1
|
Yan X, Yang Z, Zhao H, Feng G, Li S, Li Y, Sun Y, Ma J, Zhao H, Gao X, Zhao S. Unveiling lipoprotein subfractions signature in high-FNPO PCOS: implications for PCOM diagnosis and risk assessment using advanced machine learning models. BMC Med 2025; 23:289. [PMID: 40389976 PMCID: PMC12090585 DOI: 10.1186/s12916-025-04120-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/25/2024] [Accepted: 05/09/2025] [Indexed: 05/21/2025] Open
Abstract
BACKGROUND Polycystic ovary syndrome (PCOS) is a common reproductive and metabolic disorder in the reproductive-age women. The international evidence-based guideline for the assessment and management of PCOS 2023 now suggests raising the follicle number per ovary (FNPO) threshold from 12 to 20 to define its key feature, polycystic ovarian morphology (PCOM). However, understanding of low- and high-FNPO PCOS cases defined in this cutoff is very limited. Given that the measures of lipoprotein subfractions are the biomarkers of several common diseases, this study aims to explore clinical characteristics and lipoprotein subfractions in low- and high-FNPO PCOS, and develop a diagnostic model. METHODS A total of 1918 women including 792 low- and 182 high-FNPO PCOS cases, met the international evidence-based guideline 2023, and 944 controls were collected for clinical data analysis. Plasma samples of 66 low-FNPO and 24 high-FNPO PCOS cases and 22 controls matched with BMI and age were utilized for the measurement of 112 lipoprotein subfractions by nuclear magnetic resonance spectroscopy. Partial least squares discriminant analysis (PLS-DA) and logistic regression analysis were used to identify key lipoprotein subfractions. Ten machine learning algorithms and recursive feature elimination with logistic regression were used to construct the effective model to predict PCOM based on the new guideline. Models were validated with bootstrap resampling. RESULTS High-FNPO PCOS cases presented worse lipid parameters compared with low-FNPO cases and controls. Based on the results of PLS-DA and logistic regression analysis, seven key lipoprotein subfractions were selected, including V2TG, V3TG, V4TG, V2CH, V3CH, V3PL, and V4PL. The addition of them into the anti-Müllerian hormone (AMH) models for predicting high-FNPO PCOS resulted in a significantly improved model performance (AUC increased from 0.750 to 0.874). Even if the only V3TG was added into the AMH model, the AUC increased to 0.807. CONCLUSIONS Lipid metabolism, particularly seven key lipoprotein subfractions, has been identified as a major risk factor for high-FNPO PCOS cases. Among these, V3TG subfraction warrants special attention, both from the perspective of disease risk and precision diagnosis. Due to the lack of effective external validation at this stage, validation of larger sample sizes is necessary before generalizing the application.
Collapse
Affiliation(s)
- Xueqi Yan
- State Key Laboratory of Reproductive Medicine and Offspring Health, Center for Reproductive Medicine, Institute of Women, Children and Reproductive Health, Shandong University, Jinan, Shandong, 250012, China
- National Research Center for Assisted Reproductive Technology and Reproductive Genetics, Shandong University, Jinan, Shandong, 250012, China
- Key Laboratory of Reproductive Endocrinology (Shandong University), Ministry of Education, Jinan, Shandong, 250012, China
- Shandong Technology Innovation Center for Reproductive Health, Jinan, Shandong, 250012, China
- Shandong Provincial Clinical Research Center for Reproductive Health, Jinan, Shandong, 250012, China
- Shandong Key Laboratory of Reproductive Medicine, Shandong Provincial HospitalAffiliated to, Shandong First Medical University, Jinan, Shandong, 250012, China
- Research Unit of Gametogenesisand and Health of ART-Offspring, Chinese Academy of Medical Sciences (No.2021RU001), Jinan, Shandong, 250012, China
| | - Ziyi Yang
- State Key Laboratory of Reproductive Medicine and Offspring Health, Center for Reproductive Medicine, Institute of Women, Children and Reproductive Health, Shandong University, Jinan, Shandong, 250012, China
- National Research Center for Assisted Reproductive Technology and Reproductive Genetics, Shandong University, Jinan, Shandong, 250012, China
- Key Laboratory of Reproductive Endocrinology (Shandong University), Ministry of Education, Jinan, Shandong, 250012, China
- Shandong Technology Innovation Center for Reproductive Health, Jinan, Shandong, 250012, China
- Shandong Provincial Clinical Research Center for Reproductive Health, Jinan, Shandong, 250012, China
- Shandong Key Laboratory of Reproductive Medicine, Shandong Provincial HospitalAffiliated to, Shandong First Medical University, Jinan, Shandong, 250012, China
- Research Unit of Gametogenesisand and Health of ART-Offspring, Chinese Academy of Medical Sciences (No.2021RU001), Jinan, Shandong, 250012, China
| | - Hui Zhao
- State Key Laboratory of Reproductive Medicine and Offspring Health, Center for Reproductive Medicine, Institute of Women, Children and Reproductive Health, Shandong University, Jinan, Shandong, 250012, China
- National Research Center for Assisted Reproductive Technology and Reproductive Genetics, Shandong University, Jinan, Shandong, 250012, China
- Research Unit of Gametogenesisand and Health of ART-Offspring, Chinese Academy of Medical Sciences (No.2021RU001), Jinan, Shandong, 250012, China
| | - Gengchen Feng
- State Key Laboratory of Reproductive Medicine and Offspring Health, Center for Reproductive Medicine, Institute of Women, Children and Reproductive Health, Shandong University, Jinan, Shandong, 250012, China
- National Research Center for Assisted Reproductive Technology and Reproductive Genetics, Shandong University, Jinan, Shandong, 250012, China
- Key Laboratory of Reproductive Endocrinology (Shandong University), Ministry of Education, Jinan, Shandong, 250012, China
- Shandong Technology Innovation Center for Reproductive Health, Jinan, Shandong, 250012, China
- Shandong Provincial Clinical Research Center for Reproductive Health, Jinan, Shandong, 250012, China
- Shandong Key Laboratory of Reproductive Medicine, Shandong Provincial HospitalAffiliated to, Shandong First Medical University, Jinan, Shandong, 250012, China
- Research Unit of Gametogenesisand and Health of ART-Offspring, Chinese Academy of Medical Sciences (No.2021RU001), Jinan, Shandong, 250012, China
| | - Shumin Li
- State Key Laboratory of Reproductive Medicine and Offspring Health, Center for Reproductive Medicine, Institute of Women, Children and Reproductive Health, Shandong University, Jinan, Shandong, 250012, China
- National Research Center for Assisted Reproductive Technology and Reproductive Genetics, Shandong University, Jinan, Shandong, 250012, China
- Key Laboratory of Reproductive Endocrinology (Shandong University), Ministry of Education, Jinan, Shandong, 250012, China
- Shandong Technology Innovation Center for Reproductive Health, Jinan, Shandong, 250012, China
- Shandong Provincial Clinical Research Center for Reproductive Health, Jinan, Shandong, 250012, China
- Shandong Key Laboratory of Reproductive Medicine, Shandong Provincial HospitalAffiliated to, Shandong First Medical University, Jinan, Shandong, 250012, China
- Research Unit of Gametogenesisand and Health of ART-Offspring, Chinese Academy of Medical Sciences (No.2021RU001), Jinan, Shandong, 250012, China
- Shanghai Key Laboratory for Assisted Reproduction and Reproductive Genetics, Shanghai, China
- Department of Reproductive Medicine, Ren Ji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Yimeng Li
- State Key Laboratory of Reproductive Medicine and Offspring Health, Center for Reproductive Medicine, Institute of Women, Children and Reproductive Health, Shandong University, Jinan, Shandong, 250012, China
- National Research Center for Assisted Reproductive Technology and Reproductive Genetics, Shandong University, Jinan, Shandong, 250012, China
- Key Laboratory of Reproductive Endocrinology (Shandong University), Ministry of Education, Jinan, Shandong, 250012, China
- Shandong Technology Innovation Center for Reproductive Health, Jinan, Shandong, 250012, China
- Shandong Provincial Clinical Research Center for Reproductive Health, Jinan, Shandong, 250012, China
- Shandong Key Laboratory of Reproductive Medicine, Shandong Provincial HospitalAffiliated to, Shandong First Medical University, Jinan, Shandong, 250012, China
- Research Unit of Gametogenesisand and Health of ART-Offspring, Chinese Academy of Medical Sciences (No.2021RU001), Jinan, Shandong, 250012, China
| | - Yu Sun
- State Key Laboratory of Reproductive Medicine and Offspring Health, Center for Reproductive Medicine, Institute of Women, Children and Reproductive Health, Shandong University, Jinan, Shandong, 250012, China
- National Research Center for Assisted Reproductive Technology and Reproductive Genetics, Shandong University, Jinan, Shandong, 250012, China
- Key Laboratory of Reproductive Endocrinology (Shandong University), Ministry of Education, Jinan, Shandong, 250012, China
- Shandong Technology Innovation Center for Reproductive Health, Jinan, Shandong, 250012, China
- Shandong Provincial Clinical Research Center for Reproductive Health, Jinan, Shandong, 250012, China
