1
|
Chiocchetti GM, Domene A, Orozco H, Vélez D, Devesa V. Dietary Compounds in the Prevention of Arsenic Induced Intestinal Toxicity In Vitro. J Med Food 2025; 28:392-401. [PMID: 39807999 DOI: 10.1089/jmf.2024.0029] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2025] Open
Abstract
Recent studies show that inorganic arsenic (As) exerts a toxic effect on the intestinal epithelium, causing a significant increase in its permeability. This disruption of the epithelial barrier may favor the entry of contaminants or toxins into the systemic circulation, thus causing toxicity not only at the intestinal level but possibly also at the systemic level. The present study conducts an in vitro evaluation of the protective effect of various dietary supplements and plant extracts against the intestinal toxicity of inorganic As. Some of these compounds were found to exert a protective effect. A significant decrease was observed in intracellular reactive oxygen/nitrogen species (10-31%), as well as a lower secretion of the pro-inflammatory cytokine IL-8 (25-41%) in the intestinal monolayers treated with the supplements and extracts, compared with those exposed only to As(III). The most effective supplements (glutathione/cysteine/vitamin C and lipoic acid) also normalized the distribution of tight junction protein zonula occludens-1, with partial restoration of the paracellular permeability and cell regeneration capacity of the intestinal epithelial cells. The results obtained show that dietary supplements and plant extracts can reduce the intestinal barrier disruption caused by inorganic As, and this may have a positive impact at both local and systemic levels.
Collapse
Affiliation(s)
- Gabriela M Chiocchetti
- Instituto de Agroquímica y Tecnología de Alimentos (IATA-CSIC), Paterna (Valencia), Spain
| | - Adrián Domene
- Instituto de Agroquímica y Tecnología de Alimentos (IATA-CSIC), Paterna (Valencia), Spain
| | - Helena Orozco
- Instituto de Agroquímica y Tecnología de Alimentos (IATA-CSIC), Paterna (Valencia), Spain
| | - Dinoraz Vélez
- Instituto de Agroquímica y Tecnología de Alimentos (IATA-CSIC), Paterna (Valencia), Spain
| | - Vicenta Devesa
- Instituto de Agroquímica y Tecnología de Alimentos (IATA-CSIC), Paterna (Valencia), Spain
| |
Collapse
|
2
|
Anchidin-Norocel L, Iatcu OC, Lobiuc A, Covasa M. Heavy Metal-Gut Microbiota Interactions: Probiotics Modulation and Biosensors Detection. BIOSENSORS 2025; 15:188. [PMID: 40136985 PMCID: PMC11940129 DOI: 10.3390/bios15030188] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/30/2025] [Revised: 03/08/2025] [Accepted: 03/12/2025] [Indexed: 03/27/2025]
Abstract
This study provides a comprehensive analysis of the complex interaction between heavy metals (HMs) and the gut microbiota, adopting a bidirectional approach that explores both the influence of HMs on the gut microbiota populations and the potential role of probiotics in modulating these changes. By examining these interconnected aspects, the study aims to offer a deeper understanding of how HMs disrupt microbial balance and how probiotic interventions may mitigate or reverse these effects, promoting detoxification processes and overall gut health. In addition, the review highlights innovative tools, such as biosensors, for the rapid, precise, and non-invasive detection of HMs in urine. These advanced technologies enable the real-time monitoring of the effectiveness of probiotic-based interventions, offering critical insights into their role in promoting the elimination of HMs from the body and improving detoxification.
Collapse
Affiliation(s)
| | - Oana C. Iatcu
- College of Medicine and Biological Science, Stefan cel Mare University of Suceava, 720229 Suceava, Romania; (L.A.-N.); (A.L.); (M.C.)
| | | | | |
Collapse
|
3
|
Wang S, Hong Y, Li Y, Zhang Z, Han J, Yang Z, Yang Y, Ma Z, Wang Q. Ferulic Acid Inhibits Arsenic-Induced Colon Injury by Improving Intestinal Barrier Function. ENVIRONMENTAL TOXICOLOGY 2024; 39:4821-4831. [PMID: 38881217 DOI: 10.1002/tox.24360] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/23/2024] [Revised: 04/13/2024] [Accepted: 05/25/2024] [Indexed: 06/18/2024]
Abstract
The prolonged exposure to arsenic results in intestinal barrier dysfunction, which is strongly concerned with detrimental processes such as oxidative stress and the inflammatory response. Ferulic acid (FA), as a phenolic acid, possesses the capability to mitigate arsenic-induced liver damage and cardiotoxic effects dependent on inhibition of oxidative stress and inflammatory responses. FA can mitigate testicular tissue damage and alveolar epithelial dysfunction, the mechanism of which may rely on nuclear factor erythroid 2-related factor 2/heme oxygenase 1 (Nrf2/HO-1) activation and nuclear factor-kappa B (NF-κB) pathway blocking. Based on the antioxidant and anti-inflammatory properties of FA, we speculated that FA might have the potential to inhibit arsenic-induced intestinal damage. To confirm this scientific hypothesis, mice exposed to sodium arsenite were treated with FA to observe colonic histopathology and TJ protein levels, and oxidative stress and TJ protein levels in Caco-2 cells exposed to sodium arsenite were assessed after FA intervention. In addition, molecular levels of NF-κB and Nrf2/HO-1 pathway in colon and Caco-2 cells were also detected. As shown in our data, FA inhibited arsenic-induced colon injury, which was reflected in the improvement of mucosal integrity, the decrease of down-regulated expression of tight junction (TJ) proteins (Claudin-1, Occludin, and ZO-1) and the inhibition of oxidative stress. Similarly, treatment with FA attenuated the inhibitory effect of arsenic on TJ protein expression in Caco-2 cells. In addition to suppressing the activation of NF-κB pathway, FA retrieved the activation of Nrf2/HO-1 pathway in colon and intestinal epithelial cells induced by arsenic. In summary, our findings propose that FA has the potential to mitigate arsenic-induced intestinal damage by preserving the integrity of intestinal epithelial TJs and suppressing oxidative stress. These results lay the groundwork for the potential use of FA in treating colon injuries caused by arsenic.
Collapse
Affiliation(s)
- Shumin Wang
- Department of Histology and Embryology, School of Basic Medicine, Guizhou Medical University, Guiyang, Guizhou, People's Republic of China
| | - Yan Hong
- Department of Histology and Embryology, School of Basic Medicine, Guizhou Medical University, Guiyang, Guizhou, People's Republic of China
| | - Yuxiu Li
- Department of Histology and Embryology, School of Basic Medicine, Guizhou Medical University, Guiyang, Guizhou, People's Republic of China
| | - Zhenfen Zhang
- Department of Histology and Embryology, School of Basic Medicine, Guizhou Medical University, Guiyang, Guizhou, People's Republic of China
| | - Jing Han
- Department of Histology and Embryology, School of Basic Medicine, Guizhou Medical University, Guiyang, Guizhou, People's Republic of China
| | - Zhe Yang
- Department of Histology and Embryology, School of Basic Medicine, Guizhou Medical University, Guiyang, Guizhou, People's Republic of China
| | - Yanping Yang
- Department of Histology and Embryology, School of Basic Medicine, Guizhou Medical University, Guiyang, Guizhou, People's Republic of China
| | - Zhaolei Ma
- Department of Geriatrics, The Affiliated Hospital of Guizhou Medical University, Guiyang, People's Republic of China
| | - Qi Wang
- Department of Histology and Embryology, School of Basic Medicine, Guizhou Medical University, Guiyang, Guizhou, People's Republic of China
| |
Collapse
|
4
|
Gu T, Kong M, Duan M, Chen L, Tian Y, Xu W, Zeng T, Lu L. Cu exposure induces liver inflammation via regulating gut microbiota/LPS/liver TLR4 signaling axis. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2024; 278:116430. [PMID: 38718729 DOI: 10.1016/j.ecoenv.2024.116430] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/27/2024] [Revised: 04/26/2024] [Accepted: 05/03/2024] [Indexed: 05/26/2024]
Abstract
Copper (Cu) serves as an essential cofactor in all organisms, yet excessive Cu exposure is widely recognized for its role in inducing liver inflammation. However, the precise mechanism by which Cu triggers liver inflammation in ducks, particularly in relation to the interplay in gut microbiota regulation, has remained elusive. In this investigation, we sought to elucidate the impact of Cu exposure on liver inflammation through gut-liver axis in ducks. Our findings revealed that Cu exposure markedly elevated liver AST and ALT levels and induced liver inflammation through upregulating pro-inflammatory cytokines (IL-1β, IL-6 and TNF-α) and triggering the LPS/TLR4/NF-κB signaling pathway. Simultaneously, Cu exposure induced alterations in the composition of intestinal flora communities, notably increasing the relative abundance of Sphingobacterium, Campylobacter, Acinetobacter and reducing the relative abundance of Lactobacillus. Cu exposure significantly decreased the protein expression related to intestinal barrier (Occludin, Claudin-1 and ZO-1) and promoted the secretion of intestinal pro-inflammatory cytokines. Furthermore, correlation analysis was observed that intestinal microbiome and gut barrier induced by Cu were closely related to liver inflammation. Fecal microbiota transplantation (FMT) experiments further demonstrated the microbiota-depleted ducks transplanting fecal samples from Cu-exposed ducks disturbed the intestinal dysfunction, which lead to impaire liver function and activate the liver inflammation. Our study provided insights into the mechanism by which Cu exposure induced liver inflammation in ducks through the regulation of gut-liver axis. These results enhanced our comprehension of the potential mechanisms driving Cu-induced hepatotoxicity in avian species.
