1
|
Hadri SH, Riaz A, Abid J, Shaheen R, Nadeem S, Ghumman Z, Naeem H. Emerging nanostructure-based strategies for breast cancer therapy: innovations, challenges, and future directions. Med Oncol 2025; 42:188. [PMID: 40307624 DOI: 10.1007/s12032-025-02743-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2025] [Accepted: 04/23/2025] [Indexed: 05/02/2025]
Abstract
Breast cancer, one of the leading causes of cancer-associated deaths, is responsible for the majority of cases of cancer in women globally. Traditional therapies used for the treatment of cancer have some challenges such as low cellular absorption, multidrug resistance, and limited bioavailability. Current innovations in nanotechnology, such as nanoliposomes, silver nanoparticles, gold nanoparticles, and carbon nanotubes, provide a promising approach to deal with these limitations. Nanostructures encapsulating anticancer agents such as doxorubicin, curcumin, paclitaxel, erlotinib, and docetaxel enhance the therapeutic efficacy of these agents and promote targeted drug delivery. Curcumin-loaded amorphous calcium carbonate nanoparticles encapsulating lipids and L-arginine exhibit higher cytotoxicity than free curcumin. Gold nanoparticles can also enhance treatment efficacy by specifically destroying tumor cells when used in photothermal therapy. This review focus on the abilities of nanoparticles to induce oxidative stress, prevent proliferation, and trigger apoptosis in cancer cells. Further research should focus on optimizing these nanoparticles to enhance the targeted drug delivery and address multi-drug resistance. Our review underscores recent developments in nanostructures, their therapeutic potential, and the challenges that need to be addressed for more effective breast cancer treatment.
Collapse
Affiliation(s)
- Saqib Hussain Hadri
- Department of Biochemistry and Biotechnology, University of Gujrat, Hafiz Hayat Campus, Gujrat, Pakistan
| | - Atiya Riaz
- Department of Biochemistry and Biotechnology, University of Gujrat, Hafiz Hayat Campus, Gujrat, Pakistan.
| | - Jaisha Abid
- Department of Biochemistry and Biotechnology, University of Gujrat, Hafiz Hayat Campus, Gujrat, Pakistan
| | - Rameeza Shaheen
- Department of Biochemistry and Biotechnology, University of Gujrat, Hafiz Hayat Campus, Gujrat, Pakistan
| | - Samreen Nadeem
- Department of Biochemistry and Biotechnology, University of Gujrat, Hafiz Hayat Campus, Gujrat, Pakistan
| | - Zainab Ghumman
- Department of Biochemistry and Biotechnology, University of Gujrat, Hafiz Hayat Campus, Gujrat, Pakistan
| | - Hammad Naeem
- Department of Biochemistry and Biotechnology, University of Gujrat, Hafiz Hayat Campus, Gujrat, Pakistan
| |
Collapse
|
2
|
Hong WQ, Lee WH, Musa SH, Kamaruzaman NA, Loo CY. Evaluation of hydrogel loading with curcumin and silver nanoparticles: biocompatibilities and anti-biofilm activities. Biometals 2025; 38:663-682. [PMID: 39979667 DOI: 10.1007/s10534-025-00670-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2024] [Accepted: 02/12/2025] [Indexed: 02/22/2025]
Abstract
Chronic wound healing is associated with prolonged elevated inflammation and high levels of oxidative stress leading to cell death. The majority of wounds are colonized with antibiotic-resistant bacterial biofilms such as Pseudomonas aeruginosa and Staphylococcus aureus. An ideal wound treatment should include agents with antioxidant, anti-inflammatory, and antibiofilm behavior. Therefore, in this study, a combination of curcumin nanoparticle (Cur-NP) and silver nanoparticle (AgNP) (Cur-NP/AgNP) loaded PVA hydrogel was used to inhibit the bacterial attachment and subsequent biofilm formation of P. aeruginosa and S. aureus. Cur was known for its antioxidant and anti-inflammatory effect while being non-toxic to cells. Meanwhile, AgNP demonstrated superior anti-bacterial and antibiofilm activities against both P. aeruginosa and S. aureus. Cur-NP/AgNP loaded PVA hydrogels completely inhibited the bacterial attachment and biofilm formation, possibly due to synergistic effect of Cur-NPs and AgNPs in killing the bacterial cells. It should be highlighted that no surviving bacterial cells were noted for Cur-NP/AgNP loaded hydrogels. On the other hand, AgNPs or Cur-NPs alone loaded hydrogels were unable to achieve complete inhibition of biofilm formation, even though significant reduction in the biofilm mass was noted compared with control samples. Cur-NP and AgNP exerted oxidative-stress induced cell death in HaCaT cells via mitochondrial dysfunction, mitochondrial membrane potential (MMP) reduction, adenosine triphosphate inhibition, and increased cytochrome C release. The toxicity of formulation followed the decreasing trend: Cur-NP/AgNP < AgNPs alone < Cur-NPs alone. Taken together, the combination of Cur-NP/AgNP completely inhibited bacterial biofilm formation through bactericidal effect on the planktonic cells while exerted the least toxic effects towards skin cells.