- Shandong Key Laboratory of Reproductive Medicine, Shandong Provincial HospitalAffiliated to, Shandong First Medical University, Jinan, Shandong, 250012, China
- Research Unit of Gametogenesisand and Health of ART-Offspring, Chinese Academy of Medical Sciences (No.2021RU001), Jinan, Shandong, 250012, China
| | - Jinlong Ma
- State Key Laboratory of Reproductive Medicine and Offspring Health, Center for Reproductive Medicine, Institute of Women, Children and Reproductive Health, Shandong University, Jinan, Shandong, 250012, China
- National Research Center for Assisted Reproductive Technology and Reproductive Genetics, Shandong University, Jinan, Shandong, 250012, China
- Key Laboratory of Reproductive Endocrinology (Shandong University), Ministry of Education, Jinan, Shandong, 250012, China
- Shandong Technology Innovation Center for Reproductive Health, Jinan, Shandong, 250012, China
- Shandong Provincial Clinical Research Center for Reproductive Health, Jinan, Shandong, 250012, China
- Shandong Key Laboratory of Reproductive Medicine, Shandong Provincial HospitalAffiliated to, Shandong First Medical University, Jinan, Shandong, 250012, China
- Research Unit of Gametogenesisand and Health of ART-Offspring, Chinese Academy of Medical Sciences (No.2021RU001), Jinan, Shandong, 250012, China
| | - Han Zhao
- State Key Laboratory of Reproductive Medicine and Offspring Health, Center for Reproductive Medicine, Institute of Women, Children and Reproductive Health, Shandong University, Jinan, Shandong, 250012, China
- National Research Center for Assisted Reproductive Technology and Reproductive Genetics, Shandong University, Jinan, Shandong, 250012, China
- Key Laboratory of Reproductive Endocrinology (Shandong University), Ministry of Education, Jinan, Shandong, 250012, China
- Shandong Technology Innovation Center for Reproductive Health, Jinan, Shandong, 250012, China
- Shandong Provincial Clinical Research Center for Reproductive Health, Jinan, Shandong, 250012, China
- Shandong Key Laboratory of Reproductive Medicine, Shandong Provincial HospitalAffiliated to, Shandong First Medical University, Jinan, Shandong, 250012, China
- Research Unit of Gametogenesisand and Health of ART-Offspring, Chinese Academy of Medical Sciences (No.2021RU001), Jinan, Shandong, 250012, China
| | - Xueying Gao
- State Key Laboratory of Reproductive Medicine and Offspring Health, Center for Reproductive Medicine, Institute of Women, Children and Reproductive Health, Shandong University, Jinan, Shandong, 250012, China.
- National Research Center for Assisted Reproductive Technology and Reproductive Genetics, Shandong University, Jinan, Shandong, 250012, China.
- Key Laboratory of Reproductive Endocrinology (Shandong University), Ministry of Education, Jinan, Shandong, 250012, China.
- Shandong Technology Innovation Center for Reproductive Health, Jinan, Shandong, 250012, China.
- Shandong Provincial Clinical Research Center for Reproductive Health, Jinan, Shandong, 250012, China.
- Shandong Key Laboratory of Reproductive Medicine, Shandong Provincial HospitalAffiliated to, Shandong First Medical University, Jinan, Shandong, 250012, China.
- Research Unit of Gametogenesisand and Health of ART-Offspring, Chinese Academy of Medical Sciences (No.2021RU001), Jinan, Shandong, 250012, China.
- Shanghai Key Laboratory for Assisted Reproduction and Reproductive Genetics, Shanghai, China.
- Department of Reproductive Medicine, Ren Ji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China.
| | - Shigang Zhao
- State Key Laboratory of Reproductive Medicine and Offspring Health, Center for Reproductive Medicine, Institute of Women, Children and Reproductive Health, Shandong University, Jinan, Shandong, 250012, China.
- National Research Center for Assisted Reproductive Technology and Reproductive Genetics, Shandong University, Jinan, Shandong, 250012, China.
- Key Laboratory of Reproductive Endocrinology (Shandong University), Ministry of Education, Jinan, Shandong, 250012, China.
- Shandong Technology Innovation Center for Reproductive Health, Jinan, Shandong, 250012, China.
- Shandong Provincial Clinical Research Center for Reproductive Health, Jinan, Shandong, 250012, China.
- Shandong Key Laboratory of Reproductive Medicine, Shandong Provincial HospitalAffiliated to, Shandong First Medical University, Jinan, Shandong, 250012, China.
- Research Unit of Gametogenesisand and Health of ART-Offspring, Chinese Academy of Medical Sciences (No.2021RU001), Jinan, Shandong, 250012, China.
| |
Collapse
|
2
|
Lee CC, Fan H, Tsopmo A, Regenstein JM, Ashaolu TJ. Plant-based antioxidant peptides: impact on oxidative stress and gut microbiota. Crit Rev Food Sci Nutr 2025:1-24. [PMID: 40219794 DOI: 10.1080/10408398.2025.2490270] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/14/2025]
Abstract
Plant-based peptides can be obtained from natural and climate-friendly sources. These peptides show various bioactivities including antioxidant activity. Oxidative stress has an impact on the gut microbiota causing inflammation, insulin resistance, osteoporosis, cancer, and several chronic diseases like type 2 diabetes, arthritis, hypertension, and atherosclerosis. Therefore, antioxidant peptides may significantly affect oxidative stress as a potential alternative to conventional medication. The production of antioxidant peptides from plant-based protein sources through conventional and innovative approaches may provide promising strategies to improve gut microbiota. Recent studies in plant-based antioxidant peptides (PBAP) focus on their advanced identification and characterization techniques, structure-activity relationship, improvement of extraction and purification, cellular and molecular mechanisms, specific health applications in preventing and managing conditions with gut microbiota, and commercial applications in nutraceuticals. Short-chain fatty acids and reactive sulfur species are specific gut-derived metabolites that can improve metabolic function by modulating oxidative stress and the immune system. This review highlights the influence of food oxidants on the gut microbiota and PBAP-induced modulation of gut microbiota. Moreover, the production of PBAP and the challenges in their application will be discussed.
Collapse
Affiliation(s)
- Chi Ching Lee
- Department of Food Engineering, Faculty of Engineering and Natural Sciences, Istanbul Sabahattin Zaim University, Istanbul, Turkey
- Department of Food Technology and Nutrition, Faculty of Technologies, Klaipeda State University of Applied Sciences, Klaipeda, Lithuania
| | - Hongbing Fan
- Department of Animal and Food Sciences, Martin-Gatton College of Agriculture, Food and Environment, University of Kentucky, Lexington, KY, USA
| | - Apollinaire Tsopmo
- Food Science and Nutrition Program, Department of Chemistry, Carleton University, Ottawa, Canada
- Institute of Biochemistry, Carleton University, Ottawa, Canada
| | - Joe M Regenstein
- Department of Food Science, College of Agriculture and Life Sciences, Cornell University, Ithaca, NY, USA
| | - Tolulope Joshua Ashaolu
- Institute for Global Health Innovations, Duy Tan University, Da Nang, Vietnam
- Faculty of Medicine, Duy Tan University, Da Nang, Vietnam
| |
Collapse
|
3
|
Novbatova G, Fox I, Timme K, Keating AF. High fat diet-induced obesity and gestational DMBA exposure alter folliculogenesis and the proteome of the maternal ovary†. Biol Reprod 2024; 111:496-511. [PMID: 38813940 PMCID: PMC11327317 DOI: 10.1093/biolre/ioae070] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2023] [Revised: 03/29/2024] [Accepted: 04/30/2024] [Indexed: 05/31/2024] Open
Abstract
Obesity and ovotoxicant exposures impair female reproductive health with greater ovotoxicity reported in obese relative to lean females. The mother and developing fetus are vulnerable to both during gestation. 7,12-dimethylbenz[a]anthracene (DMBA) is released during carbon combustion including from cigarettes, coal, fossil fuels, and forest fires. This study investigated the hypothesis that diet-induced obesity would increase sensitivity of the ovaries to DMBA-induced ovotoxicity and determined impacts of both obesity and DMBA exposure during gestation on the maternal ovary. Female C57BL/6 J mice were fed a control or a High Sugar High Fat (45% kcal from fat; 20% kcal from sucrose) diet until ~30% weight gain was attained before mating with unexposed males. From gestation Day 7, mice were exposed intraperitoneally to either vehicle control (corn oil) or DMBA (1 mg/kg diluted in corn oil) for 7 d. Thus, there were four groups: lean control (LC); lean DMBA exposed; obese control; obese DMBA exposed. Gestational obesity and DMBA exposure decreased (P < 0.05) ovarian and increased liver weights relative to LC dams, but there was no treatment impact (P > 0.05) on spleen weight or progesterone. Also, obesity exacerbated the DMBA reduction (P < 0.05) in the number of primordial, secondary follicles, and corpora lutea. In lean mice, DMBA exposure altered abundance of 21 proteins; in obese dams, DMBA exposure affected 134 proteins while obesity alone altered 81 proteins in the maternal ovary. Thus, the maternal ovary is impacted by DMBA exposure and metabolic status influences the outcome.
