1
|
Shin HK, Bang YJ. Aromatic Amino Acid Metabolites: Molecular Messengers Bridging Immune-Microbiota Communication. Immune Netw 2025; 25:e10. [PMID: 40078785 PMCID: PMC11896664 DOI: 10.4110/in.2025.25.e10] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2024] [Revised: 02/05/2025] [Accepted: 02/05/2025] [Indexed: 03/14/2025] Open
Abstract
Aromatic amino acid (AAA) metabolites, derived from tryptophan, phenylalanine, and tyrosine through coordinated host and microbial metabolism, have emerged as critical modulators of immune function. We examine the complex journey of AAAs from dietary intake through intestinal absorption and metabolic transformation, highlighting the crucial role of host-microbe metabolic networks in generating diverse immunomodulatory compounds. This review provides a unique integrative perspective by mapping the molecular mechanisms through which these metabolites orchestrate immune responses. Through detailed analysis of metabolite-receptor and metabolite-transporter interactions, we reveal how specific molecular recognition drives cell type-specific immune responses. Our comprehensive examination of signaling networks-from membrane receptor engagement to nuclear receptor activation to post-translational modifications- demonstrates how the same metabolite can elicit distinct functional outcomes in different immune cell populations. The context-dependent nature of these molecular interactions presents both challenges and opportunities for therapeutic development, particularly in inflammatory conditions where metabolite signaling pathways are dysregulated. Understanding the complexity of these regulatory networks and remaining knowledge gaps is fundamental for advancing metabolite-based therapeutic strategies in immune-mediated disorders.
Collapse
Affiliation(s)
- Hyun-Ki Shin
- Department of Biomedical Sciences, Seoul National University College of Medicine, Seoul 03080, Korea
| | - Ye-Ji Bang
- Department of Biomedical Sciences, Seoul National University College of Medicine, Seoul 03080, Korea
- Department of Microbiology and Immunology, Seoul National University College of Medicine, Seoul 03080, Korea
- Institute of Endemic Diseases, Seoul National University Medical Research Center, Seoul 03080, Korea
| |
Collapse
|
2
|
Vrzalová A, Vrzal R, Nádvorník P, Šebela M, Dvořák Z. Modulation of aryl hydrocarbon receptor activity by halogenated indoles. Bioorg Med Chem 2024; 114:117964. [PMID: 39454560 DOI: 10.1016/j.bmc.2024.117964] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2024] [Revised: 10/10/2024] [Accepted: 10/16/2024] [Indexed: 10/28/2024]
Abstract
The aryl hydrocarbon receptor (AhR) is a cytosolic ligand-activated transcription factor integral to various physiological and pathological processes. Among its diverse ligands, indole-based compounds have garnered attention due to their significant biological activity and potential therapeutic applications. This study explores the activation of AhR by structurally diverse halogenated indoles. We evaluated the transcriptional activity of AhR and cell viability in the human LS174T-AhR-luc reporter cell line. Among the tested compounds, 4-FI, 7-FI, 6-BrI, 7-BrI, 6-Cl-2-ox, 5-Br-2-ox, and 6-Br-2-ox activated AhR in a concentration-dependent manner, displaying high efficacy and potency. Molecular docking analysis revealed moderate binding affinities of these compounds to the PAS-B domain of AhR, corroborated by competitive radioligand binding assays. Functional assays showed that halogenated indoles induce the formation of AhR-ARNT heterodimer and enhance the binding of the AhR to the CYP1A1 promoter. Additionally, 4-FI and 7-FI exhibited anti-inflammatory properties in Caco-2 cell models, highlighting their potential for therapeutic applications. This study underscores the significance of the type and position of halogen moiety in indole scaffold, suggesting their potential as candidates for developing therapeutics drugs to treat conditions such as inflammatory bowel disease via AhR activation.
Collapse
Affiliation(s)
- Aneta Vrzalová
- Department of Cell Biology and Genetics, Faculty of Science, Palacky University, Olomouc, Czech Republic.
| | - Radim Vrzal
- Department of Cell Biology and Genetics, Faculty of Science, Palacky University, Olomouc, Czech Republic
| | - Petr Nádvorník
- Department of Cell Biology and Genetics, Faculty of Science, Palacky University, Olomouc, Czech Republic
| | - Marek Šebela
- Department of Biochemistry, Faculty of Science, Palacky University, Olomouc, Czech Republic
| | - Zdeněk Dvořák
- Department of Cell Biology and Genetics, Faculty of Science, Palacky University, Olomouc, Czech Republic
| |
Collapse
|
3
|
Zuo D, Lv L, Ren H, Sun H. Effects of polyphenols extracted from Keemun black tea on CYP450s activity and molecular mechanisms. Food Sci Nutr 2024; 12:7306-7315. [PMID: 39479673 PMCID: PMC11521629 DOI: 10.1002/fsn3.4319] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2024] [Accepted: 06/25/2024] [Indexed: 11/02/2024] Open
Abstract
Keemun black tea (KBT) is a luxurious traditional tea in China that has been commonly consumed because of its superior aroma and special taste. However, the risks remain unknown when KBT is used concomitantly with other drugs or food products. Therefore, we aimed to explore the effect of the tea polyphenols from KBT on the protein and mRNA levels of CYP450 and related mechanisms. The extraction of tea polyphenols from KBT and the content and component analysis of polyphenols were performed. A total of 24 female C57BL/6J mice were given tea polyphenols (0, 75, 150, 300 mg/kg) for 7 days, respectively. Liver tissues were collected 2 h after the last administration. The expression of Cyp3a11, Cyp1a2, Cyp2e1, Cyp2c37, and PXR mRNA was detected by real-time PCR, and the expression of Cyp3a11, Cyp1a2, Cyp2e1, Cyp2c37, and PXR protein was detected by Western blotting. A transient co-transfection reporter gene assay on HepG2 cells was also used to verify the role of PXR in regulating CYP3A4 expression. Our results showed that tea polyphenols from KBT significantly induced the expression of CYP 3A11 and PXR in general, inhibited the expression of Cyp1a2 and Cyp2e1 in general, and significantly inhibited the mRNA expression of Cyp2c37 but induced its protein expression. The reporter gene-transfected cells demonstrated that tea polyphenols could enhance the PXR-mediated transactivation of the CYP3A4 promoter via rifampicin-induction. Meanwhile, tea polyphenols could significantly accelerate CYP3A11/3A4 expression by activating the PXR-CYP3A4 pathway. In conclusion, KBT polyphenols could significantly affect the expression of various subtypes of the Cyp450 enzyme in mice livers via the PXR-CYP450 pathway, suggesting that metabolism-based interactions can occur when they are used in combination with medicines.