Collapse
Affiliation(s)
- Tiantian Gu
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China; Institute of Animal Husbandry and Veterinary Science, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China; Key Laboratory of Livestock and Poultry Resources (Poultry) Evaluation and Utilization, Ministry of Agriculture and Rural Affairs of China, Hangzhou, 310021, China; Zhejiang Key Laboratory of Livestock and Poultry Breeding, Hangzhou 310021, China; Zhejiang Provincial Engineering Research Center for Poultry Breeding Industry and Green Farming Technology, Hangzhou 310021, China
| | - Minghua Kong
- School of Life Sciences, Westlake University, Hangzhou 310024, China
| | - Mingcai Duan
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China; Institute of Animal Husbandry and Veterinary Science, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China; Key Laboratory of Livestock and Poultry Resources (Poultry) Evaluation and Utilization, Ministry of Agriculture and Rural Affairs of China, Hangzhou, 310021, China; Zhejiang Key Laboratory of Livestock and Poultry Breeding, Hangzhou 310021, China; Zhejiang Provincial Engineering Research Center for Poultry Breeding Industry and Green Farming Technology, Hangzhou 310021, China
| | - Li Chen
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China; Institute of Animal Husbandry and Veterinary Science, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China; Key Laboratory of Livestock and Poultry Resources (Poultry) Evaluation and Utilization, Ministry of Agriculture and Rural Affairs of China, Hangzhou, 310021, China; Zhejiang Key Laboratory of Livestock and Poultry Breeding, Hangzhou 310021, China; Zhejiang Provincial Engineering Research Center for Poultry Breeding Industry and Green Farming Technology, Hangzhou 310021, China
| | - Yong Tian
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China; Institute of Animal Husbandry and Veterinary Science, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China; Key Laboratory of Livestock and Poultry Resources (Poultry) Evaluation and Utilization, Ministry of Agriculture and Rural Affairs of China, Hangzhou, 310021, China; Zhejiang Key Laboratory of Livestock and Poultry Breeding, Hangzhou 310021, China; Zhejiang Provincial Engineering Research Center for Poultry Breeding Industry and Green Farming Technology, Hangzhou 310021, China
| | - Wenwu Xu
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China; Institute of Animal Husbandry and Veterinary Science, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China; Key Laboratory of Livestock and Poultry Resources (Poultry) Evaluation and Utilization, Ministry of Agriculture and Rural Affairs of China, Hangzhou, 310021, China; Zhejiang Key Laboratory of Livestock and Poultry Breeding, Hangzhou 310021, China; Zhejiang Provincial Engineering Research Center for Poultry Breeding Industry and Green Farming Technology, Hangzhou 310021, China
| | - Tao Zeng
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China; Institute of Animal Husbandry and Veterinary Science, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China; Key Laboratory of Livestock and Poultry Resources (Poultry) Evaluation and Utilization, Ministry of Agriculture and Rural Affairs of China, Hangzhou, 310021, China; Zhejiang Key Laboratory of Livestock and Poultry Breeding, Hangzhou 310021, China; Zhejiang Provincial Engineering Research Center for Poultry Breeding Industry and Green Farming Technology, Hangzhou 310021, China
| | - Lizhi Lu
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China; Institute of Animal Husbandry and Veterinary Science, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China; Key Laboratory of Livestock and Poultry Resources (Poultry) Evaluation and Utilization, Ministry of Agriculture and Rural Affairs of China, Hangzhou, 310021, China; Zhejiang Key Laboratory of Livestock and Poultry Breeding, Hangzhou 310021, China; Zhejiang Provincial Engineering Research Center for Poultry Breeding Industry and Green Farming Technology, Hangzhou 310021, China.
| |
Collapse
|
5
|
Liu T, Zhang C, Zhang H, Jin J, Li X, Liang S, Xue Y, Yuan F, Zhou Y, Bian X, Wei H. A new evaluation system for drug-microbiota interactions. IMETA 2024; 3:e199. [PMID: 38898986 PMCID: PMC11183188 DOI: 10.1002/imt2.199] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/02/2024] [Revised: 04/20/2024] [Accepted: 04/22/2024] [Indexed: 06/21/2024]
Abstract
The drug response phenotype is determined by a combination of genetic and environmental factors. The high clinical conversion failure rate of gene-targeted drugs might be attributed to the lack of emphasis on environmental factors and the inherent individual variability in drug response (IVDR). Current evidence suggests that environmental variables, rather than the disease itself, are the primary determinants of both gut microbiota composition and drug metabolism. Additionally, individual differences in gut microbiota create a unique metabolic environment that influences the in vivo processes underlying drug absorption, distribution, metabolism, and excretion (ADME). Here, we discuss how gut microbiota, shaped by both genetic and environmental factors, affects the host's ADME microenvironment within a new evaluation system for drug-microbiota interactions. Furthermore, we propose a new top-down research approach to investigate the intricate nature of drug-microbiota interactions in vivo. This approach utilizes germ-free animal models, providing foundation for the development of a new evaluation system for drug-microbiota interactions.
Collapse
Affiliation(s)
- Tian‐Hao Liu
- Yu‐Yue Pathology Scientific Research CenterChongqingChina
- Department of PathologyArmy Medical UniversityChongqingChina
- Department of GastroenterologyAffiliated Hospital of Jiangnan UniversityWuxiJiangsuChina
| | - Chen‐Yang Zhang
- Department of GastroenterologyAffiliated Hospital of Jiangnan UniversityWuxiJiangsuChina
- Institute of Integrated traditional Chinese and Western MedicineAffiliated Hospital of Jiangnan UniversityWuxiChina
| | - Hang Zhang
- College of Animal Science and Technology, College of Animal MedicineHuazhong Agricultural UniversityWuhanHubeiChina
| | - Jing Jin
- Department of PathologyArmy Medical UniversityChongqingChina
| | - Xue Li
- Wuxi Hospital Affiliated to Nanjing University of Chinese MedicineWuxiJiangsuChina
| | - Shi‐Qiang Liang
- College of Animal Science and Technology, College of Animal MedicineHuazhong Agricultural UniversityWuhanHubeiChina
| | - Yu‐Zheng Xue
- Department of GastroenterologyAffiliated Hospital of Jiangnan UniversityWuxiJiangsuChina
| | - Feng‐Lai Yuan
- Institute of Integrated traditional Chinese and Western MedicineAffiliated Hospital of Jiangnan UniversityWuxiChina
| | - Ya‐Hong Zhou
- Wuxi Hospital Affiliated to Nanjing University of Chinese MedicineWuxiJiangsuChina
| | - Xiu‐Wu Bian
- Yu‐Yue Pathology Scientific Research CenterChongqingChina
- Department of PathologyArmy Medical UniversityChongqingChina
| | - Hong Wei
- Yu‐Yue Pathology Scientific Research CenterChongqingChina
| |
Collapse
|
6
|
Ventrello SW, McMurry NR, Edwards NM, Bain LJ. Chronic arsenic exposure affects stromal cells and signaling in the small intestine in a sex-specific manner. Toxicol Sci 2024; 198:303-315. [PMID: 38310360 PMCID: PMC10964740 DOI: 10.1093/toxsci/kfae016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2024] Open
Abstract
Arsenic is a toxicant that is ingested through drinking water and food, exposing nearly 140 million people to levels above the 10 ppb guideline concentration. Studies have shown that arsenic affects intestinal stem cells (ISCs), but the mechanisms by which arsenic alters the formation of adult cells in the small intestine are not well understood. Signals derived from intestinal stromal cells initiate and maintain differentiation. The goal of this study is to evaluate arsenic's effect on intestinal stromal cells, including PdgfrαLo trophocytes, located proximal to the ISCs, and PdgfrαHi telocytes, located proximal to the transit-amplifying region and up the villi. Adult Sox9tm2Crm-EGFP mice were exposed to 0, 33, and 100 ppb sodium arsenite in their drinking water for 13 weeks, and sections of duodenum were examined. Flow cytometry indicated that arsenic exposure dose-responsively reduced Sox9+ epithelial cells and trended toward increased Pdgfrα+ cells. The trophocyte marker, CD81, was reduced by 10-fold and 9.0-fold in the 100 ppb exposure group in male and female mice, respectively. Additionally, a significant 2.2- to 3.1-fold increase in PdgfrαLo expression was found in male mice in trophocytes and Igfbp5+ cells. PdgfrαHi protein expression, a telocyte marker, was more prevalent along the villus/crypt structure in females, whereas Gli1 expression (telocytes) was reduced in male mice exposed to arsenic. Principle coordinate analysis confirmed the sex-dependent response to arsenic exposure, with an increase in trophocyte and decrease in telocyte marker expression observed in male mice. These results imply that arsenic alters intestinal mesenchymal cells in a sex-dependent manner.
Collapse
Affiliation(s)
- Scott W Ventrello
- Department of Biological Sciences, Clemson University, Clemson, South Carolina 29634, USA
| | - Nicholas R McMurry
- Department of Biological Sciences, Clemson University, Clemson, South Carolina 29634, USA
| | - Nicholas M Edwards
- Department of Biological Sciences, Clemson University, Clemson, South Carolina 29634, USA
| | - Lisa J Bain
- Department of Biological Sciences, Clemson University, Clemson, South Carolina 29634, USA
| |
Collapse
|
7
|
Domene A, Orozco H, Rodríguez-Viso P, Monedero V, Zúñiga M, Vélez D, Devesa V. Impact of Chronic Exposure to Arsenate through Drinking Water on the Intestinal Barrier. Chem Res Toxicol 2023; 36:1731-1744. [PMID: 37819996 PMCID: PMC10726480 DOI: 10.1021/acs.chemrestox.3c00201] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2023] [Indexed: 10/13/2023]
Abstract
Chronic exposure to inorganic arsenic (As) [As(III) + As(V)], which affects millions of people, increases the incidence of some kinds of cancer and other noncarcinogenic pathologies. Although the oral pathway is the main source of exposure, in vivo studies conducted to verify the intestinal toxicity of this metalloid are scarce and are mainly focused on evaluating the toxicity of As(III). The aim of this study was to evaluate the effect of chronic exposure (6 months) of BALB/c mice to As(V) (15-60 mg/L) via drinking water on the different components of the intestinal barrier and to determine the possible mechanisms involved. The results show that chronic exposure to As(V) generates a situation of oxidative stress (increased lipid peroxidation and reactive species) and inflammation (increased contents of several proinflammatory cytokines and neutrophil infiltrations) in the intestinal tissues. There is also evidence of an altered expression of constituent proteins of the intercellular junctions (Cldn1, Cldn3, and Ocln) and the mucus layer (Muc2) and changes in the composition of the gut microbiota and the metabolism of short-chain fatty acids. All of these toxic effects eventually may lead to the disruption of the intestinal barrier, which shows an increased paracellular permeability. Moreover, signs of endotoxemia are observed in the serum of As(V)-treated animals (increases in lipopolysaccharide-binding protein LBP and the proinflammatory cytokine IL-1β). The data obtained suggest that chronic exposure to As(V) via drinking water affects the intestinal environment.
