1
|
Bridgeman L, Cimbalo A, López-Rodríguez D, Pamies D, Frangiamone M. Exploring toxicological pathways of microplastics and nanoplastics: Insights from animal and cellular models. JOURNAL OF HAZARDOUS MATERIALS 2025; 490:137795. [PMID: 40043388 DOI: 10.1016/j.jhazmat.2025.137795] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/30/2024] [Revised: 02/12/2025] [Accepted: 02/27/2025] [Indexed: 04/16/2025]
Abstract
Microplastics (MPs) and nanoplastics (NPs) represent an emerging issue for human and animal health. This review critically examines in vitro and in vivo studies to elucidate their mechanisms of action and toxicological effects. Key objectives included: providing a comprehensive overview of MP-NPs studies in literature, assessing experimental conditions relative to real environmental scenarios, and identifying toxicological pathways at the molecular level. The findings revealed significant progress in understanding MP-NPs impacts. In particular, it has been observed the promotion of inflammation, oxidative stress, apoptosis, autophagy, and endoplasmic reticulum (ER) stress via specific signaling axes. Reproductive toxicity emerged as the primary research focus, particularly in male models, whereas effects on gastrointestinal, neurological, and cardiovascular systems were insufficiently studied, especially for the molecular pathways affected. Most studies disproportionately focused on polystyrene particles, neglecting other prevalent polymers such as polyethylene and polypropylene. Furthermore, reliance on synthetic microspheres and non-realistic experimental concentrations limits relevance to real-world conditions. Limited long-term exposure studies further constrain the understanding of MP-NPs persistence and risks. In view of this, future research should integrate environmentally relevant conditions for particles doses, size and composition, long-term exposure assessments, and advanced methodologies such as omics and computational modeling. In addition, therapeutic interventions targeting oxidative and ER stress, inflammation and apoptosis may be an excellent solution to mitigate MP-NPs toxicity. At the same time, a standardized global approach is needed to fully understand the risks posed by MP-NPs, attempting to safeguard public and environmental health.
Collapse
Affiliation(s)
- Luna Bridgeman
- Laboratory of Food Chemistry and Toxicology, Faculty of Pharmacy and Food Science, University of Valencia, Burjassot, València 46100, Spain
| | - Alessandra Cimbalo
- Laboratory of Food Chemistry and Toxicology, Faculty of Pharmacy and Food Science, University of Valencia, Burjassot, València 46100, Spain
| | - David López-Rodríguez
- Department of Biomedical Sciences, University of Lausanne, Rue du Bugnon 7, Lausanne 1005, Switzerland; Swiss Centre for Applied Human Toxicology (SCAHT), Basel, Switzerland; Institute of Earth Surface Dynamics, Faculty of Geosciences and Environment, University of Lausanne, Switzerland
| | - David Pamies
- Department of Biomedical Sciences, University of Lausanne, Rue du Bugnon 7, Lausanne 1005, Switzerland; Stem Cell & Organoid Facility. University of Lausanne, Rue du Bugnon 9, Lausanne 1005, Switzerland
| | - Massimo Frangiamone
- Department of Biomedical Sciences, University of Lausanne, Rue du Bugnon 7, Lausanne 1005, Switzerland; Swiss Centre for Applied Human Toxicology (SCAHT), Basel, Switzerland.
| |
Collapse
|
2
|
Hall S, Sumner J, Hunwin G, Martell S, Pengelly I, Brown V, Staff J, Forder J, Bard D. Desktop 3D printers in the workplace: use, emissions, controls, and health. Ann Work Expo Health 2025; 69:284-296. [PMID: 39719678 DOI: 10.1093/annweh/wxae101] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2024] [Accepted: 12/04/2024] [Indexed: 12/26/2024] Open
Abstract
Desktop three-dimensional (3D) printers are used in businesses, schools, and colleges, and are generally of an unenclosed design which may give rise to injuries or inhalation exposure to emissions of small particles (<1 µm) and volatile organic compounds (VOCs). The aim of this work was to explore the health risks related to the use of desktop 3D printers in workplaces in the United Kingdom. A digital survey on the use of desktop 3D printers was completed voluntarily and anonymously between February and June 2023, receiving 146 responses. The most common technology and material used for printing were "filament deposition" and "polylactic acid," respectively. The median number of printers an organisation had in use in one room was 2. A median of 10 people could be in the room during printer operation. A range of finishing techniques were reportedly applied to the printed object including the use of hand tools and solvents. General room ventilation was the most common exposure control measure stated. Measurements of airborne particles and VOCs were taken at 2 sites: a university and an engineering workshop. Airborne particle number concentrations (<1 µm) did not significantly increase above background levels when the printers were operating at either site. At the university, where there was the largest number of printers in operation, some VOCs could be attributed to the printing process; however, concentrations remained low. Evidence of associated respiratory symptoms was gathered by asking volunteers at the 2 sites visited to complete a questionnaire. Seventeen volunteers across the 2 sites completed the survey. None stated that they had ever experienced acute symptoms from working with 3D printers. However, they did report symptoms which included tiredness, dry/cracked skin, headache, itchy/runny nose, and a cough, with some stating that these improved on their days off. Overall, limited evidence from published literature and this study suggests that exposure to desktop 3D printing emissions could be associated with short-term respiratory health symptoms. However, static measurements in 2 workplaces where multiple desktop 3D printers were in use did not show airborne particle number concentrations in the room rising above background levels and concentrations of measured VOCs were all low. These findings may be due to effective ventilation and other control measures which over half of the workplaces surveyed stated that they had in place.
Collapse
Affiliation(s)
- Samantha Hall
- HSE Science Division, Health and Safety Executive's Science and Research Centre, Harpur Hill, Buxton SK17 9JN, United Kingdom
| | - Jade Sumner
- HSE Science Division, Health and Safety Executive's Science and Research Centre, Harpur Hill, Buxton SK17 9JN, United Kingdom
| | - Graeme Hunwin
- HSE Science Division, Health and Safety Executive's Science and Research Centre, Harpur Hill, Buxton SK17 9JN, United Kingdom
| | - Samuel Martell
- HSE Science Division, Health and Safety Executive's Science and Research Centre, Harpur Hill, Buxton SK17 9JN, United Kingdom
| | - Ian Pengelly
- HSE Science Division, Health and Safety Executive's Science and Research Centre, Harpur Hill, Buxton SK17 9JN, United Kingdom
| | - Veronica Brown
- HSE Science Division, Health and Safety Executive's Science and Research Centre, Harpur Hill, Buxton SK17 9JN, United Kingdom
| | - James Staff
- HSE Science Division, Health and Safety Executive's Science and Research Centre, Harpur Hill, Buxton SK17 9JN, United Kingdom
| | - James Forder
- HSE Science Division, Health and Safety Executive's Science and Research Centre, Harpur Hill, Buxton SK17 9JN, United Kingdom
| | - Delphine Bard
- HSE Science Division, Health and Safety Executive's Science and Research Centre, Harpur Hill, Buxton SK17 9JN, United Kingdom
| |
Collapse
|
3
|
Queiroz LG, do Prado CC, de Oliveira PFM, Valezi DF, Cecconi Portes M, Rocha de Moraes B, Ando RA, Vicente E, de Paiva TC, Pompêo M, Rani-Borges B. The Toxicity of Poly(acrylonitrile-styrene-butadiene) Microplastics toward Hyalella azteca Is Associated with Biofragmentation and Oxidative Stress. Chem Res Toxicol 2025; 38:91-101. [PMID: 39829240 PMCID: PMC11752492 DOI: 10.1021/acs.chemrestox.4c00300] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2024] [Revised: 12/11/2024] [Accepted: 12/23/2024] [Indexed: 01/30/2025]
Abstract
Acrylonitrile-butadiene-styrene (ABS) is a thermoplastic copolymer commonly used in the electronics, automotive, and construction industries. In the aquatic environment, the formation of microplastics from larger-sized plastic waste occurs naturally, induced by physical, chemical, and biological processes that promote the aging of these particles. Here, we investigated the interactions between the freshwater amphipod Hyalella azteca and ABS microplastics (10-20 μm) (pristine and after accelerated aging) over 7 days of exposure. At the end of the exposure period, we evaluated the ability of H. azteca to fragment the ABS particles, as well as the changes in its oxidative stress biomarkers (SOD, CAT, MDA, and GST) as the result of ABS exposure. H. azteca promoted a significant fragmentation of ABS particles. The ratio of this biofragmentation was more pronounced in pristine particles. Despite the absence of significant changes in the mortality of exposed organisms, alterations in the oxidative stress biomarkers were observed. The results demonstrate the ability of H. azteca to fragment pristine and aged ABS microplastics and, the consequent susceptibility of these organisms to the effects of microplastic exposure.
Collapse
Affiliation(s)
- Lucas Gonçalves Queiroz
- Institute
of Biosciences, University of São
Paulo, Rua do Matão 321, 05508-090 São Paulo, SP, Brazil
| | - Caio César
Achiles do Prado
- Engineering
School of Lorena, University of São
Paulo, Estrada Municipal
do Campinho 100, 12602-810 Lorena, SP, Brazil
| | | | - Daniel Farinha Valezi
- Physics
Department, State University of Londrina, Rodovia Celso Garcia Cid PR 445
Km 380, 86057-970 Londrina, PR, Brazil
| | - Marcelo Cecconi Portes
- Institute
of Chemistry, University of São Paulo, Av. Prof. Lineu Prestes 748, 05508-900 São Paulo, SP, Brazil
| | - Beatriz Rocha de Moraes
- Institute
of Chemistry, University of São Paulo, Av. Prof. Lineu Prestes 748, 05508-900 São Paulo, SP, Brazil
| | - Rômulo Augusto Ando
- Institute
of Chemistry, University of São Paulo, Av. Prof. Lineu Prestes 748, 05508-900 São Paulo, SP, Brazil
| | - Eduardo Vicente
- Department
of Microbiology and Ecology, University
of Valencia, Dr. Moliner 50, 46100 Burjassot, Spain
| | | | - Marcelo Pompêo
- Institute
of Biosciences, University of São
Paulo, Rua do Matão 321, 05508-090 São Paulo, SP, Brazil
| | - Bárbara Rani-Borges
- Institute
of Chemistry, University of São Paulo, Av. Prof. Lineu Prestes 748, 05508-900 São Paulo, SP, Brazil
| |
Collapse
|
4
|
Salmon PM, King BJ, Elstak I, McLean S, Read GJM. Tomorrow's demons: a scoping review of the risks associated with emerging technologies. ERGONOMICS 2024:1-17. [PMID: 39436810 DOI: 10.1080/00140139.2024.2416554] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/03/2024] [Accepted: 10/08/2024] [Indexed: 10/25/2024]
Abstract
Society faces a growing set of risks from advanced emerging technologies. While there has been discussion on some of these risks, a comprehensive overview does not exist, and it is not clear what methods are suited to identify future risks. This scoping review aimed to synthesise current knowledge regarding the risks associated with emerging technologies. The findings show that a diverse set of technologies and risks have been considered, with ten risk themes identified: risks to human health and wellbeing, sub-standard technology risks, legal and ethical risks, privacy and security risks, socioeconomic impacts, ecological and environmental risks, malicious use risks, geopolitical risks, technological unemployment risks, and existential threats. It is concluded that there is a need to expand the focus of prospective risk assessments to consider the organisational, sociotechnical and societal systems in which emerging technologies will be deployed. The development of a future technology risks classification scheme is also recommended. PRACTITIONER STATEMENT This scoping review provides practitioners with a comprehensive overview of the risks associated with future advanced technologies. This will support the proactive development of suitable controls, with the findings also signposting ergonomics methods that can be used to support future risk assessments.
Collapse
Affiliation(s)
- Paul M Salmon
- Centre for Human Factors and Sociotechnical Systems, University of the Sunshine Coast, Sunshine Coast, Queensland, Australia
| | - Brandon J King
- Centre for Human Factors and Sociotechnical Systems, University of the Sunshine Coast, Sunshine Coast, Queensland, Australia
| | - Isaiah Elstak
- Centre for Human Factors and Sociotechnical Systems, University of the Sunshine Coast, Sunshine Coast, Queensland, Australia
| | - Scott McLean
- Centre for Human Factors and Sociotechnical Systems, University of the Sunshine Coast, Sunshine Coast, Queensland, Australia
| | - Gemma J M Read
- Centre for Human Factors and Sociotechnical Systems, University of the Sunshine Coast, Sunshine Coast, Queensland, Australia
- School of Health, University of the Sunshine Coast, Sunshine Coast, Queensland, Australia
| |
Collapse
|
5
|
Lim C, Seo D. Assessment of the carcinogenic potential of particulate matter generated from 3D printing devices in Balb/c 3T3-1-1 cells. Sci Rep 2024; 14:23981. [PMID: 39402095 PMCID: PMC11473660 DOI: 10.1038/s41598-024-75491-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2024] [Accepted: 10/07/2024] [Indexed: 10/17/2024] Open
Abstract
Recently, there have been reports of sarcoma occurring in a Korean science teachers who used a 3D printer with acrylonitrile butadiene styrene (ABS) and polylactic acid (PLA) filaments for educational purposes. However, limited toxicological research data on 3D printing make it challenging to confirm a causal relationship between 3D printing and cancer. Therefore, occupational accidents involving teachers who have developed sarcoma have not been officially recognized. To address this gap, we aimed to evaluate the carcinogenic potential of particulate matter produced from ABS and PLA filaments commonly used in 3D printing. We created a generator mimicking 3D printing to generate particulate matter, which was used as an experimental material. The collected particulate matter was exposed to an in vitro system to investigate genetic damage, effects on cell transformation, and changes in carcinogenesis-related genes. Various assays, such as the comet assay, cell transformation assays, microarray analysis, and glucose consumption measurement, were employed. Cytotoxicity tests performed to determine the exposure concentration for the comet assay showed that cell viability was 83.6, 62.6, 42.0, and 10.2% for ABS at exposure concentrations of 50, 100, 200, and 400 µg/mL, respectively. PLA showed 91.7, 80.3, 65.1, and 60.8% viability at exposure concentrations of 50, 100, 200, and 400 µg/mL, respectively. Therefore, 50 µg/mL was set as the highest concentration for both ABS and PLA, and 25 and 12.5 µg/mL were set as the medium and low concentrations, respectively. The comet assay showed no changes in genetic damage caused by the particulate matter. Cytotoxicity results performed to establish exposure concentrations in the transformation assay showed that ABS showed cell viability of 88.0, 77.4, 84.7, and 85.5% at concentrations of 1.25, 2.5, 5, and 10 µg/mL, respectively, but few cells survived at concentrations above 20 µg/mL. PLA showed minimal cytotoxicity up to a concentration of 20 µg/ml. Therefore, in the cell transformation assay, a concentration of 10 µg/mL for ABS and 20 µg/mL for PLA was set as the highest exposure concentration, followed by medium and low exposure concentrations with a common ratio of 2. In cell transformation assays, only one transformed focus each was observed for both ABS and PLA particulate matter-exposed cells. The microarray assay revealed changes in gene expression, with a 41.7% change at 10 µg/mL for ABS and an 18.6% change at 20 µg/mL for PLA compared to the positive control group. Analysis of carcinogenesis-related gene expression changes on days 1, 7, and 25 of the promotion phase revealed that in cells exposed to 5 µg/mL of ABS, RBM3 gene expression increased by 3.66, 3.26, and 3.74 times, respectively, while MPP6 gene expression decreased by 0.33, 0.28, and 0.38 times, respectively, compared to the negative control group. Additionally, the measurement of glucose consumption showed that it increased in cells exposed to ABS and PLA particulate matter. Our findings suggest that the carcinogenic potential of ABS- and PLA-derived particulate matter in 3D printing cannot be completely ruled out. Therefore, further research in other test systems and analysis of additional parameters related to carcinogenesis, are deemed necessary to evaluate the carcinogenic risk of 3D printers using these materials.
Collapse
Affiliation(s)
- CheolHong Lim
- Inhalation Toxicity Research Center, Occupational Safety and Health Research Institute, Korea Occupational Safety and Health Agency, 30, Expro-ro 339 beon-gil, Yuseong-gu, Daejeon, Republic of Korea
| | - DongSeok Seo
- Inhalation Toxicity Research Center, Occupational Safety and Health Research Institute, Korea Occupational Safety and Health Agency, 30, Expro-ro 339 beon-gil, Yuseong-gu, Daejeon, Republic of Korea.
| |
Collapse
|
6
|
Šostakaitė L, Šapranauskas E, Rudinskas D, Rimkus A, Gribniak V. Investigating Additive Manufacturing Possibilities for an Unmanned Aerial Vehicle with Polymeric Materials. Polymers (Basel) 2024; 16:2600. [PMID: 39339064 PMCID: PMC11435237 DOI: 10.3390/polym16182600] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2024] [Revised: 09/03/2024] [Accepted: 09/11/2024] [Indexed: 09/30/2024] Open
Abstract
Fused filament fabrication, also known as fused deposition modeling and 3D printing, is the most common additive manufacturing technology due to its cost-effectiveness and customization flexibility compared to existing alternatives. It may revolutionize unmanned aerial vehicle (UAV) design and fabrication. Therefore, this study hypothesizes the 3D printing possibility of UAV using a simple desktop printer and polymeric material. The extensive literature analysis identified the acceptable prototyping object and polymeric material. Thus, the research focuses on applying polylactic acid (PLA) in manufacturing the flying wing-type UAV and develops a fabrication concept to replicate arial vehicles initially produced from a mixture of expanded polystyrene and polyethylene. The material choice stems from PLA's non-toxicity, ease of fabrication, and cost-effectiveness. Alongside ordinary PLA, this study includes lightweight PLA to investigate the mechanical performance of this advanced material, which changes its density depending on the printing temperature. This proof-of-concept study explores the mechanical properties of printed parts of the wing prototype. It also considers the possibility of fragmentation in fabricated objects because of the limitations of printing space. The simplified bending tests identified significant reserves in the mechanical performance regarding the theoretical resistance of the material in the wing prototype, which proves the raised hypothesis and delivers the object for further optimization. Focusing on the mechanical resistance, this study ignored rheology and durability issues, which require additional investigations. Fabricating the wing of the exact geometry reveals acceptable precision of the 3D printing processes but highlights the problematic technology issues requiring further resolution.
