1
|
Mohammad SI, Vasudevan A, Nadhim Mohammed S, Uthirapathy S, M M R, Kundlas M, Siva Prasad GV, Kumari M, Mustafa YF, Ali Hussein Z. Anti-metastatic potential of flavonoids for the treatment of cancers: focus on epithelial-mesenchymal transition (EMT) process. NAUNYN-SCHMIEDEBERG'S ARCHIVES OF PHARMACOLOGY 2025:10.1007/s00210-025-04235-3. [PMID: 40434422 DOI: 10.1007/s00210-025-04235-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/02/2025] [Accepted: 04/26/2025] [Indexed: 05/29/2025]
Abstract
The leading factor contributing to patient mortality is the local invasion and metastasis of tumors, which are influenced by the malignant progression of tumor cells. The epithelial-mesenchymal transition (EMT) is key to understanding malignancy development. EMT is a critical regulatory mechanism for differentiating cell populations initially observed during the neural crest and embryonic gastrulation formation. This process is closely associated with tumor metastasis in cancer and is also related to the maintenance of cancer stem cells. Flavonoids, known for their antioxidant properties, have been widely studied for their anticancer potential to protect plants from harmful environmental conditions. They have attracted considerable attention and have been the focus of numerous experimental and epidemiological studies to evaluate their potential in cancer treatment. In vitro and in vivo research has demonstrated that flavonoids can significantly impact cancer-related EMT. They may inhibit the EMT process by reducing the levels of Twist1, N-cadherin, ZEB1, integrins, SNAI1/2, CD44, MMPs, and vimentin while increasing E-cadherin levels and targeting the PI3K/AKT, NF-κB p65, and JAK2/STAT3 signaling pathways. In order to suppress the transcription of the E-cadherin promoter, several Zn-finger transcription factors, such as SNAI2, ZEB1, and ZEB2, and basic helix-loop-helix (bHLH) factors, such as Twist, may directly bind to its E-boxes. Overall, clinical cancer research should integrate the anticancer properties of flavonoids, which address all phases of carcinogenesis, including EMT, to improve the prospects for targeted cancer therapies in patients suffering from aggressive forms of tumors.
Collapse
Affiliation(s)
- Suleiman Ibrahim Mohammad
- Electronic Marketing and Social Media, Economic and Administrative Sciences Zarqa University, Zarqa, Jordan
- INTI International University, 71800, Negeri Sembilan, Malaysia
| | - Asokan Vasudevan
- Faculty of Business and Communications, INTI International University, 71800, Negeri Sembilan, Malaysia
- Shinawatra University, 99 Moo 10, Bangtoey, Samkhok, Pathum Thani, 12160, Thailand
| | - Sumaya Nadhim Mohammed
- Medical Laboratory Techniques Department, College of Health and Medical Technology, University of Al-Maarif, Anbar, Iraq.
| | - Subasini Uthirapathy
- Pharmacy Department, Tishk International University, Erbil, Kurdistan Region, Iraq
| | - Rekha M M
- Department of Chemistry and Biochemistry, School of Sciences, JAIN (Deemed to Be University), Bangalore, Karnataka, India
| | - Mayank Kundlas
- Centre for Research Impact & Outcome, Chitkara University Institute of Engineering and Technology, Chitkara University, Rajpura, 140401, Punjab, India
| | - G V Siva Prasad
- Department of Chemistry, Raghu Engineering College, Visakhapatnam, Andhra Pradesh, 531162, India
| | - Mukesh Kumari
- Department of Applied Sciences-Chemistry, NIMS Institute of Engineering & Technology, NIMS University Rajasthan, Jaipur, India
| | - Yasser Fakri Mustafa
- Department of Pharmaceutical Chemistry, College of Pharmacy, University of Mosul, Mosul, 41001, Iraq
| | - Zainab Ali Hussein
- Radiological Techniques Department, College of Health and Medical Techniques, Al-Mustaqbal University, 51001, Babylon, Iraq
| |
Collapse
|
2
|
Zhao Y, Zhou X, Hong L, Yao J, Pan J, Shafi S, Siraj S, Ahmad N, Liu J, Zhao R, Sun M. Morusin regulates the migration of M2 macrophages and GBM cells through the CCL4-CCR5 axis. Int Immunopharmacol 2025; 147:113915. [PMID: 39740503 DOI: 10.1016/j.intimp.2024.113915] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2024] [Revised: 11/19/2024] [Accepted: 12/18/2024] [Indexed: 01/02/2025]
Abstract
BACKGROUND Glioblastoma (GBM) is the most aggressive tumor in the central nervous system. Tumor-associated macrophage (TAMs) represent a major immune cell population in tumor microenvironment (TME) and exert immunosuppressive effects that impede GBM treatment. Morusin is a flavonoid extracted from mulberry trees and has anti-tumor properties against various cancers, including glioma. However, the impact of morusin on the TME of gliomas has not been explored. METHODS We evaluated the effect of morusin on the tumor microenvironment using a mouse glioma model through in vivo and in vitro experiments. In vitro experiments demonstrated the effects of morusin on the viability of RAW264.7 and THP1 cells, and the migration ability of M2 macrophages. Furthermore, we investigated the effect of conditioned medium (CM) of morusin-treated M2 macrophages on the migration of glioblastoma cell lines GL261, U87, and U251. RESULT Morusin alleviated the GBM progression and prolonged mouse survival by inhibiting the ratio of macrophages to CD206+ macrophages. Mechanistically, we demonstrated that morusin could effectively inhibit the secretion of the chemokine CCL4 in M2 macrophage which consequently decreased CCL4-dependent CCR5 activation. This leads to the reduced migration of both macrophages and glioblastoma cells in TME. These findings provide a strong rationale for the development of morusin as a potential therapeutic agent for GBM, either as a standalone treatment or in combination with other immunotherapeutic strategies, and warrant further preclinical and clinical investigations.
Collapse
Affiliation(s)
- Yu Zhao
- School of Biomedical Engineering (Suzhou), Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei 230006, China; Suzhou Institute of Biomedical Engineering and Technology, Chinese Academy of Science, Suzhou 215163, China.
| | - Xinying Zhou
- School of Biomedical Engineering (Suzhou), Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei 230006, China; Suzhou Institute of Biomedical Engineering and Technology, Chinese Academy of Science, Suzhou 215163, China.
| | - Lei Hong
- Institute of Clinical Medicine Research, Suzhou Hospital, Affiliated Hospital of Medical School, Nanjing University. Suzhou Science and Technology Town Hospital., No. 1 Lijiang Road, Suzhou 215153, China.
| | - Jinyu Yao
- School of Biomedical Engineering (Suzhou), Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei 230006, China; Suzhou Institute of Biomedical Engineering and Technology, Chinese Academy of Science, Suzhou 215163, China.
| | - Jinlin Pan
- School of Biomedical Engineering (Suzhou), Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei 230006, China; Suzhou Institute of Biomedical Engineering and Technology, Chinese Academy of Science, Suzhou 215163, China.
| | - Shaheryar Shafi
- School of Biomedical Engineering (Suzhou), Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei 230006, China; Suzhou Institute of Biomedical Engineering and Technology, Chinese Academy of Science, Suzhou 215163, China
| | - Sami Siraj
- Institute of Pharmaceutical Sciences, Khyber Medical University, Khyber Pakhtunkhwa 25100, Pakistan.
| | - Nafees Ahmad
- Institute of Biomedical & Genetic Engineering, Islamabad 44000, Pakistan.
| | - Jiangang Liu
- Department of Neurosurgery, the First Affiliated Hospital of Soochow University, Suzhou, Jiangsu Province 215000, China.
| | - Rongchuan Zhao
- School of Biomedical Engineering (Suzhou), Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei 230006, China; Suzhou Institute of Biomedical Engineering and Technology, Chinese Academy of Science, Suzhou 215163, China.
| | - Minxuan Sun
- School of Biomedical Engineering (Suzhou), Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei 230006, China; Suzhou Institute of Biomedical Engineering and Technology, Chinese Academy of Science, Suzhou 215163, China.
| |
Collapse
|
3
|
Garrett NR, Pink RC, Lawson C. Contribution of Extracellular Particles Isolated from Morus sp. (Mulberry) Fruit to Their Reported Protective Health Benefits: An In Vitro Study. Int J Mol Sci 2024; 25:6177. [PMID: 38892365 PMCID: PMC11173249 DOI: 10.3390/ijms25116177] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2024] [Revised: 05/29/2024] [Accepted: 05/31/2024] [Indexed: 06/21/2024] Open
Abstract
Morus sp. (mulberry) has a long tradition of use as a medicinal treatment, including for cardiovascular disease and type 2 diabetes, being shown to have antioxidant properties and to promote wound healing. Extracellular vesicles (EVs) are sub-micron, membrane-enclosed particles that were first identified in mammalian bodily fluids. EV-like particles have been described in plants (PDVs) and shown to have similar characteristics to mammalian EVs. We hypothesised that some of the health benefits previously attributed to the fruit of Morus sp. could be due to the release of PDVs. We isolated PDVs from Morus nigra and Morus alba via ultracentrifugation and incubated THP-1 monocytes, differentiated THP-1 macrophages, or HMEC-1 endothelial cells with pro-oxidant compounds DMNQ (THP-1) and glucose oxidase (HMEC-1) or lipopolysaccharide (LPS) in the presence of different fractions of mulberry EVs. Mulberry EVs augmented ROS production with DMNQ in THP-1 and caused the downregulation of ROS in HMEC-1. Mulberry EVs increased LPS-induced IL-1β secretion but reduced CCL2 and TGF-β secretion in THP-1 macrophages. In scratch wound assays, mulberry EVs inhibited HMEC-1 migration but increased proliferation in both low and high serum conditions, suggesting that they have opposing effects in these two important aspects of wound healing. One of the limitations of plant-derived therapeutics has been overcoming the low bioavailability of isolated compounds. We propose that PDVs could provide the link between physiological dose and therapeutic benefit by protecting plant active compounds in the GIT as well as potentially delivering genetic material or proteins that contribute to previously observed health benefits.
Collapse
Affiliation(s)
- Neve R. Garrett
- Department of Comparative Biomedical Sciences, Royal Veterinary College, London NW1 0TU, UK;
| | - Ryan C. Pink
- Department of Biological and Medical Sciences, Oxford Brookes University, Oxford OX3 0BP, UK;
| | - Charlotte Lawson
- Department of Comparative Biomedical Sciences, Royal Veterinary College, London NW1 0TU, UK;
- School of Pharmacy and Biomedical Sciences, University of Central Lancashire, Preston PR1 2HE, UK
| |
Collapse
|
4
|
Srisomsap C, Chaisuriya P, Liana D, Aiyarakanchanakun P, Audsasan T, Weeraphan C, Svasti J, Phanumartwiwath A. Pharmacological Properties of White Mulberry (Morus alba L.) Leaves: Suppressing Migratory and Invasive Activities Against A549 Lung Cancer Cells. PLANT FOODS FOR HUMAN NUTRITION (DORDRECHT, NETHERLANDS) 2024; 79:387-393. [PMID: 38691297 DOI: 10.1007/s11130-024-01184-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 04/22/2024] [Indexed: 05/03/2024]
Abstract
Morus alba known as a white mulberry is a medicinal plant that has been used in food ingredients and traditional medicine. M. alba leaves contain various bioactive phenolic compounds, in particular chlorogenic acid (CGA), which is a major bioactive ingredient. Their anticancer potency of M. alba leaf extracts derived from Soxhlet extraction was evaluated based on cytotoxicity and antimigratory and antiinvasive properties. The dichloromethane extract exhibited the highest nitric oxide radical scavenging activity with a half-maximal inhibitory concentration (IC50) value of 780 μg/mL, promising cytotoxicity against HuCCA-1, MCF-7, and A-549 cells with IC50 values of 59.18, 62.20, and 103.25 μg/mL, respectively. CGA selectively inhibited the growth of MCF-7 cells with an IC50 value of 26.75 μg/mL and showed potent radical scavenging activity against DPPH radicals (IC50 = 18.85 μg/mL). An ethanolic extract derived from the gradient Soxhlet extraction suppressed A549 lung cancer cell migration and invasion more effectively than CGA with no migratory inhibition effect on noncancerous HaCaT cells. Furthermore, the ethanolic extract and CGA accelerated HaCaT wound closure at 20 µg/mL, which was the same as allantoin. Bioactive ingredients including triterpenes, steroids, phenolics, and flavonoids were mainly detected in all extracts. The highest content of CGA (52.23 g/100 g dry weight) was found in the ethanolic extract derived from the gradient Soxhlet extraction. These findings show the potency of the dichloromethane extract as a cytotoxic agent against various cancer types and the ethanolic extract as an antimetastatic agent by their antimigratory and antiinvasive activities.
