1
|
Makhathini N, Kumar N, Fawole OA. Enhancing circular bioeconomy: Alginate-cellulose nanofibre films/coatings functionalized with encapsulated pomegranate peel extract for postharvest preservation of pomegranate arils. Int J Biol Macromol 2025; 309:142848. [PMID: 40188910 DOI: 10.1016/j.ijbiomac.2025.142848] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2024] [Revised: 02/09/2025] [Accepted: 04/03/2025] [Indexed: 04/12/2025]
Abstract
This study investigated the properties of alginate-cellulose nanofiber (AL-CNF) bio-composite coatings functionalized with pomegranate peel extract powder (PPEP) at 0.1, 0.3, and 0.5 % (w/v) and their effects on the postharvest shelf life of pomegranate arils stored at 5 °C and 95 ± 2 % RH for 15 days. The results demonstrated that PPEP incorporation enhanced the physical, functional, and antioxidant properties of the coatings while reducing their mechanical strength. Microstructural analysis revealed that CNF contributed to a rougher surface, whereas PPEP addition improved homogeneity and smoothness. The 0.5 % PPEP concentration exhibited the highest thickness, antioxidant activity, and phenolic content. Application of AL-CNF bio-composite coatings significantly (p < 0.05) reduced weight loss, delayed respiration, and maintained firmness compared to the control. PPEP incorporation increased total soluble solids (TSS) and preserved the visual quality of arils. Additionally, 0.5 % PPEP retained higher phenolic content, anthocyanin levels, and DPPH activity while reducing microbial growth. These findings suggest that AL-CNF nanocomposite coatings enriched with PPEP (0.1-0.5 %) effectively preserve quality and extend the shelf life of minimally processed pomegranate arils, offering a sustainable postharvest preservation strategy.
Collapse
Affiliation(s)
- Noluthando Makhathini
- South African Research Chairs Initiative in Sustainable Preservation and Agroprocessing Research, Faculty of Science, University of Johannesburg, PO Box 524, Auckland Park, Johannesburg 2006, South Africa; Postharvest and Agroprocessing Research Centre, Department of Botany and Plant Biotechnology, University of Johannesburg, PO Box 524, Auckland Park, Johannesburg 2006, South Africa
| | - Nishant Kumar
- National Institute of Food Technology Entrepreneurship and Management, Kundli, Sonipat, Haryana 131028, India
| | - Olaniyi A Fawole
- South African Research Chairs Initiative in Sustainable Preservation and Agroprocessing Research, Faculty of Science, University of Johannesburg, PO Box 524, Auckland Park, Johannesburg 2006, South Africa; Postharvest and Agroprocessing Research Centre, Department of Botany and Plant Biotechnology, University of Johannesburg, PO Box 524, Auckland Park, Johannesburg 2006, South Africa.
| |
Collapse
|
2
|
Ede JD, Charlton-Sevcik AK, Griffin J, Srinivasan P, Zhang Y, Sayes CM, Hsieh YL, Stark N, Shatkin JA. Life-Cycle Risk Assessment of Second-Generation Cellulose Nanomaterials. NANOMATERIALS (BASEL, SWITZERLAND) 2025; 15:238. [PMID: 39940214 PMCID: PMC11819754 DOI: 10.3390/nano15030238] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/20/2024] [Revised: 01/21/2025] [Accepted: 01/24/2025] [Indexed: 02/14/2025]
Abstract
A nanomaterial life-cycle risk assessment (Nano LCRA) was conducted for second-generation functionalized cellulose nanomaterials (CNs) in five case studies, including applications in water filtration, food contact packaging (including as an additive and coating), and food additives, to identify and prioritize potential occupational, health, consumer, and environmental risks. Exposure scenarios were developed and ranked for each product life-cycle stage. A Safer-by-Design Toolbox (SbD Toolbox) representing a compendium of high-throughput physical, chemical, and toxicological new approach methodologies (NAMs) was used for a screening-level hazard assessment. Overall, risks identified for the CN-enabled products were low. Of the exposure scenarios, occupational inhalation exposures during product manufacturing and application ranked the highest. Despite differences in chemistry and morphology, the materials behaved similarly in oral, dermal, and inhalation models, supporting their grouping and read-across. The screening-level hazard assessment identified potential lung inflammation associated with CN exposure, and a review of the literature supported this funding, suggesting CNs behave as poorly soluble, low-toxicity dusts with the potential to irritate the lung. Key research gaps to reduce uncertainty include evaluating long-term, low-dose exposures typical of the workplace, as well as the potential release and toxicity of CN-containing composite particles.
Collapse
Affiliation(s)
| | | | | | - Padmapriya Srinivasan
- Vireo Advisors, LLC, Boston, MA 02205, USA
- Department of Chemistry, University of British Columbia, Vancouver, BC V6T 1Z4, Canada
| | - Yueyang Zhang
- Vireo Advisors, LLC, Boston, MA 02205, USA
- Department of Biological Sciences, University of Alberta, Edmonton, AB T6G 2E9, Canada
| | - Christie M. Sayes
- Department of Environmental Science, Baylor University, Waco, TX 76798, USA
| | - You-Lo Hsieh
- Biological and Agricultural Engineering, Chemical Engineering, University of California at Davis, Davis, CA 95616, USA
| | - Nicole Stark
- Forest Products Laboratory (FPL), USDA Forest Service, Madison, WI 53726, USA
| | | |
Collapse
|
3
|
Vital N, Cardoso M, Kranendonk M, Silva MJ, Louro H. Evaluation of the cyto- and genotoxicity of two types of cellulose nanomaterials using human intestinal cells and in vitro digestion simulation. Arch Toxicol 2025; 99:575-596. [PMID: 39718590 PMCID: PMC11775080 DOI: 10.1007/s00204-024-03911-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2024] [Accepted: 11/20/2024] [Indexed: 12/25/2024]
Abstract
Emerging cellulose nanomaterials (CNMs) may have commercial impacts in multiple sectors, being their application particularly explored in the food sector. Thus, their potential adverse effects in the gastrointestinal tract should be evaluated before marketing. This work aimed to assess the safety of two CNMs (CNF-TEMPO and CMF-ENZ) through the investigation of their cytotoxicity, genotoxicity (comet and micronucleus assays), and capacity to induce reactive oxygen species in human intestinal cells, and their mutagenic effect using the Hprt gene mutation assay. Each toxicity endpoint was analysed after cells exposure to a concentration-range of each CNM or to its digested product, obtained by the application of a standardized static in vitro digestion method. The results showed an absence of cytotoxic effects in intestinal cells, up to the highest concentration tested (200 µg/mL or 25 µg/mL, for non-digested and digested CNMs, respectively). Of note, the cytotoxicity of the digestion control limited the top concentration of digested samples (25 µg/mL) for subsequent assays. Application of a battery of in vitro assays showed that CNF-TEMPO and CMF-ENZ do not induce gene mutations or aneugenic/clastogenic effects. However, due to the observed DNA damage induction, a genotoxic potential cannot be excluded, even though in vitro digestion seems to attenuate the effect. The lowest digested CNF-TEMPO concentration induced chromosomal damage in Caco-2 cells, leading to an equivocal outcome. Ongoing research on epigenotoxic effects of these CNMs samples may strengthen the lines of evidence on their safety when ingested, paving the way for their innovative application in the food industry.
Collapse
Affiliation(s)
- Nádia Vital
- Department of Human Genetics, National Institute of Health Dr. Ricardo Jorge, Avenida Padre Cruz, 1649-016, Lisbon, Portugal
- NOVA Medical School, Universidade NOVA de Lisboa, 1169-056, Lisbon, Portugal
- Centre for Toxicogenomics and Human Health (ToxOmics), NOVA Medical School, Universidade NOVA de Lisboa, 1169-056, Lisbon, Portugal
| | - Maria Cardoso
- Department of Human Genetics, National Institute of Health Dr. Ricardo Jorge, Avenida Padre Cruz, 1649-016, Lisbon, Portugal
| | - Michel Kranendonk
- NOVA Medical School, Universidade NOVA de Lisboa, 1169-056, Lisbon, Portugal
- Centre for Toxicogenomics and Human Health (ToxOmics), NOVA Medical School, Universidade NOVA de Lisboa, 1169-056, Lisbon, Portugal
| | - Maria João Silva
- Department of Human Genetics, National Institute of Health Dr. Ricardo Jorge, Avenida Padre Cruz, 1649-016, Lisbon, Portugal.
- Centre for Toxicogenomics and Human Health (ToxOmics), NOVA Medical School, Universidade NOVA de Lisboa, 1169-056, Lisbon, Portugal.
| | - Henriqueta Louro
- Department of Human Genetics, National Institute of Health Dr. Ricardo Jorge, Avenida Padre Cruz, 1649-016, Lisbon, Portugal
- Centre for Toxicogenomics and Human Health (ToxOmics), NOVA Medical School, Universidade NOVA de Lisboa, 1169-056, Lisbon, Portugal
| |
Collapse
|
4
|
Wang L, Zheng H, Wang W, Deng K, Tian H. Physicochemical properties of bacterial cellulose from a strain of Komagataeibacter intermedius and analytical studies on its application. Int J Biol Macromol 2024; 283:137472. [PMID: 39528203 DOI: 10.1016/j.ijbiomac.2024.137472] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2024] [Revised: 10/24/2024] [Accepted: 11/08/2024] [Indexed: 11/16/2024]
Abstract
A high bacterial cellulose (BC) producing Komagataeibacter intermedius (KEI6 strain) was isolated from water kefir grains in Xinjiang, China. Under optimized culture conditions, the KEI6 strain was able to produce BC (KEI6-BC) up to 7.03 g/L dry weight. In this study, the rheological properties, hydrophilicity, molar mass, and specific surface area of KEI6-BC were systematically evaluated and characterized by three different drying treatments (freeze-drying, drying at 50 °C, and high-pressure homogenization). The results showed that KEI6-BC has a storage modulus of 104 Pa and a weight average molecular weight of 4.19×105 g/mol, which exhibits a randomly curled conformational polymer structure. Interestingly, freeze-dried treated KEI6-BC exhibited a highly uniform fiber distribution as well as good functional group retention, crystallinity, and thermal stability. In addition, we used freeze-dried KEI6-BC as a carrier to load ampicillin sodium and evaluated its antibacterial activity. It was found that freeze-dried KEI6-BC was promising as a carrier for slow drug release as well as exhibited good antibacterial activity after drug loading, demonstrating its great potential as an efficient antibacterial composite film.
