1
|
Otoh EF, Odey MO, Martin OI, Agurokpon DC. In silico engineering of graphitic carbon nitride nanostructures through germanium mono-doping and codoping with transition metals (Ni, Pd, Pt) as sensors for diazinon organophosphorus pesticide pollutants. BMC Chem 2025; 19:78. [PMID: 40121507 PMCID: PMC11929304 DOI: 10.1186/s13065-025-01436-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2023] [Accepted: 02/25/2025] [Indexed: 03/25/2025] Open
Abstract
The extensive use of pesticides has raised concerns about environmental contamination, which poses potential health risks to humans and aquatic life. Hence, the need for a healthy and friendly ecosystem initiated this study, which was modeled through profound density functional theory (DFT) at the B3LYP-D3(BJ)/def2svp level of theory to gain insights into the electronic characteristics of germanium-doped graphitic carbon nitride (Ge@C3N4) engineered with nickel group transition metals (Ni, Pt, and Pd) as sensors for diazinon (DZN), an organophosphorus pesticide pollutant. To effectively sense diazinon, this research employed a variety of methodologies, beginning with the analysis of electronic properties, intermolecular investigations, adsorption studies, and sensor mechanisms. These detailed assessments revealed insightful results, as clearly indicated by their narrow energy gap and other electronic properties. Noncovalent interactions characterized by van der Waals forces were revealed predominantly by quantum atoms in molecules (QTAIM) and noncovalent interaction (NCI) analyses. Furthermore, the results of the adsorption studies, which measured the strength of the interaction between the pesticide molecules and the nanostructures, revealed favorable results characterized by negative adsorption energies of - 1.613, - 1.613, and - 1.599 eV for DZN_Ge@C3N4, DZN_Ni_Ge@C3N4, and DZN_Pd_Ge@C3N4, respectively. The simulated mechanism through which diazinon is sensed revealed favorable results, as observed by the negative Fermi energy and fraction of electron transfer (∆N), as well as a high dipole moment. This study also revealed that the codoping influenced the behavior of the systems, revealing that DZN_Ni_Ge@C3N4 was the best sensing system because of its strongest adsorption (- 1.613 eV), highest dipole moment (8.348 D), most negative Fermi energy (- 1.300 eV), lowest work function (1.300 eV), and good ∆N (- 1.558) values. This study, therefore, proposes these nanostructures for further in vitro studies seeking to sense diazinon and other pesticides to maintain healthy ecosystems.
Collapse
Affiliation(s)
- Ene F Otoh
- Department of Biochemistry, Federal University Wukari, Wukari, Nigeria
| | - Michael O Odey
- Department of Biochemistry, University of Calabar, Calabar, Nigeria
| | - Osinde I Martin
- Department of Chemistry, University of Nebraska-Lincoln, Lincoln, NE, USA
| | - Daniel C Agurokpon
- Department of Microbiology, Cross River University of Technology, Calabar, Nigeria.
| |
Collapse
|
2
|
Lee R, Lee WY, Kim DW, Park HJ. Diazinon induces testicular dysfunction and testicular cell damage through increased reactive oxygen species production in mouse. Cell Death Discov 2025; 11:113. [PMID: 40118815 PMCID: PMC11928526 DOI: 10.1038/s41420-025-02399-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2024] [Revised: 02/18/2025] [Accepted: 03/13/2025] [Indexed: 03/24/2025] Open
Abstract
Diazinon (DZN) is an organophosphorus compound used as a pesticide and is an environmentally hazardous substance to which the human body is commonly exposed. In this study, we evaluated the toxicity of DZN to the male reproductive in mice. For in vivo experiments, mice were intraperitoneally injected with 30 mg/kg DZN for 35 days. Microscopic analysis revealed that the diameter of the spermatogonia in the testes decreased, and the number of differentiating germ cells decreased. Sperm motility in mice injected with DZN was reduced, and slow motility was observed. The rate of neck deformation in the sperm increased in DZN-treated mice. The number of germ and Sertoli cells decreased, and the levels of serum testosterone and steroidogenesis markers also decreased in DZN-treated mice. In addition, DZN-induced oxidative stress in the testes. For in vitro experiments, DZN was toxic to GC-1 spermatogonia and TM4 and TM3 cells derived from mouse testes. DZN generated reactive oxygen species (ROS) and induced mitochondrial dysfunction, suggesting a molecular mechanism underlying ROS-induced cell death. DZN upregulated BAD, cleaved-caspase 3, and phospho-p53 at the cellular level. We also found that this toxicity could be mitigated by N-acetyl-l-cysteine, an ROS inhibitor.
Collapse
Affiliation(s)
- Ran Lee
- Department of Livestock, Korea National University of Agriculture and Fisheries, Jeonbuk, Korea
- Department of Animal Biotechnology, College of Life Science, Sangji University, Wonju-si, Korea
| | - Won-Young Lee
- Department of Livestock, Korea National University of Agriculture and Fisheries, Jeonbuk, Korea
| | - Dong-Wook Kim
- Department of Livestock, Korea National University of Agriculture and Fisheries, Jeonbuk, Korea
| | - Hyun-Jung Park
- Department of Animal Biotechnology, College of Life Science, Sangji University, Wonju-si, Korea.
| |
Collapse
|
3
|
Onukak CE, Femi-Akinlosotu OM, Obasa AA, Folarin OR, Ajibade TO, Igado OO, Esan OO, Oyagbemi TO, Adeogun AV, Oyagbemi AA, Ola-Davies OE, Omobowale TO, Olopade JO, Oguntibeju OO, Yakubu MA. Epigallocatechin -3- gallate mitigates diazinon neurotoxicity via suppression of pro-inflammatory genes and upregulation of antioxidant pathways. BMC Neurosci 2025; 26:22. [PMID: 40065246 PMCID: PMC11892277 DOI: 10.1186/s12868-025-00943-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2024] [Accepted: 03/06/2025] [Indexed: 03/14/2025] Open
Abstract
Diazinon is a commonly used organophosphate (OP) insecticide especially in developing countries for the control of insect pests, however, exposure to its toxic impact especially in humans and other non-target species remains an important public health concern. The study aimed to investigate the effect of epigallocatechin -3- gallate (EGCG), abundant in green tea plants on neurobehavioural, biochemical, and pathological changes in the brain of male Wistar rats following exposure to diazinon toxicity. Sixty adult male Wistar rats were acclimatized for seven days and subsequently randomly assigned into six treatment groups as follows: Group I: Control group (0.2 mL distilled water); Group II: Diazinon at 3 mg/kg (1% LD50); Group III: Diazinon (3 mg/kg) + EGCG (50 mg/kg, ~ 2% of LD50); Group IV: Diazinon (3 mg/kg) + EGCG (100 mg/kg, ~ 5% of LD50); Group V: EGCG (50 mg/kg) and Group VI: EGCG (100 mg/kg). All treatments were administered orally once daily for 14 days. Neurobehavioural studies, biomarkers of oxidative stress, histology, immunohistochemistry, and quantitative polymerase chain reaction (RT qPCR) were performed. Diazinon alone impaired recognition memory, increased oxidative stress markers and altered antioxidant defense in the brain. It upregulated TNF-α and IL-6 genes and repressed GPx 4 gene expressions. It was also associated with increased GFAP, Tau, and α-SN immunoreactivity. Microscopic examination revealed loss of Purkinje and hippocampal cells in brain. Co-treatment with EGCG however improved cognition, lowered oxidative stress markers, improved antioxidant status and suppressed TNF-α and IL-6. In conclusion, findings from this study demonstrated that EGCG offered protection against diazinon-induced neurotoxicity. Hence, natural sources of epigallocatechin -3- gallate such as fruits and vegetables could offer immense benefits by protecting against oxidative stress and inflammation in neurodegenerative disease conditions.Clinical trial number Not applicable.