Collapse
Affiliation(s)
- Chantragan Srisomsap
- Laboratory of Biochemistry, Chulabhorn Research Institute, Bangkok, 10210, Thailand
| | - Papada Chaisuriya
- Laboratory of Biochemistry, Chulabhorn Research Institute, Bangkok, 10210, Thailand
| | - Desy Liana
- College of Public Health Sciences, Chulalongkorn University, Bangkok, 10330, Thailand
| | | | | | - Churat Weeraphan
- Laboratory of Biochemistry, Chulabhorn Research Institute, Bangkok, 10210, Thailand
| | - Jisnuson Svasti
- Laboratory of Biochemistry, Chulabhorn Research Institute, Bangkok, 10210, Thailand
- Program in Applied Biological Sciences, Chulabhorn Graduate Institute, Bangkok, 10210, Thailand
| | | |
Collapse
|
5
|
Ran Y, Hu J, Chen Y, Rao Z, Zhao J, Xu Z, Ming J. Morusin-Cu(II)-indocyanine green nanoassembly ignites mitochondrial dysfunction for chemo-photothermal tumor therapy. J Colloid Interface Sci 2024; 662:760-773. [PMID: 38377695 DOI: 10.1016/j.jcis.2024.02.121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2023] [Revised: 02/14/2024] [Accepted: 02/14/2024] [Indexed: 02/22/2024]
Abstract
Nanoscale drug delivery systems derived from natural bioactive materials accelerate the innovation and evolution of cancer treatment modalities. Morusin (Mor) is a prenylated flavonoid compound with high cancer chemoprevention activity, however, the poor water solubility, low active pharmaceutical ingredient (API) loading content, and instability compromise its bioavailability and therapeutic effectiveness. Herein, a full-API carrier-free nanoparticle is developed based on the self-assembly of indocyanine green (ICG), copper ions (Cu2+) and Mor, termed as IMCNs, via coordination-driven and π-π stacking for synergistic tumor therapy. The IMCNs exhibits a desirable loading content of Mor (58.7 %) and pH/glutathione (GSH)-responsive motif. Moreover, the photothermal stability and photo-heat conversion efficiency (42.8 %) of IMCNs are improved after coordination with Cu2+ and help to achieve photothermal therapy. Afterward, the released Cu2+ depletes intracellular overexpressed GSH and mediates Fenton-like reactions, and further synergizes with ICG at high temperatures to expand oxidative damage. Furthermore, the released Mor elicits cytoplasmic vacuolation, expedites mitochondrial dysfunction, and exerts chemo-photothermal therapy after being combined with ICG to suppress the migration of residual live tumor cells. In vivo experiments demonstrate that IMCNs under laser irradiation could excellently inhibit tumor growth (89.6 %) through the multi-modal therapeutic performance of self-enhanced chemotherapy/coordinated-drugs/ photothermal therapy (PTT), presenting a great potential for cancer therapy.
Collapse
Affiliation(s)
- Yalin Ran
- College of Food Science, Southwest University, Chongqing 400715, People's Republic of China; Chongqing Key Laboratory of Speciality Food Co-Built by Sichuan and Chongqing, Chongqing 400715, People's Republic of China
| | - Junfeng Hu
- School of Materials and Energy, Southwest University, Chongqing 400715, People's Republic of China
| | - Yuanyuan Chen
- College of Food Science, Southwest University, Chongqing 400715, People's Republic of China; Chongqing Key Laboratory of Speciality Food Co-Built by Sichuan and Chongqing, Chongqing 400715, People's Republic of China
| | - Zhenan Rao
- College of Food Science, Southwest University, Chongqing 400715, People's Republic of China; Chongqing Key Laboratory of Speciality Food Co-Built by Sichuan and Chongqing, Chongqing 400715, People's Republic of China
| | - Jichun Zhao
- College of Food Science, Southwest University, Chongqing 400715, People's Republic of China; Chongqing Key Laboratory of Speciality Food Co-Built by Sichuan and Chongqing, Chongqing 400715, People's Republic of China
| | - Zhigang Xu
- School of Materials and Energy, Southwest University, Chongqing 400715, People's Republic of China.
| | - Jian Ming
- College of Food Science, Southwest University, Chongqing 400715, People's Republic of China; Chongqing Key Laboratory of Speciality Food Co-Built by Sichuan and Chongqing, Chongqing 400715, People's Republic of China.
| |
Collapse
|
6
|
Proença C, Freitas M, Ribeiro D, Rufino AT, Fernandes E, Ferreira de Oliveira JMP. The role of flavonoids in the regulation of epithelial-mesenchymal transition in cancer: A review on targeting signaling pathways and metastasis. Med Res Rev 2023; 43:1878-1945. [PMID: 37147865 DOI: 10.1002/med.21966] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2022] [Revised: 03/20/2023] [Accepted: 04/12/2023] [Indexed: 05/07/2023]
Abstract
One of the hallmarks of cancer is metastasis, a process that entails the spread of cancer cells to distant regions in the body, culminating in tumor formation in secondary organs. Importantly, the proinflammatory environment surrounding cancer cells further contributes to cancer cell transformation and extracellular matrix destruction. During metastasis, front-rear polarity and emergence of migratory and invasive features are manifestations of epithelial-mesenchymal transition (EMT). A variety of transcription factors (TFs) are implicated in the execution of EMT, the most prominent belonging to the Snail Family Transcriptional Repressor (SNAI) and Zinc Finger E-Box Binding Homeobox (ZEB) families of TFs. These TFs are regulated by interaction with specific microRNAs (miRNAs), as miR34 and miR200. Among the several secondary metabolites produced in plants, flavonoids constitute a major group of bioactive molecules, with several described effects including antioxidant, antiinflammatory, antidiabetic, antiobesogenic, and anticancer effects. This review scrutinizes the modulatory role of flavonoids on the activity of SNAI/ZEB TFs and on their regulatory miRNAs, miR-34, and miR-200. The modulatory role of flavonoids can attenuate mesenchymal features and stimulate epithelial features, thereby inhibiting and reversing EMT. Moreover, this modulation is concomitant with the attenuation of signaling pathways involved in diverse processes as cell proliferation, cell growth, cell cycle progression, apoptosis inhibition, morphogenesis, cell fate, cell migration, cell polarity, and wound healing. The antimetastatic potential of these versatile compounds is emerging and represents an opportunity for the synthesis of more specific and potent agents.
Collapse
Affiliation(s)
- Carina Proença
- LAQV, REQUIMTE, Laboratory of Applied Chemistry, Department of Chemical Sciences, Faculty of Pharmacy, University of Porto, Porto, Portugal
| | - Marisa Freitas
- LAQV, REQUIMTE, Laboratory of Applied Chemistry, Department of Chemical Sciences, Faculty of Pharmacy, University of Porto, Porto, Portugal
| | - Daniela Ribeiro
- LAQV, REQUIMTE, Laboratory of Applied Chemistry, Department of Chemical Sciences, Faculty of Pharmacy, University of Porto, Porto, Portugal
| | - Ana T Rufino
- LAQV, REQUIMTE, Laboratory of Applied Chemistry, Department of Chemical Sciences, Faculty of Pharmacy, University of Porto, Porto, Portugal
| | - Eduarda Fernandes
- LAQV, REQUIMTE, Laboratory of Applied Chemistry, Department of Chemical Sciences, Faculty of Pharmacy, University of Porto, Porto, Portugal
| | - José Miguel P Ferreira de Oliveira
- LAQV, REQUIMTE, Laboratory of Applied Chemistry, Department of Chemical Sciences, Faculty of Pharmacy, University of Porto, Porto, Portugal
| |
Collapse
|
7
|
Blanchard R, Adjei I. Engineering the glioblastoma microenvironment with bioactive nanoparticles for effective immunotherapy. RSC Adv 2023; 13:31411-31425. [PMID: 37901257 PMCID: PMC10603567 DOI: 10.1039/d3ra01153d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2023] [Accepted: 09/27/2023] [Indexed: 10/31/2023] Open
Abstract
While immunotherapies have revolutionized treatment for other cancers, glioblastoma multiforme (GBM) patients have not shown similar positive responses. The limited response to immunotherapies is partly due to the unique challenges associated with the GBM tumor microenvironment (TME), which promotes resistance to immunotherapies, causing many promising therapies to fail. There is, therefore, an urgent need to develop strategies that make the TME immune permissive to promote treatment efficacy. Bioactive nano-delivery systems, in which the nanoparticle, due to its chemical composition, provides the pharmacological function, have recently emerged as an encouraging option for enhancing the efficacy of immunotherapeutics. These systems are designed to overcome immunosuppressive mechanisms in the TME to improve the efficacy of a therapy. This review will discuss different aspects of the TME and how they impede therapy success. Then, we will summarize recent developments in TME-modifying nanotherapeutics and the in vitro models utilized to facilitate these advances.
Collapse
Affiliation(s)
- Ryan Blanchard
- Department of Biomedical Engineering, Texas A&M University TX USA
| | - Isaac Adjei
- Department of Biomedical Engineering, Texas A&M University TX USA
| |
Collapse
|
8
|
Hegde M, Girisa S, Naliyadhara N, Kumar A, Alqahtani MS, Abbas M, Mohan CD, Warrier S, Hui KM, Rangappa KS, Sethi G, Kunnumakkara AB. Natural compounds targeting nuclear receptors for effective cancer therapy. Cancer Metastasis Rev 2023; 42:765-822. [PMID: 36482154 DOI: 10.1007/s10555-022-10068-w] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/18/2022] [Accepted: 11/03/2022] [Indexed: 12/13/2022]
Abstract
Human nuclear receptors (NRs) are a family of forty-eight transcription factors that modulate gene expression both spatially and temporally. Numerous biochemical, physiological, and pathological processes including cell survival, proliferation, differentiation, metabolism, immune modulation, development, reproduction, and aging are extensively orchestrated by different NRs. The involvement of dysregulated NRs and NR-mediated signaling pathways in driving cancer cell hallmarks has been thoroughly investigated. Targeting NRs has been one of the major focuses of drug development strategies for cancer interventions. Interestingly, rapid progress in molecular biology and drug screening reveals that the naturally occurring compounds are promising modern oncology drugs which are free of potentially inevitable repercussions that are associated with synthetic compounds. Therefore, the purpose of this review is to draw our attention to the potential therapeutic effects of various classes of natural compounds that target NRs such as phytochemicals, dietary components, venom constituents, royal jelly-derived compounds, and microbial derivatives in the establishment of novel and safe medications for cancer treatment. This review also emphasizes molecular mechanisms and signaling pathways that are leveraged to promote the anti-cancer effects of these natural compounds. We have also critically reviewed and assessed the advantages and limitations of current preclinical and clinical studies on this subject for cancer prophylaxis. This might subsequently pave the way for new paradigms in the discovery of drugs that target specific cancer types.
Collapse
Affiliation(s)
- Mangala Hegde
- Cancer Biology Laboratory, Department of Biosciences and Bioengineering, Indian Institute of Technology Guwahati, Guwahati, 781039, Assam, India
| | - Sosmitha Girisa
- Cancer Biology Laboratory, Department of Biosciences and Bioengineering, Indian Institute of Technology Guwahati, Guwahati, 781039, Assam, India
| | - Nikunj Naliyadhara
- Cancer Biology Laboratory, Department of Biosciences and Bioengineering, Indian Institute of Technology Guwahati, Guwahati, 781039, Assam, India
| | - Aviral Kumar
- Cancer Biology Laboratory, Department of Biosciences and Bioengineering, Indian Institute of Technology Guwahati, Guwahati, 781039, Assam, India
| | - Mohammed S Alqahtani
- Radiological Sciences Department, College of Applied Medical Sciences, King Khalid University, Abha, 61421, Saudi Arabia
- BioImaging Unit, Space Research Centre, University of Leicester, Michael Atiyah Building, Leicester, LE1 7RH, UK
| | - Mohamed Abbas
- Electrical Engineering Department, College of Engineering, King Khalid University, Abha, 61421, Saudi Arabia
- Electronics and Communications Department, College of Engineering, Delta University for Science and Technology, 35712, Gamasa, Egypt
| | | | - Sudha Warrier
- Division of Cancer Stem Cells and Cardiovascular Regeneration, School of Regenerative Medicine, Manipal Academy of Higher Education (MAHE), Bangalore, 560065, India
- Cuor Stem Cellutions Pvt Ltd, Manipal Institute of Regenerative Medicine, Manipal Academy of Higher Education (MAHE), Bangalore, 560065, India
| | - Kam Man Hui
- Division of Cellular and Molecular Research, Humphrey Oei Institute of Cancer Research, National Cancer Centre, Singapore, 169610, Singapore
| | | | - Gautam Sethi
- Department of Pharmacology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, 117600, Singapore.
| | - Ajaikumar B Kunnumakkara
- Cancer Biology Laboratory, Department of Biosciences and Bioengineering, Indian Institute of Technology Guwahati, Guwahati, 781039, Assam, India.