Collapse
Affiliation(s)
- Dan Zuo
- School of Food and DrugShenzhen Polytechnic UniversityShenzhenGuangdongChina
- Vocational and Technical College of AnshunAnshunGuizhouChina
| | - Le Lv
- School of Applied BiologyShenzhen Institute of TechnologyShenzhenGuangdongChina
| | - Hong Ren
- School of Food and DrugShenzhen Polytechnic UniversityShenzhenGuangdongChina
| | - Haiyan Sun
- School of Food and DrugShenzhen Polytechnic UniversityShenzhenGuangdongChina
| |
Collapse
|
4
|
Ranhotra HS. Discrete interplay of gut microbiota L-tryptophan metabolites in host biology and disease. Mol Cell Biochem 2024; 479:2273-2290. [PMID: 37861881 DOI: 10.1007/s11010-023-04867-0] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2023] [Accepted: 09/24/2023] [Indexed: 10/21/2023]
Abstract
The gut microbiota and the host maintain a conjoint relationship and together achieve optimal physiology via a multitude of interactive signalling cues. Dietary-derived L-tryptophan (L-trp) is enzymatically metabolized by the resident symbiotic gut microbiota to indole and various indole derivatives. Indole and indole metabolites secreted by the gut bacteria act locally in the intestinal cells as well as distally and modulate tissue-specific functions which are beneficial to the host. Functions attributed to these microbial indole metabolites in the host include regulation of intestinal permeability, immunity and mucosal roles, inflammation, and insulin sensitivity. On the other hand, dysregulation of gut microbiota L-trp metabolism compromises the optimal availability of indole and indole metabolites and can induce the onset of metabolic disorders, inflammation, liver steatosis, and decrease gut barrier integrity. Gut dysbiosis is regarded as one of the prime reasons for this deregulated microbial-derived indole metabolites. A number of indole metabolites from the gut bacteria have been identified recently displaying variable affinity towards xenobiotic nuclear receptors. Microbial metabolite mimicry concept can be used to design and develop novel indole-moiety-containing compounds with higher affinity towards the receptors and efficacy in preclinical studies. Such compounds may serve as therapeutic drugs in clinical trials in the future. In this article, I review L-trp metabolism in the host and gut microbiota and the various physiological functions, patho-physiologies associated with the microbial-released indole metabolites in the host, including the metabolite mimicry-based concept to develop tailored indole-containing novel experimental drugs.
Collapse
Affiliation(s)
- Harmit S Ranhotra
- Department of Biochemistry, St. Edmund's College, Shillong, 793 003, India.
| |
Collapse
|
5
|
Staudinger JL, Mahroke A, Patel G, Dattel C, Reddy S. Pregnane X Receptor Signaling Pathway and Vitamin K: Molecular Mechanisms and Clinical Relevance in Human Health. Cells 2024; 13:681. [PMID: 38667296 PMCID: PMC11049418 DOI: 10.3390/cells13080681] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2024] [Revised: 04/09/2024] [Accepted: 04/10/2024] [Indexed: 04/28/2024] Open
Abstract
This review explores the likely clinical impact of Pregnane X Receptor (PXR) activation by vitamin K on human health. PXR, initially recognized as a master regulator of xenobiotic metabolism in liver, emerges as a key regulator influencing intestinal homeostasis, inflammation, oxidative stress, and autophagy. The activation of PXR by vitamin K highlights its role as a potent endogenous and local agonist with diverse clinical implications. Recent research suggests that the vitamin K-mediated activation of PXR highlights this vitamin's potential in addressing pathophysiological conditions by promoting hepatic detoxification, fortifying gut barrier integrity, and controlling pro-inflammatory and apoptotic pathways. PXR activation by vitamin K provides an intricate association with cancer cell survival, particularly in colorectal and liver cancers, to provide new insights into potential novel therapeutic strategies. Understanding the clinical implications of PXR activation by vitamin K bridges molecular mechanisms with health outcomes, further offering personalized therapeutic approaches for complex diseases.
Collapse
Affiliation(s)
- Jeff L. Staudinger
- Division of Basic Sciences, Farber-McIntire Campus, College of Osteopathic Medicine, Kansas City University, Joplin Campus, 2901 St Johns Blvd, Joplin, MO 64804, USA (C.D.); (S.R.)
| | | | | | | | | |
Collapse
|
6
|
Dvořák Z, Vyhlídalová B, Pečinková P, Li H, Anzenbacher P, Špičáková A, Anzenbacherová E, Chow V, Liu J, Krause H, Wilson D, Berés T, Tarkowski P, Chen D, Mani S. In vitro safety signals for potential clinical development of the anti-inflammatory pregnane X receptor agonist FKK6. Bioorg Chem 2024; 144:107137. [PMID: 38245951 DOI: 10.1016/j.bioorg.2024.107137] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2023] [Revised: 12/25/2023] [Accepted: 01/14/2024] [Indexed: 01/23/2024]
Abstract
Based on the mimicry of microbial metabolites, functionalized indoles were demonstrated as the ligands and agonists of the pregnane X receptor (PXR). The lead indole, FKK6, displayed PXR-dependent protective effects in DSS-induced colitis in mice and in vitro cytokine-treated intestinal organoid cultures. Here, we report on the initial in vitro pharmacological profiling of FKK6. FKK6-PXR interactions were characterized by hydrogen-deuterium exchange mass spectrometry. Screening FKK6 against potential cellular off-targets (G protein-coupled receptors, steroid and nuclear receptors, ion channels, and xenobiotic membrane transporters) revealed high PXR selectivity. FKK6 has poor aqueous solubility but was highly soluble in simulated gastric and intestinal fluids. A large fraction of FKK6 was bound to plasma proteins and chemically stable in plasma. The partition coefficient of FKK6 was 2.70, and FKK6 moderately partitioned into red blood cells. In Caco2 cells, FKK6 displayed high permeability (A-B: 22.8 × 10-6 cm.s-1) and no active efflux. These data are indicative of essentially complete in vivo absorption of FKK6. The data from human liver microsomes indicated that FKK6 is rapidly metabolized by cytochromes P450 (t1/2 5 min), notably by CYP3A4. Two oxidized FKK6 derivatives, including DC73 (N6-oxide) and DC97 (C19-phenol), were detected, and these metabolites had 5-7 × lower potency as PXR agonists than FKK6. This implies that despite high intestinal absorption, FKK6 is rapidly eliminated by the liver, and its PXR effects are predicted to be predominantly in the intestines. In conclusion, the PXR ligand and agonist FKK6 has a suitable pharmacological profile supporting its potential preclinical development.