Collapse
Affiliation(s)
- Charles Etang Onukak
- Department of Veterinary Physiology and Biochemistry, Faculty of Veterinary Medicine, University of Ibadan, Ibadan, Nigeria
| | - Omowumi Moromoke Femi-Akinlosotu
- Developmental Neurobiology and Forensic Anatomy Unit, Department of Anatomy, College of Medicine, University of Ibadan, Ibadan, Nigeria
| | - Adedunsola Adewunmi Obasa
- Neuroscience Unit, Department of Veterinary Anatomy, Faculty of Veterinary Medicine, University of Ibadan, Ibadan, Nigeria
| | - Oluwabusayo Racheal Folarin
- Department of Biomedical Laboratory Science, College of Medicine, University of Ibadan, Ibadan, Oyo State, Nigeria
| | - Temitayo Olabisi Ajibade
- Department of Veterinary Physiology and Biochemistry, Faculty of Veterinary Medicine, University of Ibadan, Ibadan, Nigeria
| | - Olumayowa Olawumi Igado
- Neuroscience Unit, Department of Veterinary Anatomy, Faculty of Veterinary Medicine, University of Ibadan, Ibadan, Nigeria.
| | - Oluwaseun Olarenwaju Esan
- Department of Veterinary Medicine, Faculty of Veterinary Medicine, University of Ibadan, Ibadan, Nigeria
| | | | - Adewunmi Victoria Adeogun
- Department of Veterinary Physiology and Biochemistry, Faculty of Veterinary Medicine, University of Ibadan, Ibadan, Nigeria
| | - Ademola Adetokunbo Oyagbemi
- Department of Veterinary Physiology and Biochemistry, Faculty of Veterinary Medicine, University of Ibadan, Ibadan, Nigeria
| | - Olufunke Eunice Ola-Davies
- Department of Veterinary Physiology and Biochemistry, Faculty of Veterinary Medicine, University of Ibadan, Ibadan, Nigeria
| | - Temidayo Olutayo Omobowale
- Department of Veterinary Medicine, Faculty of Veterinary Medicine, University of Ibadan, Ibadan, Nigeria
| | - James Olukayode Olopade
- Neuroscience Unit, Department of Veterinary Anatomy, Faculty of Veterinary Medicine, University of Ibadan, Ibadan, Nigeria
| | - Oluwafemi Omoniyi Oguntibeju
- Phytomedicine and Phytochemistry Group, Department of Biomedical Sciences, Faculty of Health and Wellness Sciences, Cape Peninsula University of Technology, Bellville, South Africa
| | - Momoh Audu Yakubu
- Department of Environmental & Interdisciplinary Sciences, College of Science, Engineering & Technology, Vascular Biology Unit, Center for Cardiovascular Diseases, COPHS, Texas Southern University, Houston, TX, USA
| |
Collapse
|
4
|
Gad ES, Aldossary SA, El-Ansary MR, Abd El-Galil MM, Abd-El-Hamid AH, El-Ansary AR, Hassan NF. Cilostazol counteracts mitochondrial dysfunction in hepatic encephalopathy rat model: Insights into the role of cAMP/AMPK/SIRT1/ PINK-1/parkin hub and p-CREB /BDNF/ TrkB neuroprotective trajectory. Eur J Pharmacol 2025; 987:177194. [PMID: 39667427 DOI: 10.1016/j.ejphar.2024.177194] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2024] [Revised: 11/17/2024] [Accepted: 12/09/2024] [Indexed: 12/14/2024]
Abstract
A devasting stage of chronic hepatic dysfunction is strictly correlated with neurological impairment, signifying hepatic encephalopathy (HE). HE is a multifactorial condition; therefore, hyperammonemia, oxidative stress, neuroinflammation, and mitochondrial dysfunction interplay in HE's progressive development. Cilostazol (Cilo) has shown promising neuroprotective and hepatoprotective effectiveness in different neuronal and hepatic disorders; however, its efficiency against HE hasn't yet been explored. This study aimed to investigate the protective role of Cilo against thioacetamide (TAA)-induced HE in rats targeting mitochondrial dysfunction via modulation of Adenosine monophosphate-activated protein kinase (AMPK)/Silent information regulator 1 (SIRT1) dependent pathways. Rats were allocated into three groups: the normal control group, the TAA group received (100 mg/kg, three times per week, for six weeks) to induce HE, and the Cilo group received (Cilo 100 mg/kg/day for six weeks, oral gavage) concurrently with TAA. Cilo counteracted HE indicated in the enhancement of cognitive impairment and the motor performance of rats (P < 0.0001), modulation AMPK/SIRT1signaling pathway causing reduction of NF-kB p65 (P < 0.0001) evoked inflammation along with histopathological alterations and glial fibrillary acidic protein (GFAP) immunoreactivity (P < 0.0001), restoration nuclear factor E2-related factor 2 (Nrf2) (P < 0.0001) antioxidant effects, reduction of Bax and elevation of Bcl2 immunoreactivity (P < 0.0001) in addition to boosting mitochondrial biogenesis by upregulation of PTEN-induced kinase-1 (PINK-1)/Parkin (P < 0.0001)and restoration of Brain-derived neurotrophic factor (BDNF) (P = 0.0002)/tropomyosin-related kinase B (TrkB) (P < 0.0001)/cAMP response element-binding (CREB) (P < 0.0001) neuroprotective axis. Collectively, Cilo activates the SIRT1 trajectory to abridge mitochondrial dysfunction invigorated in the HE rat model via restoration of mitochondrial hemostasis.
Collapse
Affiliation(s)
- Enas S Gad
- Department of Pharmaceutical Sciences, College of Clinical Pharmacy, King Faisal University, AL Ahsa, Saudi Arabia; Department of Pharmacology and Toxicology, Faculty of Pharmacy, Sinai University, Kantara Branch, Ismailia, Egypt
| | - Sara A Aldossary
- Department of Pharmaceutical Sciences, College of Clinical Pharmacy, King Faisal University, AL Ahsa, Saudi Arabia
| | - Mona R El-Ansary
- Department of Biochemistry, Faculty of Pharmacy, Modern University for Technology and Information, Cairo, Egypt
| | - Mona M Abd El-Galil
- Department of Histology and Cell Biology, Faculty of Medicine for Girls, Al-Azhar University, Cairo, Egypt
| | - Asmaa Hassan Abd-El-Hamid
- Department of Histology and Cell Biology, Faculty of Medicine for Girls, Al-Azhar University, Cairo, Egypt
| | - Amira R El-Ansary
- Department of Internal Medicine, Faculty of Medicine, Misr University for Science and Technology, Cairo, Egypt
| | - Noha F Hassan
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Modern University for Technology and Information, Cairo, Egypt.