Collapse
Affiliation(s)
- Adrián Domene
- Instituto de Agroquímica
y Tecnología de Alimentos, Calle Agustín Escardino 7, 46980 Paterna, Spain
| | - Helena Orozco
- Instituto de Agroquímica
y Tecnología de Alimentos, Calle Agustín Escardino 7, 46980 Paterna, Spain
| | - Pilar Rodríguez-Viso
- Instituto de Agroquímica
y Tecnología de Alimentos, Calle Agustín Escardino 7, 46980 Paterna, Spain
| | - Vicente Monedero
- Instituto de Agroquímica
y Tecnología de Alimentos, Calle Agustín Escardino 7, 46980 Paterna, Spain
| | - Manuel Zúñiga
- Instituto de Agroquímica
y Tecnología de Alimentos, Calle Agustín Escardino 7, 46980 Paterna, Spain
| | - Dinoraz Vélez
- Instituto de Agroquímica
y Tecnología de Alimentos, Calle Agustín Escardino 7, 46980 Paterna, Spain
| | - Vicenta Devesa
- Instituto de Agroquímica
y Tecnología de Alimentos, Calle Agustín Escardino 7, 46980 Paterna, Spain
| |
Collapse
|
8
|
Zhao D, Jiao S, Yi H. Arsenic exposure induces small intestinal toxicity in mice by barrier damage and inflammation response via activating RhoA/ROCK and TLR4/Myd88/NF-κB signaling pathways. Toxicol Lett 2023; 384:44-51. [PMID: 37442281 DOI: 10.1016/j.toxlet.2023.07.007] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2022] [Revised: 05/16/2023] [Accepted: 07/10/2023] [Indexed: 07/15/2023]
Abstract
Numerous studies have shown that arsenic (As) is an important hazardous metalloid that is commonly considered to have systemic toxicity. The main pathway of arsenic exposure is oral; however, many of the events that occur during its passage through the gastrointestinal tract are unclear, and there are few reports on the effect of arsenic on small intestinal mucosal barrier. This study aimed to investigate arsenic-induced mucosal barrier damage in the small intestine of mice induced by oral exposure and its potential mechanisms. In the present study, histomorphometric and immunohistochemical analyses showed that arsenic-treated mice exhibited signs of irregularly arranged and atrophied small intestinal villi, reduced villus lengths, inflammatory cells infiltration, along with up-regulated expression of inflammatory factors TNF-α, IL-6 and IL-1β in the small intestine of mice. The myeloperoxidase (MPO) activity was also increased in As-exposed mice. Transmission electron microscopy (TEM) analysis demonstrated that intestinal epithelial tight junctions (TJs) were impaired in the small intestines of mice in As group. In addition, arsenic down-regulated mRNA levels of TJ-related genes (ZO-1, ZO-2, occludin, claudin-1, and claudin-7) and protein levels of ZO-1, occludin and claudin-1 were significantly reduced in arsenic-treated groups, while arsenic also increased levels of TLR4, Myd88, NF-κB, RhoA, and ROCK mRNA and protein expression. In summary, these results indicate that the small intestine toxicity in mice evoked by arsenic was correlated with the activation of TLR4/Myd88/NF-κB and RhoA/ROCK pathways.
Collapse
Affiliation(s)
- Danyu Zhao
- School of Life Science, Shanxi University, Taiyuan 030006, Shanxi Province, China; Department of Gastroenterology, Shanxi Provincial People's Hospital, Taiyuan 030012, Shanxi Province, China
| | - Siwei Jiao
- School of Life Science, Shanxi University, Taiyuan 030006, Shanxi Province, China
| | - Huilan Yi
- School of Life Science, Shanxi University, Taiyuan 030006, Shanxi Province, China.
| |
Collapse
|
9
|
Gopnar VV, Rakshit D, Bandakinda M, Kulhari U, Sahu BD, Mishra A. Fisetin attenuates arsenic and fluoride subacute co-exposure induced neurotoxicity via regulating TNF-α mediated activation of NLRP3 inflammasome. Neurotoxicology 2023:S0161-813X(23)00086-4. [PMID: 37331635 DOI: 10.1016/j.neuro.2023.06.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2023] [Revised: 05/29/2023] [Accepted: 06/14/2023] [Indexed: 06/20/2023]
Abstract
Groundwater is considered safe, however, the occurrence of contaminants like arsenic and fluoride has raised a major healthcare concern. Clinical studies suggested that arsenic and fluoride co-exposure induced neurotoxicity, however efforts to explore safe and effective management of such neurotoxicity are limited. Therefore, we investigated the ameliorative effect of Fisetin against arsenic and fluoride subacute co-exposure-induced neurotoxicity, and associated biochemical and molecular changes. Male BALB/c mice Arsenic (NaAsO2: 50mg/L) and fluoride (NaF: 50mg/L) were exposed to drinking water and fisetin (5, 10, and 20mg/kg/day) was administered orally for 28 days. The neurobehavioral changes were recorded in the open field, rotarod, grip strength, tail suspension, forced swim, and novel object recognition test. The co-exposure resulted in anxiety-like behaviour, loss of motor coordination, depression-like behaviour, and loss of novelty-based memory, along with enhanced prooxidant, inflammatory markers and loss of cortical and hippocampal neurons. The treatment with fisetin reversed the co-exposure-induced neurobehavioral deficit along with restoration of redox & inflammatory milieu, and cortical and hippocampal neuronal density. Apart from antioxidants, inhibition of TNF-α/ NLRP3 expression has been suggested as one of the plausible neuroprotective mechanisms of Fisetin in this study.
Collapse
Affiliation(s)
- Vitthal V Gopnar
- Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research (NIPER) - Guwahati, Changsari, Kamrup, Assam - 781101, India
| | - Debarati Rakshit
- Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research (NIPER) - Guwahati, Changsari, Kamrup, Assam - 781101, India
| | - Mounisha Bandakinda
- Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research (NIPER) - Guwahati, Changsari, Kamrup, Assam - 781101, India
| | - Uttam Kulhari
- Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research (NIPER) - Guwahati, Changsari, Kamrup, Assam - 781101, India
| | - Bidya Dhar Sahu
- Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research (NIPER) - Guwahati, Changsari, Kamrup, Assam - 781101, India
| | - Awanish Mishra
- Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research (NIPER) - Guwahati, Changsari, Kamrup, Assam - 781101, India.
| |
Collapse
|
10
|
Alam T, Naseem S, Shahabuddin F, Abidi S, Parwez I, Khan F. Oral administration of Nigella sativa oil attenuates arsenic-induced redox imbalance, DNA damage, metabolic distress, and histopathological alterations in rat intestine. J Trace Elem Med Biol 2023; 79:127238. [PMID: 37343449 DOI: 10.1016/j.jtemb.2023.127238] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/26/2022] [Revised: 05/22/2023] [Accepted: 06/02/2023] [Indexed: 06/23/2023]
Abstract
BACKGROUND Exposure to arsenic, a widespread environmental toxin, produces multiple organ toxicity, including gastrointestinal toxicity. Nigella sativa (NS) has long been revered for its numerous health benefits under normal and pathological states. In view of this, the present study attempts to evaluate the protective efficacy of orally administered Nigella sativa oil (NSO) against arsenic-induced cytotoxic and genotoxic alterations in rat intestine and elucidate the underlying mechanism of its action. METHODS Rats were categorized into the control, NaAs, NSO, and NaAs+NSO groups. After pre-treatment of rats in the NaAs+NSO and NSO groups daily with NSO (2 ml/kg bwt, orally) for 14 days, NSO treatment was further continued for 30 days, with and without NaAs treatment (5 mg/kg bwt, orally), respectively. Various biochemical parameters, such as enzymatic and non-enzymatic antioxidants, carbohydrate metabolic and brush border membrane marker enzyme activities were evaluated in the mucosal homogenates of all the groups. Intestinal brush border membrane vesicles (BBMV) were isolated, and the activities of membrane marker enzyme viz. ALP, GGTase, LAP, and sucrase were determined. Further, the effect on kinetic parameters viz KM (Michaelis-Menten constant) and Vmax of these enzymes was assessed. Integrity of enterocyte DNA was examined using the comet assay. Histopathology of the intestines was performed to evaluate the histoarchitectural alterations induced by chronic arsenic exposure and/or NSO supplementation. Arsenic accumulation in the intestine was studied by inductively coupled plasma-mass spectroscopy (ICP-MS). RESULTS NaAs treatment caused substantial changes in the activities of brush border membrane (BBM), carbohydrate metabolism, and antioxidant defense enzymes in the intestinal mucosal homogenates. The isolated BBM vesicles (BBMV) also showed marked suppression in the marker enzyme activities. Severe DNA damage and mucosal arsenic accumulation were observed in rats treated with NaAs alone. In contrast, oral NSO supplementation significantly alleviated all the adverse alterations induced by NaAs treatment. Histopathological examination supported the biochemical findings. CONCLUSION NSO, by improving the antioxidant status and energy metabolism, could significantly alter the ability of the intestine to protect against free radical-mediated arsenic toxicity in intestine. Thus, NSO may have an excellent scope in managing gastrointestinal distress in arsenic intoxication.
