1
|
Wang S, Guo D, Chen X, Chen SZ, Cui XW, Han YH, Xiang P. Environmentally relevant concentrations of antimony pose potential risks to human health: An evaluation on human umbilical vein endothelial cells. Toxicol In Vitro 2025; 106:106054. [PMID: 40086647 DOI: 10.1016/j.tiv.2025.106054] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2025] [Revised: 02/27/2025] [Accepted: 03/11/2025] [Indexed: 03/16/2025]
Abstract
Antimony (Sb) ore exploitation and the use of Sb-containing drugs pose known health risks. This study investigated the toxicity of environmentally relevant concentrations of Sb (0.12-12 mg L-1) on human umbilical vein endothelial cells (HUVECs). The 50 % lethal concentration (LC50) of Sb to HUVECs was 11.4 mg L-1. Exposing to high level of Sb induced cell cycle arrest by altering the expression of cell cycle regulators, inhibiting the transitions of G0/G1 to S and S to G2/M. At 1.2 mg L-1 Sb, CKD6 and p21 expressions in HUVECs changed to 0.75 and 1.32 folds that of no-Sb control, respectively (p < 0.01). At 12 mg L-1 Sb, CDK2, CKD6, and p27 expressions decreased by 1.54, 4.41, and 1.54 folds (p < 0.001), while p21 expression increased by 3.03 folds (p < 0.001) as compared to control. Sb also led to cell apoptosis, evidenced by Annexin V-FITC/PI staining and changes in the expressions of Bax (1.21-1.30 folds, p < 0.01) and Bcl-2 (0.65-0.83 folds). Oxidative damage was a pivotal factor driving cell apoptosis, probably through down-regulating antioxidant genes (CAT, GPX1, and GSTP1) and up-regulating stress response genes (HO-1, SOD1, and TrxR1). The elevated H2O2 generated in mitochondria likely contributed to cell apoptosis due to the imbalance in H2O2 metabolism. These findings suggest that environmentally relevant concentrations of Sb can exert cytotoxicity to HUVECs, which should be of potential concern for human cardiovascular disease.
Collapse
Affiliation(s)
- Shanshan Wang
- College of Integrative Medicine, Fujian University of Traditional Chinese Medicine, Fuzhou, Fujian 350122, China
| | - Dongqian Guo
- College of Integrative Medicine, Fujian University of Traditional Chinese Medicine, Fuzhou, Fujian 350122, China
| | - Xian Chen
- Fujian Key Laboratory of Pollution Control and Resource Reuse, College of Environmental and Resource Sciences, Fujian Normal University, Fuzhou, Fujian 350117, China
| | - Su-Zhu Chen
- Center of Reproductive Medicine, Fujian Maternity and Child Health Hospital, College of Clinical Medicine for Obstetrics & Gynecology and Pediatrics, Fujian Medical University, Fuzhou, Fujian 350001, China
| | - Xi-Wen Cui
- Fujian Key Laboratory of Pollution Control and Resource Reuse, College of Environmental and Resource Sciences, Fujian Normal University, Fuzhou, Fujian 350117, China
| | - Yong-He Han
- Fujian Key Laboratory of Pollution Control and Resource Reuse, College of Environmental and Resource Sciences, Fujian Normal University, Fuzhou, Fujian 350117, China.
| | - Ping Xiang
- Institute of Environmental Remediation and Human Health, School of Ecology and Environment, Southwest Forestry University, Kunming, Yunnan 650224, China.
| |
Collapse
|
2
|
Cavaliere F, Allegri M, Apan A, Brazzi L, Carassiti M, Cohen E, Di Marco P, Langeron O, Rossi M, Spieth P, Turnbull D, Weber F. A year in review in Minerva Anestesiologica 2024: anesthesia, analgesia, and perioperative medicine. Minerva Anestesiol 2025; 91:231-243. [PMID: 40207839 DOI: 10.23736/s0375-9393.25.19034-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/11/2025]
Affiliation(s)
- Franco Cavaliere
- IRCCS A. Gemelli University Polyclinic Foundation, Sacred Heart Catholic University, Rome, Italy -
| | - Massimo Allegri
- Centre Lemanique d'Antalgie et Neuromodulation - EHC, Morges, Switzerland
| | - Alparslan Apan
- Department of Anesthesiology and Intensive Care, Faculty of Medicine, University of Giresun, Giresun, Türkiye
| | - Luca Brazzi
- Department of Surgical Sciences, University of Turin, Turin, Italy
| | - Massimiliano Carassiti
- Unit of Anesthesia, Intensive Care and Pain Management, Campus Bio-Medico University Hospital, Rome, Italy
| | - Edmond Cohen
- Department of Anesthesiology, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Pierangelo Di Marco
- Department of Cardiovascular, Respiratory, Nephrologic, Anesthesiologic, and Geriatric Sciences, Faculty of Medicine, Sapienza University, Rome, Italy
| | - Olivier Langeron
- Department of Anesthesia and Intensive Care, Henri Mondor University Hospital, Assistance Publique - Hôpitaux de Paris (APHP), University Paris-Est Créteil (UPEC), Paris, France
| | - Marco Rossi
- IRCCS A. Gemelli University Polyclinic Foundation, Sacred Heart Catholic University, Rome, Italy
| | - Peter Spieth
- Department of Anesthesiology and Critical Care Medicine, University Hospital Dresden, Dresden, Germany
| | - David Turnbull
- Department of Anesthetics and Neuro Critical Care, Royal Hallamshire Hospital, Sheffield, UK
| | - Frank Weber
- Erasmus University Medical Center, Sophia Children's Hospital, Department of Anesthesiology, Rotterdam, the Netherlands
| |
Collapse
|
3
|
Yang H, Li M, Zhang B, Zhang J, Shi Y, Ma T, Sun Y. CircGRB14 Inhibits Proliferation and Promotes Apoptosis of Granulosa Cells in Chicken Follicle Selection Through Sponging miR-12264-3p and miR-6660-3p. Int J Mol Sci 2025; 26:2214. [PMID: 40076832 PMCID: PMC11901040 DOI: 10.3390/ijms26052214] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2025] [Revised: 02/22/2025] [Accepted: 02/26/2025] [Indexed: 03/14/2025] Open
Abstract
The development and selection of ovarian follicles are essential for continuous egg production in chickens. Non-coding RNAs, particularly circular RNAs (circRNAs), play a critical regulatory role in follicle selection, a process heavily involving granulosa cells (GCs). In this study, we analyzed circRNA expression profiles in small yellow follicles (SYFs) and large yellow follicles (LYFs) of Taihang chickens using RNA sequencing. We identified 14,586 circRNAs, with 57 showing differential expression (DE-circRNAs) between SYFs and LYFs. Functional enrichment analysis revealed that these DE-circRNAs are involved in key biological processes, including signal transduction, cell membrane formation, and nuclear enzymatic regulation. We focused on circGRB14, a circRNA derived from the growth factor receptor-bound protein 14 (GRB14) gene, as a potential regulator of follicle selection. Using qPCR, CCK-8 proliferation assays, and Annexin V/PI apoptosis analysis, we demonstrated that circGRB14 inhibits GC proliferation and promotes apoptosis. In contrast, miR-12264-3p and miR-6660-3p, validated as direct targets of circGRB14 via Dual-Luciferase Reporter assays, exhibited opposing effects by promoting GC proliferation and inhibiting apoptosis. These findings highlight the circGRB14-miR-12264-3p/miR-6660-3p axis as a key regulatory mechanism in GC dynamics during follicle selection. This study provides novel insights into the functional interplay between circRNAs and miRNAs in avian follicle development, offering potential targets for improving egg production in poultry.
Collapse
Affiliation(s)
- Huanqi Yang
- College of Life Sciences and Food Engineering, Hebei University of Engineering, Handan 056038, China; (H.Y.); (M.L.); (B.Z.); (J.Z.); (Y.S.)
| | - Mengxiao Li
- College of Life Sciences and Food Engineering, Hebei University of Engineering, Handan 056038, China; (H.Y.); (M.L.); (B.Z.); (J.Z.); (Y.S.)
| | - Beibei Zhang
- College of Life Sciences and Food Engineering, Hebei University of Engineering, Handan 056038, China; (H.Y.); (M.L.); (B.Z.); (J.Z.); (Y.S.)
| | - Jinming Zhang
- College of Life Sciences and Food Engineering, Hebei University of Engineering, Handan 056038, China; (H.Y.); (M.L.); (B.Z.); (J.Z.); (Y.S.)
| | - Yuxiang Shi
- College of Life Sciences and Food Engineering, Hebei University of Engineering, Handan 056038, China; (H.Y.); (M.L.); (B.Z.); (J.Z.); (Y.S.)
| | - Tenghe Ma
- College of Life Sciences and Food Engineering, Hebei University of Engineering, Handan 056038, China; (H.Y.); (M.L.); (B.Z.); (J.Z.); (Y.S.)
| | - Yanyan Sun
- State Key Laboratory of Animal Biotech Breeding, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| |
Collapse
|
4
|
Kilianova Z, Stollarova N, Pivackova LB, Krenek P, Goboova M, Rihova ZJ, Aziz EK, Kuzelicki NK, Doka G, Klimas J. Biomarkers for the prediction and monitoring of the antipsychotic/antidepressant-induced hepatotoxicity: study protocol. Pharmacogenomics 2025; 25:667-678. [PMID: 39916529 PMCID: PMC11906111 DOI: 10.1080/14622416.2025.2456449] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2024] [Accepted: 01/17/2025] [Indexed: 03/15/2025] Open
Abstract
AIM This study is designed to address the connection between antidepressant and antipsychotic-induced hepatotoxicity with pharmacogenetic and epigenetic indicators, using a novel combined approach of CYP450 polymorphism determination and early liver injury detection via microRNA testing. METHODS The multi-centric retrospective case-control study in Slovakia involves 151 cases with signs of hepatotoxicity and 604 controls without. Participants will be tested for selected CYP450, UGT1A1 polymorphisms, and microRNAs. RESULTS Anticipated findings will test if patients with specific CYP450 and UGT1A1 polymorphisms are at higher risk for drug-induced hepatotoxicity and if plasma microRNAs hsa-miR-122-5p and hsa-miR-192-5p, alone or combined, can differentiate patients with abnormal liver function. CONCLUSION The findings could contribute to personalized treatment approach by combining genetic and epigenetic biomarkers.
Collapse
Affiliation(s)
- Zuzana Kilianova
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Comenius University Bratislava, Bratislava, Slovakia
| | - Natalia Stollarova
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Comenius University Bratislava, Bratislava, Slovakia
| | - Lenka Bies Pivackova
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Comenius University Bratislava, Bratislava, Slovakia
| | - Peter Krenek
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Comenius University Bratislava, Bratislava, Slovakia
| | - Maria Goboova
- Pharmacological Clinic, Faculty Hospital Nitra, Nitra, Slovakia
| | | | | | - Natasa Karas Kuzelicki
- Department of Clinical Biochemistry, Faculty of Pharmacy, University of Ljubljana, Ljubljana, Slovenia
| | - Gabriel Doka
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Comenius University Bratislava, Bratislava, Slovakia
| | - Jan Klimas
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Comenius University Bratislava, Bratislava, Slovakia
| |
Collapse
|
5
|
Kilari T, Suresh AS, Begum RF, Singh A, Venkkatesh P, Vellapandian C. Effect of Per and Poly-Fluoroalkyl Substances on Pregnancy and Child Development. Curr Pediatr Rev 2025; 21:142-153. [PMID: 38213179 DOI: 10.2174/0115733963267526231120110100] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/15/2023] [Revised: 10/18/2023] [Accepted: 11/02/2023] [Indexed: 01/13/2024]
Abstract
BACKGROUND Childhood obesity is significantly influenced by maternal exposure to Per and Poly-Fluoroalkyl Substances (PFAS) during pregnancy. PFAS exposure occurs through the Peroxisome Proliferator-Activated Receptor (PPAR-γ) receptor, leading to increased fat deposition and profound health effects in child growth and development. Despite ongoing investigations, the relationship between maternal serum PFAS concentration and child obesity requires further exploration. OBJECTIVE This study aimed to review the possible effects of Per and poly-fluoroalkyl substances exposure and their mechanism in overweight/obese children from pregnant ladies. METHODS A detailed literature survey was conducted using online databases, including Science Direct, Google Scholar, Scopus, Cochrane, and PubMed. The study focused on the diverse effects of PFAS on maternal and child health, with particular emphasis on neurological complications. RESULTS Child growth development depends upon breastfeeding and placenta health, which is disrupted by PFAS exposure, ultimately destroying the body mass index of the child. Neurotoxicity testing utilized the SH-SY5Y human-derived cell line as an in vitro model, revealing PFAS-induced increases in adipocyte number, reduced cell size, altered lipid conglomeration, increased adiposity, and changes in liver function. in vivo studies in mice and human cell lines indicated PPAR-γ and ER-α activation, leading to adiposity and weight gain through Estrogen signaling and Lipid metabolism. PFAS concentrations positively correlated in maternal sera, analyzed by liquid chromatography/quadrupole mass spectrometry. CONCLUSION PFAS, with a long half-life of 3.5-8.5 years, is commonly found in the serum of pregnant women, crossing the placenta barrier. This exposure disrupts placental homeostasis, negatively impacting mechanisms of action and potentially leading to deterioration in pregnancy and child health. Further research is needed to comprehensively understand the complex interplay between PFAS exposure and its implications for maternal and child well-being.
Collapse
Affiliation(s)
- Thanuja Kilari
- Department of Pharmacology, SRM College of Pharmacy, SRMIST, Kattankulathur-603209, Tamil Nadu, India
| | - Ankul Singh Suresh
- Department of Pharmacology, SRM College of Pharmacy, SRMIST, Kattankulathur-603209, Tamil Nadu, India
| | - Rukaiah F Begum
- Department of Pharmacology, SRM College of Pharmacy, SRMIST, Kattankulathur-603209, Tamil Nadu, India
| | - Anuragh Singh
- Department of Pharmacology, SRM College of Pharmacy, SRMIST, Kattankulathur-603209, Tamil Nadu, India
| | - Pravin Venkkatesh
- Department of Pharmacology, SRM College of Pharmacy, SRMIST, Kattankulathur-603209, Tamil Nadu, India
| | - Chitra Vellapandian
- Department of Pharmacology, SRM College of Pharmacy, SRMIST, Kattankulathur-603209, Tamil Nadu, India
| |
Collapse
|
6
|
Zheng M, Chen Z, Xie J, Yang Q, Mo M, Liu J, Chen L. The Genetic and Epigenetic Toxicity of Silica Nanoparticles: An Updated Review. Int J Nanomedicine 2024; 19:13901-13923. [PMID: 39735322 PMCID: PMC11681786 DOI: 10.2147/ijn.s486858] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2024] [Accepted: 11/15/2024] [Indexed: 12/31/2024] Open
Abstract
Silica nanoparticles (SiNPs) are widely used in biomedical fields, such as drug delivery, disease diagnosis, and molecular imaging. An increasing number of consumer products containing SiNPs are being used without supervision, and the toxicity of SiNPs to the human body is becoming a major problem. SiNPs contact the human body in various ways and cause damage to the structure and function of genetic material, potentially leading to carcinogenesis, teratogenicity and infertility. This review summarizes SiNPs-induced genetic and epigenetic toxicity, especially to germ cells, and explore their potential mechanisms. SiNPs cause genetic material damage mainly by inducing oxidative stress. Furtherly, the molecular mechanisms of epigenetic toxicity are discussed in detail for the first time. SiNPs alter DNA methylation, miRNA expression, histone modification and inhibit chromatin remodeling by regulating epigenetic-related enzymes and transcription factors. This review is beneficial for investigating potential solutions to avoid toxicity and provide guidance for better application of SiNPs in the biomedical field.