| |
Collapse
|
5
|
Dhakshinamoorthy V, Vishali SPR, Elumalai S, Perumal E. Acute exposure to environmentally relevant concentrations of pharmaceutical pollutants induces neurobehavioral toxicity in zebrafish ( Danio rerio). Drug Chem Toxicol 2025; 48:37-50. [PMID: 39072487 DOI: 10.1080/01480545.2024.2382451] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2024] [Revised: 07/09/2024] [Accepted: 07/15/2024] [Indexed: 07/30/2024]
Abstract
Pharmaceutical waste from point and non-point sources enters, persists, or disseminates in the environment and is known as environmentally persistent pharmaceutical pollutants. Understanding the impacts of pharmaceutical pollutants on the environment and health is essential. This study investigates the behavioral impacts of pharmaceutical pollutants on aquatic organisms and delineates the possible nexus of oxidative stress. The male zebrafish were exposed to four major representative pharmaceutical pollutants, viz., acetaminophen, carbamazepine, metformin, and trimethoprim at environmentally relevant concentrations individually as well as in a mixture for seven days. Substantial alterations in social interaction, aggressive nature, novel tank exploration, and light and dark zone preferences were recorded and the degree varied to different pharmaceutical pollutants. The activity of oxidative stress markers, superoxide dismutase, glutathione-S-transferase, and catalase, was found to be suppressed to 66-20%, 42-25%, and 59-20% respectively with the elevated malondialdehyde generation (180-260%) compared to control. The activity level of acetylcholine esterase was found to be increased to 200-500% across all treatment groups. Despite the synergistic impacts of pharmaceutical pollutants on the whole system that could not be ascertained, this comprehensive study highlights their toxicity nature to induce neurobehavioral toxicity in zebrafish through oxidative stress mechanisms and altered cholinergic systems.
Collapse
Affiliation(s)
- Vasanth Dhakshinamoorthy
- Department of Nanobiotechnology, Molecular Environmental Toxicology Laboratory, PSG Institute of Advanced Studies, Coimbatore, India
- PG Research Department of Biotechnology, Microbiology & Bioinformatics, National College (Autonomous), Trichy, India
| | - S P R Vishali
- PG Research Department of Biotechnology, Microbiology & Bioinformatics, National College (Autonomous), Trichy, India
| | - Sriramakrishnan Elumalai
- PG Research Department of Biotechnology, Microbiology & Bioinformatics, National College (Autonomous), Trichy, India
| | - Ekambaram Perumal
- Department of Biotechnology, Molecular Toxicology Laboratory, Bharathiar University, Coimbatore, India
| |
Collapse
|
6
|
El-Reda GA, Mahmoud UT, Ali FAZ, Abdel-Maksoud FM, Mahmoud MAM, El-Hossary FM. Neurobehavioral toxicity of Cold plasma activated water following oral gavage in mice. Neurotoxicology 2024; 105:45-57. [PMID: 39216604 DOI: 10.1016/j.neuro.2024.08.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2024] [Revised: 08/14/2024] [Accepted: 08/27/2024] [Indexed: 09/04/2024]
Abstract
Cold plasma-activated water (PAW) is a novel technology that was recently used in biomedical research; Despite its potential, PAW's safety remains inadequately assessed. The study explores the impact of PAW on behavioral responses and brain tissue histopathology in mice. Ten-week-old female albino mice were divided into three groups each containing 10 mice (5 replicates, 2 mice/cage) and received either distilled water (DW), or distilled water exposed to cold atmospheric plasma (CAP) for 3 min (PAW-3), or 15 min (PAW-15) by oral gavage in a dose of 200 μL/mice (3 times/week) for four weeks. PAW exhibited altered physicochemical properties compared to DW. Mice exposed to PAW demonstrated reduced burrowing activity, marble burying ability, and novel object recognition compared to controls, indicating potential neurobehavioral alterations. PAW-treated groups displayed notable histological lesions in brain tissues, including nerve cell necrosis, vascular congestion, and Purkinje cell degeneration, confirming neurotoxic effects. Positive reactions for NF-κB and iNOS in brain tissues of PAW-treated mice corroborated the histopathological findings, suggesting neuroinflammation and oxidative stress. The study highlights the need for further investigation into PAW's safety profile and optimal treatment protocols to mitigate potential neurobehavioral toxicity in biomedical research.
Collapse
Affiliation(s)
- Ghada Abd El-Reda
- Physics Department, Faculty of Science, Assiut University, Assiut 71516, Egypt; Physics Department, Faculty of Science, Sohag University, Sohag 82524, Egypt
| | - Usama T Mahmoud
- Department of Animal, poultry and aquatic life behavior and management, Faculty of Veterinary Medicine, Assiut University, Assiut 71526, Egypt
| | - Fatma Abo Zakaib Ali
- Department of Pathology and Clinical Pathology, Faculty of Veterinary Medicine, Sohag University, Sohag 82524, Egypt
| | - Fatma M Abdel-Maksoud
- Department of Anatomy and Embryology, Faculty of Veterinary Medicine, Assiut University, Assiut 71526, Egypt.
| | - Manal A M Mahmoud
- Department of Animal Hygiene and environmental pollution, Faculty of Veterinary Medicine, Assiut University, Assiut 71526, Egypt
| | - F M El-Hossary
- Physics Department, Faculty of Science, Sohag University, Sohag 82524, Egypt
| |
Collapse
|
7
|
Li J, Sun Y, Bi H. Exploring molecular mechanisms of diazinon toxicity in HT22 hippocampal neurons through integrated miRNA and mRNA profiling. Comput Biol Med 2024; 182:109091. [PMID: 39241324 DOI: 10.1016/j.compbiomed.2024.109091] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2024] [Revised: 08/08/2024] [Accepted: 08/29/2024] [Indexed: 09/09/2024]
Abstract
Diazinon (DZN), a persistent organophosphate insecticide, has been associated with neurotoxic effects, particularly in the hippocampus. However, the specific molecular mechanisms of DZN-induced hippocampal toxicity remain unknown. In this study, we analyzed the mRNA and miRNA expression patterns of HT22 cells following exposure to DZN (125 μM), and the Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) enrichment analyses were conducted subsequently. The integration of miRNA sequencing (miRNA-seq) and mRNA sequencing (mRNA-seq) data identified 33 differentially expressed miRNAs (DEMIs, 15 up-regulated and 18 down-regulated) and 271 differentially expressed mRNAs (DEMs, 69 up-regulated and 202 down-regulated) targeted by the DEMIs. Moreover, the 3 most central mRNAs (ITGAV, FN1, and EGFR) and 7 associated miRNAs (mmu-miR-700-5p, mmu-miR-26a-2-3p, mmu-miR-452-3p, mmu-miR-25-3p, mmu-miR-582-5p, mmu-miR-467a-5p, and mmu-miR-467b-5p) were screened and validated using quantitative real-time PCR. Furthermore, the GO analysis revealed that the identified DEMs were enriched in biological adhesion extracellular matrix, and growth factor binding, while the KEGG analysis suggested that the enriched DEMs were involved in ECM-receptor interaction, mTOR signaling pathway, MAPK signaling pathway, and AMPK signaling pathway. Our results may aid in elucidating the underlying mechanisms associated with DZN-induced hippocampal toxicity and provide valuable insights into the pathogenesis of neurotoxicity triggered by other organophosphorus pesticides.