Collapse
Affiliation(s)
- Zdeněk Dvořák
- Department of Cell Biology and Genetics, Faculty of Science, Palacký University, Šlechtitelů 27, 783 71 Olomouc, Czech Republic.
| | - Barbora Vyhlídalová
- Department of Cell Biology and Genetics, Faculty of Science, Palacký University, Šlechtitelů 27, 783 71 Olomouc, Czech Republic
| | - Petra Pečinková
- Department of Cell Biology and Genetics, Faculty of Science, Palacký University, Šlechtitelů 27, 783 71 Olomouc, Czech Republic
| | - Hao Li
- Department of Medicine and Genetics, Albert Einstein College of Medicine, Bronx, NY 10461, USA
| | - Pavel Anzenbacher
- Department of Pharmacology, Faculty of Medicine and Dentistry, Palacký University, Hněvotínská 5, 779 00 Olomouc, Czech Republic
| | - Alena Špičáková
- Department of Pharmacology, Faculty of Medicine and Dentistry, Palacký University, Hněvotínská 5, 779 00 Olomouc, Czech Republic
| | - Eva Anzenbacherová
- Department of Medical Chemistry and Biochemistry, Faculty of Medicine and Dentistry, Palacký University, Hněvotínská 5, 779 00 Olomouc, Czech Republic
| | - Vimanda Chow
- Department of Chemistry, York University, 6 Thompson Road, M3J 1L3, ON, Toronto, Canada
| | - Jiabao Liu
- Department of Molecular Genetics, Donnelly Centre for Cellular and Biomolecular Research, 160 College Street, M5S 3E1, ON, Toronto, Canada
| | - Henry Krause
- Department of Molecular Genetics, Donnelly Centre for Cellular and Biomolecular Research, 160 College Street, M5S 3E1, ON, Toronto, Canada
| | - Derek Wilson
- Department of Chemistry, York University, 6 Thompson Road, M3J 1L3, ON, Toronto, Canada
| | - Tibor Berés
- Czech Advanced Technology and Research Institute, Palacký University, Šlechtitelů 27, 783 71 Olomouc, Czech Republic
| | - Petr Tarkowski
- Czech Advanced Technology and Research Institute, Palacký University, Šlechtitelů 27, 783 71 Olomouc, Czech Republic; Department of Genetic Resources for Vegetables, Medicinal and Special Plants, Centre of the Region Haná for Biotechnological and Agricultural Research, Crop Research Institute, Šlechtitelů 27, 783 71 Olomouc, Czech Republic
| | - Dajun Chen
- Department of Biochemistry, Albert Einstein College of Medicine, Bronx, NY 10461, USA
| | - Sridhar Mani
- Department of Medicine and Genetics, Albert Einstein College of Medicine, Bronx, NY 10461, USA.
| |
Collapse
|
7
|
Neal WM, Pandey P, Khan SI, Khan IA, Chittiboyina AG. Machine learning and traditional QSAR modeling methods: a case study of known PXR activators. J Biomol Struct Dyn 2024; 42:903-917. [PMID: 37059719 DOI: 10.1080/07391102.2023.2196701] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2022] [Accepted: 03/22/2023] [Indexed: 04/16/2023]
Abstract
Pregnane X receptor (PXR), extensively expressed in human tissues related to digestion and metabolism, is responsible for recognizing and detoxifying diverse xenobiotics encountered by humans. To comprehend the promiscuous nature of PXR and its ability to bind a variety of ligands, computational approaches, viz., quantitative structure-activity relationship (QSAR) models, aid in the rapid dereplication of potential toxicological agents and mitigate the number of animals used to establish a meaningful regulatory decision. Recent advancements in machine learning techniques accommodating larger datasets are expected to aid in developing effective predictive models for complex mixtures (viz., dietary supplements) before undertaking in-depth experiments. Five hundred structurally diverse PXR ligands were used to develop traditional two-dimensional (2D) QSAR, machine-learning-based 2D-QSAR, field-based three-dimensional (3D) QSAR, and machine-learning-based 3D-QSAR models to establish the utility of predictive machine learning methods. Additionally, the applicability domain of the agonists was established to ensure the generation of robust QSAR models. A prediction set of dietary PXR agonists was used to externally-validate generated QSAR models. QSAR data analysis revealed that machine-learning 3D-QSAR techniques were more accurate in predicting the activity of external terpenes with an external validation squared correlation coefficient (R2) of 0.70 versus an R2 of 0.52 in machine-learning 2D-QSAR. Additionally, a visual summary of the binding pocket of PXR was assembled from the field 3D-QSAR models. By developing multiple QSAR models in this study, a robust groundwork for assessing PXR agonism from various chemical backbones has been established in anticipation of the identification of potential causative agents in complex mixtures.
Collapse
Affiliation(s)
- William M Neal
- Division of Pharmacognosy, Department of BioMolecular Sciences, School of Pharmacy, The University of Mississippi, University, MS, USA
| | - Pankaj Pandey
- National Center for Natural Products Research, Research Institute of Pharmaceutical Sciences, School of Pharmacy, The University of Mississippi, University, MS, USA
| | - Shabana I Khan
- Division of Pharmacognosy, Department of BioMolecular Sciences, School of Pharmacy, The University of Mississippi, University, MS, USA
- National Center for Natural Products Research, Research Institute of Pharmaceutical Sciences, School of Pharmacy, The University of Mississippi, University, MS, USA
| | - Ikhlas A Khan
- Division of Pharmacognosy, Department of BioMolecular Sciences, School of Pharmacy, The University of Mississippi, University, MS, USA
- National Center for Natural Products Research, Research Institute of Pharmaceutical Sciences, School of Pharmacy, The University of Mississippi, University, MS, USA
| | - Amar G Chittiboyina
- National Center for Natural Products Research, Research Institute of Pharmaceutical Sciences, School of Pharmacy, The University of Mississippi, University, MS, USA
| |
Collapse
|
8
|
Barko PC, Williams DA, Wu YA, Steiner JM, Suchodolski JS, Gal A, Marsilio S. Chronic Inflammatory Enteropathy and Low-Grade Intestinal T-Cell Lymphoma Are Associated with Altered Microbial Tryptophan Catabolism in Cats. Animals (Basel) 2023; 14:67. [PMID: 38200798 PMCID: PMC10777963 DOI: 10.3390/ani14010067] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2023] [Revised: 12/05/2023] [Accepted: 12/12/2023] [Indexed: 01/12/2024] Open
Abstract
Chronic inflammatory enteropathy (CIE) and low-grade intestinal T-cell lymphoma (LGITL) are common chronic enteropathies (CE) in cats. Enteric microbiota dysbiosis is implicated in the pathogenesis of CE; however, the mechanisms of host-microbiome interactions are poorly understood in cats. Microbial indole catabolites of tryptophan (MICT) are gut bacterial catabolites of tryptophan that are hypothesized to regulate intestinal inflammation and mucosal barrier function. MICTs are decreased in the sera of humans with inflammatory bowel disease and previous studies identified altered tryptophan metabolism in cats with CE. We sought to determine whether MICTs were decreased in cats with CE using archived serum samples from cats with CIE (n = 44) or LGITL (n = 31) and healthy controls (n = 26). Quantitative LC-MS/MS was used to measure serum concentrations of tryptophan, its endogenous catabolites (kynurenine, kynurenate, serotonin) and MICTs (indolepyruvate, indolealdehyde, indoleacrylate, indoleacetamide, indoleacetate, indolelactate, indolepropionate, tryptamine). Serum concentrations of tryptophan, indolepropionate, indoleacrylate, indolealdehyde, indolepyruvate, indolelactate were significantly decreased in the CIE and LGITL groups compared to those in healthy controls. Indolelactate concentrations were significantly lower in cats with LGITL compared to CIE (p = 0.006). Significant correlations were detected among serum MICTs and cobalamin, folate, fPLI, and fTLI. Our findings suggest that MICTs are promising biomarkers to investigate the role of gut bacteria in the pathobiology of chronic enteropathies in cats.