Collapse
Affiliation(s)
- Liang Wang
- School of Food and Biological Engineering, Jiangsu University, Xuefu Road 301, Zhenjiang 212013, PR China.
| | - Huanhuan Zheng
- School of Food and Biological Engineering, Jiangsu University, Xuefu Road 301, Zhenjiang 212013, PR China
| | - Wenhao Wang
- School of Materials Science and Engineering, Dalian Jiaotong University, Huanghe Road 794, Dalian 116028, PR China
| | - Kaiwen Deng
- School of Food and Biological Engineering, Jiangsu University, Xuefu Road 301, Zhenjiang 212013, PR China
| | - Huimin Tian
- School of Food and Biological Engineering, Jiangsu University, Xuefu Road 301, Zhenjiang 212013, PR China
| |
Collapse
|
5
|
Tao S, Yang Q, Zhou W, Zhu J, Pan H, Xu L, Zhao H, Zhou T, Wang J. Incorporation of polyvinyl alcohol in bacterial cellulose/polypyrrole flexible conductive films to enhance the mechanical and conductive performance. Int J Biol Macromol 2024; 282:137571. [PMID: 39542285 DOI: 10.1016/j.ijbiomac.2024.137571] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2024] [Revised: 10/26/2024] [Accepted: 11/11/2024] [Indexed: 11/17/2024]
Abstract
The integration of polypyrrole (PPy) into bacterial cellulose (BC) has provided significant conductivity and cost benefits. However, this combination has led to a reduction in mechanical properties, particularly in terms of elongation at break and tensile strength. This study investigated the enhancement of BC/PPy composite films by incorporating polyvinyl alcohol (PVA). The resulting BC/PPy/PVA films demonstrated improvements in flexibility, tensile strength and thermal stability. Specifically, with 7 % PVA, the flexible films exhibited remarkable enhancements: tensile strength increased from 11.01 MPa (for BC/PPy) to 25.27 MPa and elongation at break rose from 5.81 % to 11.54 %. Additionally, the electrical conductivity of the BC/PPy/PVA films with a resistance of 38.5 Ω, surpassed that of the BC/PPy films. Furthermore, the equilibrium swelling water absorption rates of BC/PPy and BC/PPy/PVA films were 30.6 % and 81.4 %, respectively, with corresponding resistances of 530 Ω and 540 Ω. The variation in resistance between the dry and swollen states of the BC/PPy/PVA flexible conductive film resulted in differences in the brightness of the small light bulb. These findings highlighted the synergistic effects of PVA within the BC/PPy matrix, presenting a promising avenue for developing high-performance conductive materials suitable for flexible electronics and wearable devices.
Collapse
Affiliation(s)
- Sixuan Tao
- School of Textiles and Fashion, Shanghai University of Engineering Science, Shanghai 201620, China
| | - Qun Yang
- School of Textiles and Fashion, Shanghai University of Engineering Science, Shanghai 201620, China; Key Laboratory of Textile Fiber and Products (Wuhan Textile University), Ministry of Education, Wuhan 430200, Hubei, China; Shanghai Engineering Research Center for Clean Production of Textile Chemistry, Shanghai 201620, China.
| | - Weiman Zhou
- School of Textiles and Fashion, Shanghai University of Engineering Science, Shanghai 201620, China
| | - Jie Zhu
- School of Textiles and Fashion, Shanghai University of Engineering Science, Shanghai 201620, China
| | - Hong Pan
- School of Textiles and Fashion, Shanghai University of Engineering Science, Shanghai 201620, China
| | - Lihui Xu
- School of Textiles and Fashion, Shanghai University of Engineering Science, Shanghai 201620, China
| | - Hong Zhao
- School of Textiles and Fashion, Shanghai University of Engineering Science, Shanghai 201620, China
| | - Tianchi Zhou
- Institute of Flexible Functional Materials, Yancheng Institute of Technology, Yancheng, Jiangsu 224051, China
| | - Jiping Wang
- School of Textiles and Fashion, Shanghai University of Engineering Science, Shanghai 201620, China; Shanghai Engineering Research Center for Clean Production of Textile Chemistry, Shanghai 201620, China
| |
Collapse
|
6
|
Qin Z, Ng W, Ede J, Shatkin JA, Feng J, Udo T, Kong F. Nanocellulose and its modified forms in the food industry: Applications, safety, and regulatory perspectives. Compr Rev Food Sci Food Saf 2024; 23:e70049. [PMID: 39495568 DOI: 10.1111/1541-4337.70049] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2024] [Revised: 08/16/2024] [Accepted: 10/02/2024] [Indexed: 11/06/2024]
Abstract
Nanocellulose (NC), known for its unique properties including high mechanical strength, low density, and extensive surface area, presents significant potential for broad application in the food sector. Through further modification, NC can be enhanced and adapted for various purposes. Applications in the food industry include stabilizing, encapsulating, and packaging material. Additionally, due to its unique characteristics during digestion in the gastrointestinal tract, NC and its derivatives exhibit the potential to be used as health-promotion food ingredients. However, while the safety data on unmodified NC is readily available, the safety of modified forms of NC for use in food remains uncertain. This review offers a comprehensive analysis of recent breakthroughs in NC and its derivatives for innovative food applications. It synthesizes existing research on safety evaluations, with a particular emphasis on the latest findings on toxicity and biocompatibility. Furthermore, the paper outlines the regulatory landscape for NC-based food ingredients and food contact materials in the United States and European Union and provides recommendations to expedite regulatory authorization and commercialization. Ultimately, this work offers valuable insights to promote the sustainable and innovative application of NC compounds in the food sector.
Collapse
Affiliation(s)
- Zijin Qin
- Department of Food Science and Technology, University of Georgia, Clarke, Athens, Georgia, USA
| | - Wei Ng
- Vireo Advisors, LLC, Boston, Massachusetts, USA
| | - James Ede
- Vireo Advisors, LLC, Boston, Massachusetts, USA
| | | | - Jiannan Feng
- Department of Food Science and Technology, University of Georgia, Clarke, Athens, Georgia, USA
| | - Toshifumi Udo
- Department of Food Science and Technology, University of Georgia, Clarke, Athens, Georgia, USA
| | - Fanbin Kong
- Department of Food Science and Technology, University of Georgia, Clarke, Athens, Georgia, USA
| |
Collapse
|
7
|
Shipelin VA, Skiba EA, Budaeva VV, Shumakova AA, Trushina EN, Mustafina OK, Markova YM, Riger NA, Gmoshinski IV, Sheveleva SA, Khotimchenko SA, Nikityuk DB. Toxicological Characteristics of Bacterial Nanocellulose in an In Vivo Experiment-Part 2: Immunological Endpoints, Influence on the Intestinal Barrier and Microbiome. NANOMATERIALS (BASEL, SWITZERLAND) 2024; 14:1678. [PMID: 39453014 PMCID: PMC11510458 DOI: 10.3390/nano14201678] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/17/2024] [Revised: 09/25/2024] [Accepted: 10/16/2024] [Indexed: 10/26/2024]
Abstract
Bacterial nanocellulose (BNC) is considered a promising alternative to microcrystalline cellulose, as well as an ingredient in low-calorie dietary products. However, the risks of BNC when consumed with food are not well characterized. The aim of this study is to investigate the impact of BNC on immune function, the intestinal microbiome, intestinal barrier integrity, and allergic sensitization in subacute experiments on rats. Male Wistar rats received BNC with a diet for eight weeks in a dose range of 1-100 mg/kg of body weight. The measurements of serum levels of cytokines, adipokines, iFABP2, indicators of cellular immunity, composition of the intestinal microbiome, and a histological study of the ileal mucosa were performed. In a separate four-week experiment on a model of systemic anaphylaxis to food antigen, BNC at a dose of 100 mg/kg of body weight did not increase the severity of the reaction or change the response of IgG antibodies. Based on dose-response effects on immune function, the non-observed adverse effect level for BNC was less than 100 mg/kg of body weight per day. The effects of BNC on the gut microbiome and the intestinal mucosal barrier were not dose-dependent. Data on the possible presence of prebiotic effects in BNC have been obtained.
Collapse
Affiliation(s)
- Vladimir A. Shipelin
- Federal Research Centre of Nutrition and Biotechnology, 109240 Moscow, Russia; (A.A.S.); (E.N.T.); (O.K.M.); (Y.M.M.); (N.A.R.); (I.V.G.); (S.A.S.); (S.A.K.)
| | - Ekaterina A. Skiba
- Institute for Problems of Chemical and Energetic Technologies of the Siberian Branch of the Russian Academy of Sciences, 659322 Biysk, Russia; (E.A.S.); (V.V.B.)
| | - Vera V. Budaeva
- Institute for Problems of Chemical and Energetic Technologies of the Siberian Branch of the Russian Academy of Sciences, 659322 Biysk, Russia; (E.A.S.); (V.V.B.)
| | - Antonina A. Shumakova
- Federal Research Centre of Nutrition and Biotechnology, 109240 Moscow, Russia; (A.A.S.); (E.N.T.); (O.K.M.); (Y.M.M.); (N.A.R.); (I.V.G.); (S.A.S.); (S.A.K.)
| | - Eleonora N. Trushina
- Federal Research Centre of Nutrition and Biotechnology, 109240 Moscow, Russia; (A.A.S.); (E.N.T.); (O.K.M.); (Y.M.M.); (N.A.R.); (I.V.G.); (S.A.S.); (S.A.K.)
| | - Oksana K. Mustafina
- Federal Research Centre of Nutrition and Biotechnology, 109240 Moscow, Russia; (A.A.S.); (E.N.T.); (O.K.M.); (Y.M.M.); (N.A.R.); (I.V.G.); (S.A.S.); (S.A.K.)
| | - Yuliya M. Markova
- Federal Research Centre of Nutrition and Biotechnology, 109240 Moscow, Russia; (A.A.S.); (E.N.T.); (O.K.M.); (Y.M.M.); (N.A.R.); (I.V.G.); (S.A.S.); (S.A.K.)
| | - Nikolay A. Riger
- Federal Research Centre of Nutrition and Biotechnology, 109240 Moscow, Russia; (A.A.S.); (E.N.T.); (O.K.M.); (Y.M.M.); (N.A.R.); (I.V.G.); (S.A.S.); (S.A.K.)
| | - Ivan V. Gmoshinski
- Federal Research Centre of Nutrition and Biotechnology, 109240 Moscow, Russia; (A.A.S.); (E.N.T.); (O.K.M.); (Y.M.M.); (N.A.R.); (I.V.G.); (S.A.S.); (S.A.K.)
| | - Svetlana A. Sheveleva
- Federal Research Centre of Nutrition and Biotechnology, 109240 Moscow, Russia; (A.A.S.); (E.N.T.); (O.K.M.); (Y.M.M.); (N.A.R.); (I.V.G.); (S.A.S.); (S.A.K.)
| | - Sergey A. Khotimchenko
- Federal Research Centre of Nutrition and Biotechnology, 109240 Moscow, Russia; (A.A.S.); (E.N.T.); (O.K.M.); (Y.M.M.); (N.A.R.); (I.V.G.); (S.A.S.); (S.A.K.)
- Department of Food Hygiene and Toxicology, Institute of Vocational Education, I.M. Sechenov First Moscow State Medical University, 119435 Moscow, Russia
| | - Dmitry B. Nikityuk
- Federal Research Centre of Nutrition and Biotechnology, 109240 Moscow, Russia; (A.A.S.); (E.N.T.); (O.K.M.); (Y.M.M.); (N.A.R.); (I.V.G.); (S.A.S.); (S.A.K.)
