1
|
Wormington AM, Gabrielli DJ, Nouri MZ, Lin AM, Robinson SE, Bowden JA, Denslow ND, Sabo-Attwood T, Bisesi JH. Effects of the organochlorine pesticide metabolite p,p'-DDE on the gastrointestinal lipidome in fish: A novel toxicity pathway for a legacy pollutant. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2024; 363:125191. [PMID: 39454813 DOI: 10.1016/j.envpol.2024.125191] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/25/2024] [Revised: 10/22/2024] [Accepted: 10/23/2024] [Indexed: 10/28/2024]
Abstract
Though phased out from use in the United States, environmental contamination by organochlorine pesticides (OCPs) remains a widespread issue, especially around intensive agricultural regions. OCPs, such as dichlorodiphenyltrichloroethane (DDT) and its primary metabolite, dichlorodiphenyldichloroethylene (DDE), have been detected in soils, sediments, surface waters, and biota decades after their discontinued use. As OCPs are persistent and can bioaccumulate in fats, these compounds can transfer and magnify across food webs. Freshwater predatory fish and birds can accumulate high OCP concentrations, leading to a myriad of deleterious impacts on organismal health. Studies have found evidence of reproductive disruption in predatory fish, such as the largemouth bass (LMB; Micropterus salmoides), associated with DDT and DDE exposure. DDE can act through estrogenic pathways and induce the expression of estrogenic signals in male animals; however, the molecular mechanism of disruption is unclear. Recently, metabolomics research has revealed corollary relationships between lipid signals and organic pollutant toxicity. Here, a two-month feeding experiment on LMB was conducted to assess the interactions of DDE (as p,p'-DDE) in food with gut and liver lipid signaling. Targeted lipidomic analysis revealed global alterations in the abundance of tissue lipids, especially cholesteryl esters and phospholipids, in LMB exposed to low levels of p,p'-DDE. Results from these studies indicate that p,p'-DDE may act through disruption of normal lipid homeostasis to cause toxicity in freshwater fish.
Collapse
Affiliation(s)
- Alexis M Wormington
- Department of Environmental and Global Health, University of Florida, Gainesville, FL, 32611, USA; Center for Environmental and Human Toxicology, University of Florida, Gainesville, FL, 32611, USA
| | - David J Gabrielli
- Department of Environmental and Global Health, University of Florida, Gainesville, FL, 32611, USA; Center for Environmental and Human Toxicology, University of Florida, Gainesville, FL, 32611, USA
| | - Mohammad-Zaman Nouri
- Center for Environmental and Human Toxicology, University of Florida, Gainesville, FL, 32611, USA
| | - Ashley M Lin
- Department of Environmental Engineering, University of Florida, Gainesville, FL, 32611, USA
| | - Sarah E Robinson
- Department of Environmental and Global Health, University of Florida, Gainesville, FL, 32611, USA; Center for Environmental and Human Toxicology, University of Florida, Gainesville, FL, 32611, USA
| | - John A Bowden
- Center for Environmental and Human Toxicology, University of Florida, Gainesville, FL, 32611, USA; Department of Physiological Sciences, University of Florida, Gainesville, FL, 32611, USA; Department of Environmental Engineering, University of Florida, Gainesville, FL, 32611, USA
| | - Nancy D Denslow
- Center for Environmental and Human Toxicology, University of Florida, Gainesville, FL, 32611, USA; Department of Physiological Sciences, University of Florida, Gainesville, FL, 32611, USA
| | - Tara Sabo-Attwood
- Department of Environmental and Global Health, University of Florida, Gainesville, FL, 32611, USA; Center for Environmental and Human Toxicology, University of Florida, Gainesville, FL, 32611, USA
| | - Joseph H Bisesi
- Department of Environmental and Global Health, University of Florida, Gainesville, FL, 32611, USA; Center for Environmental and Human Toxicology, University of Florida, Gainesville, FL, 32611, USA.
| |
Collapse
|
2
|
Mahjoubian M, Sadat Naeemi A, Sheykhan M. Comparative Toxicity of TiO 2 and Sn-Doped TiO 2 Nanoparticles in Zebrafish After Acute and Chronic Exposure. Biol Trace Elem Res 2024; 202:1-19. [PMID: 38472510 DOI: 10.1007/s12011-024-04127-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/18/2023] [Accepted: 02/22/2024] [Indexed: 03/14/2024]
Abstract
This study was conducted to assess the toxicological potential of synthesized pure and Sn-doped TiO2 NPs (Sn-TiO2 NPs) in zebrafish after acute and chronic exposure. The pure TiO2 NPs, 4%, and 8% Sn-TiO2 NPs were synthesized and characterized using X-ray diffraction, Scanning Electron Microscope, diffuse reflectance spectra, dynamic light scattering, and zeta potential analyses. The pure TiO2 NPs, 4%, and 8% Sn-TiO2 NPs were spherical with average sizes of about 40, 28, and 21 nm, respectively, indicating significant size reduction of TiO2 NPs following Sn doping. According to our results, the LC50-96h increased in the order of 8% Sn-TiO2 NPs (45 mg L-1) < 4% Sn-TiO2 NPs (80.14 mg L-1) < pure TiO2 NPs (105.47 mg L-1), respectively. Exposure of fish to Sn-TiO2 NPs after 30 days resulted in more severe histopathological alterations in gills, liver, intestine, and kidneys than pure TiO2 NPs. Furthermore, Sn-doping significantly elevated malondialdehyde levels and micronuclei frequency, indicating increased oxidative stress and genotoxicity. Expression analysis revealed altered expression of various genes, including upregulation of pro-apoptotic Bax gene and downregulation of anti-apoptotic Bcl-2 gene, suggesting potential induction of apoptosis in response to Sn-doped NPs. Additionally, antioxidant genes (Gpx, Sod, Cat, and Ucp-2) and stress response gene (Hsp70) showed altered expression, suggesting complex cellular responses to mitigate the toxic effects. Overall, this study highlights the concerning impact of Sn-doping on the toxicity of TiO2 NPs in zebrafish and emphasizes the need for further research to elucidate the exact mechanisms underlying this enhanced toxicity.
Collapse
Affiliation(s)
- Maryam Mahjoubian
- Department of Biology, Faculty of Sciences, University of Guilan, Rasht, Iran
| | - Akram Sadat Naeemi
- Department of Biology, Faculty of Sciences, University of Guilan, Rasht, Iran.
| | - Mehdi Sheykhan
- Department of Chemistry, Tarbiat Modares University, P.O. Box 14115-175, Tehran, Iran
- Department of Chemistry, Faculty of Sciences, University of Guilan, Rasht, Iran
| |
Collapse
|
3
|
Taysı MR. Assessing the effects of cadmium on antioxidant enzymes and histological structures in rainbow trout liver and kidney. Sci Rep 2024; 14:27453. [PMID: 39523429 PMCID: PMC11551155 DOI: 10.1038/s41598-024-78835-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2024] [Accepted: 11/04/2024] [Indexed: 11/16/2024] Open
Abstract
Cadmium contamination in aquatic environments poses severe risks to aquatic organisms, particularly fish, where cadmium accumulation in tissues can lead to compromised organ functionality and reproductive issues. The present study aimed to assess the effects of cadmium (Cd) exposure on key biomarkers of oxidative stress, DNA damage, apoptosis, and enzyme activity in the liver and kidney tissues of rainbow trout (Oncorhynchus mykiss). Specifically, the study measured 8-hydroxy-2-deoxyguanosine (8-OHdG) levels, caspase-3 activation, acetylcholinesterase (AChE) activity, and oxidative stress indicators (ONOO-, MDA, GSH, SOD, and CAT) following exposure to three Cd concentrations (1, 3, and 5 mg/L) over three time points (24, 48, and 96 h). Tissue samples were collected post-exposure, and the analysis revealed a significant decrease in MDA levels in both tissues. GSH concentrations declined with prolonged exposure, while SOD activity increased, indicating a response to oxidative stress, contrasted by a reduction in CAT activity. An initial increase in ONOO- levels was observed at 24 h, followed by a subsequent decrease at the 48 and 96 h marks. These results suggest that cadmium induces oxidative stress in the liver and kidney tissues of fish. Cadmium exposure also significantly elevated 8-OHdG levels, signaling DNA damage, and increased caspase-3 activity, indicative of apoptosis, across all doses and time points (p < 0.05). The histological examination of liver and kidney showed tissue injury. Additionally, a negative correlation between AChE activity and exposure duration was noted, with prolonged exposure resulting in substantial AChE inhibition. Given the role of AChE in behavior regulation, these findings underscore the importance of exploring time-dependent, tissue-specific changes in AChE activity to further elucidate the mechanisms underlying cadmium-induced behavioral abnormalities.
Collapse
|
4
|
Kocagöz R, Onat İ, Öz MD, Turna B, Kumbaracı BS, Orman MN, Süzen HS, Orhan H. The role of tissue persistent organic pollutants and genetic polymorphisms in patients with benign and malignant kidney tumors. ENVIRONMENTAL TOXICOLOGY AND PHARMACOLOGY 2024; 110:104495. [PMID: 38950873 DOI: 10.1016/j.etap.2024.104495] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/25/2024] [Revised: 06/06/2024] [Accepted: 06/24/2024] [Indexed: 07/03/2024]
Abstract
This study aimed to explore whether there is an association between environmental exposure to POPs and kidney tumor induction, and whether blood POP concentrations reflect kidney tissue concentrations. POP derivatives were determined in blood, tumor tissue, tumor surrounding tissue, and perirenal fat tissue samples taken from patients who underwent surgery for renal tumors. A voluntary control group was recruited for blood and urine samples as well. Urinary excretions of o,o'-dityrosine, chlorotyrosine, nitrotyrosine, and 8-OHdG were measured in the same patients. The possible role of genetic polymorphisms in CYP1A1, GST isozymes P, M, and T, and hOGG1 genes on the predisposition to renal cancer was investigated. Some POPs have been found to be associated with kidney cancer, as evidenced by their significantly high ORs. 8-OHdG levels were significantly higher compared to the control group. The GSTT1 null polymorphism can be a risk factor for malignant but not for benign kidney tumors.