Collapse
Affiliation(s)
- Patrick C. Barko
- Departments of Veterinary Clinical Medicine and Pathobiology, University of Illinois at Urbana-Champaign, Urbana, IL 61802, USA
| | - David A. Williams
- Departments of Veterinary Clinical Medicine and Pathobiology, University of Illinois at Urbana-Champaign, Urbana, IL 61802, USA
| | - Yu-An Wu
- Gastrointestinal Laboratory, School of Veterinary Medicine and Biomedical Sciences, Texas A&M University, College Station, TX 77843, USA
| | - Joerg M. Steiner
- Gastrointestinal Laboratory, School of Veterinary Medicine and Biomedical Sciences, Texas A&M University, College Station, TX 77843, USA
| | - Jan S. Suchodolski
- Gastrointestinal Laboratory, School of Veterinary Medicine and Biomedical Sciences, Texas A&M University, College Station, TX 77843, USA
| | - Arnon Gal
- Department of Veterinary Clinical Medicine, University of Illinois at Urbana-Champaign, Urbana, IL 61802, USA
| | - Sina Marsilio
- Department of Veterinary Medicine and Epidemiology, UC Davis School of Veterinary Medicine, Davis, CA 95616, USA
| |
Collapse
|
9
|
Sládeková L, Zgarbová E, Vrzal R, Vanda D, Soural M, Jakubcová K, Vázquez-Gómez G, Vondráček J, Dvořák Z. Switching on/off aryl hydrocarbon receptor and pregnane X receptor activities by chemically modified tryptamines. Toxicol Lett 2023; 387:63-75. [PMID: 37778463 DOI: 10.1016/j.toxlet.2023.09.012] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2023] [Revised: 09/01/2023] [Accepted: 09/27/2023] [Indexed: 10/03/2023]
Abstract
Microbial indoles have been demonstrated as selective or dual agonists and ligands of the pregnane X receptor (PXR) and aryl hydrocarbon receptor (AhR). However, structural determinants of microbial indoles selectivity towards both receptors remain elusive. Here, we studied the effects of existing and newly synthesized derivatives of indole microbial metabolite tryptamine on the activity of AhR and PXR receptors. We show that the elongation of indolyl-3-alkaneamine chain, indole N-methylation and conversion of indolyl-3-alkaneamines to oleamides resulted in a major increase of PXR activity and in parallel loss of AhR activity. Using reporter gene assays, RT-PCR and TR-FRET techniques, we have characterized in detail the activation of PXR by novel indolyl-3-alkanyl-oleamides, 1-methyltryptamine and 1-methyltryptamine-acetamide. As a proof of concept, we demonstrated anti-inflammatory and epithelial barrier-protective activity of lead derivatives in intestinal Caco-2 cells, employing the measurement of expression of pro-inflammatory chemokines, tight junction genes, trans-epithelial electric resistance TEER, and dextran-FITC permeability assay. In conclusion, we show that a subtle chemical modifications of simple microbial indole metabolite tryptamine, leads to substantial changes in AhR and PXR agonist activities.
Collapse
Affiliation(s)
- Lucia Sládeková
- Department of Cell Biology and Genetics, Faculty of Science, Palacký University, Šlechtitelů 27, 783 71 Olomouc, Czech Republic
| | - Eliška Zgarbová
- Department of Cell Biology and Genetics, Faculty of Science, Palacký University, Šlechtitelů 27, 783 71 Olomouc, Czech Republic
| | - Radim Vrzal
- Department of Cell Biology and Genetics, Faculty of Science, Palacký University, Šlechtitelů 27, 783 71 Olomouc, Czech Republic
| | - David Vanda
- Department of Organic Chemistry, Faculty of Science, Palacký University, 17. Listopadu 12, 771 46 Olomouc, Czech Republic
| | - Miroslav Soural
- Department of Organic Chemistry, Faculty of Science, Palacký University, 17. Listopadu 12, 771 46 Olomouc, Czech Republic
| | - Klára Jakubcová
- Department of Cytokinetics, Institute of Biophysics of the Czech Academy of Sciences, 612 65 Brno, Czech Republic
| | - Gerardo Vázquez-Gómez
- Department of Cytokinetics, Institute of Biophysics of the Czech Academy of Sciences, 612 65 Brno, Czech Republic
| | - Jan Vondráček
- Department of Cytokinetics, Institute of Biophysics of the Czech Academy of Sciences, 612 65 Brno, Czech Republic
| | - Zdeněk Dvořák
- Department of Cell Biology and Genetics, Faculty of Science, Palacký University, Šlechtitelů 27, 783 71 Olomouc, Czech Republic.
| |
Collapse
|
10
|
Zgarbová E, Vrzal R. Skatole: A thin red line between its benefits and toxicity. Biochimie 2022; 208:1-12. [PMID: 36586563 DOI: 10.1016/j.biochi.2022.12.014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2022] [Revised: 12/21/2022] [Accepted: 12/22/2022] [Indexed: 12/30/2022]
Abstract
Skatole (3-methylindole) is a heterocyclic compound naturally found in the feces of vertebrates and is produced by certain flowers. Skatole has been used in specific products of the perfume industry or as a flavor additive in ice cream. Additionally, skatole is formed by tryptophan pyrolysis of tobacco and has been demonstrated to be a mutagen. Skatole-induced pulmonotoxicity was reliably described in ruminants and rodents, but no studies have been conducted in humans. Initially, we provide basic knowledge and a historical overview of skatole. Then, skatole bacterial formation in the intestine is described, and the importance of the microbiome during this process is evaluated. Increased skatole concentrations could serve as a marker for intestinal disease development. Therefore, the human molecular targets of skatole that may have significant effects on various processes in the human body are described. Ultimately, we suggest a link between skatole intestinal formation in humans and skatole-induced pulmonotoxicity, which should be explored further in the future.