- Department of Operative Surgery and Topographic Anatomy, I.M. Sechenov First Moscow State Medical University, 119435 Moscow, Russia
- Department of Ecology and Food Safety, Institute of Ecology, Peoples’ Friendship University of Russia Named After Patrice Lumumba, 117198 Moscow, Russia
| |
Collapse
|
8
|
Silva-Carvalho R, Rodrigues PM, Martins D, Rodrigues AC, Sampaio P, Dourado F, Gonçalves C, Gama M. Bacterial Cellulose In Vitro Uptake by Macrophages, Epithelial Cells, and a Triculture Model of the Gastrointestinal Tract. Biomacromolecules 2024; 25:6748-6761. [PMID: 39305251 DOI: 10.1021/acs.biomac.4c00972] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/15/2024]
Abstract
Bacterial cellulose (BC) has a long-standing human consumption history in different geographies without any report of adverse effects. Despite its unique textural and functional properties, the use of BC in food products in Europe is still restricted due to concerns over its nanosize. Here, we evaluated the potential uptake of celluloses (from plant and microbial sources, processed using different blenders) by macrophages (differentiated THP-1 cells) and human intestinal epithelial cells (Caco-2 and HT29-MTX cells) without (coculture) or with (triculture) Raji-B cells. A carbohydrate-binding module coupled to a green fluorescent protein was employed to observe cellulose in the cell cultures by confocal laser scanning microscopy and stimulated emission depletion microscopy. The methodology demonstrated excellent sensitivity, allowing detection of single nanocrystals within cells. All celluloses were taken up by the macrophages, without significantly compromising the cell's metabolic viability. The viability of the cocultures was also not affected. Furthermore, no internalization was observed in the triculture cell model that was exposed 24 h to BC and Avicel LM310. When (rarely) detected, cellulose particles were found on the apical side of the membrane. Overall, the obtained results suggest that BC should not be absorbed into the human gut.
Collapse
Affiliation(s)
- Ricardo Silva-Carvalho
- CEB - Centre of Biological Engineering, University of Minho, Campus Gualtar, 4710-057 Braga, Portugal
- LABBELS - Associate Laboratory, 4710-057 Braga, Portugal
| | - Patrícia M Rodrigues
- International Iberian Nanotechnology Laboratory, Av. Mestre José Veiga s/n, 4715-330 Braga, Portugal
| | - Daniela Martins
- CEB - Centre of Biological Engineering, University of Minho, Campus Gualtar, 4710-057 Braga, Portugal
- LABBELS - Associate Laboratory, 4710-057 Braga, Portugal
| | - Ana Cristina Rodrigues
- CEB - Centre of Biological Engineering, University of Minho, Campus Gualtar, 4710-057 Braga, Portugal
- LABBELS - Associate Laboratory, 4710-057 Braga, Portugal
| | - Paula Sampaio
- i3S - Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Rua Alfredo Allen, 208, 4200-135 Porto, Portugal
- IBMC - Instituto de Biologia Molecular e Celular, 4200-135 Porto, Portugal
| | - Fernando Dourado
- CEB - Centre of Biological Engineering, University of Minho, Campus Gualtar, 4710-057 Braga, Portugal
- LABBELS - Associate Laboratory, 4710-057 Braga, Portugal
| | - Catarina Gonçalves
- International Iberian Nanotechnology Laboratory, Av. Mestre José Veiga s/n, 4715-330 Braga, Portugal
| | - Miguel Gama
- CEB - Centre of Biological Engineering, University of Minho, Campus Gualtar, 4710-057 Braga, Portugal
- LABBELS - Associate Laboratory, 4710-057 Braga, Portugal
| |
Collapse
|
9
|
Charlton-Sevcik AK, Collom C, Liu JY, Hsieh YL, Stark N, Ede JD, Shatkin JA, Sayes CM. The impact of surface functionalization of cellulose following simulated digestion and gastrointestinal cell-based model exposure. Int J Biol Macromol 2024; 271:132603. [PMID: 38788877 DOI: 10.1016/j.ijbiomac.2024.132603] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2024] [Revised: 05/16/2024] [Accepted: 05/21/2024] [Indexed: 05/26/2024]
Abstract
Surface-functionalized cellulose materials are developed for various purposes, including food additives and food contact materials. A new biologically relevant testing strategy has been developed based on guidance from the European Food Safety Authority to demonstrate the safety of several next-generation surface-functionalized cellulose materials. This strategy involves a complex three-stage simulated digestion to compare the health effects of thirteen novel different types of cellulose. The physical and chemical properties of surface-functionalized fibrillated celluloses differed depending on the type, amount, and location of functional groups such as sulfonate, TEMPO-oxidized carboxy, and periodate-chlorite oxidized dicarboxylic acid celluloses. Despite exposure to gastrointestinal fluids, the celluloses maintained their physicochemical properties, such as negative surface charges and high length-to-width/thickness aspect ratios. An established intestinal co-culture model was used to measure cytotoxicity, barrier integrity, oxidative stress, and pro-inflammatory response to create a toxicological profile for these unique materials. We conclude that the C6 carboxylated cellulose nanofibrils by TEMPO-oxidation induced the most toxicity in the biological model used in this study and that the observed effects were most prominent at the 4-hour post-exposure time point.
Collapse
Affiliation(s)
- Amanda K Charlton-Sevcik
- Department of Environmental Science, Baylor University, One Bear Place #97266, Waco, TX 76798-7266, USA
| | - Clancy Collom
- Department of Environmental Science, Baylor University, One Bear Place #97266, Waco, TX 76798-7266, USA
| | - James Y Liu
- Department of Environmental Science, Baylor University, One Bear Place #97266, Waco, TX 76798-7266, USA
| | | | | | - James D Ede
- Vireo Advisors, LLC, Boston, MA 02130-4323, USA
| | | | - Christie M Sayes
- Department of Environmental Science, Baylor University, One Bear Place #97266, Waco, TX 76798-7266, USA.
| |
Collapse
|
10
|
Shipelin VA, Skiba EA, Budayeva VV, Shumakova AA, Kolobanov AI, Sokolov IE, Maisaya KZ, Guseva GV, Trusov NV, Masyutin AG, Delegan YA, Kocharovskaya YN, Bogun AG, Gmoshinski IV, Khotimchenko SA, Nikityuk DB. Toxicological Characteristics of Bacterial Nanocellulose in an In Vivo Experiment-Part 1: The Systemic Effects. NANOMATERIALS (BASEL, SWITZERLAND) 2024; 14:768. [PMID: 38727362 PMCID: PMC11085383 DOI: 10.3390/nano14090768] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/12/2024] [Revised: 04/17/2024] [Accepted: 04/18/2024] [Indexed: 05/12/2024]
Abstract
Bacterial nanocellulose (BNC) is being considered as a potential replacement for microcrystalline cellulose as a food additive and a source of dietary fiber due to its unique properties. However, studies on the risks of consuming BNC in food are limited, and it is not yet approved for use in food in the US, EU, and Russia. AIM This study aims to perform a toxicological and hygienic assessment of the safety of BNC in a subacute 8-week administration in rats. METHODS BNC was administered to male Wistar rats in doses of 0, 1.0, 10.0, and 100 mg/kg body weight for 8 weeks. Various parameters such as anxiety levels, cognitive function, organ masses, blood serum and liver biochemistry, oxidative stress markers, vitamin levels, antioxidant gene expression, and liver and kidney histology were evaluated. RESULTS Low and medium doses of BNC increased anxiety levels and liver glutathione, while high doses led to elevated LDL cholesterol, creatinine, and uric acid levels. Liver tissue showed signs of degeneration at high doses. BNC did not significantly affect vitamin levels. CONCLUSION The adverse effects of BNC are either not dose-dependent or fall within normal physiological ranges. Any effects on rats are likely due to micronutrient deficiencies or impacts on intestinal microbiota.
Collapse
Affiliation(s)
- Vladimir A. Shipelin
- Federal Research Centre of Nutrition, Biotechnology and Food Safety, 109240 Moscow, Russia; (A.A.S.); (A.I.K.); (I.E.S.); (K.Z.M.); (N.V.T.); (I.V.G.); (S.A.K.); (D.B.N.)
- Academic Department of Innovational Materials and Technologies Chemistry, Plekhanov Russian University of Economics, 117997 Moscow, Russia
| | - Ekaterina A. Skiba
- Institute for Problems of Chemical and Energetic Technologies, Siberian Branch of the Russian Academy of Sciences, 659322 Biysk, Russia; (E.A.S.); (V.V.B.)
| | - Vera V. Budayeva
- Institute for Problems of Chemical and Energetic Technologies, Siberian Branch of the Russian Academy of Sciences, 659322 Biysk, Russia; (E.A.S.); (V.V.B.)
| | - Antonina A. Shumakova
- Federal Research Centre of Nutrition, Biotechnology and Food Safety, 109240 Moscow, Russia; (A.A.S.); (A.I.K.); (I.E.S.); (K.Z.M.); (N.V.T.); (I.V.G.); (S.A.K.); (D.B.N.)
| | - Alexey I. Kolobanov
- Federal Research Centre of Nutrition, Biotechnology and Food Safety, 109240 Moscow, Russia; (A.A.S.); (A.I.K.); (I.E.S.); (K.Z.M.); (N.V.T.); (I.V.G.); (S.A.K.); (D.B.N.)
| | - Ilya E. Sokolov
- Federal Research Centre of Nutrition, Biotechnology and Food Safety, 109240 Moscow, Russia; (A.A.S.); (A.I.K.); (I.E.S.); (K.Z.M.); (N.V.T.); (I.V.G.); (S.A.K.); (D.B.N.)
| | - Kirill Z. Maisaya
- Federal Research Centre of Nutrition, Biotechnology and Food Safety, 109240 Moscow, Russia; (A.A.S.); (A.I.K.); (I.E.S.); (K.Z.M.); (N.V.T.); (I.V.G.); (S.A.K.); (D.B.N.)
| | - Galina V. Guseva
- Federal Research Centre of Nutrition, Biotechnology and Food Safety, 109240 Moscow, Russia; (A.A.S.); (A.I.K.); (I.E.S.); (K.Z.M.); (N.V.T.); (I.V.G.); (S.A.K.); (D.B.N.)
| | - Nikita V. Trusov
- Federal Research Centre of Nutrition, Biotechnology and Food Safety, 109240 Moscow, Russia; (A.A.S.); (A.I.K.); (I.E.S.); (K.Z.M.); (N.V.T.); (I.V.G.); (S.A.K.); (D.B.N.)
| | | | - Yanina A. Delegan
- Institute of Biochemistry and Physiology of Microorganisms, Federal Research Center “Pushchino Scientific Center for Biological Research of Russian Academy of Sciences”, 142290 Pushchino, Russia; (Y.A.D.); (Y.N.K.)
| | - Yulia N. Kocharovskaya
- Institute of Biochemistry and Physiology of Microorganisms, Federal Research Center “Pushchino Scientific Center for Biological Research of Russian Academy of Sciences”, 142290 Pushchino, Russia; (Y.A.D.); (Y.N.K.)
| | - Alexander G. Bogun
- Institute of Biochemistry and Physiology of Microorganisms, Federal Research Center “Pushchino Scientific Center for Biological Research of Russian Academy of Sciences”, 142290 Pushchino, Russia; (Y.A.D.); (Y.N.K.)
| | - Ivan V. Gmoshinski
- Federal Research Centre of Nutrition, Biotechnology and Food Safety, 109240 Moscow, Russia; (A.A.S.); (A.I.K.); (I.E.S.); (K.Z.M.); (N.V.T.); (I.V.G.); (S.A.K.); (D.B.N.)
| | - Sergey A. Khotimchenko
- Federal Research Centre of Nutrition, Biotechnology and Food Safety, 109240 Moscow, Russia; (A.A.S.); (A.I.K.); (I.E.S.); (K.Z.M.); (N.V.T.); (I.V.G.); (S.A.K.); (D.B.N.)