| |
Collapse
|
9
|
Tabassum R, Kousar S, Mustafa G, Jamil A, Attique SA. In Silico Method for the Screening of Phytochemicals against Methicillin-Resistant Staphylococcus Aureus. BIOMED RESEARCH INTERNATIONAL 2023; 2023:5100400. [PMID: 37250750 PMCID: PMC10212682 DOI: 10.1155/2023/5100400] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/22/2022] [Revised: 05/02/2023] [Accepted: 05/03/2023] [Indexed: 05/31/2023]
Abstract
Methicillin-resistant Staphylococcus aureus (MRSA) has evolved resistance even against the last resort β-lactam antibiotics. This is because of the acquisition of an additional penicillin-binding protein 2a (PBP2a) which is a resistance determinant in MRSA. Currently, available PBP2a inhibitors are ineffective against life-threatening and fatal infections caused by microorganisms. Therefore, there is an urgent need to screen natural compounds that could overpass the resistance issue alone or in combination with antibacterial drugs. We studied the interactions of different phytochemicals with PBP2a so that crosslinking of peptidoglycans could be inhibited. In structure-based drug designing, in silico approach plays a key role in determining phytochemical interactions with PBP2a. In this study, a total of 284 antimicrobial phytochemicals were screened using the molecular docking approach. The binding affinity of methicillin, -11.241 kcal/mol, was used as the threshold value. The phytochemicals having binding affinities with PBP2a stronger than methicillin were identified, and the drug-likeness properties and toxicities of the screened phytochemicals were calculated. Out of the multiple phytochemicals screened, nine were found as good inhibitors to be PBP2a, among which cyanidin, tetrandrine, cyclomorusin, lipomycin, and morusin showed strong binding potential with the receptor protein. These best-selected phytochemicals were also docked to the allosteric site of PBP2a, and most of the compounds revealed strong interactions with the allosteric site. These compounds were safe to be used as drugs because they did not show any toxicity and had good bioactivity scores. Cyanidin had the highest binding affinity (S-score of -16.061 kcal/mol) with PBP2a and with high gastrointestinal (GI) absorption. Our findings suggest that cyanidin can be used as a drug against MRSA infection either in purified form or that its structure can lead to the development of more potent anti-MRSA medicines. However, experimental studies are required to evaluate the inhibitory potential of these phytochemicals against MRSA.
Collapse
Affiliation(s)
- Riaz Tabassum
- Department of Biochemistry, University of Agriculture, Faisalabad 38040, Pakistan
| | - Sumaira Kousar
- Department of Biochemistry, Government College Women University, Faisalabad, Pakistan
| | - Ghulam Mustafa
- Department of Biochemistry, Government College University, Faisalabad 38000, Pakistan
| | - Amer Jamil
- Department of Biochemistry, University of Agriculture, Faisalabad 38040, Pakistan
| | - Syed Awais Attique
- School of Interdisciplinary Engineering & Science (SINES), National University of Sciences & Technology (NUST), Islamabad, Pakistan
- Agency for Science, Technology and Research (ASTAR), Bioinformatics Institute, 30 Biopolis Street, Matrix, Singapore 138671, Singapore
| |
Collapse
|
10
|
Zhao R, Zhou Y, Zhang H, Pan J, Yang F, Zhang R, Ahmad N, Yang J, Sun M. Morusin Enhances Temozolomide Efficiency in GBM by Inducing Cytoplasmic Vacuolization and Endoplasmic Reticulum Stress. J Clin Med 2022; 11:3662. [PMID: 35806945 PMCID: PMC9267261 DOI: 10.3390/jcm11133662] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2022] [Revised: 06/15/2022] [Accepted: 06/21/2022] [Indexed: 11/24/2022] Open
Abstract
Glioblastoma multiforme (GBM) is an aggressive brain tumor with high risks of recurrence and mortality. Chemoradiotherapy resistance has been considered a major factor contributing to the extremely poor prognosis of GBM patients. Therefore, there is an urgent need to develop highly effective therapeutic agents. Here, we demonstrate the anti-tumor effect of morusin, a typical prenylated flavonoid, in GBM through in vivo and in vitro models. Morusin showed selective cytotoxicity toward GBM cell lines without harming normal human astrocytes when the concentration was less than 20 µM. Morusin treatment significantly induced apoptosis of GBM cells, accompanied by the activation of endoplasmic reticulum (ER) stress, and the appearance of cytoplasmic vacuolation and autophagosomes in cells. Then, we found the ER stress activation and cytotoxicity of morusin were rescued by ER stress inhibitor 4-PBA. Furthermore, morusin arrested cell cycle at the G1 phase and inhibited cell proliferation of GBM cells through the Akt-mTOR-p70S6K pathway. Dysregulation of ERs and cell cycle in morusin exposed GBM cells were confirmed by RNA-seq analysis. Finally, we demonstrated the combination of morusin and TMZ remarkably enhanced ER stress and displayed a synergistic effect in GBM cells, and suppressed tumor progression in an orthotopic xenograft model. In conclusion, these findings reveal the toxicity of morusin to GBM cells and its ability to enhance drug sensitivity to TMZ, suggesting the potential application value of morusin in the development of therapeutic strategies for human GBM.
Collapse
Affiliation(s)
- Rongchuan Zhao
- Suzhou Institute of Biomedical Engineering and Technology, Chinese Academy of Sciences, Suzhou 215163, China; (R.Z.); (J.P.); (R.Z.)
- School of Biomedical Engineering (Suzhou), Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei 230026, China;
| | - Yuanshuai Zhou
- School of Biomedical Engineering (Suzhou), Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei 230026, China;
| | - Hong Zhang
- School of Life Sciences, Shanghai University, Shanghai 200444, China; (H.Z.); (F.Y.)
| | - Jinlin Pan
- Suzhou Institute of Biomedical Engineering and Technology, Chinese Academy of Sciences, Suzhou 215163, China; (R.Z.); (J.P.); (R.Z.)
- School of Biomedical Engineering (Suzhou), Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei 230026, China;
| | - Fan Yang
- School of Life Sciences, Shanghai University, Shanghai 200444, China; (H.Z.); (F.Y.)
| | - Ruobing Zhang
- Suzhou Institute of Biomedical Engineering and Technology, Chinese Academy of Sciences, Suzhou 215163, China; (R.Z.); (J.P.); (R.Z.)
- School of Biomedical Engineering (Suzhou), Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei 230026, China;
| | - Nafees Ahmad
- Institute of Biomedical and Genetic Engineering, Islamabad 44000, Pakistan;
| | - Jiao Yang
- Institute of Clinical Medicine Research, Suzhou Science & Technology Town Hospital, Gusu School, Nanjing Medical University, Suzhou 215163, China
| | - Minxuan Sun
- Suzhou Institute of Biomedical Engineering and Technology, Chinese Academy of Sciences, Suzhou 215163, China; (R.Z.); (J.P.); (R.Z.)
- School of Biomedical Engineering (Suzhou), Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei 230026, China;
| |
Collapse
|
11
|
Park HJ, Park SH. Root Bark of Morus Alba L. Induced p53-Independent Apoptosis in Human Colorectal Cancer Cells by Suppression of STAT3 Activity. Nutr Cancer 2021; 74:1837-1848. [PMID: 34533079 DOI: 10.1080/01635581.2021.1968444] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Abstract
The root bark of Morus alba L. (MA) used in traditional oriental medicine exerts various bioactivities including anticancer effects. In this study, we investigated the molecular mechanism underlying the methylene chloride extract of MA (MEMA)-induced apoptosis in colorectal cancer (CRC) cells. We observed that MEMA decreased cell viability and colony formation in both HCT116 p53+/+ cells and HCT116 p53-/- cells. In addition, MEMA increased the sub-G1 phase DNA content, the annexin V-positive cell population, and the expression of apoptosis marker proteins in both cell lines, indicating that MEMA induced apoptosis regardless of the p53 status. Interestingly, the phosphorylation level, transcriptional activity, and target genes expression of signal transducer and activator of transcription 3 (STAT3) were commonly decreased by MEMA. The overexpression of constitutively active STAT3 in HCT116 cells reversed MEMA-induced apoptosis, demonstrating that MEMA-triggered apoptosis was mediated by the inactivation of STAT3. Taken together, we suggest that MEMA can be applied not only to p53 wild-type CRC in the early stages but also to p53-mutant advanced CRC with hyperactivated STAT3. Even though a wide range of studies are required to validate the anticancer effects of MEMA, we propose MEMA as a novel material for the treatment of CRC.
Collapse
Affiliation(s)
- Hyun-Ji Park
- Department of Pathology, College of Korean Medicine, Dong-eui University, Busan, Republic of Korea
| | - Shin-Hyung Park
- Department of Pathology, College of Korean Medicine, Dong-eui University, Busan, Republic of Korea
| |
Collapse
|
12
|
Panek-Krzyśko A, Stompor-Gorący M. The Pro-Health Benefits of Morusin Administration-An Update Review. Nutrients 2021; 13:3043. [PMID: 34578920 PMCID: PMC8470188 DOI: 10.3390/nu13093043] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2021] [Revised: 08/27/2021] [Accepted: 08/28/2021] [Indexed: 01/12/2023] Open
Abstract
Prenylflavonoids are widespread in nature. Plants are valuable sources of natural polyphenolic compounds with isoprenyl groups, which include flavones, flavanones, chalcones and aurones. They can be found in flowers, bark and stems. One of the most important compounds found in the bark of white mulberry (Morus alba) is morusin, a prenylated flavone with interesting pro-health properties. The research carried out so far revealed that morusin has antioxidant, antitumor, anti-inflammatory and anti-allergic activity. Moreover, its neuroprotective and antihyperglycemic properties have also been confirmed. Morusin suppresses the growth of different types of tumors, including breast cancer, glioblastoma, pancreatic cancer, hepatocarcinoma, prostate cancer, and gastric cancer. It also inhibits the inflammatory response by suppressing COX activity and iNOS expression. Moreover, an antimicrobial effect against Gram-positive bacteria was observed after treatment with morusin. The objective of this review is to summarize the current knowledge about the positive effects of morusin on human health in order to facilitate future study on the development of plant polyphenolic drugs and nutraceutics in the group of prenylflavones.
Collapse
Affiliation(s)
| | - Monika Stompor-Gorący
- Department of Human Pathophysiology, Institute of Medical Sciences, University of Rzeszów, Warzywna 1a, 35-310 Rzeszów, Poland;
| |
Collapse
|
13
|
Li H, Du G, Yang L, Pang L, Zhan Y. The Antitumor Effects of Britanin on Hepatocellular Carcinoma Cells and its Real-Time Evaluation by In Vivo Bioluminescence Imaging. Anticancer Agents Med Chem 2021; 20:1147-1156. [PMID: 32106805 DOI: 10.2174/1871520620666200227092623] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2019] [Revised: 12/16/2019] [Accepted: 01/27/2020] [Indexed: 11/22/2022]
Abstract
BACKGROUND Hepatocellular carcinoma is cancer with many new cases and the highest mortality rate. Chemotherapy is the most commonly used method for the clinical treatment of hepatocellular carcinoma. Natural products have become clinically important chemotherapeutic drugs due to their great potential for pharmacological development. Many sesquiterpene lactone compounds have been proven to have antitumor effects on hepatocellular carcinoma. OBJECTIVE Britanin is a sesquiterpene lactone compound that can be considered for the treatment of hepatocellular carcinoma. The present study aimed to investigate the antitumor effect of britanin. METHODS BEL 7402 and HepG2 cells were used to study the cytotoxicity and antitumor effects of britanin. Preliminary studies on the nuclear factor kappa B pathway were conducted by western blot analysis. A BEL 7402-luc subcutaneous tumor model was established for the in vivo antitumor studies of britanin. In vivo bioluminescence imaging was conducted to monitor changes in tumor size. RESULTS The results of the cytotoxicity analysis showed that the IC50 values for britanin in BEL 7402 and HepG2 cells were 2.702μM and 6.006μM, respectively. The results of the colony formation demonstrated that the number of cells in a colony was reduced significantly after britanin treatment. And the results of transwell migration assays showed that the migration ability of tumor cells was significantly weakened after treatment with britanin. Tumor size measurements and staining results showed that tumor size was inhibited after britanin treatment. The western blot analysis results showed the inhibition of p65 protein expression and reduced the ratio of Bcl-2/Bax after treatment. CONCLUSION A series of in vitro and in vivo experiments demonstrated that britanin had good antitumor effects and provided an option for hepatocellular carcinoma treatment.