Collapse
Affiliation(s)
- Jianan Li
- Department of Occupational and Environmental Health, College of Public Health, Xuzhou Medical University, 209 Tongshan Road, Yun Long District, Xuzhou, 221000, China
| | - Yan Sun
- Department of Biostatistics, College of Public Health, Guilin Medical University, 1 Zhiyuan Road, Lin Gui District, Guilin, 541001, China
| | - Haoran Bi
- Department of Biostatistics, College of Public Health, Xuzhou Medical University, 209 Tongshan Road, Yun Long District, Xuzhou, 221000, China.
| |
Collapse
|
8
|
Hassan NF, El-Ansary MR, El-Ansary AR, El-Saied MA, Zaki OS. Unveiling the protective potential of mirabegron against thioacetamide-induced hepatic encephalopathy in rats: Insights into cAMP/PPAR-γ/p-ERK1/2/p S536 NF-κB p 65 and p-CREB/BDNF/TrkB in parallel with oxidative and apoptotic trajectories. Biochem Pharmacol 2024; 229:116504. [PMID: 39179118 DOI: 10.1016/j.bcp.2024.116504] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2024] [Revised: 08/12/2024] [Accepted: 08/20/2024] [Indexed: 08/26/2024]
Abstract
Hepatic encephalopathy (HE) is one of the most prevalent and severe hepatic and brain disorders in which escalation of the oxidative, inflammatory and apoptotic trajectories pathologically connects acute liver injury with neurological impairment. Mirabegron (Mira) is a beta3 adrenergic receptor agonist with proven antioxidant and anti-inflammatory activities. The current research pointed to exploring Mira's hepato-and neuroprotective impacts against thioacetamide (TAA)-induced HE in rats. Rats were distributed into three experimental groups: the normal control group, the TAA group, received TAA (200 mg/kg/day for three consecutive days) and the Mira-treated group received Mira (10 mg/kg/day; oral gavage) for 15 consecutive days and intoxicated with TAA from the 13th to the 15th day of the experimental period. Mira counteracted hyperammonemia, enhanced rats' locomotor capability and motor coordination. It attenuated hepatic/neurological injuries by its antioxidant, anti-apoptotic as well as anti-inflammatory potentials. Mira predominantly targeted cyclic adenosine monophosphate (cAMP)/phosphorylated extracellular signal-regulated kinase (p-Erk1/2)/peroxisome proliferator-activated receptor gamma (PPARγ) dependent pathways via downregulation of p S536-nuclear factor kappa B p65 (p S536 NF-κB p 65)/tumor necrosis alpha (TNF-α) axis. Meanwhile, it attenuated nuclear factor erythroid 2-related factor (Nrf2) depletion in parallel with restoring of the neuroprotective defensive pathway by upregulation of cerebral cAMP/PPAR-γ/p-ERK1/2 and p-CREB/BDNF/TrkB besides reduction of GFAP immunoreactivity. Mira showed anti-apoptotic activity through inhibition of Bax immunoreactivity and elevation of Bcl2. To summarize, Mira exhibited a hepato-and neuroprotective effect against TAA-induced HE in rats via shielding antioxidant defense and mitigation of the pathological inflammatory and apoptotic axis besides upregulation of neuroprotective signaling pathways.
Collapse
Affiliation(s)
- Noha F Hassan
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Modern University for Technology and Information, Cairo, Egypt
| | - Mona R El-Ansary
- Department of Biochemistry, Faculty of Pharmacy, Modern University for Technology and Information, Cairo, Egypt
| | - Amira R El-Ansary
- Department of Internal Medicine, Faculty of Medicine, Misr University for Science and Technology, Giza, Egypt
| | - Mohamed A El-Saied
- Department of Pathology, Faculty of Veterinary Medicine, Cairo University, Giza, Egypt
| | - Omnia S Zaki
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Modern University for Technology and Information, Cairo, Egypt.
| |
Collapse
|
9
|
Delavar A, Anbarkeh FR, Baradaran R, Arab Z, Moghaddam SHR, Hosseini M, Nikravesh MR, Nejat SS, Jalali M. The protective effect of methanolic extract of Verbascum cheiranthifolium and Biebersteinia multifida DC on hippocampus damage induced by diazinon in male Wistar rats: An experimental study. J Chem Neuroanat 2024; 137:102398. [PMID: 38342332 DOI: 10.1016/j.jchemneu.2024.102398] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2023] [Revised: 02/07/2024] [Accepted: 02/07/2024] [Indexed: 02/13/2024]
Abstract
Diazinon (DZN) an organophosphate (OP), with the most important mechanism of action of DZN being induction of oxidative stress (OS) and inhibition of the enzyme acetylcholinesterase (AChE). Verbascum cheiranthifolium (VER) and Biebersteinia multifida (BM) belong to the Scrophulariaceae and Biebersteiniaceae family respectively. These plants are widely used in Iranian traditional medicine due to their beneficial effects. Thus, this research aimed to appraise the protective effects of the methanolic extract of the VER and BM on changes in the level of expression of α7 and α4 subunits of nicotinic acetylcholine receptors (nAChRs) in hippocampus (HPC) of DZN-treated rats. In this research, 36 male Wistar rats were used and randomly divided into six groups: Control, DZN (40 mg/kg), VER (1 g/kg), DZN+VER (40 mg/kg+1 g/kg), BM (150 mg/kg), and DZN+BM (40 mg/kg+150 mg/kg). At the end of treatment periods, the animals of all groups underwent the Morris water maze (MWM) test. The rats were anesthetized, and blood sampling was performed. Eventually, the brain was removed for histological study and evaluation of OS parameters. The results indicated that DZN increased the extent of expression of nAChRs in the HPC and significantly inhibited cholinesterase (ChEs) activity plus OS parameters. Also, in MWM, the time to find the platform was significantly longer in the DZN group, while the time and the distance in the probe test were lower than in the control groups. VER and BM extract in the treatment groups simultaneously improved the extent of expression of nAChRs, ChEs activity, as well as the parameters of OS and spatial memory significantly. In conclusion, our results support the neuroprotective properties of VER and BM extract versus DZN in rats. Accordingly, the extracts of VER and BM may be useful as an approach for the treatment of learning disorders and memory enhancement.
Collapse
Affiliation(s)
- Amir Delavar
- Department of Tissue Engineering and Applied Cell Sciences, School of Advanced Technologies in Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Fatemeh Rahimi Anbarkeh
- Department of Basic Medical Sciences, Neyshabur University of Medical Sciences, Neyshabur, Iran
| | - Raheleh Baradaran
- Department of Basic Sciences, Faculty of Medicine, Gonabad University of Medical Sciences, Gonabad, Iran
| | - Zohreh Arab
- Neurocognitive Research Center and Department of Physiology, School of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | | | - Mahmoud Hosseini
- Neurocognitive Research Center and Department of Physiology, School of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Mohammad Reza Nikravesh
- Department of Anatomy and Cell Biology, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Shahin Saeidi Nejat
- School of Persian and Complementary Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Mehdi Jalali
- Department of Anatomy and Cell Biology, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran.
