1
|
Semsari H, Babaei E, Ranjkesh M, Esmaili N, Mallet F, Karimi A. Association of Human Endogenous Retrovirus-W (HERV-W) Copies with Pemphigus Vulgaris. Curr Mol Med 2024; 24:683-688. [PMID: 37078354 DOI: 10.2174/1566524023666230418114152] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2022] [Revised: 02/23/2023] [Accepted: 02/28/2023] [Indexed: 04/21/2023]
Abstract
BACKGROUND Pemphigus is classified as a group of chronic, recurrent, and potentially fatal bullous autoimmune diseases that leads to blisters and skin lesions resulting from IgG antibodies and the loss of cellular connections in the epidermis. Human endogenous retrovirus (HERV) sequences and their products (RNA, cytosolic DNA, and proteins) can modulate the immune system and contribute to autoimmunity. The extent to which, HERV-W env copies may be involved in the pathogenesis of pemphigus remains to be elucidated. AIM This study aimed to comparatively evaluate the relative levels of HERV-W env DNA copy numbers in the peripheral blood mononuclear cells (PBMCs) of pemphigus vulgaris patients and healthy controls. METHODS Thirty-one pemphigus patients and the corresponding age- and sex-matched healthy controls were included in the study. The relative levels of HERV-W env DNA copy numbers were then evaluated by qPCR using specific primers, in the PBMCs of the patients and controls. RESULTS Our results indicated that relative levels of HERV-W env DNA copy numbers in the patients were significantly higher than that in the controls (1.67±0.86 vs. 1.17±0.75; p = 0.02). There was also a significant difference between the HERV-W env copies of male and female patients (p = 0.001). Furthermore, there was no relationship between the HERV-W env copy number and disease onset (p = 0.19) . According to the obtained data, we could not find any relationship between the HERV-W env copy number and serum Dsg1(p=0.86) and Dsg3 (p=0.76) levels. CONCLUSION Our results indicated a positive link between the HERV-W env copies and pathogenesis of pemphigus. The association between clinical severity score and HERVW env copies in the PBMCs as a biomarker for pemphigus needs further studies.
Collapse
Affiliation(s)
- Hanieh Semsari
- Department of Biology, Faculty of Natural Sciences, University of Tabriz, Tabriz, Iran
| | - Esmaeil Babaei
- Department of Biology, Faculty of Natural Sciences, University of Tabriz, Tabriz, Iran
- Department of Pharmacognosy, College of Pharmacy, Hawler Medical University, Kurdistan Region, Erbil, Iraq
| | - Mohammadreza Ranjkesh
- Department of Dermatology, School of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Nafiseh Esmaili
- Autoimmune Bullous Diseases Research Center, Tehran University of Medical Sciences, Razi Hospital, Tehran, Iran
| | - François Mallet
- Joint Research Unit Hospices Civils de Lyon-bioMérieux, Lyon Sud Hospital, Pierre-Bénite, France
- EA 7426 Pathophysiology of Injury-Induced Immunosuppression, Edouard Herriot Hospital, University of Lyon1- Hospices Civils de Lyon-bioMérieux, 5 Place d'Arsonval, Lyon Cedex 3, Lyon, France
| | - Abbas Karimi
- Department of Molecular Medicine, Faculty of Advanced Medical Sciences, Tabriz University of Medical Sciences, Tabriz, Iran
| |
Collapse
|
2
|
Sun J, Wu L, Wu M, Liu Q, Cao H. Non-coding RNA therapeutics: Towards a new candidate for arsenic-induced liver disease. Chem Biol Interact 2023; 382:110626. [PMID: 37442288 DOI: 10.1016/j.cbi.2023.110626] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2023] [Revised: 06/23/2023] [Accepted: 07/10/2023] [Indexed: 07/15/2023]
Abstract
Arsenic, a metalloid toxicant, has caused serious environmental pollution and is presently a global health issue. Long-term exposure to arsenic causes diverse organ and system dysfunctions, including liver disease. Arsenic-induced liver disease comprises a spectrum of liver pathologies, ranging from hepatocyte damage, steatosis, fibrosis, to hepatocellular carcinoma. Various mechanisms, including an imbalance in redox reactions, mitochondrial dysfunction and epigenetic changes, participate in the pathogenesis of arsenic-induced liver disease. Altered epigenetic processes involved in its initiation and progression. Dysregulated modulations of non-coding RNAs (ncRNAs), including miRNAs, lncRNAs and circRNAs, exert regulating effects on these processes. Here, we have reviewed the underlying pathogenic mechanisms that lead to progressive arsenic-induced liver disease, and we provide a discussion focusing on the effects of ncRNAs on dysfunctions in intercellular communication and on the activation of hepatic stellate cells and malignant transformation of hepatocytes. Further, we have discussed the roles of ncRNAs in intercellular communication via extracellular vesicles and cytokines, and have provided a perspective for the application of ncRNAs as biomarkers in the early diagnosis and evaluation of the pathogenesis of arsenic-induced liver disease. Further investigations of ncRNAs will help us to understand the nature of arsenic-induced liver disease and to identify biomarkers and therapeutic targets.