- Department of Operative Surgery and Topographic Anatomy, I.M. Sechenov First Moscow State Medical University, 119435 Moscow, Russia
| | - Dmitry B. Nikityuk
- Federal Research Centre of Nutrition, Biotechnology and Food Safety, 109240 Moscow, Russia; (A.A.S.); (A.I.K.); (I.E.S.); (K.Z.M.); (N.V.T.); (I.V.G.); (S.A.K.); (D.B.N.)
- Department of Operative Surgery and Topographic Anatomy, I.M. Sechenov First Moscow State Medical University, 119435 Moscow, Russia
- Department of Ecology and Food Safety, Institute of Ecology, Patrice Lumumba Peoples’ Friendship University of Russia, 117198 Moscow, Russia
| |
Collapse
|
11
|
Yamashita Y, Tokunaga A, Aoki K, Ishizuka T, Uematsu H, Sakamoto H, Fujita S, Tanoue S. Assessing the Safety of Mechanically Fibrillated Cellulose Nanofibers (fib-CNF) via Toxicity Tests on Mice: Single Intratracheal Administration and 28 Days' Oral Intake. TOXICS 2024; 12:121. [PMID: 38393216 PMCID: PMC10893282 DOI: 10.3390/toxics12020121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/22/2023] [Revised: 01/07/2024] [Accepted: 01/15/2024] [Indexed: 02/25/2024]
Abstract
Mechanically fibrillated cellulose nanofibers, known as fib-CNF (fiber length: 500 nm; diameter: 45 nm), are used in composites and as a natural thickener in foods. To evaluate their safety, we conducted a 28-day study in mice with inhalation exposure at 0.2 mg/body and oral administration of 400 mg/kg/day. Inhalation exposure to fib-CNF caused transient weight loss, changes in blood cell counts, and increased lung weights. These changes were attributed to adaptive responses. The oral administration of fib-CNF for 28 days resulted in no apparent toxic effects except for a slight decrease in platelet counts. The fib-CNF administration using the protocols studied appears to be safe in mice.
Collapse
Affiliation(s)
- Yoshihiro Yamashita
- Research Center for Fibers and Materials, University of Fukui, 3-9-1 Bunkyo, Fukui 910-8507, Japan;
| | - Akinori Tokunaga
- Life Science Research Laboratory, University of Fukui, 23-3, Matsuoka Shimoaizuki, Eiheiji-cho, Fukui 910-1193, Japan;
- Organization for Life Science Advancement Programs, University of Fukui, 3-9-1 Bunkyo, Fukui 910-8507, Japan; (K.A.); (T.I.); (H.U.); (H.S.); (S.F.)
| | - Koji Aoki
- Organization for Life Science Advancement Programs, University of Fukui, 3-9-1 Bunkyo, Fukui 910-8507, Japan; (K.A.); (T.I.); (H.U.); (H.S.); (S.F.)
- Department of Pharmacology, Faculty of Medicine, University of Fukui, 23-3, Matsuoka Shimoaizuki, Eiheiji-cho, Fukui 910-1193, Japan
| | - Tamotsu Ishizuka
- Organization for Life Science Advancement Programs, University of Fukui, 3-9-1 Bunkyo, Fukui 910-8507, Japan; (K.A.); (T.I.); (H.U.); (H.S.); (S.F.)
- Third Department of Internal Medicine, Faculty of Medicine, University of Fukui, 23-3, Matsuoka Shimoaizuki, Eiheiji-cho, Fukui 910-1193, Japan
| | - Hideyuki Uematsu
- Organization for Life Science Advancement Programs, University of Fukui, 3-9-1 Bunkyo, Fukui 910-8507, Japan; (K.A.); (T.I.); (H.U.); (H.S.); (S.F.)
- Department of Frontier Fiber Technology and Science, Graduate School of Engineering, University of Fukui, 3-9-1 Bunkyo, Fukui 910-8507, Japan
| | - Hiroaki Sakamoto
- Organization for Life Science Advancement Programs, University of Fukui, 3-9-1 Bunkyo, Fukui 910-8507, Japan; (K.A.); (T.I.); (H.U.); (H.S.); (S.F.)
- Department of Frontier Fiber Technology and Science, Graduate School of Engineering, University of Fukui, 3-9-1 Bunkyo, Fukui 910-8507, Japan
| | - Satoshi Fujita
- Organization for Life Science Advancement Programs, University of Fukui, 3-9-1 Bunkyo, Fukui 910-8507, Japan; (K.A.); (T.I.); (H.U.); (H.S.); (S.F.)
- Department of Frontier Fiber Technology and Science, Graduate School of Engineering, University of Fukui, 3-9-1 Bunkyo, Fukui 910-8507, Japan
| | - Shuichi Tanoue
- Research Center for Fibers and Materials, University of Fukui, 3-9-1 Bunkyo, Fukui 910-8507, Japan;
- Organization for Life Science Advancement Programs, University of Fukui, 3-9-1 Bunkyo, Fukui 910-8507, Japan; (K.A.); (T.I.); (H.U.); (H.S.); (S.F.)
| |
Collapse
|
12
|
Kleijn AF, Mutter M, Akingbasote JA, Meetro J, Simon RR, Muntendam P, Frommhagen M, Schols HA. Toxicological evaluation of a pumpkin-derived pectin preparation: in vitro genotoxicity studies and a 13-week oral toxicity study in Sprague-Dawley rats. Toxicol Res (Camb) 2024; 13:tfae004. [PMID: 38274036 PMCID: PMC10807847 DOI: 10.1093/toxres/tfae004] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2022] [Revised: 12/07/2023] [Accepted: 12/18/2023] [Indexed: 01/27/2024] Open
Abstract
The safety of a rhamnogalacturonan-I-enriched pectin extract (G3P-01) from pumpkin (Cucurbita moschata var. Dickinson) was evaluated for use as an ingredient in food and dietary supplements. G3P-01 was tested in a battery of genetic toxicity studies including reverse mutagenicity and in vitro micronucleus assay. In addition, Sprague-Dawley rats were randomized and orally dosed with G3P-01 incorporated in animal diet at concentrations of 0, 9000, 18,000, and 36,000 ppm daily for 13-weeks (n=10/sex/group) in line with OECD guidelines (TG 408). The results of the in vitro bacterial reverse mutation assay and micronucleus assay in TK6 cells demonstrated a lack of genotoxicity. The 13-week oral toxicity study in Sprague-Dawley rats demonstrated that the test article, G3P-01 was well tolerated; there were no mortalities and no adverse effects on clinical, gross pathology, hematology, blood chemistry, and histological evaluation of the essential organs of the animals. The present study demonstrates that G3P-01 is non-genotoxic and is safe when ingested in diet at concentrations up to 36, 000 ppm. The subchronic no-observed-adverse-effect level (NOAEL) for G3P-01 was concluded to be 36,000 ppm, equivalent to 1,899 and 2,361 mg/kg/day for male and female rats respectively.
Collapse
Affiliation(s)
- Anne F Kleijn
- Laboratory of Food Chemistry, Wageningen University and Research, Bornse Weilanden 9, Wageningen, WG 6708, The Netherlands
| | - Margien Mutter
- G3P Inc., 20 Mall Road Suite 220, Burlington, MA 01803, United States
| | - James A Akingbasote
- Intertek Health Sciences Inc., Food and Nutrition Group, 2233 Argentia Road, Suite 201, Mississauga, ON L5N 2X7, Canada
| | - Jwar Meetro
- Intertek Health Sciences Inc., Food and Nutrition Group, 2233 Argentia Road, Suite 201, Mississauga, ON L5N 2X7, Canada
| | - Ryan R Simon
- Intertek Health Sciences Inc., Food and Nutrition Group, 2233 Argentia Road, Suite 201, Mississauga, ON L5N 2X7, Canada
| | - Pieter Muntendam
- G3P Inc., 20 Mall Road Suite 220, Burlington, MA 01803, United States
| | - Matthias Frommhagen
- Société des Produits Nestlé SA, Nestlé Research, Route du Jorat 57, CH-1000, Lausanne 26, Switzerland
| | - Henk A Schols
- Laboratory of Food Chemistry, Wageningen University and Research, Bornse Weilanden 9, Wageningen, WG 6708, The Netherlands
| |
Collapse
|
13
|
Ede JD, Diges AS, Zhang Y, Shatkin JA. Life-cycle risk assessment of graphene-enabled textiles in fire protection gear. NANOIMPACT 2024; 33:100488. [PMID: 37940075 DOI: 10.1016/j.impact.2023.100488] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/29/2023] [Revised: 10/06/2023] [Accepted: 11/03/2023] [Indexed: 11/10/2023]
Abstract
A nanomaterial life-cycle risk assessment (Nano LCRA) of a graphene-enabled textile used in the construction of heat and fire-resistant personal protective equipment (PPE) was conducted to develop, analyze, and prioritize potential occupational, health and environmental risks. The analysis identifies potential receptors and exposure pathways at each product life-cycle stage and makes a qualitative evaluation of the potential significance of each scenario. A literature review, quality evaluation, and database were developed as part of the LCRA to identify potential hazards associated with graphene-based materials (GBMs) throughout the product life-cycle. Generally, risks identified from graphene-enabled textiles were low. Of the developed exposure scenarios, occupational inhalation exposures during raw material and product manufacturing ranked highest. The analysis identifies the key potential human and environmental hazards and exposures of the products across the product life-cycle of graphene enabled textiles. Priority research gaps to reduce uncertainty include evaluating long-term, low dose graphene exposures typical of the workplace, as well as the potential release and hazard characterization of graphene-acrylic nanocomposites.