Collapse
Affiliation(s)
- Eliška Zgarbová
- Department of Cell Biology and Genetics, Faculty of Science, Palacky University, Slechtitelu 27, 783 71, Olomouc, Czech Republic
| | - Radim Vrzal
- Department of Cell Biology and Genetics, Faculty of Science, Palacky University, Slechtitelu 27, 783 71, Olomouc, Czech Republic.
| |
Collapse
|
11
|
Beyoğlu D, Idle JR. The gut microbiota - a vehicle for the prevention and treatment of hepatocellular carcinoma. Biochem Pharmacol 2022; 204:115225. [PMID: 35998677 DOI: 10.1016/j.bcp.2022.115225] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2022] [Revised: 08/15/2022] [Accepted: 08/16/2022] [Indexed: 12/24/2022]
Abstract
Hepatocellular carcinoma (HCC) arises principally against a background of cirrhosis and these two diseases are responsible globally for over 2 million deaths a year. There are few treatment options for liver cirrhosis and HCC, so it is vital to arrest these pathologies early in their development. To do so, we propose dietary and therapeutic solutions that involve the gut microbiota and its consequences. Integrated dietary, environmental and intrinsic signals result in a bidirectional connection between the liver and the gut with its microbiota, known as the gut-liver axis. Numerous lifestyle factors can result in dysbiosis with a change in the functional composition and metabolic activity of the microbiota. A panoply of metabolites can be produced by the microbiota, including ethanol, secondary bile acids, trimethylamine, indole, quinolone, phenazine and their derivatives and the quorum sensor acyl homoserine lactones that may contribute to HCC but have yet to be fully investigated. Gram-negative bacteria can activate the pattern recognition receptor toll-like receptor 4 (TLR4) in the liver leading to nuclear factor kappa-light-chain-enhancer of activated B cells (NF-κB) signaling, which can contribute to HCC initiation and progression. The goal in preventing HCC should be to ensure a healthy gut microbiota using probiotic supplements containing beneficial bacteria and prebiotic plant fibers such as oligosaccharides that stimulate their growth. The clinical development of TLR4 antagonists is urgently needed to counteract the pathological effects of dysbiosis on the liver and other organs. Further nutrigenomic studies are required to understand better how the diet influences the gut microbiota and its adverse effects on the liver.
Collapse
Affiliation(s)
- Diren Beyoğlu
- Arthur G. Zupko Institute for Systems Pharmacology and Pharmacogenomics, Arnold and Marie Schwartz College of Pharmacy and Health Sciences, Long Island University, Brooklyn, New York 11201, USA
| | - Jeffrey R Idle
- Arthur G. Zupko Institute for Systems Pharmacology and Pharmacogenomics, Arnold and Marie Schwartz College of Pharmacy and Health Sciences, Long Island University, Brooklyn, New York 11201, USA.
| |
Collapse
|
12
|
Meinan X, Yimeng W, Chao W, Tianli T, Li J, Peng Y, Xiangping N. Response of the Sirtuin/PXR signaling pathway in Mugilogobius chulae exposed to environmentally relevant concentration Paracetamol. AQUATIC TOXICOLOGY (AMSTERDAM, NETHERLANDS) 2022; 249:106222. [PMID: 35728459 DOI: 10.1016/j.aquatox.2022.106222] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/12/2022] [Revised: 06/09/2022] [Accepted: 06/10/2022] [Indexed: 06/15/2023]
Abstract
Paracetamol (APAP) is one of the most widely used non-steroidal anti-inflammatory drugs, which is frequently detected in various water bodies. Studies are limited about its toxic effects and mechanisms on non-target aquatic organisms. In this study, an estuarine bottom-dwelling fish named Mugilogobius chulae, distributed in southern China, was selected as experimental species and the changes of PXR signaling pathway, a key signaling pathway of detoxification metabolic system in liver, were investigated under APAP exposure (0.5 μg·L-1, 5 μg·L-1, 50 μg·L-1 and 500 μg·L-1) for 24 h, 72 h and 168 h. Results showed that the key genes (e.g., P-gp, MRP1, CYP1A, CYP3A, GST and SULT) and the enzymatic activities of GST, EROD and ERND in PXR signaling pathway were induced to meet the requirements of detoxification metabolism. By up-regulating the expression of GCLC gene, the reductive small molecule GSH can be rapidly synthesized to counteract the attack of free radicals produced by APAP exposure. The expressions of SIRT1 and SIRT2 proteins decreased, while the expressions of most genes in PXR signaling pathway increased. It was speculated that the expression of PXR and its downstream target genes may be regulated epigenetically by SIRT1 and SIRT2. Studies showed that the exposure to environmental relevant concentrations of APAP can affect the detoxification metabolism of non-target organisms such as Mugilogobius chulae.
Collapse
Affiliation(s)
- Xie Meinan
- Department of Ecology, Jinan University, Guangzhou, 510632, China
| | - Wang Yimeng
- Department of Ecology, Jinan University, Guangzhou, 510632, China
| | - Wang Chao
- Department of Ecology, Jinan University, Guangzhou, 510632, China
| | - Tang Tianli
- Department of Ecology, Jinan University, Guangzhou, 510632, China
| | - Jianjun Li
- Guangdong Laboratory Animals Monitoring Institute, Guangzhou, 510663, China
| | - Ying Peng
- Research and Development Center for Watershed Environmental Eco-Engineering, Beijing Normal University, Zhuhai, China
| | - Nie Xiangping
- Department of Ecology, Jinan University, Guangzhou, 510632, China.
| |
Collapse
|
13
|
Dutta M, Lim JJ, Cui JY. Pregnane X Receptor and the Gut-Liver Axis: A Recent Update. Drug Metab Dispos 2022; 50:478-491. [PMID: 34862253 PMCID: PMC11022899 DOI: 10.1124/dmd.121.000415] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2021] [Accepted: 12/02/2021] [Indexed: 02/04/2023] Open
Abstract
It is well-known that the pregnane X receptor (PXR)/Nr1i2 is a critical xenobiotic-sensing nuclear receptor enriched in liver and intestine and is responsible for drug-drug interactions, due to its versatile ligand binding domain (LBD) and target genes involved in xenobiotic biotransformation. PXR can be modulated by various xenobiotics including pharmaceuticals, nutraceuticals, dietary factors, and environmental chemicals. Microbial metabolites such as certain secondary bile acids (BAs) and the tryptophan metabolite indole-3-propionic acid (IPA) are endogenous PXR activators. Gut microbiome is increasingly recognized as an important regulator for host xenobiotic biotransformation and intermediary metabolism. PXR regulates and is regulated by the gut-liver axis. This review summarizes recent research advancements leveraging pharmaco- and toxico-metagenomic approaches that have redefined the previous understanding of PXR. Key topics covered in this review include: (1) genome-wide investigations on novel PXR-target genes, novel PXR-DNA interaction patterns, and novel PXR-targeted intestinal bacteria; (2) key PXR-modulating activators and suppressors of exogenous and endogenous sources; (3) novel bidirectional interactions between PXR and gut microbiome under physiologic, pathophysiological, pharmacological, and toxicological conditions; and (4) modifying factors of PXR-signaling including species and sex differences and time (age, critical windows of exposure, and circadian rhythm). The review also discusses critical knowledge gaps and important future research topics centering around PXR. SIGNIFICANCE STATEMENT: This review summarizes recent research advancements leveraging O'mics approaches that have redefined the previous understanding of the xenobiotic-sensing nuclear receptor pregnane X receptor (PXR). Key topics include: (1) genome-wide investigations on novel PXR-targeted host genes and intestinal bacteria as well as novel PXR-DNA interaction patterns; (2) key PXR modulators including microbial metabolites under physiological, pathophysiological, pharmacological, and toxicological conditions; and (3) modifying factors including species, sex, and time.