Collapse
Affiliation(s)
- Jing Sun
- Department of Nutrition, Functional Food Clinical Evaluation Center, Affiliated Hospital of Jiangnan University, Wuxi, 214122, Jiangsu, People's Republic of China
| | - Lu Wu
- Center for Global Health, The Key Laboratory of Modern Toxicology, Ministry of Education, School of Public Health, Suzhou Institute of Public Health, Gusu School, Nanjing Medical University, Nanjing, 211166, Jiangsu, People's Republic of China
| | - Meng Wu
- Center for Global Health, The Key Laboratory of Modern Toxicology, Ministry of Education, School of Public Health, Suzhou Institute of Public Health, Gusu School, Nanjing Medical University, Nanjing, 211166, Jiangsu, People's Republic of China
| | - Qizhan Liu
- Center for Global Health, The Key Laboratory of Modern Toxicology, Ministry of Education, School of Public Health, Suzhou Institute of Public Health, Gusu School, Nanjing Medical University, Nanjing, 211166, Jiangsu, People's Republic of China.
| | - Hong Cao
- Department of Nutrition, Functional Food Clinical Evaluation Center, Affiliated Hospital of Jiangnan University, Wuxi, 214122, Jiangsu, People's Republic of China.
| |
Collapse
|
3
|
George S, Cassidy RN, Saintilnord WN, Fondufe-Mittendorf Y. Epigenomic reprogramming in iAs-mediated carcinogenesis. ADVANCES IN PHARMACOLOGY (SAN DIEGO, CALIF.) 2022; 96:319-365. [PMID: 36858778 DOI: 10.1016/bs.apha.2022.08.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/03/2023]
Abstract
Arsenic is a naturally occurring metal carcinogen found in the Earth's crust. Millions of people worldwide are chronically exposed to arsenic through drinking water and food. Exposure to inorganic arsenic has been implicated in many diseases ranging from acute toxicities to malignant transformations. Despite the well-known deleterious health effects of arsenic exposure, the molecular mechanisms in arsenic-mediated carcinogenesis are not fully understood. Since arsenic is non-mutagenic, the mechanism by which arsenic causes carcinogenesis is via alterations in epigenetic-regulated gene expression. There are two possible ways by which arsenic may modify the epigenome-indirectly through an arsenic-induced generation of reactive oxygen species which then impacts chromatin remodelers, or directly through interaction and modulation of chromatin remodelers. Whether directly or indirectly, arsenic modulates epigenetic gene regulation and our understanding of the direct effect of this modulation on chromatin structure is limited. In this chapter we will discuss the various ways by which inorganic arsenic affects the epigenome with consequences in health and disease.
Collapse
Affiliation(s)
- Smitha George
- Department of Epigenetics, Van Andel Institute, Grand Rapids, MI, United States
| | - Richard N Cassidy
- Department of Epigenetics, Van Andel Institute, Grand Rapids, MI, United States
| | - Wesley N Saintilnord
- Department of Epigenetics, Van Andel Institute, Grand Rapids, MI, United States; Department of Molecular and Cellular Biochemistry, University of Kentucky, Lexington, KY, United States
| | | |
Collapse
|
4
|
Sun J, Shi L, Xiao T, Xue J, Li J, Wang P, Wu L, Dai X, Ni X, Liu Q. microRNA-21, via the HIF-1α/VEGF signaling pathway, is involved in arsenite-induced hepatic fibrosis through aberrant cross-talk of hepatocytes and hepatic stellate cells. CHEMOSPHERE 2021; 266:129177. [PMID: 33310519 DOI: 10.1016/j.chemosphere.2020.129177] [Citation(s) in RCA: 45] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/29/2020] [Revised: 11/17/2020] [Accepted: 11/29/2020] [Indexed: 06/12/2023]
Abstract
Long-term exposure to arsenic, a widely distributed environmental toxicant, may result in damage to various organs, including the liver. Mice exposed chronically to arsenite developed hepatic damage, inflammation, and fibrosis, as well as increased levels of microRNA-21 (miR-21) and hypoxia-inducible factor (HIF)-1α. The levels of miR-21 and HIF-1α were also enhanced in primary hepatocytes and L-02 cells exposed to arsenite. The culture media from these cells induced the activation of hepatic stellate cells (HSCs), as demonstrated by up-regulation of the protein levels of α-smooth muscle actin (α-SMA) and collagen1A2 (COL1A2) and by increased activity in gel contractility assays. For L-02 cells, knockdown of miR-21 blocked the arsenite-induced up-regulation of HIF-1α and vascular endothelial growth factor (VEGF), which prevented the activation of LX-2 cells induced by medium from arsenite-exposed L-02 cells. However, these effects were reversed by down-regulation of von Hippel Lindau protein (pVHL). In arsenite-treated L-02 cells, miR-21 knockdown elevated the levels of ubiquitination and accelerated the degradation of HIF-1α via pVHL. In the livers of miR-21-/- mice exposed chronically to arsenite, there were less hepatic damage, lower fibrosis, lower levels of HIF-1α and VEGF, and higher levels of pVHL than for wild-type mice. In summary, we propose that miR-21, acting via the HIF-1α/VEGF signaling pathway, is involved in arsenite-induced hepatic fibrosis through mediating aberrant cross-talk of hepatocytes and HSCs. The findings provide evidence relating to the pathogenesis of hepatic fibrosis induced by exposure to arsenic.