Collapse
Affiliation(s)
- Wei Qing Hong
- Faculty of Pharmacy and Health Sciences, Royal College of Medicine Perak, Universiti Kuala Lumpur (UniKL RCMP), 30450, Ipoh, Perak, Malaysia
| | - Wing-Hin Lee
- Faculty of Pharmacy and Health Sciences, Royal College of Medicine Perak, Universiti Kuala Lumpur (UniKL RCMP), 30450, Ipoh, Perak, Malaysia
| | - Siti Hajar Musa
- School of Pharmacy, Management and Science University, 40100, Shah Alam, Selangor Darul Ehsan, Malaysia
| | | | - Ching-Yee Loo
- Faculty of Pharmacy and Health Sciences, Royal College of Medicine Perak, Universiti Kuala Lumpur (UniKL RCMP), 30450, Ipoh, Perak, Malaysia.
| |
Collapse
|
3
|
Pyrczak-Felczykowska A, Herman-Antosiewicz A. Modification in Structures of Active Compounds in Anticancer Mitochondria-Targeted Therapy. Int J Mol Sci 2025; 26:1376. [PMID: 39941144 PMCID: PMC11818413 DOI: 10.3390/ijms26031376] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2025] [Revised: 01/30/2025] [Accepted: 02/03/2025] [Indexed: 02/16/2025] Open
Abstract
Cancer is a multifaceted disease characterised by uncontrolled cellular proliferation and metastasis, resulting in significant global mortality. Current therapeutic strategies, including surgery, chemotherapy, and radiation therapy, face challenges such as systemic toxicity and tumour resistance. Recent advancements have shifted towards targeted therapies that act selectively on molecular structures within cancer cells, reducing off-target effects. Mitochondria have emerged as pivotal targets in this approach, given their roles in metabolic reprogramming, retrograde signalling, and oxidative stress, all of which drive the malignant phenotype. Targeting mitochondria offers a promising strategy to address these mechanisms at their origin. Synthetic derivatives of natural compounds hold particular promise in mitochondrial-targeted therapies. Innovations in drug design, including the use of conjugates and nanotechnology, focus on optimizing these compounds for mitochondrial specificity. Such advancements enhance therapeutic efficacy while minimizing systemic toxicity, presenting a significant step forward in modern anticancer strategies.
Collapse
Affiliation(s)
| | - Anna Herman-Antosiewicz
- Department of Medical Biology and Genetics, Faculty of Biology, University of Gdańsk, 80-308 Gdańsk, Poland;
| |
Collapse
|
4
|
Kakasi B, Varga FJ, Hopotószki M, Hopotószki E, Uddin I. Sustainable streptomycin-based Ag nanoparticle synthesis and study of the cytotoxicity. NAUNYN-SCHMIEDEBERG'S ARCHIVES OF PHARMACOLOGY 2025:10.1007/s00210-025-03859-9. [PMID: 39909884 DOI: 10.1007/s00210-025-03859-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/26/2024] [Accepted: 01/27/2025] [Indexed: 02/07/2025]
Abstract
Antibiotic resistance is one of the major problems of our time, which can be addressed by the use of different nanoparticles synthesized using antibiotics. The interaction between nanoparticles and biological systems is dynamic, which makes them extremely powerful for applications in the biomedical field. In this work, silver nanoparticles (Ag NPs) were synthesized with streptomycin and characterized by TEM, XRD, and UV-VIS. The synthesis resulted in the formation of spherical particles in the size range of 10-20 nm, which did not show any signs of aggregation after several days, facilitating their ease of use. Cytotoxicity studies of the synthesized AgNPs were performed by flow cytometry on A549 lung cancer cells after 24 h of exposure. At a concentration of 0.02 mM AgNP, the live cell ratio did not differ significantly from the control, but LC50 value was between 1.7 and 1.9 mM. The change in mitochondrial activity was examined after 4 h of exposure, and the results showed that AgNPs synthesized with streptomycin induce a decrease in mitochondrial activity at concentrations as low as 0.01 mM Ag NP. In this study, we have shown that antibiotic-streptomycin-stabilized nanoparticles play a dual role by both reducing and stabilizing silver nanoparticles without the need for any undesirable additive. Nanostructured silver particles synthesized with antibiotics were effective against the cancer cell line used. This is most probable because damage to the mitochondria induces the production of free radicals leading to severe cell damage. The research contributes to a deeper understanding of the effects of nanoparticles on cancer cells. The ability to stabilize silver nanoparticles with antibiotic-loaded nanoparticles could enhance therapeutic efficacy and open new opportunities for the design and development of nanomedicines for use in various biomedical fields such as wound healing, drug delivery, and antimicrobial coatings.
Collapse
Affiliation(s)
- Balázs Kakasi
- Air Chemistry Research Group, Research Institute of Biomolecular and Chemical Engineering, University of Pannonia, 10. Egyetem Str., Veszprém, 8200, Hungary
- HUN-REN-PE Air Chemistry Research Group, 10. Egyetem Str., Veszprém, 8200, Hungary
| | - Flóra Judit Varga
- Air Chemistry Research Group, Research Institute of Biomolecular and Chemical Engineering, University of Pannonia, 10. Egyetem Str., Veszprém, 8200, Hungary
| | - Márk Hopotószki
- Air Chemistry Research Group, Research Institute of Biomolecular and Chemical Engineering, University of Pannonia, 10. Egyetem Str., Veszprém, 8200, Hungary
| | - Erik Hopotószki
- Air Chemistry Research Group, Research Institute of Biomolecular and Chemical Engineering, University of Pannonia, 10. Egyetem Str., Veszprém, 8200, Hungary
| | - Imran Uddin
- Nanolab, Research Institute of Biomolecular and Chemical Engineering, University of Pannonia, 10. Egyetem Str., Veszprém, 8200, Hungary.
- Department of Conservative Dentistry and Endodontics, Saveetha Dental College and Hospital, Saveetha Institute of Medical and Technical Sciences, Saveetha University, Chennai, 600077, Tamil Nadu, India.