Collapse
Affiliation(s)
- Manjia Zheng
- Department of Orthodontics, School and Hospital of Stomatology, Guangdong Engineering Research Center of Oral Restoration and Reconstruction & Guangzhou Key Laboratory of Basic and Applied Research of Oral Regenerative Medicine, Guangzhou Medical University, Guangzhou, People’s Republic of China
| | - Ziwei Chen
- Department of Orthodontics, School and Hospital of Stomatology, Guangdong Engineering Research Center of Oral Restoration and Reconstruction & Guangzhou Key Laboratory of Basic and Applied Research of Oral Regenerative Medicine, Guangzhou Medical University, Guangzhou, People’s Republic of China
| | - Jiling Xie
- Department of Orthodontics, School and Hospital of Stomatology, Guangdong Engineering Research Center of Oral Restoration and Reconstruction & Guangzhou Key Laboratory of Basic and Applied Research of Oral Regenerative Medicine, Guangzhou Medical University, Guangzhou, People’s Republic of China
| | - Qiyuan Yang
- Department of Orthodontics, School and Hospital of Stomatology, Guangdong Engineering Research Center of Oral Restoration and Reconstruction & Guangzhou Key Laboratory of Basic and Applied Research of Oral Regenerative Medicine, Guangzhou Medical University, Guangzhou, People’s Republic of China
| | - Minhua Mo
- Department of Orthodontics, School and Hospital of Stomatology, Guangdong Engineering Research Center of Oral Restoration and Reconstruction & Guangzhou Key Laboratory of Basic and Applied Research of Oral Regenerative Medicine, Guangzhou Medical University, Guangzhou, People’s Republic of China
| | - Jia Liu
- Stomatological Hospital, Southern Medical University, Guangzhou, People’s Republic of China
| | - Liangjiao Chen
- Department of Orthodontics, School and Hospital of Stomatology, Guangdong Engineering Research Center of Oral Restoration and Reconstruction & Guangzhou Key Laboratory of Basic and Applied Research of Oral Regenerative Medicine, Guangzhou Medical University, Guangzhou, People’s Republic of China
| |
Collapse
|
7
|
Moloi TP, Ziqubu K, Mazibuko-Mbeje SE, Mabaso NH, Ndlovu Z. Aflatoxin B 1-induced hepatotoxicity through mitochondrial dysfunction, oxidative stress, and inflammation as central pathological mechanisms: A review of experimental evidence. Toxicology 2024; 509:153983. [PMID: 39491743 DOI: 10.1016/j.tox.2024.153983] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2024] [Revised: 10/15/2024] [Accepted: 10/27/2024] [Indexed: 11/05/2024]
Abstract
Aflatoxin B1 (AFB1) is a class of mycotoxin known to contaminate agricultural products, animal feed and animal food products, subsequently causing detrimental effects on human and animal health. AFB1 is the most common and potent aflatoxin found in food and contributes significantly to liver injury as well as the development of hepatocellular carcinoma. Although the liver is a primary target organ for AFB1 toxicity and biotransformation, underlying mechanisms implicated in liver injuries induced by these mycotoxins remain to be fully elucidated for therapeutic purposes. This review aims to dissect the complexities of the pathophysiological and molecular mechanisms implicated in hepatotoxicity induced by AFB1, including mitochondrial dysfunction, oxidative stress and hepatic inflammation. Mechanistically, AFB1 disrupt mitochondrial bioenergetics and membrane potential, promotes mitochondrial cholesterol trafficking and induces mitophagy. Moreover, mitochondrial dysfunction may lead to hepatic oxidative stress as a consequence of uncontrolled production of reactive oxygen species and defects in the antioxidant defense system. Retrieved experimental evidence also showed that AFB1 may lead to hepatic inflammation through gut microbiota dysbiosis, the release of DAMPs and cytokines, and immune cell recruitment. Overall, these mechanisms could be utilized as potential targets to extrapolate treatment for liver injury caused by AFB1.
Collapse
Affiliation(s)
- Tsholofelo P Moloi
- Department of Biochemistry, North-West University, Mmabatho 2745, South Africa
| | - Khanyisani Ziqubu
- Department of Biochemistry, North-West University, Mmabatho 2745, South Africa
| | | | - Nonduduzo H Mabaso
- Department of Biochemistry, North-West University, Mmabatho 2745, South Africa
| | - Zibele Ndlovu
- Department of Biochemistry, North-West University, Mmabatho 2745, South Africa.
| |
Collapse
|
8
|
Abida, Altamimi ASA, Ghaboura N, Balaraman AK, Rajput P, Bansal P, Rawat S, Alanazi FJ, Alruwaili AN, Aldhafeeri NA, Ali H, Deb PK. Therapeutic Potential of lncRNAs in Regulating Disulfidptosis for Cancer Treatment. Pathol Res Pract 2024; 263:155657. [PMID: 39437641 DOI: 10.1016/j.prp.2024.155657] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/02/2024] [Revised: 10/10/2024] [Accepted: 10/13/2024] [Indexed: 10/25/2024]
Abstract
Non-coding RNAs (lncRNAs) play critical roles in various cellular processes, including a novel form of regulated cell death known as disulfidptosis, characterized by accumulating protein disulfide bonds and severe endoplasmic reticulum stress. This review highlights the therapeutic potential of lncRNAs in regulating disulfidptosis for cancer treatment, emphasizing their influence on key pathway components such as GPX4, SLC7A11, and PDIA family members. Recent studies have demonstrated that targeting specific lncRNAs can sensitize cancer cells to disulfidptosis, offering a promising approach to cancer therapy. The regulation of disulfidptosis by lncRNAs involves various signaling pathways, including oxidative stress, ER stress, and calcium signaling. This review also discusses the molecular mechanisms underlying lncRNA regulation of disulfidptosis, the challenges of developing lncRNA-based therapies, and the future potential of this rapidly advancing field in cancer research.
Collapse
Affiliation(s)
- Abida
- Department of Pharmaceutical Chemistry, College of Pharmacy, Northern Border University, Rafha 91911, Saudi Arabia
| | - Abdulmalik S A Altamimi
- Department of Pharmaceutical Chemistry, College of Pharmacy, Prince Sattam Bin Abdulaziz University, Al Kharj 11942, Saudi Arabia
| | - Nehmat Ghaboura
- Department of Pharmacy Practice, Pharmacy Program, Batterjee Medical College, PO Box 6231, Jeddah 21442, Saudi Arabia
| | - Ashok Kumar Balaraman
- Research and Enterprise, University of Cyberjaya, Persiaran Bestari, Cyber 11, Cyberjaya, Selangor 63000, Malaysia
| | - Pranchal Rajput
- Chandigarh Pharmacy College, Chandigarh Group of Colleges-Jhanjeri, Mohali 140307, Punjab, India.
| | - Pooja Bansal
- Department of Allied Healthcare and Sciences, Vivekananda Global University, Jaipur, Rajasthan 303012, India
| | - Sushama Rawat
- Department of Biotechnology, Graphic Era (Deemed to be University), Clement Town, Dehradun 248002, India
| | - Fadiyah Jadid Alanazi
- Public Health Nursing Department, College of Nursing, Northern Border University, Arar, Saudi Arabia; Center for Health Research, Northern Border University, Arar, Saudi Arabia
| | - Abeer Nuwayfi Alruwaili
- Department of Nursing Administration and Education, College of Nursing, Jouf University, Al Jouf 72388, Saudi Arabia
| | - Nouf Afit Aldhafeeri
- College of Nursing, King Saud bin Abdulaziz University for Health Sciences, Riyadh, Saudi Arabia; King Abdullah International Medical Research Center, Riyadh, Saudi Arabia
| | - Haider Ali
- Center for Global health Research, Saveetha Medical College, Saveetha Institute of Medical and Technical Sciences, Saveetha University, Chennai, India; Department of Pharmacology, Kyrgyz State Medical College, Bishkek, Kyrgyzstan
| | - Pran Kishore Deb
- Department of Pharmaceutical Sciences and Technology, Birla Institue of Technology (BIT), Mesra, Ranchi, Jharkhand 835215, India
| |
Collapse
|
9
|
Aschner M, Skalny AV, Santamaria A, Rocha JBT, Mansouri B, Tizabi Y, Madeddu R, Lu R, Lee E, Tinkov AA. Epigenetic Mechanisms of Aluminum-Induced Neurotoxicity and Alzheimer's Disease: A Focus on Non-Coding RNAs. Neurochem Res 2024; 49:2988-3005. [PMID: 39060769 DOI: 10.1007/s11064-024-04214-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2024] [Revised: 06/16/2024] [Accepted: 07/15/2024] [Indexed: 07/28/2024]
Abstract
Aluminum (Al) is known to induce neurotoxic effects, potentially contributing to Alzheimer's disease (AD) pathogenesis. Recent studies suggest that epigenetic modification may contribute to Al neurotoxicity, although the mechanisms are still debatable. Therefore, the objective of the present study was to summarize existing data on the involvement of epigenetic mechanisms in Al-induced neurotoxicity, especially AD-type pathology. Existing data demonstrate that Al exposure induces disruption in DNA methylation, histone modifications, and non-coding RNA expression in brains. Alterations in DNA methylation following Al exposure were shown to be mediated by changes in expression and activity of DNA methyltransferases (DNMTs) and ten-eleven translocation proteins (TETs). Al exposure was shown to reduce histone acetylation by up-regulating expression of histone deacetylases (HDACs) and impair histone methylation, ultimately contributing to down-regulation of brain-derived neurotrophic factor (BDNF) expression and activation of nuclear factor κB (NF-κB) signaling. Neurotoxic effects of Al exposure were also associated with aberrant expression of non-coding RNAs, especially microRNAs (miR). Al-induced patterns of miR expression were involved in development of AD-type pathology by increasing amyloid β (Aβ) production through up-regulation of Aβ precursor protein (APP) and β secretase (BACE1) expression (down-regulation of miR-29a/b, miR-101, miR-124, and Let-7c expression), increasing in neuroinflammation through NF-κB signaling (up-regulation of miR-9, miR-125b, miR-128, and 146a), as well as modulating other signaling pathways. Furthermore, reduced global DNA methylation, altered histone modification, and aberrant miRNA expression were associated with cognitive decline in Al-exposed subjects. However, further studies are required to evaluate the contribution of epigenetic mechanisms to Al-induced neurotoxicity and/or AD development.
Collapse
Affiliation(s)
- Michael Aschner
- Department of Molecular Pharmacology, Albert Einstein College of Medicine, Bronx, NY, 10461, USA
| | - Anatoly V Skalny
- Laboratory of Ecobiomonitoring and Quality Control, Yaroslavl State University, Sovetskaya Str. 14, Yaroslavl, 150000, Russia
- Laboratory of Molecular Dietetics, IM Sechenov First Moscow State Medical University (Sechenov University), Bolshaya Pirogovskaya St., 2-4, Moscow, 119146, Russia
| | - Abel Santamaria
- Facultad de Ciencias, Universidad Nacional Autónoma de México, Mexico City, 04510, Mexico
- Laboratorio de Nanotecnología y Nanomedicina, Departamento de Atención a la Salud, Universidad Autónoma Metropolitana-Xochimilco, Mexico City, 04960, Mexico
| | - Joao B T Rocha
- Departamento de Bioquímica e Biologia Molecular, CCNE, Universidade Federal de Santa Maria, Santa Maria, RS, Brazil
| | - Borhan Mansouri
- Substance Abuse Prevention Research Center, Research Institute for Health, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Yousef Tizabi
- Department of Pharmacology, Howard University College of Medicine, Washington, DC, 20059, USA
| | - Roberto Madeddu
- Department of Biomedical Sciences-Histology, University of Sassari, Viale San Pietro 43/B, 07100, Sassari, Italy
| | - Rongzu Lu
- Department of Preventive Medicine and Public Health Laboratory Science, School of Medicine, Jiangsu University, Zhenjiang, Jiangsu, 212013, People's Republic of China
| | - Eunsook Lee
- Department of Pharmaceutical Sciences, Florida A&M University, Tallahassee, FL, 32307, USA
| | - Alexey A Tinkov
- Laboratory of Ecobiomonitoring and Quality Control, Yaroslavl State University, Sovetskaya Str. 14, Yaroslavl, 150000, Russia.
- Laboratory of Molecular Dietetics, IM Sechenov First Moscow State Medical University (Sechenov University), Bolshaya Pirogovskaya St., 2-4, Moscow, 119146, Russia.
| |
Collapse
|
10
|
Jovičić SM. Analysis of total RNA as a potential biomarker of developmental neurotoxicity in silico. Health Informatics J 2024; 30:14604582241285832. [PMID: 39384248 DOI: 10.1177/14604582241285832] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/11/2024]
Abstract
A vast number of neurodegenerative disorders arise from neurotoxicity. In neurotoxicity, more than 250 RNA molecules are up and downregulated. The manuscript investigates the exposure of chlorpyrifos organophosphate pesticide (COP) effect on total RNA in murine brain tissue in 4 genotypes for in silico neurodegeneration development. The GSE58103 dataset from the Gene Expression Omnibus (GEO) database applies for data preprocessing, normalization, and quality control. Differential expression analysis (DEG) uses the limma package in R. Study compared expression profiles from murine fetal brain tissues across four genotypes: PON-1 knockout (KO), tgHuPON1Q192 (Q-tg), tgHuPON1R192 (R-tg), and wild-type (WT). We analyze 60 samples, 15 samples per genotype, to identify DEGs. The significance criteria are adjusted p-value <.05 and a |log2 fold change| > 1. The study identifies microRNA485 as the potential biomarker of COP toxicity using the GSE58103 dataset. Significant differences exist for microRNA485 between KO and WT groups by differential expression analysis. Moreover, graphical analysis shows sample relationships among genotype groups. MicroRNA485 represents a promising biomarker for developmental COP neurotoxicity by utilizing in silico analysis in scientific practice.