Collapse
Affiliation(s)
- Tauseef Alam
- Department of Biochemistry, Faculty of Life Sciences, Aligarh Muslim University, Aligarh 202002, U.P., India
| | - Samina Naseem
- Department of Biochemistry, Faculty of Life Sciences, Aligarh Muslim University, Aligarh 202002, U.P., India
| | - Farha Shahabuddin
- Department of Biochemistry, Faculty of Life Sciences, Aligarh Muslim University, Aligarh 202002, U.P., India
| | - Subuhi Abidi
- Department of Zoology, Faculty of Life Sciences, Aligarh Muslim University, Aligarh 202002, U.P., India
| | - Iqbal Parwez
- Department of Zoology, Faculty of Life Sciences, Aligarh Muslim University, Aligarh 202002, U.P., India
| | - Farah Khan
- Department of Biochemistry, Faculty of Life Sciences, Aligarh Muslim University, Aligarh 202002, U.P., India.
| |
Collapse
|
11
|
Domene A, Orozco H, Rodríguez-Viso P, Monedero V, Zúñiga M, Vélez D, Devesa V. Intestinal homeostasis disruption in mice chronically exposed to arsenite-contaminated drinking water. Chem Biol Interact 2023; 373:110404. [PMID: 36791901 DOI: 10.1016/j.cbi.2023.110404] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2022] [Revised: 01/29/2023] [Accepted: 02/11/2023] [Indexed: 02/14/2023]
Abstract
Chronic exposure to inorganic arsenic [As(III) and As(V)] affects about 200 million people, and is linked to a greater incidence of certain types of cancer. Drinking water is the main route of exposure, so, in endemic areas, the intestinal mucosa is constantly exposed to the metalloid. However, studies on the intestinal toxicity of inorganic As are scarce. The objective of this study was to evaluate the toxicity of a chronic exposure to As(III) on the intestinal mucosa and its associated microbiota. For this purpose, BALB/c mice were exposed during 6 months through drinking water to As(III) (15 and 30 mg/L). Treatment with As(III) increased reactive oxygen species (43-64%) and lipid peroxidation (8-51%). A pro-inflammatory response was also observed, evidenced by an increase in fecal lactoferrin (23-29%) and mucosal neutrophil infiltration. As(III) also induced an increase in the colonic levels of pro-inflammatory cytokines (24-201%) and the activation of some pro-inflammatory signaling pathways. Reductions in the number of goblet cells and mucus production were also observed. Moreover, As(III) exposure resulted in changes in gut microbial alpha diversity but no differences in beta diversity. This suggested that the abundance of some taxa was significantly affected by As(III), although the composition of the population did not show significant alterations. Analysis of differential taxa agreed with this, 21 ASVs were affected in abundance or variability, especially ASVs from the family Muribaculaceae. Intestinal microbiota metabolism was also affected, as reductions in fecal concentration of short-chain fatty acids were observed. The effects observed on different components of the intestinal barrier may be responsible of the increased permeability in As(III) treated mice, evidenced by an increase in fecal albumin (48-66%). Moreover, serum levels of Lipopolysaccharide binding proteins and TNF-α were increased in animals treated with 30 mg/L of As(III), suggesting a low-level systemic inflammation.
Collapse
Affiliation(s)
- A Domene
- Instituto de Agroquímica y Tecnología de Alimentos, Calle Agustín Escardino 7, 46980, Paterna, Spain
| | - H Orozco
- Instituto de Agroquímica y Tecnología de Alimentos, Calle Agustín Escardino 7, 46980, Paterna, Spain
| | - P Rodríguez-Viso
- Instituto de Agroquímica y Tecnología de Alimentos, Calle Agustín Escardino 7, 46980, Paterna, Spain
| | - V Monedero
- Instituto de Agroquímica y Tecnología de Alimentos, Calle Agustín Escardino 7, 46980, Paterna, Spain
| | - M Zúñiga
- Instituto de Agroquímica y Tecnología de Alimentos, Calle Agustín Escardino 7, 46980, Paterna, Spain
| | - D Vélez
- Instituto de Agroquímica y Tecnología de Alimentos, Calle Agustín Escardino 7, 46980, Paterna, Spain
| | - V Devesa
- Instituto de Agroquímica y Tecnología de Alimentos, Calle Agustín Escardino 7, 46980, Paterna, Spain.
| |
Collapse
|
12
|
Lu Z, Wang F, Xia Y, Cheng S, Zhang J, Qin X, Tian X, Wang B, Qiu J, Zou Z, Jiang X, Chen C. Involvement of gut-brain communication in arsenite-induced neurobehavioral impairments in adult male mice. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2023; 249:114370. [PMID: 36508802 DOI: 10.1016/j.ecoenv.2022.114370] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/11/2022] [Revised: 11/22/2022] [Accepted: 11/28/2022] [Indexed: 06/17/2023]
Abstract
Arsenite is a well-documented neurotoxic metalloid that widely distributes in the natural environment. However, it remains largely unclear how arsenite affects neurological function. Therefore, in this study, the healthy adult male mice were exposed to 0.5 mg/L and 5 mg/L arsenite through drinking water for 30 and 90 days, respectively. Our results showed that there was no significant alteration in the intestine and brain for 30 days exposure, but exposure to arsenite for 90 days significantly induced a reduction of locomotor activity and anxiety-like behavior, caused pathological damage and inflammatory responses in the brain and intestine. We also found that arsenite remarkably disrupted intestinal barrier integrity, decreased the levels of lysozyme and digestive enzymes. Intriguingly, chronic exposure to arsenite significantly changed the levels of gut-brain peptides. Taken together, this study provides meaningful insights that gut-brain communication may involve in the neurobehavioral impairments of arsenite.
Collapse
Affiliation(s)
- Zhaohong Lu
- Department of Occupational and Environmental Health, School of Public Health, Chongqing Medical University, Chongqing 400016, People's Republic of China
| | - Fanghong Wang
- Department of Occupational and Environmental Health, School of Public Health, Chongqing Medical University, Chongqing 400016, People's Republic of China
| | - Yinyin Xia
- Department of Occupational and Environmental Health, School of Public Health, Chongqing Medical University, Chongqing 400016, People's Republic of China
| | - Shuqun Cheng
- Department of Occupational and Environmental Health, School of Public Health, Chongqing Medical University, Chongqing 400016, People's Republic of China
| | - Jun Zhang
- Molecular Biology Laboratory of Respiratory Disease, Institute of Life Sciences, Chongqing Medical University, Chongqing 400016, People's Republic of China
| | - Xia Qin
- Department of Pharmacy, The First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, People's Republic of China
| | - Xin Tian
- Department of Neurology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, People's Republic of China
| | - Bin Wang
- Department of Pharmacy, The First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, People's Republic of China
| | - Jingfu Qiu
- Department of Health Laboratory Technology, School of Public Health, Chongqing Medical University, Chongqing 400016, People's Republic of China
| | - Zhen Zou
- Molecular Biology Laboratory of Respiratory Disease, Institute of Life Sciences, Chongqing Medical University, Chongqing 400016, People's Republic of China; Research Center for Environment and Human Health, Chongqing Medical University, Chongqing 400016, People's Republic of China.
| | - Xuejun Jiang
- Research Center for Environment and Human Health, Chongqing Medical University, Chongqing 400016, People's Republic of China; Center of Experimental Teaching for Public Health, Experimental Teaching and Management Center, Chongqing Medical University, Chongqing 400016, People's Republic of China.
| | - Chengzhi Chen
- Department of Occupational and Environmental Health, School of Public Health, Chongqing Medical University, Chongqing 400016, People's Republic of China; Research Center for Environment and Human Health, Chongqing Medical University, Chongqing 400016, People's Republic of China.
| |
Collapse
|
13
|
Bioactive compounds, antibiotics and heavy metals: effects on the intestinal structure and microbiome of monogastric animals – a non-systematic review. ANNALS OF ANIMAL SCIENCE 2022. [DOI: 10.2478/aoas-2022-0057] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Abstract
The intestinal structure and gut microbiota are essential for the animals‘ health. Chemical components taken with food provide the right environment for a specific microbiome which, together with its metabolites and the products of digestion, create an environment, which in turn is affects the population size of specific bacteria. Disturbances in the composition of the gut microbiota can be a reason for the malformation of guts, which has a decisive impact on the animal‘ health. This review aimed to analyse scientific literature, published over the past 20 years, concerning the effect of nutritional factors on gut health, determined by the intestinal structure and microbiota of monogastric animals. Several topics have been investigated: bioactive compounds (probiotics, prebiotics, organic acids, and herbal active substances), antibiotics and heavy metals (essentaial minerals and toxic heavy metals).
Collapse
|
14
|
Oladokun OO, Olaleye TC, Moses NM, Oladosu OA, Babatunde AA, Adedokun KI, Owonikoko MW, Ajeigbe KO. Tocopherol Enhances the Antioxidant Defense System and Histomorphometric Parameters in The Gastrointestinal Tract of Rats Treated with Sodium Arsenite. Niger J Physiol Sci 2022; 37:83-92. [PMID: 35947839 DOI: 10.54548/njps.v37i1.11] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2022] [Accepted: 06/06/2022] [Indexed: 06/15/2023]
Abstract
Arsenic compromises the gastrointestinal integrity and function via the body's anti-oxidative system breakdown. Hence, this study aimed to investigate the effects of tocopherol on redox imbalance and histoarchitectural alterations in rats' gastrointestinal tract exposed to sodium arsenite. Sodium arsenite and graded doses of tocopherol were administered orally into experimental rats assigned to different groups for four weeks concurrently. Redox status assay was done in homogenized samples by spectrophotometry. Parietal cell mass and mucous cell density (stomach), villus height and crypt depth (ileum), goblet cells count, and crypt depth (colon) were evaluated by histomorphometry. Inflammatory cells infiltration was also assessed using a semi-quantitative procedure. Sodium arsenite caused a significant increase in Malondialdehyde and Myeloperoxidase but, decreased Superoxide dismutase, Catalase, Nitric oxide, Glutathione peroxidase, Glutathione, and Glutathione-S-Transferase. Tocopherol treatment reversed the changes (p<0.05) though not largely dose-dependent. Furthermore, tocopherol annulled sodium arsenite-induced increase in parietal cell mass and decrease in mucous cell density in the stomach, decrease in villus height and villus height/crypt depth ratio in the ileum, and decrease in goblets cells and increase in crypt depth in the colon. Moreover, activated inflammatory cell infiltration by sodium arsenite was mitigated by tocopherol. Sodium arsenite provokes not only marked inflammatory cellular infiltration but a focal loss of glands, hyperplasia of crypts, atrophic villi, and hypertrophy of Peyer's patches in the intestines, which are all lessened with tocopherol treatment. These findings underscore the anti-oxidative properties of tocopherol as a potent dietary factor against sodium arsenite toxicity in the gastrointestinal tract. Keywords: Tocopherol, arsenic, stomach, ileum, colon.