Collapse
Affiliation(s)
- Jing Sun
- Center for Global Health, The Key Laboratory of Modern Toxicology, Ministry of Education, School of Public Health, Nanjing Medical University, Nanjing, 211166, Jiangsu, People's Republic of China; Jiangsu Key Lab of Cancer Biomarkers, Prevention and Treatment, Jiangsu Collaborative Innovation Center for Cancer Personalized Medicine, School of Public Health, Nanjing Medical University, Nanjing, 211166, Jiangsu, People's Republic of China
| | - Le Shi
- School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, 210046, Jiangsu, People's Republic of China
| | - Tian Xiao
- Center for Global Health, The Key Laboratory of Modern Toxicology, Ministry of Education, School of Public Health, Nanjing Medical University, Nanjing, 211166, Jiangsu, People's Republic of China; Jiangsu Key Lab of Cancer Biomarkers, Prevention and Treatment, Jiangsu Collaborative Innovation Center for Cancer Personalized Medicine, School of Public Health, Nanjing Medical University, Nanjing, 211166, Jiangsu, People's Republic of China
| | - Junchao Xue
- Center for Global Health, The Key Laboratory of Modern Toxicology, Ministry of Education, School of Public Health, Nanjing Medical University, Nanjing, 211166, Jiangsu, People's Republic of China; Jiangsu Key Lab of Cancer Biomarkers, Prevention and Treatment, Jiangsu Collaborative Innovation Center for Cancer Personalized Medicine, School of Public Health, Nanjing Medical University, Nanjing, 211166, Jiangsu, People's Republic of China
| | - Junjie Li
- Center for Global Health, The Key Laboratory of Modern Toxicology, Ministry of Education, School of Public Health, Nanjing Medical University, Nanjing, 211166, Jiangsu, People's Republic of China; Jiangsu Key Lab of Cancer Biomarkers, Prevention and Treatment, Jiangsu Collaborative Innovation Center for Cancer Personalized Medicine, School of Public Health, Nanjing Medical University, Nanjing, 211166, Jiangsu, People's Republic of China
| | - Peiwen Wang
- Center for Global Health, The Key Laboratory of Modern Toxicology, Ministry of Education, School of Public Health, Nanjing Medical University, Nanjing, 211166, Jiangsu, People's Republic of China; Jiangsu Key Lab of Cancer Biomarkers, Prevention and Treatment, Jiangsu Collaborative Innovation Center for Cancer Personalized Medicine, School of Public Health, Nanjing Medical University, Nanjing, 211166, Jiangsu, People's Republic of China
| | - Lu Wu
- Center for Global Health, The Key Laboratory of Modern Toxicology, Ministry of Education, School of Public Health, Nanjing Medical University, Nanjing, 211166, Jiangsu, People's Republic of China; Jiangsu Key Lab of Cancer Biomarkers, Prevention and Treatment, Jiangsu Collaborative Innovation Center for Cancer Personalized Medicine, School of Public Health, Nanjing Medical University, Nanjing, 211166, Jiangsu, People's Republic of China
| | - Xiangyu Dai
- Center for Global Health, The Key Laboratory of Modern Toxicology, Ministry of Education, School of Public Health, Nanjing Medical University, Nanjing, 211166, Jiangsu, People's Republic of China; Jiangsu Key Lab of Cancer Biomarkers, Prevention and Treatment, Jiangsu Collaborative Innovation Center for Cancer Personalized Medicine, School of Public Health, Nanjing Medical University, Nanjing, 211166, Jiangsu, People's Republic of China
| | - Xinye Ni
- Second People's Hospital of Changzhou, Nanjing Medical University, Changzhou, 213003, Jiangsu, People's Republic of China.
| | - Qizhan Liu
- Center for Global Health, The Key Laboratory of Modern Toxicology, Ministry of Education, School of Public Health, Nanjing Medical University, Nanjing, 211166, Jiangsu, People's Republic of China; Jiangsu Key Lab of Cancer Biomarkers, Prevention and Treatment, Jiangsu Collaborative Innovation Center for Cancer Personalized Medicine, School of Public Health, Nanjing Medical University, Nanjing, 211166, Jiangsu, People's Republic of China.
| |
Collapse
|
5
|
Pappalardo AM, Ferrito V, Biscotti MA, Canapa A, Capriglione T. Transposable Elements and Stress in Vertebrates: An Overview. Int J Mol Sci 2021; 22:1970. [PMID: 33671215 PMCID: PMC7922186 DOI: 10.3390/ijms22041970] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2021] [Revised: 02/13/2021] [Accepted: 02/14/2021] [Indexed: 12/17/2022] Open
Abstract
Since their identification as genomic regulatory elements, Transposable Elements (TEs) were considered, at first, molecular parasites and later as an important source of genetic diversity and regulatory innovations. In vertebrates in particular, TEs have been recognized as playing an important role in major evolutionary transitions and biodiversity. Moreover, in the last decade, a significant number of papers has been published highlighting a correlation between TE activity and exposition to environmental stresses and dietary factors. In this review we present an overview of the impact of TEs in vertebrate genomes, report the silencing mechanisms adopted by host genomes to regulate TE activity, and finally we explore the effects of environmental and dietary factor exposures on TE activity in mammals, which is the most studied group among vertebrates. The studies here reported evidence that several factors can induce changes in the epigenetic status of TEs and silencing mechanisms leading to their activation with consequent effects on the host genome. The study of TE can represent a future challenge for research for developing effective markers able to detect precocious epigenetic changes and prevent human diseases.
