, China.
| | - Yankai Xia
- State Key Laboratory of Reproductive Medicine, Institute of Toxicology, School of Public Health, Nanjing Medical University, Nanjing 211166, China; Key Laboratory of Modern Toxicology of Ministry of Education, School of Public Health, Nanjing Medical University, Nanjing 211166, China.
| | - Xinru Wang
- State Key Laboratory of Reproductive Medicine, Institute of Toxicology, School of Public Health, Nanjing Medical University, Nanjing 211166, China; Key Laboratory of Modern Toxicology of Ministry of Education, School of Public Health, Nanjing Medical University, Nanjing 211166, China.
| |
Collapse
|
5
|
Zhang Z, Yu Y, Xu H, Wang C, Ji M, Gu J, Yang L, Zhu J, Dong H, Wang SL. High-fat diet aggravates 2,2′,4,4′-tetrabromodiphenyl ether-inhibited testosterone production via DAX-1 in Leydig cells in rats. Toxicol Appl Pharmacol 2017; 323:1-8. [DOI: 10.1016/j.taap.2017.03.010] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2016] [Revised: 03/02/2017] [Accepted: 03/10/2017] [Indexed: 01/19/2023]
|
6
|
|
7
|
Martinez AM, Cheong A, Ying J, Xue J, Kannan K, Leung YK, Thomas MA, Ho SM. Effects of High-Butterfat Diet on Embryo Implantation in Female Rats Exposed to Bisphenol A. Biol Reprod 2015; 93:147. [PMID: 26510865 DOI: 10.1095/biolreprod.115.131433] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2015] [Accepted: 10/22/2015] [Indexed: 12/21/2022] Open
Abstract
Bisphenol A (BPA) is an endocrine disruptor associated with poor pregnancy outcomes in human and rodents. The effects of butterfat diets on embryo implantation and whether it modifies BPA's actions are currently unknown. We aimed to determine the effects of butterfat diet on embryo implantation success in female rats exposed to an environmentally relevant dose of BPA. Female Sprague-Dawley rats were exposed to dietary butterfat (10% or 39% kcal/kg body weight [BW]) in the presence or absence of BPA (250 μg/kg BW) or ethinylestradiol (0.1 μg/kg BW) shortly before and during pregnancy to assess embryo implantation potentials by preimplantation development and transport, in vitro blastulation, outgrowth, and implantation. On gestational day (GD) 4.5, rats treated with BPA alone had higher serum total BPA level (2.3-3.7 ng/ml). They had more late-stage preimplantation embryos, whereas those receiving high butterfat (HBF) diet had the most advanced-stage embryos; dams cotreated with HBF and BPA had the most number of advanced embryos. BPA markedly delayed embryo transport to the uterus, but neither amount of butterfat had modifying effects. An in vitro implantation assay showed HBF doubled the outgrowth area, with BPA having no effect. In vivo, BPA reduced the number of implanted embryos on GD8, and cotreatment with HBF eliminated this adverse effect. HBF diet overall resulted in more and larger GD8 embryos. This study reveals the implantation disruptive effects of maternal exposure to an environmentally relevant dose of BPA and identifies HBF diet as a modifier of BPA in promoting early embryonic health.
Collapse
Affiliation(s)
- Alan M Martinez
- Division of Reproductive Endocrinology & Infertility, Department of Obstetrics & Gynecology, University of Cincinnati College of Medicine, Cincinnati, Ohio
| | - Ana Cheong
- Division of Environmental Genetics and Molecular Toxicology, Department of Environmental Health, University of Cincinnati College of Medicine, Cincinnati, Ohio Center for Environmental Genetics, University of Cincinnati College of Medicine, Cincinnati, Ohio
| | - Jun Ying
- Division of Biostatistics and Bioinformatics, Department of Environmental Health, University of Cincinnati College of Medicine, Cincinnati, Ohio
| | - Jingchuan Xue
- Wadsworth Center, New York State Department of Health, and Department of Environmental Health Sciences, School of Public Health, State University of New York at Albany, Albany, New York
| | - Kurunthachalam Kannan
- Wadsworth Center, New York State Department of Health, and Department of Environmental Health Sciences, School of Public Health, State University of New York at Albany, Albany, New York Biochemistry Department, Faculty of Science and Experimental Biochemistry Unit, King Fahd Medical Research Center, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Yuet-Kin Leung
- Division of Environmental Genetics and Molecular Toxicology, Department of Environmental Health, University of Cincinnati College of Medicine, Cincinnati, Ohio Center for Environmental Genetics, University of Cincinnati College of Medicine, Cincinnati, Ohio Cincinnati Cancer Center, Cincinnati, Ohio
| | - Michael A Thomas
- Division of Reproductive Endocrinology & Infertility, Department of Obstetrics & Gynecology, University of Cincinnati College of Medicine, Cincinnati, Ohio
| | - Shuk-Mei Ho