Collapse
Affiliation(s)
- Hanrui Li
- Engineering Research Center of Molecular & Neuroimaging, Ministry of Education, School of Life Science and Technology, Xidian University, Xi'an, Shaanxi, China
| | - GeTao Du
- Engineering Research Center of Molecular & Neuroimaging, Ministry of Education, School of Life Science and Technology, Xidian University, Xi'an, Shaanxi, China
| | - Lu Yang
- Engineering Research Center of Molecular & Neuroimaging, Ministry of Education, School of Life Science and Technology, Xidian University, Xi'an, Shaanxi, China
| | - Liaojun Pang
- Engineering Research Center of Molecular & Neuroimaging, Ministry of Education, School of Life Science and Technology, Xidian University, Xi'an, Shaanxi, China
| | - Yonghua Zhan
- Engineering Research Center of Molecular & Neuroimaging, Ministry of Education, School of Life Science and Technology, Xidian University, Xi'an, Shaanxi, China
| |
Collapse
|
14
|
Wen L, Zhou T, Jiang Y, Chang SK, Yang B. Prenylated flavonoids in foods and their applications on cancer prevention. Crit Rev Food Sci Nutr 2021; 62:5067-5080. [PMID: 33543993 DOI: 10.1080/10408398.2021.1881437] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Functional foods play an important role in health care and chronic diseases prevention, particularly cancer. Prenylated flavonoids are presented in many food resources. They are recognized as neutraceuticals due to their diverse health benefits. Up to now, more than 1000 prenylated flavonoids have been identified in plants. Their food resources are reviewed in this paper. Due to the good safety and cancer prevention effect of prenylated flavonoids, this paper reviews the cancer prevention activities and mechanisms reported in last decade. The structure-activity relationship is discussed. Due to the limited availability in nature, the heterologously biosynthetic technique of prenylated flavonoids is discussed in this review. Inclusion of dietary prenylated flavonoids into human diet is highly desirable. This paper combines the up-to-date information and give a clear image regarding prenylated flavonoids as neutraceuticals.
Collapse
Affiliation(s)
- Lingrong Wen
- Department of Horticulture, Key Laboratory of South China Agricultural Plant Molecular Analysis and Genetic Improvement, Key Laboratory of Post-Harvest Handling of Fruits, Ministry of Agriculture, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou, China
| | - Ting Zhou
- Department of Horticulture, Key Laboratory of South China Agricultural Plant Molecular Analysis and Genetic Improvement, Key Laboratory of Post-Harvest Handling of Fruits, Ministry of Agriculture, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou, China.,Department of Horticulture, University of Chinese Academy of Sciences, Beijing, China
| | - Yueming Jiang
- Department of Horticulture, Key Laboratory of South China Agricultural Plant Molecular Analysis and Genetic Improvement, Key Laboratory of Post-Harvest Handling of Fruits, Ministry of Agriculture, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou, China.,Core Botanical Gardens, Chinese Academy of Sciences, Guangzhou, China.,Department of Horticulture, University of Chinese Academy of Sciences, Beijing, China
| | - Sui Kiat Chang
- Department of Horticulture, Key Laboratory of South China Agricultural Plant Molecular Analysis and Genetic Improvement, Key Laboratory of Post-Harvest Handling of Fruits, Ministry of Agriculture, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou, China
| | - Bao Yang
- Department of Horticulture, Key Laboratory of South China Agricultural Plant Molecular Analysis and Genetic Improvement, Key Laboratory of Post-Harvest Handling of Fruits, Ministry of Agriculture, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou, China.,Core Botanical Gardens, Chinese Academy of Sciences, Guangzhou, China.,Department of Horticulture, University of Chinese Academy of Sciences, Beijing, China
| |
Collapse
|
15
|
Wang J, Liu X, Zheng H, Liu Q, Zhang H, Wang X, Shen T, Wang S, Ren D. Morusin induces apoptosis and autophagy via JNK, ERK and PI3K/Akt signaling in human lung carcinoma cells. Chem Biol Interact 2020; 331:109279. [PMID: 33035517 DOI: 10.1016/j.cbi.2020.109279] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2020] [Revised: 08/31/2020] [Accepted: 09/28/2020] [Indexed: 02/08/2023]
Abstract
Due to drug resistance and side effects, the development of novel therapeutics for the treatment of lung cancer is still in an urgent need. Morusin, a naturally occurring prenylated flavonoid isolated from the root bark of Morus alba, has been reported to be a promising candidate for cancer treatment including lung cancer. This study aimed to validate the anti-cancer effects of morusin in human non-small cell lung cancer (NSCLC) cell lines A549 and NCI-H292. The results indicated that morusin had growth inhibitory, pro-apoptotic and pro-autophagic effects on A549 and NCI-H292 cells. The induction of apoptosis was characterized by chromatin condensation and PARP cleavage. Mitochondrial membrane potential (MMP) loss, cytochrome c release, Bax/Bcl-2 dysregulation, and caspase-3 cleavage were also observed, indicating a mitochondria-dependent apoptosis was induced by morusin. A pro-autophagic effect was demonstrated by the increased level of LC3-Ⅱ and decreased level of SQSTM1/p62. Furthermore, morusin inhibited PI3K/Akt signaling and activated JNK, ERK pathways as indicated by the alteration in the ratio of phosphorylation level over total protein expression level. A PI3K/Akt inhibitor (LY294002), a JNK inhibitor (SP600125) and a MEK/ERK inhibitor (U0126) contributed to the determination that these pathways were involved in both apoptosis and autophagy induced by morusin. Moreover, morusin treatment strikingly enhanced intracellular ROS level, an ROS scavenger NAC blocked cell death and changes of Akt, JNK and ERK induced by morusin.
Collapse
Affiliation(s)
- Jinxia Wang
- Key Laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, 44 West Wenhua Road, Jinan, 250012, PR China
| | - Xiaoqing Liu
- Key Laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, 44 West Wenhua Road, Jinan, 250012, PR China
| | - Hao Zheng
- Key Laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, 44 West Wenhua Road, Jinan, 250012, PR China
| | - Qingying Liu
- Key Laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, 44 West Wenhua Road, Jinan, 250012, PR China
| | - Huaran Zhang
- Key Laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, 44 West Wenhua Road, Jinan, 250012, PR China
| | - Xiaoning Wang
- Key Laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, 44 West Wenhua Road, Jinan, 250012, PR China
| | - Tao Shen
- Key Laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, 44 West Wenhua Road, Jinan, 250012, PR China
| | - Shuqi Wang
- Key Laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, 44 West Wenhua Road, Jinan, 250012, PR China
| | - Dongmei Ren
- Key Laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, 44 West Wenhua Road, Jinan, 250012, PR China.
| |
Collapse
|
16
|
Choi DW, Cho SW, Lee SG, Choi CY. The Beneficial Effects of Morusin, an Isoprene Flavonoid Isolated from the Root Bark of Morus. Int J Mol Sci 2020; 21:E6541. [PMID: 32906784 PMCID: PMC7554996 DOI: 10.3390/ijms21186541] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2020] [Revised: 09/04/2020] [Accepted: 09/05/2020] [Indexed: 12/19/2022] Open
Abstract
The root bark of Morus has long been appreciated as an antiphlogistic, diuretic and expectorant drug in Chinese herbal medicine, albeit with barely known targets and mechanisms of action. In the 1970s, the development of analytic chemistry allowed for the discovery of morusin as one of 7 different isoprene flavonoid derivatives in the root bark of Morus. However, the remarkable antioxidant capacity of morusin with the unexpected potential for health benefits over the other flavonoid derivatives has recently sparked scientific interest in the biochemical identification of target proteins and signaling pathways and further clinical relevance. In this review, we discuss recent advances in the understanding of the functional roles of morusin in multiple biological processes such as inflammation, apoptosis, metabolism and autophagy. We also highlight recent in vivo and in vitro evidence on the clinical potential of morusin treatment for multiple human pathologies including inflammatory diseases, neurological disorders, diabetes, cancer and the underlying mechanisms.
Collapse
Affiliation(s)
- Dong Wook Choi
- Department of Biological Sciences, Sungkyunkwan University, Suwon 16419, Korea; (D.W.C.); (S.W.C.)
| | - Sang Woo Cho
- Department of Biological Sciences, Sungkyunkwan University, Suwon 16419, Korea; (D.W.C.); (S.W.C.)
| | - Seok-Geun Lee
- Department of Science in Korean Medicine, Kyung Hee University, Seoul 02447, Korea
- KHU-KIST Department of Converging Science & Technology, Kyung Hee University, Seoul 02447, Korea
| | - Cheol Yong Choi
- Department of Biological Sciences, Sungkyunkwan University, Suwon 16419, Korea; (D.W.C.); (S.W.C.)
| |
Collapse
|
17
|
Agarwal S, Mohamed MS, Mizuki T, Maekawa T, Sakthi Kumar D. Chlorotoxin modified morusin-PLGA nanoparticles for targeted glioblastoma therapy. J Mater Chem B 2020; 7:5896-5919. [PMID: 31423502 DOI: 10.1039/c9tb01131e] [Citation(s) in RCA: 41] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
Malignant brain tumors remain a major cause of concern and mortality as successful treatment is hindered due to the poor transport and low penetration of chemotherapeutics across the blood-brain barrier (BBB). In this study, a nano formulation composed of chlorotoxin (CTX)-conjugated morusin loaded PLGA nanoparticles (PLGA-MOR-CTX) was devised against Glioblastoma Multiforme (GBM) and its anti-proliferative effects were evaluated in vitro. The synthesized nanoparticles were loaded with morusin, a naturally derived chemotherapeutic drug, and surface conjugated with CTX, a peptide derived from scorpion venom, highly specific for chloride channels (CIC-3) expressed in glioma tumor cells, as well as for matrix metalloproteinase (MMP-2), which is up regulated in the tumor microenvironment. Subsequently, the anti-cancer potential of the NPs was assessed in U87 and GI-1 (human glioblastoma) cells. Antiproliferative, cell apoptosis, and other cell-based assays demonstrated that the PLGA-MOR-CTX NPs resulted in enhanced inhibitory effects on U87 and GI-1 glioma cells. Prominent cytotoxicity parameters such as ROS generation, enhanced caspase activity, cytoskeletal destabilization, and inhibition of MMP-activity were observed in glioblastoma cells upon PLGA-MOR-CTX NP treatment. The cytocompatibility observed with normal human neuronal cells (HCN-1A) and the enhanced lethal effects in glioblastoma cells highlight the potential of PLGA-MOR-CTX nanoparticles as promising therapeutic nanocarriers towards GBM.
Collapse
Affiliation(s)
- Srishti Agarwal
- Bio-Nano Electronics Research Center, Graduate School of Interdisciplinary New Science, Toyo University, Kawagoe, Saitama 350-8585, Japan.
| | | | | | | | | |
Collapse
|
18
|
Park YJ, Choi DW, Cho SW, Han J, Yang S, Choi CY. Stress Granule Formation Attenuates RACK1-Mediated Apoptotic Cell Death Induced by Morusin. Int J Mol Sci 2020; 21:ijms21155360. [PMID: 32731602 PMCID: PMC7432505 DOI: 10.3390/ijms21155360] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2020] [Accepted: 07/26/2020] [Indexed: 12/15/2022] Open
Abstract
Stress granules are membraneless organelles composed of numerous components including ribonucleoproteins. The stress granules are characterized by a dynamic complex assembly in response to various environmental stressors, which has been implicated in the coordinated regulation of diverse biological pathways, to exert a protective role against stress-induced cell death. Here, we show that stress granule formation is induced by morusin, a novel phytochemical displaying antitumor capacity through barely known mechanisms. Morusin-mediated induction of stress granules requires activation of protein kinase R (PKR) and subsequent eIF2α phosphorylation. Notably, genetic inactivation of stress granule formation mediated by G3BP1 knockout sensitized cancer cells to morusin treatment. This protective function against morusin-mediated cell death can be attributed at least in part to the sequestration of receptors for activated C kinase-1 (RACK1) within the stress granules, which reduces caspase-3 activation. Collectively, our study provides biochemical evidence for the role of stress granules in suppressing the antitumor capacity of morusin, proposing that morusin treatment, together with pharmacological inhibition of stress granules, could be an efficient strategy for targeting cancer.
Collapse
Affiliation(s)
- Ye-Jin Park
- Department of Biological Sciences, Sungkyunkwan University, Suwon 16419, Korea; (Y.-J.P.); (D.W.C.); (S.W.C.)
| | - Dong Wook Choi
- Department of Biological Sciences, Sungkyunkwan University, Suwon 16419, Korea; (Y.-J.P.); (D.W.C.); (S.W.C.)
| | - Sang Woo Cho
- Department of Biological Sciences, Sungkyunkwan University, Suwon 16419, Korea; (Y.-J.P.); (D.W.C.); (S.W.C.)
| | - Jaeseok Han
- Soonchunhyang Institute of Medi-bio Science (SIMS), Soonchunhyang University, Cheonan, Chungcheongnam-do 31151, Korea;
| | - Siyoung Yang
- Department of Biomedical Sciences, Ajou University Graduate School of Medicine, Suwon 16499, Korea;
| | - Cheol Yong Choi
- Department of Biological Sciences, Sungkyunkwan University, Suwon 16419, Korea; (Y.-J.P.); (D.W.C.); (S.W.C.)