Collapse
Affiliation(s)
- Anna Maria Pappalardo
- Department of Biological, Geological and Environmental Sciences-Section of Animal Biology "M. La Greca", University of Catania, Via Androne 81, 95124 Catania, Italy
| | - Venera Ferrito
- Department of Biological, Geological and Environmental Sciences-Section of Animal Biology "M. La Greca", University of Catania, Via Androne 81, 95124 Catania, Italy
| | - Maria Assunta Biscotti
- Department of Life and Environmental Sciences, Polytechnic University of Marche, Via Brecce Bianche, 60131 Ancona, Italy
| | - Adriana Canapa
- Department of Life and Environmental Sciences, Polytechnic University of Marche, Via Brecce Bianche, 60131 Ancona, Italy
| | - Teresa Capriglione
- Department of Biology, University of Naples "Federico II", Via Cinthia 21-Ed7, 80126 Naples, Italy
| |
Collapse
|
6
|
Zolfaghari MA, Karimi A, Kalantari E, Korourian A, Ghanadan A, Kamyab K, Esmaili N, Emami Razavi AN, Madjd Z. A comparative study of long interspersed element-1 protein immunoreactivity in cutaneous malignancies. BMC Cancer 2020; 20:567. [PMID: 32552892 PMCID: PMC7301980 DOI: 10.1186/s12885-020-07050-6] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2019] [Accepted: 06/08/2020] [Indexed: 12/20/2022] Open
Abstract
Background Skin cancer is the most common cancer worldwide and commonly classified into malignant melanoma (MM) and Nonmelanoma skin cancers (NMSCs), which mainly include basal cell carcinoma (BCC) and squamous cell carcinoma (SCC). The extent to which Long Interspersed Element-1 (LINE-1, L1) ORF1p is expressed in cutaneous malignancies remains to be evaluated. This study aimed to assess LINE-1 ORF1p immunoreactivity in various skin cancer subtypes. Method The expression level of LINE-1 ORF1p was evaluated in 95 skin cancer specimens comprising 36 (37.9%) BCC, 28 (29.5%) SCC, and 31 (32.6%) melanoma using the tissue microarray (TMA) technique. Then the association between expression of LINE-1 encoded protein and clinicopathological parameters was analyzed. Results We showed that LINE-1 ORF1p expression level was substantially higher in BCC and SCC patients compared with melanoma samples (p < 0.001). BCC cases had a higher LINE-1 histochemical score (H-score) compared with SCC cases (p = 0.004). In SCC samples, a lower level of LINE-1 ORF1p expression was associated with age younger than the mean (p = 0.041). At the same time, no significant correlation was found between LINE-1 ORF1p expression and other clinicopathological parameters (all p > 0.05). Conclusions According to our observation, LINE-1 ORF1p immunoreactivity in various skin tumor subtypes extends previous studies of LINE-1 expression in different cancers. LINE-1ORF1p overexpression in NMSCs compared with MM can be considered with caution as a tumor-specific antigen for NMSCs.
Collapse
Affiliation(s)
- Mohammad Ali Zolfaghari
- Department of Molecular Medicine, Faculty of Advanced Medical Sciences, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Abbas Karimi
- Department of Molecular Medicine, Faculty of Advanced Medical Sciences, Tabriz University of Medical Sciences, Tabriz, Iran. .,Department of Dermatology, Razi Hospital, Tehran University of Medical Sciences, Tehran, Iran.
| | - Elham Kalantari
- Oncopathology Research Center, Iran University of Medical Sciences, Tehran, Iran
| | - Alireza Korourian
- Oncopathology Research Center, Iran University of Medical Sciences, Tehran, Iran
| | - Alireza Ghanadan
- Department of Dermatopathology, Razi Dermatology Hospital, Tehran University of Medical Sciences, Tehran, Iran
| | - Kambiz Kamyab
- Department of Dermatopathology, Razi Dermatology Hospital, Tehran University of Medical Sciences, Tehran, Iran
| | - Nafiseh Esmaili
- Department of Dermatology, Razi Hospital, Tehran University of Medical Sciences, Tehran, Iran.,Autoimmune Bullous Diseases Research Center, Tehran University of Medical Sciences, Tehran, Iran
| | - Amir Nader Emami Razavi
- Iran National Tumor Bank, Cancer Institute, Tehran University of Medical Sciences, Tehran, Iran
| | - Zahra Madjd
- Oncopathology Research Center, Iran University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
7
|
Del Re B, Giorgi G. Long INterspersed element-1 mobility as a sensor of environmental stresses. ENVIRONMENTAL AND MOLECULAR MUTAGENESIS 2020; 61:465-493. [PMID: 32144842 DOI: 10.1002/em.22366] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/26/2019] [Revised: 03/03/2020] [Accepted: 03/04/2020] [Indexed: 06/10/2023]
Abstract
Long INterspersed element (LINE-1, L1) retrotransposons are the most abundant transposable elements in the human genome, constituting approximately 17%. They move by a "copy-paste" mechanism, involving reverse transcription of an RNA intermediate and insertion of its cDNA copy at a new site in the genome. L1 retrotransposition (L1-RTP) can cause insertional mutations, alter gene expression, transduce exons, and induce epigenetic dysregulation. L1-RTP is generally repressed; however, a number of observations collected over about 15 years revealed that it can occur in response to environmental stresses. Moreover, emerging evidence indicates that L1-RTP can play a role in the onset of several neurological and oncological diseases in humans. In recent years, great attention has been paid to the exposome paradigm, which proposes that health effects of an environmental factor should be evaluated considering both cumulative environmental exposures and the endogenous processes resulting from the biological response. L1-RTP could be an endogenous process considered for this application. Here, we summarize the current understanding of environmental factors that can affect the retrotransposition of human L1 elements. Evidence indicates that L1-RTP alteration is triggered by numerous and various environmental stressors, such as chemical agents (heavy metals, carcinogens, oxidants, and drugs), physical agents (ionizing and non-ionizing radiations), and experiential factors (voluntary exercise, social isolation, maternal care, and environmental light/dark cycles). These data come from in vitro studies on cell lines and in vivo studies on transgenic animals: future investigations should be focused on physiologically relevant models to gain a better understanding of this topic.