- Division of Environmental Genetics and Molecular Toxicology, Department of Environmental Health, University of Cincinnati College of Medicine, Cincinnati, Ohio Center for Environmental Genetics, University of Cincinnati College of Medicine, Cincinnati, Ohio Cincinnati Cancer Center, Cincinnati, Ohio Cincinnati Veteran Affairs Hospital Medical Center, Cincinnati, Ohio
| |
Collapse
|
8
|
Li Z, Xiang X, Li M, Ma Y, Wang J, Liu X. Occurrence and risk assessment of pharmaceuticals and personal care products and endocrine disrupting chemicals in reclaimed water and receiving groundwater in China. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2015; 119:74-80. [PMID: 25982733 DOI: 10.1016/j.ecoenv.2015.04.031] [Citation(s) in RCA: 69] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/07/2015] [Revised: 04/23/2015] [Accepted: 04/24/2015] [Indexed: 06/04/2023]
Abstract
Groundwater recharge using reclaimed water is considered a promising method to alleviate groundwater depletion. However, pollutants in reclaimed water could be recharged into groundwater during this process, thereby posing a risk to groundwater and human health. In this study, 12 cities in northern China were selected for reclaimed water and groundwater sampling. Analysis of the samples revealed the presence of nine pharmaceutical and personal care products (PPCPs) and five endocrine disrupting compounds (EDCs). In reclaimed water, all the PPCPs and EDCs were found, with sulpiride (SP) and estriol (E3) being most frequently detected. In groundwater samples, only ketoprofen (KP), mefenamic acid (MA), nalidixic acid (NA) and SP were detected among PPCPs, while bisphenol-A (BPA) was dominant among the target EDCs. The risk quotients (RQs) of all target PPCPs and EDCs except 17α-ethinyl estradiol (EE2) and E3 were below 1 in groundwater samples, indicating that EE2 and E3 deserve priority preferential treatment before recharging.
Collapse
Affiliation(s)
- Zhen Li
- School of Environment, Tsinghua University, Beijing 100084, China
| | - Xi Xiang
- School of Environment, Tsinghua University, Beijing 100084, China
| | - Miao Li
- School of Environment, Tsinghua University, Beijing 100084, China
| | - Yeping Ma
- School of Environment, Tsinghua University, Beijing 100084, China
| | - Jihua Wang
- Life Science and Technology College, Harbin Normal University, Harbin 150080, China.
| | - Xiang Liu
- School of Environment, Tsinghua University, Beijing 100084, China.
| |
Collapse
|
9
|
Agarwal S, Tiwari SK, Seth B, Yadav A, Singh A, Mudawal A, Chauhan LKS, Gupta SK, Choubey V, Tripathi A, Kumar A, Ray RS, Shukla S, Parmar D, Chaturvedi RK. Activation of Autophagic Flux against Xenoestrogen Bisphenol-A-induced Hippocampal Neurodegeneration via AMP kinase (AMPK)/Mammalian Target of Rapamycin (mTOR) Pathways. J Biol Chem 2015; 290:21163-21184. [PMID: 26139607 PMCID: PMC4543672 DOI: 10.1074/jbc.m115.648998] [Citation(s) in RCA: 62] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2015] [Revised: 06/21/2015] [Indexed: 12/11/2022] Open
Abstract
The human health hazards related to persisting use of bisphenol-A (BPA) are well documented. BPA-induced neurotoxicity occurs with the generation of oxidative stress, neurodegeneration, and cognitive dysfunctions. However, the cellular and molecular mechanism(s) of the effects of BPA on autophagy and association with oxidative stress and apoptosis are still elusive. We observed that BPA exposure during the early postnatal period enhanced the expression and the levels of autophagy genes/proteins. BPA treatment in the presence of bafilomycin A1 increased the levels of LC3-II and SQSTM1 and also potentiated GFP-LC3 puncta index in GFP-LC3-transfected hippocampal neural stem cell-derived neurons. BPA-induced generation of reactive oxygen species and apoptosis were mitigated by a pharmacological activator of autophagy (rapamycin). Pharmacological (wortmannin and bafilomycin A1) and genetic (beclin siRNA) inhibition of autophagy aggravated BPA neurotoxicity. Activation of autophagy against BPA resulted in intracellular energy sensor AMP kinase (AMPK) activation, increased phosphorylation of raptor and acetyl-CoA carboxylase, and decreased phosphorylation of ULK1 (Ser-757), and silencing of AMPK exacerbated BPA neurotoxicity. Conversely, BPA exposure down-regulated the mammalian target of rapamycin (mTOR) pathway by phosphorylation of raptor as a transient cell's compensatory mechanism to preserve cellular energy pool. Moreover, silencing of mTOR enhanced autophagy, which further alleviated BPA-induced reactive oxygen species generation and apoptosis. BPA-mediated neurotoxicity also resulted in mitochondrial loss, bioenergetic deficits, and increased PARKIN mitochondrial translocation, suggesting enhanced mitophagy. These results suggest implication of autophagy against BPA-mediated neurodegeneration through involvement of AMPK and mTOR pathways. Hence, autophagy, which arbitrates cell survival and demise during stress conditions, requires further assessment to be established as a biomarker of xenoestrogen exposure.