- Correspondence: ; Tel.: +82-31-290-7010; Fax: +82-31-290-7015
| |
Collapse
|
19
|
Park HJ, Chi GY, Choi YH, Park SH. The root bark of Morus alba L. regulates tumor-associated macrophages by blocking recruitment and M2 polarization of macrophages. Phytother Res 2020; 34:3333-3344. [PMID: 32677743 DOI: 10.1002/ptr.6783] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2020] [Revised: 05/24/2020] [Accepted: 06/04/2020] [Indexed: 12/15/2022]
Abstract
Tumor-associated macrophages (TAMs) promote tumor growth and metastasis, and are closely related with poor prognosis of cancers. Therefore, TAMs have been an attractive target in cancer therapy. This study investigated whether the root bark of Morus alba L. (MA) regulates TAMs. Methylene chloride extract of MA (MEMA) decreased the migration of RAW264.7 cells and THP-1 macrophages toward cancer cells via inhibition of focal adhesion kinase and Src activity. In addition, MEMA inhibited the phorbol myristate acetate-stimulated secretion of plasminogen activator inhibitor-1 from cancer cells, leading to the decreased chemotaxis of macrophages. Finally, MEMA-suppressed M2 macrophage polarization induced by interleukin (IL)-4/IL-13 or IL-6. MEMA downregulated the mRNA expression of M2 macrophage markers and decreased the phosphorylation of signal transducer and activator of transcription (STAT) 6 and STAT3 in RAW264.7 cells. Suppression of M2 polarization of macrophages by MEMA resulted in the reduced migration of Lewis lung carcinoma cells when the conditioned media from RAW264.7 cells was used as a chemoattractant. Taken together, our results demonstrate that MEMA regulates TAMs by blocking the recruitment of macrophages into tumor microenvironments and by inhibiting M2 polarization of macrophages.
Collapse
Affiliation(s)
- Hyun-Ji Park
- Department of Pathology, College of Korean Medicine, Dong-eui University, Busan, Republic of Korea
| | - Gyoo-Yong Chi
- Department of Pathology, College of Korean Medicine, Dong-eui University, Busan, Republic of Korea
| | - Yung-Hyun Choi
- Department of Biochemistry, College of Korean Medicine, Dong-eui University, Busan, Republic of Korea
| | - Shin-Hyung Park
- Department of Pathology, College of Korean Medicine, Dong-eui University, Busan, Republic of Korea
| |
Collapse
|
20
|
Park HJ, Park SH. Induction of cytoprotective autophagy by morusin via AMP-activated protein kinase activation in human non-small cell lung cancer cells. Nutr Res Pract 2020; 14:478-489. [PMID: 33029288 PMCID: PMC7520565 DOI: 10.4162/nrp.2020.14.5.478] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2020] [Revised: 03/30/2020] [Accepted: 06/04/2020] [Indexed: 12/19/2022] Open
Abstract
BACKGROUND/OBJECTIVES Morusin, a marker component of Morus alba L., possesses anti-cancer activity. The objective of this study was to determine autophagy-inducing effect of morusin in non-small cell lung cancer (NSCLC) cells and investigate the underlying mechanism. SUBJECTS/METHODS Autophagy induction and the expression of autophagy-related proteins were analyzed by LC3 immunofluorescence and western blot, respectively. The role of autophagy and AMP-activated protein kinase (AMPK) was determined by treating NSCLC cells with bafilomycin A1, an autophagy inhibitor, and compound C, an AMPK inhibitor. Cytotoxicity and apoptosis induction were determined by MTT assay, trypan blue exclusion assay, annexin V-propidium iodide (PI) double staining assay, and cell cycle analysis. RESULTS Morusin increased the formation of LC3 puncta in the cytoplasm and upregulated the expression of autophagy-related 5 (Atg5), Atg12, beclin-1, and LC3II in NSCLC cells, demonstrating that morusin could induce autophagy. Treatment with bafilomycin A1 markedly reduced cell viability but increased proportions of sub-G1 phase cells and annexin V-positive cells in H460 cells. These results indicate that morusin can trigger autophagy in NSCLC cells as a defense mechanism against morusin-induced apoptosis. Furthermore, we found that AMPK and its downstream acetyl-CoA carboxylase (ACC) were phosphorylated, while mammalian target of rapamycin (mTOR) and its downstream p70S6 kinase (p70S6K) were dephosphorylated by morusin. Morusin-induced apoptosis was significantly increased by treatment with compound C in H460 cells. These results suggest that morusin-induced AMPK activation could protect NSCLC cells from apoptosis probably by inducing autophagy. CONCLUSIONS Our findings suggest that combination treatment with morusin and autophagy inhibitor or AMPK inhibitor might enhance the clinical efficacy of morusin for NSCLC.
Collapse
Affiliation(s)
- Hyun-Ji Park
- Department of Pathology, College of Korean Medicine, Dong-Eui University, Busan 47227, Korea
| | - Shin-Hyung Park
- Department of Pathology, College of Korean Medicine, Dong-Eui University, Busan 47227, Korea
| |
Collapse
|
21
|
Phenolic constituents and anticancer properties of Morus alba (white mulberry) leaves. JOURNAL OF INTEGRATIVE MEDICINE-JIM 2020; 18:189-195. [DOI: 10.1016/j.joim.2020.02.006] [Citation(s) in RCA: 46] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/10/2019] [Accepted: 01/14/2020] [Indexed: 12/19/2022]
|
22
|
Synthesis and biological evaluation of novel coumarin-chalcone derivatives containing urea moiety as potential anticancer agents. ARAB J CHEM 2020. [DOI: 10.1016/j.arabjc.2017.10.001] [Citation(s) in RCA: 39] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
|
23
|
Min TR, Park HJ, Park MN, Kim B, Park SH. The Root Bark of Morus alba L. Suppressed the Migration of Human Non-Small-Cell Lung Cancer Cells through Inhibition of Epithelial⁻Mesenchymal Transition Mediated by STAT3 and Src. Int J Mol Sci 2019; 20:ijms20092244. [PMID: 31067694 PMCID: PMC6539721 DOI: 10.3390/ijms20092244] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2019] [Revised: 05/02/2019] [Accepted: 05/05/2019] [Indexed: 12/28/2022] Open
Abstract
The root bark of Morus alba L. (MA) has been traditionally used for the treatment of various lung diseases in Korea. Although recent research has demonstrated its anticancer effects in several cancer cells, it is still unclear whether MA inhibits the migratory ability of lung cancer cells. The present study investigated the effects of MA on the migration of lung cancer cells and explored the underlying mechanism. Results from a transwell assay and wound-healing assay demonstrated that methylene chloride extracts of MA (MEMA) suppressed the migration and invasion of H1299, H460, and A549 human non-small-cell lung cancer (NSCLC) cells in a concentration-dependent manner. Results from Western blot analyses showed that MEMA reduced the phosphorylation of STAT3 and Src. In addition, MEMA downregulated the expression of epithelial–mesenchymal transition (EMT) marker proteins including Slug, Snail, Vimentin, and N-cadherin, while upregulating the expression of Occludin—a tight-junction protein. The regulation of EMT markers and the decrease of migration by MEMA treatment were reversed once phospho-mimetic STAT3 (Y705D) or Src (Y527F) was transfected into H1299 cells. In conclusions, MEMA inhibited the migratory activity of human NSCLC cells through blocking Src/STAT3-mediated EMT.
Collapse
Affiliation(s)
- Tae-Rin Min
- Department of Pathology, College of Korean Medicine, Dong-eui University, Busan 47227, Korea.
| | - Hyun-Ji Park
- Department of Pathology, College of Korean Medicine, Dong-eui University, Busan 47227, Korea.
| | - Moon Nyeo Park
- Department of Pathology, College of Korean Medicine, Graduate School, Kyung Hee University, Seoul 02447, Korea.
| | - Bonglee Kim
- Department of Pathology, College of Korean Medicine, Graduate School, Kyung Hee University, Seoul 02447, Korea.
| | - Shin-Hyung Park
- Department of Pathology, College of Korean Medicine, Dong-eui University, Busan 47227, Korea.
| |
Collapse
|
24
|
Park HJ, Min TR, Chi GY, Choi YH, Park SH. Induction of apoptosis by morusin in human non-small cell lung cancer cells by suppression of EGFR/STAT3 activation. Biochem Biophys Res Commun 2018; 505:194-200. [PMID: 30243717 DOI: 10.1016/j.bbrc.2018.09.085] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2018] [Accepted: 09/13/2018] [Indexed: 01/12/2023]
Abstract
This study was designed to validate the anticancer effects of morusin in human non-small cell lung cancer (NSCLC) cells. Morusin suppressed the cell growth and colony formation in a concentration-dependent manner in H1299, H460 and H292 cells. These anticancer activities were related with apoptosis induction proved by the accumulation of chromatin condensation, PARP cleavage, increase of sub-G1 phage and annexin V-positive cell population. Interestingly, signal transducer and activator of transcription 3 (STAT3) was dephosphorylated by morusin. Morusin suppressed the transcriptional activity of STAT3 and down-regulated the expression of STAT3 target genes. In addition, morusin inhibited the phosphorylation of epithelial growth factor receptor (EGFR), an upstream regulator of STAT3. The docking study showed that morusin directly binds to the tyrosine kinase domain of EGFR. Furthermore, the anticancer effects of morusin were consistently observed in erlotinib-resistant H1975 cells expressing L858R and T790 M mutant EGFR, suggesting that morusin can be used for the advanced NSCLC with acquired resistance to EGFR TKI. Taken together, our results demonstrate that morusin induced apoptosis in human NSCLC cells regardless of EGFR mutation status through inhibition of EGFR/STAT3 activation.
Collapse
Affiliation(s)
- Hyun-Ji Park
- Department of Pathology, College of Korean Medicine, Dong-eui University, Busan, 47227, Republic of Korea
| | - Tae-Rin Min
- Department of Pathology, College of Korean Medicine, Dong-eui University, Busan, 47227, Republic of Korea
| | - Gyoo-Yong Chi
- Department of Pathology, College of Korean Medicine, Dong-eui University, Busan, 47227, Republic of Korea
| | - Yung-Hyun Choi
- Department of Biochemistry, College of Korean Medicine, Dong-eui University, Busan, 47227, Republic of Korea; Anti-Aging Research Center and Blue-Bio Industry RIC, Dong-eui University, Busan, 47227, Republic of Korea
| | - Shin-Hyung Park
- Department of Pathology, College of Korean Medicine, Dong-eui University, Busan, 47227, Republic of Korea.
| |
Collapse
|
25
|
Agarwal S, Muniyandi P, Maekawa T, Kumar DS. Vesicular systems employing natural substances as promising drug candidates for MMP inhibition in glioblastoma: A nanotechnological approach. Int J Pharm 2018; 551:339-361. [PMID: 30236647 DOI: 10.1016/j.ijpharm.2018.09.033] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2018] [Revised: 09/14/2018] [Accepted: 09/15/2018] [Indexed: 12/16/2022]
Abstract
Glioblastoma multiforme (GBM), one of the most lethal Brain tumors, characterized by its high invasive nature and increased mortality rates forms a major bottleneck in transport of therapeutics across the Blood Brain Barrier (BBB). Matrix metalloproteinases (MMPs) are classified as enzymes, which are found to be up regulated in the Glioma tumor microenvironment and thus can be considered as a target for inhibition for curbing GBM. Many chemotherapeutics and techniques have been employed for inhibiting MMPs till now but all of them failed miserably and were withdrawn in clinical trials due to their inability in restricting the tumor growth or increasing the overall survival rates. Thus, the quest for finding the suitable MMP inhibitor is still on and there is a critical need for identification of novel compounds which can alter the BBB permeability, restrain tumor growth and prevent tumor recurrence. Currently, naturally derived substances are gaining widespread attention as tumor inhibitors and many studies have been reported by far highlighting their importance in restricting MMP expression thus serving as chemotherapeutics for cancer due to their minimal toxicity. These substances may serve as probable candidates for inhibiting MMP expression in GBM. However, targeting and delivering the inhibitor to its target site is an issue that needs to be overcome in order to attain maximum specificity and sustained release. The birth of nanotechnology served as a boon in delivering drugs to the most complicated areas thus paving way for Nano drug delivery. An efficient Nano carrier with ability to cross the BBB and competently kill the Glioma cells forms the prerequisite for GBM chemotherapy. Vesicular drug delivery systems are one such class of carriers, which have the capacity to release the drug at a predetermined rate at the target site thus minimizing any undesirable side effects. Exploiting vesicular systems as promising Nano drug carriers to formulate naturally derived substances, that can bypass the BBB and act as an inhibitor against MMPs in GBM is the main theme of this review.
