1
|
Spanoudaki M, Chrysafi M, Papadopoulou SK, Tsourouflis G, Pritsa A, Giaginis C. Naturally Occurring Compounds Targeting Peroxisome Proliferator Receptors: Potential Molecular Mechanisms and Future Perspectives for Promoting Human Health. APPLIED SCIENCES 2024; 14:9994. [DOI: 10.3390/app14219994] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/06/2025]
Abstract
Background: Peroxisome-proliferator-activated receptors (PPARs) constitute nuclear transcription factors controlling gene expression associated with cell growth and proliferation, diverse proteins, lipids, and glucose metabolism, being related to several other pathophysiological states such as metabolic disorders, atherogenesis, carcinogenesis, etc. The present survey aims to analyze the natural compounds that can act as agonists for the PPAR-α, PPAR-β/δ, and PPAR-γ system targeting, highlighting how the amazing biochemical diversity of natural compounds can yield new insights into this “hotspot” of the scientific field. Methods: A narrative review was performed by searching the recent international literature for the last two decades in the most authoritative scientific databases, like PubMed, Scopus, Web of Science, and Embase, using appropriate keywords. Results: Several natural compounds and/or their synthetic derivatives can act as ligands of PPARs, stimulating their transcriptional activity and enabling their use as preventive and/or therapeutic agents for several disease states, such as inflammation, oxidative stress, metabolic disturbances, atherogenesis, and carcinogenesis. Although synthetic compounds are increasingly used as drugs to manage health problems, serious side effects have been observed, while their natural analogues exhibit only few minor side effects. Conclusions: Further clinical studies on natural compounds such as ligands of PPARs and the evaluation of the related molecular mechanisms are needed to implement an effective strategy concerning the pharmaco-technology, food chemistry, and nutrition to introduce them as part of clinical and dietary practice.
Collapse
Affiliation(s)
- Maria Spanoudaki
- Department of Nutritional Sciences and Dietetics, School of Health Sciences, International Hellenic University, 57400 Thessaloniki, Greece
- 424 General Military Hospital of Thessaloniki, 54621 Thessaloniki, Greece
| | - Maria Chrysafi
- Department of Food Science and Nutrition, School of Environment, University of Aegean, 81400 Lemnos, Greece
| | - Sousana K. Papadopoulou
- Department of Nutritional Sciences and Dietetics, School of Health Sciences, International Hellenic University, 57400 Thessaloniki, Greece
| | - Gerasimos Tsourouflis
- Second Department of Propedeutic Surgery, Medical School, University of Athens, 11527 Athens, Greece
| | - Agathi Pritsa
- Department of Nutritional Sciences and Dietetics, School of Health Sciences, International Hellenic University, 57400 Thessaloniki, Greece
| | - Constantinos Giaginis
- Department of Food Science and Nutrition, School of Environment, University of Aegean, 81400 Lemnos, Greece
| |
Collapse
|
2
|
Song C, Wang Z, Cao J, Dong Y, Chen Y. Hesperetin alleviates aflatoxin B1 induced liver toxicity in mice: Modulating lipid peroxidation and ferritin autophagy. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2024; 284:116854. [PMID: 39142113 DOI: 10.1016/j.ecoenv.2024.116854] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/17/2024] [Revised: 08/02/2024] [Accepted: 08/06/2024] [Indexed: 08/16/2024]
Abstract
One of the ways Aflatoxin B1 damages the liver is through ferroptosis. Ferroptosis is characterized by the build-up of lipid peroxides and reactive oxygen species (ROS) due to an excess of iron. Dietary supplements have emerged as a promising strategy for treating ferroptosis in the liver. The flavonoid component hesperetin, which is mostly present in citrus fruits, has a number of pharmacological actions, such as those against liver fibrosis, cancer, and hyperglycemia. However, hesperetin's effects and mechanisms against hepatic ferroptosis are still unknown. In this study, 24 male C57BL/6 J mice were randomly assigned to CON, AFB1 (0.45 mg/kg/day), and AFB1+ hesperetin treatment groups (40 mg/kg/day). The results showed that hesperetin improved the structural damage of the mouse liver, down-regulated inflammatory factors (Cxcl1, Cxcl2, CD80, and F4/80), and alleviated liver fibrosis induced by aflatoxin B1. Hesperetin reduced hepatic lipid peroxidation induced by iron accumulation by up-regulating the levels of antioxidant enzymes (GPX4, GSH-Px, CAT, and T-AOC). It is worth noting that hesperetin not only improved lipid peroxidation but also maintained the dynamic balance of iron ions by reducing ferritin autophagy. Mechanistically, hesperetin's ability to regulate ferritin autophagy mostly depends on the PI3K/AKT/mTOR/ULK1 pathway. In AFB1-induced HepG2 cells, the addition of PI3K inhibitor (LY294002) and AKT inhibitor (Miransertib) confirmed that hesperetin regulated the PI3K/AKT/mTOR/ULK1 pathway to inhibit ferritin autophagy and reduced the degradation of ferritin in lysosomes. In summary, our results suggest that hesperetin not only regulates the antioxidant system but also inhibits AFB1-induced ferritin hyperautophagy, thereby reducing the accumulation of iron ions to mitigate lipid peroxidation. This work provides a fresh perspective on the mechanism behind hesperetin and AFB1-induced liver damage in mice.
Collapse
Affiliation(s)
- Chao Song
- College of Veterinary Medicine, China Agricultural University, Haidian, Beijing 100193, China
| | - Zixu Wang
- College of Veterinary Medicine, China Agricultural University, Haidian, Beijing 100193, China
| | - Jing Cao
- College of Veterinary Medicine, China Agricultural University, Haidian, Beijing 100193, China
| | - Yulan Dong
- College of Veterinary Medicine, China Agricultural University, Haidian, Beijing 100193, China
| | - Yaoxing Chen
- College of Veterinary Medicine, China Agricultural University, Haidian, Beijing 100193, China.
| |
Collapse
|
3
|
Sun LJ, Chen X, Zhu S, Xu JJ, Li XF, Diao SX, Yang YL, Liu JY, Wang JN, Sun YY, Huang C, Meng XM, Wang H, Lv XW, Li J. Hesperetin derivative 2a inhibits lipopolysaccharide-induced acute liver injury in mice via downregulation of circDcbld2. Acta Pharmacol Sin 2024; 45:354-365. [PMID: 37845343 PMCID: PMC10789727 DOI: 10.1038/s41401-023-01171-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/05/2023] [Accepted: 09/14/2023] [Indexed: 10/18/2023]
Abstract
Acute liver injury (ALI) is a complex, life-threatening inflammatory liver disease, and persistent liver damage leads to rapid decline and even failure of liver function. However, the pathogenesis of ALI is still not fully understood, and no effective treatment has been discovered. Recent evidence shows that many circular RNAs (circRNAs) are associated with the occurrence of liver diseases. In this study we investigated the mechanisms of occurrence and development of ALI in lipopolysaccharide (LPS)-induced ALI mice. We found that expression of the circular RNA circDcbld2 was significantly elevated in the liver tissues of ALI mice and LPS-treated RAW264.7 cells. Knockdown of circDcbld2 markedly alleviates LPS-induced inflammatory responses in ALI mice and RAW264.7 cells. We designed and synthesized a series of hesperidin derivatives for circDcbld2, and found that hesperetin derivative 2a (HD-2a) at the concentrations of 2, 4, 8 μM effectively inhibited circDcbld2 expression in RAW264.7 cells. Administration of HD-2a (50, 100, 200 mg/kg. i.g., once 24 h in advance) effectively relieved LPS-induced liver dysfunction and inflammatory responses. RNA sequencing analysis revealed that the anti-inflammatory and hepatoprotective effects of HD-2a were mediated through downregulating circDcbld2 and suppressing the JAK2/STAT3 pathway. We conclude that HD-2a downregulates circDcbld2 to inhibit the JAK2/STAT3 pathway, thereby inhibiting the inflammatory responses in ALI. The results suggest that circDcbld2 may be a potential target for the prevention and treatment of ALI, and HD-2a may have potential as a drug for the treatment of ALI.
Collapse
Affiliation(s)
- Li-Jiao Sun
- Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, Anhui Institute of Innovative Drugs, School of Pharmacy, Anhui Medical University, Hefei, 230032, China
- The Key Laboratory of Anti-inflammatory and Immune Medicines, Anhui Medical University, Ministry of Education, Hefei, 230032, China
- Institute for Liver Diseases of Anhui Medical University, ILD-AMU, Anhui Medical University, Hefei, 230032, China
| | - Xin Chen
- Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, Anhui Institute of Innovative Drugs, School of Pharmacy, Anhui Medical University, Hefei, 230032, China
- The Key Laboratory of Anti-inflammatory and Immune Medicines, Anhui Medical University, Ministry of Education, Hefei, 230032, China
- Institute for Liver Diseases of Anhui Medical University, ILD-AMU, Anhui Medical University, Hefei, 230032, China
| | - Sai Zhu
- Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, Anhui Institute of Innovative Drugs, School of Pharmacy, Anhui Medical University, Hefei, 230032, China
- Department of Nephropathy, The First Affiliated Hospital of Anhui Medical University, Hefei, 230022, China
| | - Jin-Jin Xu
- Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, Anhui Institute of Innovative Drugs, School of Pharmacy, Anhui Medical University, Hefei, 230032, China
- The Key Laboratory of Anti-inflammatory and Immune Medicines, Anhui Medical University, Ministry of Education, Hefei, 230032, China
- Institute for Liver Diseases of Anhui Medical University, ILD-AMU, Anhui Medical University, Hefei, 230032, China
| | - Xiao-Feng Li
- Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, Anhui Institute of Innovative Drugs, School of Pharmacy, Anhui Medical University, Hefei, 230032, China
- The Key Laboratory of Anti-inflammatory and Immune Medicines, Anhui Medical University, Ministry of Education, Hefei, 230032, China
| | - Shao-Xi Diao
- Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, Anhui Institute of Innovative Drugs, School of Pharmacy, Anhui Medical University, Hefei, 230032, China
- The Key Laboratory of Anti-inflammatory and Immune Medicines, Anhui Medical University, Ministry of Education, Hefei, 230032, China
- Institute for Liver Diseases of Anhui Medical University, ILD-AMU, Anhui Medical University, Hefei, 230032, China
| | - Ying-Li Yang
- Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, Anhui Institute of Innovative Drugs, School of Pharmacy, Anhui Medical University, Hefei, 230032, China
- The Key Laboratory of Anti-inflammatory and Immune Medicines, Anhui Medical University, Ministry of Education, Hefei, 230032, China
- Institute for Liver Diseases of Anhui Medical University, ILD-AMU, Anhui Medical University, Hefei, 230032, China
| | - Jin-Yu Liu
- Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, Anhui Institute of Innovative Drugs, School of Pharmacy, Anhui Medical University, Hefei, 230032, China
- The Key Laboratory of Anti-inflammatory and Immune Medicines, Anhui Medical University, Ministry of Education, Hefei, 230032, China
- Institute for Liver Diseases of Anhui Medical University, ILD-AMU, Anhui Medical University, Hefei, 230032, China
| | - Jia-Nan Wang
- Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, Anhui Institute of Innovative Drugs, School of Pharmacy, Anhui Medical University, Hefei, 230032, China
- The Key Laboratory of Anti-inflammatory and Immune Medicines, Anhui Medical University, Ministry of Education, Hefei, 230032, China
| | - Ying-Yin Sun
- Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, Anhui Institute of Innovative Drugs, School of Pharmacy, Anhui Medical University, Hefei, 230032, China
- Department of Oncology, The First Affiliated Hospital of Anhui Medical University, Hefei, 230032, China
| | - Cheng Huang
- Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, Anhui Institute of Innovative Drugs, School of Pharmacy, Anhui Medical University, Hefei, 230032, China
- The Key Laboratory of Anti-inflammatory and Immune Medicines, Anhui Medical University, Ministry of Education, Hefei, 230032, China
- Institute for Liver Diseases of Anhui Medical University, ILD-AMU, Anhui Medical University, Hefei, 230032, China
| | - Xiao-Ming Meng
- Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, Anhui Institute of Innovative Drugs, School of Pharmacy, Anhui Medical University, Hefei, 230032, China
- The Key Laboratory of Anti-inflammatory and Immune Medicines, Anhui Medical University, Ministry of Education, Hefei, 230032, China
| | - Hua Wang
- Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, Anhui Institute of Innovative Drugs, School of Pharmacy, Anhui Medical University, Hefei, 230032, China
- The Key Laboratory of Anti-inflammatory and Immune Medicines, Anhui Medical University, Ministry of Education, Hefei, 230032, China
- Institute for Liver Diseases of Anhui Medical University, ILD-AMU, Anhui Medical University, Hefei, 230032, China
| | - Xiong-Wen Lv
- Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, Anhui Institute of Innovative Drugs, School of Pharmacy, Anhui Medical University, Hefei, 230032, China.
- The Key Laboratory of Anti-inflammatory and Immune Medicines, Anhui Medical University, Ministry of Education, Hefei, 230032, China.
- Institute for Liver Diseases of Anhui Medical University, ILD-AMU, Anhui Medical University, Hefei, 230032, China.
| | - Jun Li
- Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, Anhui Institute of Innovative Drugs, School of Pharmacy, Anhui Medical University, Hefei, 230032, China.
- The Key Laboratory of Anti-inflammatory and Immune Medicines, Anhui Medical University, Ministry of Education, Hefei, 230032, China.