Collapse
Affiliation(s)
| | | | - Yueyang Zhang
- Vireo Advisors LLC, Boston, MA 02205, USA; University of Alberta, Edmonton, Alberta, Canada
| | | |
Collapse
|
14
|
Müller M, Drexel R, Burkhart M, Dähnhardt-Pfeiffer S, Wien L, Herrmann C, Knoll T, Metzger C, Briesen H, Wagner S, Meier F, Kohl Y. Ex vivo models for intestinal translocation studies of cellulose nanocrystals. IN VITRO MODELS 2023; 2:181-194. [PMID: 39872170 PMCID: PMC11756450 DOI: 10.1007/s44164-023-00056-x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/05/2023] [Revised: 07/14/2023] [Accepted: 07/17/2023] [Indexed: 01/29/2025]
Abstract
Purpose Cellulose nanocrystals (CNC) play a promising role in the development of new advanced materials. The growing demand of CNC-containing products in the food industry will lead to an increased human exposure through oral uptake. To date, there is a dearth of studies reporting on the risks which CNC pose to human health following ingestion. In vitro models, which lack physiological accuracy, are often used to justify animal experiments in the field of nanosafety assessment. Nevertheless, ex vivo models of the intestine pose promising alternatives to in vivo experiments. Methods Two ex vivo models, a microfluidic chip based on porcine intestinal mucus and the Ussing chamber apparatus with tissue from abattoirs, which aim to complement in vitro models, are characterized by investigating the transport and toxicity of CNC through them in comparison to an in vitro triple co-culture model. Silver nanoparticles were included in this study as well-known and characterized nanomaterials for comparative purposes. Results Study results show that CNC cross the intestinal mucus layer but do not pass the intestinal tissue barrier ex vivo and in vitro; furthermore, no toxic effects were observed under exposure conditions tested. Conclusion These ex vivo models present complementary methods to the existing standardized in vitro and in silico methods to support data generation under physiologically relevant conditions without the use of animals. This multi-model approach offers an enhanced understanding of the complex interaction between new materials and human tissue and aligns with the flexible approach of IATA (Integrated Approaches to Testing and Assessment) and NAMs (New Approach Methods) for chemical and drug safety assessment. Supplementary Information The online version contains supplementary material available at 10.1007/s44164-023-00056-x.
Collapse
Affiliation(s)
- Michelle Müller
- Department Bioprocessing & Bioanalytics, Fraunhofer Institute for Biomedical Engineering IBMT, Joseph-von-Fraunhofer-Weg 1, 66280 Sulzbach, Germany
| | - Roland Drexel
- Postnova Analytics GmbH, Rankinestr. 1, 86899 Landsberg am Lech, Germany
| | - Marie Burkhart
- Department Bioprocessing & Bioanalytics, Fraunhofer Institute for Biomedical Engineering IBMT, Joseph-von-Fraunhofer-Weg 1, 66280 Sulzbach, Germany
| | | | - Lena Wien
- Department Bioprocessing & Bioanalytics, Fraunhofer Institute for Biomedical Engineering IBMT, Joseph-von-Fraunhofer-Weg 1, 66280 Sulzbach, Germany
| | - Christine Herrmann
- Process Systems Engineering, School of Life Sciences, Technical University Munich, Gregor-Mendel-Str. 4, 85354 Freising, Germany
| | - Thorsten Knoll
- Department Bioprocessing & Bioanalytics, Fraunhofer Institute for Biomedical Engineering IBMT, Joseph-von-Fraunhofer-Weg 1, 66280 Sulzbach, Germany
| | - Christoph Metzger
- Process Systems Engineering, School of Life Sciences, Technical University Munich, Gregor-Mendel-Str. 4, 85354 Freising, Germany
| | - Heiko Briesen
- Process Systems Engineering, School of Life Sciences, Technical University Munich, Gregor-Mendel-Str. 4, 85354 Freising, Germany
| | - Sylvia Wagner
- Department Bioprocessing & Bioanalytics, Fraunhofer Institute for Biomedical Engineering IBMT, Joseph-von-Fraunhofer-Weg 1, 66280 Sulzbach, Germany
| | - Florian Meier
- Postnova Analytics GmbH, Rankinestr. 1, 86899 Landsberg am Lech, Germany
| | - Yvonne Kohl
- Department Bioprocessing & Bioanalytics, Fraunhofer Institute for Biomedical Engineering IBMT, Joseph-von-Fraunhofer-Weg 1, 66280 Sulzbach, Germany
| |
Collapse
|
15
|
Nguyen NN, Tran TTV, Nguyen QD, Nguyen TP, Lien TN. Modification of microstructure and selected physicochemical properties of bacterial cellulose produced by bacterial isolate using hydrocolloid-fortified Hestrin-Schramm medium. Biotechnol Prog 2023; 39:e3344. [PMID: 37025043 DOI: 10.1002/btpr.3344] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2022] [Revised: 03/12/2023] [Accepted: 03/25/2023] [Indexed: 04/08/2023]
Abstract
Bacterial cellulose (BC) is a biopolymer with applications in numerous industries such as food and pharmaceutical sectors. In this study, various hydrocolloids including modified starches (oxidized starch-1404 and hydroxypropyl starch-1440), locust bean gum, xanthan gum (XG), guar gum, and carboxymethyl cellulose were added to the Hestrin-Schramm medium to improve the production performance and microstructure of BC by Gluconacetobacter entanii isolated from coconut water. After 14-day fermentation, medium supplemented with 0.1% carboxymethyl cellulose and 0.1% XG resulted in the highest BC yield with dry BC content of 9.82 and 6.06 g/L, respectively. In addition, scanning electron microscopy showed that all modified films have the characteristic three-dimensional network of cellulose nanofibers with dense structure and low porosity as well as larger fiber size compared to control. X-ray diffraction indicated that BC fortified with carboxymethyl cellulose exhibited lower crystallinity while Fourier infrared spectroscopy showed characteristic peaks of both control and modified BC films.
Collapse
Affiliation(s)
- Nhu-Ngoc Nguyen
- Faculty of Environmental and Food Engineering, Nguyen Tat Thanh University, Ho Chi Minh City, 754000, Vietnam
| | - Thi Tuong Vi Tran
- Faculty of Environmental and Food Engineering, Nguyen Tat Thanh University, Ho Chi Minh City, 754000, Vietnam
| | - Quoc-Duy Nguyen
- Faculty of Environmental and Food Engineering, Nguyen Tat Thanh University, Ho Chi Minh City, 754000, Vietnam
| | - Tran-Phong Nguyen
- Faculty of Environmental and Food Engineering, Nguyen Tat Thanh University, Ho Chi Minh City, 754000, Vietnam
| | - Tuyet-Ngan Lien
- Faculty of Environmental and Food Engineering, Nguyen Tat Thanh University, Ho Chi Minh City, 754000, Vietnam
| |
Collapse
|
16
|
Review on Hybrid Reinforced Polymer Matrix Composites with Nanocellulose, Nanomaterials, and Other Fibers. Polymers (Basel) 2023; 15:polym15040984. [PMID: 36850267 PMCID: PMC9959991 DOI: 10.3390/polym15040984] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2022] [Revised: 01/27/2023] [Accepted: 01/29/2023] [Indexed: 02/18/2023] Open
Abstract
The use of composite materials has seen many new innovations for a large variety of applications. The area of reinforcement in composites is also rapidly evolving with many new discoveries, including the use of hybrid fibers, sustainable materials, and nanocellulose. In this review, studies on hybrid fiber reinforcement, the use of nanocellulose, the use of nanocellulose in hybrid forms, the use of nanocellulose with other nanomaterials, the applications of these materials, and finally, the challenges and opportunities (including safety issues) of their use are thoroughly discussed. This review will point out new prospects for the composite materials world, enabling the use of nano- and micron-sized materials together and creating value-added products at the industrial scale. Furthermore, the use of hybrid structures consisting of two different nano-materials creates many novel solutions for applications in electronics and sensors.
Collapse
|
17
|
Lin YJ, Chen Y, Guo TL, Kong F. Six weeks effect of different nanocellulose on blood lipid level and small intestinal morphology in mice. Int J Biol Macromol 2023; 228:498-505. [PMID: 36563823 DOI: 10.1016/j.ijbiomac.2022.12.201] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2022] [Revised: 12/16/2022] [Accepted: 12/17/2022] [Indexed: 12/24/2022]
Abstract
AIMS Cellulose nanofibrils (CNF, or NFC), cellulose nanocrystals (CNC, or NCC), and Tempo (2,2,6,6-tetramethylpiperidine-1-oxyl radical) oxidized CNF (Tempo-CNF) were compared for the short-term effect on mice fed with a high-fat and high-sugar (Western diet, WD) to investigate their effect when combined with a sub-optimal diet. SCOPE Thirty C57B/C female mice (10 weeks old; 5-6 mice/group) were given water, cellulose, or three types of nanocellulose once daily in a dose of 30 mg/kg body weight by oral gavage. After six weeks, weight changes, fecal output, glucose homeostasis, and gut permeability showed no significant among groups. Serum analysis including triglycerides, cholesterol and total bile acids and small intestinal morphology including villus length, villus width, crypt depth, goblet cell count and goblet cell density were no difference for all groups. Only CNC group had higher excretion of bile acids in the feces. CONCLUSIONS These results suggest that current treated dose using three types of nanocellulose had no detrimental effects on blood lipid level and small intestinal morphology.
Collapse
Affiliation(s)
- Yu-Ju Lin
- Department of Food Science and Technology, University of Georgia, Athens, GA, USA
| | - Yingjia Chen
- Department of Veterinary Biosciences and Diagnostic Imaging, College of Veterinary Medicine, University of Georgia, Athens, GA, USA
| | - Tai L Guo
- Department of Veterinary Biosciences and Diagnostic Imaging, College of Veterinary Medicine, University of Georgia, Athens, GA, USA
| | - Fanbin Kong
- Department of Food Science and Technology, University of Georgia, Athens, GA, USA.
| |
Collapse
|
18
|
Vital N, Ventura C, Kranendonk M, Silva MJ, Louro H. Toxicological Assessment of Cellulose Nanomaterials: Oral Exposure. NANOMATERIALS (BASEL, SWITZERLAND) 2022; 12:3375. [PMID: 36234501 PMCID: PMC9565252 DOI: 10.3390/nano12193375] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/08/2022] [Revised: 09/20/2022] [Accepted: 09/23/2022] [Indexed: 06/16/2023]
Abstract
Cellulose nanomaterials (CNMs) have emerged recently as an important group of sustainable bio-based nanomaterials (NMs) with potential applications in multiple sectors, including the food, food packaging, and biomedical fields. The widening of these applications leads to increased human oral exposure to these NMs and, potentially, to adverse health outcomes. Presently, the potential hazards regarding oral exposure to CNMs are insufficiently characterised. There is a need to understand and manage the potential adverse effects that might result from the ingestion of CNMs before products using CNMs reach commercialisation. This work reviews the potential applications of CNMs in the food and biomedical sectors along with the existing toxicological in vitro and in vivo studies, while also identifying current knowledge gaps. Relevant considerations when performing toxicological studies following oral exposure to CNMs are highlighted. An increasing number of studies have been published in the last years, overall showing that ingested CNMs are not toxic to the gastrointestinal tract (GIT), suggestive of the biocompatibility of the majority of the tested CNMs. However, in vitro and in vivo genotoxicity studies, as well as long-term carcinogenic or reproductive toxicity studies, are not yet available. These studies are needed to support a wider use of CNMs in applications that can lead to human oral ingestion, thereby promoting a safe and sustainable-by-design approach.