| |
Collapse
|
5
|
Galindo-Padrón AG, Lorenzo-Anota HY, Rueda-Munguía M, García-Carrasco A, Gaitán López M, Vázquez-Garza E, Campos-González E, Lozano O, Cholula-Díaz JL. Study on the Regulated Cell Death of Hypertrophic H9c2 Cells Induced by Au:Ag Nanoparticles. Int J Nanomedicine 2025; 20:1491-1507. [PMID: 39925684 PMCID: PMC11804235 DOI: 10.2147/ijn.s491288] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2024] [Accepted: 01/01/2025] [Indexed: 02/11/2025] Open
Abstract
Background and Aim Over the past years, noble metal-based nanoparticles have been extensively investigated for their applications in nanomedicine. However, there are still concerns about the potential adversities that these nanoparticles may present in an organism. In particular, whether they could cause an exacerbated cytotoxic response in susceptible tissues due to damage or disease, such as the heart, liver, spleen, or kidneys. In this regard, this study aims to evaluate the cytotoxicity of mono- and bimetallic nanoparticles of gold and silver (Au:Ag NPs) on healthy and hypertrophic cardiac H9c2 cells, and on healthy and metabolically activated macrophages derived from U937 cells. The main objective of this work is to explore the susceptibility of cells due to exposure to Au:Ag NPs in conditions representing cardiometabolic diseases. Methods Au:Ag NPs were synthesized in different molar ratios (Au:Ag, 100:0, 75:25, 50:50, 25:75, 0:100) using starch as a capping and reducing agent. Their physicochemical properties were characterized through UV-vis spectroscopy, X-ray diffraction (XRD), Fourier transform infrared (FTIR) spectroscopy, dynamic light scattering (DLS), ζ-potential measurements, and transmission electron microscopy (TEM). Moreover, the effect of the metal-based nanoparticle exposure on healthy and hypertrophic H9c2 cells was measured by analyzing the cellular vitality, the loss of mitochondrial membrane potential (∆Ψm), and the production of mitochondrial reactive oxygen species (mROS). Results The Au:Ag NPs did not affect the cell vitality of healthy or metabolically activated macrophages. On the contrary, healthy H9c2 cells showed decreased mitochondrial metabolism when exposed to NPs with higher Ag concentrations. Furthermore, hypertrophic H9c2 cells were more susceptible to the same NPs compared to their non-hypertrophic counterparts, and presented a pronounced loss of ∆Ψm. In addition, these NPs increased the production of mROS and regulated cell death in both cardiac cells. Conclusion In conclusion, low doses of high-Ag load in Au:Ag NPs produced cytotoxicity on H9c2 cardiac cells, with hypertrophic cells being more susceptible. These results suggest that cardiac hypertrophic conditions are more prone to a cytotoxic response in the presence of bimetallic Au:Ag NPs compared to healthy cells. In addition, this work opens the door to explore the nanotoxicity of noble metal-based NPs in biological disease conditions.
Collapse
Affiliation(s)
| | - Helen Yarimet Lorenzo-Anota
- Institute for Obesity Research, Tecnologico de Monterrey, Monterrey, Nuevo Leon, Mexico
- School of Medicine and Health Sciences, Tecnologico de Monterrey, Monterrey, Nuevo Leon, Mexico
| | - Mayte Rueda-Munguía
- Institute for Obesity Research, Tecnologico de Monterrey, Monterrey, Nuevo Leon, Mexico
- School of Medicine and Health Sciences, Tecnologico de Monterrey, Monterrey, Nuevo Leon, Mexico
| | | | - Mabel Gaitán López
- School of Engineering and Sciences, Tecnologico de Monterrey, Monterrey, Nuevo Leon, Mexico
| | - Eduardo Vázquez-Garza
- Institute for Obesity Research, Tecnologico de Monterrey, Monterrey, Nuevo Leon, Mexico
| | | | - Omar Lozano
- Institute for Obesity Research, Tecnologico de Monterrey, Monterrey, Nuevo Leon, Mexico
- School of Medicine and Health Sciences, Tecnologico de Monterrey, Monterrey, Nuevo Leon, Mexico
- Cátedra de Cardiología y Medicina Vascular, Tecnologico de Monterrey, Monterrey, Nuevo León, México
| | - Jorge L Cholula-Díaz
- School of Engineering and Sciences, Tecnologico de Monterrey, Monterrey, Nuevo Leon, Mexico
| |
Collapse
|
6
|
Torres-Betancourt JA, Hernández-Delgadillo R, Cauich-Rodríguez JV, Oliva-Rico DA, Solis-Soto JM, García-Cuellar CM, Sánchez-Pérez Y, Pineda-Aguilar N, Flores-Treviño S, Meester I, Nakagoshi-Cepeda SE, Arevalo-Niño K, Nakagoshi-Cepeda MAA, Cabral-Romero C. A Polyurethane Electrospun Membrane Loaded with Bismuth Lipophilic Nanoparticles (BisBAL NPs): Proliferation, Bactericidal, and Antitumor Properties, and Effects on MRSA and Human Breast Cancer Cells. J Funct Biomater 2024; 15:309. [PMID: 39452607 PMCID: PMC11508964 DOI: 10.3390/jfb15100309] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2024] [Revised: 10/10/2024] [Accepted: 10/12/2024] [Indexed: 10/26/2024] Open
Abstract
Electrospun membranes (EMs) have a wide range of applications, including use as local delivery systems. In this study, we manufactured a polyurethane Tecoflex™ EM loaded with bismuth-based lipophilic nanoparticles (Tecoflex™ EMs-BisBAL NPs). The physicochemical and mechanical characteristics, along with the antitumor and bactericidal effects, were evaluated using a breast cancer cell line and methicillin-susceptible and resistant Staphylococcus aureus (MRSA). Drug-free Tecoflex™ EMs and Tecoflex™ EMs-BisBAL NPs had similar fiber diameters of 4.65 ± 1.42 µm and 3.95 ± 1.32 µm, respectively. Drug-free Tecoflex™ EMs did not negatively impact a human fibroblast culture, indicating that the vehicle is biocompatible. Tecoflex™ EMs-BisBAL NPs increased 94% more in size than drug-free Tecoflex™ EMs, indicating that the BisBAL NPs enhanced hydration capacity. Tecoflex™ EMs-BisBAL NPs were highly bactericidal against both methicillin-susceptible S. aureus and MRSA clinical isolates, inhibiting their growth by 93.11% and 61.70%, respectively. Additionally, Tecoflex™ EMs-BisBAL NPs decreased the viability of MCF-7 tumor cells by 86% after 24 h exposure and 70.1% within 15 min. Regarding the mechanism of action of Tecoflex™ EMs-BisBAL NPs, it appears to disrupt the tumor cell membrane. In conclusion, Tecoflex™ EMs-BisBAL NPs constitute an innovative low-cost drug delivery system for human breast cancer and postoperative wound infections.