Collapse
Affiliation(s)
- Gulnara Novbatova
- Department of Animal Science, Iowa State University, 806 Stange rd, Ames, IA 50011, United States of America
| | - Isabelle Fox
- Department of Animal Science, Iowa State University, 806 Stange rd, Ames, IA 50011, United States of America
| | - Kelsey Timme
- Department of Animal Science, Iowa State University, 806 Stange rd, Ames, IA 50011, United States of America
| | - Aileen F Keating
- Department of Animal Science, Iowa State University, 806 Stange rd, Ames, IA 50011, United States of America
| |
Collapse
|
4
|
Dos Santos FCF, Lima GFC, Merlo E, Januario CDF, Miranda-Alves L, Miranda RA, Lisboa PC, Graceli JB. Single microcystin exposure impairs the hypothalamic-pituitary-gonadal axis at different levels in female rats. Mol Cell Endocrinol 2024; 586:112203. [PMID: 38490633 DOI: 10.1016/j.mce.2024.112203] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/21/2023] [Revised: 02/06/2024] [Accepted: 03/12/2024] [Indexed: 03/17/2024]
Abstract
Microcystin (MC) is most common cyanobacterial toxin. Few studies have evaluated the MC effects on the hypothalamic-pituitary-gonadal (HPG) axis and metabolic function. In this study, we assessed whether MC exposure results in HPG axis and metabolic changes. Female rats were exposed to a single dose of MC at environmentally relevant levels (5, 20 and 40 μg/kg). After 24 h, we evaluated reproductive and metabolic parameters for 15 days. MC reduced the hypothalamic GnRH protein expression, increased the pituitary protein expression of GnRHr and IL-6. MC reduced LH levels and increased FSH levels. MC reduced the primary follicles, increased the corpora lutea, elevated levels of anti-Müllerian hormone (AMH) and progesterone, and decreased estrogen levels. MC increased ovarian VEGFr, LHr, AMH, ED1, IL-6 and Gp91-phox protein expression. MC increased uterine area and reduced endometrial gland number. A blunted estrogen-negative feedback was observed in MC rats after ovariectomy, with no changes in LH levels compared to intact MC rats. Therefore, these data suggest that a MC leads to abnormal HPG axis function in female rats.
Collapse
Affiliation(s)
- Flavia C F Dos Santos
- Department of Morphology, Federal University of Espírito Santo, 290440-090, Vitória, Brazil
| | - Gabriela F C Lima
- Department of Morphology, Federal University of Espírito Santo, 290440-090, Vitória, Brazil
| | - Eduardo Merlo
- Department of Morphology, Federal University of Espírito Santo, 290440-090, Vitória, Brazil
| | - Cidalia de F Januario
- Department of Morphology, Federal University of Espírito Santo, 290440-090, Vitória, Brazil
| | - Leandro Miranda-Alves
- Experimental Endocrinology Research, Development and Innovation Group, Institute of Biomedical Sciences, Federal University of Rio de Janeiro, 21941-904, Ilha do Governador, Brazil
| | - Rosiane A Miranda
- Laboratory of Endocrine Physiology, Biology Institute, State University of Rio de Janeiro, RJ, Brazil
| | - Patrícia C Lisboa
- Laboratory of Endocrine Physiology, Biology Institute, State University of Rio de Janeiro, RJ, Brazil
| | - Jones B Graceli
- Department of Morphology, Federal University of Espírito Santo, 290440-090, Vitória, Brazil.
| |
Collapse
|
5
|
Zhou YY, Wu YQ, Chong CJ, Zhong SM, Wang ZX, Qin XH, Liu ZQ, Liu JY, Song JL. Irpex lacteus polysaccharide exhibits therapeutic potential for ovarian fibrosis in PCOS rats via the TGF- β1/smad pathway. Heliyon 2023; 9:e18741. [PMID: 37554783 PMCID: PMC10405015 DOI: 10.1016/j.heliyon.2023.e18741] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2022] [Revised: 07/10/2023] [Accepted: 07/26/2023] [Indexed: 08/10/2023] Open
Abstract
Polycystic ovarian syndrome (PCOS) is one of the commonest endocrinopathies in childbearing women. The research was conducted to assess the impact of Irpex lacteus polysaccharide (ILP, 1000 mg/kg) on the letrozole (1 mg/kg)-induced PCOS model in female rats. Metformin (Met, 265 mg/kg) as the positive control. The study suggested that ILP restored the estrous cycle in rats with PCOS as well as lowered relative ovarian weight and body weight, in comparison to normal. Rats with PCOS showed improvement in ovarian structure and fibrosis when given ILP. ILP decreased the testosterone (T), low-density lipoprotein cholesterol (LDL-C), triglyceride (TG), total cholesterol (TC), luteinizing hormone (LH), homeostasis model assessment-insulin resistance (HOMA-IR), fasting blood glucose (FBG), and insulin (INS) levels and elevated the follicle-stimulating hormone (FSH) and estrogen (E2) levels in PCOS rats. In addition, ILP increased the content of superoxide dismutase (SOD) in serum and the antioxidant enzymes (Prdx3, Sod1, Gsr, Gsta4, Mgst1, Gpx3, Sod2 and Cat) expression levels in the ovaries and decreased the serum expression of malondialdehyde (MDA). In addition, ILP treatment slowed down the process of the fibrosis-associated TGF-β1/Smad pathway and downregulated α-smooth muscle actin (α-SMA) and connective tissue growth factor (CTGF) levels in PCOS rats ovaries. According to these findings, ILP may be able to treat letrozole-induced PCOS in rats by ameliorating metabolic disturbances, sex hormone levels, oxidative stress, and ovarian fibrosis.
Collapse
Affiliation(s)
- Yan-Yuan Zhou
- Department of Pharmacy, School of Pharmacy, Guilin Medical University, Guilin, 541199, China
| | - Ya-Qi Wu
- Department of Pharmacy, School of Pharmacy, Guilin Medical University, Guilin, 541199, China
| | - Chao-Jie Chong
- Department of Pharmacy, School of Pharmacy, Guilin Medical University, Guilin, 541199, China
| | - Shu-Mei Zhong
- Department of Nutrition and Food Hygiene, School of Public Health, Guilin Medical University, Guilin, 541199, China
| | - Zi-Xian Wang
- Department of Nutrition and Food Hygiene, School of Public Health, Guilin Medical University, Guilin, 541199, China
| | - Xiao-Hui Qin
- Department of Pharmacy, School of Pharmacy, Guilin Medical University, Guilin, 541199, China
| | - Zhi-Qiang Liu
- Department of Pharmacy, School of Pharmacy, Guilin Medical University, Guilin, 541199, China
| | - Jun-Yang Liu
- Department of Nutrition and Food Hygiene, School of Public Health, Guilin Medical University, Guilin, 541199, China
| | - Jia-Le Song
- Department of Nutrition and Food Hygiene, School of Public Health, Guilin Medical University, Guilin, 541199, China
- Department of Clinical Nutrition, Second Hospital Affiliated to Guilin Medical University, Guilin, 541100, China
- Guangxi Key Laboratory of Environmental Exposomics and Entire Lifecycle Health, Guilin Medical University, Guilin, 541199, China
- South Asia Branch of National Engineering Research Center of Dairy Health for Maternal and Child Health, Guilin University of Technology, Guilin, 541004, China
| |
Collapse
|
6
|
Zimerman J, Niño OMS, da Costa CS, Zanol JF, Comério M, da Gama de Souza LN, Miranda-Alves L, Miranda RA, Lisboa PC, Camilo TA, Rorato R, Alves GA, Frazão R, Zomer HD, Freitas-Lima LC, Graceli JB. Subacute high-refined carbohydrate diet leads to abnormal reproductive control of the hypothalamic-pituitary axis in female rats. Reprod Toxicol 2023; 119:108410. [PMID: 37211340 DOI: 10.1016/j.reprotox.2023.108410] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2023] [Revised: 05/05/2023] [Accepted: 05/18/2023] [Indexed: 05/23/2023]
Abstract
We previously reported that female rats placed on a diet containing refined carbohydrates (HCD) resulted in obesity and reproductive abnormalities, such as high serum LH concentration and abnormal ovarian function. However, the impacts at the hypothalamic-pituitary (HP) function, specifically regarding pathways linked to reproductive axis modulation are unknown. In this study, we assessed whether subacute feeding with HCD results in abnormal reproductive control in the HP axis. Female rats were fed with HCD for 15 days and reproductive HP axis morphophysiology was assessed. HCD reduced hypothalamic mRNA expression (Kiss1, Lepr, and Amhr2) and increased pituitary LHβ+ cells. These changes likely contribute to the increase in serum LH concentration observed in HCD. Blunted estrogen negative feedback was observed in HCD, with increased kisspeptin protein expression in the arcuate nucleus of the hypothalamus (ARH), lower LHβ+ cells and LH concentration in ovariectomized (OVX)+HCD rats. Thus, these data suggest that HCD feeding led to female abnormal reproductive control of HP axis.