- Institute for Liver Diseases of Anhui Medical University, ILD-AMU, Anhui Medical University, Hefei, 230032, China.
| |
Collapse
|
4
|
Gong P, Long H, Guo Y, Wang Z, Yao W, Wang J, Yang W, Li N, Xie J, Chen F. Chinese herbal medicines: The modulator of nonalcoholic fatty liver disease targeting oxidative stress. JOURNAL OF ETHNOPHARMACOLOGY 2024; 318:116927. [PMID: 37532073 DOI: 10.1016/j.jep.2023.116927] [Citation(s) in RCA: 19] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/27/2023] [Revised: 07/05/2023] [Accepted: 07/14/2023] [Indexed: 08/04/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Plants are a natural treasure trove; their secondary metabolites participate in several pharmacological processes, making them a crucial component in the synthesis of novel pharmaceuticals and serving as a reserve resource foundation in this process. Nonalcoholic fatty liver disease (NAFLD) is associated with the risk of progression to hepatitis and liver cancer. The "Treatise on Febrile Diseases," "Compendium of Materia Medica," and "Thousand Golden Prescriptions" have listed herbal remedies to treat liver diseases. AIM OF THE REVIEW Chinese herbal medicines have been widely used for the prevention and treatment of NAFLD owing to their efficacy and low side effects. The production of reactive oxygen species (ROS) during NAFLD, and the impact and potential mechanism of ROS on the pathogenesis of NAFLD are discussed in this review. Furthermore, common foods and herbs that can be used to prevent NAFLD, as well as the structure-activity relationships and potential mechanisms, are discussed. METHODS Web of Science, PubMed, CNKI database, Google Scholar, and WanFang database were searched for natural products that have been used to treat or prevent NAFLD in the past five years. The primary search was performed using the following keywords in different combinations in full articles: NAFLD, herb, natural products, medicine, and ROS. More than 400 research papers and review articles were found and analyzed in this review. RESULTS By classifying and discussing the literature, we obtained 86 herbaceous plants, 28 of which were derived from food and 58 from Chinese herbal medicines. The mechanism of NAFLD was proposed through experimental studies on thirteen natural compounds (quercetin, hesperidin, rutin, curcumin, resveratrol, epigallocatechin-3-gallate, salvianolic acid B, paeoniflorin, ginsenoside Rg1, ursolic acid, berberine, honokiol, emodin). The occurrence and progression of NAFLD could be prevented by natural antioxidants through several pathways to prevent ROS accumulation and reduce hepatic cell injuries caused by excessive ROS. CONCLUSION This review summarizes the natural products and routinely used herbs (prescription) in the prevention and treatment of NAFLD. Firstly, the mechanisms by which natural products improve NAFLD through antioxidant pathways are elucidated. Secondly, the potential of traditional Chinese medicine theory in improving NAFLD is discussed, highlighting the safety of food-medicine homology and the broader clinical potential of multi-component formulations in improving NAFLD. Aiming to provide theoretical basis for the prevention and treatment of NAFLD.
Collapse
Affiliation(s)
- Pin Gong
- School of Food and Biotechnological Engineering, Shaanxi University of Science and Technology, Xi'an, 710021, China
| | - Hui Long
- School of Food and Biotechnological Engineering, Shaanxi University of Science and Technology, Xi'an, 710021, China
| | - Yuxi Guo
- School of Food and Biotechnological Engineering, Shaanxi University of Science and Technology, Xi'an, 710021, China
| | - Zhineng Wang
- School of Food and Biotechnological Engineering, Shaanxi University of Science and Technology, Xi'an, 710021, China
| | - Wenbo Yao
- School of Food and Biotechnological Engineering, Shaanxi University of Science and Technology, Xi'an, 710021, China
| | - Jing Wang
- School of Food and Biotechnological Engineering, Shaanxi University of Science and Technology, Xi'an, 710021, China
| | - Wenjuan Yang
- School of Food and Biotechnological Engineering, Shaanxi University of Science and Technology, Xi'an, 710021, China
| | - Nan Li
- School of Food and Biotechnological Engineering, Shaanxi University of Science and Technology, Xi'an, 710021, China
| | - Jianwu Xie
- School of Food and Biotechnological Engineering, Shaanxi University of Science and Technology, Xi'an, 710021, China.
| | - Fuxin Chen
- School of Chemistry and Chemical Engineering, Xi'an University of Science and Technology, Xi'an, 710054, China.
| |
Collapse
|
5
|
Zhang S, Wang Y, Shan J, Qi X, Liu Q. Improved Bioavailability and Hepatoprotective Activity of Baicalein Via a Self-assembled Solutol HS15 Micelles System. Curr Drug Deliv 2024; 21:461-472. [PMID: 37282637 DOI: 10.2174/1567201820666230606163452] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2023] [Revised: 04/10/2023] [Accepted: 04/17/2023] [Indexed: 06/08/2023]
Abstract
BACKGROUND Baicalein (BA) is a flavonoid extract from the root of Scutellaria baicalensis Georgi with excellent biological activities, such as antioxidant and anti-inflammatory activities. However, its poor water solubility limits its further development. OBJECTIVE This study aims to prepare BA-loaded Solutol HS15 (HS15-BA) micelles, evaluate the bioavailability, and explore protective effects on carbon tetrachloride (CCl4) induced acute liver injury. METHODS The thin-film dispersion method was used to prepare HS15-BA micelles. The physicochemical, in vitro release, pharmacokinetics, and hepatoprotective effects of HS15-BA micelles were studied. RESULTS The optimal formulation showed a spherical shape by characterization of the transmission electron microscope (TEM) with an average small size (12.50 nm). The pharmacokinetic results illustrated that HS15-BA increased the oral bioavailability of BA. The in vivo results showed that HS15-BA micelles significantly inhibited the activity of the CCl4-induced liver injury marker enzymes aspartate transaminase (AST) and alanine transaminase (ALT). Also, CCl4 induced oxidative damage to liver tissue, leading to increased L-glutathione (GSH) and superoxide dismutase (SOD) activity and decreased malondialdehyde (MDA) activity, while HS15-BA significantly reversed the above changes. Moreover, BA also had a hepatoprotective effect through anti-inflammatory activity; the results of ELISA and RT-PCR revealed that HS15-BA pretreatment significantly inhibited the increase in the expression of inflammatory factors induced by CCl4. CONCLUSION In summary, our study confirmed that HS15-BA micelles enhanced the bioavailability of BA, and showed hepatoprotective effects through antioxidant and anti-inflammatory activities. HS15 could be considered a promising oral delivery carrier in treating liver disease.
Collapse
Affiliation(s)
- Shuna Zhang
- Department of Pharmacy, The Affiliated Hospital of Shandong University of Traditional Chinese Medicine, Jinan, 250011, China
| | - Ying Wang
- Department of Pharmacy, The Affiliated Hospital of Shandong University of Traditional Chinese Medicine, Jinan, 250011, China
| | - Jiaojiao Shan
- Department of Pharmacy, The Affiliated Hospital of Shandong University of Traditional Chinese Medicine, Jinan, 250011, China
| | - Xueju Qi
- College of Chemical Engineering, Qingdao University of Science and Technology, Qingdao 266042, China
| | - Qun Liu
- Department of Pharmacy, The Affiliated Hospital of Shandong University of Traditional Chinese Medicine, Jinan, 250011, China
| |
Collapse
|
6
|
Yuan F, Xia GQ, Cai JN, Lv X, Dai M. Hesperitin attenuates alcoholic steatohepatitis by regulating TLR4/NF-κB signaling in mice. Anal Biochem 2023; 682:115339. [PMID: 37805041 DOI: 10.1016/j.ab.2023.115339] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2023] [Revised: 09/22/2023] [Accepted: 10/04/2023] [Indexed: 10/09/2023]
Abstract
In the peel of citrus (Rutaceae) fruit, hesperitin (Hesp), a flavanone glycoside chemical, is found naturally. Hesp has been found to have a wide range of pharmacological actions, including anti-inflammatory, antioxidant, antiviral, and anticancer properties, according to earlier research. However, nothing is known regarding its function in alcoholic liver steatosis and inflammation. In this study, we employed a network pharmacology approach to identify the TLR4 signaling pathway as a primary target of Hesp for the treatment of alcoholic steatohepatitis (ASH). Molecular docking results showed that Hesp bound to the representative target TLR4 and exhibited good affinity. In addition, Hesp inhibits the TLR4 target and consequently the NF-κB signaling pathway, which in turn slows the evolution of alcoholic steatohepatitis, according to further in vitro and in vivo tests. The results of this study preliminarily indicate that Hesp is an ideal drug candidate for the treatment of ASH.
Collapse
Affiliation(s)
- Fei Yuan
- Department of Pharmacy, Anhui Provincial Cancer Hospital, West Branch of The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui, 230031, China
| | - Guo-Qing Xia
- Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, Anhui Institute of Innovative Drugs, School of Pharmacy, Anhui Medical University, China
| | - Jun-Nan Cai
- Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, Anhui Institute of Innovative Drugs, School of Pharmacy, Anhui Medical University, China
| | - Xiongwen Lv
- Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, Anhui Institute of Innovative Drugs, School of Pharmacy, Anhui Medical University, China.
| | - Meng Dai
- Department of Geriatrics, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui, 230001, China.
| |
Collapse
|
7
|
Hassan AK, El-Kalaawy AM, Abd El-Twab SM, Alblihed MA, Ahmed OM. Hesperetin and Capecitabine Abate 1,2 Dimethylhydrazine-Induced Colon Carcinogenesis in Wistar Rats via Suppressing Oxidative Stress and Enhancing Antioxidant, Anti-Inflammatory and Apoptotic Actions. Life (Basel) 2023; 13:984. [PMID: 37109513 PMCID: PMC10146346 DOI: 10.3390/life13040984] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2023] [Revised: 04/07/2023] [Accepted: 04/08/2023] [Indexed: 04/29/2023] Open
Abstract
Colon cancer is a major cause of cancer-related death, with significantly increasing rates of incidence worldwide. The current study was designed to evaluate the anti-carcinogenic effects of hesperetin (HES) alone and in combination with capecitabine (CAP) on 1,2 dimethylhydrazine (DMH)-induced colon carcinogenesis in Wistar rats. The rats were given DMH at 20 mg/kg body weight (b.w.)/week for 12 weeks and were orally treated with HES (25 mg/kg b.w.) and/or CAP (200 mg/kg b.w.) every other day for 8 weeks. The DMH-administered rats exhibited colon-mucosal hyperplastic polyps, the formation of new glandular units and cancerous epithelial cells. These histological changes were associated with the significant upregulation of colon Ki67 expression and the elevation of the tumor marker, carcinoembryonic antigen (CEA), in the sera. The treatment of the DMH-administered rats with HES and/or CAP prevented these histological cancerous changes concomitantly with the decrease in colon-Ki67 expression and serum-CEA levels. The results also indicated that the treatments with HES and/or CAP showed a significant reduction in the serum levels of lipid peroxides, an elevation in the serum levels of reduced glutathione, and the enhancement of the activities of colon-tissue superoxide dismutase, glutathione reductase and glutathione-S-transferase. Additionally, the results showed an increase in the mRNA expressions of the anti-inflammatory cytokine, IL-4, as well as the proapoptotic protein, p53, in the colon tissues of the DMH-administered rats treated with HES and/or CAP. The TGF-β1 decreased significantly in the DMH-administered rats and this effect was counteracted by the treatments with HES and/or CAP. Based on these findings, it can be suggested that both HES and CAP, singly or in combination, have the potential to exert chemopreventive effects against DMH-induced colon carcinogenesis via the suppression of oxidative stress, the stimulation of the antioxidant defense system, the attenuation of inflammatory effects, the reduction in cell proliferation and the enhancement of apoptosis.
Collapse
Affiliation(s)
- Asmaa K. Hassan
- Physiology Division, Zoology Department, Faculty of Science, Beni-Suef University, Beni-Suef 62521, Egypt
| | - Asmaa M. El-Kalaawy
- Pharmacology Department, Faculty of Medicine, Beni-Suef University, Beni-Suef 62521, Egypt
| | - Sanaa M. Abd El-Twab
- Physiology Division, Zoology Department, Faculty of Science, Beni-Suef University, Beni-Suef 62521, Egypt
| | - Mohamed A. Alblihed
- Department of Microbiology, College of Medicine, Taif University, Taif 21944, Saudi Arabia
| | - Osama M. Ahmed
- Physiology Division, Zoology Department, Faculty of Science, Beni-Suef University, Beni-Suef 62521, Egypt
| |
Collapse
|
8
|
An MF, Shen C, Zhang SS, Wang MY, Sun ZR, Fan MS, Zhang LJ, Zhao YL, Sheng J, Wang XJ. Anti-hyperuricemia effect of hesperetin is mediated by inhibiting the activity of xanthine oxidase and promoting excretion of uric acid. Front Pharmacol 2023; 14:1128699. [PMID: 37124197 PMCID: PMC10131109 DOI: 10.3389/fphar.2023.1128699] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2022] [Accepted: 03/27/2023] [Indexed: 05/02/2023] Open
Abstract
Hesperetin is a natural flavonoid with many biological activities. In view of hyperuricemia treatment, the effects of hesperetin in vivo and in vitro, and the underlying mechanisms, were explored. Hyperuricemia models induced by yeast extract (YE) or potassium oxonate (PO) in mice were created, as were models based on hypoxanthine and xanthine oxidase (XOD) in L-O2 cells and sodium urate in HEK293T cells. Serum level of uric acid (UA), creatinine (CRE), and urea nitrogen (BUN) were reduced significantly after hesperetin treatment in vivo. Hesperetin provided hepatoprotective effects and inhibited xanthine oxidase activity markedly, altered the level of malondialdehyde (MDA), glutathione peroxidase (GSH-PX) and catalase (CAT), downregulated the XOD protein expression, toll-like receptor (TLR)4, nucleotide binding oligomerization domain-like receptor family pyrin domain-containing 3 (NLRP3) inflammasome, interleukin-18 (IL-18), upregulated forkhead box O3a (FOXO3a), manganese superoxide dismutase (MnSOD) in a uric acid-synthesis model in mice. Protein expression of organic anion transporter 1 (OAT1), OAT3, organic cationic transporter 1 (OCT1), and OCT2 was upregulated by hesperetin intervention in a uric acid excretion model in mice. Our results proposal that hesperetin exerts a uric acid-lowering effect through inhibiting xanthine oxidase activity and protein expression, intervening in the TLR4-NLRP3 inflammasome signaling pathway, and up-regulating expression of FOXO3a, MnSOD, OAT1, OAT3, OCT1, and OCT2 proteins. Thus, hesperetin could be a promising therapeutic agent against hyperuricemia.