Collapse
Affiliation(s)
- Srishti Agarwal
- Bio Nano Electronics Research Center, Graduate School of Interdisciplinary New Science, Toyo University, Kawagoe, Saitama 350-8585, Japan
| | - Priyadharshni Muniyandi
- Bio Nano Electronics Research Center, Graduate School of Interdisciplinary New Science, Toyo University, Kawagoe, Saitama 350-8585, Japan
| | - Toru Maekawa
- Bio Nano Electronics Research Center, Graduate School of Interdisciplinary New Science, Toyo University, Kawagoe, Saitama 350-8585, Japan
| | - D Sakthi Kumar
- Bio Nano Electronics Research Center, Graduate School of Interdisciplinary New Science, Toyo University, Kawagoe, Saitama 350-8585, Japan.
| |
Collapse
|
26
|
Xue J, Li R, Zhao X, Ma C, Lv X, Liu L, Liu P. Morusin induces paraptosis-like cell death through mitochondrial calcium overload and dysfunction in epithelial ovarian cancer. Chem Biol Interact 2018; 283:59-74. [PMID: 29421517 DOI: 10.1016/j.cbi.2018.02.003] [Citation(s) in RCA: 75] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2017] [Revised: 01/12/2018] [Accepted: 02/01/2018] [Indexed: 01/02/2023]
Abstract
Epithelial ovarian cancer (EOC) is the leading cause of death among all gynecological cancers. Morusin, a prenylated flavonoid extracted from the root bark of Morus australis, has been reported to exhibit anti-tumor activity against various human cancers except EOC. In the present study, we explored the potential anti-cancer activity of morusin against EOC in vitro and in vivo and possible underlying mechanisms for the first time. We first found that morusin effectively inhibited EOC cell proliferation and survival in vitro and suppressed tumor growth in vivo. Then we observed that treatment of EOC cells with morusin resulted in paraptosis-like cell death, a novel mode of non-apoptotic programmed cell death that is characterized by extensive cytoplasmic vacuolation due to dilation of the endoplasmic reticulum (ER) and mitochondria and lack of apoptotic hallmarks. In addition, we discovered that morusin induced obvious increase in mitochondrial Ca2+ levels, accumulation of ER stress markers, generation of reactive oxygen species (ROS), and loss of mitochondrial membrane potential (Δψm) in EOC cells. Furthermore, pretreatment with 4, 4'-diisothiocyanostilbene-2, 2'-disulfonic acid (DIDS), a chemical inhibitor of voltage-dependent anion channel (VDAC) on the outer mitochondrial membrane, effectively inhibited mitochondrial Ca2+ influx, cytoplasmic vacuolation and cell death induced by morusin in EOC cells. Moreover, DIDS pretreatment also suppressed morusin-induced accumulation of ER stress markers, ROS production and depletion of Δψm. Consistently, tumor xenograft assays showed that co-treatment with DIDS partially reversed the inhibitory effects of morusin on tumor growth in vivo and inhibited the increased levels of ER stress markers induced by morusin in tumor tissues. Collectively, our results suggest that VDAC-mediated Ca2+ influx into mitochondria and subsequent mitochondrial Ca2+ overload contribute to mitochondrial swelling and dysfunction, leading to morusin-induced paraptosis-like cell death in EOC. This study may provide alternative therapeutic strategies for EOC exhibiting resistance to apoptosis.
Collapse
Affiliation(s)
- Jing Xue
- Department of Obstetrics and Gynecology, Qilu Hospital of Shandong University, 107 West Wenhua Road, Jinan, 250012, Shandong Province, People's Republic of China.
| | - Rui Li
- Department of Obstetrics and Gynecology, Qilu Hospital of Shandong University, 107 West Wenhua Road, Jinan, 250012, Shandong Province, People's Republic of China.
| | - Xinrui Zhao
- Department of Obstetrics and Gynecology, Qilu Hospital of Shandong University, 107 West Wenhua Road, Jinan, 250012, Shandong Province, People's Republic of China.
| | - Congcong Ma
- Department of Obstetrics and Gynecology, Qilu Hospital of Shandong University, 107 West Wenhua Road, Jinan, 250012, Shandong Province, People's Republic of China.
| | - Xin Lv
- Department of Obstetrics and Gynecology, Qilu Hospital of Shandong University, 107 West Wenhua Road, Jinan, 250012, Shandong Province, People's Republic of China.
| | - Lidong Liu
- Department of Obstetrics and Gynecology, Qilu Hospital of Shandong University, 107 West Wenhua Road, Jinan, 250012, Shandong Province, People's Republic of China.
| | - Peishu Liu
- Department of Obstetrics and Gynecology, Qilu Hospital of Shandong University, 107 West Wenhua Road, Jinan, 250012, Shandong Province, People's Republic of China.
| |
Collapse
|
27
|
Agarwal S, Mohamed MS, Raveendran S, Rochani AK, Maekawa T, Kumar DS. Formulation, characterization and evaluation of morusin loaded niosomes for potentiation of anticancer therapy. RSC Adv 2018; 8:32621-32636. [PMID: 35547672 PMCID: PMC9086195 DOI: 10.1039/c8ra06362a] [Citation(s) in RCA: 54] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2018] [Accepted: 09/12/2018] [Indexed: 11/21/2022] Open
Abstract
Morusin, a water-insoluble prenylated flavonoid is known for its numerous medicinal properties. It manifests its anticancer potential by suppression of genes involved in tumor progression. However, poor solubility of the drug results in low bioavailability and rapid degradation thus hindering its clinical utilization. In order to overcome this, we have synthesized a niosome system composed of non-ionic surfactant span 60 and cholesterol using a thin-layer evaporation technique to improve the aqueous-phase solubility of the drug. Highly cytocompatible niosomes of 479 nm average size with smooth and uniform spherical morphology were synthesized in a facile manner. Unlike free morusin, nanomorusin was found to be freely dispersible in aqueous media. Having an extremely high drug entrapment efficiency (97%), controlled and sustained release of morusin resulting in enhanced therapeutic efficacy was observed in cancer cell lines of 4 different lineages. The results demonstrate that the morusin-niosome system is a promising strategy for enhanced anti-cancer activity against multiple cancer types and could be an indispensable tool for future targeted chemotherapeutic strategies. Highly cytocompatible morusin-loaded niosomes were synthesized showing high drug loading and encapsulation efficiencies with sustained release of the drug. Enhanced therapeutic efficacy was observed against 4 different cancer cell lines.![]()
Collapse
Affiliation(s)
- Srishti Agarwal
- Bio Nano Electronics Research Center
- Graduate School of Interdisciplinary New Science
- Toyo University
- Kawagoe
- Japan
| | - M. Sheikh Mohamed
- Bio Nano Electronics Research Center
- Graduate School of Interdisciplinary New Science
- Toyo University
- Kawagoe
- Japan
| | - Sreejith Raveendran
- School of Pharmacy and Biomolecular Sciences
- University of Brighton
- Brighton
- UK
| | - Ankit K. Rochani
- Jefferson College of Pharmacy
- Department of Pharmaceutical Science
- Thomas Jefferson University
- Philadelphia
- USA
| | - Toru Maekawa
- Bio Nano Electronics Research Center
- Graduate School of Interdisciplinary New Science
- Toyo University
- Kawagoe
- Japan
| | - D. Sakthi Kumar
- Bio Nano Electronics Research Center
- Graduate School of Interdisciplinary New Science
- Toyo University
- Kawagoe
- Japan
| |
Collapse
|
28
|
Mehmood T, Maryam A, Tian X, Khan M, Ma T. Santamarine Inhibits NF-кB and STAT3 Activation and Induces Apoptosis in HepG2 Liver Cancer Cells via Oxidative Stress. J Cancer 2017; 8:3707-3717. [PMID: 29151958 PMCID: PMC5688924 DOI: 10.7150/jca.20239] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2017] [Accepted: 07/15/2017] [Indexed: 01/03/2023] Open
Abstract
Sesquiterpene lactones have long been used in traditional Chinese medicines to treat inflammatory diseases. Recently, sesquiterpene lactone family compounds have been recognized as potential anticancer agents. Thus, it is necessary to explore new sesquiterpene lactones and their antitumor mechanism for cancer treatments. In the present study, we have explored the potential anti-cancer activity of a novel sesquiterpene lactone compound “santamarine” (STM) in HepG2 cells. It inhibited proliferation and induced apoptosis dose-dependently with IC50 ~ 70 μM. Induction of apoptosis was found to be linked with increased reactive oxygen species (ROS) generation, decreased activity of thioredoxin reductase (TrxR), glutathione (GSH) depletion, mitochondrial membrane potential (ΔΨm) dissipation, Bcl-2 family proteins modulation, cytochrome c release, caspases-9, -8 and -3 activation and PARP cleavage. Further mechanistic study demonstrated that STM inhibited the constitutive and TNF-α-induced translocation of NF-кB into nucleus by decreasing phosphorylation of IkB-α. Moreover, STM inhibited STAT3 activation by decreasing phosphorylation at tyrosine705. NAC pretreatment reversed the effect of STM-mediated cell death, NF-кB inhibition and blockage of STAT3 activity, indicating the involvement of oxidative stress in STM-mediated anticancer activity. Further studies are needed to explore the exact molecular mechanism of STM-induced apoptosis to develop it into a lead for treatment of liver cancer in future.
Collapse
Affiliation(s)
- Tahir Mehmood
- College of Basic Medical Sciences, Dalian Medical University, Dalian, Liaoning 116044, P.R. China
| | - Amara Maryam
- College of Basic Medical Sciences, Dalian Medical University, Dalian, Liaoning 116044, P.R. China
| | - Xiangge Tian
- College of Basic Medical Sciences, Dalian Medical University, Dalian, Liaoning 116044, P.R. China
| | - Muhammad Khan
- College of Basic Medical Sciences, Dalian Medical University, Dalian, Liaoning 116044, P.R. China
| | - Tonghui Ma
- College of Basic Medical Sciences, Dalian Medical University, Dalian, Liaoning 116044, P.R. China
| |
Collapse
|
29
|
Gao L, Wang L, Sun Z, Li H, Wang Q, Yi C, Wang X. Morusin shows potent antitumor activity for human hepatocellular carcinoma in vitro and in vivo through apoptosis induction and angiogenesis inhibition. Drug Des Devel Ther 2017; 11:1789-1802. [PMID: 28670112 PMCID: PMC5481341 DOI: 10.2147/dddt.s138320] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
Hepatocellular carcinoma (HCC) is one of the most aggressive cancers with high mortality worldwide. Research and development of novel agents for HCC therapy is in demand, urgently. Morusin has been reported to exhibit potential cytotoxic activity in several cancer cell lines. However, whether it has potential antiangiogenic activity especially in HCC remains unclear. In the current study, we found that morusin exerted growth inhibition effects on human HCC cells (HepG2 and Hep3B) in vitro and human HCC cell (HepG2) xenografts in vivo. Moreover, apoptosis induction was observed in a dose-dependent manner after morusin treatment along with an increase in the expression of active caspase-3 and the Bax/Bcl-2 expression ratio. More importantly, morusin inhibited proliferation, migration, and tube formation of human umbilical vein endothelial cells (HUVECs) in vitro and downregulated angiogenic proteins in HCC cells and HUVECs. In vivo, tumor angiogenesis was also attenuated after morusin treatment. In addition, morusin suppressed constitutive as well as IL-6-induced STAT3 phosphorylation in HCC cells and corresponding tumor tissues. Overall, morusin has a potential anticancer effect on human HCC cells in vitro and in vivo by inducing apoptosis and inhibiting anti-angiogenesis. The corresponding mechanism might be associated with the attenuation of the IL-6/STAT3 signaling pathway. Morusin might serve as a promising novel anticancer agent in HCC therapy, and requires further study.
Collapse
Affiliation(s)
| | - Li Wang
- Laboratory of Lung Cancer, Lung Cancer Center
| | - Zhen Sun
- Laboratory of Experimental Oncology, West China Hospital, West China Clinical Medical School, Sichuan University, Chengdu, People's Republic of China
| | - Haiyan Li
- Laboratory of Experimental Oncology, West China Hospital, West China Clinical Medical School, Sichuan University, Chengdu, People's Republic of China
| | - Qiaoping Wang
- Laboratory of Experimental Oncology, West China Hospital, West China Clinical Medical School, Sichuan University, Chengdu, People's Republic of China
| | | | - Xiujie Wang
- Laboratory of Experimental Oncology, West China Hospital, West China Clinical Medical School, Sichuan University, Chengdu, People's Republic of China
| |
Collapse
|
30
|
Kang S, Kim EO, Kim SH, Lee JH, Ahn KS, Yun M, Lee SG. Morusin induces apoptosis by regulating expression of Bax and Survivin in human breast cancer cells. Oncol Lett 2017; 13:4558-4562. [PMID: 28599457 DOI: 10.3892/ol.2017.6006] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2015] [Accepted: 02/17/2017] [Indexed: 01/07/2023] Open
Abstract
Morusin which has been isolated from the root bark of Morus alba L. (Moraceae) has previously demonstrated anticancer activity in various types of cancer cells such as hepatocellular carcinoma, glioma and prostate cancer. However, the effect of morusin on breast cancer cells remains unclear. In the present study, the potential of morusin as an anti-cancer agent in breast cancer was investigated. The results of the present study revealed that the treatment of morusin induced cell death in various human breast cancer cell lines, but exhibited little effect on normal human breast epithelial cells. In Annexin V-propidium iodide double staining assays, morusin significantly increased apoptosis in a dose-dependent manner in human breast cancer cells. The apoptosis marker proteins cleaved caspase 3 and 9 were consistently upregulated following treatment of cells with morusin in a time- and dose-dependent manner. Furthermore, morusin was demonstrated to modulate the expression of the anti-apoptotic protein Survivin and pro-apoptotic protein B-cell lymphoma 2-associated-x protein (Bax) in human breast cancer cells. These results indicate that morusin induces apoptosis by suppressing Survivin and inducing Bax proteins, suggesting that morusin is a potentially effective therapeutic agent for the treatment of patients with breast cancer.