Collapse
Affiliation(s)
- Rasih Kocagöz
- Department of Pharmaceutical Toxicology, Faculty of Pharmacy, Ege University, Bornova, İzmir 35040, Türki̇ye
| | - İlgen Onat
- Department of Pharmaceutical Toxicology, Faculty of Pharmacy, Ege University, Bornova, İzmir 35040, Türki̇ye
| | - Merve Demirbügen Öz
- Department of Pharmaceutical Toxicology, Faculty of Pharmacy, Ankara University, Tandoğan, Ankara 06350, Türki̇ye
| | | | | | - Mehmet Nurullah Orman
- Department of Biostatistics and Medical Informatics, Faculty of Medicine, Ege University, Bornova, İzmir 35040, Türki̇ye
| | - Halit Sinan Süzen
- Department of Pharmaceutical Toxicology, Faculty of Pharmacy, Ankara University, Tandoğan, Ankara 06350, Türki̇ye
| | - Hilmi Orhan
- Department of Pharmaceutical Toxicology, Faculty of Pharmacy, Ege University, Bornova, İzmir 35040, Türki̇ye; İzmir Biomedicine and Genome Center (İBG-İzmir), Balcova, İzmir 35340, Türkiye.
| |
Collapse
|
5
|
Li M, Chen X, Song C, Xu J, Fan L, Qiu L, Li D, Xu H, Meng S, Mu X, Xia B, Ling J. Sub-Chronic Methomyl Exposure Induces Oxidative Stress and Inflammatory Responses in Zebrafish with Higher Female Susceptibility. Antioxidants (Basel) 2024; 13:871. [PMID: 39061939 PMCID: PMC11274337 DOI: 10.3390/antiox13070871] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2024] [Revised: 07/17/2024] [Accepted: 07/17/2024] [Indexed: 07/28/2024] Open
Abstract
The widespread use of carbamate pesticides has raised significant environmental and health concerns, particularly regarding water contamination and the disruption of defense systems in organisms. Despite these concerns, research on the differential impacts of pesticides on male and female organisms remains limited. This study focused on methomyl, investigating sex-specific differences in liver antioxidant defenses and inflammatory response indices in male and female zebrafish after 56 days of exposure to environmentally relevant concentrations (0, 0.05, 0.10, and 0.20 mg/L). Our findings indicate that methomyl exposure significantly increased ROS content in zebrafish livers, inducing oxidative stress and activating enzymatic antioxidant defenses such as SOD, CAT, and GSH-Px activities. Sub-chronic exposure altered the expression of apoptosis-related genes (Bax/Bcl2a and Caspases3a), resulting in liver cell apoptosis in a concentration-dependent manner, with the 0.20 mg/L concentration causing the most severe damage. Additionally, methomyl exposure at environmentally relevant concentrations triggered persistent inflammatory responses in liver tissues, evidenced by increased transcription levels of inflammatory factor genes and the activation of toll-like receptors, heightening susceptibility to exogenous allergens. It is noteworthy that oxidative damage indicators (AST, ROS, MDA) and inflammatory gene expressions (IL-1β, TNF-α) were significantly higher in female livers compared to male livers at 0.10-0.20 mg/L methomyl exposure. Consequently, our study underscores the potential adverse effects of environmental methomyl exposure on aquatic organisms and highlights the need for heightened consideration of the risks posed by environmental endocrine disruptors to female health and safety.
Collapse
Affiliation(s)
- Mingxiao Li
- Wuxi Fishery College, Nanjing Agricultural University, Wuxi 214081, China; (M.L.); (X.C.); (C.S.); (L.F.)
| | - Xi Chen
- Wuxi Fishery College, Nanjing Agricultural University, Wuxi 214081, China; (M.L.); (X.C.); (C.S.); (L.F.)
- Freshwater Fisheries Research Center, Chinese Academy of Fishery Sciences, Scientific Observing and Experimental Station of Fishery Resources and Environment in the Lower Reaches of the Changjiang River, Wuxi 214081, China; (L.Q.); (D.L.); (H.X.)
| | - Chao Song
- Wuxi Fishery College, Nanjing Agricultural University, Wuxi 214081, China; (M.L.); (X.C.); (C.S.); (L.F.)
- Freshwater Fisheries Research Center, Chinese Academy of Fishery Sciences, Scientific Observing and Experimental Station of Fishery Resources and Environment in the Lower Reaches of the Changjiang River, Wuxi 214081, China; (L.Q.); (D.L.); (H.X.)
| | - Jing Xu
- Environmental Testing Centre, Wuxi 214028, China;
| | - Limin Fan
- Wuxi Fishery College, Nanjing Agricultural University, Wuxi 214081, China; (M.L.); (X.C.); (C.S.); (L.F.)
- Freshwater Fisheries Research Center, Chinese Academy of Fishery Sciences, Scientific Observing and Experimental Station of Fishery Resources and Environment in the Lower Reaches of the Changjiang River, Wuxi 214081, China; (L.Q.); (D.L.); (H.X.)
| | - Liping Qiu
- Freshwater Fisheries Research Center, Chinese Academy of Fishery Sciences, Scientific Observing and Experimental Station of Fishery Resources and Environment in the Lower Reaches of the Changjiang River, Wuxi 214081, China; (L.Q.); (D.L.); (H.X.)
| | - Dandan Li
- Freshwater Fisheries Research Center, Chinese Academy of Fishery Sciences, Scientific Observing and Experimental Station of Fishery Resources and Environment in the Lower Reaches of the Changjiang River, Wuxi 214081, China; (L.Q.); (D.L.); (H.X.)
| | - Huimin Xu
- Freshwater Fisheries Research Center, Chinese Academy of Fishery Sciences, Scientific Observing and Experimental Station of Fishery Resources and Environment in the Lower Reaches of the Changjiang River, Wuxi 214081, China; (L.Q.); (D.L.); (H.X.)
| | - Shunlong Meng
- Wuxi Fishery College, Nanjing Agricultural University, Wuxi 214081, China; (M.L.); (X.C.); (C.S.); (L.F.)
- Freshwater Fisheries Research Center, Chinese Academy of Fishery Sciences, Scientific Observing and Experimental Station of Fishery Resources and Environment in the Lower Reaches of the Changjiang River, Wuxi 214081, China; (L.Q.); (D.L.); (H.X.)
| | - Xiyan Mu
- Institute of Quality Standard and Testing Technology for Agro-Products, Chinese Academy of Agricultural Sciences, Beijing 100081, China;
| | - Bin Xia
- Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao 266071, China;
| | - Jun Ling
- Fisheries Institute, Anhui Academy of Agriculture Sciences, Hefei 230031, China
| |
Collapse
|
6
|
Afzal G, Ali HM, Hussain T, Hussain S, Ahmad MZ, Naseer A, Iqbal R, Aslam J, Khan A, Elsadek MF, Al-Munqedhi BM, Hussain R. Effects of sub-lethal concentrations of lindane on histo-morphometric and physio-biochemical parameters of Labeo rohita. PLoS One 2024; 19:e0304387. [PMID: 38968252 PMCID: PMC11226008 DOI: 10.1371/journal.pone.0304387] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2023] [Accepted: 05/10/2024] [Indexed: 07/07/2024] Open
Abstract
Lindane is a broad-spectrum insecticide widely used on fruits, vegetables, crops, livestock and on animal premises to control the insects and pests. The extensive use of pesticides and their residues in the soil and water typically join the food chain and thus accumulate in the body tissues of human and animals causing severe health effects. The study was designed to determine the toxicity effects of sub-lethal concentrations of lindane on hemato-biochemical profile and histo-pathological changes in Rohu (Labeo rohita). A significant increase in the absolute (p<0.05) and relative (p<0.05) weights was observed along with severe histo-pathological alterations in liver, kidneys, gills, heart and brain at 30μg/L and 45μg/L concentration of lindane. A significant (p<0.05) decrease in RBCs count, PCV and Hb concentration while a significant (p<0.05) increased leukocytes were observed by 30μg/L and 45μg/L concentrations of lindane at 45 and 60 days of the experiment. Serum total protein and albumin were significantly (p<0.05) decreased while hepatic and renal enzymes were significantly (p<0.05) increased due to 30μg/L and 45μg/L concentrations of lindane at days-45 and 60 of experiment compared to control group. The observations of thin blood smear indicated significantly increased number of erythrocytes having nuclear abnormalities in the fish exposed at 30μg/L and 45μg/L concentrations of lindane. ROS and TBARS were found to be significantly increased while CAT, SOD, POD and GSH were significantly decreased with an increase in the concentration and exposure time of lindane. The results showed that lindane causes oxidative stress and severe hematological, serum biochemical and histo-pathological alterations in the fish even at sub-lethal concentrations.