Collapse
Affiliation(s)
- Nádia Vital
- National Institute of Health Dr. Ricardo Jorge, Department of Human Genetics, 1649-016 Lisbon, Portugal
- NOVA Medical School, Universidade NOVA de Lisboa, 1169-056 Lisbon, Portugal
- Centre for Toxicogenomics and Human Health (ToxOmics), NOVA Medical School, Universidade NOVA de Lisboa, 1169-056 Lisbon, Portugal
| | - Célia Ventura
- National Institute of Health Dr. Ricardo Jorge, Department of Human Genetics, 1649-016 Lisbon, Portugal
- Centre for Toxicogenomics and Human Health (ToxOmics), NOVA Medical School, Universidade NOVA de Lisboa, 1169-056 Lisbon, Portugal
| | - Michel Kranendonk
- NOVA Medical School, Universidade NOVA de Lisboa, 1169-056 Lisbon, Portugal
- Centre for Toxicogenomics and Human Health (ToxOmics), NOVA Medical School, Universidade NOVA de Lisboa, 1169-056 Lisbon, Portugal
| | - Maria João Silva
- National Institute of Health Dr. Ricardo Jorge, Department of Human Genetics, 1649-016 Lisbon, Portugal
- Centre for Toxicogenomics and Human Health (ToxOmics), NOVA Medical School, Universidade NOVA de Lisboa, 1169-056 Lisbon, Portugal
| | - Henriqueta Louro
- National Institute of Health Dr. Ricardo Jorge, Department of Human Genetics, 1649-016 Lisbon, Portugal
- Centre for Toxicogenomics and Human Health (ToxOmics), NOVA Medical School, Universidade NOVA de Lisboa, 1169-056 Lisbon, Portugal
| |
Collapse
|
19
|
Mortensen NP, Moreno Caffaro M, Davis K, Aravamudhan S, Sumner SJ, Fennell TR. Investigation of eight cellulose nanomaterials' impact on Differentiated Caco-2 monolayer integrity and cytotoxicity. Food Chem Toxicol 2022; 166:113204. [PMID: 35679974 DOI: 10.1016/j.fct.2022.113204] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2022] [Accepted: 06/02/2022] [Indexed: 10/18/2022]
Abstract
The potential applications of cellulose nanomaterials (CNMs) as food additives or in food packaging, present a possible source of human ingestion. While micron- and macro-scale cellulose products are classified as Generally Regarded As Safe, the safety of ingested nano-scale cellulose is largely unknown. Using fully differentiated Caco-2 cells, the perturbation of intestinal barrier function and cytotoxicity was investigated for four nanocellulose crystals (CNCs) and four nanocellulose fibrils (CNFs) following 24 h of exposure at 50 μg/mL. Scanning electron microscope showed some aggregation of both CNCs and CNFs. X-ray photoelectron spectroscopy analyses showed that carbon and oxygen were the main elements. The zeta-potential for CNMs formulated in cell culture medium showed a negative surface charge. Two CNMs increased cell membrane permeability and three CNMs decreased the cell metabolic activity. While three CNMs lead to cytotoxic responses, no changes in apparent permeability coefficient (Papp) for dextran or tight junction integrity were found. Our results show that three CNMs induce cytotoxicity in differentiated Caco-2 cells, demonstrating the need to understand the role of size and shape. The interaction between CNMs and the intestinal epithelium needs to be evaluated to understand potential intestinal barrier dysfunction and resulting health implications following CNM ingestion.
Collapse
Affiliation(s)
- Ninell P Mortensen
- Discovery Sciences, RTI International, 3040 Cornwallis Drive, Research Triangle Park, NC, 27709, USA
| | - Maria Moreno Caffaro
- Discovery Sciences, RTI International, 3040 Cornwallis Drive, Research Triangle Park, NC, 27709, USA
| | - Klinton Davis
- Joint School of Nanoscience and Nanoengineering, North Carolina A&T State University, 2907 East Gate City Blvd, Greensboro, NC, 27401, USA
| | - Shyam Aravamudhan
- Joint School of Nanoscience and Nanoengineering, North Carolina A&T State University, 2907 East Gate City Blvd, Greensboro, NC, 27401, USA
| | - Susan J Sumner
- UNC Nutrition Research Institute, The University of North Carolina at Chapel Hill, 500 Laureate Way, Kannapolis, NC, 28081, USA
| | - Timothy R Fennell
- Discovery Sciences, RTI International, 3040 Cornwallis Drive, Research Triangle Park, NC, 27709, USA.
| |
Collapse
|
20
|
Brand W, van Kesteren PCE, Swart E, Oomen AG. Overview of potential adverse health effects of oral exposure to nanocellulose. Nanotoxicology 2022; 16:217-246. [PMID: 35624082 DOI: 10.1080/17435390.2022.2069057] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
Nanocellulose is an emerging material for which several food-related applications are foreseen, for example, novel food, functional food, food additive or in food contact materials. Nanocellulose materials can display a range of possible shapes (fibers, crystals), sizes and surface modifications. For food-related applications in the EU, information on the safety of substances must be assessed. The present review summarizes the current knowledge on (possible) adverse health effects of nanocellulose upon oral exposure, keeping EU regulatory aspects in mind. The overview indicates that toxicity data, especially from in vivo studies, are limited and outcomes are not unambiguous. The hazard assessment is further complicated by: the diversity in morphologies and surface modifications, lack of standard reference materials, limited knowledge about intestinal fate and absorption, analytical difficulties in biological matrices, dispersion issues, the possible presence of impurities and interferences within biological assays. Two subchronic in vivo toxicity studies show no indications of toxicity for two specific nanocellulose materials, even at high doses. However, these studies may have missed certain early or nano-specific toxic effects, such as inflammation potential, for which other, subacute studies provide some indications. Most in vitro studies show no cytotoxicity; however, several indicate that effects on oxidative stress and inflammatory responses depend on differences in size or surface treatments. Further, too few studies assessed genotoxicity of nanocelluloses. Therefore, immunotoxicity, oxidative stress and genotoxicity require further attention, as do absorption and effects on nutrient uptake. Recommendations for future research facilitating the safety assessment and safe-by-design of nanocellulose in food-related applications are provided.
Collapse
Affiliation(s)
- Walter Brand
- National Institute for Public Health and the Environment (RIVM), Bilthoven, The Netherlands
| | - Petra C E van Kesteren
- National Institute for Public Health and the Environment (RIVM), Bilthoven, The Netherlands
| | - Elmer Swart
- National Institute for Public Health and the Environment (RIVM), Bilthoven, The Netherlands
| | - Agnes G Oomen
- National Institute for Public Health and the Environment (RIVM), Bilthoven, The Netherlands
| |
Collapse
|
21
|
Chinga-Carrasco G, Rosendahl J, Catalán J. Nanocelluloses - Nanotoxicology, Safety Aspects and 3D Bioprinting. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2022; 1357:155-177. [PMID: 35583644 DOI: 10.1007/978-3-030-88071-2_7] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Nanocelluloses have good rheological properties that facilitate the extrusion of nanocellulose gels in micro-extrusion systems. It is considered a highly relevant characteristic that makes it possible to use nanocellulose as an ink component for 3D bioprinting purposes. The nanocelluloses assessed in this book chapter include wood nanocellulose (WNC), bacterial nanocellulose (BNC), and tunicate nanocellulose (TNC), which are often assumed to be non-toxic. Depending on various chemical and mechanical processes, both cellulose nanofibrils (CNF) and cellulose nanocrystals (CNC) can be obtained from the three mentioned nanocelluloses (WNC, BNC, and TNC). Pre/post-treatment processes (chemical and mechanical) cause modifications regarding surface chemistry and nano-morphology. Hence, it is essential to understand whether physicochemical properties may affect the toxicological profile of nanocelluloses. In this book chapter, we provide an overview of nanotoxicology and safety aspects associated with nanocelluloses. Relevant regulatory requirements are considered. We also discuss hazard assessment strategies based on tiered approaches for safety testing, which can be applied in the early stages of the innovation process. Ensuring the safe development of nanocellulose-based 3D bioprinting products will enable full market use of these sustainable resources throughout their life cycle.
Collapse
Affiliation(s)
| | - Jennifer Rosendahl
- RISE, Division Materials and Production, Department Chemistry, Biomaterials and Textiles, Section Biological Function, Borås, Sweden
| | - Julia Catalán
- Occupational Safety, Finnish Institute of Occupational Health, Helsinki, Finland
- Department of Anatomy, Embryology and Genetics, University of Zaragoza, Zaragoza, Spain
| |
Collapse
|
22
|
Choi SM, Rao KM, Zo SM, Shin EJ, Han SS. Bacterial Cellulose and Its Applications. Polymers (Basel) 2022; 14:polym14061080. [PMID: 35335411 PMCID: PMC8949969 DOI: 10.3390/polym14061080] [Citation(s) in RCA: 55] [Impact Index Per Article: 18.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2022] [Revised: 02/17/2022] [Accepted: 02/23/2022] [Indexed: 12/13/2022] Open
Abstract
The sharp increase in the use of cellulose seems to be in increasing demand in wood; much more research related to sustainable or alternative materials is necessary as a lot of the arable land and natural resources use is unsustainable. In accordance, attention has focused on bacterial cellulose as a new functional material. It possesses a three-dimensional, gelatinous structure consisting of cellulose with mechanical and thermal properties. Moreover, while a plant-originated cellulose is composed of cellulose, hemi-cellulose, and lignin, bacterial cellulose attributable to the composition of a pure cellulose nanofiber mesh spun is not necessary in the elimination of other components. Moreover, due to its hydrophilic nature caused by binding water, consequently being a hydrogel as well as biocompatibility, it has only not only used in medical fields including artificial skin, cartilage, vessel, and wound dressing, but also in delivery; some products have even been commercialized. In addition, it is widely used in various technologies including food, paper, textile, electronic and electrical applications, and is being considered as a highly versatile green material with tremendous potential. However, many efforts have been conducted for the evolution of novel and sophisticated materials with environmental affinity, which accompany the empowerment and enhancement of specific properties. In this review article, we summarized only industry and research status regarding BC and contemplated its potential in the use of BC.
Collapse
Affiliation(s)
- Soon Mo Choi
- Research Institute of Cell Culture, Yeung-Nam University, Gyengsan-si 38541, Korea;
- School of Chemical Engineering, Yeung-Nam University, Gyengsan-si 38541, Korea; (K.M.R.); (S.M.Z.)
| | - Kummara Madhusudana Rao
- School of Chemical Engineering, Yeung-Nam University, Gyengsan-si 38541, Korea; (K.M.R.); (S.M.Z.)
| | - Sun Mi Zo
- School of Chemical Engineering, Yeung-Nam University, Gyengsan-si 38541, Korea; (K.M.R.); (S.M.Z.)
| | - Eun Joo Shin
- Department of Organic Materials and Polymer Engineering, Dong-A University, Busan 49315, Korea
- Correspondence: (E.J.S.); (S.S.H.); Tel.: +82-51-2007343 (E.J.S.); +82-53-8103892 (S.S.H.); Fax: +82-51-2007540 (E.J.S.); +82-53-8104686 (S.S.H.)
| | - Sung Soo Han
- Research Institute of Cell Culture, Yeung-Nam University, Gyengsan-si 38541, Korea;
- School of Chemical Engineering, Yeung-Nam University, Gyengsan-si 38541, Korea; (K.M.R.); (S.M.Z.)