Collapse
Affiliation(s)
- Meng-Fei An
- Key Laboratory of Pu-erh Tea Science, Ministry of Education, Yunnan Agricultural University, Kunming, China
- College of Science, Yunnan Agricultural University, Kunming, China
| | - Chang Shen
- Key Laboratory of Pu-erh Tea Science, Ministry of Education, Yunnan Agricultural University, Kunming, China
- College of Food Science and Technology, Yunnan Agricultural University, Kunming, China
| | - Shao-Shi Zhang
- Key Laboratory of Pu-erh Tea Science, Ministry of Education, Yunnan Agricultural University, Kunming, China
- College of Food Science and Technology, Yunnan Agricultural University, Kunming, China
| | - Ming-Yue Wang
- Key Laboratory of Pu-erh Tea Science, Ministry of Education, Yunnan Agricultural University, Kunming, China
- College of Food Science and Technology, Yunnan Agricultural University, Kunming, China
| | - Ze-Rui Sun
- Key Laboratory of Pu-erh Tea Science, Ministry of Education, Yunnan Agricultural University, Kunming, China
- College of Food Science and Technology, Yunnan Agricultural University, Kunming, China
| | - Mao-Si Fan
- Key Laboratory of Pu-erh Tea Science, Ministry of Education, Yunnan Agricultural University, Kunming, China
- College of Food Science and Technology, Yunnan Agricultural University, Kunming, China
| | - Li-Juan Zhang
- School of Basic Medicine, Yunnan University of Chinese Medicine, Kunming, China
| | - Yun-Li Zhao
- Key Laboratory of Pu-erh Tea Science, Ministry of Education, Yunnan Agricultural University, Kunming, China
- College of Science, Yunnan Agricultural University, Kunming, China
- Key Laboratory of Medicinal Chemistry for Natural Resource, Ministry of Education and Yunnan Province, Yunnan Characteristic Plant Extraction Laboratory, Yunnan Provincial Center for Research and Development of Natural Products, School of Pharmacy, School of Chemical Science and Technology, Yunnan University, Kunming, China
- *Correspondence: Yun-Li Zhao, ; Jun Sheng, ; Xuan-Jun Wang,
| | - Jun Sheng
- Key Laboratory of Pu-erh Tea Science, Ministry of Education, Yunnan Agricultural University, Kunming, China
- College of Science, Yunnan Agricultural University, Kunming, China
- State Key Laboratory for Conservation and Utilization of Bio-Resources in Yunnan, Kunming, China
- *Correspondence: Yun-Li Zhao, ; Jun Sheng, ; Xuan-Jun Wang,
| | - Xuan-Jun Wang
- Key Laboratory of Pu-erh Tea Science, Ministry of Education, Yunnan Agricultural University, Kunming, China
- College of Science, Yunnan Agricultural University, Kunming, China
- State Key Laboratory for Conservation and Utilization of Bio-Resources in Yunnan, Kunming, China
- *Correspondence: Yun-Li Zhao, ; Jun Sheng, ; Xuan-Jun Wang,
| |
Collapse
|
9
|
Cao Y, He W, Li X, Huang J, Wang J. Rosiglitazone Protects against Acetaminophen-Induced Acute Liver Injury by Inhibiting Multiple Endoplasmic Reticulum Stress Pathways. BIOMED RESEARCH INTERNATIONAL 2022; 2022:6098592. [PMID: 36588533 PMCID: PMC9797312 DOI: 10.1155/2022/6098592] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/10/2022] [Revised: 10/10/2022] [Accepted: 11/02/2022] [Indexed: 12/24/2022]
Abstract
Background Excessive acetaminophen (APAP) use can lead to acute liver injury (ALI) by inducing endoplasmic reticulum stress (ERS). We previously found that pretreatment with the peroxisome proliferator-activated receptor-γ (PPAR-γ) ligand rosiglitazone (RSG) alleviated ALI in APAP-treated mice. Objective To examine if RSG-mediated hepatoprotection is associated with ERS suppression. Methods Forty-eight male CD-1 mice were randomly divided into control, RSG, APAP 4 h, APAP 24 h, RSG + APAP 4 h, and RSG + APAP 24 h groups. The RSG and RSG + APAP groups received RSG (20 mg/kg) by gavage 48, 24, and 1 h before intraperitoneal injection of 300 mg/kg APAP, while the APAP group received APAP alone and the control group received only normal saline. Animals were sacrificed immediately (RSG and control groups), 4 h (APAP 4 h and RSG + APAP 4 h), or 24 h (APAP 24 h and RSG + APAP 24 h) post-APAP injection. Liver tissues were collected for hematoxylin-eosin staining, TUNEL staining, and Western blotting for ERS-associated proteins. Serum alanine aminotransferase (ALT) and aspartate aminotransferase (AST) levels were also measured. A second cohort received APAP or RSG + APAP as described and were monitored for survival over one week. Results At 4 and 24 h following APAP injection alone, serum ALT and AST levels were significantly elevated, and central lobular necrosis of the liver was observed. Necrosis area reached 21.7% at 4 h and 32.1% at 24 h post-APAP, while apoptotic fractions reached 25.6% and 32.4%. Further, 50% of mice in the survival analysis cohort died within one week post-APAP. At 4 h post-APAP, the ERS marker glucose-regulated protein-78 (GRP78) and ERS-associated proteins pJNK, GRP78, p-eIF2α, pPERK, and pIRE were all significantly upregulated. Pretreatment with RSG significantly reduced serum ALT and AST, liver necrosis area, apoptosis rate, and expression of ERS-associated proteins compared to APAP alone, while increasing survival to 80%. Conclusions Rosiglitazone pretreatment can alleviate APAP-induced ALI by suppressing three branches of ERS signaling.
Collapse
Affiliation(s)
- Yuping Cao
- College of Medicine, Anhui University of Science and Technology, Huainan 232001, China
| | - Wei He
- Anhui No.2 Provincial People's Hospital, Hefei 230041, China
| | - Xiaoping Li
- Anhui No.2 Provincial People's Hospital, Hefei 230041, China
| | - Jiahui Huang
- Anhui No.2 Provincial People's Hospital, Hefei 230041, China
| | - Junxian Wang
- Anhui No.2 Provincial People's Hospital, Hefei 230041, China
| |
Collapse
|
10
|
Idrees M, Kumar V, Khan AM, Joo MD, Uddin Z, Lee KW, Kong IK. Hesperetin activated SIRT1 neutralizes cadmium effects on the early bovine embryo development. Theriogenology 2022; 189:209-221. [DOI: 10.1016/j.theriogenology.2022.06.008] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2022] [Revised: 06/06/2022] [Accepted: 06/07/2022] [Indexed: 12/12/2022]
|
11
|
Enayati A, Ghojoghnejad M, Roufogalis BD, Maollem SA, Sahebkar A. Impact of Phytochemicals on PPAR Receptors: Implications for Disease Treatments. PPAR Res 2022; 2022:4714914. [PMID: 36092543 PMCID: PMC9453090 DOI: 10.1155/2022/4714914] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2022] [Accepted: 07/10/2022] [Indexed: 11/17/2022] Open
Abstract
Peroxisome proliferator-activated receptors (PPARs) are members of the ligand-dependent nuclear receptor family. PPARs have attracted wide attention as pharmacologic mediators to manage multiple diseases and their underlying signaling targets. They mediate a broad range of specific biological activities and multiple organ toxicity, including cellular differentiation, metabolic syndrome, cancer, atherosclerosis, neurodegeneration, cardiovascular diseases, and inflammation related to their up/downstream signaling pathways. Consequently, several types of selective PPAR ligands, such as fibrates and thiazolidinediones (TZDs), have been approved as their pharmacological agonists. Despite these advances, the use of PPAR agonists is known to cause adverse effects in various systems. Conversely, some naturally occurring PPAR agonists, including polyunsaturated fatty acids and natural endogenous PPAR agonists curcumin and resveratrol, have been introduced as safe agonists as a result of their clinical evidence or preclinical experiments. This review focuses on research on plant-derived active ingredients (natural phytochemicals) as potential safe and promising PPAR agonists. Moreover, it provides a comprehensive review and critique of the role of phytochemicals in PPARs-related diseases and provides an understanding of phytochemical-mediated PPAR-dependent and -independent cascades. The findings of this research will help to define the functions of phytochemicals as potent PPAR pharmacological agonists in underlying disease mechanisms and their related complications.
Collapse
Affiliation(s)
- Ayesheh Enayati
- Ischemic Disorders Research Center, Golestan University of Medical Sciences, Gorgan, Iran
| | - Mobina Ghojoghnejad
- Ischemic Disorders Research Center, Golestan University of Medical Sciences, Gorgan, Iran
| | - Basil D. Roufogalis
- Discipline of Pharmacology, School of Medical Sciences, University of Sydney, Sydney, NSW, Australia
- NICM Health Research Institute, Western Sydney University, Penrith, NSW, Australia
| | - Seyed Adel Maollem
- Department of Pharmacology and Toxicology, College of Pharmacy, Al-Zahraa University for Women, Karbala, Iraq
- Department of Pharmacodynamics and Toxicology, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Amirhossein Sahebkar
- Biotechnology Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran
- Applied Biomedical Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
- Department of Biotechnology, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran
| |
Collapse
|
12
|
Alharbi KS, Almalki WH, Albratty M, Meraya AM, Najmi A, Vyas G, Singh SK, Dua K, Gupta G. The therapeutic role of nutraceuticals targeting the Nrf2/HO-1 signaling pathway in liver cancer. J Food Biochem 2022; 46:e14357. [PMID: 35945911 DOI: 10.1111/jfbc.14357] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2022] [Revised: 07/01/2022] [Accepted: 07/19/2022] [Indexed: 11/28/2022]
Abstract
Liver cancer (L.C.) is the most common cause of cancer death in the United States and the fifth most common globally. The overexpression of nuclear factor E2 related factor 2 (Nrf2) and heme oxygenase 1 (HO-1) caused by oxidative stress has been associated with tumor growth, aggressiveness, treatment resistance, and poor prognosis. Nutraceuticals that inhibit Nrf2/HO-1 signaling may become the most effective strategy to treat liver cancer. Phytochemicals found in fruits and vegetables, also known as nutraceuticals, tend to emerge as chemopreventive agents, with the added benefit of low toxicity and high nutritional values. This paper reviews the present scientific knowledge of the Nrf2/HO-1 signaling as a possible target molecule for chemotherapeutic agents, its basic control mechanisms, and Nrf2/HO-1 inducers produced from natural products that might be employed as cancer chemopreventive drugs. The growing interest in the contribution of the Nrf2/ARE/HO-1 signaling in the development of liver cancer and the Use of nutraceuticals to treat liver cancer by targeting Nrf2/ARE/HO-1. PRACTICAL APPLICATIONS: An increase in Nrf2 expression indicates that Nrf2 is the most important player in liver cancer. Cancer patients are more resistant to chemotherapy because of this erroneous Nrf2 signaling. Furthermore, an increasing body of evidence indicates that activation of the Nrf2/HO-1 pathway results in the production of phase II detoxifying and antioxidant enzymes, which serve a defense purpose in cells. As a consequence, treating liver cancer. This master regulator may be a possibility. Nutraceuticals that reduce Nrf2/HO-1 signaling may be the most effective strategy for preventing liver cancer. The methods of action of numerous natural substances are examined in this article.