Collapse
Affiliation(s)
- Gulnaz Afzal
- Department of Zoology, The Islamia University of Bahawalpur, Bahawalpur, Pakistan
| | - Hafiz Muhammad Ali
- Faculty of Veterinary and Animals Sciences, The Islamia University of Bahawalpur, Bahawalpur, Pakistan
| | - Tariq Hussain
- Department of Basic Sciences, College of Veterinary and Animal Science, Jhang, Pakistan
| | - Shujaat Hussain
- Faculty of Veterinary and Animals Sciences, PMAS Arid Agriculture University, Rawalpindi, Pakistan
| | - Muhammad Zishan Ahmad
- Faculty of Veterinary and Animals Sciences, PMAS Arid Agriculture University, Rawalpindi, Pakistan
| | - Adeeba Naseer
- Department of Zoology, The Islamia University of Bahawalpur, Bahawalpur, Pakistan
| | - Rehana Iqbal
- Zoology Division, Institute of Pure and Applied Biology, Bahauddin Zakariya University, Multan, Pakistan
| | - Jawaria Aslam
- Bahawalpur Medical and Dental College, Bahawalpur, Pakistan
| | - Ahrar Khan
- Shandong Vocational Animal and Veterinary Science College, Weifang, China
| | - Mohamed Farouk Elsadek
- Department of Biochemistry, College of Science, King Saud University, Riyadh, Saudi Arabia
| | - Bandar M. Al-Munqedhi
- Department of Botany and Microbiology, College of Science, King Saud University, Riyadh, Saudi Arabia
| | - Riaz Hussain
- Faculty of Veterinary and Animals Sciences, The Islamia University of Bahawalpur, Bahawalpur, Pakistan
| |
Collapse
|
7
|
Onat İ, Kocagöz R, Öz MD, Yeniay L, Tiftikçioğlu YÖ, Zekioğlu O, Serin G, Özdemir M, Gür E, Süzen HS, Orhan H. Blood and tissue levels of persistent organic pollutants and genetic susceptibility in patients with breast cancer. ENVIRONMENTAL TOXICOLOGY AND PHARMACOLOGY 2024; 108:104433. [PMID: 38583790 DOI: 10.1016/j.etap.2024.104433] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/21/2024] [Revised: 03/22/2024] [Accepted: 04/04/2024] [Indexed: 04/09/2024]
Abstract
We investigated possible associations between the internal concentrations of POPs and correlations between blood and tumor tissue concentrations in patients who underwent surgery for breast cancer and breast reduction as controls. Genetic variations in CYP1A1, GSTP1, GSTM1, and GSTT1 and hOGG1 were evaluated to determine whether they represent risk factors for breast cancer. Certain POPs have been found to be associated with breast cancer development. GST-P1 polymorphism represented a significant risk for breast cancer with unadjusted OR. However, the GSTT1 null polymorphism represented a significant risk for breast cancer when OR adjusted for age and smoking status. CYP1A1 polymorphism was a significant risk factor for breast cancer, regardless of whether the OR was adjusted. These results suggest that exposure to certain POPs, GSTT1 and CYP1A1 polymorphisms, age, and smoking status are risk factors for breast cancer. In addition, the blood concentrations of some POPs represent surrogates for breast tissue concentrations.
Collapse
Affiliation(s)
- İlgen Onat
- Department of Pharmaceutical Toxicology, Faculty of Pharmacy, Ege University, Bornova-İzmir 35040, Turkey
| | - Rasih Kocagöz
- Department of Pharmaceutical Toxicology, Faculty of Pharmacy, Ege University, Bornova-İzmir 35040, Turkey
| | - Merve Demirbügen Öz
- Department of Pharmaceutical Toxicology, Faculty of Pharmacy, Ankara University, Tandoğan, Ankara 06350, Turkey
| | | | | | - Osman Zekioğlu
- Department of Medical Pathology, Faculty of Medicine, Ege University, Bornova-İzmir 35040, Turkey
| | - Gürdeniz Serin
- Department of Medical Pathology, Faculty of Medicine, Ege University, Bornova-İzmir 35040, Turkey
| | | | - Ersin Gür
- Department of Plastic and Reconstructive Surgery, Turkey
| | - Halit Sinan Süzen
- Department of Pharmaceutical Toxicology, Faculty of Pharmacy, Ankara University, Tandoğan, Ankara 06350, Turkey
| | - Hilmi Orhan
- Department of Pharmaceutical Toxicology, Faculty of Pharmacy, Ege University, Bornova-İzmir 35040, Turkey; İzmir Biomedicine and Genome Center (İBG-İzmir), Balcova-İzmir 35340, Turkey.
| |
Collapse
|
8
|
Bayır M, Özdemir E. Genomic organization and transcription of superoxide dismutase genes ( sod1, sod2, and sod3b) and response to diazinon toxicity in platyfish ( Xiphophorus maculatus) by using SOD enzyme activity. Anim Biotechnol 2023; 34:3578-3588. [PMID: 36811494 DOI: 10.1080/10495398.2023.2178931] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/24/2023]
Abstract
The aim of this study is to determine the effects of 50% of 96 h LC50 (5.25 ppm) diazinon on the expression of superoxide dismutase (SOD) enzyme genes (sod1, sod2, and sod3b) and SOD enzyme activity at the end of 24, 48, 72, and 96 h in platyfish liver and gill tissues. To this end, we determined the tissue-specific distribution of sod1, sod2, and sod3b genes and performed in silico analyses in platyfish (Xiphophorus maculatus). It was determined that malondialdehyde (MDA) level and SOD enzyme activity were increased in the liver [(43.90 EU mg protein-1 (control), 62.45 EU mg protein-1 (24 h), 73.17 EU mg protein-1 (48 h), 82.18 EU mg protein-1 (72 h), 92.93 EU mg protein-1 (96 h)] and gill [(16.44 EU mg protein-1 (control), 33.47 EU mg protein-1 (24 h), 50.38 EU mg protein-1 (48 h), 64.62 EU mg protein-1 (72 h), 74.04 EU mg protein-1 (96 h)] tissues of platyfish exposed to diazinon, while the expression of the sod genes was down-regulated. The tissue-specific distribution of the sod genes varied, with the tissues and the sod genes expression were being predominant in the liver (628.32 in sod1, 637.59 in sod2, 888.5 in sod3b). Thus, the liver was considered a suitable tissue for further gene expression studies. Based on the phylogenetic analyses, platyfish sod genes can be reported to be orthologs of sod/SOD genes from other vertebrates. Identity/similarity analyses supported this determination. Conserved gene synteny proved that there are conserved sod genes in platyfish, zebrafish, and humans.
Collapse
Affiliation(s)
- Mehtap Bayır
- Department of Agricultural Biotechnology, Faculty of Agriculture, Atatürk University, Erzurum, Turkey
| | - Erdal Özdemir
- Department of Agricultural Biotechnology, Faculty of Agriculture, Atatürk University, Erzurum, Turkey
| |
Collapse
|
9
|
Shukla S, Jhamtani RC, Agarwal R. Biochemical and gene expression alterations due to individual exposure of atrazine, dichlorvos, and imidacloprid and their combination in zebrafish. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:118291-118303. [PMID: 37821735 DOI: 10.1007/s11356-023-30160-0] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/04/2023] [Accepted: 09/25/2023] [Indexed: 10/13/2023]
Abstract
In environmental toxicology, combined toxicity has emerged as an important concern. Atrazine (ATZ), dichlorvos (DIC), and imidacloprid (IMD) are the major pesticides, extensively used to control insect, flies, mosquitoes, and weed. Here, we investigate whether the exposure to three different types of pesticides individually and in combination for 24 h alters antioxidant enzyme responses in zebrafish (Danio rerio). Oxidative stress parameters (biochemical and mRNA expression), acetylcholinesterase (AChE) activity, and Metallothionein-II (MT-II) mRNA expression levels were measured. Present work includes toxicological assessment of individual and combined (CMD) exposure of ATZ (185.4 µM), DIC (181 µM), IMD (97.8 µ), and CMD (ATZ 92.7 µM + DIC 90.5 µM + IMD 48.9 µM), in the liver, kidney, and brain of adult zebrafish. Lipid peroxidation (LPO), glutathione (GSH) content, AChE, superoxide dismutase (SOD), catalase (CAT), and glutathione peroxidase (GPx) activity along with mRNA expression of SOD, CAT, GPx, and MT-II were evaluated. Briefly, LPO, GSH content, the activity of AChE, and all antioxidant enzymes enhanced significantly in individual exposure, which was further altered in the CMD group. The mRNA expression of SOD, CAT, GPx, and MT-II in the liver and kidney showed significant down-regulation in all exposed groups. In the brain, significant upregulation in mRNA expression of SOD, CAT, GPx, and MT-II was observed in DIC and IMD groups, while ATZ and CMD showed significant downregulation except for GPx. Findings postulate that the CMD group exhibits synergistic toxic manifestation. The present study provides the baseline data on the combined toxic effects of pesticides and suggests regulating the use of pesticides.
Collapse
Affiliation(s)
- Saurabh Shukla
- Laboratory of Analytical & Molecular Toxicology (Forensic Chemistry & Toxicology Laboratory), School of Forensic Science, National Forensic Sciences University, Sector 09, Gandhinagar, 382007, Gujarat, India
- Department of Forensic Science, School of Bioengineering and Bioscience, Lovely Professional University, Jalandhar, 144411, India
| | - Reena C Jhamtani
- Laboratory of Analytical & Molecular Toxicology (Forensic Chemistry & Toxicology Laboratory), School of Forensic Science, National Forensic Sciences University, Sector 09, Gandhinagar, 382007, Gujarat, India
- School of Forensic Science, Centurion University of Technology and Management, 752050, Bhubhaneshwar, Orrisa, India
| | - Rakhi Agarwal
- Laboratory of Analytical & Molecular Toxicology (Forensic Chemistry & Toxicology Laboratory), School of Forensic Science, National Forensic Sciences University, Sector 09, Gandhinagar, 382007, Gujarat, India.
- National Forensic Sciences University, Delhi Campus, Delhi, 110085, India.
| |
Collapse
|
10
|
Gutiérrez-Noya VM, Gómez-Oliván LM, Casas-Hinojosa I, García-Medina S, Rosales-Pérez KE, Orozco-Hernández JM, Elizalde-Velázquez GA, Galar-Martínez M, Dublán-García O, Islas-Flores H. Short-term exposure to dexamethasone at environmentally relevant concentrations impairs embryonic development in Cyprinus carpio: Bioconcentration and alteration of oxidative stress-related gene expression patterns. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 898:165528. [PMID: 37451451 DOI: 10.1016/j.scitotenv.2023.165528] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/13/2023] [Revised: 06/30/2023] [Accepted: 07/11/2023] [Indexed: 07/18/2023]
Abstract
In recent years and as a result of the Covid-19 pandemic, the consumption of dexamethasone (DXE) has increased. This favors that this corticosteroid is highly released in aquatic environments, generating deleterious effects in aquatic organisms. The information on the toxic effects of DXE in the environment is still limited. Thus, the objective of this work was to determine whether DXE at short-term exposure can cause alterations to embryonic development and alteration of oxidative stress-related gene expression patterns in Cyprinus carpio. For this purpose, common carp embryos (2 hpf) were exposed to realistic concentrations of DXE until 96 hpf. Alterations to embryonic development were evaluated at 12, 24, 48, 72 and 96 hpf. In addition, oxidative stress in carp embryos at 72 and 96 hpf was evaluated by cellular oxidation biomarkers (lipoperoxidation level, hydroperoxide and carbonyl protein content) and antioxidant enzymes activities (superoxide dismutase and catalase). Oxidative stress-related gene expression (sod, cat and gpx1) was also evaluated. Our results showed that DXE concentrations above 35 ng/L are capable of producing alterations to embryonic development in 50 % of the embryo population. Furthermore, DXE was able to induce alterations such as scoliosis, hypopigmentation, craniofacial malformations, pericardial edema and growth retardation, leading to the death of half of the population at 50 ng/L of DXE. Concerning oxidative stress, the results demonstrated that DXE induce oxidative damage on the embryos of C. carpio. In conclusion, DXE is capable of altering embryonic development and generating oxidative stress in common carp C. carpio.