Collapse
Affiliation(s)
- Laura Šostakaitė
- Department of Aeronautical Engineering, Vilnius Gediminas Technical University (VILNIUS TECH), Linkmenų Str. 28-4, 08217 Vilnius, Lithuania; (L.Š.); (E.Š.); (D.R.)
| | - Edvardas Šapranauskas
- Department of Aeronautical Engineering, Vilnius Gediminas Technical University (VILNIUS TECH), Linkmenų Str. 28-4, 08217 Vilnius, Lithuania; (L.Š.); (E.Š.); (D.R.)
| | - Darius Rudinskas
- Department of Aeronautical Engineering, Vilnius Gediminas Technical University (VILNIUS TECH), Linkmenų Str. 28-4, 08217 Vilnius, Lithuania; (L.Š.); (E.Š.); (D.R.)
| | - Arvydas Rimkus
- Laboratory of Innovative Building Structures, Vilnius Gediminas Technical University (VILNIUS TECH), Sauletekio Av. 11, 10223 Vilnius, Lithuania;
| | - Viktor Gribniak
- Department of Aeronautical Engineering, Vilnius Gediminas Technical University (VILNIUS TECH), Linkmenų Str. 28-4, 08217 Vilnius, Lithuania; (L.Š.); (E.Š.); (D.R.)
- Laboratory of Innovative Building Structures, Vilnius Gediminas Technical University (VILNIUS TECH), Sauletekio Av. 11, 10223 Vilnius, Lithuania;
| |
Collapse
|
7
|
Barnett LMA, Zhang Q, Sharma S, Alqahtani S, Shannahan J, Black M, Wright C. 3D printer emissions elicit filament-specific and dose-dependent metabolic and genotoxic effects in human airway epithelial cells. Front Public Health 2024; 12:1408842. [PMID: 39071151 PMCID: PMC11273288 DOI: 10.3389/fpubh.2024.1408842] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2024] [Accepted: 06/03/2024] [Indexed: 07/30/2024] Open
Abstract
Three-dimensional (3D) printers have become popular educational tools in secondary and post-secondary STEM curriculum; however, concerns have emerged regarding inhalation exposures and associated health risks. Current evidence suggests that filament materials and site conditions may cause differences in the chemical profiles and toxicological properties of 3D printer emissions; however, few studies have evaluated exposures directly in the classroom. In this study, we monitored and sampled particulate matter (PM) emitted from acrylonitrile-butadiene-styrene (ABS) and polylactic acid (PLA) filaments during a 3-hour 3D printing session in a high school classroom using aerosol monitoring instrumentation and collection media. To evaluate potential inhalation risks, Multiple Path Particle Dosimetry (MPPD) modeling was used to estimate inhaled doses and calculate in vitro concentrations based on the observed aerosol data and specific lung and breathing characteristics. Dynamic light scattering was used to evaluate the hydrodynamic diameter, zeta potential, and polydispersity index (PDI) of extracted PM emissions dispersed in cell culture media. Small airway epithelial cells (SAEC) were employed to determine cellular viability, genotoxic, inflammatory, and metabolic responses to each emission exposure using MTS, ELISA, and high-performance liquid chromatography-mass spectrometry (HPLC-MS), respectively. Aerosol monitoring data revealed that emissions from ABS and PLA filaments generated similar PM concentrations within the ultrafine and fine ranges. However, DLS analysis showed differences in the physicochemical properties of ABS and PLA PM, where the hydrodynamic diameter of PLA PM was greater than ABS PM, which may have influenced particle deposition rates and cellular outcomes. While exposure to both ABS and PLA PM reduced cell viability and induced MDM2, an indicator of genomic instability, PLA PM alone increased gamma-H2AX, a marker of double-stranded DNA breaks. ABS and PLA emissions also increased the release of pro-inflammatory cytokines, although this did not reach significance. Furthermore, metabolic profiling via high performance liquid chromatography-mass spectrometry (HPLC-MS) and subsequent pathway analysis revealed filament and dose dependent cellular metabolic alterations. Notably, our metabolomic analysis also revealed key metabolites and pathways implicated in PM-induced oxidative stress, DNA damage, and respiratory disease that were perturbed across both tested doses for a given filament. Taken together, these findings suggest that use of ABS and PLA filaments in 3D printers within school settings may potentially contribute to adverse respiratory responses especially in vulnerable populations.
Collapse
Affiliation(s)
- LMA Barnett
- Chemical Insights Research Institute, UL Research Institutes, Marietta, GA, United States
| | - Q. Zhang
- Chemical Insights Research Institute, UL Research Institutes, Marietta, GA, United States
| | - S. Sharma
- Chemical Insights Research Institute, UL Research Institutes, Marietta, GA, United States
| | - S. Alqahtani
- School of Health Sciences, Purdue University, West Lafayette, IN, United States
- Advanced Diagnostic and Therapeutics Technologies Institute, Health Sector, King Abdulaziz City for Science and Technology (KACST), Riyadh, Saudi Arabia
| | - J. Shannahan
- School of Health Sciences, Purdue University, West Lafayette, IN, United States
| | - M. Black
- Chemical Insights Research Institute, UL Research Institutes, Marietta, GA, United States
| | - C. Wright
- Chemical Insights Research Institute, UL Research Institutes, Marietta, GA, United States
| |
Collapse
|
8
|
Krajnak K, Farcas M, Richardson D, Hammer MA, Waugh S, McKinney W, Knepp A, Jackson M, Burns D, LeBouf R, Matheson J, Thomas T, Qian Y. Exposure to emissions generated by 3-dimensional printing with polycarbonate: effects on peripheral vascular function, cardiac vascular morphology and expression of markers of oxidative stress in male rat cardiac tissue. JOURNAL OF TOXICOLOGY AND ENVIRONMENTAL HEALTH. PART A 2024; 87:541-559. [PMID: 38682597 PMCID: PMC11625379 DOI: 10.1080/15287394.2024.2346938] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/01/2024]
Abstract
Three-dimensional (3D) printing with polycarbonate (PC) plastic occurs in manufacturing settings, homes, and schools. Emissions generated during printing with PC stock and bisphenol-A (BPA), an endocrine disrupter in PC, may induce adverse health effects. Inhalation of 3D printer emissions, and changes in endocrine function may lead to cardiovascular dysfunction. The goal of this study was to determine whether there were any changes in markers of peripheral or cardiovascular dysfunction in animals exposed to PC-emissions. Male Sprague Dawley rats were exposed to PC-emissions generated by 3D printing for 1, 4, 8, 15 or 30 d. Exposure induced a reduction in the expression of the antioxidant catalase (Cat) and endothelial nitric oxide synthase (eNos). Endothelin and hypoxia-induced factor 1α transcripts increased after 30 d. Alterations in transcription were associated with elevations in immunostaining for estrogen and androgen receptors, nitrotyrosine, and vascular endothelial growth factor in cardiac arteries of PC-emission exposed animals. There was also a reduction eNOS immunostaining in cardiac arteries from rats exposed to PC-emissions. Histological analyses of heart sections revealed that exposure to PC-emissions resulted in vasoconstriction of cardiac arteries and thickening of the vascular smooth muscle wall, suggesting there was a prolonged vasoconstriction. These findings are consistent with studies showing that inhalation 3D-printer emissions affect cardiovascular function. Although BPA levels in animals were relatively low, exposure-induced changes in immunostaining for estrogen and androgen receptors in cardiac arteries suggest that changes in the action of steroid hormones may have contributed to the alterations in morphology and markers of cardiac function.
Collapse
Affiliation(s)
- Kristine Krajnak
- Health Effects Laboratory Division, National Institute for Occupational Safety and Health, Morgantown, WV, USA
| | - Mariana Farcas
- Health Effects Laboratory Division, National Institute for Occupational Safety and Health, Morgantown, WV, USA
| | - Diana Richardson
- Health Effects Laboratory Division, National Institute for Occupational Safety and Health, Morgantown, WV, USA
| | - Mary Anne Hammer
- Health Effects Laboratory Division, National Institute for Occupational Safety and Health, Morgantown, WV, USA
| | - Stacey Waugh
- Health Effects Laboratory Division, National Institute for Occupational Safety and Health, Morgantown, WV, USA
| | - Walter McKinney
- Health Effects Laboratory Division, National Institute for Occupational Safety and Health, Morgantown, WV, USA
| | - Alycia Knepp
- Health Effects Laboratory Division, National Institute for Occupational Safety and Health, Morgantown, WV, USA
| | - Mark Jackson
- Health Effects Laboratory Division, National Institute for Occupational Safety and Health, Morgantown, WV, USA
| | - Dru Burns
- Respiratory Health Division, Morgantown, WV, USA
| | - Ryan LeBouf
- Respiratory Health Division, Morgantown, WV, USA
| | | | - Treye Thomas
- Consumer Product Safety Commission, Rockville, MD, USA
| | - Yong Qian
- Health Effects Laboratory Division, National Institute for Occupational Safety and Health, Morgantown, WV, USA
| |
Collapse
|
9
|
Farcas MT, McKinney W, Mandler WK, Knepp AK, Battelli L, Friend SA, Stefaniak AB, Service S, Kashon M, LeBouf RF, Thomas TA, Matheson J, Qian Y. Pulmonary evaluation of whole-body inhalation exposure of polycarbonate (PC) filament 3D printer emissions in rats. JOURNAL OF TOXICOLOGY AND ENVIRONMENTAL HEALTH. PART A 2024; 87:325-341. [PMID: 38314584 PMCID: PMC11208878 DOI: 10.1080/15287394.2024.2311170] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/06/2024]
Abstract
During fused filament fabrication (FFF) 3D printing with polycarbonate (PC) filament, a release of ultrafine particles (UFPs) and volatile organic compounds (VOCs) occurs. This study aimed to determine PC filament printing emission-induced toxicity in rats via whole-body inhalation exposure. Male Sprague Dawley rats were exposed to a single concentration (0.529 mg/m3, 40 nm mean diameter) of the 3D PC filament emissions in a time-course via whole body inhalation for 1, 4, 8, 15, and 30 days (4 hr/day, 4 days/week), and sacrificed 24 hr after the last exposure. Following exposures, rats were assessed for pulmonary and systemic responses. To determine pulmonary injury, total protein and lactate dehydrogenase (LDH) activity, surfactant proteins A and D, total as well as lavage fluid differential cells in bronchoalveolar lavage fluid (BALF) were examined, as well as histopathological analysis of lung and nasal passages was performed. To determine systemic injury, hematological differentials, and blood biomarkers of muscle, metabolic, renal, and hepatic functions were also measured. Results showed that inhalation exposure induced no marked pulmonary or systemic toxicity in rats. In conclusion, inhalation exposure of rats to a low concentration of PC filament emissions produced no significant pulmonary or systemic toxicity.
Collapse
Affiliation(s)
- Mariana T. Farcas
- National Institute for Occupational Safety and Health,
Morgantown, WV, USA
- Pharmaceutical and Pharmacological Sciences, School of
Pharmacy, West Virginia University, Morgantown, WV, USA
| | - Walter McKinney
- National Institute for Occupational Safety and Health,
Morgantown, WV, USA
| | - W. Kyle Mandler
- National Institute for Occupational Safety and Health,
Morgantown, WV, USA
| | - Alycia K. Knepp
- National Institute for Occupational Safety and Health,
Morgantown, WV, USA
| | - Lori Battelli
- National Institute for Occupational Safety and Health,
Morgantown, WV, USA
| | - Sherri A Friend
- National Institute for Occupational Safety and Health,
Morgantown, WV, USA
| | | | - Samantha Service
- National Institute for Occupational Safety and Health,
Morgantown, WV, USA
| | - Michael Kashon
- National Institute for Occupational Safety and Health,
Morgantown, WV, USA
| | - Ryan F. LeBouf
- National Institute for Occupational Safety and Health,
Morgantown, WV, USA
| | - Treye A. Thomas
- Office of Hazard Identification and Reduction, U.S.
Consumer Product Safety Commission, Rockville, MD, USA
| | - Joanna Matheson
- Office of Hazard Identification and Reduction, U.S.
Consumer Product Safety Commission, Rockville, MD, USA
| | - Yong Qian
- National Institute for Occupational Safety and Health,
Morgantown, WV, USA
| |
Collapse
|
10
|
Korchevskiy AA, Hill WC, Hull M, Korchevskiy A. Using particle dimensionality-based modeling to estimate lung carcinogenicity of 3D printer emissions. J Appl Toxicol 2024; 44:564-581. [PMID: 37950573 PMCID: PMC11791719 DOI: 10.1002/jat.4561] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2023] [Revised: 10/18/2023] [Accepted: 10/19/2023] [Indexed: 11/12/2023]
Abstract
The use of 3D printing technologies by industry and consumers is expanding. However, the approaches to assess the risk of lung carcinogenesis from the emissions of 3D printers have not yet been developed. The objective of the study was to demonstrate a methodology for modeling lung cancer risk related to specific exposure levels as derived from an experimental study of 3D printer emissions for various types of filaments (ABS, PLA, and PETG). The emissions of 15 filaments were assessed at varying extrusion temperatures for a total of 23 conditions in a Class 1,000 cleanroom following procedures described by ANSI/CAN/UL 2904. Three approaches were utilized for cancer risk estimation: (a) calculation based on PM2.5 and PM10 concentrations, (b) a proximity assessment based on the pulmonary deposition fraction, and (c) modeling based on the mass-weighted aerodynamic diameter of particles. The combined distribution of emitted particles had the mass median aerodynamic diameter (MMAD) of 0.35 μm, GSD 2.25. The average concentration of PM2.5 was 25.21 μg/m3 . The spline-based function of aerodynamic diameter allowed us to reconstruct the carcinogenic potential of seven types of fine and ultrafine particles (crystalline silica, fine TiO2 , ultrafine TiO2 , ambient PM2.5 and PM10, diesel particulates, and carbon nanotubes) with a correlation of 0.999, P < 0.00001. The central tendency estimation of lung cancer risk for 3D printer emissions was found at the level of 14.74 cases per 10,000 workers in a typical exposure scenario (average cumulative exposure of 0.3 mg/m3 - years), with the lowest risks for PLA filaments, and the highest for PETG type.
Collapse
Affiliation(s)
| | - W Cary Hill
- ITA International, LLC, Blacksburg, Virginia, USA
| | - Matthew Hull
- Virginia Tech, Institute for Critical Technology and Applied Science, Blacksburg, Virginia, USA
| | | |
Collapse
|
11
|
Franco Urquiza EA. Advances in Additive Manufacturing of Polymer-Fused Deposition Modeling on Textiles: From 3D Printing to Innovative 4D Printing-A Review. Polymers (Basel) 2024; 16:700. [PMID: 38475383 DOI: 10.3390/polym16050700] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2023] [Revised: 11/16/2023] [Accepted: 02/27/2024] [Indexed: 03/14/2024] Open
Abstract
Technological advances and the development of new and advanced materials allow the transition from three-dimensional (3D) printing to the innovation of four-dimensional (4D) printing. 3D printing is the process of precisely creating objects with complex shapes by depositing superimposed layers of material. Current 3D printing technology allows two or more filaments of different polymeric materials to be placed, which, together with the development of intelligent materials that change shape over time or under the action of an external stimulus, allow us to innovate and move toward an emerging area of research, innovative 4D printing technology. 4D printing makes it possible to manufacture actuators and sensors for various technological applications. Its most significant development is currently in the manufacture of intelligent textiles. The potential of 4D printing lies in modular manufacturing, where fabric-printed material interaction enables the creation of bio-inspired and biomimetic devices. The central part of this review summarizes the effect of the primary external stimuli on 4D textile materials, followed by the leading applications. Shape memory polymers attract current and potential opportunities in the textile industry to develop smart clothing for protection against extreme environments, auxiliary prostheses, smart splints or orthoses to assist the muscles in their medical recovery, and comfort devices. In the future, intelligent textiles will perform much more demanding roles, thus envisioning the application fields of 4D printing in the next decade.
Collapse
Affiliation(s)
- Edgar Adrian Franco Urquiza
- Advanced Manufacturing Department, Center for Engineering and Industrial Development, CIDESI-Airport, Carretera Estatal 200, km 23, Queretaro 76270, Mexico
| |
Collapse
|
12
|
Mian SH, Abouel Nasr E, Moiduddin K, Saleh M, Alkhalefah H. An Insight into the Characteristics of 3D Printed Polymer Materials for Orthoses Applications: Experimental Study. Polymers (Basel) 2024; 16:403. [PMID: 38337292 DOI: 10.3390/polym16030403] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2023] [Revised: 01/29/2024] [Accepted: 01/29/2024] [Indexed: 02/12/2024] Open
Abstract
Knee orthoses assist patients with impaired gait through the amendment of knee abnormalities, restoration of mobility, alleviation of pain, shielding, and immobilization. The inevitable issues with laborious traditional plaster molding procedures for orthoses can be resolved with 3D printing. However, a number of challenges have limited the adoption of 3D printing, the most significant of which is the proper material selection for orthoses. This is so because the material used to make an orthosis affects its strength, adaptability, longevity, weight, moisture response, etc. This study intends to examine the mechanical, physical, and dimensional characteristics of three-dimensional (3D) printing materials (PLA, ABS, PETG, TPU, and PP). The aim of this investigation is to gain knowledge about these materials' potential for usage as knee orthosis materials. Tensile testing, Olympus microscope imaging, water absorption studies, and coordinate measuring machine-based dimension analysis are used to characterize the various 3D printing materials. Based on the investigation, PLA outperforms all other materials in terms of yield strength (25.98 MPa), tensile strength (30.89 MPa), and shrinkage (0.46%). PP is the least water absorbent (0.15%) and most flexible (407.99%); however, it is the most difficult to fabricate using 3D printing. When producing knee orthoses with 3D printing, PLA can be used for the orthosis frame and other structural elements, PLA or ABS for moving parts like hinges, PP for padding, and TPU or PP for the straps. This study provides useful information for scientists and medical professionals who are intrigued about various polymer materials for 3D printing and their effective utilization to fabricate knee orthoses.