| |
Collapse
|
10
|
Afshari S, Sarailoo M, Asghariazar V, Safarzadeh E, Dadkhah M. Persistent diazinon induced neurotoxicity: The effect on inhibitory avoidance memory performance, amyloid precursor proteins, and TNF-α levels in the prefrontal cortex of rats. Hum Exp Toxicol 2024; 43:9603271241235408. [PMID: 38472141 DOI: 10.1177/09603271241235408] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/14/2024]
Abstract
INTRODUCTION Organophosphate pesticides (Ops) like diazinon (DZN) have well-known neurotoxic effects and low-level chronic exposure has been linked to detrimental neurobehavioral impairments and memory deficits. However, it's not entirely clear how DZN-induced biological changes, particularly in the prefrontal cortex (PFC) contribute to these effects. The purpose of this study is to investigate the impact of DZN exposure on inhibitory avoidance (IA) memory function, amyloid precursor expression (APP), and proinflammatory tumor necrosis factor-α (TNF-α) levels in the rat cortex. MATERIALS AND METHODS Rats were divided into 4 groups and recived 2 mg/kg DZN for 5-days or 12-weeks and two control groups recived the same volume of vehicle. IA memory was assesed using the shuttle box apparatus. Rats were sacrificed and the prefrontal cortex PFC were removed. Real-time PCR and Western blotting were used to messure TNF-α, and amyloid protein precursors gene expression and protein levels. RESULTS Our findings indicated that DZN caused body weight loss and a notable decline in performance on the IA memory. Additionally, 5-days exposure increased APP and APLP2 protein levels in the PFC, while 12-weeks exposure decreased these levels. Furthermore, expression of APP and APLP2 gens were decreased in PFC. TNF-α levels increased as a result of 5-days exposure to DZN, but these levels dropped to normal after 12-weeks administration, and this observation was significant. CONCLUSION Taken together, exposure to low doses of DZN leads to disturbances in IA memory performance and also alternations in amyloid beta precursors that can be related to increased risk of Alzheimer's disease.
Collapse
Affiliation(s)
- Salva Afshari
- Students Research Committee, Pharmacy School, Ardabil University of Medical Sciences, Ardabil, Iran
| | - Mehdi Sarailoo
- Students Research Committee, School of Public Health, Ardabil University of Medical Sciences, Ardabil, Iran
| | - Vahid Asghariazar
- Cancer Immunology and Immunotherapy Research Center, Ardabil University of Medical Sciences, Ardabil, Iran
- Deputy of Research & Technology, Ardabil University of Medical Sciences, Ardabil, Iran
| | - Elham Safarzadeh
- Cancer Immunology and Immunotherapy Research Center, Ardabil University of Medical Sciences, Ardabil, Iran
- Department of Microbiology, Parasitology, and Immunology, Ardabil University of Medical Sciences, Ardabil, Iran
| | - Masoomeh Dadkhah
- Pharmaceutical Sciences Research Center, Ardabil University of Medical Sciences, Ardabil, Iran
- School of Pharmacy, Ardabil University of Medical Sciences, Ardabil, Iran
| |
Collapse
|
11
|
Mostafalou S, Abdollahi M. The susceptibility of humans to neurodegenerative and neurodevelopmental toxicities caused by organophosphorus pesticides. Arch Toxicol 2023; 97:3037-3060. [PMID: 37787774 DOI: 10.1007/s00204-023-03604-2] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2023] [Accepted: 09/12/2023] [Indexed: 10/04/2023]
Abstract
The toxicology field is concerned with the impact of organophosphorus (OP) compounds on human health. These compounds have been linked to an increased risk of neurological disorders, including neurodegenerative and neurodevelopmental diseases. This article aims to review studies on the role of OP compounds in developing these neurological disorders and explore how genetic variations can affect susceptibility to the neurotoxicity of these pesticides. Studies have shown that exposure to OP compounds can lead to the development of various neurological disorders, such as Alzheimer's disease (AD), Parkinson's disease (PD), attention deficit hyperactivity disorder (ADHD), autism, intellectual disability, and other developmental neurotoxicities. Apart from inhibiting the cholinesterase enzyme, OP compounds are believed to cause other pathological mechanisms at both the extracellular level (cholinergic, serotonergic, dopaminergic, glutamatergic, and GABAergic synapses) and the intracellular level (oxidative stress, mitochondrial dysfunction, inflammation, autophagy, and apoptosis) that contribute to these disorders. Specific genetic polymorphisms, including PON1, ABCB1, NOS, DRD4, GST, CYP, and APOE, have increased the risk of developing OP-related neurological disorders.
Collapse
Affiliation(s)
- Sara Mostafalou
- Department of Pharmacology & Toxicology, School of Pharmacy, Ardabil University of Medical Sciences, Ardabil, Iran
| | - Mohammad Abdollahi
- Department of Pharmacology & Toxicology, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
12
|
Esmailpour F, Karimani A, Heidarpour M, Moghaddam Jafari A. Protective effects of Biebersteinia multifida on sub-chronic toxicity of DZN in male Wistar rats: biochemical, hematological, and oxidative stress indices. Drug Chem Toxicol 2023; 46:1203-1211. [PMID: 36322408 DOI: 10.1080/01480545.2022.2141774] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2022] [Revised: 09/14/2022] [Accepted: 09/15/2022] [Indexed: 11/07/2022]
Abstract
The protective effect of Biebersteinia Multifida on diazinon-induced toxicity in male Wistar rats was investigated over 8 weeks. Impacts of diazinon (10 mg/kg daily), Biebersteinia Multifida (500 mg/kg daily), and coadministration of them on oxidative stress parameters besides hematological and biochemical indices were assessed in various groups. The gas chromatography-mass spectrometry analysis was performed to identify the antioxidant components of plant extract by comparing the mass spectra and retention indices with those given in the literature. Pseudocholinesterase level demonstrated a significant attenuation in the Biebersteinia Multifida+diazinon-treated group in comparison to the diazinon group at the end of the 8th week. Statistical significant differences in hematological and biochemical indices were detectable when the diazinon group was compared to Biebersteinia Multifida+diazinon-treated rats. While diazinon destroyed hepatic and renal functions, Biebersteinia Multifida protected the liver and kidney from diazinon toxic effects by normalizing related function indices at the end of the 8th week. By diminishing malondialdehyde and enhancing the ferric-reducing power, Biebersteinia Multifida minimized the hazardous effect of diazinon-induced oxidative stress. Following these results, the beneficial effects of Biebersteinia Multifida in reducing the toxicity of diazinon should be taken into consideration.
Collapse
Affiliation(s)
- Fatemeh Esmailpour
- Department of Pharmacodynamics and Toxicology, School of Veterinary Medicine, Ferdowsi University of Mashhad, Mashhad, Iran
| | - Asieh Karimani
- Department of Pharmacodynamics and Toxicology, School of Veterinary Medicine, Ferdowsi University of Mashhad, Mashhad, Iran
| | - Mohammad Heidarpour
- Department of Clinical Sciences, School of Veterinary Medicine, Ferdowsi University of Mashhad, Mashhad, Iran
| | - Amir Moghaddam Jafari
- Department of Pharmacodynamics and Toxicology, School of Veterinary Medicine, Ferdowsi University of Mashhad, Mashhad, Iran
| |
Collapse
|
13
|
Jo D, Arjunan A, Choi S, Jung YS, Park J, Jo J, Kim OY, Song J. Oligonol ameliorates liver function and brain function in the 5 × FAD mouse model: transcriptional and cellular analysis. Food Funct 2023; 14:9650-9670. [PMID: 37843873 DOI: 10.1039/d3fo03451h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/17/2023]
Abstract
Alzheimer's disease (AD) is a common neurodegenerative disease worldwide and is accompanied by memory deficits, personality changes, anxiety, depression, and social difficulties. For treatment of AD, many researchers have attempted to find medicinal resources with high effectiveness and without side effects. Oligonol is a low molecular weight polypeptide derived from lychee fruit extract. We investigated the effects of oligonol in 5 × FAD transgenic AD mice, which developed severe amyloid pathology, through behavioral tests (Barnes maze, marble burying, and nestle shredding) and molecular experiments. Oligonol treatment attenuated blood glucose levels and increased the antioxidant response in the livers of 5 × FAD mice. Moreover, the behavioral score data showed improvements in anxiety, depressive behavior, and cognitive impairment following a 2-month course of orally administered oligonol. Oligonol treatment not only altered the circulating levels of cytokines and adipokines in 5 × FAD mice, but also significantly enhanced the mRNA and protein levels of antioxidant enzymes and synaptic plasticity in the brain cortex and hippocampus. Therefore, we highlight the therapeutic potential of oligonol to attenuate neuropsychiatric problems and improve memory deficits in the early stage of AD.