Collapse
Affiliation(s)
- Snežana M Jovičić
- Department of Genetics, Faculty of Biology, University of Belgrade, Belgrade, Serbia
| |
Collapse
|
11
|
Afthab M, Hambo S, Kim H, Alhamad A, Harb H. Particulate matter-induced epigenetic modifications and lung complications. Eur Respir Rev 2024; 33:240129. [PMID: 39537244 PMCID: PMC11558539 DOI: 10.1183/16000617.0129-2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2024] [Accepted: 08/27/2024] [Indexed: 11/16/2024] Open
Abstract
Air pollution is one of the leading causes of early deaths worldwide, with particulate matter (PM) as an emerging factor contributing to this trend. PM is classified based on its physical size, which ranges from PM10 (diameter ≤10 μm) to PM2.5 (≤2.5 μm) and PM0.5 (≤0.5 μm). Smaller-sized PM can move freely through the air and readily infiltrate deep into the lungs, intensifying existing health issues and exacerbating complications. Lung complications are the most common issues arising from PM exposure due to the primary site of deposition in the respiratory system. Conditions such as asthma, COPD, idiopathic pulmonary fibrosis, lung cancer and various lung infections are all susceptible to worsening due to PM exposure. PM can epigenetically modify specific target sites, further complicating its impact on these conditions. Understanding these epigenetic mechanisms holds promise for addressing these complications in cases of PM exposure. This involves studying the effect of PM on different gene expressions and regulation through epigenetic modifications, including DNA methylation, histone modifications and microRNAs. Targeting and manipulating these epigenetic modifications and their mechanisms could be promising strategies for future treatments of lung complications. This review mainly focuses on different epigenetic modifications due to PM2.5 exposure in the various lung complications mentioned above.
Collapse
Affiliation(s)
- Muhammed Afthab
- Institute for Medical Microbiology and Virology, University Hospital Dresden, TU Dresden, Dresden, Germany
| | - Shadi Hambo
- Institute for Medical Microbiology and Virology, University Hospital Dresden, TU Dresden, Dresden, Germany
| | - Hyunji Kim
- Institute for Medical Microbiology and Virology, University Hospital Dresden, TU Dresden, Dresden, Germany
| | - Ali Alhamad
- Institute for Medical Microbiology and Virology, University Hospital Dresden, TU Dresden, Dresden, Germany
| | - Hani Harb
- Institute for Medical Microbiology and Virology, University Hospital Dresden, TU Dresden, Dresden, Germany
| |
Collapse
|
12
|
Adegbola PI, Adetutu A. Genetic and epigenetic modulations in toxicity: The two-sided roles of heavy metals and polycyclic aromatic hydrocarbons from the environment. Toxicol Rep 2024; 12:502-519. [PMID: 38774476 PMCID: PMC11106787 DOI: 10.1016/j.toxrep.2024.04.010] [Citation(s) in RCA: 13] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2024] [Revised: 04/27/2024] [Accepted: 04/27/2024] [Indexed: 05/24/2024] Open
Abstract
This study emphasizes the importance of considering the metabolic and toxicity mechanisms of environmental concern chemicals in real-life exposure scenarios. Furthermore, environmental chemicals may require metabolic activation to become toxic, and competition for binding sites on receptors can affect the severity of toxicity. The multicomplex process of chemical toxicity is reflected in the activation of multiple pathways during toxicity of which AhR activation is major. Real-life exposure to a mixture of concern chemicals is common, and the composition of these chemicals determines the severity of toxicity. Nutritional essential elements can mitigate the toxicity of toxic heavy metals, while the types and ratio of composition of PAH can either increase or decrease toxicity. The epigenetic mechanisms of heavy metals and PAH toxicity involves either down-regulation or up-regulation of some non-coding RNAs (ncRNAs) whereas specific small RNAs (sRNAs) may have dual role depending on the tissue and circumstance of expression. Similarly, decrease DNA methylation and histone modification are major players in heavy metals and PAH mediated toxicity and FLT1 hypermethylation is a major process in PAH induced carcinogenesis. Overall, this review provides the understanding of the metabolism of environmental concern chemicals, emphasizing the importance of considering mixed compositions and real-life exposure scenarios in assessing their potential effects on human health and diseases development as well as the dual mechanism of toxicity via genetic or epigenetic axis.
Collapse
Affiliation(s)
- Peter Ifeoluwa Adegbola
- Department of Biochemistry and Forensic Science, First Technical University, Ibadan, Nigeria
| | - Adewale Adetutu
- Department of Biochemistry, Faculty of Basic Medical Sciences, Ladoke Akintola University of Technology, Ogbomoso, Nigeria
| |
Collapse
|
13
|
Kappari L, Dasireddy JR, Applegate TJ, Selvaraj RK, Shanmugasundaram R. MicroRNAs: exploring their role in farm animal disease and mycotoxin challenges. Front Vet Sci 2024; 11:1372961. [PMID: 38803799 PMCID: PMC11129562 DOI: 10.3389/fvets.2024.1372961] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2024] [Accepted: 04/04/2024] [Indexed: 05/29/2024] Open
Abstract
MicroRNAs (miRNAs) serve as key regulators in gene expression and play a crucial role in immune responses, holding a significant promise for diagnosing and managing diseases in farm animals. This review article summarizes current research on the role of miRNAs in various farm animal diseases and mycotoxicosis, highlighting their potential as biomarkers and using them for mitigation strategies. Through an extensive literature review, we focused on the impact of miRNAs in the pathogenesis of several farm animal diseases, including viral and bacterial infections and mycotoxicosis. They regulate gene expression by inducing mRNA deadenylation, decay, or translational inhibition, significantly impacting cellular processes and protein synthesis. The research revealed specific miRNAs associated with the diseases; for instance, gga-miR-M4 is crucial in Marek's disease, and gga-miR-375 tumor-suppressing function in Avian Leukosis. In swine disease such as Porcine Respiratory and Reproductive Syndrome (PRRS) and swine influenza, miRNAs like miR-155 and miR-21-3p emerged as key regulatory factors. Additionally, our review highlighted the interaction between miRNAs and mycotoxins, suggesting miRNAs can be used as a biomarker for mycotoxin exposure. For example, alterations in miRNA expression, such as the dysregulation observed in response to Aflatoxin B1 (AFB1) in chickens, may indicate potential mechanisms for toxin-induced changes in lipid metabolism leading to liver damage. Our findings highlight miRNAs potential for early disease detection and intervention in farm animal disease management, potentially reducing significant economic losses in agriculture. With only a fraction of miRNAs functionally characterized in farm animals, this review underlines more focused research on specific miRNAs altered in distinct diseases, using advanced technologies like CRISPR-Cas9 screening, single-cell sequencing, and integrated multi-omics approaches. Identifying specific miRNA targets offers a novel pathway for early disease detection and the development of mitigation strategies against mycotoxin exposure in farm animals.
Collapse
Affiliation(s)
- Laharika Kappari
- Department of Poultry Science, The University of Georgia, Athens, GA, United States
| | | | - Todd J. Applegate
- Department of Poultry Science, The University of Georgia, Athens, GA, United States
| | - Ramesh K. Selvaraj
- Department of Poultry Science, The University of Georgia, Athens, GA, United States
| | - Revathi Shanmugasundaram
- Toxicology and Mycotoxin Research Unit, U.S. National Poultry Research Center, Agricultural Research Service, U.S. Department of Agriculture, Athens, GA, United States
| |
Collapse
|
14
|
Neagu AN, Jayaweera T, Corrice L, Johnson K, Darie CC. Breast Cancer Exposomics. Life (Basel) 2024; 14:402. [PMID: 38541726 PMCID: PMC10971462 DOI: 10.3390/life14030402] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2024] [Revised: 03/14/2024] [Accepted: 03/15/2024] [Indexed: 12/15/2024] Open
Abstract
We are exposed to a mixture of environmental man-made and natural xenobiotics. We experience a wide spectrum of environmental exposure in our lifetime, including the effects of xenobiotics on gametogenesis and gametes that undergo fertilization as the starting point of individual development and, moreover, in utero exposure, which can itself cause the first somatic or germline mutation necessary for breast cancer (BC) initiation. Most xenobiotics are metabolized or/and bioaccumulate and biomagnify in our tissues and cells, including breast tissues, so the xenobiotic metabolism plays an important role in BC initiation and progression. Many considerations necessitate a more valuable explanation regarding the molecular mechanisms of action of xenobiotics which act as genotoxic and epigenetic carcinogens. Thus, exposomics and the exposome concept are based on the diversity and range of exposures to physical factors, synthetic chemicals, dietary components, and psychosocial stressors, as well as their associated biologic processes and molecular pathways. Existing evidence for BC risk (BCR) suggests that food-borne chemical carcinogens, air pollution, ionizing radiation, and socioeconomic status are closely related to breast carcinogenesis. The aim of this review was to depict the dynamics and kinetics of several xenobiotics involved in BC development, emphasizing the role of new omics fields related to BC exposomics, such as environmental toxicogenomics, epigenomics and interactomics, metagenomics, nutrigenomics, nutriproteomics, and nutrimiRomics. We are mainly focused on food and nutrition, as well as endocrine-disrupting chemicals (EDCs), involved in BC development. Overall, cell and tissue accumulation and xenobiotic metabolism or biotransformation can lead to modifications in breast tissue composition and breast cell morphology, DNA damage and genomic instability, epimutations, RNA-mediated and extracellular vesicle effects, aberrant blood methylation, stimulation of epithelial-mesenchymal transition (EMT), disruption of cell-cell junctions, reorganization of the actin cytoskeleton, metabolic reprogramming, and overexpression of mesenchymal genes. Moreover, the metabolism of xenobiotics into BC cells impacts almost all known carcinogenic pathways. Conversely, in our food, there are many bioactive compounds with anti-cancer potential, exerting pro-apoptotic roles, inhibiting cell cycle progression and proliferation, migration, invasion, DNA damage, and cell stress conditions. We can conclude that exposomics has a high potential to demonstrate how environmental exposure to xenobiotics acts as a double-edged sword, promoting or suppressing tumorigenesis in BC.
Collapse
Affiliation(s)
- Anca-Narcisa Neagu
- Laboratory of Animal Histology, Faculty of Biology, “Alexandru Ioan Cuza” University of Iași, Carol I Bvd. 20A, 700505 Iasi, Romania
| | - Taniya Jayaweera
- Biochemistry & Proteomics Laboratories, Department of Chemistry and Biochemistry, Clarkson University, Potsdam, NY 13699-5810, USA; (T.J.); (L.C.); (K.J.)
| | - Lilian Corrice
- Biochemistry & Proteomics Laboratories, Department of Chemistry and Biochemistry, Clarkson University, Potsdam, NY 13699-5810, USA; (T.J.); (L.C.); (K.J.)
| | - Kaya Johnson
- Biochemistry & Proteomics Laboratories, Department of Chemistry and Biochemistry, Clarkson University, Potsdam, NY 13699-5810, USA; (T.J.); (L.C.); (K.J.)
| | - Costel C. Darie
- Biochemistry & Proteomics Laboratories, Department of Chemistry and Biochemistry, Clarkson University, Potsdam, NY 13699-5810, USA; (T.J.); (L.C.); (K.J.)
| |
Collapse
|
15
|
Sadeghian I, Akbarpour M, Chafjiri FMA, Chafjiri PMA, Heidari R, Morowvat MH, Sadeghian R, Raee MJ, Negahdaripour M. Potential of oligonucleotide- and protein/peptide-based therapeutics in the management of toxicant/stressor-induced diseases. NAUNYN-SCHMIEDEBERG'S ARCHIVES OF PHARMACOLOGY 2024; 397:1275-1310. [PMID: 37688622 DOI: 10.1007/s00210-023-02683-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/10/2023] [Accepted: 08/21/2023] [Indexed: 09/11/2023]
Abstract
Exposure to toxicants/stressors has been linked to the development of many human diseases. They could affect various cellular components, such as DNA, proteins, lipids, and non-coding RNAs (ncRNA), thereby triggering various cellular pathways, particularly oxidative stress, inflammatory responses, and apoptosis, which can contribute to pathophysiological states. Accordingly, modulation of these pathways has been the focus of numerous investigations for managing related diseases. The involvement of various ncRNAs, such as small interfering RNA (siRNA), microRNAs (miRNA), and long non-coding RNAs (lncRNA), as well as various proteins and peptides in mediating these pathways, provides many target sites for pharmaceutical intervention. In this regard, various oligonucleotide- and protein/peptide-based therapies have been developed to treat toxicity-induced diseases, which have shown promising results in vitro and in vivo. This comprehensive review provides information about various aspects of toxicity-related diseases including their causing factors, main underlying mechanisms and intermediates, and their roles in pathophysiological states. Particularly, it highlights the principles and mechanisms of oligonucleotide- and protein/peptide-based therapies in the treatment of toxicity-related diseases. Furthermore, various issues of oligonucleotides and proteins/peptides for clinical usage and potential solutions are discussed.
Collapse
Affiliation(s)
- Issa Sadeghian
- Pharmaceutical Sciences Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
- Biotechnology Incubator, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Mina Akbarpour
- Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | | | | | - Reza Heidari
- Pharmaceutical Sciences Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Mohammad Hossein Morowvat
- Pharmaceutical Sciences Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
- Department of Pharmaceutical Biotechnology, School of Pharmacy, Shiraz University of Medical Sciences, Shiraz, Iran
| | | | - Mohammad Javad Raee
- Center for Nanotechnology in Drug Delivery, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Manica Negahdaripour
- Pharmaceutical Sciences Research Center, Shiraz University of Medical Sciences, Shiraz, Iran.
- Department of Pharmaceutical Biotechnology, School of Pharmacy, Shiraz University of Medical Sciences, Shiraz, Iran.
| |
Collapse
|
16
|
Zhong Y, Zhang Y, Zhu Z. Research progress on the association between MicroRNA and postoperative cognitive dysfunction. Minerva Anestesiol 2024; 90:191-199. [PMID: 38535971 DOI: 10.23736/s0375-9393.23.17614-0] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/02/2024]
Abstract
Postoperative cognitive dysfunction (POCD) is a significant complication following surgery. The precise mechanisms underlying POCD remain elusive, although it is speculated that they involve central nervous system inflammation, oxidative stress and cellular apoptosis. MicroRNAs (miRNAs), a class of non-coding RNAs widely distributed in eukaryotes, have been implicated in the pathogenesis of neurodegenerative disorders and could potentially impact POCD. This review explores the association between miRNAs and POCD and provides an overview of the progress of current research on miRNAs in the pathogenesis, diagnosis, and treatment of POCD.