Collapse
|
15
|
Rodríguez-Viso P, Domene A, Vélez D, Devesa V, Monedero V, Zúñiga M. Mercury toxic effects on the intestinal mucosa assayed on a bicameral in vitro model: Possible role of inflammatory response and oxidative stress. Food Chem Toxicol 2022; 166:113224. [PMID: 35700822 DOI: 10.1016/j.fct.2022.113224] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2022] [Revised: 05/18/2022] [Accepted: 06/06/2022] [Indexed: 11/18/2022]
Abstract
Exposure to mercury (Hg) mostly occurs through diet, where it is mainly found as inorganic Hg [Hg(II)] or methylmercury (MeHg). In vivo studies have linked its exposure with neurological and renal diseases, however, its toxic effects upon the gastrointestinal tract are largely unknown. In order to evaluate the effect of Hg on intestinal mucosa, a bicameral system was employed with co-cultures of Caco-2 and HT29-MTX intestinal epithelial cells and THP-1 macrophages. Cells were exposed to Hg(II) and MeHg (0.1, 0.5, 1 mg/L) during 11 days. The results evidenced a greater pro-inflammatory response in cells exposed to Hg with increments of IL-8 (15-126%) and IL-1β release (39-63%), mainly induced by macrophages which switched to a M1 phenotype. A pro-oxidant response was also observed in both cell types with an increase in ROS/RNS levels (44-140%) and stress proteins expression. Intestinal cells treated with Hg displayed structural abnormalities, hypersecretion of mucus and defective tight junctions. An increased paracellular permeability (123-170%) at the highest concentrations of Hg(II) and MeHg and decreased capacity to restore injuries in the cell monolayer were also observed. All these toxic effects were governed by various inflammatory signalling pathways (p38 MAPK, JNK and NF-κB).
Collapse
Affiliation(s)
- Pilar Rodríguez-Viso
- Instituto de Agroquímica y Tecnología de Alimentos (IATA-CSIC), Agustín Escardino 7, 46980, Paterna, Valencia, Spain.
| | - Adrián Domene
- Instituto de Agroquímica y Tecnología de Alimentos (IATA-CSIC), Agustín Escardino 7, 46980, Paterna, Valencia, Spain.
| | - Dinoraz Vélez
- Instituto de Agroquímica y Tecnología de Alimentos (IATA-CSIC), Agustín Escardino 7, 46980, Paterna, Valencia, Spain.
| | - Vicenta Devesa
- Instituto de Agroquímica y Tecnología de Alimentos (IATA-CSIC), Agustín Escardino 7, 46980, Paterna, Valencia, Spain.
| | - Vicente Monedero
- Instituto de Agroquímica y Tecnología de Alimentos (IATA-CSIC), Agustín Escardino 7, 46980, Paterna, Valencia, Spain.
| | - Manuel Zúñiga
- Instituto de Agroquímica y Tecnología de Alimentos (IATA-CSIC), Agustín Escardino 7, 46980, Paterna, Valencia, Spain.
| |
Collapse
|
16
|
Kellett MP, Jatko JT, Darling CL, Ventrello SW, Bain LJ. Arsenic Exposure Impairs Intestinal Stromal Cells. Toxicol Lett 2022; 361:54-63. [PMID: 35378173 PMCID: PMC9038714 DOI: 10.1016/j.toxlet.2022.03.006] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2021] [Revised: 02/23/2022] [Accepted: 03/17/2022] [Indexed: 01/01/2023]
Abstract
Arsenic is a toxicant commonly found in drinking water. Even though its main route of exposure is oral, little is known of the impact of in vivo arsenic exposure on small intestine. In vitro studies have shown that arsenic decreases differentiation of stem and progenitor cells in several different tissues. Thus, small intestinal organoids were used to assess if arsenic exposure would also impair intestinal stem cell differentiation. Unexpectedly, no changes in markers of differentiated epithelial cells were seen. However, exposing mice to 100 ppb arsenic in drinking water for 5 weeks impaired distinct populations of intestinal stromal cells. Arsenic reduced the width of the pericryptal lamina propria by 1.6-fold, and reduced Pdgfra mRNA expression, which is expressed in intestinal telocytes and trophocytes, by 4.2-fold. The height or extension of Pdgfra+ telopodes into the villus tip was also significantly reduced. Transcript expression of several other stromal cell markers, such as Grem1, Gli, CD81, were reduced by 1.9-, 2.3-, and 1.4-fold, respectively. Further, significant correlations exist between levels of Pdgfra and Gli1, Grem1, and Bmp4. Our results suggest arsenic impairs intestinal trophocytes and telocytes, leading to alterations in the Bmp signaling pathway.
Collapse
|
17
|
Ghosh S, Banerjee M, Haribabu B, Jala VR. Urolithin A attenuates arsenic-induced gut barrier dysfunction. Arch Toxicol 2022; 96:987-1007. [PMID: 35122514 PMCID: PMC10867785 DOI: 10.1007/s00204-022-03232-2] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2021] [Accepted: 01/20/2022] [Indexed: 01/16/2023]
Abstract
Environmental chemicals such as inorganic arsenic (iAs) significantly contribute to redox toxicity in the human body by enhancing oxidative stress. Imbalanced oxidative stress rapidly interferes with gut homeostasis and affects variety of cellular processes such as proliferation, apoptosis, and maintenance of intestinal barrier integrity. It has been shown that gut microbiota are essential to protect against iAs3+-induced toxicity. However, the effect of microbial metabolites on iAs3+-induced toxicity and loss of gut barrier integrity has not been investigated. The objectives of the study are to investigate impact of iAs on gut barrier function and determine benefits of gut microbial metabolite, urolithin A (UroA) against iAs3+-induced adversaries on gut epithelium. We have utilized both colon epithelial cells and in a human intestinal 3D organoid model system to investigate iAs3+-induced cell toxicity, oxidative stress, and gut barrier dysfunction in the presence or absence of UroA. Here, we report that treatment with UroA attenuated iAs3+-induced cell toxicity, apoptosis, and oxidative stress in colon epithelial cells. Moreover, our data suggest that UroA significantly reduces iAs3+-induced gut barrier permeability and inflammatory markers in both colon epithelial cells and in a human intestinal 3D organoid model system. Mechanistically, UroA protected against iAs3+-induced disruption of tight junctional proteins in intestinal epithelial cells through blockade of oxidative stress and markers of inflammation. Taken together, our studies for the first time suggest that microbial metabolites such as UroA can potentially be used to protect against environmental hazards by reducing intestinal oxidative stress and by enhancing gut barrier function.
Collapse
Affiliation(s)
- Sweta Ghosh
- Department of Microbiology and Immunology, UofL Health-Brown Cancer Center, Center for Microbiomics, Inflammation and Pathogenicity, University of Louisville, 505 South Hancock Street # 323, Louisville, KY, 40202, USA
| | - Mayukh Banerjee
- Department of Pharmacology and Toxicology, University of Louisville, Louisville, KY, USA
| | - Bodduluri Haribabu
- Department of Microbiology and Immunology, UofL Health-Brown Cancer Center, Center for Microbiomics, Inflammation and Pathogenicity, University of Louisville, 505 South Hancock Street # 323, Louisville, KY, 40202, USA
| | - Venkatakrishna Rao Jala
- Department of Microbiology and Immunology, UofL Health-Brown Cancer Center, Center for Microbiomics, Inflammation and Pathogenicity, University of Louisville, 505 South Hancock Street # 323, Louisville, KY, 40202, USA.
| |
Collapse
|
18
|
Zhao D, Yi H, Sang N. Arsenic intake-induced gastric toxicity is blocked by grape skin extract by modulating inflammation and oxidative stress in a mouse model. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2022; 233:113305. [PMID: 35189519 DOI: 10.1016/j.ecoenv.2022.113305] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/16/2021] [Revised: 01/14/2022] [Accepted: 02/10/2022] [Indexed: 06/14/2023]
Abstract
Arsenic (As) is known to induce toxic responses in many organs of human beings and animals. However, research concerning toxicity in the stomach is limited. In this study, arsenic-induced gastric toxicity was investigated in a mouse model, and grape skin extract (GSE) was confirmed to have protective effects against arsenic toxicity. Our experimental results showed that exposure to 10 mg/l arsenic via drinking water for 56 days caused oxidative damage and inflammatory responses. The H2O2 and malondialdehyde (MDA) contents were significantly increased, accompanied by significant decreases in total superoxide dismutase (T-SOD) activity and glutathione (GSH) content in the gastric tissue of arsenic-treated mice. Two inflammatory signalling pathways, i.e., TLR2/MyD88/NF-κB and IL-6/STAT-3, were activated, along with inflammatory cell infiltration and the elevated mRNA expression of pro-inflammatory cytokines (TNF-α, IL-1β and IFN-γ) and myeloperoxidase (MPO) in the gastric tissue of mice exposed to arsenic. Meanwhile, the mRNA levels of the ZO-1, ZO-2 and occludin genes, which encode the key components of tight junction (TJ) complexes, were downregulated. However, the application of GSE (300 mg/kg bw) significantly inhibited the arsenic-induced increases in H2O2 and MDA contents and the decreases in T-SOD activity and GSH content. The arsenic-mediated gene expression of pro-inflammatory cytokines (TNF-α, IL-1β and IFN-γ), MPO and IL-6/STAT3 and TLR2/MyD88/NF-κB pathways was found down-regulated. Moreover, the arsenic-induced inflammatory cell infiltration and inhibition of TJ genes transcription were markedly attenuated in the As+GSE (300 mg/kg bw) group. Based on the present findings, arsenic intake appears to cause gastric toxicity via oxidative stress and inflammation, and the application of GSE offers significant protection against arsenic toxicity in a mouse model by attenuating the oxidative stress and inflammatory response. Our results suggest that GSE by oral administration might function as a candidate therapeutic supplement to antagonize arsenic toxicity.