Collapse
Affiliation(s)
- Brunella Del Re
- Department of Pharmacy and Biotechnology, Alma Mater Studiorum University of Bologna, Bologna, Italy
| | - Gianfranco Giorgi
- Department of Biological, Geological and Environmental Sciences, Alma Mater Studiorum University of Bologna, Bologna, Italy
| |
Collapse
|
8
|
Karimi A, Esmaili N, Ranjkesh M, Zolfaghari MA. Expression of human endogenous retroviruses in pemphigus vulgaris patients. Mol Biol Rep 2019; 46:6181-6186. [PMID: 31473891 DOI: 10.1007/s11033-019-05053-6] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2019] [Accepted: 08/28/2019] [Indexed: 01/09/2023]
Abstract
Pemphigus is a severe, potentially life-threatening autoimmune blistering mucocutaneous disease which establishes with autoreactive IgG antibodies that target cellular adhesions, precisely extracellular domains of keratinocyte proteins. Several genetic and environmental elements are believed to contribute to the pathogenesis of the disease. The extent to which the initiation and progress of this autoimmune blistering disease may be influenced by the expression of human endogenous retroviruses (HERVs) remains to be elucidated. In this study, we evaluated the expression of HERV groups (K, W, and H) in pemphigus vulgaris (PV) patients in comparison to controls. Peripheral blood samples were collected from 24 PV patients and the corresponding age- and sex-matched healthy controls to extract total RNA for evaluation of HERV-K (HML-2), HERV-W, and HERV-H, env gene expression profile by qPCR. The mRNA expression level of HERV-K, HERV-W, and HERV-H were significantly upregulated in PV patients in comparison to healthy controls (P < 0.0001). The difference in expression of studied HERVs groups between men and women was no significant (P > 0.05). Although rituximab taking patients had a decreased expression level of studied HERVs, the results were not significant (P > 0.05). According to our obtained data, HERVs expression could be measured as a possible diagnostic tool for detection of PV and monitoring of the treatment.
Collapse
Affiliation(s)
- Abbas Karimi
- Autoimmune Bullous Diseases Research Center, Tehran University of Medical Sciences, Razi Hospital, Tehran, Iran.
- Department of Molecular Medicine, Faculty of Advanced Medical Sciences, Tabriz University of Medical Sciences, Tabriz, Iran.
| | - Nafiseh Esmaili
- Autoimmune Bullous Diseases Research Center, Tehran University of Medical Sciences, Razi Hospital, Tehran, Iran.
| | - Mohammadreza Ranjkesh
- Department of Dermatology, School of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Mohammad Ali Zolfaghari
- Department of Molecular Medicine, Faculty of Advanced Medical Sciences, Tabriz University of Medical Sciences, Tabriz, Iran
| |
Collapse
|
9
|
Sinha D, Prasad P. Health effects inflicted by chronic low-level arsenic contamination in groundwater: A global public health challenge. J Appl Toxicol 2019; 40:87-131. [PMID: 31273810 DOI: 10.1002/jat.3823] [Citation(s) in RCA: 73] [Impact Index Per Article: 12.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2019] [Accepted: 04/28/2019] [Indexed: 01/23/2023]
Abstract
Groundwater arsenic (As) contamination is a global public health concern. The high level of As exposure (100-1000 μg/L or even higher) through groundwater has been frequently associated with serious public health hazards, e.g., skin disorders, cardiovascular diseases, respiratory problems, complications of gastrointestinal tract, liver and splenic ailments, kidney and bladder disorders, reproductive failure, neurotoxicity and cancer. However, reviews on low-level As exposure and the imperative health effects are far less documented. The World Health Organization (WHO) and the United States Environmental Protection Agency (USEPA) has set the permissible standard of As in drinking water at 10 μg/L. Considering the WHO and USEPA guidelines, most of the developed countries have established standards at or below this guideline. Worldwide many countries including India have millions of aquifers with low-level As contamination (≤50 μg/L). The exposed population of these areas might not show any As-related skin lesions (hallmark of As toxicity particularly in a population consuming As contaminated groundwater >300 μg/L) but might be subclinically affected. This review has attempted to encompass the wide range of health effects associated with chronic low-level As exposure ≤50 μg/L and the probable mechanisms that might provide a better insight regarding the underlying cause of these clinical manifestations. Therefore, there is an urgent need to create mass awareness about the health effects of chronic low-level As exposure and planning of proper mitigation strategies.