Collapse
Affiliation(s)
- Veronica Margarita Gutiérrez-Noya
- Laboratorio de Toxicología Ambiental, Facultad de Química, Universidad Autónoma del Estado de México, Paseo Colón intersección Paseo Tollocan, Colonia Residencial Colón, CP 50120 Toluca, Estado de México, Mexico
| | - Leobardo Manuel Gómez-Oliván
- Laboratorio de Toxicología Ambiental, Facultad de Química, Universidad Autónoma del Estado de México, Paseo Colón intersección Paseo Tollocan, Colonia Residencial Colón, CP 50120 Toluca, Estado de México, Mexico.
| | - Idalia Casas-Hinojosa
- Laboratorio de Toxicología Ambiental, Facultad de Química, Universidad Autónoma del Estado de México, Paseo Colón intersección Paseo Tollocan, Colonia Residencial Colón, CP 50120 Toluca, Estado de México, Mexico
| | - Sandra García-Medina
- Laboratorio de Toxicología Acuática, Departamento de Farmacia, Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional, Unidad Profesional Adolfo López Mateos, Av. Wilfrido Massieu s/n y cerrada Manuel Stampa, Col. Industrial Vallejo, Ciudad de México CP 07700, Mexico
| | - Karina Elisa Rosales-Pérez
- Laboratorio de Toxicología Ambiental, Facultad de Química, Universidad Autónoma del Estado de México, Paseo Colón intersección Paseo Tollocan, Colonia Residencial Colón, CP 50120 Toluca, Estado de México, Mexico
| | - José Manuel Orozco-Hernández
- Laboratorio de Toxicología Ambiental, Facultad de Química, Universidad Autónoma del Estado de México, Paseo Colón intersección Paseo Tollocan, Colonia Residencial Colón, CP 50120 Toluca, Estado de México, Mexico
| | - Gustavo Axel Elizalde-Velázquez
- Laboratorio de Toxicología Ambiental, Facultad de Química, Universidad Autónoma del Estado de México, Paseo Colón intersección Paseo Tollocan, Colonia Residencial Colón, CP 50120 Toluca, Estado de México, Mexico
| | - Marcela Galar-Martínez
- Laboratorio de Toxicología Acuática, Departamento de Farmacia, Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional, Unidad Profesional Adolfo López Mateos, Av. Wilfrido Massieu s/n y cerrada Manuel Stampa, Col. Industrial Vallejo, Ciudad de México CP 07700, Mexico
| | - Octavio Dublán-García
- Laboratorio de Toxicología Ambiental, Facultad de Química, Universidad Autónoma del Estado de México, Paseo Colón intersección Paseo Tollocan, Colonia Residencial Colón, CP 50120 Toluca, Estado de México, Mexico
| | - Hariz Islas-Flores
- Laboratorio de Toxicología Ambiental, Facultad de Química, Universidad Autónoma del Estado de México, Paseo Colón intersección Paseo Tollocan, Colonia Residencial Colón, CP 50120 Toluca, Estado de México, Mexico
| |
Collapse
|
11
|
Medkova D, Hollerova A, Riesova B, Blahova J, Hodkovicova N, Marsalek P, Doubkova V, Weiserova Z, Mares J, Faldyna M, Tichy F, Svobodova Z, Lakdawala P. Pesticides and Parabens Contaminating Aquatic Environment: Acute and Sub-Chronic Toxicity towards Early-Life Stages of Freshwater Fish and Amphibians. TOXICS 2023; 11:333. [PMID: 37112561 PMCID: PMC10141211 DOI: 10.3390/toxics11040333] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/11/2023] [Revised: 03/27/2023] [Accepted: 03/28/2023] [Indexed: 06/19/2023]
Abstract
Pesticides and personal care products are two very important groups of contaminants posing a threat to the aquatic environment and the organisms living in it.. Therefore, this study aimed to describe the effects of widely used pesticides and parabens on aquatic non-target biota such as fish (using model organisms Danio rerio and Cyprinus carpio) and amphibians (using model organism Xenopus laevis) using a wide range of endpoints. The first part of the experiment was focused on the embryonal toxicity of three widely used pesticides (metazachlor, prochloraz, and 4-chloro-2-methyl phenoxy acetic acid) and three parabens (methylparaben, propylparaben, and butylparaben) with D. rerio, C. carpio, and X. laevis embryos. An emphasis was placed on using mostly sub-lethal concentrations that are partially relevant to the environmental concentrations of the substances studied. In the second part of the study, an embryo-larval toxicity test with C. carpio was carried out with prochloraz using concentrations 0.1, 1, 10, 100, and 1000 µg/L. The results of both parts of the study show that even the low, environmentally relevant concentrations of the chemicals tested are often able to affect the expression of genes that play either a prominent role in detoxification and sex hormone production or indicate cell stress or, in case of prochloraz, to induce genotoxicity.
Collapse
Affiliation(s)
- Denisa Medkova
- Department of Animal Protection and Welfare & Veterinary Public Health, Faculty of Veterinary Hygiene and Ecology, University of Veterinary Sciences Brno, 612 42 Brno, Czech Republic
- Department of Zoology, Fisheries, Hydrobiology and Apiculture, Faculty of Agrisciences, Mendel University in Brno, 613 00 Brno, Czech Republic
- Department of Animal Breeding, Animal Nutrition and Biochemistry, Faculty of Veterinary Hygiene and Ecology, University of Veterinary Sciences Brno, 612 42 Brno, Czech Republic
| | - Aneta Hollerova
- Department of Animal Protection and Welfare & Veterinary Public Health, Faculty of Veterinary Hygiene and Ecology, University of Veterinary Sciences Brno, 612 42 Brno, Czech Republic
- Department of Infectious Diseases and Preventive Medicine, Veterinary Research Institute, 621 00 Brno, Czech Republic
| | - Barbora Riesova
- Department of Animal Protection and Welfare & Veterinary Public Health, Faculty of Veterinary Hygiene and Ecology, University of Veterinary Sciences Brno, 612 42 Brno, Czech Republic
| | - Jana Blahova
- Department of Animal Protection and Welfare & Veterinary Public Health, Faculty of Veterinary Hygiene and Ecology, University of Veterinary Sciences Brno, 612 42 Brno, Czech Republic
| | - Nikola Hodkovicova
- Department of Infectious Diseases and Preventive Medicine, Veterinary Research Institute, 621 00 Brno, Czech Republic
| | - Petr Marsalek
- Department of Animal Protection and Welfare & Veterinary Public Health, Faculty of Veterinary Hygiene and Ecology, University of Veterinary Sciences Brno, 612 42 Brno, Czech Republic
| | - Veronika Doubkova
- Department of Animal Protection and Welfare & Veterinary Public Health, Faculty of Veterinary Hygiene and Ecology, University of Veterinary Sciences Brno, 612 42 Brno, Czech Republic
| | - Zuzana Weiserova
- Department of Animal Protection and Welfare & Veterinary Public Health, Faculty of Veterinary Hygiene and Ecology, University of Veterinary Sciences Brno, 612 42 Brno, Czech Republic
| | - Jan Mares
- Department of Zoology, Fisheries, Hydrobiology and Apiculture, Faculty of Agrisciences, Mendel University in Brno, 613 00 Brno, Czech Republic
| | - Martin Faldyna
- Department of Infectious Diseases and Preventive Medicine, Veterinary Research Institute, 621 00 Brno, Czech Republic
| | - Frantisek Tichy
- Department of Anatomy, Histology and Embryology, Faculty of Veterinary medicine, University of Veterinary Sciences Brno, 612 42 Brno, Czech Republic
| | - Zdenka Svobodova
- Department of Animal Protection and Welfare & Veterinary Public Health, Faculty of Veterinary Hygiene and Ecology, University of Veterinary Sciences Brno, 612 42 Brno, Czech Republic
| | - Pavla Lakdawala
- Department of Animal Protection and Welfare & Veterinary Public Health, Faculty of Veterinary Hygiene and Ecology, University of Veterinary Sciences Brno, 612 42 Brno, Czech Republic
| |
Collapse
|
12
|
Kumari K, Swamy S. Field validated biomarker (ValidBIO) based assessment of impacts of various pollutants in water. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:5347-5370. [PMID: 36414892 DOI: 10.1007/s11356-022-24006-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/01/2021] [Accepted: 10/31/2022] [Indexed: 06/16/2023]
Abstract
The sensitivity of fish towards pollutants serves as an excellent tool for the analysis of water pollution. The effluents generated from various anthropogenic activities may contain heavy metals, pesticides, microplastics, and persistent organic pollutants (POPs) and ultimately find its way to aquatic environment. The enzymatic activities of fish collected from water bodies near major cities, oil spillage sites, agricultural land, and intensively industrialized areas have been reported to be significantly impacted in various field studies. These significant alterations in enzymatic activities act as a biomarker for monitoring purposes. The use of biomarkers not only helps in the identification of known and unknown pollutants and their detrimental health impacts, but also identifies the interaction between pollutants and organisms. The conventional method majorly used is physicochemical analysis, which is recognized as the backbone of the system for monitoring water quality. In physicochemical monitoring, major problems exist in assessing or predicting biological effects from chemical or physical data. Xenobiotic-induced enzymatic changes in fish may serve as an intuitive and efficient biomarker for determining contaminants in water bodies. Therefore, field validated biomarker (ValidBIO) approach needs to be integrated in water quality monitoring program for environmental health risk assessment of aquatic life impacted due to various point and non-point sources of water pollution.