Collapse
Affiliation(s)
- Danyu Zhao
- School of Life Science, Shanxi University, Taiyuan 030006, Shanxi Province, China; Center for Gastrointestinal Endoscopy, Shanxi Provincial People's Hospital, Taiyuan 030012, Shanxi Province, China
| | - Huilan Yi
- School of Life Science, Shanxi University, Taiyuan 030006, Shanxi Province, China.
| | - Nan Sang
- College of Environment and Resource, Shanxi University, Taiyuan 030006, Shanxi Province, China
| |
Collapse
|
19
|
Reboredo FH, Junior W, Pessoa MF, Lidon FC, Ramalho JC, Leitão RG, Silva MM, Alvarenga N, Guerra M. Elemental Composition of Algae-Based Supplements by Energy Dispersive X-ray Fluorescence. PLANTS (BASEL, SWITZERLAND) 2021; 10:2041. [PMID: 34685850 PMCID: PMC8541454 DOI: 10.3390/plants10102041] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/23/2021] [Revised: 09/17/2021] [Accepted: 09/23/2021] [Indexed: 11/17/2022]
Abstract
The aim of this study is to evaluate the elemental composition of fifteen algae-based supplements commonly sold in the Portuguese market, by energy dispersive X-ray fluorescence. Despite the fact that the majority of Kelp samples were a good source of iodine, the levels observed might well contribute to an excess in the human body, which can cause dysfunction of the thyroid gland. Furthermore, the presence of lead in Sea spaghetti, Arame, Hijiki and Wakame caused a considerable risk to public health vis a vis possible ingestion of a high daily dose. Regarding arsenic, great variability was observed in all the samples with concentrations equal to or above 60 μg/g in the case of Arame, KelpJ and Hijiki. Although algae mainly accumulate organic arsenic, some also contain high levels of its inorganic form, as is commonly pointed out for Hijiki. Thus, regular ingestion of these supplements must also take into account the mentioned facts. There is no doubt that these supplements are also good sources of other nutrients, but the lack of accurate regulations and control should alert consumers to avoid indiscriminate use of these types of products.
Collapse
Affiliation(s)
- Fernando H. Reboredo
- GeoBioTec, Departamento de Ciências da Terra, Faculdade de Ciências e Tecnologia, Universidade NOVA de Lisboa, Campus da Caparica, 2829-516 Caparica, Portugal; (W.J.); (M.F.P.); (F.C.L.); (J.C.R.)
| | - Walter Junior
- GeoBioTec, Departamento de Ciências da Terra, Faculdade de Ciências e Tecnologia, Universidade NOVA de Lisboa, Campus da Caparica, 2829-516 Caparica, Portugal; (W.J.); (M.F.P.); (F.C.L.); (J.C.R.)
| | - Maria F. Pessoa
- GeoBioTec, Departamento de Ciências da Terra, Faculdade de Ciências e Tecnologia, Universidade NOVA de Lisboa, Campus da Caparica, 2829-516 Caparica, Portugal; (W.J.); (M.F.P.); (F.C.L.); (J.C.R.)
| | - Fernando C. Lidon
- GeoBioTec, Departamento de Ciências da Terra, Faculdade de Ciências e Tecnologia, Universidade NOVA de Lisboa, Campus da Caparica, 2829-516 Caparica, Portugal; (W.J.); (M.F.P.); (F.C.L.); (J.C.R.)
| | - José C. Ramalho
- GeoBioTec, Departamento de Ciências da Terra, Faculdade de Ciências e Tecnologia, Universidade NOVA de Lisboa, Campus da Caparica, 2829-516 Caparica, Portugal; (W.J.); (M.F.P.); (F.C.L.); (J.C.R.)
- Plant Stress & Biodiversity Lab, Centro de Estudos Florestais (CEF), Instituto Superior Agronomia (ISA), Universidade de Lisboa (ULisboa), Quinta do Marquês, Av. República, 2784-505 Lisboa, Portugal
| | - Roberta G. Leitão
- LIBPHYS-UNL, Physics Department, NOVA School of Science and Technology, NOVA University Lisbon, 2829-516 Caparica, Portugal;
| | | | - Nuno Alvarenga
- Instituto Nacional de Investigação Agrária e Veterinária, I.P., UTI—Unidade de Tecnologia e Inovação, Avenida da República, Quinta do Marquês, 2780-157 Oeiras, Portugal;
| | - Mauro Guerra
- LIBPHYS-UNL, Physics Department, NOVA School of Science and Technology, NOVA University Lisbon, 2829-516 Caparica, Portugal;
| |
Collapse
|
20
|
Zhong G, Wan F, Lan J, Jiang X, Wu S, Pan J, Tang Z, Hu L. Arsenic exposure induces intestinal barrier damage and consequent activation of gut-liver axis leading to inflammation and pyroptosis of liver in ducks. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 788:147780. [PMID: 34022569 DOI: 10.1016/j.scitotenv.2021.147780] [Citation(s) in RCA: 83] [Impact Index Per Article: 20.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/09/2021] [Revised: 04/28/2021] [Accepted: 05/11/2021] [Indexed: 06/12/2023]
Abstract
Arsenic is an important hazardous metalloid commonly found in polluted soil, rivers and groundwater. However, few studies exist regarding the effect of arsenic trioxide (ATO) on the gut-liver axis and consequent hepatotoxicity in waterfowl. Here, we investigated the influence of ATO on duck intestines and livers, and explored the role of the gut-liver axis in ATO-induced hepatotoxicity and intestinal toxicity. Our results demonstrated that ATO-exposure induced intestinal damage, liver inflammatory cell infiltration and vesicle steatosis. Additionally, the intestinal microbiota community in ATO-exposed ducks displayed significantly decreased α-diversity and an altered bacterial composition. Moreover, ATO-exposure markedly reduced the expression of intestinal barrier-related proteins (Claudin-1, MUC2, ZO-1 and Occludin), resulting in increased intestinal permeability and elevated lipopolysaccharide levels. Simultaneously, ATO-exposure also upregulated pyroptosis-related index levels in the liver and jejunum, and increased pro-inflammatory cytokine production (IFN-γ, TNF-α, IL-18, and IL-1β). Our further mechanistic studies showed that ATO-induced liver and jejunum inflammation were provoked by the activation of the LPS/TLR4/NF-κB signaling pathway and NLRP3 inflammasome. In summary, these results manifested that ATO exposure can cause liver and jejunal inflammation and pyroptosis, and the indirect gut-liver axis pathway may play an essential role in the potential mechanism of ATO-induced hepatotoxicity.
Collapse
Affiliation(s)
- Gaolong Zhong
- College of Veterinary Medicine, Key Laboratory of Animal Vaccine Development, Ministry of Agriculture and Rural Affairs, South China Agricultural University, Guangzhou 510642, China.
| | - Fang Wan
- College of Veterinary Medicine, Key Laboratory of Animal Vaccine Development, Ministry of Agriculture and Rural Affairs, South China Agricultural University, Guangzhou 510642, China.
| | - Juan Lan
- College of Veterinary Medicine, Key Laboratory of Animal Vaccine Development, Ministry of Agriculture and Rural Affairs, South China Agricultural University, Guangzhou 510642, China.
| | - Xuanxuan Jiang
- College of Veterinary Medicine, Key Laboratory of Animal Vaccine Development, Ministry of Agriculture and Rural Affairs, South China Agricultural University, Guangzhou 510642, China.
| | - Shaofeng Wu
- College of Veterinary Medicine, Key Laboratory of Animal Vaccine Development, Ministry of Agriculture and Rural Affairs, South China Agricultural University, Guangzhou 510642, China.
| | - Jiaqiang Pan
- College of Veterinary Medicine, Key Laboratory of Animal Vaccine Development, Ministry of Agriculture and Rural Affairs, South China Agricultural University, Guangzhou 510642, China.
| | - Zhaoxin Tang
- College of Veterinary Medicine, Key Laboratory of Animal Vaccine Development, Ministry of Agriculture and Rural Affairs, South China Agricultural University, Guangzhou 510642, China.
| | - Lianmei Hu
- College of Veterinary Medicine, Key Laboratory of Animal Vaccine Development, Ministry of Agriculture and Rural Affairs, South China Agricultural University, Guangzhou 510642, China.
| |
Collapse
|
21
|
Jatko JT, Darling CL, Kellett MP, Bain LJ. Arsenic exposure in drinking water reduces Lgr5 and secretory cell marker gene expression in mouse intestines. Toxicol Appl Pharmacol 2021; 422:115561. [PMID: 33957193 PMCID: PMC11931411 DOI: 10.1016/j.taap.2021.115561] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2020] [Revised: 02/28/2021] [Accepted: 04/30/2021] [Indexed: 12/12/2022]
Abstract
Arsenic is a global health concern that causes toxicity through ingestion of contaminated water and food. In vitro studies suggest that arsenic reduces stem and progenitor cell differentiation. Thus, this study determined if arsenic disrupted intestinal stem cell (ISC) differentiation, thereby altering the number, location, and/or function of intestinal epithelial cells. Adult male C57BL/6 mice were exposed to 0 or 100 ppb sodium arsenite (AsIII) through drinking water for 5 weeks. Duodenal sections were collected to assess changes in morphology, proliferation, and cell types. qPCR analysis revealed a 40% reduction in Lgr5 transcripts, an ISC marker, in the arsenic-exposed mice, although there were no changes in the protein expression of Olfm4. Secretory cell-specific transcript markers of Paneth (Defa1), Goblet (Tff3), and secretory transit amplifying (Math1) cells were reduced by 51%, 44%, and 30% respectively, in the arsenic-exposed mice, indicating significant impacts on the Wnt-dependent differentiation pathway. Further, protein levels of phosphorylated β-catenin were reduced in the arsenic-exposed mice, which increased the expression of Wnt-dependent transcripts CD44 and c-myc. PCA analysis, followed by MANOVA and regression analyses, revealed significant changes and correlations between Lgr5 and the transit amplifying (TA) cell markers Math1 and Hes1, which are in the secretory cell pathway. Similar comparisons between Math1 and Defa1 show that terminal differentiation into Paneth cells is also reduced in the arsenic-exposed mice. The data suggests that ISCs are not lost following arsenic exposure, but rather, specific Wnt-dependent progenitor cell formation and terminal differentiation in the small intestine is reduced.