Collapse
Affiliation(s)
- Yuanping Zhong
- Department of Anesthesiology, Affiliated Hospital of Zunyi Medical University, Zunyi, China
| | - Yu Zhang
- Department of Anesthesiology, Affiliated Hospital of Zunyi Medical University, Zunyi, China
| | - Zhaoqiong Zhu
- Department of Anesthesiology, Affiliated Hospital of Zunyi Medical University, Zunyi, China -
| |
Collapse
|
17
|
Zhang W, Jiang Y, He Y, Boucetta H, Wu J, Chen Z, He W. Lipid carriers for mRNA delivery. Acta Pharm Sin B 2023; 13:4105-4126. [PMID: 37799378 PMCID: PMC10547918 DOI: 10.1016/j.apsb.2022.11.026] [Citation(s) in RCA: 45] [Impact Index Per Article: 22.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2022] [Revised: 10/26/2022] [Accepted: 11/03/2022] [Indexed: 12/05/2022] Open
Abstract
Messenger RNA (mRNA) is the template for protein biosynthesis and is emerging as an essential active molecule to combat various diseases, including viral infection and cancer. Especially, mRNA-based vaccines, as a new type of vaccine, have played a leading role in fighting against the current global pandemic of COVID-19. However, the inherent drawbacks, including large size, negative charge, and instability, hinder its use as a therapeutic agent. Lipid carriers are distinguishable and promising vehicles for mRNA delivery, owning the capacity to encapsulate and deliver negatively charged drugs to the targeted tissues and release cargoes at the desired time. Here, we first summarized the structure and properties of different lipid carriers, such as liposomes, liposome-like nanoparticles, solid lipid nanoparticles, lipid-polymer hybrid nanoparticles, nanoemulsions, exosomes and lipoprotein particles, and their applications in delivering mRNA. Then, the development of lipid-based formulations as vaccine delivery systems was discussed and highlighted. Recent advancements in the mRNA vaccine of COVID-19 were emphasized. Finally, we described our future vision and perspectives in this field.
Collapse
Affiliation(s)
- Wanting Zhang
- Department of Pharmaceutics, School of Pharmacy, China Pharmaceutical University, Nanjing 211198, China
| | - Yuxin Jiang
- Department of Pharmaceutics, School of Pharmacy, China Pharmaceutical University, Nanjing 211198, China
| | - Yonglong He
- Department of Pharmaceutics, School of Pharmacy, China Pharmaceutical University, Nanjing 211198, China
| | - Hamza Boucetta
- Department of Pharmaceutics, School of Pharmacy, China Pharmaceutical University, Nanjing 211198, China
| | - Jun Wu
- Department of Geriatric Cardiology, Jiangsu Provincial Key Laboratory of Geriatrics, The First Affiliated Hospital of Nanjing Medical University, Nanjing 210029, China
| | - Zhongjian Chen
- Shanghai Skin Disease Hospital, Tongji University School of Medicine, Shanghai 200443, China
| | - Wei He
- Department of Pharmaceutics, School of Pharmacy, China Pharmaceutical University, Nanjing 211198, China
- Shanghai Skin Disease Hospital, Tongji University School of Medicine, Shanghai 200443, China
| |
Collapse
|
18
|
Hammoudeh N, Soukkarieh C, Murphy DJ, Hanano A. Female-to-male differential transcription patterns of miRNA-mRNA networks in the livers of dioxin-exposed mice. ENVIRONMENTAL TOXICOLOGY 2023; 38:2310-2331. [PMID: 37318321 DOI: 10.1002/tox.23868] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/28/2023] [Revised: 05/14/2023] [Accepted: 06/05/2023] [Indexed: 06/16/2023]
Abstract
Non-coding microRNAs (miRNAs) have important roles in regulating the expression of liver mRNAs in response to xenobiotic-exposure, but their roles concerning dioxins such as TCDD (2,3,7,8-Tetrachlorodibenzo-p-dioxin) are less clear. This report concerns the potential implication of liver (class I) and circulating (class II) miRNAs in hepatotoxicity of female and male mice after acute exposure to TCDD. The data show that, of a total of 38 types of miRNAs, the expression of eight miRNAs were upregulated in both female and male mice exposed to TCDD. Inversely, the expression of nine miRNAs were significantly downregulated in both animal genders. Moreover, certain miRNAs were preferentially induced in either females or males. The potential downstream regulatory effects of miRNAs on their target genes was evaluated by determining the expression of three group of genes that are potentially involved in cancer biogenesis, other diseases and in hepatotoxicity. It was found that certain cancer-related genes were more highly expressed females rather than males after exposure to TCDD. Furthermore, a paradoxical female-to-male transcriptional pattern was found for several disease-related and hepatotoxicity-related genes. These results suggest the possibility of developing of new miRNA-specific interfering molecules to address their dysfunctions as caused by TCDD.
Collapse
Affiliation(s)
- Nour Hammoudeh
- Department of Animal Biology, Faculty of Sciences, University of Damascus, Damascus, Syria
| | - Chadi Soukkarieh
- Department of Animal Biology, Faculty of Sciences, University of Damascus, Damascus, Syria
| | - Denis J Murphy
- School of Applied Sciences, University of South Wales, Pontypridd, UK
| | - Abdulsamie Hanano
- Department of Molecular Biology and Biotechnology, Atomic Energy Commission of Syria (AECS), Damascus, Syria
| |
Collapse
|
19
|
Xu L, Li Y, Ma W, Sun X, Fan R, Jin Y, Chen N, Zhu X, Guo H, Zhao K, Luo J, Li C, Zheng Y, Yu D. Diesel exhaust particles exposure induces liver dysfunction: Exploring predictive potential of human circulating microRNAs signature relevant to liver injury risk. JOURNAL OF HAZARDOUS MATERIALS 2023; 458:132060. [PMID: 37454487 DOI: 10.1016/j.jhazmat.2023.132060] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/05/2023] [Revised: 06/30/2023] [Accepted: 07/12/2023] [Indexed: 07/18/2023]
Abstract
Diesel exhaust particles (DEP) pollution should be taken seriously because it is an extensive environmental and occupational health concern. Exploring early effect biomarkers is crucial for monitoring and managing DEP-associated health risk assessment. Here, we found that serum levels of 67 miRNAs were dysregulated in DEP exposure group. Notably, 20 miRNAs were identified as each having a significant dose-response relationship with the internal exposure level of DEP. Further, we revealed that the DEP exposure could affect the liver function of subjects and that 7 miRNAs (including the well-known liver injury indicator, miR-122-5p) could serve as the novel epigenetic-biomarkers (epi-biomarkers) to reflect the liver-specific response to the DEP exposure. Importantly, an unprecedented prediction model using these 7 miRNAs was established for the assessment of DEP-induced liver injury risk. Finally, bioinformatic analysis indicated that the unique set of miRNA panel in serum might also contribute to the molecular mechanism of DEP exposure-induced liver damage. These results broaden our understanding of the adverse health outcomes of DEP exposure. Noteworthy, we believe this study could shed light on roles and functions of epigenetic biomarkers from environmental exposure to health outcomes by revealing the full chain of exposure-miRNAs-molecular pathways-disease evidence.
Collapse
Affiliation(s)
- Lin Xu
- School of Public Health, Qingdao University, Qingdao, China
| | - Yanting Li
- School of Public Health, Qingdao University, Qingdao, China
| | - Wanli Ma
- School of Public Health, Qingdao University, Qingdao, China
| | - Xueying Sun
- School of Public Health, Qingdao University, Qingdao, China
| | - Rongrong Fan
- School of Public Health, Qingdao University, Qingdao, China
| | - Yuan Jin
- School of Public Health, Qingdao University, Qingdao, China
| | - Ningning Chen
- School of Public Health, Qingdao University, Qingdao, China
| | - Xiaoxiao Zhu
- School of Public Health, Qingdao University, Qingdao, China
| | - Huan Guo
- School of Public Health, Huazhong University of Science and Technology, Wuhan, China
| | - Kunming Zhao
- School of Public Health, Qingdao University, Qingdao, China
| | - Jiao Luo
- School of Public Health, Qingdao University, Qingdao, China
| | - Chuanhai Li
- School of Public Health, Qingdao University, Qingdao, China
| | - Yuxin Zheng
- School of Public Health, Qingdao University, Qingdao, China
| | - Dianke Yu
- School of Public Health, Qingdao University, Qingdao, China.
| |
Collapse
|
20
|
Abdelrahman SA, El-Shal AS, Abdelrahman AA, Saleh EZH, Mahmoud AA. Neuroprotective effects of quercetin on the cerebellum of zinc oxide nanoparticles (ZnoNps)-exposed rats. Tissue Barriers 2023; 11:2115273. [PMID: 35996208 PMCID: PMC10364653 DOI: 10.1080/21688370.2022.2115273] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2022] [Revised: 08/08/2022] [Accepted: 08/16/2022] [Indexed: 10/15/2022] Open
Abstract
Engineered nanomaterials induce hazardous effects at the cellular and molecular levels. We investigated different mechanisms underlying the neurotoxic potential of zinc oxide nanoparticles (ZnONPs) on cerebellar tissue and clarified the ameliorative role of Quercetin supplementation. Forty adult male albino rats were divided into control group (I), ZnONPs-exposed group (II), and ZnONPs and Quercetin group (III). Oxidative stress biomarkers (MDA & TOS), antioxidant biomarkers (SOD, GSH, GR, and TAC), serum interleukins (IL-1β, IL-6, IL-8), and tumor necrosis factor alpha (TNF-α) were measured. Serum micro-RNA (miRNA): miRNA-21-5p, miRNA-122-5p, miRNA-125b-5p, and miRNA-155-3p expression levels were quantified by real-time quantitative polymerase-chain reaction (RT-QPCR). Cerebellar tissue sections were stained with Hematoxylin & Eosin and Silver stains and examined microscopically. Expression levels of Calbindin D28k, GFAP, and BAX proteins in cerebellar tissue were detected by immunohistochemistry. Quercetin supplementation lowered oxidative stress biomarkers levels and ameliorated the antioxidant parameters that were decreased by ZnONPs. No significant differences in GR activity were detected between the study groups. ZnONPs significantly increased serum IL-1β, IL-6, IL-8, and TNF-α which were improved with Quercetin. Serum miRNA-21-5p, miRNA-122-5p, miRNA-125b-5p, and miRNA-155-p expression levels showed significant increase in ZnONPs group, while no significant difference was observed between Quercetin-treated group and control group. ZnONPs markedly impaired cerebellar tissue structure with decreased levels of calbindin D28k, increased BAX and GFAP expression. Quercetin supplementation ameliorated cerebellar tissue apoptosis, gliosis and improved calbindin levels. In conclusion: Quercetin supplementation ameliorated cerebellar neurotoxicity induced by ZnONPs at cellular and molecular basis by different studied mechanisms.Abbreviations: NPs: Nanoparticles, ROS: reactive oxygen species, ZnONPs: Zinc oxide nanoparticles, AgNPs: silver nanoparticles, BBB: blood-brain barrier, ncRNAs: Non-coding RNAs, miRNA: Micro RNA, DMSO: Dimethyl sulfoxide, LPO: lipid peroxidation, MDA: malondialdehyde, TBA: thiobarbituric acid, TOS: total oxidative status, ELISA: enzyme-linked immunosorbent assay, H2O2: hydrogen peroxide, SOD: superoxide dismutase, GR: glutathione reductase, TAC: total antioxidant capacity, IL-1: interleukin-1, TNF: tumor necrosis factor alpha, cDNA: complementary DNA, RT-QPCR: Real-time quantitative polymerase-chain reaction, ABC: Avidin biotin complex technique, DAB: 3', 3-diaminobenzidine, SPSS: Statistical Package for Social Sciences, ANOVA: One way analysis of variance, Tukey's HSD: Tukey's Honestly Significant Difference, GFAP: glial fiberillar acitic protein, iNOS: Inducible nitric oxide synthase, NO: nitric oxide, HO-1: heme oxygenase-1, Nrf2: nuclear factor erythroid 2-related factor 2, NF-B: nuclear factor-B, SCI: spinal cord injury, CB: Calbindin.
Collapse
Affiliation(s)
- Shaimaa A. Abdelrahman
- Medical Histology and Cell Biology Department, Faculty of Medicine, Zagazig University, Zagazig, Egypt
| | - Amal S. El-Shal
- Medical Biochemistry and Molecular Biology Department, Faculty of Medicine, Zagazig University, Zagazig, Egypt
- Medical Biochemistry and Molecular Biology Department, Armed Forces College of Medicine (AFCM), Cairo, Egypt
| | - Abeer A. Abdelrahman
- Medical Biochemistry and Molecular Biology Department, Faculty of Medicine, Zagazig University, Zagazig, Egypt
| | - Ebtehal Zaid Hassen Saleh
- Medical Histology and Cell Biology Department, Faculty of Medicine, Zagazig University, Zagazig, Egypt
| | - Abeer A. Mahmoud
- Medical Histology and Cell Biology Department, Faculty of Medicine, Zagazig University, Zagazig, Egypt
| |
Collapse
|
21
|
DeSouza NR, Quaranto D, Carnazza M, Jarboe T, Tiwari RK, Geliebter J. Interactome of Long Non-Coding RNAs: Transcriptomic Expression Patterns and Shaping Cancer Cell Phenotypes. Int J Mol Sci 2023; 24:9914. [PMID: 37373059 PMCID: PMC10298192 DOI: 10.3390/ijms24129914] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2023] [Revised: 06/02/2023] [Accepted: 06/05/2023] [Indexed: 06/29/2023] Open
Abstract
RNA biology has gained extensive recognition in the last two decades due to the identification of novel transcriptomic elements and molecular functions. Cancer arises, in part, due to the accumulation of mutations that greatly contribute to genomic instability. However, the identification of differential gene expression patterns of wild-type loci has exceeded the boundaries of mutational study and has significantly contributed to the identification of molecular mechanisms that drive carcinogenic transformation. Non-coding RNA molecules have provided a novel avenue of exploration, providing additional routes for evaluating genomic and epigenomic regulation. Of particular focus, long non-coding RNA molecule expression has been demonstrated to govern and direct cellular activity, thus evidencing a correlation between aberrant long non-coding RNA expression and the pathological transformation of cells. lncRNA classification, structure, function, and therapeutic utilization have expanded cancer studies and molecular targeting, and understanding the lncRNA interactome aids in defining the unique transcriptomic signatures of cancer cell phenotypes.