Collapse
Affiliation(s)
- Jeanini Zimerman
- Department of Morphology, Federal University of Espírito Santo, Vitória, Brazil
| | - Oscar M S Niño
- Department of Morphology, Federal University of Espírito Santo, Vitória, Brazil; Faculty of Human Sciences and Education, Universidad de los Llanos, Villavicencio, Meta, Colombia
| | - Charles S da Costa
- Department of Morphology, Federal University of Espírito Santo, Vitória, Brazil
| | - Jordana F Zanol
- Department of Morphology, Federal University of Espírito Santo, Vitória, Brazil
| | - Milena Comério
- Department of Morphology, Federal University of Espírito Santo, Vitória, Brazil
| | | | - Leandro Miranda-Alves
- Experimental Endocrinology Research, Development and Innovation Group, Institute of Biomedical Sciences, Federal University of Rio de Janeiro, Brazil; Postgraduate Program in Endocrinology, School of Medicine, Federal University of Rio de Janeiro, Av. Carlos Chagas Filho, Ilha do Governador, Cidade Universitária, UFRJ, RJ, Brazil
| | - Rosiane A Miranda
- Laboratory of Endocrine Physiology, Biology Institute, State University of Rio de Janeiro, RJ, Brazil
| | - Patrícia C Lisboa
- Laboratory of Endocrine Physiology, Biology Institute, State University of Rio de Janeiro, RJ, Brazil
| | - Tays A Camilo
- Department of Biophysics, Paulista School of Medicine, Federal University of São Paulo, São Paulo, Brazil
| | - Rodrigo Rorato
- Department of Biophysics, Paulista School of Medicine, Federal University of São Paulo, São Paulo, Brazil
| | - Guilherme Andrade Alves
- Department of Anatomy, Institute of Biomedical Sciences, University of São Paulo, São Paulo, SP, Brazil
| | - Renata Frazão
- Department of Anatomy, Institute of Biomedical Sciences, University of São Paulo, São Paulo, SP, Brazil
| | - Helena D Zomer
- Department of Physiological Sciences, University of Florida, Gainesville, FL, USA
| | | | - Jones B Graceli
- Department of Morphology, Federal University of Espírito Santo, Vitória, Brazil.
| |
Collapse
|
7
|
Chen R, Wu X, Qiu H, Yang B, Chen Y, Chen X, Li Y, Yuan S, Liu D, Xiao L, Yu Y. Obesity-induced inflammatory miR-133a mediates apoptosis of granulosa cells and causes abnormal folliculogenesis. Acta Biochim Biophys Sin (Shanghai) 2023; 55:1234-1246. [PMID: 37337633 PMCID: PMC10448043 DOI: 10.3724/abbs.2023089] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2022] [Accepted: 02/15/2023] [Indexed: 06/21/2023] Open
Abstract
Obesity has been reported to promote disordered folliculogenesis, but the exact molecular mechanisms are still not fully understood. In this study, we find that miR-133a is involved in obesity-induced follicular development disorder. After feeding with a high-fat diet (HFD) and fructose water for nine weeks, the mouse body weight is significantly increased, accompanied by an inflammatory state and increased expression of miR-133a in the adipose tissues and ovaries as well as accelerated follicle depletion. Although miR-133a is increased in the fat and ovaries of HFD mice, the increased miR-133a in the HFD ovaries is not derived from exosome transferred from obese adipose tissues but is synthesized by ovarian follicular cells in response to HFD-induced inflammation. In vivo experiments show that intrabursal injection of miR-133a agomir induces a decrease in primordial follicles and an increase in antral follicles and atretic follicles, which is similar to HFD-induced abnormal folliculogenesis. Overexpression of miR-133a modestly promotes granulosa cell apoptosis by balancing the expression of anti-apoptotic proteins such as C1QL1 and XIAP and pro-apoptotic proteins such as PTEN. Overall, this study reveals the function of miR-133a in obesity-induced ovarian folliculogenesis dysfunction and sheds light on the etiology of female reproductive disorders.
Collapse
Affiliation(s)
- Ruizhi Chen
- Key Laboratory of Regenerative Medicine (JNU-CUHK)Ministry of EducationDepartment of Developmental and Regenerative BiologyCollege of Life Science and TechnologyJinan UniversityGuangzhou510632China
| | - Xueqing Wu
- Key Laboratory of Regenerative Medicine (JNU-CUHK)Ministry of EducationDepartment of Developmental and Regenerative BiologyCollege of Life Science and TechnologyJinan UniversityGuangzhou510632China
| | - Han Qiu
- Key Laboratory of Regenerative Medicine (JNU-CUHK)Ministry of EducationDepartment of Developmental and Regenerative BiologyCollege of Life Science and TechnologyJinan UniversityGuangzhou510632China
| | - Baiming Yang
- Key Laboratory of Regenerative Medicine (JNU-CUHK)Ministry of EducationDepartment of Developmental and Regenerative BiologyCollege of Life Science and TechnologyJinan UniversityGuangzhou510632China
| | - Yao Chen
- Key Laboratory of Regenerative Medicine (JNU-CUHK)Ministry of EducationDepartment of Developmental and Regenerative BiologyCollege of Life Science and TechnologyJinan UniversityGuangzhou510632China
| | - Xiang Chen
- Key Laboratory of Regenerative Medicine (JNU-CUHK)Ministry of EducationDepartment of Developmental and Regenerative BiologyCollege of Life Science and TechnologyJinan UniversityGuangzhou510632China
| | - Yingshan Li
- Key Laboratory of Regenerative Medicine (JNU-CUHK)Ministry of EducationDepartment of Developmental and Regenerative BiologyCollege of Life Science and TechnologyJinan UniversityGuangzhou510632China
| | - Shaochun Yuan
- Guangdong Province Key Laboratory of Pharmaceutical Functional GenesCollege of Life SciencesSun Yat-Sen UniversityGuangzhou510275China
| | - Dan Liu
- Department of Women’s HealthCareAffiliated Foshan Women and Children’s HospitalSouthern Medical UniversityFoshan528000China
| | - Luanjuan Xiao
- Key Laboratory of Regenerative Medicine (JNU-CUHK)Ministry of EducationDepartment of Developmental and Regenerative BiologyCollege of Life Science and TechnologyJinan UniversityGuangzhou510632China
| | - Yanhong Yu
- Key Laboratory of Regenerative Medicine (JNU-CUHK)Ministry of EducationDepartment of Developmental and Regenerative BiologyCollege of Life Science and TechnologyJinan UniversityGuangzhou510632China
| |
Collapse
|
8
|
Zanol JF, Niño OMS, da Costa CS, Zimerman J, Silva NP, Oliveira TM, Maas EMSWD, Dos Santos FCF, Miranda-Alves L, Graceli JB. High-refined carbohydrate diet alters different metabolic functions in female rats. Mol Cell Endocrinol 2022; 558:111774. [PMID: 36096379 DOI: 10.1016/j.mce.2022.111774] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/06/2022] [Revised: 08/29/2022] [Accepted: 09/01/2022] [Indexed: 12/15/2022]
Abstract
A diet containing refined carbohydrate (HCD) caused obesity and white adipose tissue (WAT) abnormalities, but it is unclear if HCD is linked with other metabolic dysfunctions in female models. Thus, we assessed whether HCD results in WAT, pancreas, liver, skeletal muscle (SM) and thyroid (TH) abnormalities in female rats. Female rats were fed with HCD for 15 days and metabolic morphophysiology, inflammation, oxidative stress (OS), and fibrosis markers were assessed. HCD rats presented large adipocytes, hyperleptinemia, and WAT OS. HCD caused irregular glucose metabolism, low insulin levels, and large pancreatic isle. Granulomas, reduced glycogen, and OS were observed in HCD livers. HCD caused hypertrophy and increased in glycogen in SM. HCD caused irregular TH morphophysiology, reduced colloid area and high T3 levels. In all selected tissues, inflammation and fibrosis were observed in HCD rats. Collectively, these data suggest that the HCD impairs metabolic function linked with irregularities in WAT, pancreas, liver, SM and TH in female rats.