Collapse
Affiliation(s)
- Jesús Alejandro Torres-Betancourt
- Laboratorio de Biología Molecular, Facultad de Odontología, Universidad Autónoma de Nuevo León, UANL, Monterrey 66455, Nuevo León, Mexico; (J.A.T.-B.); (R.H.-D.); (J.M.S.-S.); (S.E.N.-C.); (M.A.A.N.-C.)
- Instituto de Biotecnología, Facultad de Ciencias Biológicas, Universidad Autónoma de Nuevo León, UANL, Monterrey 66450, Nuevo León, Mexico;
| | - Rene Hernández-Delgadillo
- Laboratorio de Biología Molecular, Facultad de Odontología, Universidad Autónoma de Nuevo León, UANL, Monterrey 66455, Nuevo León, Mexico; (J.A.T.-B.); (R.H.-D.); (J.M.S.-S.); (S.E.N.-C.); (M.A.A.N.-C.)
| | | | - Diego Adrián Oliva-Rico
- Subdirección de Investigación Básica, Instituto Nacional de Cancerología, Ciudad de México 14080, Mexico; (D.A.O.-R.); (C.M.G.-C.); (Y.S.-P.)
| | - Juan Manuel Solis-Soto
- Laboratorio de Biología Molecular, Facultad de Odontología, Universidad Autónoma de Nuevo León, UANL, Monterrey 66455, Nuevo León, Mexico; (J.A.T.-B.); (R.H.-D.); (J.M.S.-S.); (S.E.N.-C.); (M.A.A.N.-C.)
| | - Claudia María García-Cuellar
- Subdirección de Investigación Básica, Instituto Nacional de Cancerología, Ciudad de México 14080, Mexico; (D.A.O.-R.); (C.M.G.-C.); (Y.S.-P.)
| | - Yesennia Sánchez-Pérez
- Subdirección de Investigación Básica, Instituto Nacional de Cancerología, Ciudad de México 14080, Mexico; (D.A.O.-R.); (C.M.G.-C.); (Y.S.-P.)
| | - Nayely Pineda-Aguilar
- Centro de Investigación en Materiales Avanzados, S.C. (CIMAV), Subsede Monterrey, Apodaca 66628, Nuevo León, Mexico;
| | - Samantha Flores-Treviño
- Servicio de Infectología, Hospital Universitario “Dr. José Eleuterio González”, Facultad de Medicina, Universidad Autónoma de Nuevo León, UANL, Monterrey 66455, Nuevo León, Mexico;
| | - Irene Meester
- Departamento de Ciencias Básicas, Escuela de Medicina, Universidad de Monterrey, San Pedro Garza García 66238, Nuevo León, Mexico;
| | - Sergio Eduardo Nakagoshi-Cepeda
- Laboratorio de Biología Molecular, Facultad de Odontología, Universidad Autónoma de Nuevo León, UANL, Monterrey 66455, Nuevo León, Mexico; (J.A.T.-B.); (R.H.-D.); (J.M.S.-S.); (S.E.N.-C.); (M.A.A.N.-C.)
| | - Katiushka Arevalo-Niño
- Instituto de Biotecnología, Facultad de Ciencias Biológicas, Universidad Autónoma de Nuevo León, UANL, Monterrey 66450, Nuevo León, Mexico;
| | - María Argelia Akemi Nakagoshi-Cepeda
- Laboratorio de Biología Molecular, Facultad de Odontología, Universidad Autónoma de Nuevo León, UANL, Monterrey 66455, Nuevo León, Mexico; (J.A.T.-B.); (R.H.-D.); (J.M.S.-S.); (S.E.N.-C.); (M.A.A.N.-C.)
| | - Claudio Cabral-Romero
- Laboratorio de Biología Molecular, Facultad de Odontología, Universidad Autónoma de Nuevo León, UANL, Monterrey 66455, Nuevo León, Mexico; (J.A.T.-B.); (R.H.-D.); (J.M.S.-S.); (S.E.N.-C.); (M.A.A.N.-C.)
| |
Collapse
|
7
|
Mansour HMM, Shehata MG, Darwish AMG, Hafez EE, Samy MA, Abdelmotilib NM, Abdo EM. Antioxidant and anti-cancer potentials of Ag green-synthesized and encapsulated olive leaves particles on HCT-116 cells. Int J Biol Macromol 2024; 278:134776. [PMID: 39153672 DOI: 10.1016/j.ijbiomac.2024.134776] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2023] [Revised: 08/13/2024] [Accepted: 08/13/2024] [Indexed: 08/19/2024]
Abstract
Water extracts (OLE), whey protein encapsulated extracts (OLE/WPNs), and silver nanoparticles (OLE/Ag-NPs) were prepared from olive leaves of Manzenllie and Picual varieties. These preparations were characterized, and their antioxidant and biological activities on Vero and HCT-116 colorectal cells were assessed. The mechanism of action of the preparations was studied through tumor necrosis factor-α (TNF-α) and cytochrome C oxidase (Cox1) gene expression. OLE/Ag-NPs showed smaller particle sizes (14.23-15.53 nm) than OLE/WPNs (229.83-310.67 nm) and demonstrated lower aggregation due to their high Ƹ-potential of -24.86 to -27.90 mV. None of the preparations affected the viability of Vero cells (IC50 = 192.19-421.01 μg/mL), but they showed cytotoxic effects on HCT-116 cells (IC50 = 50.76-196.54 μg/mL), particularly OLE/WPNs. Moreover, the preparations from the Picual variety (OLE, OLE/WPNs, and OLE/Ag-NPs) showed regulatory effects against colon cancer on treated HCT-116 cells by upregulating Cox1 expression and downregulating TNF-α expression. Consequently, OLE/WPNs and OLE/Ag-NPs could be promising for industrial applications with potential health benefits.