Collapse
Affiliation(s)
- Nicole R. DeSouza
- Department of Pathology, Microbiology and Immunology, New York Medical College, Valhalla, NY 10595, USA
| | - Danielle Quaranto
- Department of Pathology, Microbiology and Immunology, New York Medical College, Valhalla, NY 10595, USA
| | - Michelle Carnazza
- Department of Pathology, Microbiology and Immunology, New York Medical College, Valhalla, NY 10595, USA
| | - Tara Jarboe
- Department of Pathology, Microbiology and Immunology, New York Medical College, Valhalla, NY 10595, USA
| | - Raj K. Tiwari
- Department of Pathology, Microbiology and Immunology, New York Medical College, Valhalla, NY 10595, USA
- Department of Otolaryngology, New York Medical College, Valhalla, NY 10591, USA
| | - Jan Geliebter
- Department of Pathology, Microbiology and Immunology, New York Medical College, Valhalla, NY 10595, USA
- Department of Otolaryngology, New York Medical College, Valhalla, NY 10591, USA
| |
Collapse
|
22
|
Nguyen HD, Kim MS. The Effects of a Mixture of Cadmium, Lead, and Mercury on Metabolic Syndrome and Its Components, as well as Cognitive Impairment: Genes, MicroRNAs, Transcription Factors, and Sponge Relationships : The Effects of a Mixture of Cadmium, Lead, and Mercury on Metabolic Syndrome and Its Components, as well as Cognitive Impairment: Genes, MicroRNAs, Transcription Factors, and Sponge Relationships. Biol Trace Elem Res 2023; 201:2200-2221. [PMID: 35798913 DOI: 10.1007/s12011-022-03343-y] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/11/2022] [Accepted: 06/21/2022] [Indexed: 01/11/2023]
Abstract
Converging evidence indicates heavy metal-induced genes, transcription factors (TFs), and microRNAs (miRNAs) are critical pathological components of metabolic syndrome (MetS) and cognitive impairment. Thus, our goals are to identify the interaction of mixed heavy metals (cadmium + lead + mercury) with genes, TFs, and miRNAs involved in MetS and its components, as well as cognitive impairment development. The most commonly retrieved genes for each disease were different, but essential biological pathways such as oxidative stress, altered lipoprotein metabolism, fluid shear stress and atherosclerosis, apoptosis, the IL-6 signaling pathway, and Alzheimer's disease were highlighted. The genes CASP3, BAX, BCL2, IL6, TNF, APOE, HMOX1, and IGF were found to be mutually affected by the heavy metal mixture studied, suggesting the importance of apoptosis, inflammation, lipid, heme, and glucose metabolism in MetS and cognitive impairment, as well as the potentiality of targeting these genes in prospective therapeutic intervention for these diseases. EGR2, ATF3, and NFE2L2 were noted as the most key TFs implicated in the etiology of MetS and its components, as well as cognitive impairment. We also found six miRNAs induced by studied heavy metals were the mutual miRNAs linked to MetS, its components, and cognitive impairment. In particular, we used miRNAsong to construct and verify a miRNA sponge sequence for these miRNAs. These sponges are promising molecules for the treatment of MetS and its components, as well as cognitive impairment.
Collapse
Affiliation(s)
- Hai Duc Nguyen
- Department of Pharmacy, College of Pharmacy and Research Institute of Life and Pharmaceutical Sciences, Sunchon National University, Suncheon, 57922, Republic of Korea
| | - Min-Sun Kim
- Department of Pharmacy, College of Pharmacy and Research Institute of Life and Pharmaceutical Sciences, Sunchon National University, Suncheon, 57922, Republic of Korea.
| |
Collapse
|
23
|
Pognan F, Beilmann M, Boonen HCM, Czich A, Dear G, Hewitt P, Mow T, Oinonen T, Roth A, Steger-Hartmann T, Valentin JP, Van Goethem F, Weaver RJ, Newham P. The evolving role of investigative toxicology in the pharmaceutical industry. Nat Rev Drug Discov 2023; 22:317-335. [PMID: 36781957 PMCID: PMC9924869 DOI: 10.1038/s41573-022-00633-x] [Citation(s) in RCA: 93] [Impact Index Per Article: 46.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/16/2022] [Indexed: 02/15/2023]
Abstract
For decades, preclinical toxicology was essentially a descriptive discipline in which treatment-related effects were carefully reported and used as a basis to calculate safety margins for drug candidates. In recent years, however, technological advances have increasingly enabled researchers to gain insights into toxicity mechanisms, supporting greater understanding of species relevance and translatability to humans, prediction of safety events, mitigation of side effects and development of safety biomarkers. Consequently, investigative (or mechanistic) toxicology has been gaining momentum and is now a key capability in the pharmaceutical industry. Here, we provide an overview of the current status of the field using case studies and discuss the potential impact of ongoing technological developments, based on a survey of investigative toxicologists from 14 European-based medium-sized to large pharmaceutical companies.
Collapse
Affiliation(s)
- Francois Pognan
- Discovery and Investigative Safety, Novartis Pharma AG, Basel, Switzerland.
| | - Mario Beilmann
- Nonclinical Drug Safety Germany, Boehringer Ingelheim Pharma GmbH & Co. KG, Biberach an der Riss, Germany
| | - Harrie C M Boonen
- Drug Safety, Dept of Exploratory Toxicology, Lundbeck A/S, Valby, Denmark
| | | | - Gordon Dear
- In Vitro In Vivo Translation, GlaxoSmithKline David Jack Centre for Research, Ware, UK
| | - Philip Hewitt
- Chemical and Preclinical Safety, Merck Healthcare KGaA, Darmstadt, Germany
| | - Tomas Mow
- Safety Pharmacology and Early Toxicology, Novo Nordisk A/S, Maaloev, Denmark
| | - Teija Oinonen
- Preclinical Safety, Orion Corporation, Espoo, Finland
| | - Adrian Roth
- Pharmaceutical Research and Early Development, Roche Innovation Center Basel, Basel, Switzerland
| | | | | | - Freddy Van Goethem
- Predictive, Investigative & Translational Toxicology, Nonclinical Safety, Janssen Research & Development, Beerse, Belgium
| | - Richard J Weaver
- Innovation Life Cycle Management, Institut de Recherches Internationales Servier, Suresnes, France
| | - Peter Newham
- Clinical Pharmacology and Safety Sciences, AstraZeneca R&D, Cambridge, UK.
| |
Collapse
|
24
|
Mozzoni P, Poli D, Pinelli S, Tagliaferri S, Corradi M, Cavallo D, Ursini CL, Pigini D. Benzene Exposure and MicroRNAs Expression: In Vitro, In Vivo and Human Findings. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2023; 20:1920. [PMID: 36767288 PMCID: PMC9914606 DOI: 10.3390/ijerph20031920] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/18/2022] [Revised: 01/17/2023] [Accepted: 01/18/2023] [Indexed: 06/18/2023]
Abstract
MicroRNAs (miRNAs) are important regulators of gene expression and define part of the epigenetic signature. Their influence on human health is established and interest in them is progressively increasing. Environmental and occupational risk factors affecting human health include chemical agents. Benzene represents a pollutant of concern due to its ubiquity and because it may alter gene expression by epigenetic mechanisms, including miRNA expression changes. This review summarizes recent findings on miRNAs associated with benzene exposure considering in vivo, in vitro and human findings in order to better understand the molecular mechanisms through which benzene induces toxic effects and to evaluate whether selected miRNAs may be used as biomarkers associated with benzene exposure. Original research has been included and the study selection, data extraction and assessments agreed with PRISMA criteria. Both in vitro studies and human results showed a variation in miRNAs' expression after exposure to benzene. In vivo surveys also exhibited this trend, but they cannot be regarded as conclusive because of their small number. However, this review confirms the potential role of miRNAs as "early warning" signals in the biological response induced by exposure to benzene. The importance of identifying miRNAs' expression, which, once validated, might work as sentinel molecules to better understand the extent of the exposure to xenobiotics, is clear. The identification of miRNAs as a molecular signature associated with specific exposure would be advantageous for disease prevention and health promotion in the workplace.
Collapse
Affiliation(s)
- Paola Mozzoni
- Department of Medicine and Surgery, University of Parma, 43126 Parma, Italy
- CERT, Center of Excellent Research in Toxicology, University of Parma, 43126 Parma, Italy
| | - Diana Poli
- INAIL Research, Department of Occupational and Environmental Medicine, Epidemiology and Hygiene, Via Fontana Candida, 1, 00078 Monte Porzio Catone, Italy
| | - Silvana Pinelli
- Department of Medicine and Surgery, University of Parma, 43126 Parma, Italy
| | - Sara Tagliaferri
- Department of Medicine and Surgery, University of Parma, 43126 Parma, Italy
- CERT, Center of Excellent Research in Toxicology, University of Parma, 43126 Parma, Italy
| | - Massimo Corradi
- Department of Medicine and Surgery, University of Parma, 43126 Parma, Italy
- CERT, Center of Excellent Research in Toxicology, University of Parma, 43126 Parma, Italy
| | - Delia Cavallo
- INAIL Research, Department of Occupational and Environmental Medicine, Epidemiology and Hygiene, Via Fontana Candida, 1, 00078 Monte Porzio Catone, Italy
| | - Cinzia Lucia Ursini
- INAIL Research, Department of Occupational and Environmental Medicine, Epidemiology and Hygiene, Via Fontana Candida, 1, 00078 Monte Porzio Catone, Italy
| | - Daniela Pigini
- INAIL Research, Department of Occupational and Environmental Medicine, Epidemiology and Hygiene, Via Fontana Candida, 1, 00078 Monte Porzio Catone, Italy
| |
Collapse
|
25
|
Alharbi KS, Alshehri SM, Alenezi SK. Epigenetic Optimization in Chronic Obstructive Pulmonary Disease (COPD). TARGETING EPIGENETICS IN INFLAMMATORY LUNG DISEASES 2023:99-110. [DOI: 10.1007/978-981-99-4780-5_6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/06/2025]
|
26
|
Magnuson JT, Leads RR, McGruer V, Qian L, Tanabe P, Roberts AP, Schlenk D. Transcriptomic profiling of miR-203a inhibitor and miR-34b-injected zebrafish (Danio rerio) validates oil-induced neurological, cardiovascular and eye toxicity response pathways. AQUATIC TOXICOLOGY (AMSTERDAM, NETHERLANDS) 2023; 254:106356. [PMID: 36423467 DOI: 10.1016/j.aquatox.2022.106356] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/18/2022] [Revised: 11/15/2022] [Accepted: 11/16/2022] [Indexed: 06/16/2023]
Abstract
The global sequencing of microRNA (miRNA; miR) and integration to downstream mRNA expression profiles in early life stages (ELS) of fish following exposure to crude oil determined consistently dysregulated miRNAs regardless of the oil source or fish species. The overlay of differentially expressed miRNAs and mRNAs into in silico software determined that the key roles of these miRNAs were predicted to be involved in cardiovascular, neurological and visually-mediated pathways. Of these, altered expression of miRNAs, miR-203a and miR-34b were predicted to be primary targets of crude oil. To better characterize the effect of these miRNAs to downstream transcript changes, zebrafish embryos were microinjected at 1 h post fertilization (hpf) with either a miR-203a inhibitor or miR-34b. Since both miRs have been shown to be associated with aryl hydrocarbon receptor (AhR) function, benzo(a)pyrene (BaP), a potent AhR agonist, was used as a potential positive control. Transcriptomic profiling was conducted on injected and exposed larvae at 7 and 72 hpf, and eye morphology assessed following exposure at 72 hpf. The top predicted physiological system disease and functions between differentially expressed genes (DEGs) shared with miR-203a inhibitor-injected and miR-34b-injected embryos were involved in brain formation, and the development of the central nervous system and neurons. When DEGs of miR-203a inhibitor-injected embryos were compared with BaP-exposed DEGs, alterations in nervous system development and function, and abnormal morphology of the neurosensory retina, eye and nervous tissue were predicted, consistent with both AhR and non-AhR pathways. When assessed morphologically, the eye area of miR-203a inhibitor and miR-34b-injected and BaP-exposed embryos were significantly reduced. These results suggest that miR-203a inhibition and miR-34b overexpression contribute to neurological, cardiovascular and eye toxicity responses that are caused by oil and PAH exposure in ELS fish, and are likely mediated through both AhR and non-AhR pathways.
Collapse
Affiliation(s)
- Jason T Magnuson
- University of California, Riverside, Department of Environmental Sciences, Riverside, CA, United States of America.
| | - Rachel R Leads
- University of North Texas, Department of Biological Sciences and Advanced Environmental, Research Institute, Denton, TX, United States of America
| | - Victoria McGruer
- University of California, Riverside, Department of Environmental Sciences, Riverside, CA, United States of America
| | - Le Qian
- University of California, Riverside, Department of Environmental Sciences, Riverside, CA, United States of America
| | - Philip Tanabe
- University of California, Riverside, Department of Environmental Sciences, Riverside, CA, United States of America
| | - Aaron P Roberts
- University of North Texas, Department of Biological Sciences and Advanced Environmental, Research Institute, Denton, TX, United States of America
| | - Daniel Schlenk
- University of California, Riverside, Department of Environmental Sciences, Riverside, CA, United States of America; Institute of Environmental Health, College of Environmental and Resource Sciences, Zhejiang, University, Hangzhou, China
| |
Collapse
|
27
|
Luo X, Zhang Y, Lu C, Zhang J. Role of insulin signaling pathway in apoptosis induced by food chain delivery of nano-silver under the action of environmental factors. Comp Biochem Physiol C Toxicol Pharmacol 2022; 261:109429. [PMID: 35944823 DOI: 10.1016/j.cbpc.2022.109429] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/11/2022] [Revised: 07/28/2022] [Accepted: 08/03/2022] [Indexed: 11/28/2022]
Abstract
OBJECTIVE To investigate how the environmental factor affects the delivery of nano silver through food chain, we set up a two-stage food delivery chain model of Escherichia coli and Caenorhabditis elegans system. METHODS Through a two-stage food delivery chain model of E. coli and C. elegans, the mRNA expression levels of DAF-2, age-1, PDK-1, Akt-1 and DAF-16 in the insulin growth factor 1 signaling pathway in nematode gonad cells which occurs AgNPs induced apoptosis were evaluated and the apoptosis of gonad cells in the mutant strains of the above key genes were detected. RESULTS DAF-2, age-1, PDK-1 and Akt-1 could significantly negatively regulate the apoptosis of nematode cells induced by AgNPs, while DAF-16 could significantly promote the apoptosis induced by AgNPs. The DAF-16 up-regulated expression was a protective effect on the body and the phenomenon of DNA double-strand breaks was significantly increased. The damage effect induced by AgNPs was significantly enhanced in the presence of the environmental factor fulvic acid. CONCLUSION The damage effect induced by AgNPs after food delivery involves the regulation of the insulin growth factor 1 signaling pathway and environmental factors have a significant impact on the biological effects.
Collapse
Affiliation(s)
- Xun Luo
- School of Biological Engineering, Huainan Normal University, China.
| | - Yajun Zhang
- Key Laboratory of Industrial Dust Prevention and Control & Occupational Health and Safety, Ministry of Education, China; Medicine School, Anhui University of Science & Technology, China.
| | - Changjie Lu
- School of Biological Engineering, Huainan Normal University, China
| | - Jiaming Zhang
- School of Biological Engineering, Huainan Normal University, China
| |
Collapse
|
28
|
Ruiz-Manriquez LM, Carrasco-Morales O, Sanchez Z EA, Osorio-Perez SM, Estrada-Meza C, Pathak S, Banerjee A, Bandyopadhyay A, Duttaroy AK, Paul S. MicroRNA-mediated regulation of key signaling pathways in hepatocellular carcinoma: A mechanistic insight. Front Genet 2022; 13:910733. [PMID: 36118880 PMCID: PMC9478853 DOI: 10.3389/fgene.2022.910733] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2022] [Accepted: 08/10/2022] [Indexed: 12/17/2022] Open
Abstract
Hepatocellular carcinoma (HCC) is the most common type of primary liver cancer. The molecular pathogenesis of HCC varies due to the different etiologies and genotoxic insults. The development of HCC is characterized by complex interactions between several etiological factors that result in genetic and epigenetic changes in proto-onco and/or tumor suppressor genes. MicroRNAs (miRNAs) are short non-coding RNAs that also can act as oncomiRs or tumor suppressors regulating the expression of cancer-associated genes post-transcriptionally. Studies revealed that several microRNAs are directly or indirectly involved in cellular signaling, and dysregulation of those miRNAs in the body fluids or tissues potentially affects key signaling pathways resulting in carcinogenesis. Therefore, in this mini-review, we discussed recent progress in microRNA-mediated regulation of crucial signaling networks during HCC development, concentrating on the most relevant ones such as PI3K/Akt/mTOR, Hippo-YAP/TAZ, and Wnt/β-catenin, which might open new avenues in HCC management.