Collapse
Affiliation(s)
- Khalid Saad Alharbi
- Department of Pharmacology, College of Pharmacy, Jouf University, Sakaka, Saudi Arabia
| | - Waleed Hassan Almalki
- Department of Pharmacology, College of Pharmacy, Umm Al-Qura University, Makkah, Saudi Arabia
| | - Mohammed Albratty
- Department of Pharmaceutical Chemistry and Pharmacognosy, College of Pharmacy, Jazan University, Jazan, Saudi Arabia
| | - Abdulkarim M Meraya
- Pharmacy Practice Research Unit, Department of Clinical Pharmacy, College of Pharmacy, Jazan University, Jazan, Saudi Arabia
| | - Asim Najmi
- Department of Pharmaceutical Chemistry and Pharmacognosy, College of Pharmacy, Jazan University, Jazan, Saudi Arabia
| | - Govind Vyas
- R&D, Quality and Regulatory Compliance, Invahealth Inc., Cranbury, New Jersey, USA
| | - Sachin Kumar Singh
- School of Pharmaceutical Sciences, Lovely Professional University, Phagwara, India.,Faculty of Health, Australian Research Centre in Complementary and Integrative Medicine, University of Technology Sydney, Ultimo, New South Wales, Australia
| | - Kamal Dua
- Faculty of Health, Australian Research Centre in Complementary and Integrative Medicine, University of Technology Sydney, Ultimo, New South Wales, Australia.,Discipline of Pharmacy, Graduate School of Health, University of Technology Sydney, Ultimo, New South Wales, Australia
| | - Gaurav Gupta
- Department of Pharmacology, School of Pharmacy, Suresh Gyan Vihar University, Jaipur, India.,Department of Pharmacology, Saveetha Dental College, Saveetha Institute of Medical and Technical Sciences, Saveetha University, Chennai, India.,Uttaranchal Institute of Pharmaceutical Sciences, Uttaranchal University, Dehradun, India
| |
Collapse
|
13
|
Chen X, Zhu S, Chen SY, Wang JN, Sun LJ, Tao SM, Li XF, Li HD, Sun YY, Xu CH, Suo XG, Ji ML, Huang C, Meng XM, Li J. miR-301a-3p promotes hepatic stellate cells activation and liver fibrogenesis via regulating PTEN/PDGFR-β. Int Immunopharmacol 2022; 110:109034. [PMID: 35834952 DOI: 10.1016/j.intimp.2022.109034] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2022] [Revised: 06/26/2022] [Accepted: 07/04/2022] [Indexed: 12/20/2022]
Abstract
Hepatic fibrosis is an essential pathology of multiple chronicliverdiseases. The aim of this study was to investigate the role of miR-301a-3p in hepatic fibrosis. We found that miR-301a-3p was upregulated in hepatic fibrosis patients and in culture-activated human hepatic stellate cells (HSCs). Interestingly, miR-301a-3p expression was increased in hepatic fibrosis progression mice while decreased in hepatic fibrosis recovery mice, indicating that miR-301a-3p may participate in the hepatic fibrosis pathology. Functionally, the effects of miR-301a-3p both on hepatic fibrosis progression and regression were assessed in vivo. Inhibiting miR-301a-3p amelioratedmouse liver fibrogenesis and collagen deposition and suppressed HSC activation and fibrogenic factor expression. Whereas, in hepatic fibrosis regression, upregulating miR-301a-3p impaired mouse hepatic fibrosis recovery by inducing HSC activation and triggering inflammation. Consistently, gain-of-function and loss-of-function analysis of miR-301a-3p were performed to evaluate its effects on human HSCs LX-2 cell. We found that suppressing miR-301a-3p inhibited LX-2 cell activation and proliferation, and induced LX-2 cell apoptosis, accompaniedby decreased fibrotic mediators expression. Collectively, these findings suggest miR-301a-3p drives liver fibrogenesis and HSC activation in hepatic fibrosis. Mechanistically, we demonstrated miR-301a-3p binds directly to phosphatase and tensin homolog (PTEN) by luciferase reporter analysis, pull-down, and RIP assay. Indicating that miR-301a-3p plays a critical rolein promotingliverfibrogenesis viamodulating the PTEN/platelet derived growth factor β (PDGFR-β) pathway. In conclusion, our findings demonstrate that miR-301a-3p expression is closely correlated with hepatic fibrosis pathology, and that enhancing miR-301a-3p maintains the HSC profibrogenic phenotype, triggers inflammatoryresponses, promotes fibrogenic factor production, and further exacerbates liver fibrogenesis. These findings suggest that miR-301a-3p may serve as a promising diagnostic and prognosis biomarker for hepatic fibrosis treatment.
Collapse
Affiliation(s)
- Xin Chen
- Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, Anhui Institute of Innovative Drugs, School of Pharmacy, Anhui Medical University, Hefei 230032, China; The KeyLaboratory of Anti-inflammatory and Immune Medicines, Anhui Medical University, Ministry of Education, Hefei 230032, China; Institute for Liver Diseases of Anhui Medical University, ILD-AMU, Anhui Medical University, Hefei 230032, China
| | - Sai Zhu
- Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, Anhui Institute of Innovative Drugs, School of Pharmacy, Anhui Medical University, Hefei 230032, China; The KeyLaboratory of Anti-inflammatory and Immune Medicines, Anhui Medical University, Ministry of Education, Hefei 230032, China; Institute for Liver Diseases of Anhui Medical University, ILD-AMU, Anhui Medical University, Hefei 230032, China
| | - Si-Yu Chen
- Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, Anhui Institute of Innovative Drugs, School of Pharmacy, Anhui Medical University, Hefei 230032, China; The KeyLaboratory of Anti-inflammatory and Immune Medicines, Anhui Medical University, Ministry of Education, Hefei 230032, China; Institute for Liver Diseases of Anhui Medical University, ILD-AMU, Anhui Medical University, Hefei 230032, China
| | - Jia-Nan Wang
- Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, Anhui Institute of Innovative Drugs, School of Pharmacy, Anhui Medical University, Hefei 230032, China; The KeyLaboratory of Anti-inflammatory and Immune Medicines, Anhui Medical University, Ministry of Education, Hefei 230032, China
| | - Li-Jiao Sun
- Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, Anhui Institute of Innovative Drugs, School of Pharmacy, Anhui Medical University, Hefei 230032, China; The KeyLaboratory of Anti-inflammatory and Immune Medicines, Anhui Medical University, Ministry of Education, Hefei 230032, China; Institute for Liver Diseases of Anhui Medical University, ILD-AMU, Anhui Medical University, Hefei 230032, China
| | - Shan-Min Tao
- Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, Anhui Institute of Innovative Drugs, School of Pharmacy, Anhui Medical University, Hefei 230032, China
| | - Xiao-Feng Li
- Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, Anhui Institute of Innovative Drugs, School of Pharmacy, Anhui Medical University, Hefei 230032, China; The KeyLaboratory of Anti-inflammatory and Immune Medicines, Anhui Medical University, Ministry of Education, Hefei 230032, China
| | - Hai-Di Li
- Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, Anhui Institute of Innovative Drugs, School of Pharmacy, Anhui Medical University, Hefei 230032, China; The KeyLaboratory of Anti-inflammatory and Immune Medicines, Anhui Medical University, Ministry of Education, Hefei 230032, China; Institute for Liver Diseases of Anhui Medical University, ILD-AMU, Anhui Medical University, Hefei 230032, China
| | - Ying-Yin Sun
- Department of Oncology, The First Affiliated Hospital of Anhui Medical University, Hefei 230032, China
| | - Chuan-Hui Xu
- Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, Anhui Institute of Innovative Drugs, School of Pharmacy, Anhui Medical University, Hefei 230032, China; The KeyLaboratory of Anti-inflammatory and Immune Medicines, Anhui Medical University, Ministry of Education, Hefei 230032, China
| | - Xiao-Guo Suo
- Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, Anhui Institute of Innovative Drugs, School of Pharmacy, Anhui Medical University, Hefei 230032, China; The KeyLaboratory of Anti-inflammatory and Immune Medicines, Anhui Medical University, Ministry of Education, Hefei 230032, China
| | - Ming-Lu Ji
- Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, Anhui Institute of Innovative Drugs, School of Pharmacy, Anhui Medical University, Hefei 230032, China; The KeyLaboratory of Anti-inflammatory and Immune Medicines, Anhui Medical University, Ministry of Education, Hefei 230032, China
| | - Cheng Huang
- Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, Anhui Institute of Innovative Drugs, School of Pharmacy, Anhui Medical University, Hefei 230032, China; The KeyLaboratory of Anti-inflammatory and Immune Medicines, Anhui Medical University, Ministry of Education, Hefei 230032, China; Institute for Liver Diseases of Anhui Medical University, ILD-AMU, Anhui Medical University, Hefei 230032, China
| | - Xiao-Ming Meng
- Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, Anhui Institute of Innovative Drugs, School of Pharmacy, Anhui Medical University, Hefei 230032, China; The KeyLaboratory of Anti-inflammatory and Immune Medicines, Anhui Medical University, Ministry of Education, Hefei 230032, China
| | - Jun Li
- Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, Anhui Institute of Innovative Drugs, School of Pharmacy, Anhui Medical University, Hefei 230032, China; The KeyLaboratory of Anti-inflammatory and Immune Medicines, Anhui Medical University, Ministry of Education, Hefei 230032, China; Institute for Liver Diseases of Anhui Medical University, ILD-AMU, Anhui Medical University, Hefei 230032, China.
| |
Collapse
|
14
|
Zhu S, Chen X, Chen SY, Wang A, Wu S, Wu YY, Cheng M, Xu JJ, Li XF, Huang C, Li J. Hesperetin derivative decreases CCl 4 -induced hepatic fibrosis by Ptch1-dependent mechanisms. J Biochem Mol Toxicol 2022; 36:e23149. [PMID: 35712856 DOI: 10.1002/jbt.23149] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2021] [Revised: 03/05/2022] [Accepted: 05/30/2022] [Indexed: 11/08/2022]
Abstract
Hepatic fibrosis (HF), a continuous wound-healing response of the liver to repeated injuries, is characterized by abnormal extracellular matrix (ECM) accumulation. Hepatic stellate cells (HSCs) are considered a major cell type for ECM production. However, recent evidence indicates the lack of effective treatments for HF. Hesperetin, a Traditional Chinese Medicine monomer, has been isolated from the fruit peel of Citrusaurantium L. (Rutaceae). Growing evidence suggests the partial function of hesperetin in HF treatment. A hesperetin derivative (HD) was synthesized in our laboratory to increase the bioavailability and the water solubility of hesperetin. In this study, we detected the functions of HD in a mouse model of CCl4 -induced HF and transforming growth factor-β1-stimulated HSC-T6 cells, in vivo and in vitro. HD reduced histological damage and CCl4 -induced HF. Moreover, HD interference was associated with the activation of indicators in HSC-T6 cells, showing that HD is involved in HSCs activation in HF. Mechanistically, the Hedgehog pathway is involved in the HD treatment of HF, and HD may attenuate the aberrant expression of patched1. In conclusion, the studies indicate that HD may function as a potential antifibrotic Traditional Chinese Medicine monomer in HF therapy.
Collapse
Affiliation(s)
- Sai Zhu
- School of Pharmacy, Anhui Medical University, Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, Anhui Institute of Innovative Drugs, Hefei, China
| | - Xin Chen
- School of Pharmacy, Anhui Medical University, Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, Anhui Institute of Innovative Drugs, Hefei, China
| | - Si-Yu Chen
- School of Pharmacy, Anhui Medical University, Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, Anhui Institute of Innovative Drugs, Hefei, China
| | - Ao Wang
- School of Pharmacy, Anhui Medical University, Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, Anhui Institute of Innovative Drugs, Hefei, China
| | - Sha Wu
- School of Pharmacy, Anhui Medical University, Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, Anhui Institute of Innovative Drugs, Hefei, China
| | - Yuan-Yuan Wu
- School of Pharmacy, Anhui Medical University, Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, Anhui Institute of Innovative Drugs, Hefei, China
| | - Miao Cheng
- School of Pharmacy, Anhui Medical University, Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, Anhui Institute of Innovative Drugs, Hefei, China
| | - Jin-Jin Xu
- School of Pharmacy, Anhui Medical University, Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, Anhui Institute of Innovative Drugs, Hefei, China
| | - Xiao-Feng Li
- School of Pharmacy, Anhui Medical University, Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, Anhui Institute of Innovative Drugs, Hefei, China
| | - Cheng Huang
- School of Pharmacy, Anhui Medical University, Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, Anhui Institute of Innovative Drugs, Hefei, China
| | - Jun Li
- School of Pharmacy, Anhui Medical University, Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, Anhui Institute of Innovative Drugs, Hefei, China
| |
Collapse
|
15
|
Chen M, Zhu H, Zhu Q, Wu X, Zhou Y, Gao R, Shi M, Zhang T, Yin T, Zhang H, Shang H, Li X. Citri Reticulatae Pericarpium alleviates postmyocardial infarction heart failure by upregulating PPARγ expression. Clin Exp Pharmacol Physiol 2022; 49:661-673. [PMID: 35278230 DOI: 10.1111/1440-1681.13642] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2021] [Revised: 01/24/2022] [Accepted: 03/07/2022] [Indexed: 11/30/2022]
Abstract
Heart failure after myocardial infarction (MI) is the leading cause of death worldwide. Citri Reticulatae Pericarpium (CRP) is a traditional Chinese herbal medicine that has been used in the clinic for centuries. In this study, we aimed to investigate the roles of CRP in cardiac remodeling and heart failure after MI, as well as the molecular mechanisms involved. Male C57BL/6 mice aged 8 weeks were subjected to coronary artery ligation to mimic the clinical situation in vivo. Echocardiography was used to assess the systolic function of the mouse heart. Masson trichrome staining and Wheat germ agglutinin (WGA) staining were utilized to determine the fibrotic area and cross-sectional area of the mouse heart, respectively. Cardiomyocytes and fibroblasts were isolated from neonatal rats aged 0-3 days in vitro using enzyme digestion. TUNEL staining and EdU staining were performed to evaluate apoptosis and proliferation, respectively. Gene expression changes were analyzed by qRT-PCR, and protein expression changes were assessed by Western blotting. Our findings revealed that CRP attenuated cardiac hypertrophy, fibrosis and apoptosis and alleviated heart failure after MI in vivo. Furthermore, CRP mitigated cardiomyocyte apoptosis and fibroblast proliferation and differentiation into myofibroblasts. In addition, the PPARγ inhibitor T0070907 completely abolished the abovementioned beneficial effects of CRP, and the PPARγ activator rosiglitazone failed to further ameliorate cardiac apoptosis and fibrosis in vitro. CRP alleviates cardiac hypertrophy, fibrosis, and apoptosis and can ameliorate heart failure after MI via activation of PPARγ. This article is protected by copyright. All rights reserved.