Collapse
Affiliation(s)
- Hanem M M Mansour
- Food Technology Department, Arid Lands Cultivation Research Institute (ALCRI), City of Scientific Research and Technological Applications (SRTA-City), New Borg El Arab, P.O. Box 21934, Alexandria, Egypt
| | - Mohamed G Shehata
- Food Technology Department, Arid Lands Cultivation Research Institute (ALCRI), City of Scientific Research and Technological Applications (SRTA-City), New Borg El Arab, P.O. Box 21934, Alexandria, Egypt; Food Research Section, R&D Division, Abu Dhabi Agriculture and Food Safety Authority (ADAFSA), Abu Dhabi, P.O. Box 52150, United Arab Emirates
| | - Amira M G Darwish
- Food Technology Department, Arid Lands Cultivation Research Institute (ALCRI), City of Scientific Research and Technological Applications (SRTA-City), New Borg El Arab, P.O. Box 21934, Alexandria, Egypt; Food Industry Technology Program, Faculty of Industrial and Energy Technology, Borg Al Arab Technological University (BATU), Alexandria, Egypt.
| | - Elsayed Elsayed Hafez
- Plant Protection and Bio-Molecular Diagnosis Department, Arid Lands Cultivation Research Institute, City of Scientific Research and Technological Applications (SRTA-City), New Borg El Arab, P.O. Box 21934, Alexandria, Egypt
| | - Marwa A Samy
- Plant Protection and Bio-Molecular Diagnosis Department, Arid Lands Cultivation Research Institute, City of Scientific Research and Technological Applications (SRTA-City), New Borg El Arab, P.O. Box 21934, Alexandria, Egypt
| | - Neveen M Abdelmotilib
- Food Technology Department, Arid Lands Cultivation Research Institute (ALCRI), City of Scientific Research and Technological Applications (SRTA-City), New Borg El Arab, P.O. Box 21934, Alexandria, Egypt
| | - Eman M Abdo
- Food Science Department, Faculty of Agriculture (Saba Basha), Alexandria University, P.O. Box 21531, Alexandria, Egypt.
| |
Collapse
|
8
|
Snyder CM, Mateo B, Patel K, Fahrenholtz CD, Rohde MM, Carpenter R, Singh RN. Enhancement of Triple-Negative Breast Cancer-Specific Induction of Cell Death by Silver Nanoparticles by Combined Treatment with Proteotoxic Stress Response Inhibitors. NANOMATERIALS (BASEL, SWITZERLAND) 2024; 14:1564. [PMID: 39404291 PMCID: PMC11477547 DOI: 10.3390/nano14191564] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/23/2024] [Revised: 09/23/2024] [Accepted: 09/24/2024] [Indexed: 10/19/2024]
Abstract
Metal nanoparticles have been tested for therapeutic and imaging applications in pre-clinical models of cancer, but fears of toxicity have limited their translation. An emerging concept in nanomedicine is to exploit the inherent drug-like properties of unmodified nanomaterials for cancer therapy. To be useful clinically, there must be a window between the toxicity of the nanomaterial to cancer and toxicity to normal cells. This necessitates identification of specific vulnerabilities in cancers that can be targeted using nanomaterials without inducing off-target toxicity. Previous studies point to proteotoxic stress as a driver of silver nanoparticle (AgNPs) toxicity. Two key cell stress responses involved in mitigating proteotoxicity are the heat shock response (HSR) and the integrated stress response (ISR). Here, we examine the role that these stress responses play in AgNP-induced cytotoxicity in triple-negative breast cancer (TNBC) and immortalized mammary epithelial cells. Furthermore, we investigate HSR and ISR inhibitors as potential drug partners to increase the anti-cancer efficacy of AgNPs without increasing off-target toxicity. We showed that AgNPs did not strongly induce the HSR at a transcriptional level, but instead decreased expression of heat shock proteins (HSPs) at the protein level, possibly due to degradation in AgNP-treated TNBC cells. We further showed that the HSR inhibitor, KRIBB11, synergized with AgNPs in TNBC cells, but also increased off-target toxicity in immortalized mammary epithelial cells. In contrast, we found that salubrinal, a drug that can sustain pro-death ISR signaling, enhanced AgNP-induced cell death in TNBC cells without increasing toxicity in immortalized mammary epithelial cells. Subsequent co-culture studies demonstrated that AgNPs in combination with salubrinal selectively eliminated TNBCs without affecting immortalized mammary epithelial cells grown in the same well. Our findings provide additional support for proteotoxic stress as a mechanism by which AgNPs selectively kill TNBCs and will help guide future efforts to identify drug partners that would be beneficial for use with AgNPs for cancer therapy.
Collapse
Affiliation(s)
- Christina M. Snyder
- Department of Cancer Biology, Wake Forest University School of Medicine, Winston-Salem, NC 27157, USA; (C.M.S.); (B.M.); (K.P.); (C.D.F.); (M.M.R.)
| | - Beatriz Mateo
- Department of Cancer Biology, Wake Forest University School of Medicine, Winston-Salem, NC 27157, USA; (C.M.S.); (B.M.); (K.P.); (C.D.F.); (M.M.R.)
| | - Khushbu Patel
- Department of Cancer Biology, Wake Forest University School of Medicine, Winston-Salem, NC 27157, USA; (C.M.S.); (B.M.); (K.P.); (C.D.F.); (M.M.R.)
| | - Cale D. Fahrenholtz
- Department of Cancer Biology, Wake Forest University School of Medicine, Winston-Salem, NC 27157, USA; (C.M.S.); (B.M.); (K.P.); (C.D.F.); (M.M.R.)