Collapse
Affiliation(s)
- Syed Hammad Mian
- Advanced Manufacturing Institute, King Saud University, Riyadh 11421, Saudi Arabia
| | - Emad Abouel Nasr
- Department of Industrial Engineering, College of Engineering, King Saud University, Riyadh 11421, Saudi Arabia
| | - Khaja Moiduddin
- Advanced Manufacturing Institute, King Saud University, Riyadh 11421, Saudi Arabia
| | - Mustafa Saleh
- Department of Industrial Engineering, College of Engineering, King Saud University, Riyadh 11421, Saudi Arabia
| | - Hisham Alkhalefah
- Advanced Manufacturing Institute, King Saud University, Riyadh 11421, Saudi Arabia
| |
Collapse
|
13
|
He X, Barnett LM, Jeon J, Zhang Q, Alqahtani S, Black M, Shannahan J, Wright C. Real-Time Exposure to 3D-Printing Emissions Elicits Metabolic and Pro-Inflammatory Responses in Human Airway Epithelial Cells. TOXICS 2024; 12:67. [PMID: 38251022 PMCID: PMC10818734 DOI: 10.3390/toxics12010067] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/18/2023] [Revised: 01/05/2024] [Accepted: 01/09/2024] [Indexed: 01/23/2024]
Abstract
Three-dimensional (3D) printer usage in household and school settings has raised health concerns regarding chemical and particle emission exposures during operation. Although the composition of 3D printer emissions varies depending on printer settings and materials, little is known about the impact that emissions from different filament types may have on respiratory health and underlying cellular mechanisms. In this study, we used an in vitro exposure chamber system to deliver emissions from two popular 3D-printing filament types, acrylonitrile butadiene styrene (ABS) and polylactic acid (PLA), directly to human small airway epithelial cells (SAEC) cultured in an air-liquid interface during 3D printer operation. Using a scanning mobility particle sizer (SMPS) and an optical particle sizer (OPS), we monitored 3D printer particulate matter (PM) emissions in terms of their particle size distribution, concentrations, and calculated deposited doses. Elemental composition of ABS and PLA emissions was assessed using scanning electron microscopy coupled with energy dispersive X-ray spectroscopy (SEM-EDX). Finally, we compared the effects of emission exposure on cell viability, inflammation, and metabolism in SAEC. Our results reveal that, although ABS filaments emitted a higher total concentration of particles and PLA filaments emitted a higher concentration of smaller particles, SAEC were exposed to similar deposited doses of particles for each filament type. Conversely, ABS and PLA emissions had distinct elemental compositions, which were likely responsible for differential effects on SAEC viability, oxidative stress, release of inflammatory mediators, and changes in cellular metabolism. Specifically, while ABS- and PLA-emitted particles both reduced cellular viability and total glutathione levels in SAEC, ABS emissions had a significantly greater effect on glutathione relative to PLA emissions. Additionally, pro-inflammatory cytokines including IL-1β, MMP-9, and RANTES were significantly increased due to ABS emissions exposure. While IL-6 and IL-8 were stimulated in both exposure scenarios, VEGF was exclusively increased due to PLA emissions exposures. Notably, ABS emissions induced metabolic perturbation on amino acids and energy metabolism, as well as redox-regulated pathways including arginine, methionine, cysteine, and vitamin B3 metabolism, whereas PLA emissions exposures caused fatty acid and carnitine dysregulation. Taken together, these results advance our mechanistic understanding of 3D-printer-emissions-induced respiratory toxicity and highlight the role that filament emission properties may play in mediating different respiratory outcomes.
Collapse
Affiliation(s)
- Xiaojia He
- Chemical Insights Research Institute, UL Research Institutes, Marietta, GA 30067, USA; (X.H.); (L.M.B.); (J.J.); (Q.Z.); (M.B.)
| | - Lillie Marie Barnett
- Chemical Insights Research Institute, UL Research Institutes, Marietta, GA 30067, USA; (X.H.); (L.M.B.); (J.J.); (Q.Z.); (M.B.)
| | - Jennifer Jeon
- Chemical Insights Research Institute, UL Research Institutes, Marietta, GA 30067, USA; (X.H.); (L.M.B.); (J.J.); (Q.Z.); (M.B.)
| | - Qian Zhang
- Chemical Insights Research Institute, UL Research Institutes, Marietta, GA 30067, USA; (X.H.); (L.M.B.); (J.J.); (Q.Z.); (M.B.)
| | - Saeed Alqahtani
- School of Health Sciences, Purdue University, West Lafayette, IN 47907, USA; (S.A.); (J.S.)
- Advanced Diagnostic and Therapeutics Technologies Institute, Health Sector, King Abdulaziz City for Science and Technology (KACST), Riyadh 12354, Saudi Arabia
| | - Marilyn Black
- Chemical Insights Research Institute, UL Research Institutes, Marietta, GA 30067, USA; (X.H.); (L.M.B.); (J.J.); (Q.Z.); (M.B.)
| | - Jonathan Shannahan
- School of Health Sciences, Purdue University, West Lafayette, IN 47907, USA; (S.A.); (J.S.)
| | - Christa Wright
- Chemical Insights Research Institute, UL Research Institutes, Marietta, GA 30067, USA; (X.H.); (L.M.B.); (J.J.); (Q.Z.); (M.B.)
| |
Collapse
|
14
|
Minář J, Pilnaj D, Uřičář J, Veselý P, Dušek K. Application of solid-phase microextraction arrows for characterizing volatile organic compounds from 3D printing of acrylonitrile-styrene-acrylate filament. J Chromatogr A 2023; 1705:464180. [PMID: 37393779 DOI: 10.1016/j.chroma.2023.464180] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2023] [Revised: 05/28/2023] [Accepted: 06/25/2023] [Indexed: 07/04/2023]
Abstract
3D printing is an extensively used manufacturing technique that can pose specific health concerns due to the emission of volatile organic compounds (VOC). Herein, a detailed characterization of 3D printing-related VOC using solid-phase microextraction-gas chromatography/mass spectrometry (SPME-GC/MS) is described for the first time. The VOC were extracted in dynamic mode during the printing from the acrylonitrile-styrene-acrylate filament in an environmental chamber. The effect of extraction time on the extraction efficiency of 16 main VOC was studied for four different commercial SPME arrows. The volatile and semivolatile compounds were the most effectively extracted by carbon wide range-containing and polydimethyl siloxane arrows, respectively. The differences in extraction efficiency between arrows were further correlated to the molecular volume, octanol-water partition coefficient, and vapour pressure of observed VOC. The repeatability of SPME arrows towards the main VOC was assessed from static mode measurements of filament in headspace vials. In addition, we performed a group analysis of 57 VOC classified into 15 categories according to their chemical structure. Divinylbenzene-polydimethyl siloxane arrow turned out to be a good compromise between the total extracted amount and its distribution among tested VOC. Thus, this arrow was used to demonstrate the usefulness of SPME for the qualification of VOC emitted during printing in a real-life environment. A presented methodology can serve as a fast and reliable method for the qualification and semi-quantification of 3D printing-related VOC.
Collapse
Affiliation(s)
- Jaroslav Minář
- Department of Electrotechnology, Faculty of Electrical Engineering, Czech Technical University in Prague, Prague 160 00, Czech Republic.
| | - Dominik Pilnaj
- Department of Electrotechnology, Faculty of Electrical Engineering, Czech Technical University in Prague, Prague 160 00, Czech Republic; Department of Environmental Chemistry and Technology, Faculty of Environment, Jan Evangelista Purkyně University, Ústí nad Labem 400 96, Czech Republic
| | - Jonáš Uřičář
- Department of Electrotechnology, Faculty of Electrical Engineering, Czech Technical University in Prague, Prague 160 00, Czech Republic
| | - Petr Veselý
- Department of Electrotechnology, Faculty of Electrical Engineering, Czech Technical University in Prague, Prague 160 00, Czech Republic
| | - Karel Dušek
- Department of Electrotechnology, Faculty of Electrical Engineering, Czech Technical University in Prague, Prague 160 00, Czech Republic
| |
Collapse
|
15
|
Krajnak K, Farcas M, McKinney W, Waugh S, Mandler K, Knepp A, Jackson M, Richardson D, Hammer M, Matheson J, Thomas T, Qian Y. Inhalation of polycarbonate emissions generated during 3D printing processes affects neuroendocrine function in male rats. JOURNAL OF TOXICOLOGY AND ENVIRONMENTAL HEALTH. PART A 2023; 86:575-596. [PMID: 37350301 PMCID: PMC10527863 DOI: 10.1080/15287394.2023.2226198] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/24/2023]
Abstract
Three-dimensional (3D) printing of manufactured goods has increased in the last 10 years. The increased use of this technology has resulted in questions regarding the influence of inhaling emissions generated during printing. The goal of this study was to determine if inhalation of particulate and/or toxic chemicals generated during printing with polycarbonate (PC) plastic affected the neuroendocrine system. Male rats were exposed to 3D-printer emissions (592 µg particulate/m3 air) or filtered air for 4 h/day (d), 4 days/week and total exposures lengths were 1, 4, 8, 15 or 30 days. The effects of these exposures on hormone concentrations, and markers of function and/or injury in the olfactory bulb, hypothalamus and testes were measured after 1, 8 and 30 days exposure. Thirty days of exposure to 3D printer emissions resulted in reductions in thyroid stimulating hormone, follicle stimulating hormone and prolactin. These changes were accompanied by (1) elevation in markers of cell injury; (2) reductions in active mitochondria in the olfactory bulb, diminished gonadotropin releasing hormone cells and fibers as well as less tyrosine hydroxylase immunolabeled fibers in the arcuate nucleus; and (3) decrease in spermatogonium. Polycarbonate plastics may contain bisphenol A, and the effects of exposure to these 3D printer-generated emissions on neuroendocrine function are similar to those noted following exposure to bisphenol A.
Collapse
Affiliation(s)
- Kristine Krajnak
- Physical Effects Research Branch, Health Effects Laboratory Division, National Institute for Occupational Safety and Health, Morgantown, WV, USA
| | - Mariana Farcas
- Physiology and Pathology Research BranchHealth Effects Laboratory Division, National Institute for Occupational Safety and Health, Morgantown, WV, USA
| | - Walter McKinney
- Physical Effects Research Branch, Health Effects Laboratory Division, National Institute for Occupational Safety and Health, Morgantown, WV, USA
| | - Stacey Waugh
- Physical Effects Research Branch, Health Effects Laboratory Division, National Institute for Occupational Safety and Health, Morgantown, WV, USA
| | - Kyle Mandler
- Physiology and Pathology Research BranchHealth Effects Laboratory Division, National Institute for Occupational Safety and Health, Morgantown, WV, USA
| | - Alycia Knepp
- Physiology and Pathology Research BranchHealth Effects Laboratory Division, National Institute for Occupational Safety and Health, Morgantown, WV, USA
| | - Mark Jackson
- Physical Effects Research Branch, Health Effects Laboratory Division, National Institute for Occupational Safety and Health, Morgantown, WV, USA
| | - Diana Richardson
- Histopathology Core, Health Effects Laboratory Division, National Institute for Occupational Safety and Health, Morgantown, WV, USA
| | - MaryAnne Hammer
- Histopathology Core, Health Effects Laboratory Division, National Institute for Occupational Safety and Health, Morgantown, WV, USA
| | - Joanna Matheson
- Office of Hazard Identification and Reduction, U.S. Consumer Product Safety Commission, Bethesda, MD, USA
| | - Treye Thomas
- Office of Hazard Identification and Reduction, U.S. Consumer Product Safety Commission, Bethesda, MD, USA
| | - Yong Qian
- Physiology and Pathology Research BranchHealth Effects Laboratory Division, National Institute for Occupational Safety and Health, Morgantown, WV, USA
| |
Collapse
|
16
|
Dissanayaka N, Maclachlan LR, Alexander H, Redmond M, Carluccio D, Jules-Vandi L, Novak JI. Evaluation of 3D Printed Burr Hole Simulation Models Using 8 Different Materials. World Neurosurg 2023; 176:e651-e663. [PMID: 37295464 DOI: 10.1016/j.wneu.2023.05.115] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2023] [Accepted: 05/30/2023] [Indexed: 06/12/2023]
Abstract
OBJECTIVE 3D printing is increasingly used to fabricate three-dimensional neurosurgical simulation models, making training more accessible and economical. 3D printing includes various technologies with different capabilities for reproducing human anatomy. This study evaluated different materials across a broad range of 3D printing technologies to identify the combination that most precisely represents the parietal region of the skull for burr hole simulation. METHODS Eight different materials (polyethylene terephthalate glycol, Tough PLA, FibreTuff, White Resin, BoneSTN, SkullSTN, polymide [PA12], glass-filled polyamide [PA12-GF]) across 4 different 3D printing processes (fused filament fabrication, stereolithography, material jetting, selective laser sintering) were produced as skull samples that fit into a larger head model derived from computed tomography imaging. Five neurosurgeons conducted burr holes on each sample while blinded to the details of manufacturing method and cost. Qualities of mechanical drilling, visual appearance, skull exterior, and skull interior (i.e., diploë) and overall opinion were documented, and a final ranking activity was performed along with a semistructured interview. RESULTS The study found that 3D printed polyethylene terephthalate glycol (using fused filament fabrication) and White Resin (using stereolithography) were the best models to replicate the skull, surpassing advanced multimaterial samples from a Stratasys J750 Digital Anatomy Printer. The interior (e.g., infill) and exterior structures strongly influenced the overall ranking of samples. All neurosurgeons agreed that practical simulation with 3D printed models can play a vital role in neurosurgical training. CONCLUSIONS The study findings reveal that widely accessible desktop 3D printers and materials can play a valuable role in neurosurgical training.
Collapse
Affiliation(s)
- Nalinda Dissanayaka
- School of Chemical Engineering, Faculty of Engineering, Architecture and Information Technology, The University of Queensland, Brisbane, Australia; Centre for Advanced Materials Processing and Manufacturing (AMPAM), The University of Queensland, Brisbane, Australia; Herston Biofabrication Institute, Metro North Hospital and Health Service, Brisbane, Australia
| | - Liam R Maclachlan
- School of Health and Rehabilitation Sciences, The University of Queensland, Brisbane, Australia; Kenneth G Jamieson Department of Neurosurgery, Royal Brisbane and Women's Hospital, Brisbane, Australia
| | - Hamish Alexander
- Faculty of Medicine, The University of Queensland, Brisbane, Australia; Herston Biofabrication Institute, Metro North Hospital and Health Service, Brisbane, Australia; Kenneth G Jamieson Department of Neurosurgery, Royal Brisbane and Women's Hospital, Brisbane, Australia
| | - Michael Redmond
- Faculty of Medicine, The University of Queensland, Brisbane, Australia; Herston Biofabrication Institute, Metro North Hospital and Health Service, Brisbane, Australia; Kenneth G Jamieson Department of Neurosurgery, Royal Brisbane and Women's Hospital, Brisbane, Australia
| | - Danilo Carluccio
- School of Dentistry, Faculty of Health and Behavioural Sciences, The University of Queensland, Brisbane, Australia; Herston Biofabrication Institute, Metro North Hospital and Health Service, Brisbane, Australia
| | - Luigi Jules-Vandi
- School of Mechanical and Mining Engineering, Faculty of Engineering, Architecture and Information Technology, The University of Queensland, Brisbane, Australia; Centre for Advanced Materials Processing and Manufacturing (AMPAM), The University of Queensland, Brisbane, Australia
| | - James I Novak
- School of Architecture, Faculty of Engineering, Architecture and Information Technology, The University of Queensland, Brisbane, Australia; Herston Biofabrication Institute, Metro North Hospital and Health Service, Brisbane, Australia.
| |
Collapse
|
17
|
Zhang Q, Weber RJ, Luxton TP, Peloquin DM, Baumann EJ, Black MS. Metal compositions of particle emissions from material extrusion 3D printing: Emission sources and indoor exposure modeling. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 860:160512. [PMID: 36442638 PMCID: PMC10259682 DOI: 10.1016/j.scitotenv.2022.160512] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/30/2022] [Revised: 10/26/2022] [Accepted: 11/22/2022] [Indexed: 06/14/2023]
Abstract
Material extrusion 3D printing has been widely used in industrial, educational and residential environments, while its exposure health impacts have not been well understood. High levels of ultrafine particles are found being emitted from 3D printing and could pose a hazard when inhaled. However, metals that potentially transfer from filament additives to emitted particles could also add to the exposure hazard, which have not been well characterized for their emissions. This study analyzed metal (and metalloid) compositions of raw filaments and in the emitted particles during printing; studied filaments included pure polymer filaments with metal additives and composite filaments with and without metal powder. Our chamber study found that crustal metals tended to have higher partitioning factors from filaments to emitted particles; silicon was the most abundant element in emitted particles and had the highest yield per filament mass. However, bronze and stainless-steel powder added in composite filaments were less likely to transfer from filament to particle. For some cases, boron, arsenic, manganese, and lead were only detected in particles, which indicated external sources, such as the printers themselves. Heavy metals with health concerns were also detected in emitted particles, while their estimated exposure concentrations in indoor air were below air quality standards and occupational regulations. However, total particle exposure concentrations estimated for indoor environments could exceed ambient air fine particulate standards.