Collapse
Affiliation(s)
- Kanchan Kumari
- CSIR-National Environmental Engineering Research Institute, Kolkata Zonal Centre, Kolkata, West Bengal, 700107, India.
| | - Senerita Swamy
- CSIR-National Environmental Engineering Research Institute, Nagpur, 440020, India
| |
Collapse
|
13
|
ONAC C, TOPAL T, AKDOGAN A. Investigation of the nutritional environment of the differences in toxicity levels of some heavy metals and pesticides examined in gilthead bream fishes. FOOD SCIENCE AND TECHNOLOGY 2021. [DOI: 10.1590/fst.27921] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Affiliation(s)
- Canan ONAC
- Pamukkale University, Turkey; Pamukkale University, Turkey
| | - Tufan TOPAL
- Pamukkale University, Turkey; Pamukkale University, Turkey
| | | |
Collapse
|
14
|
Jiménez K, Solano K, Scholz C, Redondo-López S, Mena F. Early Toxic Effects in a Central American Native Fish (Parachromis dovii) Exposed to Chlorpyrifos and Difenoconazole. ENVIRONMENTAL TOXICOLOGY AND CHEMISTRY 2021; 40:1940-1949. [PMID: 33749893 DOI: 10.1002/etc.5048] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/14/2020] [Revised: 09/22/2020] [Accepted: 03/18/2021] [Indexed: 06/12/2023]
Abstract
In Costa Rica, agriculture is one of the most important economic activities. Chlorpyrifos and difenoconazole have been identified as agrochemicals widely used in banana and pineapple crops in the Caribbean area of the country and are constantly recorded in aquatic ecosystems. The toxicity of these pesticides in Parachromis dovii was studied. Median lethal concentrations (LC50s) for each substance were obtained from 96-h acute tests. Then, fish were exposed to sublethal concentrations of both substances (10% of LC50), individually and in mixture, to evaluate biomarker responses. Ethoxyresorufin-O-deethylase (EROD), catalase, and glutathione S-transferase activities as well as lipid peroxidation were measured in liver and gill tissues as markers of biotransformation and oxidative stress processes. Cholinesterase activity in brain and muscle tissue was also quantified as a biomarker of toxicity. The LC50s were 55.34 μg/L (95% confidence interval [CI] 51.06-59.98) for chlorpyrifos and 3250 μg/L (95% CI 2770-3810) for difenoconazole. Regarding the biomarkers, a significant inhibition of brain and muscle cholinesterase activity was recorded in fish exposed to 5.50 μg/L of chlorpyrifos. This activity was not affected when fish were exposed to the mixture of chlorpyrifos with difenoconazole. Significant changes in lactate dehydrogenase activity were observed in fish exposed to 325 μg/L of difenoconazole, whereas fish exposed to the mixture showed a significant increase in EROD activity in the liver. These results suggest harmful effects of chlorpyrifos insecticide at environmentally relevant concentrations. There is also evidence for an interaction of the 2 substances that affects the biotransformation metabolism at sublethal levels of exposure. Environ Toxicol Chem 2021;40:1940-1949. © 2021 SETAC.
Collapse
Affiliation(s)
- Katherine Jiménez
- Master's Program in Tropical Ecotoxicology, Central American Institute for Studies on Toxic Substances/Instituto Regional de Estudios en Sustancias Tóxicas, Universidad Nacional, Heredia, Costa Rica
| | - Karla Solano
- Central American Institute for Studies on Toxic Substances, Universidad Nacional, Heredia, Costa Rica
| | - Carola Scholz
- School of Biological Sciences, Universidad Nacional, Heredia, Costa Rica
| | | | - Freylan Mena
- Central American Institute for Studies on Toxic Substances, Universidad Nacional, Heredia, Costa Rica
| |
Collapse
|
15
|
Alkan Uçkun A, Barım Öz Ö. Acute exposure to the fungicide penconazole affects some biochemical parameters in the crayfish (Astacus leptodactylus Eschscholtz, 1823). ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2020; 27:35626-35637. [PMID: 32601870 DOI: 10.1007/s11356-020-09595-2] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/06/2020] [Accepted: 06/04/2020] [Indexed: 06/11/2023]
Abstract
Penconazole is one of the most widely used fungicides all over the world, and since it spreads to large environments, its toxic effects on non-target organisms are of great concern. The toxic effects of penconazole on crayfish (Astacus leptodactylus), which is a bioindicator in freshwater ecosystems and consumed economically, are not known. Therefore, in this study, the purpose was to contribute to the literature on the potential harmful effects of penconazole on a non-target species, Astacus leptodactylus. For this aim, the acute toxicity (96 h) of penconazole was examined. The 96-h LC50 value of penconazole was detected as 18.7 mg L-1. Four concentrations of penconazole (18.7 mg L-1, 9.35 mg L-1, 4.68 mg L-1, 2.34 mg L-1) were applied to crayfish for 96 h. The results showed that penconazole had destructive effects on esterase mechanisms by inhibiting acetylcholinesterase (AChE) and carboxylesterase (CaE) activities. Significant increases were observed in all antioxidant parameters (superoxide dismutase (SOD), glutathione peroxidase (GPx), glutathione reductase (GR), glutathione S-transferase (GST), reduced glutathione (GSH), malondialdehyde (MDA)) in all doses except the lowest concentration (2.34 mg L-1). All adenosine triphosphatase (ATPase) activities (Na+/K+-ATPase, Mg2+-ATPase, Ca2+-ATPase, total ATPase) had significant dose-related inhibition in both gill and muscle tissues. In summary, our findings show that acute penconazole administration to crayfish causes significant toxic effects on esterase, antioxidative parameters, and metabolic enzymes.
Collapse
Affiliation(s)
- Aysel Alkan Uçkun
- Department of Environmental Engineering, Faculty of Engineering, Adıyaman University, Altınşehir neighborhood, Ataturk Boulevard, No. 1, Central Campus, 02040, Adıyaman, Turkey.
| | - Özden Barım Öz
- Department of Physiology, Faculty of Aquaculture, Fırat University, Elazığ, Turkey
| |
Collapse
|
16
|
Bozcaarmutlu A, Sapmaz C, Kaleli-Can G, Turna S, Aygun Z, Arinç E. Monitoring of pollution in the western Black Sea coast of Turkey by striped red mullet (Mullus surmuletus). ENVIRONMENTAL MONITORING AND ASSESSMENT 2020; 192:586. [PMID: 32812095 DOI: 10.1007/s10661-020-08509-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/31/2019] [Accepted: 07/19/2020] [Indexed: 06/11/2023]
Abstract
The striped red mullet (Mullus surmuletus) is an economically important demersal fish species. In this study, our aim was to monitor the pollution in the western Black Sea coast of Turkey using striped red mullet as a bioindicator species. Fish samples were caught from four different locations in the western Black Sea coast of Turkey in 2006, 2009-2011, and 2016. Highly elevated cytochrome P4501A (CYP1A)-related 7-ethoxyresorufin O-deethylase (EROD) activities were measured in striped red mullet caught from Zonguldak Harbor in all of the sampling years. The lowest EROD activities were measured in fish samples caught from Kefken. In addition to the EROD activity measurements, glutathione S-transferase (GST), glutathione reductase, and catalase activities were also measured in the striped red mullet samples. Higher GST and catalase activities were measured in the striped red mullet samples caught from Zonguldak Harbor than from Kefken in 2016. These results indicate that the striped red mullet is responsive to CYP1A inducer pollutants. This study covers intermittent measurements of the biomonitoring data from the striped red mullet caught around the western Black Sea coast of Turkey, over a 10-year period.
Collapse
Affiliation(s)
- Azra Bozcaarmutlu
- Department of Chemistry, Bolu Abant Izzet Baysal University, Bolu, Turkey.
| | - Canan Sapmaz
- Department of Chemistry, Bolu Abant Izzet Baysal University, Bolu, Turkey
| | - Gizem Kaleli-Can
- Department of Chemistry, Bolu Abant Izzet Baysal University, Bolu, Turkey
- Department of Biomedical Engineering, İzmir Democracy University, İzmir, Turkey
| | - Sema Turna
- Department of Chemistry, Bolu Abant Izzet Baysal University, Bolu, Turkey
| | - Zuleyha Aygun
- Department of Chemistry, Bolu Abant Izzet Baysal University, Bolu, Turkey
| | - Emel Arinç
- Department of Biological Sciences, Middle East Technical University, Ankara, Turkey
| |
Collapse
|
17
|
Perez-Rodriguez V, Wu N, de la Cova A, Schmidt J, Denslow ND, Martyniuk CJ. The organochlorine pesticide toxaphene reduces non-mitochondrial respiration and induces heat shock protein 70 expression in early-staged zebrafish (Danio rerio). Comp Biochem Physiol C Toxicol Pharmacol 2020; 228:108669. [PMID: 31712185 DOI: 10.1016/j.cbpc.2019.108669] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/17/2019] [Revised: 10/19/2019] [Accepted: 11/05/2019] [Indexed: 02/07/2023]
Abstract
Toxaphene is a restricted-use pesticide produced by reacting chlorine gas with camphene. It was heavily used as a pesticide for agricultural purposes in the 1960-1970s, but despite being banned >30 years ago, it can remain elevated in the soil due to its resistance to metabolic degradation; this has led to longstanding concerns about elevated levels of toxaphene and other organochlorine pesticides (OCPs) in the environment. The objective of this study were to determine the effects of waterborne exposure to toxaphene on early life stages of zebrafish. Based on the LC50, zebrafish embryos were exposed to control (embryo rearing media or DMSO) or to one dose of toxaphene ranging between 0.011 and 111.1 μg/mL from 6 h post fertilization (hpf) up to 120 hpf. Significant mortality and hatch time delays were observed in embryos exposed to toxaphene (at or above 0.11 and 1.11 μg/mL, depending on the assay). Higher prevalence of deformities was noted at higher doses (≥0.011 μg/mL), and these included pericardial edema and skeletal deformities. As energy production is important for normal development, mitochondrial bioenergetics were assessed in embryos following toxaphene exposure. Embryos exposed to 11.1 or 111 μg/mL toxaphene for 24 h showed lower non-mitochondrial respiration (~30%) compared to both solvent and no treatment controls. Expression of transcripts related to oxidative damage responses and apoptosis were measured and heat shock protein 70 was significantly increased with 111 μg/mL toxaphene (14.5 fold), while the expression levels of caspase 3, caspase 9, and superoxide dismutase 1 were not changed. These data demonstrate that developmental deformities induced by toxaphene include pericardial edema and skeletal deformity, and that toxaphene can affect oxidative phosphorylation in early staged zebrafish.