Collapse
Affiliation(s)
- Jordan T Jatko
- Environmental Toxicology Graduate Program, Clemson University, 132 Long Hall, Clemson, SC 29634, USA
| | - Caitlin L Darling
- Department of Biological Sciences, Clemson University, 132 Long Hall, Clemson, SC 29634, USA
| | - Michael P Kellett
- Department of Biological Sciences, Clemson University, 132 Long Hall, Clemson, SC 29634, USA
| | - Lisa J Bain
- Environmental Toxicology Graduate Program, Clemson University, 132 Long Hall, Clemson, SC 29634, USA; Department of Biological Sciences, Clemson University, 132 Long Hall, Clemson, SC 29634, USA.
| |
Collapse
|
22
|
Li D, Yang Y, Li Y, Li Z, Zhu X, Zeng X. Changes induced by chronic exposure to high arsenic concentrations in the intestine and its microenvironment. Toxicology 2021; 456:152767. [PMID: 33813003 DOI: 10.1016/j.tox.2021.152767] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2020] [Revised: 03/17/2021] [Accepted: 03/24/2021] [Indexed: 01/07/2023]
Abstract
The perturbation of intestinal microbes may serve as a mechanism by which arsenic exposure causes or exacerbates diseases in humans. However, the changes in the intestinal microbiome and metabolome induced by long-term exposure to high concentrations of arsenic have not been extensively studied. In this study, C57BL/6 mice were exposed to sodium arsenite (As) (50 ppm) for 6 months. Our results show that long-term exposure to high As concentrations changed the structure of intestinal tissues and the expression of As resistance related genes in intestinal microbes. In addition, 16S rRNA gene sequencing revealed that As exposure significantly affected the Beta diversity of intestinal flora but had no significant effect on the Alpha diversity (except ACE index). Moreover, As exposure altered the composition of the intestinal microbiota from phylum to species. Non-targeted metabolomics profiling revealed that As exposure significantly changed the composition of metabolites, specifically those related to phenylalanine metabolism. Correlation analysis demonstrated that the changes in microbial communities and metabolites were highly correlated under As exposure. Overall, this study demonstrates that long-term exposure to high As concentrations disrupted the intestinal microbiome and metabolome, which may indicate the role of As exposure at inducing human diseases under similar conditions.
Collapse
Affiliation(s)
- Dong Li
- College of Environmental Science and Engineering, China West Normal University, Nanchong, Sichuan, 637009, China; College of Life Science, Sichuan Agricultural University, Ya'an, Sichuan, 625014, China
| | - Yan Yang
- College of Environmental Science and Engineering, China West Normal University, Nanchong, Sichuan, 637009, China
| | - Yunxiang Li
- College of Environmental Science and Engineering, China West Normal University, Nanchong, Sichuan, 637009, China
| | - Zeqin Li
- College of Environmental and Civil Engineering, Chengdu University of Technology, Chengdu, Sichuan, 610059, China
| | - Xiaohua Zhu
- College of Environmental Science and Engineering, China West Normal University, Nanchong, Sichuan, 637009, China; College of Environmental and Civil Engineering, Chengdu University of Technology, Chengdu, Sichuan, 610059, China.
| | - Xianyin Zeng
- College of Life Science, Sichuan Agricultural University, Ya'an, Sichuan, 625014, China.
| |
Collapse
|
23
|
Paithankar JG, Saini S, Dwivedi S, Sharma A, Chowdhuri DK. Heavy metal associated health hazards: An interplay of oxidative stress and signal transduction. CHEMOSPHERE 2021; 262:128350. [PMID: 33182141 DOI: 10.1016/j.chemosphere.2020.128350] [Citation(s) in RCA: 308] [Impact Index Per Article: 77.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/18/2020] [Revised: 09/09/2020] [Accepted: 09/13/2020] [Indexed: 05/20/2023]
Abstract
Heavy metal-induced cellular and organismal toxicity have become a major health concern in biomedical science. Indiscriminate use of heavy metals in different sectors, such as, industrial-, agricultural-, healthcare-, cosmetics-, and domestic-sectors has contaminated environment matrices and poses a severe health concern. Xenobiotics mediated effect is a ubiquitous cellular response. Oxidative stress is one such prime cellular response, which is the result of an imbalance in the redox system. Further, oxidative stress is associated with macromolecular damages and activation of several cell survival and cell death pathways. Epidemiological as well as laboratory data suggest that oxidative stress-induced cellular response following heavy metal exposure is linked with an increased risk of neoplasm, neurological disorders, diabetes, infertility, developmental disorders, renal failure, and cardiovascular disease. During the recent past, a relation among heavy metal exposure, oxidative stress, and signaling pathways have been explored to understand the heavy metal-induced toxicity. Heavy metal-induced oxidative stress and its connection with different signaling pathways are complicated; therefore, the systemic summary is essential. Herein, an effort has been made to decipher the interplay among heavy metals/metalloids (Arsenic, Chromium, Cadmium, and Lead) exposures, oxidative stress, and signal transduction, which are essential to mount the cellular and organismal response. The signaling pathways involved in this interplay include NF-κB, NRF2, JAK-STAT, JNK, FOXO, and HIF.
Collapse
Affiliation(s)
- Jagdish Gopal Paithankar
- Nitte (Deemed to Be University), Nitte University Centre for Science Education and Research (NUCSER), Division of Environmental Health and Toxicology, Kotekar-Beeri Road, Deralakatte, Mangaluru, 575018, India
| | - Sanjay Saini
- Embryotoxicology Laboratory, Environmental Toxicology Group, CSIR-Indian Institute of Toxicology Research (CSIR-IITR), Vishvigyan Bhawan, 31, Mahatma Gandhi Marg, Lucknow, 226001, Uttar Pradesh, India; Molecular and Human Genetics Laboratory, Department of Zoology, University of Lucknow, Lucknow, 226007, India
| | - Shiwangi Dwivedi
- Nitte (Deemed to Be University), Nitte University Centre for Science Education and Research (NUCSER), Division of Environmental Health and Toxicology, Kotekar-Beeri Road, Deralakatte, Mangaluru, 575018, India
| | - Anurag Sharma
- Nitte (Deemed to Be University), Nitte University Centre for Science Education and Research (NUCSER), Division of Environmental Health and Toxicology, Kotekar-Beeri Road, Deralakatte, Mangaluru, 575018, India.
| | - Debapratim Kar Chowdhuri
- Embryotoxicology Laboratory, Environmental Toxicology Group, CSIR-Indian Institute of Toxicology Research (CSIR-IITR), Vishvigyan Bhawan, 31, Mahatma Gandhi Marg, Lucknow, 226001, Uttar Pradesh, India.
| |
Collapse
|
24
|
Feng W, Liu J, Huang L, Tan Y, Peng C. Gut microbiota as a target to limit toxic effects of traditional Chinese medicine: Implications for therapy. Biomed Pharmacother 2020; 133:111047. [PMID: 33378954 DOI: 10.1016/j.biopha.2020.111047] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2020] [Revised: 11/11/2020] [Accepted: 11/19/2020] [Indexed: 12/17/2022] Open
Abstract
Traditional Chinese medicines (TCMs) are medicines that are widely used in oriental countries under the guidance of ancient Chinese medicinal philosophies. With thousands of years of experiences in fighting against diseases, TCMs are gaining increasing importance in the world. Although the efficacy of TCMs is well recognized in clinic, the toxicity of TCMs has become a serious issue around the world in recent years. In general, the toxicity of TCMs is caused by the toxic medicinal compounds and contaminants in TCMs such as pesticides, herbicides, and heavy metals. Recent studies have demonstrated that gut microbiota can interact with TCMs and thus influence the toxicity of TCMs. However, there is no focused review on gut microbiota and the toxicity of TCMs. Here, we summarized the influences of the gut microbiota on the toxicity of medicinal compounds in TCMs and the corresponding mechanisms were offered. Then, we discussed the relationships between gut microbiota and the TCM contaminants. In addition, we discussed the methods of manipulating gut microbiota to reduce the toxicity of TCMs. At the end of this review, the perspectives on gut microbiota and the toxicity of TCMs were also discussed.
Collapse
Affiliation(s)
- Wuwen Feng
- School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China; State Key Laboratory of Characteristic Chinese Medicine Resources in Southwest China, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Juan Liu
- School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Lihua Huang
- School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China; State Key Laboratory of Characteristic Chinese Medicine Resources in Southwest China, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Yuzhu Tan
- School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China; State Key Laboratory of Characteristic Chinese Medicine Resources in Southwest China, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Cheng Peng
- School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China; State Key Laboratory of Characteristic Chinese Medicine Resources in Southwest China, Chengdu University of Traditional Chinese Medicine, Chengdu, China.
| |
Collapse
|
25
|
Feng W, Liu J, Ao H, Yue S, Peng C. Targeting gut microbiota for precision medicine: Focusing on the efficacy and toxicity of drugs. Theranostics 2020; 10:11278-11301. [PMID: 33042283 PMCID: PMC7532689 DOI: 10.7150/thno.47289] [Citation(s) in RCA: 59] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2020] [Accepted: 08/20/2020] [Indexed: 02/06/2023] Open
Abstract
Intra- and interindividual variation in drug responses is one major reason for the failure of drug therapy, drug toxicity, and even the death of patients. Precision medicine, or personalized medicine, is a field of medicine that customizes an individual's medical diagnosis and treatment based on his/her genes, microbiomes, environments, etc. Over the past decade, a large number of studies have demonstrated that gut microbiota can modify the efficacy and toxicity of drugs, and the extent of the modification varies greatly from person to person because of the variability of the gut microbiota. Personalized manipulation of gut microbiota is an important approach to rectify the abnormal drug response. In this review, we aim to improve drug efficacy and reduce drug toxicity by combining precision medicine and gut microbiota. After describing the interactions between gut microbiota and xenobiotics, we discuss (1) the effects of gut microbiota on drug efficacy and toxicity and the corresponding mechanisms, (2) the variability of gut microbiota, which leads to variation in drug responses, (3) the biomarkers used for the patient stratification and treatment decisions before the use of drugs, and (4) the methods used for the personalized manipulation of gut microbiota to improve drug outcomes. Overall, we hope to improve the drug response by incorporating the knowledge of gut microbiota into clinical practice.
Collapse
Affiliation(s)
- Wuwen Feng
- School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
- State Key Laboratory of Southwestern Chinese Medicine Resources, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Juan Liu
- State Key Laboratory of Southwestern Chinese Medicine Resources, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Hui Ao
- State Key Laboratory of Southwestern Chinese Medicine Resources, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Shijun Yue
- Shaanxi Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, Shaanxi University of Chinese Medicine, Xi'an, China
| | - Cheng Peng
- School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
- State Key Laboratory of Southwestern Chinese Medicine Resources, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| |
Collapse
|
26
|
In Vitro Evaluation of the Protective Role of Lactobacillus StrainsAgainst Inorganic Arsenic Toxicity. Probiotics Antimicrob Proteins 2020; 12:1484-1491. [PMID: 32077013 DOI: 10.1007/s12602-020-09639-6] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
Inorganic arsenic [iAs, As(III) + As(V)] is considered a human carcinogen. Recent studies show that it has also toxic effects on the intestinal epithelium which might partly explain its systemic toxicity. The aim of this study is to evaluate the protective role of lactic acid bacteria (LAB) against the toxic effects of iAs on the intestinal epithelium. For this purpose, the human colonic cells Caco-2 were exposed to As(III) in the presence of various LAB strains or their conditioned medium. Results showed that some strains and their conditioned media partially revert the oxidative stress, the production of pro-inflammatory cytokines, the alterations of the distribution of tight junction proteins, and the cell permeability increases caused by As(III). These results show that both soluble factors secreted or resulting from LAB metabolism and cell-cell interactions are possibly involved in the beneficial effects. Therefore, some LAB strains have potential as protective agents against iAs intestinal barrier disruption.