Collapse
Affiliation(s)
- Qian Zhang
- Chemical Insights Research Institute, Underwriters Laboratories Inc., Marietta, GA 30067, USA.
| | - Rodney J Weber
- School of Earth and Atmospheric Sciences, Georgia Institute of Technology, Atlanta, GA 30332, USA
| | - Todd P Luxton
- U.S. Environmental Protection Agency, Office of Research and Development, National Risk Management Research Laboratory, Cincinnati, OH 45224, USA
| | - Derek M Peloquin
- U.S. Environmental Protection Agency, Office of Research and Development, National Risk Management Research Laboratory, Cincinnati, OH 45224, USA; Oak Ridge Institute for Science and Education, Oak Ridge, TN 37830, USA
| | - Eric J Baumann
- U.S. Environmental Protection Agency, Office of Research and Development, National Risk Management Research Laboratory, Cincinnati, OH 45224, USA
| | - Marilyn S Black
- Chemical Insights Research Institute, Underwriters Laboratories Inc., Marietta, GA 30067, USA
| |
Collapse
|
18
|
Sirinara P, Patarapongsant Y, Nilyai S, Sooklert K, Dissayabutra T, Rojanathanes R, Sereemaspun A. "Assessing exposure of printing factory workers in thailand to selected heavy metals using urine and hair as non-invasive matrices". BMC Public Health 2023; 23:31. [PMID: 36604667 PMCID: PMC9817298 DOI: 10.1186/s12889-022-14807-0] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2022] [Accepted: 12/05/2022] [Indexed: 01/07/2023] Open
Abstract
BACKGROUND There are few thorough studies on the extent and inter-element relationships of heavy metal contamination in printing factory workers, especially in developing countries. The objective of this study was to determine the levels of eight heavy metals, including arsenic (As), cadmium (Cd), chromium (Cr), nickel (Ni), cobalt (Co), lead (Pb), mercury (Hg), and manganese (Mn), in urine and scalp hair of printing industry workers, and assess inter-element correlations. METHODS We examined a total of 85 urine samples and 85 scalp hair samples (3 cm hair segments taken from near the scalp) in 85 printing workers from a printing house in Bangkok, Thailand. We used an interviewer-administered questionnaire about participants' printing techniques, work characteristics, and work environment. Urine and scalp hair samples were analyzed for levels of each element using the inductively coupled plasma optical emission spectrometry (ICP-OES) technique. RESULTS As, Cd, Cr, Ni, Pb were detected in urine with the geometric mean concentration range of 0.0028-0.0209 mg/L, and Hg, Pb, Ni, Cd, Co, Mn, Cr were detected in hair samples (0.4453-7.165 mg/kg dry weight) of printing workers. The geometric mean Ni level was significantly higher in the urine of production line workers than back-office personnel (0.0218 mg/L vs. 0.0132 mg/L; p = 0.0124). The other elements did not differ significantly between production line and back-office workers in either urine or hair. There was also a strong, statistically significant positive correlation between Ni and Co levels in hair samples of workers (r = 0.944, p < 0.0001). CONCLUSIONS Average concentrations of most of the metals in urine and hair of printing workers were found to be above the upper reference values. The significantly higher concentrations of Ni in production line workers might be due to more exposure to printed materials. A strong inter-element correlation between Ni and Co in hair samples can increase stronger health effects and should be further investigated. This study reveals possible dependencies and impact interactions of heavy metal exposure in printing factory workers.
Collapse
Affiliation(s)
- Patthrarawalai Sirinara
- grid.411628.80000 0000 9758 8584Department of Preventive and Social Medicine, King Chulalongkorn Memorial Hospital, Bangkok, Thailand ,grid.7922.e0000 0001 0244 7875Department of Preventive and Social Medicine, Faculty of Medicine, Chulalongkorn University, Bangkok, Thailand
| | - Yupin Patarapongsant
- grid.7922.e0000 0001 0244 7875Behavioral Research and Informatics in Social Sciences Research Unit (RU-BRI), SASIN School of Management, Chulalongkorn University, Bangkok, Thailand
| | - Siwaporn Nilyai
- grid.7922.e0000 0001 0244 7875Center of Excellence in Nanomedicine, Department of Anatomy, Faculty of Medicine, Chulalongkorn University, Bangkok, Thailand
| | - Kanidta Sooklert
- grid.7922.e0000 0001 0244 7875Center of Excellence in Nanomedicine, Department of Anatomy, Faculty of Medicine, Chulalongkorn University, Bangkok, Thailand
| | - Thasinas Dissayabutra
- grid.7922.e0000 0001 0244 7875Department of Biochemistry Metabolic Disease in Gastrointestinal and Urinary System Research Unit, Faculty of Medicine, Chulalongkorn University, Bangkok, Thailand
| | - Rojrit Rojanathanes
- grid.7922.e0000 0001 0244 7875Center of Excellence in Nanomedicine, Department of Anatomy, Faculty of Medicine, Chulalongkorn University, Bangkok, Thailand ,grid.7922.e0000 0001 0244 7875Department of Chemistry, Faculty of Science, Chulalongkorn University, Bangkok, Thailand
| | - Amornpun Sereemaspun
- grid.7922.e0000 0001 0244 7875Center of Excellence in Nanomedicine, Department of Anatomy, Faculty of Medicine, Chulalongkorn University, Bangkok, Thailand
| |
Collapse
|
19
|
Almstrand AC, Bredberg A, Runström Eden G, Karlsson H, Assenhöj M, Koca H, Olin AC, Tinnerberg H. An explorative study on respiratory health among operators working in polymer additive manufacturing. Front Public Health 2023; 11:1148974. [PMID: 37151597 PMCID: PMC10155750 DOI: 10.3389/fpubh.2023.1148974] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2023] [Accepted: 03/13/2023] [Indexed: 05/09/2023] Open
Abstract
Additive manufacturing (AM), or 3D printing, is a growing industry involving a wide range of different techniques and materials. The potential toxicological effects of emissions produced in the process, involving both ultrafine particles and volatile organic compounds (VOCs), are unclear, and there are concerns regarding possible health implications among AM operators. The objective of this study was to screen the presence of respiratory health effects among people working with liquid, powdered, or filament plastic materials in AM. Methods In total, 18 subjects working with different additive manufacturing techniques and production of filament with polymer feedstock and 20 controls participated in the study. Study subjects filled out a questionnaire and underwent blood and urine sampling, spirometry, impulse oscillometry (IOS), exhaled NO test (FeNO), and collection of particles in exhaled air (PEx), and the exposure was assessed. Analysis of exhaled particles included lung surfactant components such as surfactant protein A (SP-A) and phosphatidylcholines. SP-A and albumin were determined using ELISA. Using reversed-phase liquid chromatography and targeted mass spectrometry, the relative abundance of 15 species of phosphatidylcholine (PC) was determined in exhaled particles. The results were evaluated by univariate and multivariate statistical analyses (principal component analysis). Results Exposure and emission measurements in AM settings revealed a large variation in particle and VOC concentrations as well as the composition of VOCs, depending on the AM technique and feedstock. Levels of FeNO, IOS, and spirometry parameters were within clinical reference values for all AM operators. There was a difference in the relative abundance of saturated, notably dipalmitoylphosphatidylcholine (PC16:0_16:0), and unsaturated lung surfactant lipids in exhaled particles between controls and AM operators. Conclusion There were no statistically significant differences between AM operators and controls for the different health examinations, which may be due to the low number of participants. However, the observed difference in the PC lipid profile in exhaled particles indicates a possible impact of the exposure and could be used as possible early biomarkers of adverse effects in the airways.
Collapse
Affiliation(s)
- Ann-Charlotte Almstrand
- Occupational and Environmental Medicine, School of Public Health and Community Medicine, Institute of Medicine, University of Gothenburg, Gothenburg, Sweden
- Occupational and Environmental Medicine, Sahlgrenska University Hospital, Gothenburg, Sweden
- *Correspondence: Ann-Charlotte Almstrand,
| | - Anna Bredberg
- RISE, Research Institutes of Sweden, Gothenburg, Sweden
| | - Gunilla Runström Eden
- Occupational and Environmental Medicine, School of Public Health and Community Medicine, Institute of Medicine, University of Gothenburg, Gothenburg, Sweden
- Occupational and Environmental Medicine, Sahlgrenska University Hospital, Gothenburg, Sweden
| | - Helen Karlsson
- Occupational and Environmental Medicine Center in Linköping, and Department of Health, Medicine and Caring Sciences, Linköping University, Linköping, Sweden
| | - Maria Assenhöj
- Occupational and Environmental Medicine Center in Linköping, and Department of Health, Medicine and Caring Sciences, Linköping University, Linköping, Sweden
| | - Hatice Koca
- Occupational and Environmental Medicine, School of Public Health and Community Medicine, Institute of Medicine, University of Gothenburg, Gothenburg, Sweden
- Occupational and Environmental Medicine, Sahlgrenska University Hospital, Gothenburg, Sweden
| | - Anna-Carin Olin
- Occupational and Environmental Medicine, School of Public Health and Community Medicine, Institute of Medicine, University of Gothenburg, Gothenburg, Sweden
- Occupational and Environmental Medicine, Sahlgrenska University Hospital, Gothenburg, Sweden
| | - Håkan Tinnerberg
- Occupational and Environmental Medicine, School of Public Health and Community Medicine, Institute of Medicine, University of Gothenburg, Gothenburg, Sweden
- Occupational and Environmental Medicine, Sahlgrenska University Hospital, Gothenburg, Sweden
| |
Collapse
|
20
|
Petousis M, Vidakis N, Mountakis N, Grammatikos S, Papadakis V, David CN, Moutsopoulou A, Das SC. Silicon Carbide Nanoparticles as a Mechanical Boosting Agent in Material Extrusion 3D-Printed Polycarbonate. Polymers (Basel) 2022; 14:3492. [PMID: 36080567 PMCID: PMC9459990 DOI: 10.3390/polym14173492] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2022] [Revised: 08/23/2022] [Accepted: 08/24/2022] [Indexed: 11/23/2022] Open
Abstract
In this work, the effect of silicon carbide (carborundum, SiC), as a boosting agent of the mechanical response of the polycarbonate (PC) polymer, was investigated. The work aimed to fabricate nanocomposites with an improved mechanical performance and to further expand the utilization of 3D printing in fields requiring an enhanced material response. The nanocomposites were produced by a thermomechanical process in various SiC concentrations in order to evaluate the filler loading in the mechanical enhancement. The samples were 3D printed with the material extrusion (MEX) method. Their mechanical performance was characterized, following international standards, by using dynamic mechanical analysis (DMA) and tensile, flexural, and Charpy's impact tests. The microhardness of the samples was also measured. The morphological characteristics were examined, and Raman spectra revealed their structure. It was found that SiC can improve the mechanical performance of the PC thermoplastic. A 19.5% increase in the tensile strength was found for the 2 wt.% loading nanocomposite, while the 3 wt.% nanocomposite showed a 16% increase in the flexural strength and a 35.9% higher impact strength when compared to the unfilled PC. No processability issues were faced for the filler loadings that have been studied here.
Collapse
Affiliation(s)
- Markos Petousis
- Department of Mechanical Engineering, Hellenic Mediterranean University, 71410 Heraklion, Greece
| | - Nectarios Vidakis
- Department of Mechanical Engineering, Hellenic Mediterranean University, 71410 Heraklion, Greece
| | - Nikolaos Mountakis
- Department of Mechanical Engineering, Hellenic Mediterranean University, 71410 Heraklion, Greece
| | - Sotirios Grammatikos
- Laboratory for Advanced and Sustainable Engineering Materials (ASEMlab), Department of Manufacturing and Civil Engineering, Norwegian University of Science and Technology, 2815 Gjovik, Norway
| | - Vassilis Papadakis
- Institute of Molecular Biology and Biotechnology, Foundation for Research and Technology—Hellas, 71110 Heraklion, Greece
| | - Constantine N. David
- Manufacturing Technology & Production Systems Laboratory, School of Engineering, International Hellenic University, Serres Campus, 62124 Serres, Greece
| | - Amalia Moutsopoulou
- Department of Mechanical Engineering, Hellenic Mediterranean University, 71410 Heraklion, Greece
| | - Subrata C. Das
- Laboratory for Advanced and Sustainable Engineering Materials (ASEMlab), Department of Manufacturing and Civil Engineering, Norwegian University of Science and Technology, 2815 Gjovik, Norway
| |
Collapse
|
21
|
du Plessis J, du Preez S, Stefaniak AB. Identification of effective control technologies for additive manufacturing. JOURNAL OF TOXICOLOGY AND ENVIRONMENTAL HEALTH. PART B, CRITICAL REVIEWS 2022; 25:211-249. [PMID: 35758103 PMCID: PMC9420827 DOI: 10.1080/10937404.2022.2092569] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Additive manufacturing (AM) refers to several types of processes that join materials to build objects, often layer-by-layer, from a computer-aided design file. Many AM processes release potentially hazardous particles and gases during printing and associated tasks. There is limited understanding of the efficacy of controls including elimination, substitution, administrative, and personal protective technologies to reduce or remove emissions, which is an impediment to implementation of risk mitigation strategies. The Medline, Embase, Environmental Science Collection, CINAHL, Scopus, and Web of Science databases and other resources were used to identify 42 articles that met the inclusion criteria for this review. Key findings were as follows: 1) engineering controls for material extrusion-type fused filament fabrication (FFF) 3-D printers and material jetting printers that included local exhaust ventilation generally exhibited higher efficacy to decrease particle and gas levels compared with isolation alone, and 2) engineering controls for particle emissions from FFF 3-D printers displayed higher efficacy for ultrafine particles compared with fine particles and in test chambers compared with real-world settings. Critical knowledge gaps identified included a need for data: 1) on efficacy of controls for all AM process types, 2) better understanding approaches to control particles over a range of sizes and gas-phase emissions, 3) obtained using a standardized collection approach to facilitate inter-comparison of study results, 4) approaches that go beyond the inhalation exposure pathway to include controls to minimize dermal exposures, and 5) to evaluate not just the engineering tier, but also the prevention-through-design and other tiers of the hierarchy of controls.
Collapse
Affiliation(s)
- Johan du Plessis
- Occupational Hygiene and Health Research Initiative, North-West University, Potchefstroom, South Africa
| | - Sonette du Preez
- Occupational Hygiene and Health Research Initiative, North-West University, Potchefstroom, South Africa
| | - Aleksandr B. Stefaniak
- Respiratory Health Division, National Institute for Occupational Safety and Health, Morgantown, WV, USA
| |
Collapse
|
22
|
Farcas MT, McKinney W, Coyle J, Orandle M, Mandler WK, Stefaniak AB, Bowers L, Battelli L, Richardson D, Hammer MA, Friend SA, Service S, Kashon M, Qi C, Hammond DR, Thomas TA, Matheson J, Qian Y. Evaluation of Pulmonary Effects of 3-D Printer Emissions From Acrylonitrile Butadiene Styrene Using an Air-Liquid Interface Model of Primary Normal Human-Derived Bronchial Epithelial Cells. Int J Toxicol 2022; 41:312-328. [PMID: 35586871 DOI: 10.1177/10915818221093605] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
This study investigated the inhalation toxicity of the emissions from 3-D printing with acrylonitrile butadiene styrene (ABS) filament using an air-liquid interface (ALI) in vitro model. Primary normal human-derived bronchial epithelial cells (NHBEs) were exposed to ABS filament emissions in an ALI for 4 hours. The mean and mode diameters of ABS emitted particles in the medium were 175 ± 24 and 153 ± 15 nm, respectively. The average particle deposition per surface area of the epithelium was 2.29 × 107 ± 1.47 × 107 particle/cm2, equivalent to an estimated average particle mass of 0.144 ± 0.042 μg/cm2. Results showed exposure of NHBEs to ABS emissions did not significantly affect epithelium integrity, ciliation, mucus production, nor induce cytotoxicity. At 24 hours after the exposure, significant increases in the pro-inflammatory markers IL-12p70, IL-13, IL-15, IFN-γ, TNF-α, IL-17A, VEGF, MCP-1, and MIP-1α were noted in the basolateral cell culture medium of ABS-exposed cells compared to non-exposed chamber control cells. Results obtained from this study correspond with those from our previous in vivo studies, indicating that the increase in inflammatory mediators occur without associated membrane damage. The combination of the exposure chamber and the ALI-based model is promising for assessing 3-D printer emission-induced toxicity.