Collapse
Affiliation(s)
- Jordana F Zanol
- Department of Morphology, Federal University of Espírito Santo, Vitória, Brazil
| | - Oscar M S Niño
- Department of Morphology, Federal University of Espírito Santo, Vitória, Brazil; Faculty of Human Sciences and Education, Universidad de los Llanos, Villavicencio-Meta, Colombia
| | - Charles S da Costa
- Department of Morphology, Federal University of Espírito Santo, Vitória, Brazil
| | - Jeanini Zimerman
- Department of Morphology, Federal University of Espírito Santo, Vitória, Brazil
| | - Natalia P Silva
- Department of Morphology, Federal University of Espírito Santo, Vitória, Brazil
| | - Thalita M Oliveira
- Department of Morphology, Federal University of Espírito Santo, Vitória, Brazil
| | - Edgar M S W D Maas
- Department of Morphology, Federal University of Espírito Santo, Vitória, Brazil
| | | | - Leandro Miranda-Alves
- Experimental Endocrinology Research, Development and Innovation Group, Institute of Biomedical Sciences, Federal University of Rio de Janeiro, Brazil; Postgraduate Program in Endocrinology, School of Medicine, Federal University of Rio de Janeiro, Av. Carlos Chagas Filho, Ilha do Governador, Cidade Universitária, RJ, UFRJ, Brazil
| | - Jones B Graceli
- Department of Morphology, Federal University of Espírito Santo, Vitória, Brazil.
| |
Collapse
|
9
|
A High-Fat and High-Carbohydrate Diet Promotes Reminiscent Hallmarks of an Aging Ovary in the Rabbit Model. Biomedicines 2022; 10:biomedicines10123068. [PMID: 36551824 PMCID: PMC9776075 DOI: 10.3390/biomedicines10123068] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2022] [Revised: 11/24/2022] [Accepted: 11/25/2022] [Indexed: 11/30/2022] Open
Abstract
The primary definition of ovarian aging refers to the loss of follicles. Moreover, the aging of the microenvironment in ovaries, specifically affecting the follicles, may reveal deterioration with advancing age. Besides aging, metabolic disorders associated with hypercaloric diets may affect ovarian health and manifest characteristics associated with premature aging. In this study, we used 10-week-old chinchilla rabbits fed with a high-fat and high-carbohydrate diet (HFCD) until 25 weeks of age to explore hallmarks of reminiscent ovarian aging. The HFCD diet appeared to affect the ovarian reserve, reflected in a significant decrease in primordial follicles. Likewise, Sudan black stain detection revealed substantial differences in the deposits of lipofuscin in the interstitial glands of HFCD-fed rabbits compared to controls, constituting a "hallmark" of aging. The HFCD showed no induced changes in the expression of SOD 2 in the interstitial gland; however, surface epithelium cells were greater expressed. Besides this, the HFCD induced nuclear translocation of NF-ΚΒ p65 factor transcription in surface epithelium cells. We conclude that an HFCD induces a greater accumulation of senescence cells in the interstitial gland, promoting characteristics reminiscent of ovarian aging. However, the activation mechanism of NF-KB caused by an HFCD, which may be stress-responsive and generated by the interstitial gland, requires further study.
Collapse
|
10
|
Hernández-Melchor D, Palafox-Gómez C, Madrazo I, Ortiz G, Padilla-Viveros A, López-Bayghen E. Surgical and nutritional interventions for endometrial receptivity: A case report and review of literature. World J Clin Cases 2022; 10:12295-12304. [PMID: 36483831 PMCID: PMC9724549 DOI: 10.12998/wjcc.v10.i33.12295] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/20/2022] [Revised: 08/16/2022] [Accepted: 10/17/2022] [Indexed: 11/22/2022] Open
Abstract
BACKGROUND Polycystic ovary syndrome (PCOS) is an endocrine disease that combines metabolic, reproductive, and psychological dysfunctions. Ovulation disorders and impaired endometrial receptivity in PCOS can cause infertility. Insulin resistance (IR) is a pathological state of inadequate response to insulin that affects reproduction in PCOS, as damage caused by IR at the endometrial level becomes an obstacle for embryo implantation. Reversing IR resulted in spontaneous pregnancies in PCOS patients, indicating that metabolic corrections improve endometrial dysfunctions. Mesenchymal stem-cell treatment has also corrected endometrial quality and lead to pregnancies in patients with Asherman’s syndrome. We propose a combination of nutritional intervention with the surgical placement of stem cells to improve endometrial quality to achieve pregnancy in a PCOS patient undergoing in vitro fertilization (IVF) treatment.
CASE SUMMARY After two failed IVF cycles, a metabolic intervention, consisting of a ketogenic diet with daily consumption of 50 g of carbohydrates (CH), was indicated until pregnancy. Metabolic Syndrome was assessed using the Harmonizing Definition (3 of 5 pathologies: Central obesity, hypertension, hyperglycemia, hypertriglyceridemia, and dyslipidemia), and the Homeostatic Model Assessment of IR (HOMA-IR) was used to measure the level of IR. Once IR improved, endometrial quality improved. However, two day 5-thawed embryos (euploid, donated oocyte–partner's sperm) failed to implant, suggesting endometrial quality improvement was insufficient. Therefore, transmyometrial implantation of mesenchymal stem cells from the stromal vascular fraction of adipose tissue was performed to enrich the endometrial stem cell niche. Minimal endometrial mean thickness for embryo transfer (6.9 mm) was achieved three months after stem cell treatment and continuous dietary control of IR. Two euploid-day 5-thawed embryos (donated oocyte–partner's sperm) were transferred, and embryo implantation was confirmed on day 14 by β-hCG serum levels. Currently, a 37 wk baby girl is born.
CONCLUSION In PCOS, endometrial quality can be improved by combining nutrient-based metabolic correction with endometrial stem cell niche enrichment.
Collapse
Affiliation(s)
- Dinorah Hernández-Melchor
- Science, Technology and Society Program, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional, México City 07360, CDMX, México
- Clinical Research, Instituto Regenera SC, México City 05320, CDMX, México
| | - Cecilia Palafox-Gómez
- Departamento de Toxicología, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional, México City 07360, CDMX, México
| | - Ivan Madrazo
- Investigación Clínica, Instituto de Infertilidad y Genética México SC, INGENES, México City 05320, CDMX, México
| | - Ginna Ortiz
- Investigación Clínica, Instituto de Infertilidad y Genética México SC, INGENES, México City 05320, CDMX, México
| | - America Padilla-Viveros
- Science, Technology and Society Program, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional, México City 07360, CDMX, México
| | - Esther López-Bayghen
- Departamento de Toxicología, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional, Mexico City 07360, CDMX, México
| |
Collapse
|
11
|
The Effect of Alternating High-Sucrose and Sucrose Free-Diets, and Intermittent One-Day Fasting on the Estrous Cycle and Sex Hormones in Female Rats. Nutrients 2022; 14:nu14204350. [DOI: 10.3390/nu14204350] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2022] [Revised: 10/11/2022] [Accepted: 10/14/2022] [Indexed: 11/17/2022] Open
Abstract
Relationships between diet, sex hormone concentrations, and the estrous cycle are important from the perspective of infertility and estrogen-dependent disease prevention and treatment. Four dietary interventions reflecting modern eating behaviors were explored. The study involved 50 female rats divided into five feeding groups. The impact of the amount of sucrose consumed (9% and 18% of the dietary energy content), alternating high-sucrose and sucrose-free diets, and a high-sucrose diet combined with intermittent one-day fasting on the estrous cycle and sex hormone concentrations in female rats was assessed. Even low amounts of dietary sucrose (9% of the dietary energy content) were found to lead to increased estradiol (E2) concentrations and decreased progesterone (Pg) concentrations. A high-sucrose diet, even when periodically applied, additionally led to a reduced concentration of luteinizing hormone (LH). The largest changes in the hormones tested were observed with one-day fasting coupled with the high-sucrose diet; in addition, the estrous phase was shortened and the estrous cycle was disrupted. The results of this study show that both the amount of dietary sucrose and also its uptake pattern affect the estrous cycle and sex hormone concentrations in female rats.
Collapse
|
12
|
Poojary PS, Nayak G, Panchanan G, Rao A, Kundapur SD, Kalthur SG, Mutalik S, Adiga SK, Zhao Y, Bakkum-Gamez J, Chang AY, DeStephano C, Sherman M, Kannan N, Kalthur G. Distinctions in PCOS Induced by Letrozole Vs Dehydroepiandrosterone With High-fat Diet in Mouse Model. Endocrinology 2022; 163:6625847. [PMID: 35776497 DOI: 10.1210/endocr/bqac097] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/31/2022] [Indexed: 11/19/2022]
Abstract
Polycystic ovarian syndrome (PCOS) is a complex health condition associated with metabolic disturbances and infertility. Recent data suggest that the prevalence of PCOS is increasing among women globally, although the etiology of these trends is undefined. Consequently, preclinical models that better reflect the biology of PCOS are urgently needed to facilitate research that can lead to the discovery of prevention strategies or improved management. The existing animal models have several limitations as they do not reflect all the PCOS features metabolically and/or phenotypically. Therefore, there is no clear consensus on the use of appropriate animal model and selection of the most appropriate PCOS-inducing agent. To that end, we have established a Swiss albino mouse model of PCOS based on 3 weeks of daily treatment with letrozole (50 μg/day; intraperitoneal) and dehydroepiandrosterone (DHEA, 6 mg/100 g body weight; subcutaneous) in 5-week-old female mice fed on normal or high-fat diet (HFD). Mice were regularly assessed for body weight, blood glucose, and estrous cycle. Three weeks after drug administration, mice were sacrificed and assessed for blood-based metabolic parameters as well as ovarian function. Our results indicate that DHEA combined with HFD produces changes mimicking those of clinical PCOS, including elevated serum testosterone and luteinizing hormone, dyslipidemia, poor ovarian microenvironment, and development of multiple ovarian cysts, recapitulating cardinal features of PCOS. In comparison, normal diet and/or letrozole produced fewer features of PCOS. The data from the experimental models presented here can improve our understanding of PCOS, a growing concern in women's health.