Collapse
Affiliation(s)
- Sukmin Kang
- Department of Cancer Preventive Material Development, College of Korean Medicine, Kyung Hee University, Seoul 02447, Republic of Korea
| | - Eun-Ok Kim
- Department of Science in Korean Medicine, College of Korean Medicine, Kyung Hee University, Seoul 02447, Republic of Korea.,Korean Medicine Clinical Trial Center, Kyung Hee University Korean Medicine Hospital, Seoul 05006, Republic of Korea
| | - Sung-Hoon Kim
- Department of Cancer Preventive Material Development, College of Korean Medicine, Kyung Hee University, Seoul 02447, Republic of Korea.,Department of Science in Korean Medicine, College of Korean Medicine, Kyung Hee University, Seoul 02447, Republic of Korea
| | - Jun-Hee Lee
- Department of Sasang Constitutional Medicine, College of Korean Medicine, Kyung Hee University, Seoul 02447, Republic of Korea.,Korean Medicine Clinical Trial Center, Kyung Hee University Korean Medicine Hospital, Seoul 05006, Republic of Korea
| | - Kwang Seok Ahn
- Department of Cancer Preventive Material Development, College of Korean Medicine, Kyung Hee University, Seoul 02447, Republic of Korea.,Department of Science in Korean Medicine, College of Korean Medicine, Kyung Hee University, Seoul 02447, Republic of Korea
| | - Miyong Yun
- Department of Science in Korean Medicine, College of Korean Medicine, Kyung Hee University, Seoul 02447, Republic of Korea.,Department of Bioindustry and Bioresource Engineering, College of Life Sciences, Sejong University, Seoul 05006, Republic of Korea
| | - Seok-Geun Lee
- Department of Cancer Preventive Material Development, College of Korean Medicine, Kyung Hee University, Seoul 02447, Republic of Korea.,Department of Science in Korean Medicine, College of Korean Medicine, Kyung Hee University, Seoul 02447, Republic of Korea.,Korean Medicine Clinical Trial Center, Kyung Hee University Korean Medicine Hospital, Seoul 05006, Republic of Korea.,KHU-KIST Department of Converging Science and Technology, Kyung Hee University, Seoul 02447, Republic of Korea
| |
Collapse
|
31
|
Involvement of the antioxidative property of morusin in blocking phorbol ester-induced malignant transformation of JB6 P + mouse epidermal cells. Chem Biol Interact 2017; 264:34-42. [PMID: 28108223 DOI: 10.1016/j.cbi.2017.01.009] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2016] [Revised: 01/12/2017] [Accepted: 01/16/2017] [Indexed: 12/25/2022]
Abstract
Chemoprevention has been acknowledged as an important and practical strategy for managing cancer. We have previously synthesized morusin, a prenylated flavonoid that exhibits anti-cancer progression activity. In the present study, we evaluated the anti-cancer promotion potential of morusin by using the mouse epidermal JB6 P+ cell model. Extensive evidence shows that tumor promotion by phorbol esters is due to the stimulation of reactive oxygen species (ROS). Therefore, the effect of morusin on 12-O-tetradecanoylphorbol-13-acetate (TPA)-induced ROS production was assessed. Noncytotoxic concentrations of morusin were found to dose-dependently reduce TPA-induced ROS production. Moreover, morusin inhibited TPA-induced activator protein-1 (AP-1) and nuclear factor-kappa B (NF-κB) activation, which can mediate cell proliferation and malignant transformation. Furthermore, morusin inhibited the TPA upregulation of cyclooxygenase 2 (COX-2), which may be regulated by AP-1 and NF-κB. In addition, noncytotoxic concentrations of morusin reduced the TPA-promoted cell growth of JB6 P+ cells and inhibited TPA-induced malignant properties, such as cytoskeletal rearrangement and cell migration of JB6 P+ cells. Similar to the effects of glutathione (GSH) pretreatment, morusin inhibited TPA-induced expression of N-cadeherin and vimentin, which are malignant cell surface proteins. Finally, morusin treatment dose-dependently suppressed the TPA-induced anchorage-independent cell transformation of JB6 P+ cells. In conclusion, our results evidence that morusin possesses anti-cancer promotion potential because of its antioxidant property, which mediates multiple transformation-associated gene expression.
Collapse
|
32
|
Yin X, Yu XW, Zhu P, Zhang YM, Zhang XH, Wang F, Zhang JJ, Yan W, Xi Y, Wan JB, Kang JX, Zou ZQ, Bu SZ. Endogenously synthesized n-3 fatty acids in fat-1 transgenic mice prevent melanoma progression by increasing E-cadherin expression and inhibiting β-catenin signaling. Mol Med Rep 2016; 14:3476-84. [PMID: 27573698 DOI: 10.3892/mmr.2016.5639] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2015] [Accepted: 07/13/2016] [Indexed: 11/06/2022] Open
Abstract
Malignant melanoma is the most lethal form of skin cancer. Although preclinical studies have shown that n-3 polyunsaturated fatty acids (PUFAs) are beneficial for prevention of melanoma, the molecular mechanisms underlying the protective effects of n‑3 PUFAs on melanoma remain largely unknown. In the present study, endogenously increased levels of n-3 PUFAs in the tumor tissues of omega‑3 fatty acid desaturase (fat‑1) transgenic mice was associated with a reduction in the growth rate of melanoma xenografts. This reduction in tumor growth in fat‑1 mice compared with wild‑type controls may have been associated, in part, to the: i) Increased expression of E‑cadherin and the reduced expression of its transcriptional repressors, the zinc finger E‑box binding homeobox 1 and snail family transcriptional repressor 1; ii) significant repression of the epidermal growth factor receptor/Akt/β‑catenin signaling pathway; and iii) formation of significant levels of n‑3 PUFA‑derived lipid mediators, particularly resolvin D2 and E1, maresin 1 and 15‑hydroxyeicosapentaenoic acid. In addition, vitamin E administration counteracted n‑3 PUFA‑induced lipid peroxidation and enhanced the antitumor effect of n‑3 PUFAs, which suggests that the protective role of n‑3 PUFAs against melanoma is not mediated by n‑3 PUFAs‑induced lipid peroxidation. These results highlight a potential role of n‑3 PUFAs supplementation for the chemoprevention of melanoma in high‑risk individuals, and as a putative adjuvant agent in the treatment of malignant melanoma.
Collapse
Affiliation(s)
- Xuan Yin
- Medical School, Ningbo University, Ningbo, Zhejiang 315211, P.R. China
| | - Xiong-Wei Yu
- Medical School, Ningbo University, Ningbo, Zhejiang 315211, P.R. China
| | - Pan Zhu
- Medical School, Ningbo University, Ningbo, Zhejiang 315211, P.R. China
| | - Yuan-Ming Zhang
- Medical School, Ningbo University, Ningbo, Zhejiang 315211, P.R. China
| | - Xiao-Hong Zhang
- Medical School, Ningbo University, Ningbo, Zhejiang 315211, P.R. China
| | - Feng Wang
- Clinical Laboratory, Lihuili Hospital, Ningbo, Zhejiang 315040, P.R. China
| | - Jin-Jie Zhang
- Maritime Faculty, Ningbo University, Ningbo, Zhejiang 315211, P.R. China
| | - Wang Yan
- Neurosurgery Department, Second Hospital of Ningbo, Ningbo, Zhejiang 315010, P.R. China
| | - Yang Xi
- Medical School, Ningbo University, Ningbo, Zhejiang 315211, P.R. China
| | - Jian-Bo Wan
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macau, SAR 519000, P.R. China
| | - Jing-Xuan Kang
- Laboratory for Lipid Medicine and Technology, Massachusetts General Hospital and Harvard Medical School, Boston, MA 02114, USA
| | - Zu-Quan Zou
- Medical School, Ningbo University, Ningbo, Zhejiang 315211, P.R. China
| | - Shi-Zhong Bu
- Medical School, Ningbo University, Ningbo, Zhejiang 315211, P.R. China
| |
Collapse
|
33
|
Park D, Ha IJ, Park SY, Choi M, Lim SL, Kim SH, Lee JH, Ahn KS, Yun M, Lee SG. Morusin Induces TRAIL Sensitization by Regulating EGFR and DR5 in Human Glioblastoma Cells. JOURNAL OF NATURAL PRODUCTS 2016; 79:317-323. [PMID: 26829656 DOI: 10.1021/acs.jnatprod.5b00919] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/05/2023]
Abstract
Glioblastoma is one of the most malignant primary tumors, and the prognosis for glioblastoma patients remains poor. Tumor-necrosis-factor-related apoptosis-inducing ligand (TRAIL) is considered a promising anticancer agent due to its remarkable ability to selectively kill tumor cells. However, since many cancers are resistant to TRAIL, strategies to overcome resistance are required for the successful use of TRAIL in the clinic. In the present study, the potential of morusin as a TRAIL sensitizer in human glioblastoma cells was evaluated. Treatment with TRAIL or morusin alone showed weak cytotoxicity in human glioblastoma cells. However, combination treatment of TRAIL with morusin synergistically decreased cell viability and increased apoptosis compared with single treatment. Morusin induced expression of death receptor 5 (DR5), but not DR4 or decoy receptors (DcR1 and DcR2). Furthermore, morusin significantly decreased anti-apoptotic molecules survivin and XIAP. In addition, morusin reduced expression of EGFR and PDFGR as well as phosphorylation of STAT3, possibly mediating down-regulation of survivin and XIAP. Together these results suggest that morusin enhances TRAIL sensitivity in human glioblastoma cells through regulating expression of DR5 and EGFR. Therefore, the combination treatment of TRAIL and morusin may be a new therapeutic strategy for malignant glioma patients.
Collapse
Affiliation(s)
| | - In Jin Ha
- Korean Medicine Clinical Trial Center, Kyung Hee University Korean Medicine Hospital , Seoul 02447, Republic of Korea
| | | | | | | | | | - Jun-Hee Lee
- Korean Medicine Clinical Trial Center, Kyung Hee University Korean Medicine Hospital , Seoul 02447, Republic of Korea
| | | | - Miyong Yun
- Korean Medicine Clinical Trial Center, Kyung Hee University Korean Medicine Hospital , Seoul 02447, Republic of Korea
| | - Seok-Geun Lee
- Korean Medicine Clinical Trial Center, Kyung Hee University Korean Medicine Hospital , Seoul 02447, Republic of Korea
| |
Collapse
|
34
|
Ji T, Li J, Su SL, Zhu ZH, Guo S, Qian DW, Duan JA. Identification and Determination of the Polyhydroxylated Alkaloids Compounds with α-Glucosidase Inhibitor Activity in Mulberry Leaves of Different Origins. Molecules 2016; 21:molecules21020206. [PMID: 26867190 PMCID: PMC6274138 DOI: 10.3390/molecules21020206] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2016] [Revised: 02/03/2016] [Accepted: 02/04/2016] [Indexed: 01/26/2023] Open
Abstract
Mulberry leaves have commonly been utilized in China as a herbal medicine for the treatment of diabetes for thousands of years. To evaluate the quality, an ultra-high performance liquid chromatography coupled with quadrupole time of flight mass spectrometry (UPLC-Q-TOF/MS) method was developed for identification of polyhydroxylated alkaloids with α-glucosidase inhibitor activity in mulberry leaf. As a result, five alkaloid compounds were identified or tentatively characterized. Among them, the compound 1-deoxynojirimycin (DNJ) was selected as the most typical and active chemical marker and quantified using an improved high performance liquid chromatography (HPLC) normal phase coupled with evaporative light scattering detector (ELSD) method. The developed method was fully validated in terms of linearity, sensitivity, precision and repeatability, as well as recovery, and subsequently applied to evaluate twenty-nine batches of mulberry leaves from different collections. From the analytical data it was discovered that the average content of DNJ is 1.53 mg/g, while the total contents of DNJ in the 29 mulberry leaf sample ranged from 0.20 to 3.88 mg/g, which suggested remarkable differences, although it reached the highest levels in early August. These data may provide an important reference for the quality of mulberry leaves used as herbal medicine for the treatment of diabetes or as a material to obtain the DNJ of α-glucosidase inhibitor or as a functional food.