Collapse
Affiliation(s)
- Veronica Perez-Rodriguez
- Department of Physiological Sciences and Center for Environmental and Human Toxicology, UF Genetics Institute, College of Veterinary Medicine, University of Florida, Gainesville, FL 32611, USA
| | - Nan Wu
- Department of Physiological Sciences and Center for Environmental and Human Toxicology, UF Genetics Institute, College of Veterinary Medicine, University of Florida, Gainesville, FL 32611, USA; Jiangsu Collaborative Innovation Center of Regional Agriculture and Environmental Protection, Jiangsu Engeering Laboratory for Breeding Aquatic Organisms, School of Life Science, Huaiyin Normal University, Huai'An City, 223300, Jiangsu Province, P.R. China
| | - Alejandro de la Cova
- Department of Physiological Sciences and Center for Environmental and Human Toxicology, UF Genetics Institute, College of Veterinary Medicine, University of Florida, Gainesville, FL 32611, USA
| | - Jordan Schmidt
- Department of Physiological Sciences and Center for Environmental and Human Toxicology, UF Genetics Institute, College of Veterinary Medicine, University of Florida, Gainesville, FL 32611, USA
| | - Nancy D Denslow
- Department of Physiological Sciences and Center for Environmental and Human Toxicology, UF Genetics Institute, College of Veterinary Medicine, University of Florida, Gainesville, FL 32611, USA
| | - Christopher J Martyniuk
- Department of Physiological Sciences and Center for Environmental and Human Toxicology, UF Genetics Institute, College of Veterinary Medicine, University of Florida, Gainesville, FL 32611, USA.
| |
Collapse
|
18
|
Sutherland GE, Franco ME, Matson CW, Lavado R. Oxidative Potential of Chemical Mixtures Extracted from Contaminated Galveston Bay, TX Seafood Using a Human Cell Co-culture Model. ARCHIVES OF ENVIRONMENTAL CONTAMINATION AND TOXICOLOGY 2020; 78:149-162. [PMID: 31873759 DOI: 10.1007/s00244-019-00695-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/05/2019] [Accepted: 12/11/2019] [Indexed: 06/10/2023]
Abstract
Increasing levels of pollution in Galveston Bay, TX, are of significant concern for populations that directly depend on fishing activities. Efforts to evaluate contaminant levels in commercial fish have been largely limited to the quantification of chemical mixtures in fish tissue, but little information exists about the toxicological potential of these chemicals on consumption of contaminated seafood. The present study makes use of a human cell co-culture model, mimicking the digestive system, to address the oxidative potential of chemical mixtures in seafood. Chemical extractions were performed on fillets from three fish species and oysters collected from different areas in Galveston Bay. The resulting extracts were used to expose intestinal and liver cells before the measurement of cytotoxicity and activity of antioxidant enzymes. The pesticide 4,4'-DDE was found in nearly all samples from all sites in concentrations ranging from 0.23-9.4 µg/kg. Similarly, total PCBs found in fish and oyster tissue ranged from 0.68-65.65 µg/kg, with PCB-118 being the most common congener measured. In terms of cytotoxicity, oyster extracts led to significant cell mortality, contrary to observations for fish extracts. Antioxidant enzymes, while not directly related to the presence of chemical mixtures in tissue, presented evidence of potential increases in activity from spotted trout extracts. Observations from this study suggest the need to evaluate toxicological aspects of contaminated seafood and support the use of in vitro models for the screening of accumulated chemicals.
Collapse
Affiliation(s)
- Grace E Sutherland
- Department of Environmental Science, Baylor University, One Bear Place #97266, Waco, TX, 76798-7266, USA
| | - Marco E Franco
- Department of Environmental Science, Baylor University, One Bear Place #97266, Waco, TX, 76798-7266, USA
| | - Cole W Matson
- Department of Environmental Science, Baylor University, One Bear Place #97266, Waco, TX, 76798-7266, USA
| | - Ramon Lavado
- Department of Environmental Science, Baylor University, One Bear Place #97266, Waco, TX, 76798-7266, USA.
| |
Collapse
|
19
|
Jhamtani RC, Shukla S, Sivaperumal P, Dahiya MS, Agarwal R. Impact of co-exposure of aldrin and titanium dioxide nanoparticles at biochemical and molecular levels in Zebrafish. ENVIRONMENTAL TOXICOLOGY AND PHARMACOLOGY 2018; 58:141-155. [PMID: 29331773 DOI: 10.1016/j.etap.2017.12.021] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/20/2017] [Revised: 12/16/2017] [Accepted: 12/21/2017] [Indexed: 06/07/2023]
Abstract
Aldrin (ALD), a persistent-organic-pollutant (POP), an organochlorine-cyclodiene-pesticide is highly toxic in nature. Titanium dioxide nanoparticles (TNP) are widely used for various industrial applications. Despite the remarkable research on pesticide toxicity, the work with impact of nanoparticles on POP has been dealt with marginally. Chemicals co-exist in the environment and exhibit interactive effects. An investigation was carried out to evaluate the individual and combined effects of ALD (6 ppm) and TNP (60 ppm) exposure at sub-lethal concentration for 24 h in zebrafish. Significant reversal of lipid peroxidation level in liver and brain tissues and restoration in enhanced catalase activity in all examined tissues were observed in combined group. For other parameters, combined exposure of ALD and TNP does not show significant reversal action on ALD toxicity. Further studies are inline to understand combined effects of both to achieve significant reversal of ALD toxicity by TNP nanoparticles with threshold concentration of aldrin.
Collapse
Affiliation(s)
- Reena C Jhamtani
- Laboratory of Analytical & Molecular Toxicology (Forensic Chemistry and Toxicology laboratory), Institute of Forensic Science, Gujarat Forensic Sciences University, Gandhinagar, Gujarat, India.
| | - Saurabh Shukla
- Laboratory of Analytical & Molecular Toxicology (Forensic Chemistry and Toxicology laboratory), Institute of Forensic Science, Gujarat Forensic Sciences University, Gandhinagar, Gujarat, India.
| | - P Sivaperumal
- Pesticide Toxicology Division, National Institute of Occupational Health, Ahmedabad, Gujarat, India.
| | - M S Dahiya
- Laboratory of Analytical & Molecular Toxicology (Forensic Chemistry and Toxicology laboratory), Institute of Forensic Science, Gujarat Forensic Sciences University, Gandhinagar, Gujarat, India.
| | - Rakhi Agarwal
- Laboratory of Analytical & Molecular Toxicology (Forensic Chemistry and Toxicology laboratory), Institute of Forensic Science, Gujarat Forensic Sciences University, Gandhinagar, Gujarat, India.
| |
Collapse
|
20
|
Vieira CED, Costa PG, Cabrera LC, Primel EG, Fillmann G, Bianchini A, Bueno Dos Reis Martinez C. A comparative approach using biomarkers in feral and caged Neotropical fish: Implications for biomonitoring freshwater ecosystems in agricultural areas. THE SCIENCE OF THE TOTAL ENVIRONMENT 2017; 586:598-609. [PMID: 28215813 DOI: 10.1016/j.scitotenv.2017.02.026] [Citation(s) in RCA: 35] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/26/2016] [Revised: 01/13/2017] [Accepted: 02/03/2017] [Indexed: 06/06/2023]
Abstract
The aim of this study was to investigate the responses of biomarkers in feral and caged fish and the capacity of these biomarkers to discriminate contamination levels along a stream located in an agricultural area in Southern Brazil. Specimens of the Neotropical fish, Astyanax altiparanae, were confined for 168h in three lakes along the stream. Additionally, during the weeks of in situ exposure, wild specimens of this species were collected from the same sites. Biochemical biomarkers were analyzed, such as phase I biotransformation enzyme 7-ethoxyresorufin-O-deethylase (EROD) and phase II biotransformation enzyme glutathione S-transferase, and we also determined hepatic and branchial levels of non-protein thiols (NPSH), oxidative damage such as lipid peroxidation (LPO), and acetylcholinesterase (AChE) activity in muscle and brain. Genetic biomarkers such as DNA breaks (comet assay), frequency of micronuclei (MN) and erythrocytic nuclear abnormalities (ENA) were also examined. The results indicate that the most sensitive biomarkers for discriminating contamination levels are DNA breaks, LPO and AChE activity. Similar results were obtained for both caged and feral fish. The biomarkers that reflect the results of cumulative events, such as ENA, were more discriminative for chronically exposed specimens (feral fishes). Analyzing biomarkers using an integrated response index showed that both approaches (using feral and caged A. altiparanae) were effective for discriminating contamination levels along the stream, corroborating the results of chemical analyses for selected pesticides. Taken together, these results highlight the importance of biomarker selection and show that both approaches (caged and feral fish) are satisfactory for evaluating water quality in streams impacted by agricultural activities.