Collapse
Affiliation(s)
- Moumita Dutta
- Department of Environmental and Occupational Health Sciences, University of Washington, Seattle, Washington
| | - Joe Jongpyo Lim
- Department of Environmental and Occupational Health Sciences, University of Washington, Seattle, Washington
| | - Julia Yue Cui
- Department of Environmental and Occupational Health Sciences, University of Washington, Seattle, Washington
| |
Collapse
|
14
|
Li X, Zhang B, Hu Y, Zhao Y. New Insights Into Gut-Bacteria-Derived Indole and Its Derivatives in Intestinal and Liver Diseases. Front Pharmacol 2021; 12:769501. [PMID: 34966278 PMCID: PMC8710772 DOI: 10.3389/fphar.2021.769501] [Citation(s) in RCA: 96] [Impact Index Per Article: 24.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2021] [Accepted: 11/17/2021] [Indexed: 12/12/2022] Open
Abstract
The interaction between host and microorganism widely affects the immune and metabolic status. Indole and its derivatives are metabolites produced by the metabolism of tryptophan catalyzed by intestinal microorganisms. By activating nuclear receptors, regulating intestinal hormones, and affecting the biological effects of bacteria as signaling molecules, indole and its derivatives maintain intestinal homeostasis and impact liver metabolism and the immune response, which shows good therapeutic prospects. We reviewed recent studies on indole and its derivatives, including related metabolism, the influence of diets and intestinal commensal bacteria, and the targets and mechanisms in pathological conditions, especially progress in therapeutic strategies. New research insights into indoles will facilitate a better understanding of their druggability and application in intestinal and liver diseases.
Collapse
Affiliation(s)
- Xiaojing Li
- Key Laboratory of Liver and Kidney Diseases (Ministry of Education), Institute of Liver Diseases, Shanghai Key Laboratory of Traditional Chinese Clinical Medicine, Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Binbin Zhang
- Key Laboratory of Liver and Kidney Diseases (Ministry of Education), Institute of Liver Diseases, Shanghai Key Laboratory of Traditional Chinese Clinical Medicine, Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Yiyang Hu
- Key Laboratory of Liver and Kidney Diseases (Ministry of Education), Institute of Liver Diseases, Shanghai Key Laboratory of Traditional Chinese Clinical Medicine, Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, China
- Institute of Clinical Pharmacology, Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Yu Zhao
- Key Laboratory of Liver and Kidney Diseases (Ministry of Education), Institute of Liver Diseases, Shanghai Key Laboratory of Traditional Chinese Clinical Medicine, Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, China
| |
Collapse
|
15
|
Zhang J, Pavek P, Kamaraj R, Ren L, Zhang T. Dietary phytochemicals as modulators of human pregnane X receptor. Crit Rev Food Sci Nutr 2021:1-23. [PMID: 34698593 DOI: 10.1080/10408398.2021.1995322] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Abstract
As a promiscuous xenobiotic sensor, pregnane X receptor (PXR) plays a crucial role in drug metabolism. Since dietary phytochemicals exhibit the potential to modulate human PXR, this review aims to summarize the plant-derived PXR modulators, including agonists, partial agonists, and antagonists. The crystal structures of the apo and ligand-bound forms of PXR especially that of PXR complexed with binary mixtures are summarized, in order to provide the structural basis for PXR binding promiscuity and synergistic activation of PXR by composite ligands. Furthermore, this review summarizes the characterized agonists, partial agonists, and antagonists of human PXR from botanical source. Contrary to PXR agonists, there are only a few antagonists obtained from botanical source due to the promiscuity of PXR. It is worth noting that trans-resveratrol and a series of methylindoles have been identified as partial agonists of PXR, both in activating PXR function, but also inhibiting the effect of other PXR agonists. Since antagonizing PXR function plays a crucial role in the prevention of drug-drug interactions and improvement of therapeutic efficacy, further research is necessary to screen more plant-derived PXR antagonists in the future. In summary, this review may contribute to understanding the roles of phytochemicals in food-drug and herb-drug interactions.
Collapse
Affiliation(s)
- Jie Zhang
- College of Food Science and Engineering, Jilin University, Changchun, China
| | - Petr Pavek
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Charles University, Hradec Kralove, Czech Republic
| | - Rajamanikkam Kamaraj
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Charles University, Hradec Kralove, Czech Republic
| | - Li Ren
- College of Food Science and Engineering, Jilin University, Changchun, China
| | - Tiehua Zhang
- College of Food Science and Engineering, Jilin University, Changchun, China
| |
Collapse
|
16
|
Krasulova K, Illes P. Intestinal interplay of quorum sensing molecules and human receptors. Biochimie 2021; 189:108-119. [PMID: 34186126 DOI: 10.1016/j.biochi.2021.06.010] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2021] [Revised: 06/03/2021] [Accepted: 06/22/2021] [Indexed: 12/20/2022]
Abstract
Human gut is in permanent contact with microorganisms that play an important role in many physiological processes including metabolism and immunologic activity. These microorganisms communicate and manage themself by the quorum sensing system (QS) that helps to coordinate optimal growth and subsistence by activating signaling pathways that regulate bacterial gene expression. Diverse QS molecules produced by pathogenic as well as resident microbiota have been found throughout the human gut. However, even a host can by affected by these molecules. Intestinal and immune cells possess a range of molecular targets for QS. Our present knowledge on bacteria-cell communication encompasses G-protein-coupled receptors, nuclear receptors and receptors for bacterial cell-wall components. The QS of commensal bacteria has been approved as a protective factor with favourable effects on intestinal homeostasis and immunity. Signaling molecules of QS interacting with above-mentioned receptors thus parcipitate on maintaining of barrier functions, control of inflammation processes and increase of resistance to pathogen colonization in host organisms. Pathogens QS molecules can have a dual function. Host cells are able to detect the ongoing infection by monitoring the presence and changes in concentrations of QS molecules. Such information can help to set the most effective immune defence to prevent or overcome the infection. Contrary, pathogens QS signals can target the host receptors to deceive the immune system to get the best conditions for growth. However, our knowledge about communication mediated by QS is still limited and detailed understanding of molecular mechanisms of QS signaling is desired.