Collapse
Affiliation(s)
- Dona Sinha
- Receptor Biology and Tumor Metastasis, Chittaranjan National Cancer Institute, Kolkata, India
| | - Priyanka Prasad
- Receptor Biology and Tumor Metastasis, Chittaranjan National Cancer Institute, Kolkata, India
| |
Collapse
|
10
|
Finley J. Transposable elements, placental development, and oocyte activation: Cellular stress and AMPK links jumping genes with the creation of human life. Med Hypotheses 2018; 118:44-54. [PMID: 30037614 DOI: 10.1016/j.mehy.2018.05.015] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2018] [Accepted: 05/18/2018] [Indexed: 12/16/2022]
Abstract
Transposable elements (TEs), also known as "jumping genes", are DNA sequences first described by Nobel laureate Barbara McClintock that comprise nearly half of the human genome and are able to transpose or move from one genomic location to another. As McClintock also noted that a genome "shock" or stress may induce TE activation and transposition, accumulating evidence suggests that cellular stress (e.g. mediated by increases in intracellular reactive oxygen species [ROS] and calcium [Ca2+], etc.) induces TE mobilization in several model organisms and L1s (a member of the retrotransposon class of TEs) are active and capable of retrotransposition in human oocytes, human sperm, and in human neural progenitor cells. Cellular stress also plays a critical role in human placental development, with cytotrophoblast (CTB) differentiation leading to the formation of the syncytiotrophoblast (STB), a cellular layer that facilitates nutrient and gas exchange between the mother and the fetus. Syncytin-1, a protein that promotes fusion of CTB cells and is necessary for STB formation, and its receptor is found in human sperm and human oocytes, respectively, and increases in ROS and Ca2+ promote trophoblast differentiation and syncytin-1 expression. Cellular stress is also essential in promoting human oocyte maturation and activation which, similar to TE mobilization, can be induced by compounds that increase intracellular Ca2+ and ROS levels. AMPK is a master metabolic regulator activated by increases in ROS, Ca2+, and/or an AMP(ADP)/ATP ratio increase, etc. as well as compounds that induce L1 mobilization in human cells. AMPK knockdown inhibits trophoblast differentiation and AMPK-activating compounds that promote L1 mobility also enhance trophoblast differentiation. Cellular stressors that induce TE mobilization (e.g. heat shock) also promote oocyte maturation in an AMPK-dependent manner and the antibiotic ionomycin activates AMPK, promotes TE activation, and induces human oocyte activation, producing normal, healthy children. Metformin promotes AMPK-dependent telomerase activation (critical for telomere maintenance) and induces activation of the endonuclease RAG1 (promotes DNA cleavage and transposition) via AMPK. Both RAG1 and telomerase are derived from TEs. It is our hypothesis that cellular stress and AMPK links TE activation and transposition with placental development and oocyte activation, facilitating both human genome evolution and the creation of all human life. We also propose the novel observation that various cellular stress-inducing compounds (e.g. metformin, resveratrol, etc.) may facilitate beneficial TE activation and transposition and enhance fertilization and embryological development through a common mechanism of AMPK activation.
Collapse
|
11
|
Paul S, Bhattacharjee P, Giri AK, Bhattacharjee P. Arsenic toxicity and epimutagenecity: the new LINEage. Biometals 2017; 30:505-515. [PMID: 28516305 DOI: 10.1007/s10534-017-0021-2] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2017] [Accepted: 05/09/2017] [Indexed: 12/15/2022]
Abstract
Global methylation pattern regulates the normal functioning of a cell. Research have shown arsenic alter these methylation landscapes within the genome leading to aberrant gene expression and inducts various pathophysiological outcomes. Long interspersed nuclear elements (LINE-1) normally remains inert due to heavy methylation of it's promoters, time and various environmental insults, they lose these methylation signatures and begin retro-transposition that has been associated with genomic instability and cancerous outcomes. Of the various high throughput technologies available to detect global methylation profile, development of LINE-1 methylation index shall provide a cost effect-screening tool to detect epimutagenic events in the wake of toxic exposure in a large number of individuals. In the present review, we tried to discuss the state of research and whether LINE-1 methylation can be considered as a potent epigenetic signature for arsenic toxicity.
Collapse
Affiliation(s)
- Somnath Paul
- Molecular Genetics Division, CSIR-Indian Institute of Chemical Biology, 4, Raja S. C. Mullick Road, Kolkata, 700032, India. .,Department of Epigenetics & Molecular Carcinogenesis, The Virginia Harris Cockrell Cancer Center, The University of Texas, M.D. Anderson Cancer Center, Science Park, 1808 Park Road 1C, Smithville, TX, 78957, USA.
| | - Pritha Bhattacharjee
- Department of Environmental Science, University of Calcutta, 35 Ballygunge Circular Road, Kolkata, 700019, India
| | - Ashok K Giri
- Molecular Genetics Division, CSIR-Indian Institute of Chemical Biology, 4, Raja S. C. Mullick Road, Kolkata, 700032, India.
| | - Pritha Bhattacharjee
- Department of Environmental Science, University of Calcutta, 35 Ballygunge Circular Road, Kolkata, 700019, India.
| |
Collapse
|
12
|
Nohara K, Suzuki T, Okamura K, Matsushita J, Takumi S. Tumor-augmenting effects of gestational arsenic exposure on F1 and F2 in mice. Genes Environ 2017; 39:3. [PMID: 28265304 PMCID: PMC5331735 DOI: 10.1186/s41021-016-0069-1] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2016] [Accepted: 12/08/2016] [Indexed: 02/08/2023] Open
Abstract
The consequences of early-life exposure to chemicals in the environment are emerging concerns. Chronic exposure to naturally occurring inorganic arsenic has been known to cause various adverse health effects, including cancers, in humans. On the other hand, animal studies by Dr. M. Waalkes’ group reported that arsenite exposure of pregnant F0 females, only from gestational day 8 to 18, increased hepatic tumors in the F1 (arsenite-F1) males of C3H mice, whose males tend to develop spontaneous hepatic tumors later in life. Since this mice model illuminated novel unidentified consequences of arsenic exposure, we wished to further investigate the background mechanisms. In the same experimental model, we identified a variety of factors that were affected by gestational arsenic exposure, including epigenetic and genetic changes, as possible constituents of multiple steps of late-onset hepatic tumor augmentation in arsenite-F1 males. Furthermore, our study discovered that the F2 males born to arsenite-F1 males developed hepatic tumors at a significantly higher rate than the control F2 males. The results imply that the tumor augmenting effect is inherited by arsenite-F2 males through the sperm of arsenite-F1. In this article, we summarized our studies on the consequences of gestational arsenite exposure in F1 and F2 mice to discuss novel aspects of biological effects of gestational arsenic exposure.