Collapse
Affiliation(s)
- Mariana T Farcas
- Health Effects Laboratory Division, 114426National Institute for Occupational Safety and Health, Morgantown, WV, USA.,Department of Pharmaceutical and Pharmacological Sciences, School of Pharmacy, West Virginia University, Morgantown, WV, USA
| | - Walter McKinney
- Health Effects Laboratory Division, 114426National Institute for Occupational Safety and Health, Morgantown, WV, USA
| | - Jayme Coyle
- Health Effects Laboratory Division, 114426National Institute for Occupational Safety and Health, Morgantown, WV, USA
| | - Marlene Orandle
- Health Effects Laboratory Division, 114426National Institute for Occupational Safety and Health, Morgantown, WV, USA
| | - W Kyle Mandler
- Health Effects Laboratory Division, 114426National Institute for Occupational Safety and Health, Morgantown, WV, USA
| | - Aleksandr B Stefaniak
- Health Effects Laboratory Division, 114426National Institute for Occupational Safety and Health, Morgantown, WV, USA.,Department of Pharmaceutical and Pharmacological Sciences, School of Pharmacy, West Virginia University, Morgantown, WV, USA
| | - Lauren Bowers
- Health Effects Laboratory Division, 114426National Institute for Occupational Safety and Health, Morgantown, WV, USA.,Department of Pharmaceutical and Pharmacological Sciences, School of Pharmacy, West Virginia University, Morgantown, WV, USA
| | - Lori Battelli
- Health Effects Laboratory Division, 114426National Institute for Occupational Safety and Health, Morgantown, WV, USA
| | - Diana Richardson
- Health Effects Laboratory Division, 114426National Institute for Occupational Safety and Health, Morgantown, WV, USA
| | - Mary A Hammer
- Health Effects Laboratory Division, 114426National Institute for Occupational Safety and Health, Morgantown, WV, USA
| | - Sherri A Friend
- Health Effects Laboratory Division, 114426National Institute for Occupational Safety and Health, Morgantown, WV, USA
| | - Samantha Service
- Health Effects Laboratory Division, 114426National Institute for Occupational Safety and Health, Morgantown, WV, USA
| | - Michael Kashon
- Health Effects Laboratory Division, 114426National Institute for Occupational Safety and Health, Morgantown, WV, USA
| | - Chaolong Qi
- Health Effects Laboratory Division, 114426National Institute for Occupational Safety and Health, Morgantown, WV, USA
| | - Duane R Hammond
- Health Effects Laboratory Division, 114426National Institute for Occupational Safety and Health, Morgantown, WV, USA
| | - Treye A Thomas
- Respiratory Health Division, 114426National Institute for Occupational Safety and Health, Morgantown, WV, USA
| | - Joanna Matheson
- Respiratory Health Division, 114426National Institute for Occupational Safety and Health, Morgantown, WV, USA
| | - Yong Qian
- Health Effects Laboratory Division, 114426National Institute for Occupational Safety and Health, Morgantown, WV, USA
| |
Collapse
|
23
|
Yeom S, Kim H, Hong T, Jeong K. Analysis of ways to reduce potential health risk from ultrafine and fine particles emitted from 3D printers in the makerspace. INDOOR AIR 2022; 32:e13053. [PMID: 35622719 DOI: 10.1111/ina.13053] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/30/2022] [Revised: 04/20/2022] [Accepted: 05/06/2022] [Indexed: 06/15/2023]
Abstract
Due to the growing maker culture, maker spaces using multiple fused deposition modeling (FDM)-3D printers have spread around the world. However, the 3D printing process is known to cause the release of ultrafine and fine particles, which may have adverse health effects on occupants. Therefore, this experiment-based study was conducted on FDM-3D printers placed in an actual makerspace by the following three scenarios: the number of operating FDM-3D printers, ventilation, and measurement location to compare the concentrations of ultrafine and fine particles. In addition, the deposited dose in alveolar region for ultrafine and fine particles was predicted using a respiratory deposition model to analyze the potential health risk on occupants. As a result, the scenario-based comparison revealed that if the number of operating 3D printers is reduced by less than half, the potential health risk can be decreased by 34.1%, proper ventilation can reduce potential health risk by 55.5%, and working away from the 3D printer can also reduce potential health risk by up to 27.5%. This study analyzed the potential health risk of multiple FDM-3D printers on users in an actual makerspace, and proposed various improvement measures to reduce the potential health risk of ultrafine and fine particles.
Collapse
Affiliation(s)
- Seungkeun Yeom
- Department of Architecture and Architectural Engineering, Yonsei University, Seoul, Republic of Korea
| | - Hakpyeong Kim
- Department of Architecture and Architectural Engineering, Yonsei University, Seoul, Republic of Korea
| | - Taehoon Hong
- Department of Architecture and Architectural Engineering, Yonsei University, Seoul, Republic of Korea
| | - Kwangbok Jeong
- Deep Learning Architecture Research Center, Department of Architectural Engineering, Sejong University, Seoul, Republic of Korea
| |
Collapse
|
24
|
Alijagic A, Engwall M, Särndahl E, Karlsson H, Hedbrant A, Andersson L, Karlsson P, Dalemo M, Scherbak N, Färnlund K, Larsson M, Persson A. Particle Safety Assessment in Additive Manufacturing: From Exposure Risks to Advanced Toxicology Testing. FRONTIERS IN TOXICOLOGY 2022; 4:836447. [PMID: 35548681 PMCID: PMC9081788 DOI: 10.3389/ftox.2022.836447] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2021] [Accepted: 04/06/2022] [Indexed: 11/13/2022] Open
Abstract
Additive manufacturing (AM) or industrial three-dimensional (3D) printing drives a new spectrum of design and production possibilities; pushing the boundaries both in the application by production of sophisticated products as well as the development of next-generation materials. AM technologies apply a diversity of feedstocks, including plastic, metallic, and ceramic particle powders with distinct size, shape, and surface chemistry. In addition, powders are often reused, which may change the particles' physicochemical properties and by that alter their toxic potential. The AM production technology commonly relies on a laser or electron beam to selectively melt or sinter particle powders. Large energy input on feedstock powders generates several byproducts, including varying amounts of virgin microparticles, nanoparticles, spatter, and volatile chemicals that are emitted in the working environment; throughout the production and processing phases. The micro and nanoscale size may enable particles to interact with and to cross biological barriers, which could, in turn, give rise to unexpected adverse outcomes, including inflammation, oxidative stress, activation of signaling pathways, genotoxicity, and carcinogenicity. Another important aspect of AM-associated risks is emission/leakage of mono- and oligomers due to polymer breakdown and high temperature transformation of chemicals from polymeric particles, both during production, use, and in vivo, including in target cells. These chemicals are potential inducers of direct toxicity, genotoxicity, and endocrine disruption. Nevertheless, understanding whether AM particle powders and their byproducts may exert adverse effects in humans is largely lacking and urges comprehensive safety assessment across the entire AM lifecycle-spanning from virgin and reused to airborne particles. Therefore, this review will detail: 1) brief overview of the AM feedstock powders, impact of reuse on particle physicochemical properties, main exposure pathways and protective measures in AM industry, 2) role of particle biological identity and key toxicological endpoints in the particle safety assessment, and 3) next-generation toxicology approaches in nanosafety for safety assessment in AM. Altogether, the proposed testing approach will enable a deeper understanding of existing and emerging particle and chemical safety challenges and provide a strategy for the development of cutting-edge methodologies for hazard identification and risk assessment in the AM industry.
Collapse
Affiliation(s)
- Andi Alijagic
- Man-Technology-Environment Research Center (MTM), Örebro University, Örebro, Sweden
- Inflammatory Response and Infection Susceptibility Centre (iRiSC), Faculty of Medicine and Health, Örebro University, Örebro, Sweden
- School of Medical Sciences, Faculty of Medicine and Health, Örebro University, Örebro, Sweden
| | - Magnus Engwall
- Man-Technology-Environment Research Center (MTM), Örebro University, Örebro, Sweden
| | - Eva Särndahl
- Inflammatory Response and Infection Susceptibility Centre (iRiSC), Faculty of Medicine and Health, Örebro University, Örebro, Sweden
- School of Medical Sciences, Faculty of Medicine and Health, Örebro University, Örebro, Sweden
| | - Helen Karlsson
- Department of Health, Medicine and Caring Sciences, Occupational and Environmental Medicine Center in Linköping, Linköping University, Linköping, Sweden
| | - Alexander Hedbrant
- Inflammatory Response and Infection Susceptibility Centre (iRiSC), Faculty of Medicine and Health, Örebro University, Örebro, Sweden
- School of Medical Sciences, Faculty of Medicine and Health, Örebro University, Örebro, Sweden
| | - Lena Andersson
- Inflammatory Response and Infection Susceptibility Centre (iRiSC), Faculty of Medicine and Health, Örebro University, Örebro, Sweden
- School of Medical Sciences, Faculty of Medicine and Health, Örebro University, Örebro, Sweden
- Department of Occupational and Environmental Medicine, Örebro University, Örebro, Sweden
| | - Patrik Karlsson
- Department of Mechanical Engineering, Örebro University, Örebro, Sweden
| | | | - Nikolai Scherbak
- Man-Technology-Environment Research Center (MTM), Örebro University, Örebro, Sweden
| | | | - Maria Larsson
- Man-Technology-Environment Research Center (MTM), Örebro University, Örebro, Sweden
| | - Alexander Persson
- Inflammatory Response and Infection Susceptibility Centre (iRiSC), Faculty of Medicine and Health, Örebro University, Örebro, Sweden
- School of Medical Sciences, Faculty of Medicine and Health, Örebro University, Örebro, Sweden
| |
Collapse
|
25
|
Kawai N, Bando M, Yuasa K, Shibasaki M. Comparison of axon extension: PTFE versus PLA formed by a 3D printer. Open Life Sci 2022; 17:302-311. [PMID: 35434370 PMCID: PMC8974396 DOI: 10.1515/biol-2022-0031] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2021] [Revised: 03/03/2022] [Accepted: 03/05/2022] [Indexed: 11/15/2022] Open
Abstract
Abstract
Three-dimensional (3D) printers mainly create 3D objects by stacking thin layers of material. The effect of the tools created using the fused deposition modeling (FDM) 3D printer on nerve cells remains unclear. In this study, the effects of polytetrafluoroethylene (PTFE) models and two different types of polylactic acid (PLA) models (white or natural), were created using the FDM 3D printer on axon extension were compared using the Campenot chamber. Neurons were isolated from the dorsal root ganglia and added to the central compartment of the Campenot chambers after isolation, processing, and culturing. On day 7, after the initiation of the culture, the difference of the axon extensions to the side compartments of each group was confirmed. We also compared the pH and the amount of leakage when each of these chambers was used. The PLA was associated with a shorter axon extension than the PTFE (white p = 0.0078, natural p = 0.00391). No difference in the pH was observed (p = 0.347), but there was a significant difference on multiple group comparison (p = 0.0231) in the amount of leakage of the medium. PTFE was found to be a more suitable material for culturing attachments.
Collapse
Affiliation(s)
- Naofumi Kawai
- Department of Anesthesiology, Kyoto Prefectural University of Medicine , 465 Kajiicho, Kamigyo-Ku, Kyoto-Shi , Kyoto-Fu 604-8404 , Japan
| | - Mizuki Bando
- Department of Anesthesiology, Akashi City Hospital , 1-33, Takasho-Machi, Akashi-Shi , Hyogo-Ken, 673-8501 , Japan
| | - Kento Yuasa
- Department of Anesthesiology, Kyoto Prefectural University of Medicine , 465 Kajiicho, Kamigyo-Ku, Kyoto-Shi , Kyoto-Fu 604-8404 , Japan
| | - Masayuki Shibasaki
- Department of Anesthesiology, Kyoto Prefectural University of Medicine , 465 Kajiicho, Kamigyo-Ku, Kyoto-Shi , Kyoto-Fu 604-8404 , Japan
| |
Collapse
|
26
|
Tedla G, Jarabek AM, Byrley P, Boyes W, Rogers K. Human exposure to metals in consumer-focused fused filament fabrication (FFF)/ 3D printing processes. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 814:152622. [PMID: 34963600 PMCID: PMC8961686 DOI: 10.1016/j.scitotenv.2021.152622] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/29/2021] [Revised: 12/16/2021] [Accepted: 12/19/2021] [Indexed: 05/31/2023]
Abstract
Fused filament fabrication (FFF) or 3D printing is a growing technology used in industry, cottage industry and for consumer applications. Low-cost 3D printing devices have become increasingly popular among children and teens. Consequently, 3D printers are increasingly common in households, schools, and libraries. Because the operation of 3D printers is associated with the release of inhalable particles and volatile organic compounds (VOCs), there are concerns of possible health implications, particularly for use in schools and residential environments that may not have adequate ventilation such as classrooms bedrooms and garages, etc. Along with the growing consumer market for low-cost printers and printer pens, there is also an expanding market for a range of specialty filaments with additives such as inorganic colorants, metal particles and nanomaterials as well as metal-containing flame retardants, antioxidants, heat stabilizers and catalysts. Inhalation of particulate-associated metals may represent a health risk depending on both the metal and internal dose to the respiratory tract. Little has been reported, however, about the presence, speciation, and source of metals in the emissions; or likewise the effect of metals on emission processes and toxicological implications of these 3D printer generated emissions. This report evaluates various issues including the following: metals in feedstock with a focus on filament characteristics and function of metals; the effect of metals on the emissions and metals detected in emissions; printer emissions, particle formation, transport, and transformation; exposure and translation to internal dose; and potential toxicity on inhaled dose. Finally, data gaps and potential areas of future research are discussed within these contexts.
Collapse
Affiliation(s)
- Getachew Tedla
- Watershed and Ecosystem Characterization Division, Center for Environmental Measurement and Modeling, USEPA, RTP, NC 27711, United States of America
| | - Annie M Jarabek
- Health and Environmental Effects Assessment Division, Center for Public Health and Environmental Assessment, USEPA, RTP, NC 27711, United States of America
| | - Peter Byrley
- Health and Environmental Effects Assessment Division, Center for Public Health and Environmental Assessment, USEPA, RTP, NC 27711, United States of America
| | - William Boyes
- Public Health and Integrated Toxicology Division, Center for Public Health and Environmental Assessment, USEPA, RTP, NC 27711, United States of America
| | - Kim Rogers
- Watershed and Ecosystem Characterization Division, Center for Environmental Measurement and Modeling, USEPA, RTP, NC 27711, United States of America.
| |
Collapse
|
27
|
Kim B, Shin JH, Kim HP, Jo MS, Kim HS, Lee JS, Lee HK, Kwon HC, Han SG, Kang N, Gulumian M, Bello D, Yu IJ. On-Site Deployment of an Air-Liquid-Interphase Device to Assess Health Hazard Potency of Airborne Workplace Contaminants: The Case of 3-D Printers. FRONTIERS IN TOXICOLOGY 2022; 4:818942. [PMID: 35399295 PMCID: PMC8990836 DOI: 10.3389/ftox.2022.818942] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2021] [Accepted: 01/25/2022] [Indexed: 11/13/2022] Open
Abstract
Biomonitoring of workers is an approach of evaluating workers’ exposure to chemicals and particulate matter by measuring biomarkers of parent chemicals, their metabolites, and reaction products in workers’ biospecimens. Prerequisites for biological monitoring in the workplace include permission to enter the workplace, approval of the study plan from the IRB (Institutional Review Board), and obtaining consent from workers. Because of the complex legal process involved in biomonitoring, few studies have been conducted so far on biomonitoring of workers’ exposures to nanoparticles and other hazards from emerging materials and advanced nanotechnologies. We have developed a cell-based biomonitoring device that can evaluate acute cytotoxicity and various other effect biomakers, such as inflammation, at realistic workplace exposure. This device is based on air–liquid interphase (ALI) and can be used to evaluate cell toxicity and early effect biomarkers along adverse outcome pathways. Following exposure of A549 lung epithelial cells in ALI to workplace air for 1–2 h, the cells were processed to assess the induction of inflammatory and cell damage biomarkers. Initially, we estimated the deposition rate of nanoparticles in the transwell by exposing the cell-free ALI device to silver nanoparticle aerosols (AgNP 20–30 nm) for 2 h in the laboratory. Then A549 lung epithelial cells cultured on the transwell in the ALI device were exposed to AgNP nanoaerosols for 2 h and evaluated for cytotoxicity and induction of mRNAs of pro-inflammatory cytokines IL-1b, IL-6, and TNF-α. Then the cells in the ALI device were exposed to 3-D printer emissions at the workplace and evaluated for the same matched endpoints. The mRNA levels for IL-1b, IL-6, and TNF-α increased significantly at the end of 2-h exposure of A549 cells to the positive control AgNP aerosols. These mRNAs, as well as LDH and microprotein concentrations, increased even more after 24-h post-exposure incubation (p < 0.05). Cytotoxicity evaluation of 3-D printer emissions at 810 and 957 μg/m3, which was more than 80 times higher than the airborne total suspended particulate concentrations in the workplace air (9–12.5 μg/m3), suggested no significant acute cytotoxicity at the end of 2-h exposure to 3-D-printing emission, as well as at 24-h post-exposure incubation. Hyperspectral microscopic observation showed that 3-D printers emitted particles to be attached to A549 cells after 2-h exposure, and many particles were internalized by A549 cells after 24 h of post-exposure incubation. The mRNA expression of pro-inflammatory cytokine IL-1b and IL-6 increased significantly after 2-h exposure to 3-D printer emissions and after 24-h incubation (only IL-6). In contrast, the expression of TNF-α mRNA decreased significantly after 2 h of exposure to 3-D printers and decreased even more after 24-h post-exposure incubation. These results support the use of cell-based ALI devices for direct assessment of airborne hazards in the workplace, for probing toxicological properties of airborne contaminants using adverse molecular pathways, and for guiding study design for workplace biomonitoring. ALI devices can bridge conventional exposure assessment with cellular toxicity testing platforms for hazard and risk assessment.