Collapse
Affiliation(s)
- Mengli Chen
- Department of Cardiology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Hongyan Zhu
- Department of Pediatric Cardiothoracic Surgery, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Qingqing Zhu
- Department of Cardiology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Xiaodong Wu
- Department of Cardiology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Yufei Zhou
- Department of Cardiology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Rongrong Gao
- Department of Cardiology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Mengsha Shi
- Department of Cardiology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Ting Zhang
- Department of Cardiology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Ting Yin
- Department of Cardiology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Haifeng Zhang
- Department of Cardiology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China; Department of Cardiology, The Affiliated Suzhou Hospital of Nanjing Medical University, Suzhou Municipal Hospital, Gusu School, Nanjing Medical University
| | - Hongcai Shang
- Key Laboratory of Chinese Internal Medicine of Ministry of Education, Dongzhimen Hospital, Beijing University of Chinese Medicine, Beijing, China
| | - Xinli Li
- Department of Cardiology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| |
Collapse
|
16
|
Li JJ, Jiang HC, Wang A, Bu FT, Jia PC, Zhu S, Zhu L, Huang C, Li J. Hesperetin derivative-16 attenuates CCl 4-induced inflammation and liver fibrosis by activating AMPK/SIRT3 pathway. Eur J Pharmacol 2022; 915:174530. [PMID: 34902361 DOI: 10.1016/j.ejphar.2021.174530] [Citation(s) in RCA: 29] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2021] [Revised: 09/20/2021] [Accepted: 09/24/2021] [Indexed: 12/12/2022]
Abstract
Liver fibrosis, a chronic inflammatory healing reaction, progresses to hepatocirrhosis without effective intervention. Hesperetin derivative (HD-16), a monomer compound derived from hesperitin, exerts anti-inflammatory and hepatoprotective effects against a spectrum of liver diseases. However, the anti-fibrotic potential of HD-16 in liver fibrosis and its underlying mechanism have not yet been elucidated. In this study, we investigated the anti-fibrotic effect of HD-16 on mouse liver fibrosis induced by CCl4 and on LX-2 cells (human immortalized HSCs) stimulated by TGF-β1, in vivo and in vitro. HD-16 exerted an anti-fibrotic effect via regulation of the AMPK/SIRT3 pathway. Pharmacodynamic results showed that HD-16 alleviated the degree of injury and inflammation in CCl4-induced mouse liver fibrosis. Consistently, HD-16 also effectively inhibited the expression of α-SMA, Col1α1, Col3α1, and TIMP-1 in TGF-β1-activated LX-2 cells. Mechanistically, HD-16 promoted SIRT3 expression and activity in fibrotic liver and activated LX-2 cells. Furthermore, SIRT3 depletion attenuated the anti-fibrotic effects of HD-16. Intriguingly, HD-16 increased AMPK phosphorylation, whereas inhibition of SIRT3 expression did not affect AMPK phosphorylation. In contrast, AMPK silencing suppressed SIRT3 expression, suggesting that SIRT3 is a downstream target of AMPK in liver fibrosis. Overall, HD-16 attenuated CCl4-induced liver inflammation and fibrosis by activating the AMPK/SIRT3 pathway, and HD-16 may be a potential anti-fibrotic compound in the treatment of liver fibrosis.
Collapse
Affiliation(s)
- Juan-Juan Li
- Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, Anhui Institute of Innovative Drugs, School of Pharmacy, Anhui Medical University, Hefei, 230032, China
| | - He-Chun Jiang
- Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, Anhui Institute of Innovative Drugs, School of Pharmacy, Anhui Medical University, Hefei, 230032, China; The First Affiliated Hospital of USTC Anhui Provincial Hospital, China
| | - Ao Wang
- Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, Anhui Institute of Innovative Drugs, School of Pharmacy, Anhui Medical University, Hefei, 230032, China
| | - Fang-Tian Bu
- Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, Anhui Institute of Innovative Drugs, School of Pharmacy, Anhui Medical University, Hefei, 230032, China
| | - Peng-Cheng Jia
- Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, Anhui Institute of Innovative Drugs, School of Pharmacy, Anhui Medical University, Hefei, 230032, China
| | - Sai Zhu
- Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, Anhui Institute of Innovative Drugs, School of Pharmacy, Anhui Medical University, Hefei, 230032, China
| | - Lin Zhu
- Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, Anhui Institute of Innovative Drugs, School of Pharmacy, Anhui Medical University, Hefei, 230032, China
| | - Cheng Huang
- Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, Anhui Institute of Innovative Drugs, School of Pharmacy, Anhui Medical University, Hefei, 230032, China.
| | - Jun Li
- Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, Anhui Institute of Innovative Drugs, School of Pharmacy, Anhui Medical University, Hefei, 230032, China.
| |
Collapse
|
17
|
Sohel M, Sultana H, Sultana T, Al Amin M, Aktar S, Ali MC, Rahim ZB, Hossain MA, Al Mamun A, Amin MN, Dash R. Chemotherapeutic potential of hesperetin for cancer treatment, with mechanistic insights: A comprehensive review. Heliyon 2022; 8:e08815. [PMID: 35128104 PMCID: PMC8810372 DOI: 10.1016/j.heliyon.2022.e08815] [Citation(s) in RCA: 45] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2021] [Revised: 12/23/2021] [Accepted: 01/19/2022] [Indexed: 12/20/2022] Open
Abstract
BACKGROUND Cancer has become a significant concern in the medical sector with increasing disease complexity. Although some available conventional treatments are still a blessing for cancer patients, short-and long-term adverse effects and poor efficiency make it more difficult to treat cancer patients, demonstrating the need for new potent and selective anticancer drugs. In search of potent anticancer agents, naturally occurring compounds have always been admired due to their structural diversity, where Hesperetin (HSP) may be one of the potent candidates. PURPOSE We aimed to summarize all sources, pharmacological properties, anticancer activities of HSP against numerous cancers types through targeting multiple pathological processes, mechanism of HSP on sensitizing the current anti-cancer agents and other phytochemicals, overcoming resistance pattern and determining absorption, distribution, metabolism, excretion, and toxicity (ADME/Tox). METHODS Information was retrieved from PubMed, Science Direct, and Google Scholar based on some key points like Hesperetin, cancer name, anticancer resistance, nanoformulation, and ADME/Tox was determined by in silico approaches. RESULT HSP is a phytoestrogen present in citrus fruits in a high concentration (several hundred mg/kg) and exhibited anti-cancer activities through interfering at several pathways. HSP can suppress tumor formation by targeting several cellular proteins such as cell cycle regulatory, apoptosis, metastatic, tyrosine kinase, growth factor receptor, estrogen metabolism, and antioxidant-related protein.HSP has shown remarkable synergistic properties in combination therapy and has been reported to overcome multidrug cancer resistance drugs, leading to an improved defensive mechanism. These anticancer activities of HSP may be due to proper structural chemistry. CONCLUSION Overall, HSP showed potential anticancer activities against all cancer and possess better pharmacokinetic properties. So this phytochemical alone or combination with other agents can be an effective alternative drug for cancer treatment.
Collapse
Affiliation(s)
- Md Sohel
- Department of Biochemistry and Molecular Biology, Mawlana Bhashani Science and Technology University, Santosh, Tangail 1902, Bangladesh
| | - Habiba Sultana
- Department of Biotechnology and Genetic Engineering, Mawlana Bhashani Science and Technology University, Santosh, Tangail 1902, Bangladesh
| | - Tayeba Sultana
- Department of Biotechnology and Genetic Engineering, Mawlana Bhashani Science and Technology University, Santosh, Tangail 1902, Bangladesh
| | - Md. Al Amin
- Department of Biotechnology and Genetic Engineering, Mawlana Bhashani Science and Technology University, Santosh, Tangail 1902, Bangladesh
| | - Suraiya Aktar
- Department of Biochemistry and Molecular Biology, Rajshahi University, Rajshahi, Bangladesh
| | - Md. Chayan Ali
- Department of Biotechnology and Genetic Engineering, Islamic University, Kushtia 7003, Bangladesh
| | - Zahed Bin Rahim
- Department of Pharmacy, BGC Trust University Bangladesh, Chittagong 4381, Bangladesh
| | - Md. Arju Hossain
- Department of Biotechnology and Genetic Engineering, Mawlana Bhashani Science and Technology University, Santosh, Tangail 1902, Bangladesh
| | - Abdullah Al Mamun
- Department of Biochemistry and Molecular Biology, Mawlana Bhashani Science and Technology University, Santosh, Tangail 1902, Bangladesh
| | - Mohammad Nurul Amin
- Department of Pharmacy, Atish Dipankar University of Science and Technology, Dhaka 1230, Bangladesh
- Pratyasha Health Biomedical Research Center, Dhaka 1230 Bangladesh
| | - Raju Dash
- Department of Anatomy, Dongguk University College of Medicine, Gyeongju 38066, Republic of Korea
| |
Collapse
|
18
|
Arroyave-Ospina JC, Wu Z, Geng Y, Moshage H. Role of Oxidative Stress in the Pathogenesis of Non-Alcoholic Fatty Liver Disease: Implications for Prevention and Therapy. Antioxidants (Basel) 2021; 10:antiox10020174. [PMID: 33530432 PMCID: PMC7911109 DOI: 10.3390/antiox10020174] [Citation(s) in RCA: 276] [Impact Index Per Article: 69.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2020] [Revised: 01/20/2021] [Accepted: 01/21/2021] [Indexed: 02/07/2023] Open
Abstract
Oxidative stress (OxS) is considered a major factor in the pathophysiology of inflammatory chronic liver diseases, including non-alcoholic liver disease (NAFLD). Chronic impairment of lipid metabolism is closely related to alterations of the oxidant/antioxidant balance, which affect metabolism-related organelles, leading to cellular lipotoxicity, lipid peroxidation, chronic endoplasmic reticulum (ER) stress, and mitochondrial dysfunction. Increased OxS also triggers hepatocytes stress pathways, leading to inflammation and fibrogenesis, contributing to the progression of non-alcoholic steatohepatitis (NASH). The antioxidant response, regulated by the Nrf2/ARE pathway, is a key component in this process and counteracts oxidative stress-induced damage, contributing to the restoration of normal lipid metabolism. Therefore, modulation of the antioxidant response emerges as an interesting target to prevent NAFLD development and progression. This review highlights the link between disturbed lipid metabolism and oxidative stress in the context of NAFLD. In addition, emerging potential therapies based on antioxidant effects and their likely molecular targets are discussed.
Collapse
|
19
|
Design and synthesis of 7-O-1,2,3-triazole hesperetin derivatives to relieve inflammation of acute liver injury in mice. Eur J Med Chem 2021; 213:113162. [PMID: 33493826 DOI: 10.1016/j.ejmech.2021.113162] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2020] [Revised: 12/30/2020] [Accepted: 01/02/2021] [Indexed: 02/07/2023]
Abstract
Based on the previous research results of our research group, to further improve the anti-inflammatory activity of hesperetin, we substituted triazole at the 7-OH branch of hesperetin. We also evaluated the anti-inflammatory activity of 39 new hesperetin derivatives. All compounds showed inhibitory effects on nitric oxide (NO) and inflammatory factors in lipopolysaccharide-induced RAW264.7 cells. Compound d5 showed a strong inhibitory effect on NO (half maximal inhibitory concentration = 2.34 ± 0.7 μM) and tumor necrosis factor-α, interleukin (IL)-1β, and (IL-6). Structure-activity relationships indicate that 7-O-triazole is buried in a medium-sized hydrophobic cavity that binds to the receptor. Compound d5 can also reduce the reactive oxygen species production and significantly inhibit the expression of inducible NO synthase and cyclooxygenase-2 through the nuclear factor-κB signaling pathway. In vivo results indicate that d5 can reduce liver inflammation in mice with acute liver injury (ALI) induced by CCI4. In conclusion, d5 may be a candidate drug for treating inflammation associated with ALI.
Collapse
|
20
|
Wang SW, Wang W, Sheng H, Bai YF, Weng YY, Fan XY, Zheng F, Zhu XT, Xu ZC, Zhang F. Hesperetin, a SIRT1 activator, inhibits hepatic inflammation via AMPK/CREB pathway. Int Immunopharmacol 2020; 89:107036. [PMID: 33068864 DOI: 10.1016/j.intimp.2020.107036] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2020] [Revised: 09/05/2020] [Accepted: 09/21/2020] [Indexed: 12/31/2022]
Abstract
Silent mating type information regulation 2 homolog 1 (SIRT1) is an important inflammatory regulator, which epigenetically reprograms inflammation by altering the acetylation of NF-κB. Hesperetin, as a common flavonoid, has been proven to have a significant effect on acute inflammatory diseases. However, the detailed molecular mechanism by which hesperetin alleviates inflammatory response and accompanied tissue injury is poorly understood. Our results show that SIRT1 is required for the inhibitory effect of hesperetin on inflammation. Hesperetin suppresses the acetylation of RelA/p65 to reduce NF-κB activity by inducing SIRT1 expression. Mechanistically, hesperetin increases SIRT1 expression through AMPK/CREB pathway. Additionally, the protective effect of hesperetin against LPS/D-GalN-induced hepatitis in mice is also dependent on SIRT1. Our study suggests that hesperetin is an SIRT1 activator and could be potential candidates for the treatments of inflammatory conditions.