Collapse
Affiliation(s)
- Pooja Suresh Poojary
- Division of Clinical Embryology, Department of Reproductive Science, Kasturba Medical College, Manipal, Manipal Academy of Higher Education, Manipal-576104, Karnataka, India
| | - Guruprasad Nayak
- Division of Reproductive Biology, Department of Reproductive Science, Kasturba Medical College, Manipal, Manipal Academy of Higher Education, Manipal-576104, Karnataka, India
| | - Gangotri Panchanan
- Division of Clinical Embryology, Department of Reproductive Science, Kasturba Medical College, Manipal, Manipal Academy of Higher Education, Manipal-576104, Karnataka, India
| | - Arpitha Rao
- Division of Reproductive Biology, Department of Reproductive Science, Kasturba Medical College, Manipal, Manipal Academy of Higher Education, Manipal-576104, Karnataka, India
| | - Sanjna Das Kundapur
- Division of Clinical Embryology, Department of Reproductive Science, Kasturba Medical College, Manipal, Manipal Academy of Higher Education, Manipal-576104, Karnataka, India
| | - Sneha Guruprasad Kalthur
- Department of Anatomy, Kasturba Medical College, Manipal, Manipal Academy of Higher Education, Manipal-576104, Karnataka, India
| | - Srinivas Mutalik
- Department of Pharmaceutics, Manipal College of Pharmaceutical Sciences, Manipal Academy of Higher Education, Manipal-576104, Karnataka, India
| | - Satish Kumar Adiga
- Division of Clinical Embryology, Department of Reproductive Science, Kasturba Medical College, Manipal, Manipal Academy of Higher Education, Manipal-576104, Karnataka, India
| | - Yulian Zhao
- Department of Obstetrics and Gynecology and Department of Laboratory Medicine and Pathology, Mayo Clinic, Rochester, MN 55902, USA
| | - Jamie Bakkum-Gamez
- Division of Laboratory Genetics and Genomics, Department of Laboratory Medicine and Pathology, Mayo Clinic, Rochester, MN 55902, USA
| | - Alice Y Chang
- Division of Gynecologic Oncology Surgery, Department of Obstetrics and Gynecology, Mayo Clinic, Rochester, MN 55902, USA
| | - Christopher DeStephano
- Division of Endocrinology, Diabetes, Metabolism, Nutrition, Department of Internal Medicine, Mayo Clinic, Rochester, MN 55902, USA
| | - Mark Sherman
- Department of Quantitative Health Sciences, Mayo Clinic, Jacksonville, FL 32224, USA
| | - Nagarajan Kannan
- Division of Experimental Pathology and Laboratory Medicine, Department of Laboratory Medicine and Pathology, Mayo Clinic, Rochester, MN 55902, USA
- Mayo Clinic Cancer Center, Mayo Clinic, Rochester, MN 55902, USA
- Center for Regenerative Medicine, Mayo Clinic, Rochester, MN 55902, USA
| | - Guruprasad Kalthur
- Division of Reproductive Biology, Department of Reproductive Science, Kasturba Medical College, Manipal, Manipal Academy of Higher Education, Manipal-576104, Karnataka, India
- Division of Experimental Pathology and Laboratory Medicine, Department of Laboratory Medicine and Pathology, Mayo Clinic, Rochester, MN 55902, USA
| |
Collapse
|
13
|
Basile AJ, Singh KC, Watson DF, Sweazea KL. Effect of macronutrient and micronutrient manipulation on avian blood glucose concentration: A systematic review. Comp Biochem Physiol A Mol Integr Physiol 2022; 272:111279. [PMID: 35902002 DOI: 10.1016/j.cbpa.2022.111279] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2022] [Revised: 07/19/2022] [Accepted: 07/20/2022] [Indexed: 10/16/2022]
Abstract
Animals with natural protections against diabetes complications may provide clues to improve human health. Birds are unique in their ability to avoid hyperglycemia-associated complications (e.g., glycation and oxidative stress) despite having naturally high blood glucose (BG) concentrations. This makes them useful models to elucidate strategies to prevent and/or treat diabetes-related complications in mammals. As diet plays a key role in BG concentration and diabetes risk, this systematic review aimed to summarize the effects of macro and micronutrient manipulation on avian BG. Three databases were searched (PubMed, SCOPUS, and Web of Science) for articles that met inclusion criteria: altered at least one nutrient and measured BG in at least one avian species. The search yielded 91 articles that produced 128 datasets (i.e., one nutrient manipulation in one sample). Across all macronutrient manipulations (n = 69 datasets), 62% reported no change in BG and 23% measured an increase (p < 0.001). Within the macronutrient groups (carbohydrate, lipid, protein, and mixed) most datasets showed no change in BG (67%, 62%, 52%, and 86%, respectively). Across micronutrient manipulations (n = 59 datasets), 51% demonstrated no change and 41% decreased BG (p < 0.001). While manipulations that altered vitamin intake largely produced no change in BG (62%), 48% of datasets examining altered mineral intake found no change and 46% decreased BG. Chromium was the most studied micronutrient (n = 24 datasets), where 67% of datasets reported a decrease in BG. These results suggest birds are largely able to maintain blood glucose homeostasis in response to altered nutrient intake indicative of dietary flexibility.
Collapse
Affiliation(s)
- Anthony J Basile
- School of Life Sciences, Arizona State University, 427 E. Tyler Mall, Tempe, AZ 85287, USA; Center for Evolution and Medicine, Arizona State University, 427 E. Tyler Mall, Tempe, AZ 85287, USA.
| | - Kavita C Singh
- School of Life Sciences, Arizona State University, 427 E. Tyler Mall, Tempe, AZ 85287, USA.
| | - Deborah F Watson
- College of Health Solutions, Arizona State University, 550 N. 3(rd) St, Phoenix, AZ 85004, USA
| | - Karen L Sweazea
- Center for Evolution and Medicine, Arizona State University, 427 E. Tyler Mall, Tempe, AZ 85287, USA; College of Health Solutions, Arizona State University, 550 N. 3(rd) St, Phoenix, AZ 85004, USA.
| |
Collapse
|
14
|
Xia S, Ou K, Zhang S, Huang J, Fang L, Wang C, Wang Q. EGCG exposure during pregnancy affects uterine histomorphology in F1 female mice and the underlying mechanisms. Food Chem Toxicol 2022; 167:113306. [PMID: 35863485 DOI: 10.1016/j.fct.2022.113306] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2022] [Revised: 07/09/2022] [Accepted: 07/13/2022] [Indexed: 10/17/2022]
Abstract
Although epigallocatechin-3-gallate (EGCG), the major polyphenol in green tea, has been shown to have many benefits, the effect of EGCG exposure in utero on adult uterine development is unclear. In this study, pregnant C57BL/6 mice were exposed to 1 mg/kg body weight (bw) EGCG dissolved in drinking water from gestational days 0.5-16.5. A significant decrease in uterine weight was observed in the adult female mice, accompanied by uterine atrophy, inflammation, and fibrosis in the endometrium. Uterine atrophy was attributed to the thinning of the endometrial stromal layer and a significant reduction in endometrial cell proliferation. The expression levels of related proteins in the NF-κB and RAF/MEK/ERK signaling pathways were significantly increased, which might be responsible for the occurrence of inflammation. Activation of the transforming growth factor beta (TGF-β1)/Smad signaling pathway might be involved in the development of endometrial fibrosis. The changes in the expression of estrogen receptor α, β (ERα, ERβ), progesterone receptor (PGR), and androgen receptor (AR) might lead to changes in the aforementioned signaling pathways. The promoter region methylation level of Esr2 was increased, and the expression of DNMT3A was evaluated. Our study indicates a risk of EGCG intake during pregnancy affecting uterine development in offspring.