Collapse
Affiliation(s)
- Danbi Jo
- Department of Anatomy, Chonnam National University Medical School, Seoyangro 264, Hwasun 58128, Republic of Korea.
- Biomedical Science Graduate Program (BMSGP), Chonnam National University, Seoyangro 264, Hwasun 58128, Republic of Korea
| | - Archana Arjunan
- Department of Anatomy, Chonnam National University Medical School, Seoyangro 264, Hwasun 58128, Republic of Korea.
| | - Seoyoon Choi
- Department of Anatomy, Chonnam National University Medical School, Seoyangro 264, Hwasun 58128, Republic of Korea.
- Biomedical Science Graduate Program (BMSGP), Chonnam National University, Seoyangro 264, Hwasun 58128, Republic of Korea
| | - Yoon Seok Jung
- Department of Anatomy, Chonnam National University Medical School, Seoyangro 264, Hwasun 58128, Republic of Korea.
| | - Jihyun Park
- Department of Food Science and Nutrition, Dong-A University, Nakdong-daero 550 beon-gil, Saha-gu, Busan, 49315, Republic of Korea.
- Department of Health Sciences, Graduate School of Dong-A University, Nakdong-daero 550 beon-gil, Saha-gu, Busan, 49315, Republic of Korea
| | - Jihoon Jo
- Department of Biomedical Science, Chonnam National University Medical School, Seoyangro 264, Hwasun 58128, Republic of Korea.
| | - Oh Yoen Kim
- Department of Food Science and Nutrition, Dong-A University, Nakdong-daero 550 beon-gil, Saha-gu, Busan, 49315, Republic of Korea.
- Department of Health Sciences, Graduate School of Dong-A University, Nakdong-daero 550 beon-gil, Saha-gu, Busan, 49315, Republic of Korea
| | - Juhyun Song
- Department of Anatomy, Chonnam National University Medical School, Seoyangro 264, Hwasun 58128, Republic of Korea.
- Biomedical Science Graduate Program (BMSGP), Chonnam National University, Seoyangro 264, Hwasun 58128, Republic of Korea
| |
Collapse
|
14
|
Wu Y, Song J, Zhang Q, Yan S, Sun X, Yi W, Pan R, Cheng J, Xu Z, Su H. Association between organophosphorus pesticide exposure and depression risk in adults: A cross-sectional study with NHANES data. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2023; 316:120445. [PMID: 36265728 DOI: 10.1016/j.envpol.2022.120445] [Citation(s) in RCA: 26] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/12/2022] [Revised: 10/12/2022] [Accepted: 10/13/2022] [Indexed: 06/16/2023]
Abstract
Organophosphorus pesticides (OPPs) are widely used pesticides, and previous studies showed that OPPs can increase the risk of central nervous system disorders (e.g., Parkinson's and Alzheimer's disease). However, few studies have comprehensively explored their association with depression in general adults. We analyzed data from 5206 participants aged 20 years or more based on four National Health and Nutrition Examination Survey (NHANES) cycles. OPPs exposure was estimated using measures of urinary concentrations for six OPPs metabolites. Survey-weighted generalized linear regression model (SWGLM) was used to explore the association of OPPs metabolites with depression. Subgroup analyses were performed by age (≦60 years and >60 years) and gender. The weighted quantile sum (WQS) regression model was used to explore the overall association of six OPPs metabolites with depression. In addition, The Bayesian kernel machine regression (BKMR) model was applied to investigate the interaction and joint effects of multiple OPPs metabolites with depression. The SWGLM showed that dimethyl phosphate (DMP) and dimethyl thiophosphate (DMTP), whether taken as continuous or quartile variables, had a positive correlation with depression. Diethyl phosphate (DEP) and dimethyl dithiophosphate (DMDTP) in the highest quartile were positively associated with depression compared to the lowest quartile. In subgroup analysis, we found that the effects of the above chemicals on depression existed in the male and young middle-aged population, while DMP was present in the female. There was a significant combined overall effect of six OPPs metabolites with depression [OR = 1.232, 95%CI: (1.011, 1.504)] in WQS. Furthermore, the BKMR model also showed a positive trend in the overall effect of six OPPs metabolites with depression. In conclusion, our results suggest that exposure to OPPs may increase the risk of depression in US adults. Men and young and middle-aged populations are more vulnerable to OPPs and the mixture of OPPs metabolites may induce depression.
Collapse
Affiliation(s)
- Yudong Wu
- Department of Epidemiology and Health Statistics, School of Public Health, Anhui Medical University, Hefei, Anhui, 230032, China; Anhui Province Key Laboratory of Major Autoimmune Diseases, Hefei, Anhui, 230032, China
| | - Jian Song
- Department of Epidemiology and Health Statistics, School of Public Health, Anhui Medical University, Hefei, Anhui, 230032, China; Anhui Province Key Laboratory of Major Autoimmune Diseases, Hefei, Anhui, 230032, China
| | - Qin Zhang
- Department of Epidemiology and Health Statistics, School of Public Health, Anhui Medical University, Hefei, Anhui, 230032, China; Anhui Province Key Laboratory of Major Autoimmune Diseases, Hefei, Anhui, 230032, China
| | - Shuangshuang Yan
- Department of Epidemiology and Health Statistics, School of Public Health, Anhui Medical University, Hefei, Anhui, 230032, China; Anhui Province Key Laboratory of Major Autoimmune Diseases, Hefei, Anhui, 230032, China
| | - Xiaoni Sun
- Department of Epidemiology and Health Statistics, School of Public Health, Anhui Medical University, Hefei, Anhui, 230032, China; Anhui Province Key Laboratory of Major Autoimmune Diseases, Hefei, Anhui, 230032, China
| | - Weizhuo Yi
- Department of Epidemiology and Health Statistics, School of Public Health, Anhui Medical University, Hefei, Anhui, 230032, China; Anhui Province Key Laboratory of Major Autoimmune Diseases, Hefei, Anhui, 230032, China
| | - Rubing Pan
- Department of Epidemiology and Health Statistics, School of Public Health, Anhui Medical University, Hefei, Anhui, 230032, China; Anhui Province Key Laboratory of Major Autoimmune Diseases, Hefei, Anhui, 230032, China
| | - Jian Cheng
- Department of Epidemiology and Health Statistics, School of Public Health, Anhui Medical University, Hefei, Anhui, 230032, China; Anhui Province Key Laboratory of Major Autoimmune Diseases, Hefei, Anhui, 230032, China
| | - Zhiwei Xu
- School of Public Health, Faculty of Medicine, University of Queensland, 288 Herston Road, Herston, QLD, 4006, Australia
| | - Hong Su
- Department of Epidemiology and Health Statistics, School of Public Health, Anhui Medical University, Hefei, Anhui, 230032, China; Anhui Province Key Laboratory of Major Autoimmune Diseases, Hefei, Anhui, 230032, China.