- Correspondence: (E.J.S.); (S.S.H.); Tel.: +82-51-2007343 (E.J.S.); +82-53-8103892 (S.S.H.); Fax: +82-51-2007540 (E.J.S.); +82-53-8104686 (S.S.H.)
| |
Collapse
|
23
|
Gouin T, Ellis-Hutchings R, Thornton Hampton LM, Lemieux CL, Wright SL. Screening and prioritization of nano- and microplastic particle toxicity studies for evaluating human health risks - development and application of a toxicity study assessment tool. MICROPLASTICS AND NANOPLASTICS 2022; 2:2. [PMID: 35098152 PMCID: PMC8760192 DOI: 10.1186/s43591-021-00023-x] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/10/2021] [Accepted: 12/13/2021] [Indexed: 05/23/2023]
Abstract
UNLABELLED Concern regarding the human health implications that exposure to nano- and microplastic particles (NMPs) potentially represents is increasing. While there have been several years of research reporting on the ecotoxicological effects of NMPs, human health toxicology studies have only recently emerged. The available human health hazard data are thus limited, with potential concern regarding the relevance and reliability for understanding the potential human health implications. In this study we develop and apply a NMP toxicity screening assessment tool (NMP-TSAT) for evaluating human health effects studies against a suite of quality assurance and quality control (QA/QC) criteria for both in vivo and in vitro studies. A total of 74 studies representing either inhalation or oral exposure pathways were identified and evaluated. Assessment categories include particle characterization, experimental design, and applicability for risk assessment; with critical and non-critical criteria organized to allow screening and prioritization. It is observed that the majority of studies evaluated using the NMP-TSAT have been performed on monodisperse particles, predominately spheres (≈60%), consisting of polystyrene (≈46%). The majority of studies have tested particles < 5 μm, with a minimal particle size of 10 nm and a maximum particle size of about 200 μm. The total assessment score (TAS) possible for in vivo studies is 52, whereas for in vitro studies it is 46, which is based on receiving a maximum score of 2 against 26 and 23 criteria, respectively. The evaluated TAS ranged from between 12 and 44 and 16-34, for in vivo and in vitro studies, respectively. Given the challenges associated with prioritizing studies based on ranking them according to their TAS we propose a Tiered approach, whereby studies are initially screened based on how they score against various critical criteria, which have been defined for their relevance for assessing the hazards and risks for human health. In this instance, studies that score a minimum of '1' against each of the critical criteria, regardless of how they rank according to their TAS, are prioritized as part of a Tier 1 screening and prioritization phase, which would then be followed by an expert evaluation, representing a Tier 2 level of assessment. Using this approach we identify 10 oral ingestion and 2 inhalation studies that score at least 1 against all critical criteria. Lastly, several key observations for strengthening future effects studies are identified, these include a need for the generation and access to standard reference materials representative of human exposure to NMPs for use in toxicity test systems and/or the improved characterization and verification of test particle characteristics, and the adoption of study design guidance, such as recommended by OECD, when conducting either in vivo inhalation or oral ingestion toxicity tests. SUPPLEMENTARY INFORMATION The online version contains supplementary material available at 10.1186/s43591-021-00023-x.
Collapse
Affiliation(s)
- Todd Gouin
- TG Environmental Research, Sharnbrook, Bedfordshire, UK
| | - Robert Ellis-Hutchings
- Toxicology and Environmental Research & Consulting, The Dow Chemical Company, Midland, MI 48673 USA
| | - Leah M. Thornton Hampton
- Department of Toxicology, Southern California Coastal Water Research Project, Costa Mesa, CA USA
| | - Christine L. Lemieux
- Air Quality and Risk Assessment Division, Water and Air Quality Bureau, Health Canada, Ottawa, ON K1A 0K9 Canada
| | - Stephanie L. Wright
- Environmental Research Group, School of Public Health, Imperial College London, Sir Michael Uren Hub, 86 Wood Lane, London, W12 0BZ UK
| |
Collapse
|
24
|
Potential of extrusion-blown poly(lactic acid)/cellulose nanocrystals nanocomposite films for improving the shelf-life of a dry food product. Food Packag Shelf Life 2021. [DOI: 10.1016/j.fpsl.2021.100689] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
25
|
Patel I, Woodcock J, Beams R, Stranick SJ, Nieuwendaal R, Gilman JW, Mulenos MR, Sayes CM, Salari M, DeLoid G, Demokritou P, Harper B, Harper S, Ong KJ, Shatkin JA, Fox DM. Fluorescently Labeled Cellulose Nanofibers for Environmental Health and Safety Studies. NANOMATERIALS (BASEL, SWITZERLAND) 2021; 11:1015. [PMID: 33921179 PMCID: PMC8071547 DOI: 10.3390/nano11041015] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/23/2021] [Revised: 04/09/2021] [Accepted: 04/12/2021] [Indexed: 12/12/2022]
Abstract
An optimal methodology for locating and tracking cellulose nanofibers (CNFs) in vitro and in vivo is crucial to evaluate the environmental health and safety properties of these nanomaterials. Here, we report the use of a new boron-dipyrromethene (BODIPY) reactive fluorescent probe, meso-DichlorotriazineEthyl BODIPY (mDTEB), tailor-made for labeling CNFs used in simulated or in vivo ingestion exposure studies. Time-correlated single photon counting (TCSPC) fluorescence lifetime imaging microscopy (FLIM) was used to confirm covalent attachment and purity of mDTEB-labeled CNFs. The photoluminescence properties of mDTEB-labeled CNFs, characterized using fluorescence spectroscopy, include excellent stability over a wide pH range (pH2 to pH10) and high quantum yield, which provides detection at low (μM) concentrations. FLIM analysis also showed that lignin-like impurities present on the CNF reduce the fluorescence of the mDTEB-labeled CNF, via quenching. Therefore, the chemical composition and the methods of CNF production affect subsequent studies. An in vitro triculture, small intestinal, epithelial model was used to assess the toxicity of ingested mDTEB-labeled CNFs. Zebrafish (Danio rerio) were used to assess in vivo environmental toxicity studies. No cytotoxicity was observed for CNFs, or mDTEB-labeled CNFs, either in the triculture cells or in the zebrafish embryos.
Collapse
Affiliation(s)
- Ilabahen Patel
- Department of Chemistry, American University, Washington, DC 20016, USA;
| | - Jeremiah Woodcock
- Materials Science and Engineering Division, Materials Measurement Laboratory, National Institute of Standards and Technology, Gaithersburg, MD 20899, USA; (J.W.); (R.B.); (S.J.S.); (R.N.); (J.W.G.)
| | - Ryan Beams
- Materials Science and Engineering Division, Materials Measurement Laboratory, National Institute of Standards and Technology, Gaithersburg, MD 20899, USA; (J.W.); (R.B.); (S.J.S.); (R.N.); (J.W.G.)
| | - Stephan J. Stranick
- Materials Science and Engineering Division, Materials Measurement Laboratory, National Institute of Standards and Technology, Gaithersburg, MD 20899, USA; (J.W.); (R.B.); (S.J.S.); (R.N.); (J.W.G.)
| | - Ryan Nieuwendaal
- Materials Science and Engineering Division, Materials Measurement Laboratory, National Institute of Standards and Technology, Gaithersburg, MD 20899, USA; (J.W.); (R.B.); (S.J.S.); (R.N.); (J.W.G.)
| | - Jeffrey W. Gilman
- Materials Science and Engineering Division, Materials Measurement Laboratory, National Institute of Standards and Technology, Gaithersburg, MD 20899, USA; (J.W.); (R.B.); (S.J.S.); (R.N.); (J.W.G.)
| | - Marina R. Mulenos
- Department of Environmental Science, Baylor University, Waco, TX 76798, USA; (M.R.M.); (C.M.S.)
| | - Christie M. Sayes
- Department of Environmental Science, Baylor University, Waco, TX 76798, USA; (M.R.M.); (C.M.S.)
| | - Maryam Salari
- Department of Environmental Health, Center for Nanotechnology and Nanotoxicology, T.H. Chan School of Public Health, Harvard University, Boston, MA 02115, USA; (M.S.); (G.D.); (P.D.)
| | - Glen DeLoid
- Department of Environmental Health, Center for Nanotechnology and Nanotoxicology, T.H. Chan School of Public Health, Harvard University, Boston, MA 02115, USA; (M.S.); (G.D.); (P.D.)
| | - Philip Demokritou
- Department of Environmental Health, Center for Nanotechnology and Nanotoxicology, T.H. Chan School of Public Health, Harvard University, Boston, MA 02115, USA; (M.S.); (G.D.); (P.D.)
| | - Bryan Harper
- Department of Environmental and Molecular Toxicology, Oregon State University, Corvallis, OR 97331, USA; (B.H.); (S.H.)
| | - Stacey Harper
- Department of Environmental and Molecular Toxicology, Oregon State University, Corvallis, OR 97331, USA; (B.H.); (S.H.)
| | - Kimberly J. Ong
- Vireo Advisors, LLC, Boston, MA 02130, USA; (K.J.O.); (J.A.S.)
| | - Jo Anne Shatkin
- Vireo Advisors, LLC, Boston, MA 02130, USA; (K.J.O.); (J.A.S.)
| | - Douglas M. Fox
- Department of Chemistry, American University, Washington, DC 20016, USA;
| |
Collapse
|
26
|
A 90-Day Oral Toxicity Study of an Ethanolic Root Extract of Caesalpinia bonduc (L.) Roxb. in Wistar Rats. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2021; 2021:6620026. [PMID: 33574881 PMCID: PMC7857874 DOI: 10.1155/2021/6620026] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/16/2020] [Revised: 01/03/2021] [Accepted: 01/16/2021] [Indexed: 12/11/2022]
Abstract
Background Plant medicine is the oldest form of health care known to mankind; hence, studies on their safety for use are essential for the control of adverse drug effects. In Benin, Caesalpinia bonduc is one of many medicinal plants used as aphrodisiac, and for treatment of various ailments including prostatic hyperplasia. Despite its numerous ethnomedicinal benefits, toxicological information associated with its chronic use is currently limited. Objective The present study therefore assessed the toxicity of an ethanolic root extract of Caesalpinia bonduc in Wistar rats. Methods Caesalpinia bonduc root extract was administered by oral gavage at doses of 31.25, 125, and 500 mg/kg/day for 90 days to male Wistar rats, after which body weight changes, food consumption, urinary parameters, hematological and blood biochemical parameters, organ weights changes, gross pathology, and histopathology of vital organs were assessed. Results There were no death or abnormal clinical signs, no significant changes in body weight gain or urinary parameters, and no changes in necropsy and histopathology findings of vital organs associated with extract treatment. However, some indices such as erythrocytes, total cholesterol, and aspartate amino transferase increased in rats treated with high doses of the extract, as well as relative weight of testes, followed by a decrease in food intake and prostate relative weight. Conclusion The results indicate that an ethanolic root extract of Caesalpinia bonduc does not cause significant adverse effects and suggest its tolerability up to 500 mg/kg for daily administration of 90 days.