Collapse
Affiliation(s)
| | | | - E. Adrian Sanchez Z
- Tecnologico de Monterrey, School of Engineering and Sciences, Queretaro, Mexico
| | | | | | - Surajit Pathak
- Department of Medical Biotechnology, Faculty of Allied Health Sciences, Chettinad Hospital and Research Institute (CHRI), Chettinad Academy of Research and Education (CARE), Chennai, India
| | - Antara Banerjee
- Department of Medical Biotechnology, Faculty of Allied Health Sciences, Chettinad Hospital and Research Institute (CHRI), Chettinad Academy of Research and Education (CARE), Chennai, India
| | - Anindya Bandyopadhyay
- International Rice Research Institute, Manila, Philippines
- Reliance Industries Ltd., Navi Mumbai, India
| | - Asim K. Duttaroy
- Department of Nutrition, Institute of Basic Medical Sciences, Faculty of Medicine, University of Oslo, Oslo, Norway
| | - Sujay Paul
- Tecnologico de Monterrey, School of Engineering and Sciences, Queretaro, Mexico
| |
Collapse
|
29
|
Jantawongsri K, Nørregaard RD, Bach L, Dietz R, Sonne C, Jørgensen K, Lierhagen S, Ciesielski TM, Jenssen BM, Waugh CA, Eriksen R, Nowak B, Anderson K. Effects of exposure to environmentally relevant concentrations of lead (Pb) on expression of stress and immune-related genes, and microRNAs in shorthorn sculpins (Myoxocephalus scorpius). ECOTOXICOLOGY (LONDON, ENGLAND) 2022; 31:1068-1077. [PMID: 36006498 PMCID: PMC9458575 DOI: 10.1007/s10646-022-02575-x] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Accepted: 08/09/2022] [Indexed: 06/15/2023]
Abstract
Old lead-zinc (Pb-Zn) mining sites in Greenland have increased the environmental concentration of Pb in local marine organisms, including the shorthorn sculpin. Organ metal concentrations and histopathology have been used in environmental monitoring programs to evaluate metal exposure and subsequent effects in shorthorn sculpins. So far, no study has reported the impact of heavy metals on gene expression involved in metal-related stress and immune responses in sculpins. The aim of this study was to investigate the effect of exposure to environmentally relevant waterborne Pb (0.73 ± 0.35 μg/L) on hepatic gene expression of metallothionein (mt), immunoglobulin M (igm), and microRNAs (miRNAs; mir132 and mir155) associated with immune responses in the shorthorn sculpin compared to a control group. The mt and igm expression were upregulated in the Pb-exposed group compared to the control group. The transcripts of mir132 and mir155 were not different in sculpins between the Pb-exposed and control group; however, miRNA levels were significantly correlated with Pb liver concentrations. Furthermore, there was a positive correlation between liver Pb concentrations and igm, and a positive relationship between igm and mir155. The results indicate that exposure to Pb similar to those concentrations reported in in marine waters around Greenland Pb-Zn mine sites influences the mt and immune responses in shorthorn sculpins. This is the first study to identify candidate molecular markers in the shorthorn sculpins exposed to waterborne environmentally relevant Pb suggesting mt and igm as potential molecular markers of exposure to be applied in future assessments of the marine environment near Arctic mining sites.
Collapse
Affiliation(s)
- Khattapan Jantawongsri
- Institute for Marine and Antarctic Studies (IMAS), University of Tasmania, Launceston, TAS, 7250, Australia.
| | - Rasmus Dyrmose Nørregaard
- Department of Ecoscience and Arctic Research Centre (ARC), Faculty of Technical Sciences, Aarhus University, Frederiksborgvej 399, P.O. Box 358, DK-4000, Roskilde, Denmark
| | - Lis Bach
- Department of Ecoscience and Arctic Research Centre (ARC), Faculty of Technical Sciences, Aarhus University, Frederiksborgvej 399, P.O. Box 358, DK-4000, Roskilde, Denmark
| | - Rune Dietz
- Department of Ecoscience and Arctic Research Centre (ARC), Faculty of Technical Sciences, Aarhus University, Frederiksborgvej 399, P.O. Box 358, DK-4000, Roskilde, Denmark
| | - Christian Sonne
- Department of Ecoscience and Arctic Research Centre (ARC), Faculty of Technical Sciences, Aarhus University, Frederiksborgvej 399, P.O. Box 358, DK-4000, Roskilde, Denmark
| | - Kasper Jørgensen
- Den Blå Planet, National Aquarium Denmark, Jacob Fortlingsvej 1, DK-2770, Kastrup, Copenhagen, Denmark
| | - Syverin Lierhagen
- Department of Chemistry, Norwegian University of Science and Technology, NO-7491, Trondheim, Norway
| | - Tomasz Maciej Ciesielski
- Department of Biology, Norwegian University of Science and Technology, Høgskoleringen 5, NO-7491, Trondheim, Norway
| | - Bjørn Munro Jenssen
- Department of Ecoscience and Arctic Research Centre (ARC), Faculty of Technical Sciences, Aarhus University, Frederiksborgvej 399, P.O. Box 358, DK-4000, Roskilde, Denmark
- Department of Biology, Norwegian University of Science and Technology, Høgskoleringen 5, NO-7491, Trondheim, Norway
- Department of Arctic Technology, The University Centre in Svalbard, P.O. Box 156, NO-9171, Longyearbyen, Svalbard, Norway
| | - Courtney Alice Waugh
- Department of Biology, Norwegian University of Science and Technology, Høgskoleringen 5, NO-7491, Trondheim, Norway
- Faculty of Biosciences and Aquaculture, Nord University, NO-7729, Steinkjer, Norway
| | - Ruth Eriksen
- Institute for Marine and Antarctic Studies (IMAS), University of Tasmania, Launceston, TAS, 7250, Australia
- CSIRO Oceans and Atmosphere, Castray Esplanade, Battery Point, Hobart, TAS, 7004, Australia
| | - Barbara Nowak
- Institute for Marine and Antarctic Studies (IMAS), University of Tasmania, Launceston, TAS, 7250, Australia
- Department of Ecoscience and Arctic Research Centre (ARC), Faculty of Technical Sciences, Aarhus University, Frederiksborgvej 399, P.O. Box 358, DK-4000, Roskilde, Denmark
| | - Kelli Anderson
- Institute for Marine and Antarctic Studies (IMAS), University of Tasmania, Launceston, TAS, 7250, Australia
| |
Collapse
|
30
|
Balasubramanian S, Perumal E. A systematic review on fluoride-induced epigenetic toxicity in mammals. Crit Rev Toxicol 2022; 52:449-468. [PMID: 36422650 DOI: 10.1080/10408444.2022.2122771] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
Fluoride, one of the global groundwater contaminants, is ubiquitous in our day-to-day life from various natural and anthropogenic sources. Numerous in vitro, in vivo, and epidemiological studies are conducted to understand the effect of fluoride on biological systems. A low concentration of fluoride is reported to increase oral health, whereas chronic exposure to higher concentrations causes fluoride toxicity (fluorosis). It includes dental fluorosis, skeletal fluorosis, and fluoride toxicity in soft tissues. The mechanism of fluoride toxicity has been reviewed extensively. However, epigenetic regulation in fluoride toxicity has not been reviewed. This systematic review summarizes the current knowledge regarding fluoride-induced epigenetic toxicity in the in vitro, in vivo, and epidemiological studies in mammalian systems. We examined four databases for the association between epigenetics and fluoride exposure. Out of 932 articles (as of 31 March 2022), 39 met our inclusion criteria. Most of the studies focused on different genes, and overall, preliminary evidence for epigenetic regulation of fluoride toxicity was identified. We further highlight the need for epigenome studies rather than candidate genes and provide recommendations for future research. Our results indicate a correlation between fluoride exposure and epigenetic processes. Further studies are warranted to elucidate and confirm the mechanism of epigenetic alterations mediated fluoride toxicity.
Collapse
Affiliation(s)
| | - Ekambaram Perumal
- Molecular Toxicology Laboratory, Department of Biotechnology, Bharathiar University, Coimbatore, India
| |
Collapse
|
31
|
Manić L, Wallace D, Onganer PU, Taalab YM, Farooqi AA, Antonijević B, Buha Djordjevic A. Epigenetic mechanisms in metal carcinogenesis. Toxicol Rep 2022; 9:778-787. [PMID: 36561948 PMCID: PMC9764177 DOI: 10.1016/j.toxrep.2022.03.037] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2022] [Revised: 02/16/2022] [Accepted: 03/26/2022] [Indexed: 12/25/2022] Open
Abstract
Many metals exhibit genotoxic and/or carcinogenic effects. These toxic metals can be found ubiquitously - in drinking water, food, air, general use products, in everyday and occupational settings. Exposure to such carcinogenic metals can result in serious health disorders, including cancer. Arsenic, cadmium, chromium, nickel, and their compounds have already been recognized as carcinogens by the International Agency for Research on Cancer. This review summarizes a wide range of epigenetic mechanisms contributing to carcinogenesis induced by these metals, primarily including, but not limited to, DNA methylation, miRNA regulation, and histone posttranslational modifications. The mechanisms are described and discussed both from a metal-centric and a mechanism-centric standpoint. The review takes a broad perspective, putting the mechanisms in the context of real-life exposure, and aims to assist in guiding future research, particularly with respect to the assessment and control of exposure to carcinogenic metals and novel therapy development.
Collapse
Affiliation(s)
- Luka Manić
- Department of Toxicology “Akademik Danilo Soldatović”, Faculty of Pharmacy, University of Belgrade, Belgrade, Serbia
| | - David Wallace
- School of Biomedical Science, Oklahoma State University Center for Health Sciences, Tulsa, United States
| | - Pinar Uysal Onganer
- Cancer Research Group, School of Life Sciences, University of Westminster, London, UK
| | - Yasmeen M. Taalab
- Institute of Forensic and Traffic Medicine, University of Heidelberg, Voßstraße 2, 69115 Heidelberg, Germany,Forensic Medicine and Clinical Toxicology Department, Faculty of Medicine, Mansoura University, Dakahlia Governate 35516, Egypt
| | - Ammad Ahmad Farooqi
- Laboratory for Translational Oncology and Personalized Medicine, RLMC, Lahore, Pakistan
| | - Biljana Antonijević
- Department of Toxicology “Akademik Danilo Soldatović”, Faculty of Pharmacy, University of Belgrade, Belgrade, Serbia
| | - Aleksandra Buha Djordjevic
- Department of Toxicology “Akademik Danilo Soldatović”, Faculty of Pharmacy, University of Belgrade, Belgrade, Serbia,Correspondence to: Department of Toxicology “Akademik Danilo Soldatović”, Faculty of Pharmacy, University of Belgrade, Vojvode Stepe 450, 11221 Belgrade, Serbia.
| |
Collapse
|
32
|
Abstract
With the development of precision medicine, the efficiency of tumor treatment has been significantly improved. More attention has been paid to targeted therapy and immunotherapy as the key to precision treatment of cancer. Targeting epidermal growth factor receptor (EGFR) has become one of the most important targeted treatments for various cancers. Comparing with traditional chemotherapy drugs, targeting EGFR is highly selective in killing tumor cells with better safety, tolerability and less side effect. In addition, tumor immunotherapy has become the fourth largest tumor therapy after surgery, radiotherapy and chemotherapy, especially immune checkpoint inhibitors. However, these treatments still produce a certain degree of drug resistance. Non-coding RNAs (ncRNAs) were found to play a key role in carcinogenesis, treatment and regulation of the efficacy of anticancer drugs in the past few years. Therefore, in this review, we aim to summarize the targeted treatment of cancers and the functions of ncRNAs in cancer treatment.
Collapse
|
33
|
Magnuson JT, Qian L, McGruer V, Cheng V, Volz DC, Schlenk D. Relationship between miR-203a inhibition and oil-induced toxicity in early life stage zebrafish (Danio rerio). Toxicol Rep 2022; 9:373-381. [PMID: 35284238 PMCID: PMC8914477 DOI: 10.1016/j.toxrep.2022.03.006] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2021] [Revised: 01/28/2022] [Accepted: 03/02/2022] [Indexed: 11/18/2022] Open
Abstract
Dysregulation of microRNA (miRNA, miR) by environmental stressors influences the transcription of mRNA which may impair organism development and/or lead to adverse physiological outcomes. Early studies evaluating the effects of oil on developmental toxicity in early life stages of fish showed that reductions in expression of miR-203a were associated with enhanced expression of downstream mRNAs that predicted altered eye development, cardiovascular disease, and improper fin development. To better understand the effects of miR-203a inhibition as an outcome of oil-induced toxicity in early life stage (ELS) fish, embryonic zebrafish were injected with an miR-203a inhibitor or treated with 3.5 µM phenanthrene (Phe) as a positive control for morphological alterations of cardiovascular and eye development caused by oil. Embryos treated with Phe had diminished levels of miR-203a at 7 and 72 h after injection. Embryos treated with the miR-203a inhibitor and Phe exhibited a reduced heart rate by 48 h post fertilization (hpf), with an increased incidence of developmental deformities (including pericardial edema, altered eye development, and spinal deformities) and reduced caudal fin length by 72 hpf. There were significant reductions in lens and eye diameters in 120 hpf miR-203a-inhibitor and Phe-treated fish, as well as a significantly reduced number of eye saccades, determined by an optokinetic response (OKR) behavioral assay. The expression of vegfa, which is an important activator during neovascularization, was significantly upregulated in embryos receiving miR-203a inhibitor injections by 7 and 72 hpf with increased trends in vegfa expression in 72 hpf larvae treated with Phe. There were decreasing trends in crx, neurod1, and pde6h expression by 72 hpf in miR-203a inhibitor and Phe treatments, which are involved in photoreceptor function in developing eyes and regulated by miR-203a. These results suggest that an inhibition of miR-203a in ELS fish exhibits an oil-induced toxic response that is consistent with Phe treatment and specifically impacts retinal, cardiac, and fin development in ELS fish. miR-203a inhibitor-injected zebrafish exhibited an oil-induced toxic response. Inhibition of miR-203a impaired retinal, cardiac, and fin development in zebrafish. miR-203a inhibition validated previously predicted transcriptomic pathways.