Collapse
Affiliation(s)
- Boowook Kim
- Institute of Health and Environment, Seoul National University, Seoul, Korea
- Institute of Occupation and Environment, KCOMWEL, Incheon, Korea
| | - Jae Hoon Shin
- Institute of Occupation and Environment, KCOMWEL, Incheon, Korea
| | - Hoi Pin Kim
- Aerosol Toxicology Research Center, HCTm, Icheon, Korea
| | - Mi Seong Jo
- Aerosol Toxicology Research Center, HCTm, Icheon, Korea
| | - Hee Sang Kim
- Aerosol Toxicology Research Center, HCTm, Icheon, Korea
| | - Jong Sung Lee
- Institute of Occupation and Environment, KCOMWEL, Incheon, Korea
| | - Hong Ku Lee
- Aerosol Toxicology Research Center, HCTm, Icheon, Korea
| | - Hyuk Cheol Kwon
- Toxicology Laboratory, Sanghuh College of Life Science, Konkuk University, Seoul, Korea
| | - Sung Gu Han
- Toxicology Laboratory, Sanghuh College of Life Science, Konkuk University, Seoul, Korea
| | - Noeul Kang
- Division of Allergy, Department of Medicine, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, South Korea
| | - Mary Gulumian
- Haematology and Molecular Medicine, University of the Witwatersrand, Johannesburg, South Africa
- Water Research Group, Unit for Environmental Sciences and Management, North West University, Potchefstroom, South Africa
| | - Dhimiter Bello
- Department of Biomedical and Nutritional Sciences, University of Massachusetts, Lowell, MA, United States
| | - Il Je Yu
- HCT. Co., Icheon, Korea
- *Correspondence: Il Je Yu,
| |
Collapse
|
28
|
Zhang Q, Davis AY, Black MS. Emissions and Chemical Exposure Potentials from Stereolithography Vat Polymerization 3D Printing and Post-processing Units. ACS CHEMICAL HEALTH & SAFETY 2022. [DOI: 10.1021/acs.chas.2c00002] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Qian Zhang
- Chemical Insights Research Institute, Underwriters Laboratories Inc., Marietta, Georgia 30067, United States
| | - Aika Y. Davis
- Chemical Insights Research Institute, Underwriters Laboratories Inc., Marietta, Georgia 30067, United States
| | - Marilyn S. Black
- Chemical Insights Research Institute, Underwriters Laboratories Inc., Marietta, Georgia 30067, United States
| |
Collapse
|
29
|
Abstract
Three-dimensional (3D) printing has introduced a paradigm shift in the manufacturing world, and it is increasing in popularity. In cases of such rapid and widespread acceptance of novel technologies, material or process safety issues may be underestimated, due to safety research being outpaced by the breakthroughs of innovation. However, a definitive approach in studying the various occupational or environmental risks of new technologies is a vital part of their sustainable application. In fused filament fabrication (FFF) 3D printing, the practicality and simplicity of the method are juxtaposed by ultrafine particle (UFP) and volatile organic compound (VOC) emission hazards. In this work, the decision of selecting the optimal material for the mass production of a microfluidic device substrate via FFF 3D printing is supported by an emission/exposure assessment. Three candidate prototype materials are evaluated in terms of their comparative emission potential. The impact of nozzle temperature settings, as well as the microfluidic device’s structural characteristics regarding the magnitude of emissions, is evaluated. The projected exposure of the employees operating the 3D printer is determined. The concept behind this series of experiments is proposed as a methodology to generate an additional set of decision-support decision-making criteria for FFF 3D printing production cases.
Collapse
|
30
|
Kim B, Shin JH, Kim HP, Jo MS, Kim HS, Lee JS, Lee HK, Kwon HC, Han SG, Kang N, Gulumian M, Bello D, Yu IJ. Assessment and Mitigation of Exposure of 3-D Printer Emissions. FRONTIERS IN TOXICOLOGY 2022; 3:817454. [PMID: 35295129 PMCID: PMC8915804 DOI: 10.3389/ftox.2021.817454] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2021] [Accepted: 12/24/2021] [Indexed: 11/22/2022] Open
Abstract
This study monitored particulates, and volatile organic compounds (VOCs) emitted from 3-D printers using acrylonitrile-butadiene-styrene copolymer (ABS) filaments at a workplace to assess exposure before and after introducing exposure mitigation measures. Air samples were collected in the printing room and adjacent corridor, and real-time measurements of ultrafine and fine particle were also conducted. Extensive physicochemical characterizations of 3-D printer emissions were performed, including real-time (size distribution, number concentration) nanoparticle characterization, size-fractionated mass distribution and concentration, as well as chemical composition for metals by ICP-MS and VOCs by GC-FID, real-time VOC monitors, and proton-transfer-reaction time-of-flight mass spectrometer (PTR-TOF-MS). Air sampling showed low levels of total suspended particulates (TSP, 9–12.5/m3), minimal levels (1.93–4 ppm) of total volatile organic chemicals (TVOC), and formaldehyde (2.5–21.7 ppb). Various harmful gases, such as formaldehyde, acrolein, acetone, hexane, styrene, toluene, and trimethylamine, were detected at concentrations in the 1–100 ppb by PTR-TOF-MS when air sample was collected into the Tedlar bag from the front of the 3-D printer. Ultrafine particles having an average particle size (30 nm count median diameter and 71 nm mass median diameter) increased during the 3-D printing operation. They decreased to the background level after the 3-D printing operation, while fine particles continually increased after the termination of 3-D printing to the next day morning. The exposure to 3-D printer emissions was greatly reduced after isolating 3-D printers in the enclosed space. Particle number concentration measured by real-time particle counters (DMAS and OPC) were greatly reduced after isolating 3-D printers to the isolated place.
Collapse
Affiliation(s)
- Boowook Kim
- Institute of Health and Environment, Seoul National University, Seoul, Korea
- Institute of Occupation and Environment, Korea Workers’ Compensation and Welfare Service, Incheon, Korea
| | - Jae Hoo Shin
- Institute of Occupation and Environment, Korea Workers’ Compensation and Welfare Service, Incheon, Korea
| | - Hoi Pin Kim
- Aerosol Toxicology Research Center, HCTm, Incheon, Korea
| | - Mi Seong Jo
- Aerosol Toxicology Research Center, HCTm, Incheon, Korea
| | - Hee Sang Kim
- Aerosol Toxicology Research Center, HCTm, Incheon, Korea
| | - Jong Sung Lee
- Institute of Occupation and Environment, Korea Workers’ Compensation and Welfare Service, Incheon, Korea
| | - Hong Ku Lee
- Aerosol Toxicology Research Center, HCTm, Incheon, Korea
| | - Hyuk Cheol Kwon
- Toxicology Laboratory, Sanghuh College of Life Science, Konkuk University, Seoul, Korea
| | - Sung Gu Han
- Toxicology Laboratory, Sanghuh College of Life Science, Konkuk University, Seoul, Korea
| | - Noeul Kang
- Department of Respiratory Medicine, Samsung Hospital, Seoul, Korea
| | - Mary Gulumian
- Haematology and Molecular Medicine, University of the Witwatersrand, Johannesburg, South Africa
- Water Research Group, Unit for Environmental Sciences and Management, North West University, Potchefstroom, South Africa
| | - Dhimiter Bello
- Department of Biomedical and Nutritional Sciences, University of Massachusetts, Lowell, MA, United States
| | - Il Je Yu
- Aerosol Toxicology Research Center, HCTm, Incheon, Korea
- HCT, Co., Incheon, Korea
- *Correspondence: Il Je Yu,
| |
Collapse
|
31
|
Vallabani NVS, Alijagic A, Persson A, Odnevall I, Särndahl E, Karlsson HL. Toxicity evaluation of particles formed during 3D-printing: Cytotoxic, genotoxic, and inflammatory response in lung and macrophage models. Toxicology 2022; 467:153100. [PMID: 35032623 DOI: 10.1016/j.tox.2022.153100] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2021] [Revised: 12/28/2021] [Accepted: 01/11/2022] [Indexed: 11/18/2022]
Abstract
Additive manufacturing (AM) or "3D-printing" is a ground-breaking technology that enables the production of complex 3D parts. Its rapid growth calls for immediate toxicological investigations of possible human exposures in order to estimate occupational health risks. Several laser-based powder bed fusion AM techniques are available of which many use metal powder in the micrometer range as feedstock. Large energy input from the laser on metal powders generates several by-products, like spatter and condensate particles. Due to often altered physicochemical properties and composition, spatter and condensate particles can result in different toxicological responses compared to the original powder particles. The toxicity of such particles has, however, not yet been investigated. The aim of the present study was to investigate the toxicity of condensate/spatter particles formed and collected upon selective laser melting (SLM) printing of metal alloy powders, including a nickel-chromium-based superalloy (IN939), a nickel-based alloy (Hastelloy X, HX), a high-strength maraging steel (18Ni300), a stainless steel (316L), and a titanium alloy (Ti6Al4V). Toxicological endpoints investigated included cytotoxicity, generation of reactive oxygen species (ROS), genotoxicity (comet and micronucleus formation), and inflammatory response (cytokine/chemokine profiling) following exposure of human bronchial epithelial cells (HBEC) or monocytes/macrophages (THP-1). The results showed no or minor cytotoxicity in the doses tested (10-100 μg/mL). Furthermore, no ROS generation or formation of micronucleus was observed in the HBEC cells. However, an increase in DNA strand breaks (detected by comet assay) was noted in cells exposed to HX, IN939, and Ti6Al4V, whereas no evident release of pro-inflammatory cytokine was observed from macrophages. Particle and surface characterization showed agglomeration in solution and different surface oxide compositions compared to the nominal bulk content. The extent of released nickel was small and related to the nickel content of the surface oxides, which was largely different from the bulk content. This may explain the limited toxicity found despite the high Ni bulk content of several powders. Taken together, this study suggests relatively low acute toxicity of condensates/spatter particles formed during SLM-printing using IN939, HX, 18Ni300, 316L, and Ti6Al4V as original metal powders.
Collapse
Affiliation(s)
| | - Andi Alijagic
- School of Medical Sciences, Faculty of Medicine and Health, Örebro University, SE-701 82, Örebro, Sweden; Inflammatory Response and Infection Susceptibility Centre (iRiSC), Faculty of Medicine and Health, Örebro University, SE-701 82, Örebro, Sweden
| | - Alexander Persson
- School of Medical Sciences, Faculty of Medicine and Health, Örebro University, SE-701 82, Örebro, Sweden; Inflammatory Response and Infection Susceptibility Centre (iRiSC), Faculty of Medicine and Health, Örebro University, SE-701 82, Örebro, Sweden
| | - Inger Odnevall
- KTH Royal Institute of Technology, Division of Surface and Corrosion Science, SE-100 44, Stockholm, Sweden; AIMES - Center for the Advancement of Integrated Medical and Engineering Sciences at Karolinska Institutet and KTH Royal Institute of Technology, Stockholm, Sweden; Department of Neuroscience, Karolinska Institutet, SE-171 77, Stockholm, Sweden
| | - Eva Särndahl
- School of Medical Sciences, Faculty of Medicine and Health, Örebro University, SE-701 82, Örebro, Sweden; Inflammatory Response and Infection Susceptibility Centre (iRiSC), Faculty of Medicine and Health, Örebro University, SE-701 82, Örebro, Sweden
| | - Hanna L Karlsson
- Institute of Environmental Medicine, Karolinska Institute, SE-171 77, Stockholm, Sweden.
| |
Collapse
|
32
|
Chýlek R, Kudela L, Pospíšil J, Šnajdárek L. Parameters Influencing the Emission of Ultrafine Particles during 3D Printing. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2021; 18:ijerph182111670. [PMID: 34770184 PMCID: PMC8582798 DOI: 10.3390/ijerph182111670] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/06/2021] [Revised: 10/31/2021] [Accepted: 11/01/2021] [Indexed: 11/16/2022]
Abstract
This paper presents a complex and extensive experimental evaluation of fine particle emissions released by an FDM 3D printer for four of the most common printing materials (ABS, PLA, PET-G, and TPU). These thermoplastic filaments were examined at three printing temperatures within their recommended range. In addition, these measurements were extended using various types of printing nozzles, which influenced the emissions considerably. This research is based on more than a hundred individual measurements for which a standardized printing method was developed. The study presents information about differences between particular printing conditions in terms of the amount of fine particles emitted as well as the particle size distributions during printing periods. This expands existing knowledge about the emission of ultrafine particles during 3D printing, and it can help reduce the emissions of these devices to achieve cleaner and safer 3D printer operations.
Collapse
|
33
|
Dobrzyńska E, Kondej D, Kowalska J, Szewczyńska M. State of the art in additive manufacturing and its possible chemical and particle hazards-review. INDOOR AIR 2021; 31:1733-1758. [PMID: 34081372 PMCID: PMC8596642 DOI: 10.1111/ina.12853] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/19/2021] [Revised: 03/29/2021] [Accepted: 04/21/2021] [Indexed: 05/27/2023]
Abstract
Additive manufacturing, enabling rapid prototyping and so-called on-demand production, has become a common method of creating parts or whole devices. On a 3D printer, real objects are produced layer by layer, thus creating extraordinary possibilities as to the number of applications for this type of devices. The opportunities offered by this technique seem to be pushing new boundaries when it comes to both the use of 3D printing in practice and new materials from which the 3D objects can be printed. However, the question arises whether, at the same time, this solution is safe enough to be used without limitations, wherever and by everyone. According to the scientific reports, three-dimensional printing can pose a threat to the user, not only in terms of physical or mechanical hazards, but also through the potential emissions of chemical substances and fine particles. Thus, the presented publication collects information on the additive manufacturing, different techniques, and ways of printing with application of diverse raw materials. It presents an overview of the last 5 years' publications focusing on 3D printing, especially regarding the potential chemical and particle emission resulting from the use of such printers in both the working environment and private spaces.
Collapse
Affiliation(s)
- Elżbieta Dobrzyńska
- Central Institute for Labour Protection—National Research InstituteWarsawPoland
| | - Dorota Kondej
- Central Institute for Labour Protection—National Research InstituteWarsawPoland
| | - Joanna Kowalska
- Central Institute for Labour Protection—National Research InstituteWarsawPoland
| | | |
Collapse
|
34
|
Runström Eden G, Tinnerberg H, Rosell L, Möller R, Almstrand AC, Bredberg A. Exploring Methods for Surveillance of Occupational Exposure from Additive Manufacturing in Four Different Industrial Facilities. Ann Work Expo Health 2021; 66:163-177. [PMID: 34486024 PMCID: PMC8855698 DOI: 10.1093/annweh/wxab070] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2020] [Revised: 07/08/2021] [Accepted: 08/16/2021] [Indexed: 01/11/2023] Open
Abstract
3D printing, a type of additive manufacturing (AM), is a rapidly expanding field. Some adverse health effects have been associated with exposure to printing emissions, which makes occupational exposure studies important. There is a lack of exposure studies, particularly from printing methods other than material extrusion (ME). The presented study aimed to evaluate measurement methods for exposure assessment in AM environments and to measure exposure and emissions from four different printing methods [powder bed fusion (PBF), material extrusion (ME), material jetting (MJ), and vat photopolymerization] in industry. Structured exposure diaries and volatile organic compound (VOC) sensors were used over a 5-day working week. Personal and stationary VOC samples and real-time particle measurements were taken for 1 day per facility. Personal inhalable and respirable dust samples were taken during PBF and MJ AM. The use of structured exposure diaries in combination with measurement data revealed that comparatively little time is spent on actual printing and the main exposure comes from post-processing tasks. VOC and particle instruments that log for a longer period are a useful tool as they facilitate the identification of work tasks with high emissions, highlight the importance of ventilation and give a more gathered view of variations in exposure. No alarming levels of VOCs or dust were detected during print nor post-processing in these facilities as adequate preventive measures were installed. As there are a few studies reporting negative health effects, it is still important to keep the exposure as low as reasonable.
Collapse
Affiliation(s)
- Gunilla Runström Eden
- University of Gothenburg, Institute of Medicine, Sahlgrenska Academy, School of Public Health and Community Medicine, Gothenburg, Sweden
| | - Håkan Tinnerberg
- University of Gothenburg, Institute of Medicine, Sahlgrenska Academy, School of Public Health and Community Medicine, Gothenburg, Sweden
| | - Lars Rosell
- RISE, Research Institutes of Sweden, Gothenburg, Sweden
| | - Rickie Möller
- University of Gothenburg, Institute of Medicine, Sahlgrenska Academy, School of Public Health and Community Medicine, Gothenburg, Sweden
| | - Ann-Charlotte Almstrand
- University of Gothenburg, Institute of Medicine, Sahlgrenska Academy, School of Public Health and Community Medicine, Gothenburg, Sweden
| | - Anna Bredberg
- RISE, Research Institutes of Sweden, Gothenburg, Sweden
| |
Collapse
|
35
|
Mohammadian Y, Nasirzadeh N. Toxicity risks of occupational exposure in 3D printing and bioprinting industries: A systematic review. Toxicol Ind Health 2021; 37:573-584. [PMID: 34399648 DOI: 10.1177/07482337211031691] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
3-Dimensional (3D) printing and bioprinting are the new technologies. In 3D printing, synthetic polymers such as acrylonitrile, butadiene, and styrene, polylactic acid, nylon, and some metals are used as feedstocks. During 3D printing, volatile organic compounds (VOCs) and nanoparticles can be released. In the bioprinting process, natural polymers are most commonly used. All of these materials have direct and indirect toxic effects in exposed people. Therefore, the aim of this study was to provide a comprehensive review of toxicity risks due to occupational exposure to pollutants in the 3D printing and bioprinting industries. The Cochrane review method was used as a guideline for systematic review. Articles were searched in the databases including PubMed, Scopus, Web of Science, and Google Scholar. This systematic review showed that VOCs and ultra-fine particles are often released in fused deposition modeling and selective laser sintering, respectively. Asthma, chronic obstructive pulmonary disease, allergic rhinitis, and DNA damage were observed in occupational exposure to synthetic polymers. Metal nanoparticles can induce adverse health effects on the respiratory and nervous systems. This study emphasized the need to further study the toxicity of 3D printing and bioprinting-induced air pollutants. Also, consideration of safety and health principles is necessary in 3D printing and bioprinting workplaces.