| |
Collapse
|
15
|
Patwa J, Thakur A, Flora SJS. Alpha Lipoic Acid and Monoisoamyl-DMSA Combined Treatment Ameliorates Copper-Induced Neurobehavioral Deficits, Oxidative Stress, and Inflammation. TOXICS 2022; 10:718. [PMID: 36548551 PMCID: PMC9785765 DOI: 10.3390/toxics10120718] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/30/2022] [Revised: 11/18/2022] [Accepted: 11/20/2022] [Indexed: 06/17/2023]
Abstract
Copper (Cu), being an essential trace metal, plays several roles in biological processes, though exposure to Cu can be potentially toxic to the brain and a few other soft organs. In the present study, we investigated the effects of the combined administration of monoisoamyl 2, 3-dimercaptosuccinic acid (MiADMSA), which is a new chelator, and alpha lipoic acid (ALA) and an antioxidant that is made naturally in the body and is also found in foods, against Cu-induced oxidative stress in rats. Rats were exposed to 20 mg/kg copper sulfate for 16 weeks once a day via the oral route. After 16 weeks of exposure, animals were divided into different sub-groups. Group I was divided into three subgroups: Group IA, control; Group IB, MiADMSA (75 mg/kg, oral); Group IC, ALA (75 mg/kg, oral), while Group II was divided into four subgroups: Group IIA, Cu pre-exposed; Group IIB, Cu+ MiADMSA; Group IIC, Cu+ ALA; Group IID, Cu+ ALA+ MiADMSA. Exposure to Cu led to significant neurobehavioral abnormalities; treatment with MiADMSA, and in particular MiADMSA + ALA, significantly ameliorated the neurobehavioral parameters and restored the memory deficits in rats. Oxidative stress variables (ROS, nitrite, TBARS, SOD, catalase) and inflammatory markers (TNF-α, and IL-1β), which were altered on Cu exposed rats, also responded favorably to ALA+ MiADMSA combined treatment. Thus, combined administration of MiADMSA and ALA might be a better treatment strategy than monotherapy with MiADMSA or ALA against Cu-induced neurotoxicity, particularly in reducing oxidative stress, neurobehavioral abnormalities, and inflammatory markers.
Collapse
Affiliation(s)
| | | | - Swaran Jeet Singh Flora
- Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research (NIPER-R), Lucknow 226002, India
| |
Collapse
|
16
|
Molecular and Cellular Interactions in Pathogenesis of Sporadic Parkinson Disease. Int J Mol Sci 2022; 23:ijms232113043. [PMID: 36361826 PMCID: PMC9657547 DOI: 10.3390/ijms232113043] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2022] [Revised: 10/16/2022] [Accepted: 10/25/2022] [Indexed: 11/23/2022] Open
Abstract
An increasing number of the population all around the world suffer from age-associated neurodegenerative diseases including Parkinson’s disease (PD). This disorder presents different signs of genetic, epigenetic and environmental origin, and molecular, cellular and intracellular dysfunction. At the molecular level, α-synuclein (αSyn) was identified as the principal molecule constituting the Lewy bodies (LB). The gut microbiota participates in the pathogenesis of PD and may contribute to the loss of dopaminergic neurons through mitochondrial dysfunction. The most important pathogenetic link is an imbalance of Ca2+ ions, which is associated with redox imbalance in the cells and increased generation of reactive oxygen species (ROS). In this review, genetic, epigenetic and environmental factors that cause these disorders and their cause-and-effect relationships are considered. As a constituent of environmental factors, the example of organophosphates (OPs) is also reviewed. The role of endothelial damage in the pathogenesis of PD is discussed, and a ‘triple hit hypothesis’ is proposed as a modification of Braak’s dual hit one. In the absence of effective therapies for neurodegenerative diseases, more and more evidence is emerging about the positive impact of nutritional structure and healthy lifestyle on the state of blood vessels and the risk of developing these diseases.
Collapse
|
17
|
Seth E, Chopra M. Neuroprotective efficacy of berberine following developmental exposure to chlorpyrifos in F1 generation of Wistar rats: Apoptosis-autophagy interplay. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 834:155292. [PMID: 35439518 DOI: 10.1016/j.scitotenv.2022.155292] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/05/2022] [Revised: 04/10/2022] [Accepted: 04/11/2022] [Indexed: 06/14/2023]
Abstract
Chlorpyrifos (CPF), an organophosphate insecticide commonly used in agriculture and household applications, is considered a developmental neurotoxicant. This study aimed to explain the neuroprotective role of Berberine (BBR) against CPF-induced autophagy dysfunction and apoptotic neurodegeneration in the developing hippocampus. F1 generation of Wistar rats was exposed to CPF (3 mg/kg b.wt.) and co-treated with BBR (10 mg/kg b.wt) in two different exposure regimens, gestational (GD9-12 and GD17-21) and lactational (PND1-20). Our results demonstrated that CPF intoxication instigated cognitive and neurobehavioral impairment, oxidant-antioxidant imbalance, and histomorphological alterations in CA1, CA3, and DG regions of the offsprings. Furthermore, mRNA expression of pro-apoptotic genes (caspase3 and Bax) was upregulated, and that of anti-apoptotic BCl2 was downregulated. In addition, exposure to CPF also activated the autophagy inhibitor (mTOR) transcription and subsequently downregulated the expression of autophagy markers beclin1 and LC3-II. In contrast, gestational and lactational co-treatment of BBR significantly upregulated the enzymatic anti-oxidant bar of the hippocampus and attenuated histological alterations. Moreover, BBR co-treatments reduced apoptotic neurodegeneration in the hippocampal region by regulating the expression of apoptotic genes and upregulated the levels of autophagy, confirmed by ultrastructural studies, decreased gene expression and immunostaining of mTOR and increased, and increased expression gene expression and immunostaining of LC3-II positive cells. Our results confirm that treatment with BBR induces autophagy, which plays a neuroprotective role in CPF-induced developmental neuronal apoptosis in the F1 generation of Wistar rats by regulating the balance between autophagy and apoptosis.
Collapse
Affiliation(s)
- Era Seth
- Cytogenetics Laboratory, Department of Zoology, Panjab University, Chandigarh 160014, India
| | - Mani Chopra
- Cytogenetics Laboratory, Department of Zoology, Panjab University, Chandigarh 160014, India.
| |
Collapse
|
18
|
The SH-SY5Y human neuroblastoma cell line, a relevant in vitro cell model for investigating neurotoxicology in human: focus on organic pollutants. Neurotoxicology 2022; 92:131-155. [PMID: 35914637 DOI: 10.1016/j.neuro.2022.07.008] [Citation(s) in RCA: 121] [Impact Index Per Article: 40.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2022] [Revised: 07/21/2022] [Accepted: 07/27/2022] [Indexed: 12/18/2022]
Abstract
Investigation of the toxicity triggered by chemicals on the human brain has traditionally relied on approaches using rodent in vivo models and in vitro cell models including primary neuronal cultures and cell lines from rodents. The issues of species differences between humans and rodents, the animal ethical concerns and the time and cost required for neurotoxicity studies on in vivo animal models, do limit the use of animal-based models in neurotoxicology. In this context, human cell models appear relevant in elucidating cellular and molecular impacts of neurotoxicants and facilitating prioritization of in vivo testing. The SH-SY5Y human neuroblastoma cell line (ATCC® CRL-2266TM) is one of the most used cell lines in neurosciences, either undifferentiated or differentiated into neuron-like cells. This review presents the characteristics of the SH-SY5Y cell line and proposes the results of a systematic review of literature on the use of this in vitro cell model for neurotoxicity research by focusing on organic environmental pollutants including pesticides, 2, 3, 7, 8-tetrachlorodibenzo-p-dioxin (TCDD), flame retardants, PFASs, parabens, bisphenols, phthalates, and PAHs. Organic environmental pollutants are widely present in the environment and increasingly known to cause clinical neurotoxic effects during fetal & child development and adulthood. Their effects on cultured SH-SY5Y cells include autophagy, cell death (apoptosis, pyroptosis, necroptosis, or necrosis), increased oxidative stress, mitochondrial dysfunction, disruption of neurotransmitter homeostasis, and alteration of neuritic length. Finally, the inherent advantages and limitations of the SH-SY5Y cell model are discussed in the context of chemical testing.