- Fred Wilson School of Pharmacy, High Point University, High Point, NC 27268, USA
| | - Monica M. Rohde
- Department of Cancer Biology, Wake Forest University School of Medicine, Winston-Salem, NC 27157, USA; (C.M.S.); (B.M.); (K.P.); (C.D.F.); (M.M.R.)
| | - Richard Carpenter
- Department of Biochemistry and Molecular Biology, Indiana University School of Medicine, Bloomington, IN 47405, USA;
| | - Ravi N. Singh
- Department of Cancer Biology, Wake Forest University School of Medicine, Winston-Salem, NC 27157, USA; (C.M.S.); (B.M.); (K.P.); (C.D.F.); (M.M.R.)
- Atrium Health Wake Forest Baptist Comprehensive Cancer Center, Winston-Salem, NC 27157, USA
| |
Collapse
|
9
|
Iqbal Y, Amin F, Aziz MH, Wahab R. In-situ fabrication of resveratrol loaded sodium alginate coated silver nanoparticles for in vitro studies of mitochondrial-targeted anticancer treatment against MCF-7 cell lines. Int J Biol Macromol 2024; 280:135656. [PMID: 39278436 DOI: 10.1016/j.ijbiomac.2024.135656] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2024] [Revised: 09/12/2024] [Accepted: 09/12/2024] [Indexed: 09/18/2024]
Abstract
The study aims to improve the viability and stability of resveratrol by encapsulating metal-based biocompatible nanocarrier for mitochondrial-targeted delivery and breast cancer treatment. For this purpose, sodium alginate coated silver nanoparticles were synthesized by in-situ reduction of silver nitrate using sodium borohydride. The prepared nanoparticles and resveratrol-loaded nanoparticles were characterized by utilizing the following instruments including X-ray diffraction (XRD), UV visible spectroscopy, Photoluminescence (PL) spectroscopy, Scanning Electron Microscopy (SEM), Transmission Electron Microscopy (TEM), Energy Dispersive X-ray (EDX), Fourier Transform Infrared (FTIR), Raman spectroscopy, Zeta potential. The dialysis method revealed increased resveratrol release in pH 5 phosphate buffer. The incorporation of resveratrol significantly stimulated the antioxidant activity of sodium alginate coated silver nanoparticles. MTT assay was employed to evaluate the biocompatibility and anticancer potential of developed sodium alginate coated silver nanoparticles and resveratrol-loaded nanoparticles with increasing concentrations against normal HaCaT and breast cancer MCF-7 cell lines respectively. Further, the apoptotic morphology of MCF-7 cells treated with sodium alginate coated nanoparticles and resveratrol loaded nanoparticles was evaluated by AO/EtBr staining and apoptosis was demonstrated in the form of green and red fluorescence. Mitochondrial staining with Mito-Tracker Red evaluated the targeted delivery of RES into mitochondria leading to apoptosis of cancer cells.
Collapse
Affiliation(s)
- Yasir Iqbal
- Department of Physics, School of Natural Sciences (SNS), National University of Sciences and Technology (NUST), Islamabad 44000, Pakistan
| | - Faheem Amin
- Department of Physics, School of Natural Sciences (SNS), National University of Sciences and Technology (NUST), Islamabad 44000, Pakistan.
| | - Muhammad Hammad Aziz
- Department of Physics, COMSATS University Islamabad, Lahore Campus, Lahore 54000, Pakistan
| | - Rizwan Wahab
- Zoology Department, College of Science, King Saud University, Riyadh 11451, Saudi Arabia
| |
Collapse
|
10
|
Ahmad E, Athar A, Nimisha, Zia Q, Sharma AK, Sajid M, Bharadwaj M, Ansari MA, Saluja SS. Harnessing nature's potential: Alpinia galanga methanolic extract mediated green synthesis of silver nanoparticle, characterization and evaluation of anti-neoplastic activity. Bioprocess Biosyst Eng 2024; 47:1183-1196. [PMID: 38509420 DOI: 10.1007/s00449-024-02993-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2023] [Accepted: 03/06/2024] [Indexed: 03/22/2024]
Abstract
With the advent of nanotechnology, the treatment of cancer is changing from a conventional to a nanoparticle-based approach. Thus, developing nanoparticles to treat cancer is an area of immense importance. We prepared silver nanoparticles (AgNPs) from methanolic extract of Alpinia galanga rhizome and characterized them by UV-Vis spectrophotometry, Fourier transform Infrared (FTIR) spectroscopy, Zetasizer, and Transmission electron Microscopy (TEM). UV-Vis spectrophotometry absorption spectrum showed surface plasmon between 400 and 480 nm. FTIR spectrum analysis implies that various phytochemicals/secondary metabolites are involved in the reduction, caping, and stabilization of AgNPs. The Zetasier result suggests that the particles formed are small in size with a low polydispersity index (PDI), suggesting a narrow range of particle distribution. The TEM image suggests that the particles formed are mostly of spherical morphology with nearly 20-25 nm. Further, the selected area electron diffraction (SAED) image showed five electron diffraction rings, suggesting the polycrystalline nature of the particles. The nanoparticles showed high anticancer efficacy against cervical cancer (SiHa) cell lines. The nanostructures showed dose-dependent inhibition with 40% killing observed at 6.25 µg/mL dose. The study showed an eco-friendly and cost-effective approach to the synthesis of AgNPs and provided insight into the development of antioxidant and anticancer agents.
Collapse
Affiliation(s)
- Ejaj Ahmad
- Central Molecular Laboratory, Govind Ballabh Pant Institute of Postgraduate Medical Education and Research (GIPMER), New Delhi-110002, India
| | - Alina Athar
- Central Molecular Laboratory, Govind Ballabh Pant Institute of Postgraduate Medical Education and Research (GIPMER), New Delhi-110002, India
| | - Nimisha
- Central Molecular Laboratory, Govind Ballabh Pant Institute of Postgraduate Medical Education and Research (GIPMER), New Delhi-110002, India
| | - Qamar Zia
- Department of Medical Laboratory Sciences, Majmaah University, Majmaah, Saudi Arabia
| | - Abhay Kumar Sharma
- Central Molecular Laboratory, Govind Ballabh Pant Institute of Postgraduate Medical Education and Research (GIPMER), New Delhi-110002, India
| | - Mohammed Sajid
- Division of Molecular Genetics & Biochemistry, Molecular Biology Group, ICMR-National Institute of Cancer Prevention & Research, Noida, Uttar Pradesh, India
| | - Mausumi Bharadwaj
- Division of Molecular Genetics & Biochemistry, Molecular Biology Group, ICMR-National Institute of Cancer Prevention & Research, Noida, Uttar Pradesh, India
| | | | - Sundeep Singh Saluja
- Central Molecular Laboratory, Govind Ballabh Pant Institute of Postgraduate Medical Education and Research (GIPMER), New Delhi-110002, India.