Collapse
|
27
|
Ede JD, Ong KJ, Mulenos MR, Pradhan S, Gibb M, Sayes CM, Shatkin JA. Physical, chemical, and toxicological characterization of sulfated cellulose nanocrystals for food-related applications using in vivo and in vitro strategies. Toxicol Res (Camb) 2021; 9:808-822. [PMID: 33447365 DOI: 10.1093/toxres/tfaa082] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2020] [Revised: 09/10/2020] [Accepted: 10/09/2020] [Indexed: 11/14/2022] Open
Abstract
Cellulose nanocrystals (CNCs) are a next-generation cellulose product with many unique properties including applications in the food industry as a food additive, food coating, and in food-contact packaging material. While CNC is anticipated to be safe due to its similarity to the many forms of cellulose currently used as food additives, special consideration is given to it as it is the first manufactured form of cellulose that is nanoscale in both length and width. A proactive approach to safety has been adopted by manufacturers to demonstrate CNC safety toward responsible commercialization. As part of the safety demonstration, in vivo and in vitro testing strategies were commissioned side-by-side with conventional cellulose, which has been safely used in food for decades. Testing included a 90-day rodent feeding study as well as additional physical, chemical, and biological studies in vitro that follow European Food Safety Authority (EFSA) guidance to demonstrate the safe use of novel food ingredients. The strategy includes assessment of neat materials side-by-side with simulated digestion, mimicking conditions that occur along the gastrointestinal tract as well as intracellularly. An intestinal co-culture model examined any potential toxicological effects from exposure to either pristine or digested forms of CNC including cytotoxicity, metabolic activity, membrane permeability, oxidative stress, and proinflammatory responses. None of the studies demonstrated any toxicity via oral or simulated oral exposure. These studies demonstrate that CNC produced by InnoTech Alberta is similarly safe by ingestion as conventional cellulose with a no-observed-adverse-effect level of 2085.3 (males) and 2682.8 (females) mg/kg/day.
Collapse
Affiliation(s)
- James D Ede
- Vireo Advisors LLC, Boston, MA 02130-4323, USA
| | | | - Marina R Mulenos
- Institute of Biomedical Studies, Baylor University, One Bear Place #97266, Waco, TX 76798-7266, USA
| | - Sahar Pradhan
- Institute of Biomedical Studies, Baylor University, One Bear Place #97266, Waco, TX 76798-7266, USA
| | - Matthew Gibb
- Department of Environmental Science, Baylor University, One Bear Place #97266, Waco, TX 76798-7266, USA
| | - Christie M Sayes
- Institute of Biomedical Studies, Baylor University, One Bear Place #97266, Waco, TX 76798-7266, USA
| | | |
Collapse
|
28
|
Jasmani L, Rusli R, Khadiran T, Jalil R, Adnan S. Application of Nanotechnology in Wood-Based Products Industry: A Review. NANOSCALE RESEARCH LETTERS 2020; 15:207. [PMID: 33146807 PMCID: PMC7642047 DOI: 10.1186/s11671-020-03438-2] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/09/2020] [Accepted: 10/21/2020] [Indexed: 05/05/2023]
Abstract
Wood-based industry is one of the main drivers of economic growth in Malaysia. Forest being the source of various lignocellulosic materials has many untapped potentials that could be exploited to produce sustainable and biodegradable nanosized material that possesses very interesting features for use in wood-based industry itself or across many different application fields. Wood-based products sector could also utilise various readily available nanomaterials to enhance the performance of existing products or to create new value added products from the forest. This review highlights recent developments in nanotechnology application in the wood-based products industry.
Collapse
Affiliation(s)
- Latifah Jasmani
- Forest Products Division, Forest Research Institute Malaysia (FRIM), 52109 Kepong, Selangor Malaysia
| | - Rafeadah Rusli
- Forest Products Division, Forest Research Institute Malaysia (FRIM), 52109 Kepong, Selangor Malaysia
| | - Tumirah Khadiran
- Forest Products Division, Forest Research Institute Malaysia (FRIM), 52109 Kepong, Selangor Malaysia
| | - Rafidah Jalil
- Forest Products Division, Forest Research Institute Malaysia (FRIM), 52109 Kepong, Selangor Malaysia
| | - Sharmiza Adnan
- Forest Products Division, Forest Research Institute Malaysia (FRIM), 52109 Kepong, Selangor Malaysia
| |
Collapse
|
29
|
Ladics GS, Han KH, Jang MS, Park H, Marshall V, Dersjant-Li Y, Sewalt VJ. Safety evaluation of a novel variant of consensus bacterial phytase. Toxicol Rep 2020; 7:844-851. [PMID: 32714839 PMCID: PMC7372152 DOI: 10.1016/j.toxrep.2020.07.004] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2020] [Revised: 07/09/2020] [Accepted: 07/11/2020] [Indexed: 01/08/2023] Open
Abstract
90-day oral and genetic toxicology studies were conducted on a next generation bacterial biosynthetic 6-phytase as an animal feed additive. No test article-related adverse effects were observed and a NOAEL was established as 1000 mg Total Organic Solids/kg bw/day. A margin of safety value of 1613 was calculated based on the NOAEL and an estimate of broiler feed consumption. Data support the safety of PhyG as an animal feed additive.
A 90-day subchronic oral toxicity study was conducted to evaluate the safety of a consensus bacterial phytase variant 6-phytase (PhyG) for use as an animal feed additive. This phytase is produced by fermentation with a fungal (Trichoderma reesei) production strain expressing a biosynthetic variant of a consensus bacterial phytase gene assembled via ancestral reconstruction with sequence bias for the phytase from Buttiauxella sp. Rats were administered PhyG daily via oral gavage at dose-levels of 0 (distilled water), 250, 500 or 1000 mg total organic solids (TOS)/kg bodyweight (bw)/day (equivalent to 0, 112,500, 225,000 and 450,000 phytase units (FTU)/kg bw/day, respectively). No test article-related adverse effects were observed. A no-observed-adverse-effect level (NOAEL) for PhyG was established as 1000 mg TOS/kg bw/day, the highest test concentration. Based on this NOAEL and an estimate of broiler consumption determined from the proposed inclusion of the phytase in feed at the maximum recommended level (4000 FTU/kg), a margin of safety value of 1613 was calculated. Results of in vitro genotoxicity testing and in silico protein toxin evaluation further confirmed PhyG to be non-genotoxic and not likely to be a protein toxin upon consumption. These data support the safety of PhyG as an animal feed additive.
Collapse
Key Words
- BLAST, basic local alignment search tool
- DM, dry matter
- FTU, phytase units
- Genetic toxicology
- IP6, myo-inositol hexaphosphate
- MCP, monocalcium phosphate
- NOAEL
- NOAEL, no-observed-adverse-effect-level
- OECD, The Organisation for Economic Co-operation and Development
- Oral gavage
- Phytase
- SSL, safe strain lineage
- Subchronic study
- TOS, total organic solids
- UFC, ultra-filtered concentrate
- bw, body weight
Collapse
Affiliation(s)
- Gregory S Ladics
- DuPont Nutrition and Biosciences, 200 Powder Mill Road, Wilmington, DE, USA
| | - Kang-Hyun Han
- Department of Advanced Toxicology Research, Korea Institute of Toxicology, 141 Gajeong-ro, Yuseong-gu, Daejeon, 34114, Republic of Korea
| | - Min S Jang
- Department of Advanced Toxicology Research, Korea Institute of Toxicology, 141 Gajeong-ro, Yuseong-gu, Daejeon, 34114, Republic of Korea
| | - Heejin Park
- Department of Advanced Toxicology Research, Korea Institute of Toxicology, 141 Gajeong-ro, Yuseong-gu, Daejeon, 34114, Republic of Korea
| | - Valerie Marshall
- DuPont Nutrition and Biosciences, 1501 Larkin Center Drive, Midland, Michigan, USA
| | - Yueming Dersjant-Li
- DuPont Animal Nutrition, DuPont Nutrition and Biosciences, Archimedesweg, 30, 2333 CN, Leiden, the Netherlands
| | - Vincent J Sewalt
- DuPont Nutrition and Biosciences, 925 Page Mill Road, Palo Alto, CA, 94304, USA
| |
Collapse
|
30
|
Pradhan SH, Mulenos MR, Steele LR, Gibb M, Ede JD, Ong KJ, Shatkin JA, Sayes CM. Physical, chemical, and toxicological characterization of fibrillated forms of cellulose using an in vitro gastrointestinal digestion and co-culture model. Toxicol Res (Camb) 2020; 9:290-301. [PMID: 32670560 PMCID: PMC7329166 DOI: 10.1093/toxres/tfaa026] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2019] [Revised: 03/26/2020] [Accepted: 03/31/2020] [Indexed: 01/18/2023] Open
Abstract
Fibrillated cellulose is a next-generation material in development for a variety of applications, including use in food and food-contact materials. An alternative testing strategy including simulated digestion was developed to compare the physical, chemical, and biological characteristics of seven different types of fibrillated cellulose, following European Food Safety Authority guidance. Fibrillated forms were compared to a conventional form of cellulose which has been used in food for over 85 years and has Generally Recognized as safe regulatory status in the USA. The physical and chemical characterization of fibrillated celluloses demonstrate that these materials are similar physically and chemically, which composed of the same fundamental molecular structure and exhibit similar morphology, size, size distribution, surface charge, and low levels of impurities. Simulated gastrointestinal and lysosomal digestions demonstrate that these physical and chemical similarities remain following exposure to conditions that mimic the gastrointestinal tract or intracellular lysosomes. A toxicological investigation with an advanced intestinal co-culture model found that exposure to each of the fibrillated and conventional forms of cellulose, in either the pristine or digested form at 0.4% by weight, showed no adverse toxicological effects including cytotoxicity, barrier integrity, oxidative stress, or inflammation. The results demonstrate the physical, chemical, and biological similarities of these materials and provide substantive evidence to support their grouping and ability to read-across data as part of a food safety demonstration.
Collapse
Affiliation(s)
- Sahar H Pradhan
- Department of Environmental Science, Baylor University, One Bear Place #97266, Waco, TX 76798-7266, USA
| | - Marina R Mulenos
- Department of Environmental Science, Baylor University, One Bear Place #97266, Waco, TX 76798-7266, USA
| | - London R Steele
- Department of Environmental Science, Baylor University, One Bear Place #97266, Waco, TX 76798-7266, USA
| | - Matthew Gibb
- Institute of Biomedical Studies, Baylor University, One Bear Place #97266, Waco, TX 76798-7266, USA
| | - James D Ede
- Vireo Advisors, LLC, Boston, MA, 02130-4323, USA
| | | | | | - Christie M Sayes
- Department of Environmental Science, Baylor University, One Bear Place #97266, Waco, TX 76798-7266, USA
- Institute of Biomedical Studies, Baylor University, One Bear Place #97266, Waco, TX 76798-7266, USA
| |
Collapse
|