Collapse
|
19
|
Anti-aging effect of phlorizin on D-galactose-induced aging in mice through antioxidant and anti-inflammatory activity, prevention of apoptosis, and regulation of the gut microbiota. Exp Gerontol 2022; 163:111769. [PMID: 35337894 DOI: 10.1016/j.exger.2022.111769] [Citation(s) in RCA: 33] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2021] [Revised: 02/28/2022] [Accepted: 03/14/2022] [Indexed: 12/29/2022]
Abstract
Aging is an inevitable and complicated process involving many physiological changes. Screening of natural biologically active anti-aging substances is a current research hotspot. Phlorizin (PZ), an important dihydrochalcone phytoconstituent, has been demonstrated to have antioxidant and anti-tumor effects. In this paper, different doses of PZ (20 and 40 mg/kg) were used to research the protective effect on D-galactose (D-gal)-induced aging mice. Following hematoxylin and eosin staining and by observing the hippocampus, we found that PZ alleviated the damage caused by D-gal in neuronal cells, while PZ enhanced the learning and memory abilities of aging mice in a radical eight-arm maze. In order to explain the reasons for these anti-aging effects, we tested the antioxidant enzyme activity and malonic dialdehyde concentration in mouse serum, liver, and brain tissue. The contents of proteins related to anti-inflammation and apoptosis in brain tissue were analyzed, and the gut microbiota was also analyzed. The results indicated that PZ improved antioxidant enzyme activity while significantly reducing the malonic dialdehyde content. Western blotting analysis suggested that PZ effectively alleviated neuro-apoptosis via regulating the expressions of Bax, Bcl-2, and caspase-3. PZ also exerted anti-inflammation effects by regulating the interleukin-1β/inhibitor of nuclear factor kappa B alpha/nuclear factor kappa-light-chain-enhancer of activated B-cells signaling pathways in brain tissues. Importantly, PZ improved the structure and diversity of the gut microbiota, and the microbiota-gut-brain axis may hold a key role in PZ-induced anti-aging effects. In conclusion, PZ can be used as a potential drug candidate to combat aging.
Collapse
|
20
|
Jiao Q, Dong X, Guo C, Wu T, Chen F, Zhang K, Ma Z, Sun Y, Cao H, Tian C, Hu Q, Liu N, Wang Y, Ji L, Yang S, Zhang X, Li J, Shen H. Effects of sleep deprivation of various durations on novelty-related object recognition memory and object location memory in mice. Behav Brain Res 2022; 418:113621. [PMID: 34624424 DOI: 10.1016/j.bbr.2021.113621] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2021] [Revised: 10/01/2021] [Accepted: 10/02/2021] [Indexed: 11/20/2022]
Abstract
Sleep is essential for important physiological functions. Impairment of learning and memory function caused by lack of sleep is a common physiological phenomenon of which underlying changes in synaptic plasticity in the hippocampus are not well understood. The possible different effects of sleep deprivation (SD) lasting for various durations on learning and memory function and hippocampal synaptic plasticity are still not completely clear. In this study, we used a modified multiple platform method (MMPM) to induce rapid eye movement SD (REM SD), lasting for 24 h, 48 h, and 72 h, separately. The novel place recognition (NPR) and novel object recognition (NOR) tasks were used to test the novelty-related object recognition memory (ORM) and object location memory (OLM) of mice. Then, hippocampal synaptic plasticity was evaluated after all behavioural experiments. The results showed that REM SD played a key role in OLM but not in ORM. Specifically, 24 h REM SD improved novelty-related OLM, accompanied by a significantly increased hippocampal synaptic plasticity, including gain of dendritic spines, increased expression of hippocampal GluA1, and enhanced long-term potentiation (LTP), whereas 48 h REM SD showed no effect on OLM or the hippocampal synaptic plasticity mentioned above; however, 72 h REM SD impaired novelty-related OLM and weakened hippocampal synaptic plasticity, including serious loss of dendritic spines, decreased expression of hippocampal GluA1, and significantly attenuated LTP. Our results suggest that REM SD of various durations has different effects on both novelty-related OLM and hippocampal synaptic plasticity.
Collapse
Affiliation(s)
- Qingyan Jiao
- Department of Sleep Medicine, Tianjin Anding Hospital, Tianjin, China, 300222
| | - Xi Dong
- Laboratory of Neurobiology, School of Biomedical Engineering, Tianjin Medical University, Tianjin, China, 300070
| | - Cunle Guo
- Laboratory of Neurobiology, School of Biomedical Engineering, Tianjin Medical University, Tianjin, China, 300070
| | - Tongrui Wu
- Laboratory of Neurobiology, School of Biomedical Engineering, Tianjin Medical University, Tianjin, China, 300070
| | - Feng Chen
- Laboratory of Neurobiology, School of Biomedical Engineering, Tianjin Medical University, Tianjin, China, 300070
| | - Kai Zhang
- Department of Anesthesia, Tianjin Medical University General Hospital, Tianjin, China, 300052
| | - Zengguang Ma
- Laboratory of Neurobiology, School of Biomedical Engineering, Tianjin Medical University, Tianjin, China, 300070
| | - Yun Sun
- Department of Sleep Medicine, Tianjin Anding Hospital, Tianjin, China, 300222
| | - Haiyan Cao
- Institute of Mental Health, Tianjin Anding Hospital, Tianjin, China, 300222
| | - Chao Tian
- Laboratory of Neurobiology, School of Biomedical Engineering, Tianjin Medical University, Tianjin, China, 300070
| | - Qi Hu
- Laboratory of Neurobiology, School of Biomedical Engineering, Tianjin Medical University, Tianjin, China, 300070
| | - Nannan Liu
- Institute of Mental Health, Tianjin Anding Hospital, Tianjin, China, 300222
| | - Yong Wang
- Institute of Mental Health, Tianjin Anding Hospital, Tianjin, China, 300222
| | - Lijie Ji
- Department of Sleep Medicine, Tianjin Anding Hospital, Tianjin, China, 300222
| | - Shutong Yang
- Department of Sleep Medicine, Tianjin Anding Hospital, Tianjin, China, 300222
| | - Xinjun Zhang
- Department of Sleep Medicine, Tianjin Anding Hospital, Tianjin, China, 300222.
| | - Jie Li
- Institute of Mental Health, Tianjin Anding Hospital, Tianjin, China, 300222.
| | - Hui Shen
- Brain Research Center of Innovation Institute of Traditional Chinese medicine, Shandong University of traditional Chinese Medicine, Jinan, Shandong, China, 250355.
| |
Collapse
|