- Department of GI Surgery, Govind Ballabh Pant Institute of Postgraduate Medical Education and Research (GIPMER), New Delhi, 110002, India.
| |
Collapse
|
11
|
Mishra T, Sengupta P, Basu S. Biomaterials for Targeting Endoplasmic Reticulum in Cancer. Chem Asian J 2024; 19:e202400250. [PMID: 38602248 DOI: 10.1002/asia.202400250] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2024] [Revised: 04/08/2024] [Accepted: 04/11/2024] [Indexed: 04/12/2024]
Abstract
Endoplasmic reticulum (ER) is one of the most important sub-cellular organelles which controls myriads of biological functions including protein biosynthesis with proper functional folded form, protein misfolding, protein transport into Golgi body for secretion, Ca2+ homeostasis and so on. Subsequently, dysregulation in ER function leads to ER stress followed by disease pathology like cancer. Hence, targeting ER in the cancer cells emerged as one of the futuristic strategies for cancer treatment. However, the major challenge is to selectively and specifically target ER in the sub-cellular milieu in the cancer tissues, due to the lack of ER targeting chemical moieties to recognize the ER markers. To address this, in the last decade, numerous biomaterials were explored to selectively impair and image ER in cancer cells to induce ER stress. This review outlines those biomaterials which consists of carbon and silicon materials, lipid nanoparticles (liposomes and micelles), supramolecular self-assembled nanostructures, cell membrane-coated nanoparticles and metallic nanoparticles. Moreover, we also discuss the challenges and possible solutions of this promising field to usher the readers towards next-generation ER targeted cancer therapy.
Collapse
Affiliation(s)
- Tripti Mishra
- Department of Chemistry, Indian Institute of Technology Gandhinagar, Palaj, Gujarat, 382355, India
| | - Poulomi Sengupta
- Department of Chemistry, Indrashil University, Rajpur, Kadi, Mehsana, Gujarat, 382740, India
| | - Sudipta Basu
- Department of Chemistry, Indian Institute of Technology Gandhinagar, Palaj, Gujarat, 382355, India
| |
Collapse
|
12
|
Vahabirad M, Daei S, Abbasalipourkabir R, Ziamajidi N. Anticancer Action of Silver Nanoparticles in SKBR3 Breast Cancer Cells through Promotion of Oxidative Stress and Apoptosis. BIOMED RESEARCH INTERNATIONAL 2024; 2024:7145339. [PMID: 38410788 PMCID: PMC10896653 DOI: 10.1155/2024/7145339] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/07/2023] [Revised: 12/04/2023] [Accepted: 01/18/2024] [Indexed: 02/28/2024]
Abstract
Silver nanoparticles (AgNPs) are known as one of the highly utilized NPs owing to their unique characteristics in the field of cancer research. The goal of this research was to explore the oxidative stress, apoptosis, and angiogenesis in SKBR3 breast cancer cells after exposure to AgNPs. The survival rate of SKBR3 cancer cells and MCF-10A normal breast cells was assessed under the effects of different concentrations (0, 32, 64, 128, and 250 μg/ml) by MTT method. The oxidative condition was assessed by measuring reactive oxygen species (ROS) production, total oxidant status (TOS), total antioxidant capacity (TAC), malondialdehyde (MDA), and antioxidant enzyme activity (CAT, GPx, and CAT) using colorimetric-based kits. Flow cytometry and Hoechst 33258 staining were performed to investigate the induction of apoptosis. Furthermore, the expression of Bcl-2-associated X protein (Bax), B-cell lymphoma 2 (Bcl-2), and caspase 3 and 7 activity was measured. The cell migration and vascular endothelial growth factor-A (VEGF-A) gene expression, protein kinase B (AKT), phosphatidylinositol 3-kinase (PI3K) were also studied. The MTT results indicated that AgNPs inhibit the SKBR3 cells' viability in a concentration-dependent way. Besides, AgNPs markedly induced oxidative stress via increasing TOS content, MDA production, reduction of TAC, and regulation of antioxidant enzyme level. Additionally, AgNPs promoted apoptosis as revealed by an enhancement in Bax/Bcl-2 expression ratio. Findings also indicated that AgNPs suppress the expression of genes (VEGF-A, AKT, and PI3K) involved in angiogenesis. Altogether, our data revealed that AgNPs initiate oxidative stress and apoptosis in SKBR3 breast cancer cells, dose dependently.