Collapse
Affiliation(s)
- Siyu Xia
- State Key Laboratory of Cellular Stress Biology, School of Life Sciences, Xiamen University, Xiamen, PR China
| | - Kunlin Ou
- State Key Laboratory of Cellular Stress Biology, School of Life Sciences, Xiamen University, Xiamen, PR China
| | - Shenli Zhang
- State Key Laboratory of Cellular Stress Biology, School of Life Sciences, Xiamen University, Xiamen, PR China
| | - Jie Huang
- State Key Laboratory of Cellular Stress Biology, School of Life Sciences, Xiamen University, Xiamen, PR China
| | - Lu Fang
- State Key Laboratory of Cellular Stress Biology, School of Life Sciences, Xiamen University, Xiamen, PR China
| | - Chonggang Wang
- State Key Laboratory of Cellular Stress Biology, School of Life Sciences, Xiamen University, Xiamen, PR China
| | - Qin Wang
- State Key Laboratory of Cellular Stress Biology, School of Life Sciences, Xiamen University, Xiamen, PR China.
| |
Collapse
|
15
|
Zanol JF, Niño OMS, da Costa CS, Freitas-Lima LC, Miranda-Alves L, Graceli JB. Tributyltin and high-refined carbohydrate diet lead to metabolic and reproductive abnormalities, exacerbating premature ovary failure features in the female rats. Reprod Toxicol 2021; 103:108-123. [PMID: 34102259 DOI: 10.1016/j.reprotox.2021.06.004] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2021] [Revised: 05/20/2021] [Accepted: 06/02/2021] [Indexed: 12/30/2022]
Abstract
Exposure to the obesogen tributyltin (TBT) alone or high carbohydrate diet (HCD) alone leads to obesity and reproductive complications, such as premature ovary failure (POF) features. However, little is known about interactions between TBT and nutrition and their combined impact on reproduction. In this study, we assessed whether acute TBT and HCD exposure results in reproductive and metabolic irregularities. Female rats were treated with TBT (100 ng/kg/day) and fed with HCD for 15 days and metabolic and reproductive outcomes were assessed. TBT and HCD rats displayed metabolic impairments, such as increased adiposity, abnormal lipid profile and triglyceride and glucose (TYG) index, worsening adipocyte hypertrophy in HCD-TBT rats. These metabolic consequences were linked with reproductive disorders. Specifically, HCD-TBT rats displayed irregular estrous cyclicity, high follicle-stimulating hormone (FSH) levels, low anti-Müllerian hormone (AMH) levels, reduction in ovarian reserve, and corpora lutea (CL) number, with increases in atretic follicles, suggesting that HCD-TBT exposure exacerbated POF features. Further, strong negative correlations were observed between adipocyte hypertrophy and ovarian reserve, CL number and AMH levels. HCD-TBT exposure resulted in reproductive tract inflammation and fibrosis. Collectively, these data suggest that TBT plus HCD exposure leads to metabolic and reproductive abnormalities, exacerbating POF features in female rats.
Collapse
Affiliation(s)
- Jordana F Zanol
- Department of Morphology, Health Sciences Center, Federal University of Espirito Santo, Av. Marechal Campos, 1468, CEP: 290440-090 Vitória, ES, Brazil.
| | - Oscar M S Niño
- Department of Morphology, Health Sciences Center, Federal University of Espirito Santo, Av. Marechal Campos, 1468, CEP: 290440-090 Vitória, ES, Brazil; Bachelor of Physical Education and Sports, Faculty of Human Sciences and Education, Universidad de los Llanos, Villavicencio-Meta, Colombia.
| | - Charles S da Costa
- Department of Morphology, Health Sciences Center, Federal University of Espirito Santo, Av. Marechal Campos, 1468, CEP: 290440-090 Vitória, ES, Brazil.
| | - Leandro C Freitas-Lima
- Department of Morphology, Health Sciences Center, Federal University of Espirito Santo, Av. Marechal Campos, 1468, CEP: 290440-090 Vitória, ES, Brazil.
| | - Leandro Miranda-Alves
- Experimental Endocrinology Research, Development and Innovation Group, Institute of Biomedical Sciences, Federal University of Rio de Janeiro, Brazil; Postgraduate Program in Endocrinology, School of Medicine, Federal University of Rio de Janeiro. Av. Carlos Chagas Filho, Ilha do Governador, Cidade Universitária, RJ, UFRJ, Brazil.
| | - Jones B Graceli
- Department of Morphology, Health Sciences Center, Federal University of Espirito Santo, Av. Marechal Campos, 1468, CEP: 290440-090 Vitória, ES, Brazil.
| |
Collapse
|
16
|
Park JH, Ahn EK, Hwang MH, Park YJ, Cho YR, Ko HJ, Jeong W, Yang SH, Seo DW, Oh JS. Improvement of Obesity and Dyslipidemic Activity of Amomum tsao-ko in C57BL/6 Mice Fed a High-Carbohydrate Diet. Molecules 2021; 26:molecules26061638. [PMID: 33804179 PMCID: PMC7998585 DOI: 10.3390/molecules26061638] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2021] [Revised: 02/27/2021] [Accepted: 03/11/2021] [Indexed: 12/12/2022] Open
Abstract
Amomum tsao-ko Crevost et Lemaire (Zingiberaceae) is a medicinal herb found in Southeast Asia that is used for the treatment of malaria, abdominal pain, dyspepsia, etc. The aim of this study was to investigate the effect of an ethanol extract of Amomum tsao-ko (EAT) on obesity and hyperlipidemia in C57BL/6 mice fed a high-carbohydrate diet (HCD). First, the mice were divided into five groups (n = 6/group) as follows: normal diet, HCD, and HCD+EAT (100, 200, and 400 mg/kg/day), which were orally administered with EAT daily for 84 days. Using microcomputed tomography (micro-CT) analysis, we found that EAT inhibited not only body-weight gain, but also visceral fat and subcutaneous fat accumulation. Histological analysis confirmed that EAT decreased the size of fat tissues. EAT consistently improved various indices, including plasma levels of total cholesterol (TC), triglyceride (TG), low-density lipoprotein, high-density lipoprotein, atherogenic index, and cardiac risk factors, which are related to dyslipidemia—a major risk factor for heart disease. The contents of TC and TG, as well as the lipid droplets of HCD-induced hepatic accumulation in the liver tissue, were suppressed by EAT. Taken together, these findings suggest the possibility of developing EAT as a therapeutic agent for improving HCD-induced obesity and hyperlipidemia.
Collapse
Affiliation(s)
- Ju-Hyoung Park
- College of Pharmacy, Dankook University, Dandae-ro 119, Dongnam, Cheonan, Chungnam 31116, Korea; (J.-H.P.); (D.-W.S.)
| | - Eun-Kyung Ahn
- Bio-Center, Gyeonggido Business and Science Accelerator, Gwanggyo-ro 147, Yeoungtong, Suwon, Gyeonggi 16229, Korea; (E.-K.A.); (M.H.H.); (Y.J.P.); (Y.-R.C.); (H.-J.K.); (W.J.)
| | - Min Hee Hwang
- Bio-Center, Gyeonggido Business and Science Accelerator, Gwanggyo-ro 147, Yeoungtong, Suwon, Gyeonggi 16229, Korea; (E.-K.A.); (M.H.H.); (Y.J.P.); (Y.-R.C.); (H.-J.K.); (W.J.)
| | - Young Jin Park
- Bio-Center, Gyeonggido Business and Science Accelerator, Gwanggyo-ro 147, Yeoungtong, Suwon, Gyeonggi 16229, Korea; (E.-K.A.); (M.H.H.); (Y.J.P.); (Y.-R.C.); (H.-J.K.); (W.J.)
| | - Young-Rak Cho
- Bio-Center, Gyeonggido Business and Science Accelerator, Gwanggyo-ro 147, Yeoungtong, Suwon, Gyeonggi 16229, Korea; (E.-K.A.); (M.H.H.); (Y.J.P.); (Y.-R.C.); (H.-J.K.); (W.J.)
| | - Hye-Jin Ko
- Bio-Center, Gyeonggido Business and Science Accelerator, Gwanggyo-ro 147, Yeoungtong, Suwon, Gyeonggi 16229, Korea; (E.-K.A.); (M.H.H.); (Y.J.P.); (Y.-R.C.); (H.-J.K.); (W.J.)
| | - Wonsik Jeong
- Bio-Center, Gyeonggido Business and Science Accelerator, Gwanggyo-ro 147, Yeoungtong, Suwon, Gyeonggi 16229, Korea; (E.-K.A.); (M.H.H.); (Y.J.P.); (Y.-R.C.); (H.-J.K.); (W.J.)
| | - Seung Hwan Yang
- Department of Biotechnology, Chonnam National University, Yeosu, Chonnam 59626, Korea;
| | - Dong-Wan Seo
- College of Pharmacy, Dankook University, Dandae-ro 119, Dongnam, Cheonan, Chungnam 31116, Korea; (J.-H.P.); (D.-W.S.)
| | - Joa Sub Oh
- College of Pharmacy, Dankook University, Dandae-ro 119, Dongnam, Cheonan, Chungnam 31116, Korea; (J.-H.P.); (D.-W.S.)