Collapse
Affiliation(s)
- Jason T. Magnuson
- Department of Environmental Sciences, University of California, Riverside, CA, USA
- Corresponding author.
| | - Le Qian
- College of Sciences, China Agricultural University, Beijing, China
- College of Horticulture and Plant Protection, Henan University of Science and Technology, Luoyang, China
- Corresponding author at: College of Sciences, China Agricultural University, Beijing, China.
| | - Victoria McGruer
- Department of Environmental Sciences, University of California, Riverside, CA, USA
| | - Vanessa Cheng
- Department of Environmental Sciences, University of California, Riverside, CA, USA
| | - David C. Volz
- Department of Environmental Sciences, University of California, Riverside, CA, USA
| | - Daniel Schlenk
- Department of Environmental Sciences, University of California, Riverside, CA, USA
- Institute of Environmental Health, College of Environmental and Resource Sciences, Zhejiang University, Hangzhou 310058, China
| |
Collapse
|
34
|
Li D, Chen M, Hong H, Tong W, Ning B. Integrative approaches for studying the role of noncoding RNAs in influencing drug efficacy and toxicity. Expert Opin Drug Metab Toxicol 2022; 18:151-163. [PMID: 35296201 PMCID: PMC9117541 DOI: 10.1080/17425255.2022.2054802] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2021] [Accepted: 03/14/2022] [Indexed: 11/04/2022]
Abstract
INTRODUCTION Drug efficacy and toxicity are important factors for evaluation in drug development. Drug metabolizing enzymes and transporters (DMETs) play an essential role in drug efficacy and toxicity. Noncoding RNAs (ncRNAs) have been implicated to influence inter-individual variations in drug efficacy and safety by regulating DMETs. An efficient strategy is urgently needed to identify and functionally characterize ncRNAs that mediate drug efficacy and toxicity through regulating DMETs. AREAS COVERED We outline an integrative strategy to identify ncRNAs that modulate DMETs. We include reliable tools and databases for computational prediction of ncRNA targets with regard to their advantages and limitations. Various biochemical, molecular, and cellular assays are discussed for in vitro experimental verification of the regulatory function of ncRNAs. In vivo approaches for association of ncRNAs with drug treatment and toxicity are also reviewed. EXPERT OPINION A streamlined integration of computational prediction and wet-lab validation is important to elucidate mechanisms of ncRNAs in the regulation of DMETs related to drug efficacy and safety. Bioinformatic analyses using open-access tools and databases serve as a powerful booster for ncRNA Research in toxicology. Further refinement of computational algorithms and experimental technologies is needed to improve accuracy and efficiency in ncRNA target identification and characterization.
Collapse
Affiliation(s)
- Dongying Li
- National Center for Toxicological Research (NCTR), U.S. Food and Drug Administration (FDA), Jefferson, AR, USA
| | - Minjun Chen
- National Center for Toxicological Research (NCTR), U.S. Food and Drug Administration (FDA), Jefferson, AR, USA
| | - Huixiao Hong
- National Center for Toxicological Research (NCTR), U.S. Food and Drug Administration (FDA), Jefferson, AR, USA
| | - Weida Tong
- National Center for Toxicological Research (NCTR), U.S. Food and Drug Administration (FDA), Jefferson, AR, USA
| | - Baitang Ning
- National Center for Toxicological Research (NCTR), U.S. Food and Drug Administration (FDA), Jefferson, AR, USA
| |
Collapse
|
35
|
Nanoparticle-Induced m6A RNA Modification: Detection Methods, Mechanisms and Applications. NANOMATERIALS 2022; 12:nano12030389. [PMID: 35159736 PMCID: PMC8839700 DOI: 10.3390/nano12030389] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/24/2021] [Revised: 01/19/2022] [Accepted: 01/21/2022] [Indexed: 11/16/2022]
Abstract
With the increasing application of nanoparticles (NPs) in medical and consumer applications, it is necessary to ensure their safety. As m6A (N6-methyladenosine) RNA modification is one of the most prevalent RNA modifications involved in many diseases and essential biological processes, the relationship between nanoparticles and m6A RNA modification for the modulation of these events has attracted substantial research interest. However, there is limited knowledge regarding the relationship between nanoparticles and m6A RNA modification, but evidence is beginning to emerge. Therefore, a summary of these aspects from current research on nanoparticle-induced m6A RNA modification is timely and significant. In this review, we highlight the roles of m6A RNA modification in the bioimpacts of nanoparticles and thus elaborate on the mechanisms of nanoparticle-induced m6A RNA modification. We also summarize the dynamic regulation and biofunctions of m6A RNA modification. Moreover, we emphasize recent advances in the application perspective of nanoparticle-induced m6A RNA modification in medication and toxicity of nanoparticles to provide a potential method to facilitate the design of nanoparticles by deliberately tuning m6A RNA modification.
Collapse
|
36
|
Zhou X, Dai H, Jiang H, Rui H, Liu W, Dong Z, Zhang N, Zhao Q, Feng Z, Hu Y, Hou F, Zheng Y, Liu B. MicroRNAs: Potential mediators between particulate matter 2.5 and Th17/Treg immune disorder in primary membranous nephropathy. Front Pharmacol 2022; 13:968256. [PMID: 36210816 PMCID: PMC9532747 DOI: 10.3389/fphar.2022.968256] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2022] [Accepted: 08/29/2022] [Indexed: 11/19/2022] Open
Abstract
Primary membranous nephropathy (PMN), is an autoimmune glomerular disease and the main reason of nephrotic syndrome in adults. Studies have confirmed that the incidence of PMN increases yearly and is related to fine air pollutants particulate matter 2.5 (PM2.5) exposure. These imply that PM2.5 may be associated with exposure to PMN-specific autoantigens, such as the M-type receptor for secretory phospholipase A2 (PLA2R1). Emerging evidence indicates that Th17/Treg turns to imbalance under PM2.5 exposure, but the molecular mechanism of this process in PMN has not been elucidated. As an important indicator of immune activity in multiple diseases, Th17/Treg immune balance is sensitive to antigens and cellular microenvironment changes. These immune pathways play an essential role in the disease progression of PMN. Also, microRNAs (miRNAs) are susceptible to external environmental stimulation and play link role between the environment and immunity. The contribution of PM2.5 to PMN may induce Th17/Treg imbalance through miRNAs and then produce epigenetic affection. We summarize the pathways by which PM2.5 interferes with Th17/Treg immune balance and attempt to explore the intermediary roles of miRNAs, with a particular focus on the changes in PMN. Meanwhile, the mechanism of PM2.5 promoting PLA2R1 exposure is discussed. This review aims to clarify the potential mechanism of PM2.5 on the pathogenesis and progression of PMN and provide new insights for the prevention and treatment of the disease.
Collapse
Affiliation(s)
- Xiaoshan Zhou
- Beijing Hospital of Traditional Chinese Medicine, Capital Medical University, Beijing, China.,School of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing, China
| | - Haoran Dai
- Shunyi Branch, Beijing Hospital of Traditional Chinese Medicine, Beijing, China
| | - Hanxue Jiang
- Beijing Hospital of Traditional Chinese Medicine, Capital Medical University, Beijing, China
| | - Hongliang Rui
- Beijing Hospital of Traditional Chinese Medicine, Capital Medical University, Beijing, China.,Beijing Institute of Chinese Medicine, Beijing, China
| | - Wenbin Liu
- School of Life Sciences, Beijing University of Chinese Medicine, Beijing, China
| | - Zhaocheng Dong
- School of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing, China
| | - Na Zhang
- School of Traditional Chinese Medicine, Capital Medical University, Beijing, China
| | - Qihan Zhao
- Beijing Hospital of Traditional Chinese Medicine, Capital Medical University, Beijing, China.,School of Traditional Chinese Medicine, Capital Medical University, Beijing, China
| | - Zhendong Feng
- Pinggu Hospital, Beijing Hospital of Traditional Chinese Medicine, Beijing, China
| | - Yuehong Hu
- Beijing Hospital of Traditional Chinese Medicine, Capital Medical University, Beijing, China.,School of Traditional Chinese Medicine, Capital Medical University, Beijing, China
| | - Fanyu Hou
- School of Traditional Chinese Medicine, Changchun University of Chinese Medicine, Changchun, China
| | - Yang Zheng
- Beijing Hospital of Traditional Chinese Medicine, Capital Medical University, Beijing, China
| | - Baoli Liu
- Beijing Hospital of Traditional Chinese Medicine, Capital Medical University, Beijing, China.,Shunyi Branch, Beijing Hospital of Traditional Chinese Medicine, Beijing, China
| |
Collapse
|
37
|
Bukowska B, Sicińska P. Influence of Benzo(a)pyrene on Different Epigenetic Processes. Int J Mol Sci 2021; 22:ijms222413453. [PMID: 34948252 PMCID: PMC8707600 DOI: 10.3390/ijms222413453] [Citation(s) in RCA: 51] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2021] [Revised: 11/28/2021] [Accepted: 12/13/2021] [Indexed: 12/13/2022] Open
Abstract
Epigenetic changes constitute one of the processes that is involved in the mechanisms of carcinogenicity. They include dysregulation of DNA methylation processes, disruption of post-translational patterns of histone modifications, and changes in the composition and/or organization of chromatin. Benzo(a)pyrene (BaP) influences DNA methylation and, depending on its concentrations, as well as the type of cell, tissue and organism it causes hypomethylation or hypermethylation. Moreover, the exposure to polyaromatic hydrocarbons (PAHs), including BaP in tobacco smoke results in an altered methylation status of the offsprings. Researches have indicated a potential relationship between toxicity of BaP and deregulation of the biotin homeostasis pathway that plays an important role in the process of carcinogenesis. Animal studies have shown that parental-induced BaP toxicity can be passed on to the F1 generation as studied on marine medaka (Oryzias melastigma), and the underlying mechanism is likely related to a disturbance in the circadian rhythm. In addition, ancestral exposure of fish to BaP may cause intergenerational osteotoxicity in non-exposed F3 offsprings. Epidemiological studies of lung cancer have indicated that exposure to BaP is associated with changes in methylation levels at 15 CpG; therefore, changes in DNA methylation may be considered as potential mediators of BaP-induced lung cancer. The mechanism of epigenetic changes induced by BaP are mainly due to the formation of CpG-BPDE adducts, between metabolite of BaP-BPDE and CpG, which leads to changes in the level of 5-methylcytosine. BaP also acts through inhibition of DNA methyltransferases activity, as well as by increasing histone deacetylases HDACs, i.e., HDAC2 and HDAC3 activity. The aim of this review is to discuss the mechanism of the epigenetic action of BaP on the basis of the latest publications.
Collapse
|
38
|
Chai Y, Liu S, Xie M. Interaction among long non-coding RNA, micro-RNA and mRNA in glioma. IBRAIN 2021; 7:141-145. [PMID: 37786911 PMCID: PMC10528991 DOI: 10.1002/j.2769-2795.2021.tb00076.x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/10/2021] [Revised: 04/25/2021] [Accepted: 06/24/2021] [Indexed: 10/04/2023]
Abstract
With the rapid development and wide application of gene sequencing, biotechnology, and informatics about cancer, it has been found that the main causes of malignant gliomas occurrence not only consist of abnormal mutations of protein-coding genes but also abnormal expressions of non-coding RNA (ncRNA). In this review, we summarize the interaction and mechanism between lncRNA-miRNA-mRNA and gliomas in occurrence, development, aggression, and migration in depth.
Collapse
Affiliation(s)
- Yang Chai
- Department of NeurosurgeryAffiliated Hospital of Zunyi Medical UniversityZunyiGuizhouChina
| | - Shun Liu
- Department of NeurosurgeryAffiliated Hospital of Zunyi Medical UniversityZunyiGuizhouChina
| | | |
Collapse
|
39
|
Qi R, Han X, Wang J, Qiu X, Wang Q, Yang F. MicroRNA-489-3p promotes adipogenesis by targeting the Postn gene in 3T3-L1 preadipocytes. Life Sci 2021; 278:119620. [PMID: 34004251 DOI: 10.1016/j.lfs.2021.119620] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2021] [Revised: 05/07/2021] [Accepted: 05/10/2021] [Indexed: 12/11/2022]
Abstract
AIMS Accumulating evidence indicates that a number of microRNAs (miRNAs) serve as essential regulators during adipogenesis and adipolysis in humans and animals and play critical roles in the development of fat tissue. In this study, we aimed to determine the functional role and underlying regulatory mechanism of microRNA-489-3p (miR-489) in adipocytes. MATERIALS AND METHODS The expression patterns of miR-489 in mice were measured by qRT-PCR. Overexpression and knockdown of miR-489 by mimic and inhibitor transfections in 3T3-L1 preadipocytes revealed the regulatory effect of miR-489 on cellular proliferation and differentiation and energy turnover. Furthermore, RNA-seq, bioinformatics prediction, and dual luciferase reporter assays were used to identify the direct target of miR-489. KEY FINDINGS The results showed that miR-489 was highly expressed in the visceral fat tissue of adult mice, and obese mice exhibited higher levels of miR-489 than normal mice. Overexpression of miR-489 suppressed proliferation but promoted adipogenic differentiation and lipid accumulation in the cells. Mitochondrial oxidation also fluctuated in the cells due to the high expression of miR-489. Notably, knockdown of miR-489 did not have a strong opposing effect on the cells. Periostin (Postn) was identified as a direct target gene for miR-489, and silencing the Postn gene similarly stimulated adipogenesis and differentiation of adipocytes. SIGNIFICANCE miR-489 provides a strong driving force for adipogenesis metabolism and adipocyte differentiation by targeting the Postn gene. This result may contribute to the treatment of obesity.