Collapse
Affiliation(s)
- Keiko Nohara
- Center for Health and Environmental Risk Research, National Institute for Environmental Studies, Tsukuba, 305-8506 Japan
| | - Takehiro Suzuki
- Center for Health and Environmental Risk Research, National Institute for Environmental Studies, Tsukuba, 305-8506 Japan
| | - Kazuyuki Okamura
- Center for Health and Environmental Risk Research, National Institute for Environmental Studies, Tsukuba, 305-8506 Japan
| | - Junya Matsushita
- Center for Health and Environmental Risk Research, National Institute for Environmental Studies, Tsukuba, 305-8506 Japan.,Graduate School of Pharmaceutical Science, Tokyo University of Science, Noda, 278-8510 Japan
| | - Shota Takumi
- Department of Domestic Science, Kagoshima Women's College, Kagoshima, 890-8565 Japan
| |
Collapse
|
13
|
Bandyopadhyay AK, Paul S, Adak S, Giri AK. Reduced LINE-1 methylation is associated with arsenic-induced genotoxic stress in children. Biometals 2016; 29:731-41. [DOI: 10.1007/s10534-016-9950-4] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2016] [Accepted: 07/08/2016] [Indexed: 10/21/2022]
|
14
|
Erturk FA, Aydin M, Sigmaz B, Taspinar MS, Arslan E, Agar G, Yagci S. Effects of As2O3 on DNA methylation, genomic instability, and LTR retrotransposon polymorphism in Zea mays. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2015; 22:18601-6. [PMID: 26396013 DOI: 10.1007/s11356-015-5426-2] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/09/2014] [Accepted: 09/14/2015] [Indexed: 05/07/2023]
Abstract
Arsenic is a well-known toxic substance on the living organisms. However, limited efforts have been made to study its DNA methylation, genomic instability, and long terminal repeat (LTR) retrotransposon polymorphism causing properties in different crops. In the present study, effects of As2O3 (arsenic trioxide) on LTR retrotransposon polymorphism and DNA methylation as well as DNA damage in Zea mays seedlings were investigated. The results showed that all of arsenic doses caused a decreasing genomic template stability (GTS) and an increasing Random Amplified Polymorphic DNAs (RAPDs) profile changes (DNA damage). In addition, increasing DNA methylation and LTR retrotransposon polymorphism characterized a model to explain the epigenetically changes in the gene expression were also found. The results of this experiment have clearly shown that arsenic has epigenetic effect as well as its genotoxic effect. Especially, the increasing of polymorphism of some LTR retrotransposon under arsenic stress may be a part of the defense system against the stress.
Collapse
Affiliation(s)
- Filiz Aygun Erturk
- Department of Biology, Faculty of Science, Atatürk University, 25240, Erzurum, Turkey
| | - Murat Aydin
- Department of Field Crops, Faculty of Agriculture, Ataturk University, 25240, Erzurum, Turkey
| | - Burcu Sigmaz
- Department of Biology, Faculty of Science, Atatürk University, 25240, Erzurum, Turkey.
| | - M Sinan Taspinar
- Department of Agricultural Biotechnology, Faculty of Agriculture, Ataturk University, 25240, Erzurum, Turkey
| | - Esra Arslan
- Department of Biology, Faculty of Science, Atatürk University, 25240, Erzurum, Turkey
| | - Guleray Agar
- Department of Biology, Faculty of Science, Atatürk University, 25240, Erzurum, Turkey
| | - Semra Yagci
- Department of Biology, Faculty of Science, Atatürk University, 25240, Erzurum, Turkey
| |
Collapse
|
15
|
Morales ME, Servant G, Ade C, Roy-Enge AM. Altering Genomic Integrity: Heavy Metal Exposure Promotes Transposable Element-Mediated Damage. Biol Trace Elem Res 2015; 166:24-33. [PMID: 25774044 PMCID: PMC4696754 DOI: 10.1007/s12011-015-0298-3] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/04/2015] [Accepted: 03/03/2015] [Indexed: 12/13/2022]
Abstract
Maintenance of genomic integrity is critical for cellular homeostasis and survival. The active transposable elements (TEs) composed primarily of three mobile element lineages LINE-1, Alu, and SVA comprise approximately 30% of the mass of the human genome. For the past 2 decades, studies have shown that TEs significantly contribute to genetic instability and that TE-caused damages are associated with genetic diseases and cancer. Different environmental exposures, including several heavy metals, influence how TEs interact with its host genome increasing their negative impact. This mini-review provides some basic knowledge on TEs, their contribution to disease, and an overview of the current knowledge on how heavy metals influence TE-mediated damage.