Collapse
Affiliation(s)
- Yousef Mohammadian
- Department of Occupational Health Engineering, 48432Faculty of Health, Tabriz University of Medical Science, Tabriz, Iran
| | - Nafiseh Nasirzadeh
- Department of Occupational Health Engineering, School of Public Health, 48439Tehran University of Medical Science, Tehran, Iran
| |
Collapse
|
36
|
Leso V, Ercolano ML, Mazzotta I, Romano M, Cannavacciuolo F, Iavicoli I. Three-Dimensional (3D) Printing: Implications for Risk Assessment and Management in Occupational Settings. Ann Work Expo Health 2021; 65:617-634. [PMID: 33616163 DOI: 10.1093/annweh/wxaa146] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2020] [Revised: 11/29/2020] [Accepted: 12/24/2020] [Indexed: 01/21/2023] Open
Abstract
The widespread application of additive manufacturing (AM) technologies, commonly known as three-dimensional (3D) printing, in industrial and home-business sectors, and the expected increase in the number of workers and consumers that use these devices, have raised concerns regarding the possible health implications of 3D printing emissions. To inform the risk assessment and management processes, this review evaluates available data concerning exposure assessment in AM workplaces and possible effects of 3D printing emissions on humans identified through in vivo and in vitro models in order to inform risk assessment and management processes. Peer-reviewed literature was identified in Pubmed, Scopus, and ISI Web of Science databases. The literature demonstrated that a significant fraction of the particles released during 3D printing could be in the ultrafine size range. Depending upon the additive material composition, increased levels of metals and volatile organic compounds could be detected during AM operations, compared with background levels. AM phases, specific job tasks performed, and preventive measures adopted may all affect exposure levels. Regarding possible health effects, printer emissions were preliminary reported to affect the respiratory system of involved workers. The limited number of workplace studies, together with the great variety of AM techniques and additive materials employed, limit generalizability of exposure features. Therefore, greater scientific efforts should be focused at understanding sources, magnitudes, and possible health effects of exposures to develop suitable processes for occupational risk assessment and management of AM technologies.
Collapse
Affiliation(s)
- Veruscka Leso
- Department of Public Health, Section of Occupational Medicine, University of Naples Federico II, Naples, Italy
| | - Maria Luigia Ercolano
- Department of Public Health, Section of Occupational Medicine, University of Naples Federico II, Naples, Italy
| | - Ines Mazzotta
- Department of Public Health, Section of Occupational Medicine, University of Naples Federico II, Naples, Italy
| | - Marco Romano
- Department of Public Health, Section of Occupational Medicine, University of Naples Federico II, Naples, Italy
| | - Francesca Cannavacciuolo
- Department of Public Health, Section of Occupational Medicine, University of Naples Federico II, Naples, Italy
| | - Ivo Iavicoli
- Department of Public Health, Section of Occupational Medicine, University of Naples Federico II, Naples, Italy
| |
Collapse
|
37
|
Polymer Composites Based on Polycarbonate (PC) Applied to Additive Manufacturing Using Melted and Extruded Manufacturing (MEM) Technology. Polymers (Basel) 2021; 13:polym13152455. [PMID: 34372056 PMCID: PMC8347902 DOI: 10.3390/polym13152455] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2021] [Revised: 07/19/2021] [Accepted: 07/21/2021] [Indexed: 01/24/2023] Open
Abstract
As part of the present work, polymer composites used in 3D printing technology, especially in Melted and Extruded Manufacturing (MEM) technology, were obtained. The influence of modified fillers such as alumina modified silica, quaternary ammonium bentonite, lignin/silicon dioxide hybrid filler and unmodified multiwalled carbon nanotubes on the properties of polycarbonate (PC) composites was investigated. In the first part of the work, the polymer and its composites containing 0.5–3 wt.% filler were used to obtain a filament using the proprietary technological line. The moldings for testing functional properties were obtained with the use of 3D printing and injection molding techniques. In the next part of the work, the rheological properties—mass flow rate (MFR) and mechanical properties—Rockwell hardness, Charpy impact strength and static tensile strength with Young’s modulus were examined. The structure of the obtained composites was also described and determined using scanning electron microscopy (SEM). The porosity, roughness and dimensional stability of samples obtained by 3D printing were also determined. On the other hand, the physicochemical properties were presented on the basis of the research results using thermogravimetric analysis (TGA), differential scanning calorimetry (DSC), wide angle X-ray scattering analysis (WAXS) and Fourier Transform infrared spectroscopy (FT-IR). Additionally, the electrical conductivity of the obtained composites was investigated. On the basis of the obtained results, it was found that both the amount and the type of filler significantly affected the functional properties of the composites tested in the study.
Collapse
|
38
|
MacCuspie RI, Hill WC, Hall DR, Korchevskiy A, Strode CD, Kennedy AJ, Ballentine ML, Rycroft T, Hull MS. Prevention through design: insights from computational fluid dynamics modeling to predict exposure to ultrafine particles from 3D printing. JOURNAL OF TOXICOLOGY AND ENVIRONMENTAL HEALTH. PART A 2021; 84:458-474. [PMID: 33641630 PMCID: PMC8044021 DOI: 10.1080/15287394.2021.1886210] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/08/2023]
Abstract
Fused filament fabrication (FFF) 3D printers are increasingly used in industrial, academic, military, and residential sectors, yet their emissions and associated user exposure scenarios are not fully described. Characterization of potential user exposure and environmental releases requires robust investigation. During operation, common FFF 3D printers emit varying amounts of ultrafine particles (UFPs) depending upon feedstock material and operation procedures. Volatile organic compounds associated with these emissions exhibit distinct odors; however, the UFP portion is largely imperceptible by humans. This investigation presents straightforward computational modeling as well as experimental validation to provide actionable insights for the proactive design of lower exposure spaces where 3D printers may be used. Specifically, data suggest that forced clean airflows may create lower exposure spaces, and that computational modeling might be employed to predict these spaces with reasonable accuracy to assist with room design. The configuration and positioning of room air ventilation diffusers may be a key factor in identifying lower exposure spaces. A workflow of measuring emissions during a printing process in an ANSI/CAN/UL 2904 environmental chamber was used to provide data for computational fluid dynamics (CFD) modeling of a 6 m2 room. Measurements of the particle concentrations in a Class 1000 clean room of identical geometry were found to pass the Hanna test for agreement between model and experimental data, validating the findings.
Collapse
Affiliation(s)
| | | | - Daniel R. Hall
- Chemistry & Industrial Hygiene, Inc., Wheat Ridge, CO, USA
| | | | | | - Alan J. Kennedy
- Environmental Laboratory, U.S. Army Engineer Research and Development Center, Vicksburg, MS, USA
| | - Mark L. Ballentine
- Environmental Laboratory, U.S. Army Engineer Research and Development Center, Vicksburg, MS, USA
| | - Taylor Rycroft
- Environmental Laboratory, U.S. Army Engineer Research and Development Center, Vicksburg, MS, USA
| | - Matthew S. Hull
- NanoSafe, Inc., Blacksburg, VA, USA
- Virginia Tech, Blacksburg, VA, USA
| |
Collapse
|
39
|
Byrley P, Boyes WK, Rogers K, Jarabek AM. 3D Printer Particle Emissions: Translation to Internal Dose in Adults and Children. JOURNAL OF AEROSOL SCIENCE 2021; 154:1-12. [PMID: 35999899 PMCID: PMC9393897 DOI: 10.1016/j.jaerosci.2021.105765] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/05/2023]
Abstract
Desktop fused deposition modeling (FDM®) three-dimensional (3D) printers are becoming increasingly popular in schools, libraries, and among home hobbyists. FDM® 3D printers have been shown to release ultrafine airborne particles in large amounts, indicating the potential for inhalation exposure and consequent health risks among FDM® 3D printer users and other room occupants including children. These particles are generated from the heating of thermoplastic polymer feedstocks during the FDM® 3D printing process, with the most commonly used polymers being acrylonitrile butadiene styrene (ABS) and poly-lactic acid (PLA). Risk assessment of these exposures demands estimation of internal dose, especially to address intra-human variability across life stages. Dosimetry models have proven to effectively translate particle exposures to internal dose metrics relevant to evaluation of their effects in the respiratory tract. We used the open-access multiple path particle dosimetry (MPPD v3.04) model to estimate inhaled particle deposition in different regions of the respiratory tract for children of various age groups from three months to eighteen years old adults. Mass concentration data for input into the MPPD model were calculated using particle size distribution and density data from experimental FDM® 3D printer emissions tests using both ABS and PLA. The impact of changes in critical parameters that are principal determinants of inhaled dose, including: sex, age, and exposure duration, was examined using input parameter values available from the International Commission on Radiological Protection. Internal dose metrics used included regional mass deposition, mass deposition normalized by pulmonary surface area, surface area of deposited particles by pulmonary surface area, and retained regional mass. Total mass deposition was found to be highest in the 9-year-old to 18-year-old age groups with mass deposition by pulmonary surface area highest in 3-month-olds to 9-year-olds and surface area of deposited particles by pulmonary surface area to be highest in 9-year-olds. Clearance modeling revealed that frequent 3D printer users are at risk for an increased cumulative retained dose.
Collapse
Affiliation(s)
- Peter Byrley
- Health and Environmental Effects Assessment Division (HEEAD), Center for Public Health and Environmental Assessment, Office of Research and Development (ORD), USEPA, RTP, NC 27711
- Corresponding author: 109 T.W. Alexander Drive, MD B243, CPHEA/HEEAD/IHAB, U.S. EPA, Research Triangle Park, NC 27711, United States, Telephone: +1-919-541-9457;
| | - William K. Boyes
- Public Health and Integrated Toxicology Division (PHID), Center for Public Health and Environmental Assessment (CPHEA), Office of Research and Development (ORD), USEPA, RTP, NC 27711
| | - Kim Rogers
- Watershed and Ecosystem Characterization Division (WECD), Center for Environmental Measurement and Modeling (CEMM), Office of Research and Development (ORD), USEPA, RTP, NC 27711
| | - Annie M. Jarabek
- Health and Environmental Effects Assessment Division (HEEAD), Center for Public Health and Environmental Assessment, Office of Research and Development (ORD), USEPA, RTP, NC 27711
| |
Collapse
|
40
|
Stefaniak AB, Bowers LN, Martin SB, Hammond DR, Ham JE, Wells JR, Fortner AR, Knepp AK, du Preez S, Pretty JR, Roberts JL, du Plessis JL, Schmidt A, Duling MG, Bader A, Virji MA. Large-Format Additive Manufacturing and Machining Using High-Melt-Temperature Polymers. Part II: Characterization of Particles and Gases. ACS CHEMICAL HEALTH & SAFETY 2021; 28:268-278. [DOI: 10.1021/acs.chas.0c00129] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Aleksandr B. Stefaniak
- National Institute for Occupational Safety and Health, Morgantown, West Virginia 26505, United States
| | - Lauren N. Bowers
- National Institute for Occupational Safety and Health, Morgantown, West Virginia 26505, United States
| | - Stephen B. Martin
- National Institute for Occupational Safety and Health, Morgantown, West Virginia 26505, United States
| | - Duane R. Hammond
- National Institute for Occupational Safety and Health, Cincinnati, Ohio 45213, United States
| | - Jason E. Ham
- National Institute for Occupational Safety and Health, Morgantown, West Virginia 26505, United States
| | - J. R. Wells
- National Institute for Occupational Safety and Health, Morgantown, West Virginia 26505, United States
| | - Alyson R. Fortner
- National Institute for Occupational Safety and Health, Morgantown, West Virginia 26505, United States
| | - Alycia K. Knepp
- National Institute for Occupational Safety and Health, Morgantown, West Virginia 26505, United States
| | - Sonette du Preez
- North-West University, Occupational Hygiene and Health Research Initiative, Private Bag X6001, Potchefstroom 2520, South Africa
| | - Jack R. Pretty
- National Institute for Occupational Safety and Health, Cincinnati, Ohio 45213, United States
| | - Jennifer L. Roberts
- National Institute for Occupational Safety and Health, Cincinnati, Ohio 45213, United States
| | - Johan L. du Plessis
- North-West University, Occupational Hygiene and Health Research Initiative, Private Bag X6001, Potchefstroom 2520, South Africa
| | - Austin Schmidt
- Additive Engineering Solutions, Akron, Ohio 44305, United States
| | - Matthew G. Duling
- National Institute for Occupational Safety and Health, Morgantown, West Virginia 26505, United States
| | - Andrew Bader
- Additive Engineering Solutions, Akron, Ohio 44305, United States
| | - M. Abbas Virji
- National Institute for Occupational Safety and Health, Morgantown, West Virginia 26505, United States
| |
Collapse
|
41
|
Stefaniak AB, Bowers LN, Martin SB, Hammond DR, Ham JE, Wells JR, Fortner AR, Knepp AK, du Preez S, Pretty JR, Roberts JL, du Plessis JL, Schmidt A, Duling MG, Bader A, Virji MA. Large-Format Additive Manufacturing and Machining Using High-Melt-Temperature Polymers. Part I: Real-Time Particulate and Gas-Phase Emissions. ACS CHEMICAL HEALTH & SAFETY 2021; 28:190-200. [PMID: 35979329 PMCID: PMC9380575 DOI: 10.1021/acs.chas.0c00128] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
The literature on emissions during material extrusion additive manufacturing with 3-D printers is expanding; however, there is a paucity of data for large-format additive manufacturing (LFAM) machines that can extrude high-melt-temperature polymers. Emissions from two LFAM machines were monitored during extrusion of six polymers: acrylonitrile butadiene styrene (ABS), polycarbonate (PC), high-melt-temperature polysulfone (PSU), poly(ether sulfone) (PESU), polyphenylene sulfide (PPS), and Ultem (poly(ether imide)). Particle number, total volatile organic compound (TVOC), carbon monoxide (CO), and carbon dioxide (CO2) concentrations were monitored in real-time. Particle emission rate values (no./min) were as follows: ABS (1.7 × 1011 to 7.7 × 1013), PC (5.2 × 1011 to 3.6 × 1013), Ultem (5.7 × 1012 to 3.1 × 1013), PPS (4.6 × 1011 to 6.2 × 1012), PSU (1.5 × 1012 to 3.4 × 1013), and PESU (2.0 to 5.0 × 1013). For print jobs where the mass of extruded polymer was known, particle yield values (g-1 extruded) were as follows: ABS (4.5 × 108 to 2.9 × 1011), PC (1.0 × 109 to 1.7 × 1011), PSU (5.1 × 109 to 1.2 × 1011), and PESU (0.8 × 1011 to 1.7 × 1011). TVOC emission yields ranged from 0.005 mg/g extruded (PESU) to 0.7 mg/g extruded (ABS). The use of wall-mounted exhaust ventilation fans was insufficient to completely remove airborne particulate and TVOC from the print room. Real-time CO monitoring was not a useful marker of particulate and TVOC emission profiles for Ultem, PPS, or PSU. Average CO2 and particle concentrations were moderately correlated (r s = 0.76) for PC polymer. Extrusion of ABS, PC, and four high-melt-temperature polymers by LFAM machines released particulate and TVOC at levels that could warrant consideration of engineering controls. LFAM particle emission yields for some polymers were similar to those of common desktop-scale 3-D printers.
Collapse
Affiliation(s)
- Aleksandr B Stefaniak
- National Institute for Occupational Safety and Health, Morgantown, West Virginia 26505, United States
| | - Lauren N Bowers
- National Institute for Occupational Safety and Health, Morgantown, West Virginia 26505, United States
| | - Stephen B Martin
- National Institute for Occupational Safety and Health, Morgantown, West Virginia 26505, United States
| | - Duane R Hammond
- National Institute for Occupational Safety and Health, Cincinnati, Ohio 45213, United States
| | - Jason E Ham
- National Institute for Occupational Safety and Health, Morgantown, West Virginia 26505, United States
| | - J R Wells
- National Institute for Occupational Safety and Health, Morgantown, West Virginia 26505, United States
| | - Alyson R Fortner
- National Institute for Occupational Safety and Health, Morgantown, West Virginia 26505, United States
| | - Alycia K Knepp
- National Institute for Occupational Safety and Health, Morgantown, West Virginia 26505, United States
| | - Sonette du Preez
- North-West University, Occupational Hygiene and Health Research Initiative, Potchefstroom 2520, South Africa
| | - Jack R Pretty
- National Institute for Occupational Safety and Health, Cincinnati, Ohio 45213, United States
| | - Jennifer L Roberts
- National Institute for Occupational Safety and Health, Cincinnati, Ohio 45213, United States
| | - Johan L du Plessis
- North-West University, Occupational Hygiene and Health Research Initiative, Potchefstroom 2520, South Africa
| | - Austin Schmidt
- Additive Engineering Solutions, Akron, Ohio 44305, United States
| | - Matthew G Duling
- National Institute for Occupational Safety and Health, Morgantown, West Virginia 26505, United States
| | - Andrew Bader
- Additive Engineering Solutions, Akron, Ohio 44305, United States
| | - M Abbas Virji
- National Institute for Occupational Safety and Health, Morgantown, West Virginia 26505, United States
| |
Collapse
|
42
|
Chen R, Yin H, Cole IS, Shen S, Zhou X, Wang Y, Tang S. Exposure, assessment and health hazards of particulate matter in metal additive manufacturing: A review. CHEMOSPHERE 2020; 259:127452. [PMID: 32629313 DOI: 10.1016/j.chemosphere.2020.127452] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/16/2020] [Revised: 06/11/2020] [Accepted: 06/15/2020] [Indexed: 05/15/2023]
Abstract
Metal additive manufacturing (AM), also known as metal three-dimensional (3D) printing, is a new technology offering design freedom to create complex structures that has found increasing applications in industrial processes. However, due to the fine metal powders and high temperatures involved, the printing process is likely to generate particulate matter (PM) that has a detrimental impact on the environment and human health. Therefore, comprehensive assessement of the exposure and health hazards of PM pollution related to this technique is urgently required. This review provides general knowledge of metal AM and its possible particle release. The health issues of metal PM are described considering the exposure routes, adverse human health outcomes and influencing factors. Methods of evaluating PM exposure and risk assessment techniques are also summarized. Lastly, future research needs are suggested. The information and knowledge presented in this review will contribute to the understanding, assessment, and control of possible risks in metal AM and benefit the wider metal 3D printing community, which includes machine operators, consumers, R&D scientists, and policymakers.