Collapse
Affiliation(s)
- Carlos Eduardo Delfino Vieira
- Departamento de Ciências Fisiológicas, Universidade Estadual de Londrina, Rod. Celso Garcia Cid, km 380, Londrina, Paraná 86057-970, Brazil
| | - Patrícia Gomes Costa
- Instituto de Oceanografia, Universidade Federal do Rio Grande, Rio Grande, Rio Grande do Sul 96203-900, Brazil
| | - Liziara Costa Cabrera
- Escola de Química e Alimentos, Universidade Federal do Rio Grande, Av Itália, km 8, s/n, Rio Grande, Rio Grande do Sul 96203-900, Brazil
| | - Ednei Gilberto Primel
- Escola de Química e Alimentos, Universidade Federal do Rio Grande, Av Itália, km 8, s/n, Rio Grande, Rio Grande do Sul 96203-900, Brazil
| | - Gilberto Fillmann
- Instituto de Oceanografia, Universidade Federal do Rio Grande, Rio Grande, Rio Grande do Sul 96203-900, Brazil
| | - Adalto Bianchini
- Instituto de Ciências Biológicas, Universidade Federal do Rio Grande, Av Itália, km8, s/n, Rio Grande, Rio Grande do Sul 96203-900, Brazil
| | - Claudia Bueno Dos Reis Martinez
- Departamento de Ciências Fisiológicas, Universidade Estadual de Londrina, Rod. Celso Garcia Cid, km 380, Londrina, Paraná 86057-970, Brazil.
| |
Collapse
|
21
|
Durmaz E, Kocagöz R, Bilacan E, Orhan H. Metal pollution in biotic and abiotic samples of the Büyük Menderes River, Turkey. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2017; 24:4274-4283. [PMID: 26971518 DOI: 10.1007/s11356-016-6417-7] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/28/2015] [Accepted: 03/03/2016] [Indexed: 05/12/2023]
Abstract
The Büyük Menderes River (BMR) is one of the largest rivers in Turkey. This river irrigates efficient farmlands and includes tributaries of other rivers and streams and many populated towns within its limits in the Ege region. Both the estuary and Işıklı Lake serve as a sanctuary for various waterbirds. Therefore, the BMR plays a critical role both for the inhabitants and for the ecosystem organisms in its environs. In the present study, we analyzed levels of metals including iron, barium, zinc, vanadium, cobalt, chromium, cadmium, copper, nickel, aluminum, arsenic, manganese, antimony, silver, selenium, boron, mercury, titanium, and lead in river water, sediment, fish (Cyprinus carpio; common carp), and in various waterbird (Fulica atra, Euroasian coot; Larus michahellis, yellow-legged gull; Ardea cinerea, grey heron; Larus melanocephalus, Mediterranean gull; and Pelecanus crispus, pelican) samples. Analyses were performed using an inductively coupled plasma-mass spectrometry (ICP-MS) instrument after sample preparation. Comparing metal concentrations among different sample types, it was found that barium, aluminum, and zinc are the major metals in river water, and zinc in common carp muscle, while iron, aluminum, and manganese are the major metals in sediments. Iron, zinc, copper, and aluminum were the highest in waterbird muscle tissue. Iron and barium were found to be the major metals in eggshell, while iron and zinc are the major metals in egg samples. A simple "worst-case scenario" model of risk assessment revealed that some of the analyzed metals may pose a risk for human health through consuming fish.
Collapse
Affiliation(s)
- Emre Durmaz
- Department of Toxicology, Faculty of Pharmacy, Gazi University, 06330, Etiler-Ankara, Turkey
| | - Rasih Kocagöz
- Department of Toxicology, Faculty of Pharmacy, Ege University, 35100, Bornova-İzmir, Turkey
| | - Evrim Bilacan
- Department of Toxicology, Faculty of Pharmacy, Ege University, 35100, Bornova-İzmir, Turkey
| | - Hilmi Orhan
- Department of Toxicology, Faculty of Pharmacy, Ege University, 35100, Bornova-İzmir, Turkey.
| |
Collapse
|
22
|
Çağdaş B, Kocagöz R, Onat İ, Perçin F, Özaydın O, Orhan H. Periodic monitoring of persistent organic pollutants and molecular damage in Cyprinus carpio from Büyük Menderes River. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2017; 24:4241-4251. [PMID: 26081778 DOI: 10.1007/s11356-015-4848-1] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/09/2015] [Accepted: 06/05/2015] [Indexed: 06/04/2023]
Abstract
Concentrations of persistent organic pollutants (POPs) were quantified in river water and sediment, as well as in the liver and muscle tissues of Cyprinus carpio that were sampled four times in a year at three stations in the Büyük Menderes River (BMR). Potential biomarkers of possible cellular molecular damage, namely lipid peroxidation (LPO) degradation products, protein carbonyls (PCO) and DNA repair product 8-hydroxy-2'-deoxyguanosine (8-OHdG), were analysed. All the targeted pollutants were measurable both in biotic and abiotic samples. Interestingly, the results suggested that there was recent organochlorine pesticide (OCP) input into the river water in the first two sampling periods in all stations in contrast to prohibition, while input of polychlorinated biphenyls (PCBs) and polybrominated diphenylethers (PBDEs) was not detected. Liver POP concentrations were higher than in muscle, as expected, and were found to decrease from the first to the fourth sampling period in all stations, except PBDEs. Levels of LPO degradation products in the liver and in muscle tissues decreased from the first to the fourth sampling period. This suggests that these markers reflect the lipid damage in respective tissues due to the tissue burden of targeted POPs. Protein carbonyls were the highest in the first sampling period, followed by a dramatic decrease in the second, and then a gradual increase towards the fourth sampling period in all stations. 8-OHdG levels were lower in Sarayköy station in the first sampling period. Among the measured biomarkers, only several LPO degradation products were significantly correlated with OCPs and PCBs in liver tissue.
Collapse
Affiliation(s)
- Beste Çağdaş
- Department of Toxicology, Faculty of Pharmacy, Ege University, 35100, Bornova-İzmir, Turkey
- Bioengineering Department, Faculty of Engineering, Kirikkale University, 71450, Merkez-Kirikkale, Turkey
| | - Rasih Kocagöz
- Department of Toxicology, Faculty of Pharmacy, Ege University, 35100, Bornova-İzmir, Turkey
| | - İlgen Onat
- Department of Toxicology, Faculty of Pharmacy, Ege University, 35100, Bornova-İzmir, Turkey
| | - Fatih Perçin
- Department of Aquaculture, Faculty of Fisheries, Ege University, 35100, Bornova-İzmir, Turkey
| | - Okan Özaydın
- Department of Hydrobiology, Faculty of Fisheries, Ege University, 35100, Bornova-İzmir, Turkey
| | - Hilmi Orhan
- Department of Toxicology, Faculty of Pharmacy, Ege University, 35100, Bornova-İzmir, Turkey.
| |
Collapse
|
23
|
Wu C, Zhang Y, Chai L, Wang H. Oxidative stress, endocrine disruption, and malformation of Bufo gargarizans embryo exposed to sub-lethal cadmium concentrations. ENVIRONMENTAL TOXICOLOGY AND PHARMACOLOGY 2017; 49:97-104. [PMID: 27984779 DOI: 10.1016/j.etap.2016.12.005] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/27/2016] [Revised: 12/08/2016] [Accepted: 12/09/2016] [Indexed: 06/06/2023]
Abstract
Thyroid hormone (TH) is critical for vertebrate postembryonic development as well as embryonic development. Chinese toad (Bufo gargarizans) embryos were exposed to different concentrations of cadmium (5, 50, 100, 200 and 500μg Cd L-1) for 7days. Malformations were monitored daily, and growth and development of embryos were measured at day 4 and 7, and type 2 and 3 iodothyronine deiodinase (Dio2 and Dio3), thyroid hormone receptors (TRα and TRβ) mRNA levels were also measured to assess disruption of TH synthesis. In addition, superoxide dismutase (SOD), glutathione peroxidase (GPx) and heat shock proteins (HSPs) mRNA expression were examined to evaluate the ability of scavenging ROS. Our results demonstrated a bimodal inhibitory effect of Cd on the embryo growth and development of Bufo gargarizans. Reduced mean stage, total length and weight were observed at 5, 50, 200 and 500, but not at 100μg Cd L-1. Embryos malformation occurred in all cadmium treatments. Morphological abnormalities of embryos are characterized by axial flexures, abdominal edema, stunted growth and fin flexure. Real-time PCR results show that exposure to cadmium down-regulated TRα and Dio3 mRNA expression and up-regulated Dio2 mRNA level. SOD and GPx mRNA expression was significantly up-regulated after cadmium exposure. We concluded that cadmium could change mRNA expression of TRα, Dio2 and Dio3 leading the inhibition of growth and development of B. gargarizans embryo, which suggests that cadmium might have the endocrine-disrupting effect in embryos. Moreover, the reduced ability of scavenging ROS induced by cadmium might be responsible for the teratogenic effects of cadmium.