Collapse
Affiliation(s)
- Swati Agarwal
- Developmental Toxicology Laboratory, Systems Toxicology and Health Risk Assessment Group, CSIR-Indian Institute of Toxicology Research (CSIR-IITR), 80 MG Marg, Lucknow 226001, India; Academy of Scientific and Innovative Research, CSIR-IITR Lucknow Campus, Lucknow 226001, India
| | - Shashi Kant Tiwari
- Developmental Toxicology Laboratory, Systems Toxicology and Health Risk Assessment Group, CSIR-Indian Institute of Toxicology Research (CSIR-IITR), 80 MG Marg, Lucknow 226001, India; Academy of Scientific and Innovative Research, CSIR-IITR Lucknow Campus, Lucknow 226001, India
| | - Brashket Seth
- Developmental Toxicology Laboratory, Systems Toxicology and Health Risk Assessment Group, CSIR-Indian Institute of Toxicology Research (CSIR-IITR), 80 MG Marg, Lucknow 226001, India; Academy of Scientific and Innovative Research, CSIR-IITR Lucknow Campus, Lucknow 226001, India
| | - Anuradha Yadav
- Developmental Toxicology Laboratory, Systems Toxicology and Health Risk Assessment Group, CSIR-Indian Institute of Toxicology Research (CSIR-IITR), 80 MG Marg, Lucknow 226001, India; Academy of Scientific and Innovative Research, CSIR-IITR Lucknow Campus, Lucknow 226001, India
| | - Anshuman Singh
- Developmental Toxicology Laboratory, Systems Toxicology and Health Risk Assessment Group, CSIR-Indian Institute of Toxicology Research (CSIR-IITR), 80 MG Marg, Lucknow 226001, India
| | - Anubha Mudawal
- Developmental Toxicology Laboratory, Systems Toxicology and Health Risk Assessment Group, CSIR-Indian Institute of Toxicology Research (CSIR-IITR), 80 MG Marg, Lucknow 226001, India; Academy of Scientific and Innovative Research, CSIR-IITR Lucknow Campus, Lucknow 226001, India
| | | | - Shailendra Kumar Gupta
- Academy of Scientific and Innovative Research, CSIR-IITR Lucknow Campus, Lucknow 226001, India; Systems Toxicology and Health Risk Assessment Group, CSIR-IITR, Lucknow 226001, India
| | - Vinay Choubey
- Department of Pharmacology, Centre of Excellence for Translational Medicine, University of Tartu, Tartu, 50050 Estonia
| | - Anurag Tripathi
- Academy of Scientific and Innovative Research, CSIR-IITR Lucknow Campus, Lucknow 226001, India; Food Drug and Chemical Toxicology Group, CSIR-IITR, Lucknow 226001, India
| | - Amit Kumar
- Developmental Toxicology Laboratory, Systems Toxicology and Health Risk Assessment Group, CSIR-Indian Institute of Toxicology Research (CSIR-IITR), 80 MG Marg, Lucknow 226001, India; Academy of Scientific and Innovative Research, CSIR-IITR Lucknow Campus, Lucknow 226001, India
| | - Ratan Singh Ray
- Academy of Scientific and Innovative Research, CSIR-IITR Lucknow Campus, Lucknow 226001, India; Systems Toxicology and Health Risk Assessment Group, CSIR-IITR, Lucknow 226001, India
| | - Shubha Shukla
- Department of Pharmacology, CSIR-Central Drug Research Institute, Sector 10, Jankipuram Extension, Lucknow 226031, India
| | - Devendra Parmar
- Developmental Toxicology Laboratory, Systems Toxicology and Health Risk Assessment Group, CSIR-Indian Institute of Toxicology Research (CSIR-IITR), 80 MG Marg, Lucknow 226001, India; Academy of Scientific and Innovative Research, CSIR-IITR Lucknow Campus, Lucknow 226001, India
| | - Rajnish Kumar Chaturvedi
- Developmental Toxicology Laboratory, Systems Toxicology and Health Risk Assessment Group, CSIR-Indian Institute of Toxicology Research (CSIR-IITR), 80 MG Marg, Lucknow 226001, India; Academy of Scientific and Innovative Research, CSIR-IITR Lucknow Campus, Lucknow 226001, India.
| |
Collapse
|