Collapse
Affiliation(s)
- Kristyna Krasulova
- Department of Cell Biology and Genetics, Faculty of Science, Palacky University, Slechtitelu 27, 783 71, Olomouc, Czech Republic.
| | - Peter Illes
- Department of Cell Biology and Genetics, Faculty of Science, Palacky University, Slechtitelu 27, 783 71, Olomouc, Czech Republic
| |
Collapse
|
17
|
Grifka-Walk HM, Jenkins BR, Kominsky DJ. Amino Acid Trp: The Far Out Impacts of Host and Commensal Tryptophan Metabolism. Front Immunol 2021; 12:653208. [PMID: 34149693 PMCID: PMC8213022 DOI: 10.3389/fimmu.2021.653208] [Citation(s) in RCA: 57] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2021] [Accepted: 05/11/2021] [Indexed: 12/12/2022] Open
Abstract
Tryptophan (Trp) is an essential amino acid primarily derived from the diet for use by the host for protein synthesis. The intestinal tract is lined with cells, both host and microbial, that uptake and metabolize Trp to also generate important signaling molecules. Serotonin (5-HT), kynurenine and its downstream metabolites, and to a lesser extent other neurotransmitters are generated by the host to signal onto host receptors and elicit physiological effects. 5-HT production by neurons in the CNS regulates sleep, mood, and appetite; 5-HT production in the intestinal tract by enterochromaffin cells regulates gastric motility and inflammation in the periphery. Kynurenine can signal onto the aryl hydrocarbon receptor (AHR) to elicit pleiotropic responses from several cell types including epithelial and immune cells, or can be further metabolized into bioactive molecules to influence neurodegenerative disease. There is a remarkable amount of cross-talk with the microbiome with regard to tryptophan metabolites as well. The gut microbiome can regulate the production of host tryptophan metabolites and can use dietary or recycled trp to generate bioactive metabolites themselves. Trp derivatives like indole are able to signal onto xenobiotic receptors, including AHR, to elicit tolerogenic effects. Here, we review studies that demonstrate that tryptophan represents a key intra-kingdom signaling molecule.
Collapse
Affiliation(s)
| | | | - Douglas J. Kominsky
- Department of Microbiology and Immunology, Montana State University, Bozeman, MT, United States
| |
Collapse
|
18
|
Li H, Illés P, Karunaratne CV, Nordstrøm LU, Luo X, Yang A, Qiu Y, Kurland IJ, Lukin DJ, Chen W, Jiskrová E, Krasulová K, Pečinková P, DesMarais VM, Liu Q, Albanese JM, Akki A, Longo M, Coffin B, Dou W, Mani S, Dvořák Z. Deciphering structural bases of intestinal and hepatic selectivity in targeting pregnane X receptor with indole-based microbial mimics. Bioorg Chem 2021; 109:104661. [PMID: 33636438 PMCID: PMC8646148 DOI: 10.1016/j.bioorg.2021.104661] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2020] [Revised: 01/07/2021] [Accepted: 01/12/2021] [Indexed: 02/07/2023]
Abstract
Microbial metabolite mimicry is a new concept that promises to deliver compounds that have minimal liabilities and enhanced therapeutic effects in a host. In a previous publication, we have shown that microbial metabolites of L-tryptophan, indoles, when chemically altered, yielded potent anti-inflammatory pregnane X Receptor (PXR)-targeting lead compounds, FKK5 and FKK6, targeting intestinal inflammation. Our aim in this study was to further define structure-activity relationships between indole analogs and PXR, we removed the phenyl-sulfonyl group or replaced the pyridyl residue with imidazolopyridyl of FKK6. Our results showed that while removal of the phenyl-sulfonyl group from FKK6 (now called CVK003) shifts agonist activity away from PXR towards the aryl hydrocarbon receptor (AhR), the imidazolopyridyl addition preserves PXR activity in vitro. However, when these compounds are administered to mice, that unlike the parent molecule, FKK6, they exhibit poor induction of PXR target genes in the intestines and the liver. These data suggest that modifications of FKK6 specifically in the pyridyl moiety can result in compounds with weak PXR activity in vivo. These observations are a significant step forward for understanding the structure-activity relationships (SAR) between indole mimics and receptors, PXR and AhR.
Collapse
Affiliation(s)
- Hao Li
- Department of Medicine and Genetics, Albert Einstein College of Medicine, Bronx, NY, USA
| | - Peter Illés
- Department of Cell Biology and Genetics, Faculty of Science, Palacký University, Šlechtitelů 27, 783 71 Olomouc, Czech Republic
| | | | | | - Xiaoping Luo
- Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Annie Yang
- Department of Medicine and Genetics, Albert Einstein College of Medicine, Bronx, NY, USA
| | - Yunping Qiu
- Department of Medicine and Genetics, Albert Einstein College of Medicine, Bronx, NY, USA
| | - Irwin J Kurland
- Department of Medicine and Genetics, Albert Einstein College of Medicine, Bronx, NY, USA
| | - Dana J Lukin
- Department of Medicine and Genetics, Albert Einstein College of Medicine, Bronx, NY, USA
| | - Weijie Chen
- Department of Medicine and Genetics, Albert Einstein College of Medicine, Bronx, NY, USA
| | - Eva Jiskrová
- Department of Cell Biology and Genetics, Faculty of Science, Palacký University, Šlechtitelů 27, 783 71 Olomouc, Czech Republic
| | - Kristýna Krasulová
- Department of Cell Biology and Genetics, Faculty of Science, Palacký University, Šlechtitelů 27, 783 71 Olomouc, Czech Republic
| | - Petra Pečinková
- Department of Cell Biology and Genetics, Faculty of Science, Palacký University, Šlechtitelů 27, 783 71 Olomouc, Czech Republic
| | - Vera M DesMarais
- Department of Anatomy and Structural Biology, Albert Einstein College of Medicine, Bronx, NY, USA
| | - Qiang Liu
- Department of Pathology, Albert Einstein College of Medicine, Bronx, NY, USA
| | - Joseph M Albanese
- Department of Pathology, Albert Einstein College of Medicine, Bronx, NY, USA
| | - Ashwin Akki
- Department of Pathology, Albert Einstein College of Medicine, Bronx, NY, USA; Department of Pathology, University of Chicago, Chicago, IL, USA
| | - Michael Longo
- Department of Medical Education, Albert Einstein College of Medicine, Bronx, NY, USA
| | - Breyen Coffin
- Department of Medical Education, Albert Einstein College of Medicine, Bronx, NY, USA
| | - Wei Dou
- Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Sridhar Mani
- Department of Medicine and Genetics, Albert Einstein College of Medicine, Bronx, NY, USA.
| | - Zdeněk Dvořák
- Department of Cell Biology and Genetics, Faculty of Science, Palacký University, Šlechtitelů 27, 783 71 Olomouc, Czech Republic.