Collapse
Affiliation(s)
- Si-Wei Wang
- Department of Core Facility, Affiliated Quzhou Central Hospital, Zhejiang Chinese Medical University, Quzhou 324000, China
| | - Wen Wang
- Department of Neurobiology and Acupuncture Research, The Third Clinical Medical College, Zhejiang Chinese Medical University, Hangzhou 310053, China; Department of Acupuncture, Quzhou Municiple Hospital of Traditonal Chinese Medicine, Quzhou 324000, China
| | - Hao Sheng
- Zhejiang University School of Medicine, Hangzhou 310058, China
| | - Yong-Feng Bai
- Department of Clinical Laboratory, Affiliated Quzhou Central Hospital, Zhejiang Chinese Medical University, Quzhou 324000, China
| | - Yuan-Yuan Weng
- Department of Clinical Laboratory, Affiliated Quzhou Central Hospital, Zhejiang Chinese Medical University, Quzhou 324000, China
| | - Xue-Yu Fan
- Department of Clinical Laboratory, Affiliated Quzhou Central Hospital, Zhejiang Chinese Medical University, Quzhou 324000, China
| | - Fang Zheng
- Department of Core Facility, Affiliated Quzhou Central Hospital, Zhejiang Chinese Medical University, Quzhou 324000, China
| | - Xin-Tian Zhu
- Wenzhou Medical University, Wenzhou 325000, China
| | - Zheng-Cai Xu
- Department of Clinical Laboratory, Affiliated Quzhou Central Hospital, Zhejiang Chinese Medical University, Quzhou 324000, China
| | - Feng Zhang
- Department of Core Facility, Affiliated Quzhou Central Hospital, Zhejiang Chinese Medical University, Quzhou 324000, China; Zhejiang University School of Medicine, Hangzhou 310058, China; Department of Clinical Laboratory, Affiliated Quzhou Central Hospital, Zhejiang Chinese Medical University, Quzhou 324000, China.
| |
Collapse
|
21
|
Flavonoids from Aurantii Fructus Immaturus and Aurantii Fructus: promising phytomedicines for the treatment of liver diseases. Chin Med 2020; 15:89. [PMID: 32863858 PMCID: PMC7449045 DOI: 10.1186/s13020-020-00371-5] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2020] [Accepted: 08/19/2020] [Indexed: 12/13/2022] Open
Abstract
Background Liver diseases and related complications are major sources of morbidity and mortality, which places a huge financial burden on patients and lead to nonnegligible social problems. Therefore, the discovery of novel therapeutic drugs for the treatment of liver diseases is urgently required. Aurantii Fructus Immaturus (AFI) and Aurantii Fructus (AF) are frequently used herbal medicines in traditional Chinese medicine (TCM) formulas for the treatment of diverse ailments. A variety of bioactive ingredients have been isolated and identified from AFI and AF, including alkaloids, flavonoids, coumarins and volatile oils. Main body Emerging evidence suggests that flavonoids, especially hesperidin (HD), naringenin (NIN), nobiletin (NOB), naringin (NRG), tangeretin (TN), hesperetin (HT) and eriodictyol (ED) are major representative bioactive ingredients that alleviate diseases through multi-targeting mechanisms, including anti-oxidative stress, anti-cytotoxicity, anti-inflammation, anti-fibrosis and anti-tumor mechanisms. In the current review, we summarize the recent progress in the research of hepatoprotective effects of HD, NIN, NOB, NRG, TN, HT and ED and highlight the potential underlying molecular mechanisms. We also point out the limitations of the current studies and shed light on further in-depth pharmacological and pharmacokinetic studies of these bioactive flavonoids. Conclusion This review outlines the recent advances in the literature and highlights the potential of these flavonoids isolated from AFI and AF as therapeutic agents for the treatment of liver diseases. Further pharmacological studies will accelerate the development of natural products in AFI and AF and their derivatives as medicines with tantalizing prospects in the clinical application.
Collapse
|
22
|
Tabeshpour J, Hosseinzadeh H, Hashemzaei M, Karimi G. A review of the hepatoprotective effects of hesperidin, a flavanon glycoside in citrus fruits, against natural and chemical toxicities. ACTA ACUST UNITED AC 2020; 28:305-317. [PMID: 32277430 DOI: 10.1007/s40199-020-00344-x] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2019] [Accepted: 03/30/2020] [Indexed: 01/30/2023]
Abstract
OBJECTIVES Liver is the most important and functional organ in the body to metabolize and detoxify endogenous compounds and xenobiotics. The major goal of the present narrative review is to assess the hepatoprotective properties of hesperidin against a variety of natural and chemical hepatotoxins via different mechanisms. EVIDENCE ACQUISITION Scientific databases such as Scopus, Medline, Web of Science and Google scholar were thoroughly searched, based on different keywords. RESULTS A variety of natural hepatotoxins such as lipopolysaccharide, concanavalin A and microcystins, and chemical hepatotoxins such as ethanol, acrylamide and carbon tetrachloride have been shown to damage hepatocytes as well as other liver cells. In addition to hepatocytes, ethanol can also damage liver hepatic stellate cells, Kupffer cells and sinusoidal endothelial cells. In this regard, the flavanone hesperidin, occur in the rind of citrus fruits, had been demonstrated to possess widespread pharmacological properties. Hesperidin exerts its hepatoprotective properties via different mechanisms including elevation in the activities of nuclear factor-like 2/antioxidant response element and heme oxygenase 1 as well as the levels of enzymatic and non-enzymatic antioxidants. Furthermore, reduction in the levels of high-mobility group box 1 protein, inhibitor of kappa B protein-alpha, matrix metalloproteinase-9 and C-reactive protein are some other important hesperidin-derived hepatoprotective mechanisms. CONCLUSION Based on several research papers, it could be concluded that hesperidin is able to protect against liver damage from inflammation and/or oxidative stress-mediated natural and chemical toxins.
Collapse
Affiliation(s)
- Jamshid Tabeshpour
- Faculty of Pharmacy, Damghan Branch, Islamic Azad University, Damghan, Iran
| | - Hossein Hosseinzadeh
- Department of Pharmacodynamics and Toxicology, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran.,Pharmaceutical Research Center, Institute of Pharmaceutical Technology, Mashhad University of Medical Sciences, P. O. Box 1365-91775, Mashhad, Iran
| | - Mahmoud Hashemzaei
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Zabol University of Medical Sciences, Zabol, Iran
| | - Gholamreza Karimi
- Department of Pharmacodynamics and Toxicology, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran. .,Pharmaceutical Research Center, Institute of Pharmaceutical Technology, Mashhad University of Medical Sciences, P. O. Box 1365-91775, Mashhad, Iran.
| |
Collapse
|
23
|
Aggarwal V, Tuli HS, Thakral F, Singhal P, Aggarwal D, Srivastava S, Pandey A, Sak K, Varol M, Khan MA, Sethi G. Molecular mechanisms of action of hesperidin in cancer: Recent trends and advancements. Exp Biol Med (Maywood) 2020; 245:486-497. [PMID: 32050794 PMCID: PMC7082885 DOI: 10.1177/1535370220903671] [Citation(s) in RCA: 122] [Impact Index Per Article: 24.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
UNLABELLED Hesperidin belongs to flavanones class of flavonoids and is known to possess broad-spectrum applicability to prevent dreadful diseases such as cardiovascular disease, neurodegeneration, and cancer. The reported anticancer effects of hesperidin have been found to be associated with its anti-oxidant and anti-inflammatory activities. Hesperidin interacts with numerous recognized cellular targets and inhibits cancer cell proliferation by inducing apoptosis and cell cycle arrest. In addition, evidence has suggested its promising role in inhibiting tumor cell metastasis, angiogenesis, and chemoresistance. The present mini-review highlights the ongoing development to identify hesperidin targets in cancer. Furthermore, the potential of nano technology-based hesperidin combinations and delivery systems will also be discussed. Overall, this review highlights all the possible molecular targets affected by hesperidin in tumor cells on a single platform. IMPACT STATEMENT Experimental findings from numerous studies have demonstrated the anticancer effects of hesperidin (Hesp) to be associated with anti-oxidant and anti-inflammatory activities along with its potential role in inhibiting the tumor cell metastasis and angiogenesis. Additionally, Hesp can also reverse drug resistance of cancer cells, which make it a promising candidate to be used in combination with existing anti-cancer drugs. This review will be helpful for upcoming researchers and scientific community to find out complete capsular package about cancer drug targets of Hesp and its role in modulating various important hallmarks of cancer.
Collapse
Affiliation(s)
- Vaishali Aggarwal
- Department of Histopathology, Post Graduate Institute of Medical Education and Research (PGIMER), Chandigarh 160012, India
| | - Hardeep S Tuli
- Department of Biotechnology, Maharishi Markandeshwar (Deemed to be University), Ambala 133207, India
| | - Falak Thakral
- Department of Biotechnology, Maharishi Markandeshwar (Deemed to be University), Ambala 133207, India
| | - Paavan Singhal
- Department of Biotechnology, Maharishi Markandeshwar (Deemed to be University), Ambala 133207, India
| | - Diwakar Aggarwal
- Department of Biotechnology, Maharishi Markandeshwar (Deemed to be University), Ambala 133207, India
| | - Saumya Srivastava
- Department of Biotechnology, MNNIT Allahabad, Prayagraj 211004, India
| | - Anjana Pandey
- Department of Biotechnology, MNNIT Allahabad, Prayagraj 211004, India
| | | | - Mehmet Varol
- Department of Molecular Biology and Genetics, Faculty of Science, Mugla Sitki Kocman University, Mugla TR48000, Turkey
| | - Md. Asaduzzaman Khan
- The Research Center for Preclinical Medicine, Southwest Medical University, Luzhou 646000, China
| | - Gautam Sethi
- Department of Pharmacology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117600, Singapore
| |
Collapse
|
24
|
Wu L, Guo C, Wu J. Therapeutic potential of PPARγ natural agonists in liver diseases. J Cell Mol Med 2020; 24:2736-2748. [PMID: 32031298 PMCID: PMC7077554 DOI: 10.1111/jcmm.15028] [Citation(s) in RCA: 82] [Impact Index Per Article: 16.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2019] [Revised: 11/17/2019] [Accepted: 01/13/2020] [Indexed: 12/11/2022] Open
Abstract
Peroxisome proliferator‐activated receptor gamma (PPARγ) is a vital subtype of the PPAR family. The biological functions are complex and diverse. PPARγ plays a significant role in protecting the liver from inflammation, oxidation, fibrosis, fatty liver and tumours. Natural products are a promising pool for drug discovery, and enormous research effort has been invested in exploring the PPARγ‐activating potential of natural products. In this manuscript, we will review the research progress of PPARγ agonists from natural products in recent years and probe into the application potential and prospects of PPARγ natural agonists in the therapy of various liver diseases, including inflammation, hepatic fibrosis, non‐alcoholic fatty liver and liver cancer.
Collapse
Affiliation(s)
- Liwei Wu
- Department of Gastroenterology, Putuo People's Hospital, Tongji University School of Medicine, Shanghai, China.,Department of Gastroenterology, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai, China
| | - Chuanyong Guo
- Department of Gastroenterology, Putuo People's Hospital, Tongji University School of Medicine, Shanghai, China.,Department of Gastroenterology, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai, China
| | - Jianye Wu
- Department of Gastroenterology, Putuo People's Hospital, Tongji University School of Medicine, Shanghai, China
| |
Collapse
|
25
|
Hesperetin ameliorates lipopolysaccharide-induced acute lung injury in mice through regulating the TLR4-MyD88-NF-κB signaling pathway. Arch Pharm Res 2019; 42:1063-1070. [PMID: 31802426 DOI: 10.1007/s12272-019-01200-6] [Citation(s) in RCA: 34] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2019] [Accepted: 12/02/2019] [Indexed: 12/17/2022]
Abstract
Hesperetin, a major bioflavonoid in sweet oranges and lemons, exerts an anti-inflammatory effect in pulmonary diseases; however, its effect on lipopolysaccharide (LPS)-induced acute lung injury is unclear. This study investigated the effect of hesperetin on LPS-induced lung inflammatory response. Mice were intratracheally instilled with 5 mg/kg body weight LPS, and then were given hesperetin orally (10, 20, and 30 mg/kg body weight) 1 h later. Hesperetin dramatically suppressed the levels of interleukin-6 and tumor necrosis factor-α, as well as the number of inflammatory cells in bronchoalveolar lavage fluid. Besides, it reduced lung injury, wet weight/dry weight ratio, and myeloperoxidase and lactate dehydrogenase activities, and enhanced superoxide dismutase activity. In addition, hesperetin significantly downregulated the Toll-like receptor 4 (TLR4) and myeloid differentiation factor 88 (MyD88) protein expression and suppressed nuclear factor-kappa B (NF-κB) activation in lung tissue. Together, these results indicated that the anti-inflammatory effect of hesperetin is associated with the TLR4-MyD88-NF-κB pathway, and that hesperetin shows therapeutic potential for LPS-induced acute lung injury.