- Correspondence:
| |
Collapse
|
17
|
da Costa CS, Oliveira TF, Freitas-Lima LC, Padilha AS, Krause M, Carneiro MTWD, Salgado BS, Graceli JB. Subacute cadmium exposure disrupts the hypothalamic-pituitary-gonadal axis, leading to polycystic ovarian syndrome and premature ovarian failure features in female rats. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2021; 269:116154. [PMID: 33280922 DOI: 10.1016/j.envpol.2020.116154] [Citation(s) in RCA: 41] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/31/2020] [Revised: 11/04/2020] [Accepted: 11/22/2020] [Indexed: 05/22/2023]
Abstract
Cadmium (Cd), a toxic heavy metal, is a known endocrine disruptor that is associated with reproductive complications. However, few studies have explored the effects of Cd exposure on features of polycystic ovary syndrome (PCOS) and premature ovary failure (POF). In this study, we assessed whether doses found in workers occupationally exposed to Cd and subacute exposure result in hypothalamic-pituitary-gonadal (HPG) axis and other irregularities. We administered CdCl2 to female rats (100 ppm in drinking water for 30 days) and then assessed Cd levels in the blood, HPG axis and uterus. Metabolic features, HPG axis function, reproductive tract (RT) morphophysiology, inflammation, oxidative stress (OS), and fibrosis were evaluated. Cd exposure increased Cd levels in the serum, HPG axis, and uterus. Cd rats displayed metabolic impairments, such as a reduction in adiposity, dyslipidemia, and insulin resistance (IR). Cd exposure also caused improper functioning in the HPG. Specifically, Cd exposure caused irregular estrous cyclicity, abnormal hypothalamic gene expression (upregulated - Kiss1, AR and mTOR; downregulated - Kiss1R, LepR and TNF-α), high LH levels, low AMH levels and abnormal ovarian follicular development, coupled with a reduction in ovarian reserve and antral follicle number was observed, suggesting ovarian depletion. Further, Cd exposure caused a reduction in corpora lutea (CL) and granulosa layer thickness together with an increase in cystic/atretic follicles. In addition, Cd exposure caused RT inflammation, OS and fibrosis. Finally, strong positive correlations were observed between serum, RT Cd levels, IR, dyslipidemia and estrous cycle length, cystic, atretic follicles, LH levels, and RT inflammation. Thus, these data suggest that subacute Cd exposure using doses found in workers occupationally exposed to Cd disrupt the HPG axis function, leading to PCOS and POF features and other abnormalities in female rats.
Collapse
Affiliation(s)
- Charles S da Costa
- Department of Morphology, Health Sciences Center, Federal University of Espirito Santo, Av. Marechal Campos, 1468, CEP: 290440-090, Vitória, ES, Brazil.
| | - Thiago F Oliveira
- Department of Physiology, Health Sciences Center, Federal University of Espirito Santo, Av. Marechal Campos, 1468, CEP: 290440-090, Vitória, ES, Brazil
| | - Leandro C Freitas-Lima
- Department of Morphology, Health Sciences Center, Federal University of Espirito Santo, Av. Marechal Campos, 1468, CEP: 290440-090, Vitória, ES, Brazil.
| | - Alessandra S Padilha
- Department of Physiology, Health Sciences Center, Federal University of Espirito Santo, Av. Marechal Campos, 1468, CEP: 290440-090, Vitória, ES, Brazil.
| | - Maiara Krause
- Department of Chemistry, Federal University of Espirito Santo, Av. Fernando Ferrari, 514 Campos, 1468, CEP: 29075-910, Vitória, ES, Brazil.
| | - Maria Tereza W D Carneiro
- Department of Chemistry, Federal University of Espirito Santo, Av. Fernando Ferrari, 514 Campos, 1468, CEP: 29075-910, Vitória, ES, Brazil.
| | - Breno S Salgado
- Department of Pathology, Health Sciences Center, Federal University of Espirito Santo, Av. Marechal Campos, 1468, CEP: 290440-090, Vitória, ES, Brazil.
| | - Jones B Graceli
- Department of Morphology, Health Sciences Center, Federal University of Espirito Santo, Av. Marechal Campos, 1468, CEP: 290440-090, Vitória, ES, Brazil.
| |
Collapse
|
18
|
de Melo GB, Soares JF, Costa TCL, Benevides ROA, Vale CC, Paes AMDA, Gaspar RS. Early Exposure to High-Sucrose Diet Leads to Deteriorated Ovarian Health. Front Endocrinol (Lausanne) 2021; 12:656831. [PMID: 33953699 PMCID: PMC8092397 DOI: 10.3389/fendo.2021.656831] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/21/2021] [Accepted: 03/26/2021] [Indexed: 11/18/2022] Open
Abstract
BACKGROUND The metabolic syndrome (MetS) is correlated with disorders of the reproductive system, such as the polycystic ovary syndrome (PCOS). While consumption of a diet rich in carbohydrates is linked to the development of MetS, it is still unclear if this diet leads to ovarian dysfunction and PCOS. OBJECTIVES We investigated the influence of a high-sucrose diet (HSD) on the ovarian milieu of Wistar rats and studied the correlation between high consumption of sugary drinks and the prevalence of PCOS in women. METHODS Wistar rats were given a standard laboratory diet (CTR, 10% sucrose, n = 8) or HSD (HSD, 25% sucrose, n = 8) from postnatal day 21 to 120. Animals were evaluated weekly to calculate food intake, feed efficiency and weight gain. Both onset of puberty and estrous cycle were monitored. Metabolic serum biochemistry, organ morphometry and ovarian histology were performed upon euthanasia. In parallel, a fixed-effects multiple linear regression analysis was performed using data from Brazilian states (459 state-year observations) to test the correlation between the consumption of sugar-sweetened beverages (surrogate for HSD intake) and the prevalence of PCOS (surrogate for ovarian dysfunction). RESULTS HSD animals showed increased adipose tissue accumulation, hyperglycaemia and insulin resistance when compared to CTR. Interestingly HSD rats also entered puberty earlier than CTR. Moreover, ovaries from HSD animals had an increased number of atretic antral follicles and cystic follicles, which were correlated with the hypertrophy of periovarian adipocytes. Finally, there was a positive correlation between the intake of sugary drinks and prevalence of PCOS in women of reproductive age. CONCLUSIONS HSD ingestion leads to ovarian dysfunction in rats and could be correlated with PCOS in women, suggesting these alterations could lead to public health issues. Therefore, we reinforce the deleterious impact of HSD to the ovarian system and suggest that the reduction of added sugars intake could be beneficial to ovarian health.
Collapse
Affiliation(s)
- Giuliane Barros de Melo
- Laboratory of Experimental Physiology, Department of Physiological Sciences, Biological and Health Sciences Centre, Federal University of Maranhão, São Luís, Brazil
| | - Jéssica Furtado Soares
- Laboratory of Experimental Physiology, Department of Physiological Sciences, Biological and Health Sciences Centre, Federal University of Maranhão, São Luís, Brazil
- Health Sciences Graduate Program, Biological and Health Sciences Centre, Federal University of Maranhão, São Luís, Brazil
| | - Thamyres Cristhina Lima Costa
- Laboratory of Experimental Physiology, Department of Physiological Sciences, Biological and Health Sciences Centre, Federal University of Maranhão, São Luís, Brazil
- Health Sciences Graduate Program, Biological and Health Sciences Centre, Federal University of Maranhão, São Luís, Brazil
| | - Renata Ohana Alves Benevides
- Laboratory of Experimental Physiology, Department of Physiological Sciences, Biological and Health Sciences Centre, Federal University of Maranhão, São Luís, Brazil
- Health Sciences Graduate Program, Biological and Health Sciences Centre, Federal University of Maranhão, São Luís, Brazil
| | - Caroline Castro Vale
- Laboratory of Experimental Physiology, Department of Physiological Sciences, Biological and Health Sciences Centre, Federal University of Maranhão, São Luís, Brazil
- Health Sciences Graduate Program, Biological and Health Sciences Centre, Federal University of Maranhão, São Luís, Brazil
| | - Antonio Marcus de Andrade Paes
- Laboratory of Experimental Physiology, Department of Physiological Sciences, Biological and Health Sciences Centre, Federal University of Maranhão, São Luís, Brazil
- Health Sciences Graduate Program, Biological and Health Sciences Centre, Federal University of Maranhão, São Luís, Brazil
| | - Renato Simões Gaspar
- Laboratory of Experimental Physiology, Department of Physiological Sciences, Biological and Health Sciences Centre, Federal University of Maranhão, São Luís, Brazil
- Institute for Cardiovascular and Metabolic Research, School of Biological Sciences, University of Reading, Reading, United Kingdom
- *Correspondence: Renato Simões Gaspar,
| |
Collapse
|