Collapse
Affiliation(s)
- Tao Ji
- Jiangsu Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, Nanjing University of Chinese Medicine, Nanjing 210023, China.
| | - Jun Li
- Jiangsu Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, Nanjing University of Chinese Medicine, Nanjing 210023, China.
| | - Shu-Lan Su
- Jiangsu Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, Nanjing University of Chinese Medicine, Nanjing 210023, China.
| | - Zhen-Hua Zhu
- Jiangsu Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, Nanjing University of Chinese Medicine, Nanjing 210023, China.
| | - Sheng Guo
- Jiangsu Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, Nanjing University of Chinese Medicine, Nanjing 210023, China.
| | - Da-Wei Qian
- Jiangsu Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, Nanjing University of Chinese Medicine, Nanjing 210023, China.
| | - Jin-Ao Duan
- Jiangsu Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, Nanjing University of Chinese Medicine, Nanjing 210023, China.
| |
Collapse
|
35
|
Tang Q, Lu M, Chen D, Liu P. Combination of PEI-Mn0.5Zn0.5Fe2O4 nanoparticles and pHsp 70-HSV-TK/GCV with magnet-induced heating for treatment of hepatoma. Int J Nanomedicine 2015; 10:7129-43. [PMID: 26604760 PMCID: PMC4655962 DOI: 10.2147/ijn.s92179] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Background To explore a new combination of thermal treatment and gene therapy for hepatoma, a heat-inducible herpes simplex virus thymidine kinase/ganciclovir (HSV-TK/GCV) gene therapy system was developed in which thermal energy generated by Mn0.5Zn0.5Fe2O4 nanoparticles (MZF-NPs) under an alternating magnetic field was used to activate gene expression. Methods First, a recombinant eukaryotic plasmid, pHsp 70-HSV-TK, was constructed as a target gene for therapy. This recombinant plasmid was used to transfect SMMC-7721 hepatoma cells and the gene expression was evaluated. Magnet-induced heating was then applied to cells to assess the antihepatoma effects of the polyethylenimine (PEI)-MZF-NPs/pHsp 70-HSV-TK/GCV complex, in vitro and in vivo. Results The results showed that cells were successfully transfected with pHsp 70-HSV-TK and that expression levels of HSV-TK remained stable. Both in vitro and in vivo results indicated that the combination of gene therapy and heat treatment resulted in better therapeutic effects than heating-alone group. The rates of apoptosis and necrosis in the combined treatment group were 49.0% and 7.21%, respectively. The rate of inhibition of cell proliferation in the combined treatment group was significantly higher (87.5%) than that in the heating-alone group (65.8%; P<0.01). The tumor volume and mass inhibition rates of the combined treatment group were 91.3% and 87.91%, respectively, and were significantly higher than the corresponding rates of the heating-alone group (70.41% and 57.14%; P<0.01). The expression levels of Stat3 and Bcl-xL messenger RNA and p-Stat3 and Bcl-xL protein in the combined treatment group were significantly lower than those in the other groups (P<0.01). The expression levels of Bax messenger RNA and protein in the recombinant plasmid group were significantly higher than those in the other groups (P<0.01). Conclusion It can therefore be concluded that the combined application of heat treatment and gene therapy has a synergistic and complementary effect and that PEI-MZF-NPs can simultaneously act both as a nonviral gene vector and a magnet-induced source of heat, thereby representing a viable approach for the treatment of cancer.
Collapse
Affiliation(s)
- Qiusha Tang
- School of Medicine, Southeast University, Nanjing, People's Republic of China
| | - Mudan Lu
- Genetic Laboratory, Wuxi Hospital for Maternal and Child Health Care, the Affiliated Hospital of Nanjing Medical University, Wuxi, People's Republic of China
| | - Daozhen Chen
- Genetic Laboratory, Wuxi Hospital for Maternal and Child Health Care, the Affiliated Hospital of Nanjing Medical University, Wuxi, People's Republic of China
| | - Peidang Liu
- School of Medicine, Southeast University, Nanjing, People's Republic of China
| |
Collapse
|
36
|
Li H, Wang Q, Dong L, Liu C, Sun Z, Gao L, Wang X. Morusin suppresses breast cancer cell growth in vitro and in vivo through C/EBPβ and PPARγ mediated lipoapoptosis. J Exp Clin Cancer Res 2015; 34:137. [PMID: 26538209 PMCID: PMC4634597 DOI: 10.1186/s13046-015-0252-4] [Citation(s) in RCA: 52] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2015] [Accepted: 10/28/2015] [Indexed: 02/05/2023] Open
Abstract
Background Breast cancer is the most fatal malignant cancer among women, the conventional therapeutic modalities of it are limited. Morusin possesses cytotoxicity against some cancer cells in vitro. The purpose of this study is to test the growth inhibition effect of morusin on human breast cancer growth in vitro and in vivo and to explore the potential mechanism of its action. Methods The growth inhibition effect of morusin on human breast cancer cells in vitro and in vivo were tested by cell cytotoxicity, colony formation inhibition, adipogenic differentiation, apoptosis induction, and tumor growth inhibition in vivo assays. The potential molecular mechanisms underlying the growth inhibition effect of morusin on human breast cancer cells in vitro and in vivo were investigated with Western blotting evaluation of expression levels of transcription factors, C/EBPβ and PPARγ, adipogenic and apoptotic proteins in morusin treated breast cancer cells and tumor tissues. Results Morusin inhibited breast cancer cells growth in vitro and in vivo; it induced adipogenic differentiation, apoptosis and lipoapoptosis of cancer cells. Conclusions Morusin has the potential to inhibit human breast cancer cell growth in vitro and in vivo through C/EBPβ and PPARγ mediated lipoapoptosis.
Collapse
Affiliation(s)
- Haiyan Li
- Laboratory of Experimental Oncology,State Key Laboratory of Biotherapy/ Collaborative Innovation Center for Biotherapy, West China Hospital, West China Clinical Medical School, Sichuan University, Chengdu, 610041, China
| | - Qiaoping Wang
- Laboratory of Experimental Oncology,State Key Laboratory of Biotherapy/ Collaborative Innovation Center for Biotherapy, West China Hospital, West China Clinical Medical School, Sichuan University, Chengdu, 610041, China
| | - Lihua Dong
- Laboratory of Experimental Oncology,State Key Laboratory of Biotherapy/ Collaborative Innovation Center for Biotherapy, West China Hospital, West China Clinical Medical School, Sichuan University, Chengdu, 610041, China
| | - Chuanlan Liu
- Laboratory of Experimental Oncology,State Key Laboratory of Biotherapy/ Collaborative Innovation Center for Biotherapy, West China Hospital, West China Clinical Medical School, Sichuan University, Chengdu, 610041, China
| | - Zhen Sun
- Laboratory of Experimental Oncology,State Key Laboratory of Biotherapy/ Collaborative Innovation Center for Biotherapy, West China Hospital, West China Clinical Medical School, Sichuan University, Chengdu, 610041, China
| | - Ling Gao
- Laboratory of Experimental Oncology,State Key Laboratory of Biotherapy/ Collaborative Innovation Center for Biotherapy, West China Hospital, West China Clinical Medical School, Sichuan University, Chengdu, 610041, China
| | - Xiujie Wang
- Laboratory of Experimental Oncology,State Key Laboratory of Biotherapy/ Collaborative Innovation Center for Biotherapy, West China Hospital, West China Clinical Medical School, Sichuan University, Chengdu, 610041, China.
| |
Collapse
|
37
|
Shi X, Yang S, Zhang G, Song Y, Su D, Liu Y, Guo F, Shan L, Cai J. The different metabolism of morusin in various species and its potent inhibition against UDP-glucuronosyltransferase (UGT) and cytochrome p450 (CYP450) enzymes. Xenobiotica 2015; 46:467-76. [PMID: 26372370 DOI: 10.3109/00498254.2015.1086839] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
1. The aim of this study was to investigate the inhibitory effect of morusin on Glucuronosyltransferase (UGT) isoforms and cytochrome P450 enzymes (CYP450s). We also investigated the metabolism of morusin in human, rat, dog, monkey, and minipig liver microsomes. 2. 100 μM of morusin exhibited strong inhibition on all UGTs and CYP450s. The half inhibition concentration (IC50) values for CYP3A4, CYP1A2, CYP2C9, CYP2E1, UGT1A6, UGT1A7, and UGT1A8 were 2.13, 1.27, 3.18, 9.28, 4.23, 0.98, and 3.00 μM, and the inhibition kinetic parameters (Ki) were 1.34, 1.16, 2.98, 6.23, 4.09, 0.62, and 2.11 μM, respectively. 3. Metabolism of morusin exhibited significant species differences. The quantities of M1 from minipig, monkey, dog, and rat were 7.8, 11.9, 2.0, and 6.3-fold of human levels. The Km values in HLMs, RLMs, MLMs, DLMs, and PLMs were 7.84, 22.77, 14.32, 9.13, and 22.83 μM, and Vmax for these species were 0.09, 1.23, 1.43, 0.15, and 0.75 nmol/min/mg, respectively. CLint (intrinsic clearance) values (Vmax/Km) for morusin obeyed the following order: monkey > rat > minipig > dog > human. CLH (hepatic clearance) values for humans, dogs, and rats were calculated to be 8.28, 17.38, and 35.12 mL/min/kg body weight, respectively. 4. This study provided vital information to understand the inhibitory potential and metabolic behavior of morusin among various species.
Collapse
Affiliation(s)
- Xianbao Shi
- a Department of Pharmaceutical Toxicology , School of Pharmacy, China Medical University , Shenyang , China .,b Department of Pharmacy , The First Affiliated Hospital of Liaoning Medical University , Jinzhou , China
| | - Shuman Yang
- c Department of Internal Medicine/Community Health Sciences , University of Manitoba , Winnipeg , Manitoba , Canada
| | - Gang Zhang
- d Department of Medicinal Chemistry , Virginia Commonwealth University , Richmond , VA , USA , and
| | - Yonggui Song
- e National Pharmaceutical Engineering Center for Solid Preparation in Chinese Herbal Medicine, Jiangxi University of Traditional Chinese Medicine , Nanchang , China
| | - Dan Su
- e National Pharmaceutical Engineering Center for Solid Preparation in Chinese Herbal Medicine, Jiangxi University of Traditional Chinese Medicine , Nanchang , China
| | - Yali Liu
- e National Pharmaceutical Engineering Center for Solid Preparation in Chinese Herbal Medicine, Jiangxi University of Traditional Chinese Medicine , Nanchang , China
| | - Feng Guo
- a Department of Pharmaceutical Toxicology , School of Pharmacy, China Medical University , Shenyang , China
| | - Lina Shan
- a Department of Pharmaceutical Toxicology , School of Pharmacy, China Medical University , Shenyang , China .,b Department of Pharmacy , The First Affiliated Hospital of Liaoning Medical University , Jinzhou , China
| | - Jiqun Cai
- a Department of Pharmaceutical Toxicology , School of Pharmacy, China Medical University , Shenyang , China
| |
Collapse
|
38
|
Ahn JH, Choi YS, Choi JH. Leptin promotes human endometriotic cell migration and invasion by up-regulating MMP-2 through the JAK2/STAT3 signaling pathway. Mol Hum Reprod 2015; 21:792-802. [PMID: 26153131 DOI: 10.1093/molehr/gav039] [Citation(s) in RCA: 65] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2015] [Accepted: 06/30/2015] [Indexed: 12/23/2022] Open
Abstract
Despite evidence that leptin may play a role in the pathogenesis of endometriosis, the specific function of leptin in the migration and invasion of endometriotic cells is not well characterized. In this study, we investigated the effect of leptin on the migration, invasion and matrix metalloproteinase (MMP) expression levels of human endometriotic cells. We found that leptin stimulated the migration and invasion of endometriotic cells (11Z, 12Z and 22B) in a dose-dependent manner. Leptin receptor (ObR) siRNA significantly inhibited the migration and invasion induced by leptin in 11Z and 12Z cells. Leptin-induced migration and invasion were significantly attenuated by pretreatment with SB-3CT, a specific gelatinase (MMP-2 and MMP-9) inhibitor. In addition, leptin-induced increases in the mRNA and protein expression and enzyme activity of MMP-2 in 11Z and 12Z cells. Selectively inhibiting MMP-2 using siRNA and an inhibitor (GM6003), impaired the ability of leptin to stimulate the migration and invasion of endometriotic cells, suggesting that MMP-2 plays an essential role in leptin-induced migration and invasion. Janus Kinase 2/Signal Transducer and Activator of Transcription 3 (JAK2/STAT3) inhibitor (AG490) significantly inhibited the migration, invasion and MMP-2 expression induced by leptin in endometriotic cells. Furthermore, the Extracellular signal-Regulated Kinase inhibitor PD98059 neutralized the migration and invasion promoting effects of leptin. Taken together, these results suggest that leptin may contribute to the migration and invasion abilities of endometriotic cells via the up-regulation of MMP-2 through an ObR-dependent JAK2/STAT3 signaling pathway.
Collapse
Affiliation(s)
- Ji-Hye Ahn
- Department of Life & Nanopharmaceutical Science, Kyung Hee University, Seoul, South Korea Division of Molecular Biology, College of Pharmacy, Kyung Hee University, Seoul, South Korea
| | - Youn Seok Choi
- Department of Obstetrics and Gynecology, School of Medicine, Catholic University of Daegu, Daegu, South Korea
| | - Jung-Hye Choi
- Department of Life & Nanopharmaceutical Science, Kyung Hee University, Seoul, South Korea Division of Molecular Biology, College of Pharmacy, Kyung Hee University, Seoul, South Korea
| |
Collapse
|