Collapse
|
26
|
Design, Synthesis and Investigation of the Potential Anti-Inflammatory Activity of 7- O-Amide Hesperetin Derivatives. Molecules 2019; 24:molecules24203663. [PMID: 31614601 PMCID: PMC6832651 DOI: 10.3390/molecules24203663] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2019] [Revised: 09/08/2019] [Accepted: 10/01/2019] [Indexed: 12/30/2022] Open
Abstract
To develop new anti-inflammatory agents, a series of 7-O-amide hesperetin derivatives was designed, synthesized and evaluated for anti-inflammatory activity using RAW264.7 cells. All compounds showed inhibitory effect on LPS-induced NO production. Among them, 7-O-(2-(Propylamino)-2-oxoethyl)hesperetin (4d) and 7-O-(2-(Cyclopentylamino)-2-oxoethyl)hesperetin (4k) with hydrophobic side chains exhibited the most potent NO inhibitory activity (IC50 = 19.32 and 16.63 μM, respectively), showing stronger inhibitory effect on the production of pro- inflammatory cytokines tumor necrosis factor (TNF-α), interleukin-6 (IL-6) and interleukin-1β (IL-1β) than indomethacin and celecoxib at 10 μM. The structure-activity relationships (SARs) suggested that the 7-O-amide unit was buried in a medium-sized hydrophobic cavity of the bound receptor. Furthermore, compound 4d could also significantly suppress the expression of inducible nitric oxide synthase enzymes (iNOS) and cyclooxygenase-2 (COX-2), through the nuclear factor-kappa B (NF-κB) signaling pathway.
Collapse
|
27
|
Chen X, Li XF, Chen Y, Zhu S, Li HD, Chen SY, Wang JN, Pan XY, Bu FT, Huang C, Li J. Hesperetin derivative attenuates CCl 4-induced hepatic fibrosis and inflammation by Gli-1-dependent mechanisms. Int Immunopharmacol 2019; 76:105838. [PMID: 31473406 DOI: 10.1016/j.intimp.2019.105838] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2019] [Revised: 08/15/2019] [Accepted: 08/18/2019] [Indexed: 12/12/2022]
Abstract
Hepatic fibrosis, a common pathological feature and leading cause of various chronic liver diseases, still lacks effective therapy. Hesperetin derivative (HD) is a derivative of Traditional Chinese Medicine monomer isolated from the fruit peel of Citrusaurantium L. (Rutaceae). In the present study, we revealed the anti-fibrotic effects of HD in CCl4-induced mouse hepatic fibrosis model and in TGF-β1-activated LX-2 cells, in vivo and in vitro. Results showed that HD prevented CCl4-induced liver injury and histological damage. Consistently, HD inhibited the up-regulation of liver fibrogenesis markers α-SMA, Col1α1, Col3α1 and TIMP-1 in primary hepatic stellate cells (HSCs) and suppressed inflammatory responses in primary liver macrophages from hepatic fibrosis mice. Furthermore, HD promoted the apoptosis of activated HSCs, a key step in the onset of fibrosis regression. Mechanistically, the Hedgehog pathway was involved in HD-treated hepatic fibrosis, and HD specifically contributed to attenuate the aberrant expression of Glioma associated oncogene-1 (Gli-1). Interestingly, blockade of Gli-1 removed the inhibitory effect of HD on activated HSCs, indicating that Gli-1 may play a pivotal role in mediating the anti-fibrotic effect of HD in hepatic fibrosis. Collectively, our results suggest that HD may be a potential anti-fibrotic Traditional Chinese Medicine monomer for the treatment of hepatic fibrosis.
Collapse
Affiliation(s)
- Xin Chen
- School of Pharmacy, Anhui Key Laboratory of Major Autoimmune Diseases, Anhui Institute of Innovative Drugs, Anhui Medical University, Hefei 230032, China; The Key Laboratory of Anti-inflammatory and Immune Medicines, Anhui Medical University, Ministry of Education, Hefei 230032, China; Institute for Liver Diseases of Anhui Medical University, ILD-AMU, Anhui Medical University, Hefei 230032, China
| | - Xiao-Feng Li
- School of Pharmacy, Anhui Key Laboratory of Major Autoimmune Diseases, Anhui Institute of Innovative Drugs, Anhui Medical University, Hefei 230032, China; The Key Laboratory of Anti-inflammatory and Immune Medicines, Anhui Medical University, Ministry of Education, Hefei 230032, China; Institute for Liver Diseases of Anhui Medical University, ILD-AMU, Anhui Medical University, Hefei 230032, China
| | - Yu Chen
- School of Pharmacy, Anhui Key Laboratory of Major Autoimmune Diseases, Anhui Institute of Innovative Drugs, Anhui Medical University, Hefei 230032, China; The Key Laboratory of Anti-inflammatory and Immune Medicines, Anhui Medical University, Ministry of Education, Hefei 230032, China; Institute for Liver Diseases of Anhui Medical University, ILD-AMU, Anhui Medical University, Hefei 230032, China
| | - Sai Zhu
- School of Pharmacy, Anhui Key Laboratory of Major Autoimmune Diseases, Anhui Institute of Innovative Drugs, Anhui Medical University, Hefei 230032, China; The Key Laboratory of Anti-inflammatory and Immune Medicines, Anhui Medical University, Ministry of Education, Hefei 230032, China; Institute for Liver Diseases of Anhui Medical University, ILD-AMU, Anhui Medical University, Hefei 230032, China
| | - Hai-Di Li
- School of Pharmacy, Anhui Key Laboratory of Major Autoimmune Diseases, Anhui Institute of Innovative Drugs, Anhui Medical University, Hefei 230032, China; The Key Laboratory of Anti-inflammatory and Immune Medicines, Anhui Medical University, Ministry of Education, Hefei 230032, China; Institute for Liver Diseases of Anhui Medical University, ILD-AMU, Anhui Medical University, Hefei 230032, China
| | - Si-Yu Chen
- School of Pharmacy, Anhui Key Laboratory of Major Autoimmune Diseases, Anhui Institute of Innovative Drugs, Anhui Medical University, Hefei 230032, China; The Key Laboratory of Anti-inflammatory and Immune Medicines, Anhui Medical University, Ministry of Education, Hefei 230032, China; Institute for Liver Diseases of Anhui Medical University, ILD-AMU, Anhui Medical University, Hefei 230032, China
| | - Jia-Nan Wang
- School of Pharmacy, Anhui Key Laboratory of Major Autoimmune Diseases, Anhui Institute of Innovative Drugs, Anhui Medical University, Hefei 230032, China; The Key Laboratory of Anti-inflammatory and Immune Medicines, Anhui Medical University, Ministry of Education, Hefei 230032, China; Institute for Liver Diseases of Anhui Medical University, ILD-AMU, Anhui Medical University, Hefei 230032, China
| | - Xue-Yin Pan
- School of Pharmacy, Anhui Key Laboratory of Major Autoimmune Diseases, Anhui Institute of Innovative Drugs, Anhui Medical University, Hefei 230032, China; The Key Laboratory of Anti-inflammatory and Immune Medicines, Anhui Medical University, Ministry of Education, Hefei 230032, China; Institute for Liver Diseases of Anhui Medical University, ILD-AMU, Anhui Medical University, Hefei 230032, China
| | - Fang-Tian Bu
- School of Pharmacy, Anhui Key Laboratory of Major Autoimmune Diseases, Anhui Institute of Innovative Drugs, Anhui Medical University, Hefei 230032, China; The Key Laboratory of Anti-inflammatory and Immune Medicines, Anhui Medical University, Ministry of Education, Hefei 230032, China; Institute for Liver Diseases of Anhui Medical University, ILD-AMU, Anhui Medical University, Hefei 230032, China
| | - Cheng Huang
- School of Pharmacy, Anhui Key Laboratory of Major Autoimmune Diseases, Anhui Institute of Innovative Drugs, Anhui Medical University, Hefei 230032, China; The Key Laboratory of Anti-inflammatory and Immune Medicines, Anhui Medical University, Ministry of Education, Hefei 230032, China; Institute for Liver Diseases of Anhui Medical University, ILD-AMU, Anhui Medical University, Hefei 230032, China.
| | - Jun Li
- School of Pharmacy, Anhui Key Laboratory of Major Autoimmune Diseases, Anhui Institute of Innovative Drugs, Anhui Medical University, Hefei 230032, China; The Key Laboratory of Anti-inflammatory and Immune Medicines, Anhui Medical University, Ministry of Education, Hefei 230032, China; Institute for Liver Diseases of Anhui Medical University, ILD-AMU, Anhui Medical University, Hefei 230032, China.
| |
Collapse
|
28
|
4-Methylcoumarin-[5,6-g]-hesperetin attenuates inflammatory responses in alcoholic hepatitis through PPAR-γ activation. Toxicology 2019; 421:9-21. [PMID: 30951781 DOI: 10.1016/j.tox.2019.04.004] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2018] [Revised: 03/29/2019] [Accepted: 04/01/2019] [Indexed: 12/19/2022]
Abstract
4-Methylcoumarin-[5,6-g]-hesperetin (4-MCH) is a hesperidin derivative produced by the structural modification of hesperetin. Alcoholic hepatitis (AH) is the origin of many serious liver diseases that are accompanied by hepatic inflammation. In this study, we detected the anti-inflammatory activity of 4-MCH in EtOH fed mice and examined the potential molecular mechanism of this activity. We found that 4-MCH suppressed the release of inflammatory cytokines such as interleukin-6 (IL-6) and tumor necrosis factor-α (TNF-α) in primary liver macrophages isolated from mice and in EtOH-treated RAW264.7 cells. In addition, we showed that the expression of peroxisome proliferator-activated receptor-γ (PPAR-γ) was down-regulated in vivo and in vitro in AH. Furthermore, 4-MCH acted as an activator of PPAR-γ, which could therefore ameliorate the inhibitory effects of EtOH on the expression of PPAR-γ. The impairment of PPAR-γ function (T0070907 or PPAR-γ siRNA treatment) resulted in greater inflammation than that in the control group. Conversely, over-expression of PPAR-γ further reduced the release of inflammatory cytokines from EtOH-stimulated RAW264.7 cells. Additional investigations showed that 4-MCH significantly inhibited the phosphorylation of p65. Collectively, these results indicate that 4-MCH alleviated the inflammatory reaction through PPAR-γ activation via the NF-κB-p65 signaling pathway, which regulates the expression of IL-6 and TNF-α in AH.
Collapse
|
29
|
Ginsenoside Rf inhibits cyclooxygenase-2 induction via peroxisome proliferator-activated receptor gamma in A549 cells. J Ginseng Res 2018; 43:319-325. [PMID: 30976170 PMCID: PMC6437553 DOI: 10.1016/j.jgr.2018.11.007] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2018] [Revised: 11/14/2018] [Accepted: 11/26/2018] [Indexed: 12/11/2022] Open
Abstract
Background Ginsenoside Rf is a ginseng saponin found only in Panax ginseng that affects lipid metabolism. It also has neuroprotective and antiinflammatory properties. We previously showed that Korean Red Ginseng (KRG) inhibited the expression of cyclooxygenase-2 (COX-2) by hypoxia via peroxisome proliferator–activated receptor gamma (PPARγ). The aim of the current study was to evaluate the possibility of ginsenoside Rf as an active ingredient of KRG in the inhibition of hypoxia-induced COX-2 via PPARγ. Methods The effects of ginsenoside Rf on the upregulation of COX-2 by hypoxia and its antimigration effects were evaluated in A549 cells. Docking of ginsenoside Rf was performed with the PPARγ structure using Surflex-Dock in Sybyl-X 2.1.1. Results PPARγ protein levels and peroxisome proliferator response element promoter activities were promoted by ginsenoside Rf. Inhibition of COX-2 expression by ginsenoside Rf was blocked by the PPARγ-specific inhibitor, T0070907. The PPARγ inhibitor also blocked the ability of ginsenoside Rf to suppress cell migration under hypoxia. The docking simulation results indicate that ginsenoside Rf binds to the active site of PPARγ. Conclusions Our results demonstrate that ginsenoside Rf inhibits hypoxia induced-COX-2 expression and cellular migration, which are dependent on PPARγ activation. These results suggest that ginsenoside Rf has an antiinflammatory effect under hypoxic conditions. Moreover, docking analysis of ginsenoside Rf into the active site of PPARγ suggests that the compound binds to PPARγ in a position similar to that of known agonists.