Collapse
Affiliation(s)
- Chao Wu
- College of Life Science, Shaanxi Normal University, Xi'an 710119, China
| | - Yuhui Zhang
- College of Life Science, Shaanxi Normal University, Xi'an 710119, China
| | - Lihong Chai
- School of Environmental Science and Engineering, Chang'an University, Xi'an 710054, China; Key Laboratory of Subsurface Hydrology and Ecological Effect in Arid Region of Ministry of Education, Xi'an 710062, China
| | - Hongyuan Wang
- College of Life Science, Shaanxi Normal University, Xi'an 710119, China.
| |
Collapse
|
24
|
Huang GY, Liu YS, Liang YQ, Shi WJ, Hu LX, Tian F, Chen J, Ying GG. Multi-biomarker responses as indication of contaminant effects in Gambusia affinis from impacted rivers by municipal effluents. THE SCIENCE OF THE TOTAL ENVIRONMENT 2016; 563-564:273-281. [PMID: 27135591 DOI: 10.1016/j.scitotenv.2016.04.127] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/04/2016] [Revised: 04/07/2016] [Accepted: 04/17/2016] [Indexed: 06/05/2023]
Abstract
This study investigated toxic effects in mosquitofish from two urban rivers of South China impacted by municipal effluents by using multiple biomarkers including fish morphology, biochemical indicators and transcriptional responses, and explored potential cause-effect relationship with a list of chemicals (metals, polycyclic aromatic hydrocarbons (PAHs) and pesticides). The results showed significant alterations in metallothionein (MT) protein and mRNA expression in mosquitofish collected from the two rivers and a strong association between MT protein and mRNA expression levels and heavy metals in the river water. Both ethoxyresorufin-O-deethylase (EROD) activity and cytochromes P450 1A (CYP1A) mRNA expression were significantly enhanced in mosquitofish at most sampling sites. There existed a strong correlation between EROD activity and CYP1A mRNA expression levels, but no clear correlations between these responses and PAHs in the river water possibly because of the presence of many other agonists of the aryl hydrocarbon receptor in the two rivers. Significant acetylcholinesterase (AChE) inhibition was observed in mosquitofish brain samples. The pesticides in the two rivers showed an influence on the AChE activity, which was also found to be significantly negatively correlated to fipronil concentrations. Moreover, the result also indicates that metals and pesticides present in the two rivers might cause the observed estrogenic and androgenic effects in mosquitofish. The findings from this study clearly showed morphological, biochemical and transcriptional responses in mosquitofish due to chemical contamination of the two urban rivers. This multi-biomarker approach using mosquitofish can be applied to evaluate contamination of riverine environments.
Collapse
Affiliation(s)
- Guo-Yong Huang
- State Key Laboratory of Organic Geochemistry, CAS Research Centre for Pearl River Delta Environmental Pollution and Control, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou 510640, China.
| | - You-Sheng Liu
- State Key Laboratory of Organic Geochemistry, CAS Research Centre for Pearl River Delta Environmental Pollution and Control, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou 510640, China
| | - Yan-Qiu Liang
- State Key Laboratory of Organic Geochemistry, CAS Research Centre for Pearl River Delta Environmental Pollution and Control, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou 510640, China
| | - Wen-Jun Shi
- State Key Laboratory of Organic Geochemistry, CAS Research Centre for Pearl River Delta Environmental Pollution and Control, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou 510640, China
| | - Li-Xin Hu
- State Key Laboratory of Organic Geochemistry, CAS Research Centre for Pearl River Delta Environmental Pollution and Control, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou 510640, China
| | - Fei Tian
- State Key Laboratory of Organic Geochemistry, CAS Research Centre for Pearl River Delta Environmental Pollution and Control, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou 510640, China
| | - Jun Chen
- State Key Laboratory of Organic Geochemistry, CAS Research Centre for Pearl River Delta Environmental Pollution and Control, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou 510640, China
| | - Guang-Guo Ying
- State Key Laboratory of Organic Geochemistry, CAS Research Centre for Pearl River Delta Environmental Pollution and Control, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou 510640, China.
| |
Collapse
|
25
|
The β-1,3-glucan alleviated the hepatotoxicity induced by combination of fipronil and lead in common carp (Cyprinus carpio). ACTA ACUST UNITED AC 2016. [DOI: 10.1007/s00580-016-2249-6] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
|
26
|
Zheng Y, Qu J, Qiu L, Fan L, Meng S, Song C, Bing X, Chen J. Effect of 17α-methyltestosterone (MT) on oxidation stress in the liver of juvenile GIFT tilapia, Oreochromis niloticus. SPRINGERPLUS 2016; 5:338. [PMID: 27066359 PMCID: PMC4792819 DOI: 10.1186/s40064-016-1946-6] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/19/2015] [Accepted: 02/29/2016] [Indexed: 02/06/2023]
Abstract
The normal dose of 17α-methyltestosterone (MT) used in fish farming was 60 mg/L, and now the analysis of residual androgens was carried out in waste water obtained from the Beijing area, which could be detected in levels ranging from 4.1 to 7.0 ng/L. For the purpose of aquatic early warning, the present study clearly demonstrated that chronic exposure by higher concentration of MT than environmental relevant concentrations could trigger oxidative stress response to juvenile tilapia by modulating hepatic antioxidant enzyme activities and gene transcription. Some antioxidative parameters (T-GSH, GSH/GSSG and MDA) were significant decreased under 0.5 mg/L MT exposure at 7 and 14 days. Some antioxidant enzymes (SOD, CAT and GST) and transcriptional changes (sod and cat) were revealed significant decreases for MT treated groups at 7 days. Total antioxidant capacity was significant increased only in 5 mg/L MT exposure groups, but GR activities were not affected all through the whole exposure period. Almost all of the antioxidant enzymatic genes detected in the present study were showed significant increments for MT exposure both at 14 and 21 days, and the genotoxicity profile of antioxidant enzymatic genes were revealed dose-dependent manner. This study presented evidence that MT could result in oxidative stress response in the early stages of GIFT tilapia.
Collapse
Affiliation(s)
- Yao Zheng
- Freshwater Fisheries Research Center, Chinese Academy of Fishery Sciences, No. 9 Shanshui East Rd., Wuxi, 214081 Jiangsu China ; Scientific Observing and Experimental Station of Fishery Resources and Environment in the Lower Reaches of the Changjiang River, Wuxi, 214081 China ; Wuxi Fisheries College, Nanjing Agricultural University, Wuxi, 214081 China
| | - Jianhong Qu
- Freshwater Fisheries Research Center, Chinese Academy of Fishery Sciences, No. 9 Shanshui East Rd., Wuxi, 214081 Jiangsu China ; Scientific Observing and Experimental Station of Fishery Resources and Environment in the Lower Reaches of the Changjiang River, Wuxi, 214081 China
| | - Liping Qiu
- Freshwater Fisheries Research Center, Chinese Academy of Fishery Sciences, No. 9 Shanshui East Rd., Wuxi, 214081 Jiangsu China ; Scientific Observing and Experimental Station of Fishery Resources and Environment in the Lower Reaches of the Changjiang River, Wuxi, 214081 China
| | - Limin Fan
- Freshwater Fisheries Research Center, Chinese Academy of Fishery Sciences, No. 9 Shanshui East Rd., Wuxi, 214081 Jiangsu China ; Scientific Observing and Experimental Station of Fishery Resources and Environment in the Lower Reaches of the Changjiang River, Wuxi, 214081 China
| | - Shunlong Meng
- Freshwater Fisheries Research Center, Chinese Academy of Fishery Sciences, No. 9 Shanshui East Rd., Wuxi, 214081 Jiangsu China ; Scientific Observing and Experimental Station of Fishery Resources and Environment in the Lower Reaches of the Changjiang River, Wuxi, 214081 China
| | - Chao Song
- Freshwater Fisheries Research Center, Chinese Academy of Fishery Sciences, No. 9 Shanshui East Rd., Wuxi, 214081 Jiangsu China ; Scientific Observing and Experimental Station of Fishery Resources and Environment in the Lower Reaches of the Changjiang River, Wuxi, 214081 China
| | - Xuwen Bing
- Freshwater Fisheries Research Center, Chinese Academy of Fishery Sciences, No. 9 Shanshui East Rd., Wuxi, 214081 Jiangsu China ; Scientific Observing and Experimental Station of Fishery Resources and Environment in the Lower Reaches of the Changjiang River, Wuxi, 214081 China ; Wuxi Fisheries College, Nanjing Agricultural University, Wuxi, 214081 China
| | - Jiazhang Chen
- Freshwater Fisheries Research Center, Chinese Academy of Fishery Sciences, No. 9 Shanshui East Rd., Wuxi, 214081 Jiangsu China ; Scientific Observing and Experimental Station of Fishery Resources and Environment in the Lower Reaches of the Changjiang River, Wuxi, 214081 China ; Wuxi Fisheries College, Nanjing Agricultural University, Wuxi, 214081 China
| |
Collapse
|
27
|
Narra MR. Single and cartel effect of pesticides on biochemical and haematological status of Clarias batrachus: A long-term monitoring. CHEMOSPHERE 2016; 144:966-974. [PMID: 26432990 DOI: 10.1016/j.chemosphere.2015.09.065] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/15/2015] [Revised: 09/14/2015] [Accepted: 09/15/2015] [Indexed: 06/05/2023]
Abstract
Pesticide mixtures are common in the streams of agricultural or urban catchments. Individual and cartel toxicity of four different pesticides, namely Endosulfan, Carbofuran, Methyl parathion and Cypermethrin were studied. Sub acute exposure (1/10th of LC50) for 1, 7, 15, 30 and 60 days in Clarias batrachus active tissues such as brain, gills, blood and liver were evaluated. Growth, hepatosomatic index and survival performance were decreased, inhibition of brain acetylcholinesterase, gills Na(+)/K(+) ATPase activities, and abnormal behavior are noticed. The characteristics of the blood respiratory burst activity, erythrocyte count, contents of hematocrit and hemoglobin are dwindled. Plasma total proteins and liver glycogen decreased whereas blood glucose and serum creatinine, triglycerides are elevated. The immunological attributes such as white blood cell count was elevated, whereas albumin, globulins and lysozyme activity significantly decreased. Hepatic superoxide dismutase, catalase and glutathione S-transferase activities and lipid peroxidation levels are elevated, whereas glutathione peroxidase and glutathione are reduced. Toxicity effect of pesticides reached to a crest on 30th day and showed a descent thereafter except in endosulfan which mounted its detrimental effect throughout the experimental period. Toxicity trends of the present study are determined to be highest in Mix group followed by cypermethrin, methyl parathion and carbofuran. Indiscriminate application of these chemicals pose a toxic threat to non-target organisms, damage the ecosystems and jeopardizes human health.
Collapse
Affiliation(s)
- Madhusudan Reddy Narra
- Department of Zoology, University College of Science, Osmania University, Hyderabad, Telangana, 500 007, India.
| |
Collapse
|
28
|
Wilks MF, Tsatsakis AM. Environmental contaminants and target organ toxicities – new insights into old problems. Toxicol Lett 2014; 230:81-4. [DOI: 10.1016/j.toxlet.2014.08.003] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
|