Collapse
Affiliation(s)
- Rui Chen
- Beijing Key Laboratory of Occupational Safety and Health, Beijing Municipal Institute of Labour Protection, Beijing Academy of Science and Technology, Beijing, 100054, China
| | - Hong Yin
- School of Aerospace, Mechanical and Manufacturing Engineering, RMIT University, Melbourne, VIC 3000, Australia.
| | - Ivan S Cole
- School of Aerospace, Mechanical and Manufacturing Engineering, RMIT University, Melbourne, VIC 3000, Australia
| | - Shirley Shen
- CSIRO Manufacturing, Bayview Ave, Clayton, Vic 3168, Australia
| | - Xingfan Zhou
- Beijing Key Laboratory of Occupational Safety and Health, Beijing Municipal Institute of Labour Protection, Beijing Academy of Science and Technology, Beijing, 100054, China
| | - Yuqian Wang
- Beijing Key Laboratory of Occupational Safety and Health, Beijing Municipal Institute of Labour Protection, Beijing Academy of Science and Technology, Beijing, 100054, China
| | - Shichuan Tang
- Beijing Key Laboratory of Occupational Safety and Health, Beijing Municipal Institute of Labour Protection, Beijing Academy of Science and Technology, Beijing, 100054, China.
| |
Collapse
|
43
|
Farcas MT, McKinney W, Qi C, Mandler KW, Battelli L, Friend SA, Stefaniak AB, Jackson M, Orandle M, Winn A, Kashon M, LeBouf RF, Russ KA, Hammond DR, Burns D, Ranpara A, Thomas TA, Matheson J, Qian Y. Pulmonary and systemic toxicity in rats following inhalation exposure of 3-D printer emissions from acrylonitrile butadiene styrene (ABS) filament. Inhal Toxicol 2020; 32:403-418. [PMID: 33076715 DOI: 10.1080/08958378.2020.1834034] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
Abstract
BACKGROUND Fused filament fabrication 3-D printing with acrylonitrile butadiene styrene (ABS) filament emits ultrafine particulates (UFPs) and volatile organic compounds (VOCs). However, the toxicological implications of the emissions generated during 3-D printing have not been fully elucidated. AIM AND METHODS The goal of this study was to investigate the in vivo toxicity of ABS-emissions from a commercial desktop 3-D printer. Male Sprague Dawley rats were exposed to a single concentration of ABS-emissions or air for 4 hours/day, 4 days/week for five exposure durations (1, 4, 8, 15, and 30 days). At 24 hours after the last exposure, rats were assessed for pulmonary injury, inflammation, and oxidative stress as well as systemic toxicity. RESULTS AND DISCUSSION 3-D printing generated particulate with average particle mass concentration of 240 ± 90 µg/m³, with an average geometric mean particle mobility diameter of 85 nm (geometric standard deviation = 1.6). The number of macrophages increased significantly at day 15. In bronchoalveolar lavage, IFN-γ and IL-10 were significantly higher at days 1 and 4, with IL-10 levels reaching a peak at day 15 in ABS-exposed rats. Neither pulmonary oxidative stress responses nor histopathological changes of the lungs and nasal passages were found among the treatments. There was an increase in platelets and monocytes in the circulation at day 15. Several serum biomarkers of hepatic and kidney functions were significantly higher at day 1. CONCLUSIONS At the current experimental conditions applied, it was concluded that the emissions from ABS filament caused minimal transient pulmonary and systemic toxicity.
Collapse
Affiliation(s)
- Mariana T Farcas
- National Institute for Occupational Safety and Health, Morgantown, WV, USA.,Pharmaceutical and Pharmacological Sciences, School of Pharmacy, West Virginia University, Morgantown, WV, USA
| | - Walter McKinney
- National Institute for Occupational Safety and Health, Morgantown, WV, USA
| | - Chaolong Qi
- National Institute for Occupational Safety and Health, Cincinnati, OH, USA
| | - Kyle W Mandler
- National Institute for Occupational Safety and Health, Morgantown, WV, USA
| | - Lori Battelli
- National Institute for Occupational Safety and Health, Morgantown, WV, USA
| | - Sherri A Friend
- National Institute for Occupational Safety and Health, Morgantown, WV, USA
| | | | - Mark Jackson
- National Institute for Occupational Safety and Health, Morgantown, WV, USA
| | - Marlene Orandle
- National Institute for Occupational Safety and Health, Morgantown, WV, USA
| | - Ava Winn
- National Institute for Occupational Safety and Health, Morgantown, WV, USA
| | - Michael Kashon
- National Institute for Occupational Safety and Health, Morgantown, WV, USA
| | - Ryan F LeBouf
- National Institute for Occupational Safety and Health, Morgantown, WV, USA
| | - Kristen A Russ
- National Institute for Occupational Safety and Health, Morgantown, WV, USA
| | - Duane R Hammond
- National Institute for Occupational Safety and Health, Cincinnati, OH, USA
| | - Dru Burns
- National Institute for Occupational Safety and Health, Morgantown, WV, USA
| | - Anand Ranpara
- National Institute for Occupational Safety and Health, Morgantown, WV, USA
| | - Treye A Thomas
- Office of Hazard Identification and Reduction, U.S. Consumer Product Safety Commission, Rockville, MD, USA
| | - Joanna Matheson
- Office of Hazard Identification and Reduction, U.S. Consumer Product Safety Commission, Rockville, MD, USA
| | - Yong Qian
- National Institute for Occupational Safety and Health, Morgantown, WV, USA
| |
Collapse
|
44
|
Byrley P, Geer Wallace MA, Boyes WK, Rogers K. Particle and volatile organic compound emissions from a 3D printer filament extruder. THE SCIENCE OF THE TOTAL ENVIRONMENT 2020; 736:139604. [PMID: 32502783 PMCID: PMC8202132 DOI: 10.1016/j.scitotenv.2020.139604] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/23/2020] [Revised: 05/18/2020] [Accepted: 05/19/2020] [Indexed: 05/06/2023]
Abstract
Fused Deposition Modeling (FDM®), also known as Fused Filament Fabrication (FFF), 3D printers have been shown in numerous studies to emit ultrafine particles and volatile organic compounds (VOCs). Filament extruders, designed to create feedstocks for 3D printers, have recently come onto the consumer market for at-home hobbyists as an alternative to buying 3D printer filaments. These instruments allow for the creation of 3D printer filaments from raw plastic pellets. Given the similarity in processes and materials used by 3D printers and filament extruders, we hypothesized that filament extruders may also release ultrafine particle emissions and VOCs. An off-the-shelf filament extruder was operated in a 2 m3 chamber using three separate feedstocks: acrylonitrile butadiene styrene (ABS) pellets, pulverized poly-lactic acid (PLA), and PLA pellets. Ultrafine particle emissions were measured in real-time using a scanning mobility particle sizer and thermal desorption tubes were used for both non-targeted and targeted analysis of VOCs present in emissions. Ultrafine particle number emission rates were comparable to those found in 3D printer studies with the greatest to least emission rates from ABS pellets, pulverized PLA, and PLA pellets, respectively. In addition, the majority of particles released were found to be ultrafine (1-100 nm), similar to 3D printer studies. A variety of VOCs were identified using the ABS feedstock, including styrene and ethylbenzene, and PLA feedstock. Styrene average mass concentration amounts were found to be near the EPA Integrated Risk Information System Reference Concentration for Inhalation Exposure for 3 min and 5 min samples. Further studies will be needed to determine the impact on emissions of environmental volume, air exchange rate, and extruder settings such as extrusion speed and temperature. The results support the hypothesis that use of a filament extruder may present an additional exposure risk to 3D printer hobbyists.
Collapse
Affiliation(s)
- Peter Byrley
- Health and Environmental Effects Assessment Division, Center for Public Health and Environmental Assessment, USEPA, RTP, NC 27711, United States.
| | - M Ariel Geer Wallace
- Air Methods and Characterization Division, Center for Environmental Measurement and Modeling, USEPA, RTP, NC 27711, United States.
| | - William K Boyes
- Public Health and Integrated Toxicology Division, Center for Public Health and Environmental Assessment, USEPA, RTP, NC 27711, United States.
| | - Kim Rogers
- Watershed and Ecosystem Characterization Division, Center for Environmental Measurement and Modeling, USEPA, RTP, NC 27711, United States.
| |
Collapse
|
45
|
Chan FL, Hon CY, Tarlo SM, Rajaram N, House R. Emissions and health risks from the use of 3D printers in an occupational setting. JOURNAL OF TOXICOLOGY AND ENVIRONMENTAL HEALTH. PART A 2020; 83:279-287. [PMID: 32316869 DOI: 10.1080/15287394.2020.1751758] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/15/2023]
Abstract
The aim of this study was to determine concentrations of particulates and volatile organic compounds (VOCs) emitted from 3D printers using polylactic acid (PLA) filaments at a university workroom to assess exposure and health risks in an occupational setting. Under typical-case (one printer) and worst-case (three printers operating simultaneously) scenarios, particulate concentration (total and respirable), VOCs and formaldehyde were measured. Air samples were collected in the printing room and adjacent hallway. Size-resolved levels of nano-diameter particles were also collected in the printing room. Total particulate levels were higher in the worst-case scenario (0.7 mg/m3) vs. typical-case scenario (0.3 mg/m3). Respirable particulate and formaldehyde concentrations were similar between the two scenarios. Size-resolved measurements showed that most particles ranged from approximately 27 to 116 nm. Total VOC levels were approximately 6-fold higher during the worst-case scenario vs. typical situation with isopropyl alcohol being the predominant VOC. Airborne concentrations in the hallway were generally lower than inside the printing room. All measurements were below their respective occupational exposure limits. In summary, emissions of particulates and VOCs increased when multiple 3D printers were operating simultaneously. Airborne levels in the adjacent hallway were similar between the two scenarios. Overall, data suggest a low risk of significant and persistent adverse health effects. Nevertheless, the health effects attributed to 3D printing are not fully known and adherence to good hygiene principles is recommended during use of this technology.
Collapse
Affiliation(s)
- Felix L Chan
- Division of Occupational Medicine, Department of Medicine, St. Michael's Hospital, Toronto, Ontario, Canada
- Department of Medicine, University of Toronto, Toronto, ON, Canada
| | - Chun-Yip Hon
- School of Occupational and Public Health, Ryerson University, Toronto, ON, Canada
| | - Susan M Tarlo
- Division of Occupational Medicine, Department of Medicine, St. Michael's Hospital, Toronto, Ontario, Canada
- Department of Medicine, University of Toronto, Toronto, ON, Canada
- Dalla Lana School of Public Health, University of Toronto, Toronto, ON, Canada
- Centre for Research Expertise in Occupational Disease, Toronto, ON, Canada
| | - Nikhil Rajaram
- Division of Occupational Medicine, Department of Medicine, St. Michael's Hospital, Toronto, Ontario, Canada
- Department of Medicine, University of Toronto, Toronto, ON, Canada
| | - Ronald House
- Division of Occupational Medicine, Department of Medicine, St. Michael's Hospital, Toronto, Ontario, Canada
- Department of Medicine, University of Toronto, Toronto, ON, Canada
- Dalla Lana School of Public Health, University of Toronto, Toronto, ON, Canada
- Centre for Research Expertise in Occupational Disease, Toronto, ON, Canada
| |
Collapse
|
46
|
Secondo LE, Adawi HI, Cuddehe J, Hopson K, Schumacher A, Mendoza L, Cartin C, Lewinski NA. Comparative analysis of ventilation efficiency on ultrafine particle removal in university MakerSpaces. ATMOSPHERIC ENVIRONMENT (OXFORD, ENGLAND : 1994) 2020; 224:117321. [PMID: 34305433 PMCID: PMC8301741 DOI: 10.1016/j.atmosenv.2020.117321] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/28/2023]
Abstract
The proliferation of 3D printing MakerSpaces in university settings has led to an increased risk of student and technician exposure to ultrafine particles. New MakerSpaces do not have standardized specifications to aid in the design of the space; therefore, a need exists to characterize the impacts of different engineering controls on MakerSpace air quality. This study compares three university MakerSpaces: a library MakerSpace operating ≤4 devices under typical office space ventilation with no engineering controls, a laboratory MakerSpace operating 29 printers inside grated cabinets, with laboratory-grade ventilation, and a center MakerSpace operating ≤4 devices with neither engineering controls nor internal ventilation. All MakerSpaces were studied under both controlled (using a standard print design) and uncontrolled (real-time user operation) conditions measuring emitted particle concentrations in the near-field. Additionally, volatile organic emissions and the difference between near-field and far-field particle concentrations were investigated in multiple MakerSpaces. The center MakerSpace had the greatest net increase in mean particle number concentration (+1378.9% relative to background during a print campaign using polylactic acid (PLA) filament in a MakerBot (MakerBot-PLA)). The number-weighted mean diameter had the greatest change relative to background during the library campaign, +37.1% for the Lulzbot-PLA and -56.1% for the Ultimaker-PLA studies. For the standard NIST design with MakerBot-PLA, the laboratory's particle removal ratio was 30 times greater than in the library with open cabinets and 54 times greater when the cabinet doors were closed. The average particle removal rate from the center MakerSpace was up to 2.5 times less efficient than that of the library for the same MakerBot-PLA combination. These results suggest ventilation as a key priority in the design of a new university MakerSpace.
Collapse
Affiliation(s)
- Lynn E. Secondo
- Department of Chemical and Life Science Engineering, Virginia Commonwealth University, 601 W. Main St, Richmond, VA, 23284, United States
| | - Hayat I. Adawi
- Department of Chemical and Life Science Engineering, Virginia Commonwealth University, 601 W. Main St, Richmond, VA, 23284, United States
| | - John Cuddehe
- Department of Chemistry, Virginia Commonwealth University, 1001 W. Main St, Richmond, VA, 23284, United States
| | - Kenneth Hopson
- James Branch Cabell Library, Virginia Commonwealth University, 901 Park Ave, Richmond, VA, 23284, United States
| | - Allison Schumacher
- da Vinci Center, Virginia Commonwealth University, 807 S Cathedral Pl, Richmond, VA, 23284, United States
| | - Larry Mendoza
- Environmental Health and Safety, Safety and Risk Management, Virginia Commonwealth University, 1008 East Clay Street Box 980112, Richmond Va, 23298, United States
| | - Charles Cartin
- Department of Mechanical and Nuclear Engineering, Virginia Commonwealth University, 401 W. Main St, Richmond, VA, 23284, United States
| | - Nastassja A. Lewinski
- Department of Chemical and Life Science Engineering, Virginia Commonwealth University, 601 W. Main St, Richmond, VA, 23284, United States
| |
Collapse
|
47
|
Poikkimäki M, Koljonen V, Leskinen N, Närhi M, Kangasniemi O, Kausiala O, Dal Maso M. Nanocluster Aerosol Emissions of a 3D Printer. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2019; 53:13618-13628. [PMID: 31697477 DOI: 10.1021/acs.est.9b05317] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/05/2023]
Abstract
Many studies exist that characterize the aerosol emissions from fused filament fabrication three-dimensional (3D) printers. However, nanocluster aerosol (NCA) particles, that is particles in a size range under 3 nm, are rarely studied. The purpose of this study was to characterize the NCA emissions and the contribution of NCA to the total particle number emissions from a 3D printer. We used a particle size magnifier and a scanning mobility particle sizer to measure the time evolution of particle size distribution, which was used to calculate the average NCA emission rates during a printer operation in a chamber. The NCA emission rates ranged from 1.4 × 106 to 7.3 × 109 s-1 depending on the applied combination of filament material and nozzle temperature, showing increasing emission with increasing temperature. The NCA emissions constitute from 9 to 48% of the total emissions, that is, almost half of the particle emissions may have been previously neglected. Therefore, it is essential to include the low NCA size range in, for example, future 3D-printer-testing protocols, emission measurement standards, and risk management measures.
Collapse
|
48
|
Karayannis P, Petrakli F, Gkika A, Koumoulos EP. 3D-Printed Lab-on-a-Chip Diagnostic Systems-Developing a Safe-by-Design Manufacturing Approach. MICROMACHINES 2019; 10:E825. [PMID: 31795128 PMCID: PMC6969929 DOI: 10.3390/mi10120825] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/31/2019] [Revised: 11/13/2019] [Accepted: 11/25/2019] [Indexed: 12/12/2022]
Abstract
The aim of this study is to provide a detailed strategy for Safe-by-Design (SbD) 3D-printed lab-on-a-chip (LOC) device manufacturing, using Fused Filament Fabrication (FFF) technology. First, the applicability of FFF in lab-on-a-chip device development is briefly discussed. Subsequently, a methodology to categorize, identify and implement SbD measures for FFF is suggested. Furthermore, the most crucial health risks involved in FFF processes are examined, placing the focus on the examination of ultrafine particle (UFP) and Volatile Organic Compound (VOC) emission hazards. Thus, a SbD scheme for lab-on-a-chip manufacturing is provided, while also taking into account process optimization for obtaining satisfactory printed LOC quality. This work can serve as a guideline for the effective application of FFF technology for lab-on-a-chip manufacturing through the safest applicable way, towards a continuous effort to support sustainable development of lab-on-a-chip devices through cost-effective means.
Collapse
Affiliation(s)
| | | | | | - Elias P. Koumoulos
- Innovation in Research & Engineering Solutions (IRES), Boulevard Edmond Machtens 79/22, 1080 Brussels, Belgium; (P.K.); (F.P.); (A.G.)
| |
Collapse
|