| |
Collapse
|
19
|
Abstract
Historically, the focus of type II diabetes mellitus (T2DM) research has been on host metabolism and hormone action. However, emerging evidence suggests that the gut microbiome, commensal microbes that colonize the gastrointestinal tract, also play a significant role in T2DM pathogenesis. Specifically, gut microbes metabolize what is available to them through the host diet to produce small molecule metabolites that can have endocrine-like effects on human cells. In fact, the meta-organismal crosstalk between gut microbe-generated metabolites and host receptor systems may represent an untapped therapeutic target for those at risk for or suffering from T2DM. Recent evidence suggests that gut microbe-derived metabolites can impact host adiposity, insulin resistance, and hormone secretion to collectively impact T2DM progression. Here we review the current evidence that structurally diverse gut microbe-derived metabolites, including short chain fatty acids, secondary bile acids, aromatic metabolites, trimethylamine-N-oxide, polyamines, and N-acyl amides, that can engage with host receptors in an endocrine-like manner to promote host metabolic disturbance associated with T2DM. Although these microbe-host signaling circuits are not as well understood as host hormonal signaling, they hold untapped potential as new druggable targets to improve T2DM complications. Whether drugs that selectively target meta-organismal endocrinology will be safe and efficacious in treating T2DM is a key new question in the field of endocrinology. Here we discuss the opportunities and challenges in targeting the gut microbial endocrine organ for the treatment of diabetes and potentially many other diseases where diet-microbe-host interactions play a contributory role.
Collapse
Affiliation(s)
- William Massey
- Department of Cardiovascular and Metabolic Sciences, Lerner Research Institute of the Cleveland Clinic, Cleveland, OH, USA
- Center for Microbiome and Human Health, Lerner Research Institute of the Cleveland Clinic, Cleveland, OH, USA
| | - J Mark Brown
- Department of Cardiovascular and Metabolic Sciences, Lerner Research Institute of the Cleveland Clinic, Cleveland, OH, USA
- Center for Microbiome and Human Health, Lerner Research Institute of the Cleveland Clinic, Cleveland, OH, USA
- Correspondence: J. Mark Brown, Department of Cardiovascular and Metabolic Sciences, Cleveland Clinic, Cleveland, OH 44195, USA.
| |
Collapse
|
20
|
Illés P, Krasulová K, Vyhlídalová B, Poulíková K, Marcalíková A, Pečinková P, Sirotová N, Vrzal R, Mani S, Dvořák Z. Indole microbial intestinal metabolites expand the repertoire of ligands and agonists of the human pregnane X receptor. Toxicol Lett 2020; 334:87-93. [DOI: 10.1016/j.toxlet.2020.09.015] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2020] [Revised: 09/01/2020] [Accepted: 09/21/2020] [Indexed: 12/11/2022]
|
21
|
Dvořák Z, Sokol H, Mani S. Drug Mimicry: Promiscuous Receptors PXR and AhR, and Microbial Metabolite Interactions in the Intestine. Trends Pharmacol Sci 2020; 41:900-908. [PMID: 33097284 DOI: 10.1016/j.tips.2020.09.013] [Citation(s) in RCA: 39] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2020] [Revised: 09/24/2020] [Accepted: 09/30/2020] [Indexed: 02/06/2023]
Abstract
Significant attrition limits drug discovery. The available chemical entities present with drug-like features contribute to this limitation. Using specific examples of promiscuous receptor-ligand interactions, a case is made for expanding the chemical space for drug-like molecules. These ligand-receptor interactions are poor candidates for the drug discovery process. However, provided herein are specific examples of ligand-receptor or transcription-factor interactions, namely, the pregnane X receptor (PXR) and the aryl hydrocarbon receptor (AhR), and itsinteractions with microbial metabolites. Discrete examples of microbial metabolite mimicry are shown to yield more potent and non-toxic therapeutic leads for pathophysiological conditions regulated by PXR and AhR. These examples underscore the opinion that microbial metabolite mimicry of promiscuous ligand-receptor interactions is warranted, and will likely expand the existing chemical space of drugs.
Collapse
Affiliation(s)
- Zdeněk Dvořák
- Departments of Cell Biology and Genetics, Palacký University, Olomouc 78371, Czech Republic.
| | - Harry Sokol
- Sorbonne Université, Inserm, Centre de Recherche Saint-Antoine, CRSA, AP-HP, Hôpital Saint Antoine, Service de Gastroenterologie, F-75012 Paris, France; INRA, UMR 1319 Micalis and AgroParisTech, 78352 Jouy-en-Josas, France; Paris Centre for Microbiome Medicine FHU, Paris, France
| | - Sridhar Mani
- Department of Molecular Pharmacology, Albert Einstein College of Medicine, Bronx, NY 10461, USA; Department of Genetics, Albert Einstein College of Medicine, Bronx, NY 10461, USA; Department of Medicine, Albert Einstein College of Medicine, Bronx, NY 10461, USA.
| |
Collapse
|
22
|
Brtko J, Dvorak Z. Natural and synthetic retinoid X receptor ligands and their role in selected nuclear receptor action. Biochimie 2020; 179:157-168. [PMID: 33011201 DOI: 10.1016/j.biochi.2020.09.027] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2020] [Revised: 09/22/2020] [Accepted: 09/30/2020] [Indexed: 02/06/2023]
Abstract
Important key players in the regulatory machinery within the cells are nuclear retinoid X receptors (RXRs), which compose heterodimers in company with several diverse nuclear receptors, playing a role as ligand inducible transcription factors. In general, nuclear receptors are ligand-activated, transcription-modulating proteins affecting transcriptional responses in target genes. RXR molecules forming permissive heterodimers with disparate nuclear receptors comprise peroxisome proliferator-activated receptors (PPARs), liver X receptors (LXRs), farnesoid X receptor (FXR), pregnane X receptor (PXR) and constitutive androstan receptor (CAR). Retinoid receptors (RARs) and thyroid hormone receptors (TRs) may form conditional heterodimers, and dihydroxyvitamin D3 receptor (VDR) is believed to form nonpermissive heterodimer. Thus, RXRs are the important molecules that are involved in control of many cellular functions in biological processes and diseases, including cancer or diabetes. This article summarizes both naturally occurring and synthetic ligands for nuclear retinoid X receptors and describes, predominantly in mammals, their role in molecular mechanisms within the cells. A focus is also on triorganotin compounds, which are high affinity RXR ligands, and finally, we present an outlook on human microbiota as a potential source of RXR activators. Nevertheless, new synthetic rexinoids with better retinoid X receptor activity and lesser side effects are highly required.
Collapse
Affiliation(s)
- Julius Brtko
- Institute of Experimental Endocrinology, Biomedical Center of the Slovak Academy of Sciences, Dubravska cesta 9, 845 05, Bratislava, Slovak Republic.
| | - Zdenek Dvorak
- Department of Cell Biology and Genetics, Faculty of Science, Palacky University, Slechtitelu 11, 783 71, Olomouc, Czech Republic
| |
Collapse
|