Collapse
|
27
|
Cabellos J, Delpivo C, Vázquez-Campos S, Janer G. In vitro assessment of CeO2 nanoparticles effects on intestinal microvilli morphology. Toxicol In Vitro 2019; 59:70-77. [DOI: 10.1016/j.tiv.2019.04.002] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2018] [Revised: 03/14/2019] [Accepted: 04/02/2019] [Indexed: 02/03/2023]
|
28
|
Twaddle NC, Vanlandingham M, Beland FA, Doerge DR. Metabolism and disposition of arsenic species from controlled dosing with dimethylarsinic acid (DMAV) in adult female CD-1 mice. V. Toxicokinetic studies following oral and intravenous administration. Food Chem Toxicol 2019; 130:22-31. [DOI: 10.1016/j.fct.2019.04.045] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2019] [Revised: 04/23/2019] [Accepted: 04/24/2019] [Indexed: 12/26/2022]
|
29
|
In vivo evaluation of the effect of arsenite on the intestinal epithelium and associated microbiota in mice. Arch Toxicol 2019; 93:2127-2139. [DOI: 10.1007/s00204-019-02510-w] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2019] [Accepted: 07/04/2019] [Indexed: 02/06/2023]
|
30
|
Chiocchetti GM, Vélez D, Devesa V. Effect of chronic exposure to inorganic arsenic on intestinal cells. J Appl Toxicol 2019; 39:899-907. [PMID: 30748021 DOI: 10.1002/jat.3778] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2018] [Revised: 12/27/2018] [Accepted: 12/27/2018] [Indexed: 01/10/2023]
Abstract
Chronic exposure to inorganic arsenic (As)-As(III) + As(V)-is associated with type 2 diabetes, vascular diseases and various types of cancer. Although the oral route is the main way of exposure to inorganic As, the adverse gastrointestinal effects produced by chronic exposure are not well documented. The aim of the present study is to evaluate the effect of chronic exposure to As(III) on the intestinal epithelium. For this purpose, NCM460 cells, non-transformed epithelial cells from the human colon, were exposed to As(III) (0.01-0.2 mg/L) for 6 months and monitored for acquisition of a tumor-like phenotype. Secretion of matrix metalloproteinases, histone modifications (H3 acetylation), hyperproliferation capacity, formation of floating spheres, anchorage-independent growth, release of cytokine interleukin-8 and expression of relevant genes in colon tumorigenesis were assessed. The results show a maintained proinflammatory response from the beginning, with an increase in interleukin-8 secretion (≤570%). Downregulation of CDX1 and CDX2 was also observed. After 14 weeks of exposure, cells presented marked increases in matrix metalloproteinase-2 secretion and histone modifications. As(III)-treated cells were hyperproliferative, grew in low-serum media and were able to form free-floating spheres. Overall, these data suggest that exposure of human colon epithelial cells to As(III) facilitates acquisition of transformed cell characteristics.
Collapse
Affiliation(s)
- Gabriela M Chiocchetti
- Instituto de Agroquímica y Tecnología de Alimentos (IATA-CSIC), Calle Agustín Escardino 7, 46980, Paterna, Valencia, Spain
| | - Dinoraz Vélez
- Instituto de Agroquímica y Tecnología de Alimentos (IATA-CSIC), Calle Agustín Escardino 7, 46980, Paterna, Valencia, Spain
| | - Vicenta Devesa
- Instituto de Agroquímica y Tecnología de Alimentos (IATA-CSIC), Calle Agustín Escardino 7, 46980, Paterna, Valencia, Spain
| |
Collapse
|
31
|
Sims KC, Schwendinger KL, Szymkowicz DB, Swetenburg JR, Bain LJ. Embryonic arsenic exposure reduces intestinal cell proliferation and alters hepatic IGF mRNA expression in killifish (Fundulus heteroclitus). JOURNAL OF TOXICOLOGY AND ENVIRONMENTAL HEALTH. PART A 2019; 82:142-156. [PMID: 30729860 PMCID: PMC6397093 DOI: 10.1080/15287394.2019.1571465] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
Arsenic (As) is a toxicant found in food and water throughout the world, and studies suggested that exposure early in life reduces growth. Thus, the goal of this study was to examine mechanisms by which As impacted organismal growth. Killifish (Fundulus heteroclitus) were exposed to 0, 10, 50, or 200 ppb As as embryos and, after hatching, were reared in clean water for up to 40 weeks. Metabolism studies revealed that killifish biotransform As such that monomethylated and dimethylated arsenicals account for 15-17% and 45-61%, respectively, of the total metal. Growth, as measured by condition factor (CF), was significantly and dose-dependently reduced at 8 weeks of age but was similar to controls by 40 weeks. To determine mechanisms underlying the observed initial decrease, intestinal proliferation and morphology were examined. Arsenic-exposed fish exhibited significant 1.3- to 1.5-fold reduction in intestinal villus height and 1.4- to 1.6-fold decrease in proliferating cell nuclear antigen (PCNA+) intestinal cells at all weeks examined. In addition, there were significant correlations between CF, PCNA+ cells, and intestinal villus height. Upon examining whether fish might compensate for the intestinal changes, it was found that hepatic mRNA expression of insulin-like growth factor 1 (IGF-1) and its binding protein (IGFBP-1) were dose-dependently increased. These results indicate that embryonic exposure initially diminished growth, and while intestinal cell proliferation remained reduced, fish appear to compensate by enhancing transcript levels of hepatic IGF-1 and IGFBP-1.
Collapse
Affiliation(s)
- Kaleigh C. Sims
- Environmental Toxicology Graduate Program, Clemson University, Clemson, SC, USA
| | | | - Dana B. Szymkowicz
- Environmental Toxicology Graduate Program, Clemson University, Clemson, SC, USA
| | | | - Lisa J. Bain
- Environmental Toxicology Graduate Program, Clemson University, Clemson, SC, USA
- Department of Biological Sciences, Clemson University, Clemson, SC, USA
| |
Collapse
|
32
|
Chiocchetti GM, Vélez D, Devesa V. Inorganic arsenic causes intestinal barrier disruption. Metallomics 2019; 11:1411-1418. [DOI: 10.1039/c9mt00144a] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Exposure to inorganic arsenic, principally to As(iii), has an effect on intestinal permeability, causing a loss of intestinal barrier function.
Collapse
Affiliation(s)
| | - Dinoraz Vélez
- Instituto de Agroquímica y Tecnología de Alimentos (IATA-CSIC)
- 46980 – Paterna
- Spain
| | - Vicenta Devesa
- Instituto de Agroquímica y Tecnología de Alimentos (IATA-CSIC)
- 46980 – Paterna
- Spain
| |
Collapse
|
33
|
Yuan W, Chen J, Huang H, Cai Z, Ling Q, Huang F, Huang Z. Low-Dose Arsenic Trioxide Modulates the Differentiation of Mouse Embryonic Stem Cells. Chem Res Toxicol 2018; 31:472-481. [PMID: 29767511 DOI: 10.1021/acs.chemrestox.8b00027] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Arsenic (As) is a well-known environmental pollutant, while arsenic trioxide (ATO) has been proven to be an effective treatment for acute promyelocytic leukemia, however, the mechanism underlying its dual effects is not fully understood. Embryonic stem cells (ESCs) exhibit properties of stemness and serve as a popular model to investigate epigenetic modifiers including environmental pollutants. Herein, the effects of low-dose ATO on differentiation were evaluated in vitro using a mouse ESCs (mESCs) cell line, CGR8. Cells treated with 0.2-0.5 μM ATO for 3-4 days had slight inhibition of proliferation with elevation of apoptosis, but obvious alterations of differentiation by morphological checking and alkaline phosphatase (AP) staining. Moreover, ATO exposure significantly decreased the mRNA expression of the stemness maintenance genes including Oct4, Nanog, and Rex-1 ( P < 0.01), whereas obviously increased some tissue-specific differentiation marker genes such as Gata4, Gata-6, AFP, and IHH. These alterations were consistent with the differentiation phenotype induced by retinoic acid (RA) and the expression patterns of distinct pluripotency markers such as SSEA-1 and Oct4. Furthermore, low-dose ATO led to a quantitative increase in Caspase 3 (CASP3) activation and subsequent cleavage of Nanog around 27 kDa, which corresponded with the mouse Nanog cleaved by CASP3 in a tube cleavage assay. Taken together, we suggest that low-dose ATO exposure will induce differentiation, other than apoptosis, of ESCs, such effects might be tuned partially by ATO-induced CASP3 activation and Nanog cleavage coupling with other differentiation related genes involved. The present findings provide a preliminary action mechanism of arsenic on the cell fate determination.
Collapse
Affiliation(s)
- Wenlin Yuan
- Department of Biotechnology, School of Life Science and Technology , Jinan University , Guangzhou 510632 , Guangdong Province , China
| | - Jun Chen
- Department of Biotechnology, School of Life Science and Technology , Jinan University , Guangzhou 510632 , Guangdong Province , China
| | - Hongren Huang
- Department of Biotechnology, School of Life Science and Technology , Jinan University , Guangzhou 510632 , Guangdong Province , China
| | - Zhihui Cai
- Department of Biotechnology, School of Life Science and Technology , Jinan University , Guangzhou 510632 , Guangdong Province , China
| | - Qinjie Ling
- Department of Biotechnology, School of Life Science and Technology , Jinan University , Guangzhou 510632 , Guangdong Province , China
| | - Feng Huang
- Department of Rehabilitation Medicine, School of Medical Engineering , Foshan University , Foshan 528000 , Guangdong Province , China
| | - Zhi Huang
- Department of Biotechnology, School of Life Science and Technology , Jinan University , Guangzhou 510632 , Guangdong Province , China
| |
Collapse
|