Collapse
Affiliation(s)
- Renli Qi
- Chongqing Academy of Animal Science, Rongchang 402460, China; Chongqing Key Laboratory of Pig Industry Sciences, Rongchang 402460, China
| | - Xu Han
- ChaoYang Teachers College, Liaoning 122000, China
| | - Jing Wang
- Chongqing Academy of Animal Science, Rongchang 402460, China
| | - Xiaoyu Qiu
- Chongqing Academy of Animal Science, Rongchang 402460, China
| | - Qi Wang
- Chongqing Academy of Animal Science, Rongchang 402460, China
| | - Feiyun Yang
- Chongqing Academy of Animal Science, Rongchang 402460, China; Chongqing Key Laboratory of Pig Industry Sciences, Rongchang 402460, China.
| |
Collapse
|
40
|
Dasgupta S, Dunham CL, Truong L, Simonich MT, Sullivan CM, Tanguay RL. Phenotypically Anchored mRNA and miRNA Expression Profiling in Zebrafish Reveals Flame Retardant Chemical Toxicity Networks. Front Cell Dev Biol 2021; 9:663032. [PMID: 33898466 PMCID: PMC8063052 DOI: 10.3389/fcell.2021.663032] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2021] [Accepted: 03/03/2021] [Indexed: 01/24/2023] Open
Abstract
The ubiquitous use of flame retardant chemicals (FRCs) in the manufacture of many consumer products leads to inevitable environmental releases and human exposures. Studying toxic effects of FRCs as a group is challenging since they widely differ in physicochemical properties. We previously used zebrafish as a model to screen 61 representative FRCs and showed that many induced behavioral and teratogenic effects, with aryl phosphates identified as the most active. In this study, we selected 10 FRCs belonging to diverse physicochemical classes and zebrafish toxicity profiles to identify the gene expression responses following exposures. For each FRC, we executed paired mRNA-micro-RNA (miR) sequencing, which enabled us to study mRNA expression patterns and investigate the role of miRs as posttranscriptional regulators of gene expression. We found widespread disruption of mRNA and miR expression across several FRCs. Neurodevelopment was a key disrupted biological process across multiple FRCs and was corroborated by behavioral deficits. Several mRNAs (e.g., osbpl2a) and miRs (e.g., mir-125b-5p), showed differential expression common to multiple FRCs (10 and 7 respectively). These common miRs were also predicted to regulate a network of differentially expressed genes with diverse functions, including apoptosis, neurodevelopment, lipid regulation and inflammation. Commonly disrupted transcription factors (TFs) such as retinoic acid receptor, retinoid X receptor, and vitamin D regulator were predicted to regulate a wide network of differentially expressed mRNAs across a majority of the FRCs. Many of the differential mRNA-TF and mRNA-miR pairs were predicted to play important roles in development as well as cancer signaling. Specific comparisons between TBBPA and its derivative TBBPA-DBPE showed contrasting gene expression patterns that corroborated with their phenotypic profiles. The newer generation FRCs such as IPP and TCEP produced distinct gene expression changes compared to the legacy FRC BDE-47. Our study is the first to establish a mRNA-miR-TF regulatory network across a large group of structurally diverse FRCs and diverse phenotypic responses. The purpose was to discover common and unique biological targets that will help us understand mechanisms of action for these important chemicals and establish this approach as an important tool for better understanding toxic effects of environmental contaminants.
Collapse
Affiliation(s)
- Subham Dasgupta
- The Sinnhuber Aquatic Research Laboratory, Department of Environmental and Molecular Toxicology, Oregon State University, Corvallis, OR, United States
| | - Cheryl L. Dunham
- The Sinnhuber Aquatic Research Laboratory, Department of Environmental and Molecular Toxicology, Oregon State University, Corvallis, OR, United States
| | - Lisa Truong
- The Sinnhuber Aquatic Research Laboratory, Department of Environmental and Molecular Toxicology, Oregon State University, Corvallis, OR, United States
| | - Michael T. Simonich
- The Sinnhuber Aquatic Research Laboratory, Department of Environmental and Molecular Toxicology, Oregon State University, Corvallis, OR, United States
| | - Christopher M. Sullivan
- Center for Genome Research and Computing, Oregon State University, Corvallis, OR, United States
| | - Robyn L. Tanguay
- The Sinnhuber Aquatic Research Laboratory, Department of Environmental and Molecular Toxicology, Oregon State University, Corvallis, OR, United States
| |
Collapse
|
41
|
Lorenzetti S, Plösch T, Teller IC. Antioxidative Molecules in Human Milk and Environmental Contaminants. Antioxidants (Basel) 2021; 10:550. [PMID: 33916168 PMCID: PMC8065843 DOI: 10.3390/antiox10040550] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2021] [Revised: 03/23/2021] [Accepted: 03/26/2021] [Indexed: 12/21/2022] Open
Abstract
Breastfeeding provides overall beneficial health to the mother-child dyad and is universally recognized as the preferred feeding mode for infants up to 6-months and beyond. Human milk provides immuno-protection and supplies nutrients and bioactive compounds whose concentrations vary with lactation stage. Environmental and dietary factors potentially lead to excessive chemical exposure in critical windows of development such as neonatal life, including lactation. This review discusses current knowledge on these environmental and dietary contaminants and summarizes the known effects of these chemicals in human milk, taking into account the protective presence of antioxidative molecules. Particular attention is given to short- and long-term effects of these contaminants, considering their role as endocrine disruptors and potential epigenetic modulators. Finally, we identify knowledge gaps and indicate potential future research directions.
Collapse
Affiliation(s)
- Stefano Lorenzetti
- Department of Food Safety, Nutrition and Veterinary Public Health, Istituto Superiore di Sanità (ISS), 00161 Rome, Italy;
| | - Torsten Plösch
- Perinatal Neurobiology, Department of Human Medicine, School of Medicine and Health Sciences, Carl von Ossietzky University Oldenburg, 26129 Oldenburg, Germany;
- Department of Obstetrics and Gynaecology, University Medical Center Groningen, University of Groningen, 9713 GZ Groningen, The Netherlands
| | | |
Collapse
|
42
|
Ochoa-Martínez ÁC, Varela-Silva JA, Orta-García ST, Carrizales-Yáñez L, Pérez-Maldonado IN. Lead (Pb) exposure is associated with changes in the expression levels of circulating miRNAS (miR-155, miR-126) in Mexican women. ENVIRONMENTAL TOXICOLOGY AND PHARMACOLOGY 2021; 83:103598. [PMID: 33516900 DOI: 10.1016/j.etap.2021.103598] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/23/2020] [Revised: 01/18/2021] [Accepted: 01/20/2021] [Indexed: 06/12/2023]
Abstract
The environmental contamination with lead (Pb) is considered a critical issue worldwide. Therefore, this study aimed to evaluate the expression levels of circulating miRNAs (miR-155, miR-126, and miR-145) in Mexican women exposed to Pb. Blood lead levels (BLL) were assessed in enrolled women (n = 190) using an atomic absorption method. Also, serum miRNAs expression levels were quantified through a real-time PCR assay. A mean BLL of 10.5 ± 4.50 μg/dL was detected. Overexpression of miR-155 was detected in highly exposed women. Besides, a significant simple positive relationship (p < 0.05) was found between BLL and serum miR-155 expression levels. Additionally, a significant inverse correlation (p < 0.05) was determined between BLL and serum miR-126 expression levels, as downregulation of miR-126 expression levels was observed in highly exposed women. The findings in this study are the concern, as epigenetic changes detected may represent a connection between health illnesses and Pb exposure.
Collapse
Affiliation(s)
- Ángeles C Ochoa-Martínez
- Laboratorio de Toxicología Molecular, Centro de Investigación Aplicada en Ambiente y Salud (CIAAS), Coordinación para la Innovación y Aplicación de la Ciencia y la Tecnología (CIACYT), Universidad Autónoma de San Luis Potosí, San Luis Potosí, Mexico; Facultad de Medicina, Universidad Autónoma de San Luis Potosí, San Luis Potosí, Mexico
| | - José A Varela-Silva
- Facultad de Enfermería, Universidad Autónoma de Zacatecas, Zacatecas, Zacatecas, Mexico
| | - Sandra Teresa Orta-García
- Laboratorio de Toxicología Molecular, Centro de Investigación Aplicada en Ambiente y Salud (CIAAS), Coordinación para la Innovación y Aplicación de la Ciencia y la Tecnología (CIACYT), Universidad Autónoma de San Luis Potosí, San Luis Potosí, Mexico; Facultad de Medicina, Universidad Autónoma de San Luis Potosí, San Luis Potosí, Mexico; Facultad de Enfermería, Universidad Autónoma de Zacatecas, Zacatecas, Zacatecas, Mexico
| | - Leticia Carrizales-Yáñez
- Laboratorio de Toxicología Molecular, Centro de Investigación Aplicada en Ambiente y Salud (CIAAS), Coordinación para la Innovación y Aplicación de la Ciencia y la Tecnología (CIACYT), Universidad Autónoma de San Luis Potosí, San Luis Potosí, Mexico; Facultad de Medicina, Universidad Autónoma de San Luis Potosí, San Luis Potosí, Mexico
| | - Iván N Pérez-Maldonado
- Laboratorio de Toxicología Molecular, Centro de Investigación Aplicada en Ambiente y Salud (CIAAS), Coordinación para la Innovación y Aplicación de la Ciencia y la Tecnología (CIACYT), Universidad Autónoma de San Luis Potosí, San Luis Potosí, Mexico; Facultad de Medicina, Universidad Autónoma de San Luis Potosí, San Luis Potosí, Mexico.
| |
Collapse
|
43
|
Schätzl T, Kaiser L, Deigner HP. Facioscapulohumeral muscular dystrophy: genetics, gene activation and downstream signalling with regard to recent therapeutic approaches: an update. Orphanet J Rare Dis 2021; 16:129. [PMID: 33712050 PMCID: PMC7953708 DOI: 10.1186/s13023-021-01760-1] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2020] [Accepted: 02/25/2021] [Indexed: 12/12/2022] Open
Abstract
Whilst a disease-modifying treatment for Facioscapulohumeral muscular dystrophy (FSHD) does not exist currently, recent advances in complex molecular pathophysiology studies of FSHD have led to possible therapeutic approaches for its targeted treatment. Although the underlying genetics of FSHD have been researched extensively, there remains an incomplete understanding of the pathophysiology of FSHD in relation to the molecules leading to DUX4 gene activation and the downstream gene targets of DUX4 that cause its toxic effects. In the context of the local proximity of chromosome 4q to the nuclear envelope, a contraction of the D4Z4 macrosatellite induces lower methylation levels, enabling the ectopic expression of DUX4. This disrupts numerous signalling pathways that mostly result in cell death, detrimentally affecting skeletal muscle in affected individuals. In this regard different options are currently explored either to suppress the transcription of DUX4 gene, inhibiting DUX4 protein from its toxic effects, or to alleviate the symptoms triggered by its numerous targets.
Collapse
Affiliation(s)
- Teresa Schätzl
- Institute of Precision Medicine, Medical and Life Sciences Faculty, Furtwangen University, Jakob-Kienzle-Straße 17, 78054, Villingen-Schwenningen, Germany
| | - Lars Kaiser
- Institute of Precision Medicine, Medical and Life Sciences Faculty, Furtwangen University, Jakob-Kienzle-Straße 17, 78054, Villingen-Schwenningen, Germany
- Institute of Pharmaceutical Sciences, University of Freiburg, Albertstraße 25, 79104, Freiburg i. Br., Germany
| | - Hans-Peter Deigner
- Institute of Precision Medicine, Medical and Life Sciences Faculty, Furtwangen University, Jakob-Kienzle-Straße 17, 78054, Villingen-Schwenningen, Germany.
- EXIM Department, Fraunhofer Institute IZI, Leipzig, Schillingallee 68, 18057, Rostock, Germany.
- Faculty of Science, Tuebingen University, Auf der Morgenstelle 8, 72076, Tübingen, Germany.
| |
Collapse
|
44
|
Fragou D, Chao MR, Hu CW, Nikolaou K, Kovatsi L. Global DNA methylation levels in white blood cells of patients with chronic heroin use disorder. A prospective study. Toxicol Rep 2021; 8:337-342. [PMID: 33643851 PMCID: PMC7892979 DOI: 10.1016/j.toxrep.2021.02.006] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2020] [Revised: 02/02/2021] [Accepted: 02/04/2021] [Indexed: 12/19/2022] Open
Abstract
Opioid abstinence for 21 days does not affect global DNA methylation levels in white blood cells. All participants in the study completed a 21-day “dry” detoxification program. Findings do not rule out the possibility of site-specific methylation changes.
Background Increasing scientific evidence shows the significant role of epigenetic mechanisms in drug use disorder, abstinence and relapse. Studies on human subjects are limited compared to those on animals, for various reasons such as poly-substance abuse, high drop-out rate and technical difficulties. Objectives Our goal was to evaluate whether a monitored abstinence period of 21 days could induce changes in global DNA methylation in chronic heroin users. Method In the current study, we present data on global DNA methylation on a set of 18 male patients with chronic heroin use disorder, carefully selected based on inclusion and exclusion criteria, who were hospitalized and closely monitored during a 21-day detoxification program, one of the few where no opioid agonist is administered. The participants were sampled twice, once upon enrolment to the program and once upon completion. Results According to our results, no difference in global DNA methylation was detected between samples collected upon enrolment and samples collected upon completion of the program. Conclusion The findings of this study do not rule out the possibility that the 21-day abstinence period was not long enough to observe changes in global DNA methylation, or that abstinence induced site-specific methylation changes (but not global changes), that certainly merit further evaluation.
Collapse
Affiliation(s)
- Domniki Fragou
- Laboratory of Forensic Medicine and Toxicology, Department of Medicine, Aristotle University of Thessaloniki, Greece
| | - Mu-Rong Chao
- Department of Occupational Safety and Health, Chung Shan Medical University, Taichung 402, Taiwan
| | - Chiung-Wen Hu
- Department of Public Health, Chung Shan Medical University, Taichung 402, Taiwan
| | - Kakia Nikolaou
- Addiction Department IANOS, General Hospital of Thessaloniki 'G. Papanikolaou'-Psychiatric Hospital of Thessaloniki, Thessaloniki, Greece
| | - Leda Kovatsi
- Laboratory of Forensic Medicine and Toxicology, Department of Medicine, Aristotle University of Thessaloniki, Greece
| |
Collapse
|
45
|
Zhuang W, Camacho L, Silva CS, Hong H. Reproducibility challenges for biomarker detection with uncertain but informative experimental data. Biomark Med 2020; 14:1255-1263. [PMID: 33021389 DOI: 10.2217/bmm-2019-0599] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023] Open
Abstract
Recent studies have revealed that circulating microRNAs are promising biomarkers for detecting toxicity or disease. Quantitative real-time polymerase chain reaction (qPCR) is often used to measure the levels of microRNAs. Besides complete and certain data, investigators inevitably have observed technically incomplete or uncertain qPCR data. Investigators usually set incomplete observations equal to the maximum quality number of qPCR cycles, apply the complete-observation method, or choose not to analyze targets with incomplete observations. Using biostatistical knowledge and published studies, we show that three commonly applied methods tend to cause biased inference and decrease reproducibility in biomarker detection. More efforts are needed to address the challenges to identify and detect reliable, novel circulating biomarkers in liquid biopsies.
Collapse
Affiliation(s)
- Wei Zhuang
- Division of Bioinformatics & Biostatistics, NCTR, US FDA, Jefferson, AR 72079, USA
| | - Luísa Camacho
- Division of Biochemical Toxicology, NCTR, US FDA, Jefferson, AR 72079, USA
| | - Camila S Silva
- Division of Biochemical Toxicology, NCTR, US FDA, Jefferson, AR 72079, USA
| | - Huixiao Hong
- Division of Bioinformatics & Biostatistics, NCTR, US FDA, Jefferson, AR 72079, USA
| |
Collapse
|
46
|
Ashrafizadeh M, Zarrabi A, Hashemipour M, Vosough M, Najafi M, Shahinozzaman M, Hushmandi K, Khan H, Mirzaei H. Sensing the scent of death: Modulation of microRNAs by Curcumin in gastrointestinal cancers. Pharmacol Res 2020; 160:105199. [DOI: 10.1016/j.phrs.2020.105199] [Citation(s) in RCA: 40] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/07/2020] [Revised: 09/06/2020] [Accepted: 09/07/2020] [Indexed: 02/06/2023]
|