Collapse
Affiliation(s)
- Maria E. Morales
- Department of Epidemiology and Tulane Cancer Center, SL-66, Tulane University Health Sciences Center, 1430 Tulane Ave., New Orleans, LA 70112
| | - Geraldine Servant
- Department of Epidemiology and Tulane Cancer Center, SL-66, Tulane University Health Sciences Center, 1430 Tulane Ave., New Orleans, LA 70112
| | - Catherine Ade
- Department of Cellular and Molecular Biology, Tulane University Health Sciences Center, 1430 Tulane Ave., New Orleans, LA 70112
| | - Astrid M. Roy-Enge
- Department of Epidemiology and Tulane Cancer Center, SL-66, Tulane University Health Sciences Center, 1430 Tulane Ave., New Orleans, LA 70112
- Corresponding author: Astrid M. Roy-Engel, Ph.D., Department of Epidemiology, Tulane Cancer Center, SL66, Tulane University Health Sciences Center, 1430 Tulane Ave., New Orleans, LA 70112. , Phone: (504) 988-6316, Fax: (504) 988-5516
| |
Collapse
|
16
|
Miousse IR, Chalbot MCG, Lumen A, Ferguson A, Kavouras IG, Koturbash I. Response of transposable elements to environmental stressors. MUTATION RESEARCH. REVIEWS IN MUTATION RESEARCH 2015; 765:19-39. [PMID: 26281766 PMCID: PMC4544780 DOI: 10.1016/j.mrrev.2015.05.003] [Citation(s) in RCA: 96] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/26/2015] [Revised: 05/27/2015] [Accepted: 05/28/2015] [Indexed: 12/21/2022]
Abstract
Transposable elements (TEs) comprise a group of repetitive sequences that bring positive, negative, as well as neutral effects to the host organism. Earlier considered as "junk DNA," TEs are now well-accepted driving forces of evolution and critical regulators of the expression of genetic information. Their activity is regulated by epigenetic mechanisms, including methylation of DNA and histone modifications. The loss of epigenetic control over TEs, exhibited as loss of DNA methylation and decondensation of the chromatin structure, may result in TEs reactivation, initiation of their insertional mutagenesis (retrotransposition) and has been reported in numerous human diseases, including cancer. Accumulating evidence suggests that these alterations are not the simple consequences of the disease, but often may drive the pathogenesis, as they can be detected early during disease development. Knowledge derived from the in vitro, in vivo, and epidemiological studies, clearly demonstrates that exposure to ubiquitous environmental stressors, many of which are carcinogens or suspected carcinogens, are capable of causing alterations in methylation and expression of TEs and initiate retrotransposition events. Evidence summarized in this review suggests that TEs are the sensitive endpoints for detection of effects caused by such environmental stressors, as ionizing radiation (terrestrial, space, and UV-radiation), air pollution (including particulate matter [PM]-derived and gaseous), persistent organic pollutants, and metals. Furthermore, the significance of these effects is characterized by their early appearance, persistence and presence in both, target organs and peripheral blood. Altogether, these findings suggest that TEs may potentially be introduced into safety and risk assessment and serve as biomarkers of exposure to environmental stressors. Furthermore, TEs also show significant potential to become invaluable surrogate biomarkers in clinic and possible targets for therapeutic modalities for disease treatment and prevention.
Collapse
Affiliation(s)
- Isabelle R Miousse
- Department of Environmental and Occupational Health, Fay W. Boozman College of Public Health, University of Arkansas for Medical Sciences, Little Rock, AR 72205, USA.
| | - Marie-Cecile G Chalbot
- Department of Environmental and Occupational Health, Fay W. Boozman College of Public Health, University of Arkansas for Medical Sciences, Little Rock, AR 72205, USA.
| | - Annie Lumen
- Division of Biochemical Toxicology, National Center for Toxicological Research, US Food and Drug Administration, Jefferson, AR 72079, USA.
| | - Alesia Ferguson
- Department of Environmental and Occupational Health, Fay W. Boozman College of Public Health, University of Arkansas for Medical Sciences, Little Rock, AR 72205, USA.
| | - Ilias G Kavouras
- Department of Environmental and Occupational Health, Fay W. Boozman College of Public Health, University of Arkansas for Medical Sciences, Little Rock, AR 72205, USA.
| | - Igor Koturbash
- Department of Environmental and Occupational Health, Fay W. Boozman College of Public Health, University of Arkansas for Medical Sciences, Little Rock, AR 72205, USA.
| |
Collapse
|
17
|
Karimi A, Majidzadeh-A K, Madjd Z, Akbari A, Habibi L, Akrami SM. Effect of Copper Sulfate on Expression of Endogenous L1 Retrotransposons in HepG2 Cells (Hepatocellular Carcinoma). Biol Trace Elem Res 2015; 165:131-4. [PMID: 25663478 DOI: 10.1007/s12011-015-0256-0] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/09/2014] [Accepted: 01/25/2015] [Indexed: 12/26/2022]
Abstract
The long interspersed element-1 (LINE-1 or L1) constitutes approximately 17% of human genome. The expression of these elements is deregulated upon exposure to environmental exposures resulting to genomic instability and cancer promotion. The effect of copper as essential elements in regulation of L1 expression remained to be elucidated. Using non-cytotoxic concentrations of the copper, the expression of endogenous L1 was analyzed by qPCR after 6 days of copper pretreatment in human hepatocellular carcinoma cells (HepG2). The results indicated that the expression of active L1 elements are significantly downregulated at concentrations of 12.5, 25, and 50 μM (p < 0.005). Our data imply that low-level copper exposure may have a protective effect to suppress the induction of L1 activity and decrease incidence of cancer-associated L1 mutagenesis. If this achievement is confirmed by further studies, it can be applied in the long-term goals of cancer prevention.
Collapse
Affiliation(s)
- Abbas Karimi
- Tasnim Biotechnology Research Center (TBRC), Faculty of Medicine, AJA University of Medical Sciences, Etemadzadeh Ave., West Fatemi, Tehran, Iran
| | | | | | | | | | | |
Collapse
|