Collapse
|
30
|
Samie A, Sedaghat R, Baluchnejadmojarad T, Roghani M. Hesperetin, a citrus flavonoid, attenuates testicular damage in diabetic rats via inhibition of oxidative stress, inflammation, and apoptosis. Life Sci 2018; 210:132-139. [PMID: 30179627 DOI: 10.1016/j.lfs.2018.08.074] [Citation(s) in RCA: 64] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2018] [Revised: 08/15/2018] [Accepted: 08/31/2018] [Indexed: 01/07/2023]
Abstract
AIM This study was designed to assess the beneficial effect of hesperetin on diabetes-associated testicular injury in the rat. MAIN METHODS Oral treatment with hesperetin started 10 days after diabetes induction by streptozotocin (60 mg/kg, i.p.) for 46 days. Testicular damage was evaluated by histological evaluation of seminiferous tubules in addition to assessment of epididymal sperm count, motility, and viability. In addition, testicular biomarkers of apoptosis, inflammation, and oxidative stress were also determined. KEY FINDINGS Hesperetin treatment of diabetic group prevented body weight loss and reduced serum glucose in addition to improvement of serum testosterone. Additionally, hesperetin-treated diabetic group had lower levels of malondialdehyde (MDA), reactive oxygen species (ROS), protein carbonyl, DNA fragmentation, and caspase 3 activity as specific biomarkers of oxidative stress and/or apoptosis. Furthermore, hesperetin augmented testicular antioxidant system as shown by higher levels of glutathione (GSH), mitochondrial membrane potential (MMP), and ferric reducing antioxidant power (FRAP) in addition to improvement of superoxide dismutase (SOD), catalase, and glutathione peroxidase (GPx). Moreover, hesperetin administration to diabetic rats attenuated testicular indices of inflammation consisting of tumor necrosis factor α (TNFα) and interleukin 17 (IL-17) and prevented damage of seminiferous tubules as revealed by higher levels of sperm count, motility, and viability in diabetic rats. SIGNIFICANCE Collectively, hesperetin could alleviate testicular damage in DM, at least through inhibition of apoptosis, oxidative stress, and inflammation in addition to its up-regulation of endogenous enzymatic and non-enzymatic antioxidants.
Collapse
Affiliation(s)
| | - Reza Sedaghat
- Department of Anatomy and Pathology, School of Medicine, Shahed University, Tehran, Iran
| | | | - Mehrdad Roghani
- Neurophysiology Research Center, Department of Physiology, Shahed University, Tehran, Iran.
| |
Collapse
|
31
|
Yang YQ, Yan XT, Wang K, Tian RM, Lu ZY, Wu LL, Xu HT, Wu YS, Liu XS, Mao W, Xu P, Liu B. Triptriolide Alleviates Lipopolysaccharide-Induced Liver Injury by Nrf2 and NF-κB Signaling Pathways. Front Pharmacol 2018; 9:999. [PMID: 30210350 PMCID: PMC6124152 DOI: 10.3389/fphar.2018.00999] [Citation(s) in RCA: 38] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2018] [Accepted: 08/14/2018] [Indexed: 12/11/2022] Open
Abstract
Nrf2 (Nuclear Factor Erythroid 2 Related Factor 2) transcription factor not only regulates oxidative stress response, but also represses inflammation by regulating cytokines production and cross-talking with NF-κB signaling pathways. Nrf2 plays an essential role in liver injury induced by oxidative stress and inflammation. Triptriolide (T11) is a minor component of Tripterygium wilfordii Hook F. (TwHF), which can be obtained by hydrolysis reaction of triptolide (T9). The major purpose of this study is to clarify the regulating effects of T11 on oxidative stress and inflammation in vivo and in vitro. LPS-stimulated RAW 264.7 cells were used to verify the regulating effects of T11 on oxidative stress (ROS and Nrf2 signaling pathway) and inflammatory cytokines production (TNF-α, IL-6 and IL-1β). The antioxidant responsive element (ARE) luciferase assay was employed to evaluate Nrf2 activation effect of T11 in HEK-293T cells. Lipopolysaccharides (LPS) induced acute liver injury (ALI) in BALB/c mice were used to study the protective effects (ALT, AST, MDA, SOD, histopathology and neutrophils/macrophages filtration) and the underlying protection mechanisms of ALI amelioration (Nrf2 and NF-κB signaling pathway) of T11. Firstly, the results showed that T11 can not only effectively decrease the productions of inflammatory cytokines (TNF-α, IL-6 and IL-1β), ROS and NO in LPS-stimulated RAW 264.7 cells, but also further significantly increase the activity of Nrf2 in HEK-293T cells. Secondly, the results suggested that T11 could dramatically decrease the oxidative stress responses (SOD and MDA) and inflammation (histopathology, neutrophils/macrophages filtration, TNF-α, IL-6 and IL-1β production) in LPS-induced ALI in BALB/c mice. Finally, the results implied that T11 could dramatically increase Nrf2 protein expression and decrease p-TAK1, p-IκBα and NF-κB protein expression both in vivo and in vitro. In conclusion, our findings indicated that T11 could alleviate LPS induced oxidative stress and inflammation by regulating Nrf2 and NF-κB signaling pathways in vitro and in vivo, which offers a novel insights for the application of TwHF in clinical.
Collapse
Affiliation(s)
- Yi-Qi Yang
- The Second Clinical Medical College, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Xiao-Teng Yan
- Affiliated Huai'an Hospital, Xuzhou Medical University, Huai'an, China
| | - Kai Wang
- The Second Clinical Medical College, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Rui-Min Tian
- Guangdong Provincial Academy of Chinese Medical Sciences, Guangzhou, China
| | - Zhao-Yu Lu
- Guangdong Provincial Academy of Chinese Medical Sciences, Guangzhou, China
| | - Li-Lan Wu
- Guangdong Provincial Academy of Chinese Medical Sciences, Guangzhou, China
| | - Hong-Tao Xu
- Shanghai Institute for Advanced Immunochemical Studies, ShanghaiTech University, Shanghai, China
| | - Yun-Shan Wu
- The Second Clinical Medical College, Guangzhou University of Chinese Medicine, Guangzhou, China.,Guangdong Provincial Academy of Chinese Medical Sciences, Guangzhou, China
| | - Xu-Sheng Liu
- The Second Clinical Medical College, Guangzhou University of Chinese Medicine, Guangzhou, China.,Guangdong Provincial Academy of Chinese Medical Sciences, Guangzhou, China
| | - Wei Mao
- The Second Clinical Medical College, Guangzhou University of Chinese Medicine, Guangzhou, China.,Guangdong Provincial Academy of Chinese Medical Sciences, Guangzhou, China
| | - Peng Xu
- The Second Clinical Medical College, Guangzhou University of Chinese Medicine, Guangzhou, China.,Guangdong Provincial Academy of Chinese Medical Sciences, Guangzhou, China
| | - Bo Liu
- The Second Clinical Medical College, Guangzhou University of Chinese Medicine, Guangzhou, China.,Guangdong Provincial Academy of Chinese Medical Sciences, Guangzhou, China
| |
Collapse
|
32
|
Huang AL, Zhang YL, Ding HW, Li B, Huang C, Meng XM, Li J. Design, synthesis and investigation of potential anti-inflammatory activity of O-alkyl and O-benzyl hesperetin derivatives. Int Immunopharmacol 2018; 61:82-91. [DOI: 10.1016/j.intimp.2018.05.009] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2018] [Revised: 04/17/2018] [Accepted: 05/14/2018] [Indexed: 12/31/2022]
|
33
|
Dong L, Han X, Tao X, Xu L, Xu Y, Fang L, Yin L, Qi Y, Li H, Peng J. Protection by the Total Flavonoids from Rosa laevigata Michx Fruit against Lipopolysaccharide-Induced Liver Injury in Mice via Modulation of FXR Signaling. Foods 2018; 7:88. [PMID: 29890650 PMCID: PMC6025249 DOI: 10.3390/foods7060088] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2018] [Revised: 05/31/2018] [Accepted: 06/06/2018] [Indexed: 12/17/2022] Open
Abstract
We previously reported the effects of the total flavonoids (TFs) from Rosa laevigata Michx fruit against carbon tetrachloride-induced liver damage, non-alcoholic fatty liver disease, and liver ischemia-reperfusion injury. However, there have been no papers reporting the role of R. laevigata TFs against lipopolysaccharide (LPS)-induced liver injury. In this paper, liver injury in mice was induced by LPS, and R. Laevigata extract was intragastrically administered to the mice for 7 days. Biochemical parameters in serum and liver tissue were examined, and pathological changes were observed by transmission electron microscopy, hematoxylin and eosin (H&E) and Oil Red O staining. The results showed that the TFs markedly reduced serum ALT (alanine transferase), AST (aspartate transaminase), TG (total triglyceride), and TC (total cholesterol) levels and relative liver weights and improved liver pathological changes. In addition, the TFs markedly decreased tissue MDA (malondialdehyde) level and increased the levels of SOD (superoxide dismutase) and GSH-Px (glutathione peroxidase). A mechanistic study showed that the TFs significantly increased the expression levels of Nrf2 (nuclear erythroid factor2-related factor 2), HO-1 (heme oxygenase-1), NQO1 (NAD(P)H dehydrogenase (quinone 1), GCLC (glutamate-cysteine ligase catalytic subunit), and GCLM (glutamate-cysteine ligase regulatory subunit) and decreased Keap1 (Kelch-like ECH-associated protein 1) level by activating FXR (farnesoid X receptor) against oxidative stress. Furthermore, the TFs markedly suppressed the nuclear translocation of NF-κB (nuclear factor-kappa B) and subsequently decreased the expression levels of IL (interleukin)-1β, IL-6, HMGB-1 (high -mobility group box 1), and COX-2 (cyclooxygenase-2) by activating FXR and FOXO3a (forkhead box O3) against inflammation. Besides, the TFs obviously reduced the expression levels of SREBP-1c (sterol regulatory element-binding proteins-1c), ACC1 (acetyl-CoA carboxylase-1), FASN (fatty acid synthase), and SCD1 (stearoyl-coenzyme A desaturase 1), and improved CPT1 (carnitine palmitoyltransferase 1) level by activating FXR to regulate lipid metabolism. Our results suggest that TFs exhibited protective effect against LPS-induced liver injury by altering FXR-mediated oxidative stress, inflammation, and lipid metabolism, and should be developed as an effective food and healthcare product for the therapy of liver injury in the future.
Collapse
Affiliation(s)
- Lile Dong
- College of Pharmacy, Dalian Medical University, Western 9 Lvshunnan Road, Dalian 116044, China.
| | - Xu Han
- College of Pharmacy, Dalian Medical University, Western 9 Lvshunnan Road, Dalian 116044, China.
| | - Xufeng Tao
- College of Pharmacy, Dalian Medical University, Western 9 Lvshunnan Road, Dalian 116044, China.
| | - Lina Xu
- College of Pharmacy, Dalian Medical University, Western 9 Lvshunnan Road, Dalian 116044, China.
| | - Youwei Xu
- College of Pharmacy, Dalian Medical University, Western 9 Lvshunnan Road, Dalian 116044, China.
| | - Linlin Fang
- College of Pharmacy, Dalian Medical University, Western 9 Lvshunnan Road, Dalian 116044, China.
| | - Lianhong Yin
- College of Pharmacy, Dalian Medical University, Western 9 Lvshunnan Road, Dalian 116044, China.
| | - Yan Qi
- College of Pharmacy, Dalian Medical University, Western 9 Lvshunnan Road, Dalian 116044, China.
| | - Hua Li
- College of Pharmacy, Dalian Medical University, Western 9 Lvshunnan Road, Dalian 116044, China.
| | - Jinyong Peng
- College of Pharmacy, Dalian Medical University, Western 9 Lvshunnan Road, Dalian 116044, China.
| |
Collapse
|
34
|
Comparison of Chemical Profiles, Anti-Inflammatory Activity, and UPLC-Q-TOF/MS-Based Metabolomics in Endotoxic Fever Rats between Synthetic Borneol and Natural Borneol. Molecules 2017; 22:molecules22091446. [PMID: 28858264 PMCID: PMC6151575 DOI: 10.3390/molecules22091446] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2017] [Revised: 08/25/2017] [Accepted: 08/28/2017] [Indexed: 12/12/2022] Open
Abstract
Natural borneol (NB, called “Bingpian”) is an important traditional Chinese medicine to restore consciousness, remove heat and relieve pain, all of which are inflammation-related diseases. Recently, due to the limited source of NB, synthetic borneol (SB) is widely used as a substitute for NB in clinics. However, little is known about the effects of SB instead of NB. Herein, the aim of the present study was to compare NB and SB on chemical profiles by gas chromatography-mass spectrometer (GC-MS) analysis, anti-inflammatory activity in lipopolysaccharide (LPS)-induced RAW 264.7 macrophages, and ultra-performance liquid chromatography-quadrupole time-of-flight mass spectrometry (UPLC-Q-TOF/MS) metabolomic approaches in endotoxic fever induced in rats. Results showed that, in total, 13 volatile components could be identified in NB and SB by GC-MS analysis, in which a significant difference between them still existed. The main constituents in SB were iso-borneol and borneol, while borneol contributes to 98.96% of the amount in NB. Additionally, both NB and SB exhibited remarkable anti-inflammatory effects to reduce the level of inflammatory factors including NO, TNF-α and IL-6 in LPS-induced RAW 264.7 macrophages, and lower the high body temperature in rats with endotoxic fever induced by LPS. Moreover, it seems that NB exhibited higher efficacy than SB. The unequal bioactive efficiency between NB and SB was also indicated by means of non-targeting metabolomics. Based on UPLC-Q-TOF/MS technology, 12 biomarkers in the serum of fever rats were identified. Pathway analysis revealed that the anti-fever effect of NB and SB was related to regulating the abnormal glycerophospholipid, linoleic acid and alpha-linoleic acid metabolism pathways in the fever model. Results indicated that there was still a great difference between NB and SB involving chemical constituents, anti-inflammation activity and the ability to regulate the abnormal metabolism pathways of the fever model. Certainly, further studies are warranted to better understand the replacement rationale in medicinal application.
Collapse
|