Collapse
Affiliation(s)
- Mohammad Vahabirad
- Department of Clinical Biochemistry, School of Medicine, Hamadan University of Medical Sciences, Hamadan, Iran
| | - Sajedeh Daei
- Department of Clinical Biochemistry, School of Medicine, Hamadan University of Medical Sciences, Hamadan, Iran
| | - Roghayeh Abbasalipourkabir
- Department of Clinical Biochemistry, School of Medicine, Hamadan University of Medical Sciences, Hamadan, Iran
| | - Nasrin Ziamajidi
- Department of Clinical Biochemistry, School of Medicine, Hamadan University of Medical Sciences, Hamadan, Iran
- Molecular Medicine Research Center, Hamadan University of Medical Sciences, Hamadan, Iran
| |
Collapse
|
13
|
Vijayaram S, Razafindralambo H, Sun YZ, Vasantharaj S, Ghafarifarsani H, Hoseinifar SH, Raeeszadeh M. Applications of Green Synthesized Metal Nanoparticles - a Review. Biol Trace Elem Res 2024; 202:360-386. [PMID: 37046039 PMCID: PMC10097525 DOI: 10.1007/s12011-023-03645-9] [Citation(s) in RCA: 93] [Impact Index Per Article: 93.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/10/2022] [Accepted: 03/20/2023] [Indexed: 04/14/2023]
Abstract
Green nanotechnology is an emerging field of science that focuses on the production of nanoparticles by living cells through biological pathways. This topic plays an extremely imperative responsibility in various fields, including pharmaceuticals, nuclear energy, fuel and energy, electronics, and bioengineering. Biological processes by green synthesis tools are more suitable to develop nanoparticles ranging from 1 to 100 nm compared to other related methods, owing to their safety, eco-friendliness, non-toxicity, and cost-effectiveness. In particular, the metal nanoparticles are synthesized by top-down and bottom-up approaches through various techniques like physical, chemical, and biological methods. Their characterization is very vital and the confirmation of nanoparticle traits is done by various instrumentation analyses such as UV-Vis spectrophotometry (UV-Vis), Fourier transform infrared spectroscopy (FT-IR), scanning electron microscope (SEM), transmission electron microscopy (TEM), X-ray diffraction (XRD), atomic force microscopy (AFM), annular dark-field imaging (HAADF), and intracranial pressure (ICP). In this review, we provide especially information on green synthesized metal nanoparticles, which are helpful to improve biomedical and environmental applications. In particular, the methods and conditions of plant-based synthesis, characterization techniques, and applications of green silver, gold, iron, selenium, and copper nanoparticles are overviewed.
Collapse
Affiliation(s)
| | - Hary Razafindralambo
- ProBioLab, Teaching and Research Centre, Gembloux Agro-Bio Tech, University of Liege, Liège, Belgium
- BioEcoAgro Joint Research Unit, TERRA Teaching and Research Centre, Microbial Processes and Interactions, Gembloux AgroBio Tech/Université de Liège, Gembloux, Belgium, University of Liege, Liège, Belgium
| | - Yun-Zhang Sun
- Fisheries College, Jimei University, Xiamen, 361021, China.
| | - Seerangaraj Vasantharaj
- Department of Biotechnology, Hindusthan College of Arts and Science, Coimbatore, 641028, Tamil Nadu, India
| | - Hamed Ghafarifarsani
- Department of Fisheries, Faculty of Natural Resources, Urmia University, Urmia, Iran.
| | - Seyed Hossein Hoseinifar
- Department of Fisheries, Faculty of Fisheries and Environmental Sciences, Gorgan University of Agricultural Sciences and Natural Resources, Gorgan, Iran
| | - Mahdieh Raeeszadeh
- Department of Basic Sciences, Sanandaj Branch, Islamic Azad University, Sanandaj, Iran
| |
Collapse
|
14
|
Al-Majeed SHA, Al-Ali ZSA, Turki AA. Biomedical Assessment of Silver Nanoparticles Derived from L-Aspartic Acid Against Breast Cancer Cell Lines and Bacteria Strains. BIONANOSCIENCE 2023; 13:1833-1848. [DOI: 10.1007/s12668-023-01198-8] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/03/2023] [Indexed: 01/06/2025]
|
15
|
Misra SK, Rosenholm JM, Pathak K. Functionalized and Nonfunctionalized Nanosystems for Mitochondrial Drug Delivery with Metallic Nanoparticles. Molecules 2023; 28:4701. [PMID: 37375256 DOI: 10.3390/molecules28124701] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2023] [Revised: 06/04/2023] [Accepted: 06/08/2023] [Indexed: 06/29/2023] Open
Abstract
Background: The application of metallic nanoparticles as a novel therapeutic tool has significant potential to facilitate the treatment and diagnosis of mitochondria-based disorders. Recently, subcellular mitochondria have been trialed to cure pathologies that depend on their dysfunction. Nanoparticles made from metals and their oxides (including gold, iron, silver, platinum, zinc oxide, and titanium dioxide) have unique modi operandi that can competently rectify mitochondrial disorders. Materials: This review presents insight into the recent research reports on exposure to a myriad of metallic nanoparticles that can alter the dynamic ultrastructure of mitochondria (via altering metabolic homeostasis), as well as pause ATP production, and trigger oxidative stress. The facts and figures have been compiled from more than a hundred PubMed, Web of Science, and Scopus indexed articles that describe the essential functions of mitochondria for the management of human diseases. Result: Nanoengineered metals and their oxide nanoparticles are targeted at the mitochondrial architecture that partakes in the management of a myriad of health issues, including different cancers. These nanosystems not only act as antioxidants but are also fabricated for the delivery of chemotherapeutic agents. However, the biocompatibility, safety, and efficacy of using metal nanoparticles is contested among researchers, which will be discussed further in this review.
Collapse
Affiliation(s)
- Shashi Kiran Misra
- School of Pharmaceutical Sciences, CSJM University Kanpur, Kanpur 208024, India
| | - Jessica M Rosenholm
- Pharmaceutical Sciences Laboratory, Faculty of Science and Engineering, Åbo Akademi University, BioCity (3rd Floor), Tykistökatu, 6A, 20520 Turku, Finland
| | - Kamla Pathak
- Faculty of Pharmacy, Uttar Pradesh University of Medical Sciences, Saifai, Etawah 206130, India
| |
Collapse
|
16
|
The Role of Silver Nanoparticles in the Diagnosis and Treatment of Cancer: Are There Any Perspectives for the Future? Life (Basel) 2023; 13:life13020466. [PMID: 36836823 PMCID: PMC9965924 DOI: 10.3390/life13020466] [Citation(s) in RCA: 36] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2023] [Revised: 02/02/2023] [Accepted: 02/03/2023] [Indexed: 02/10/2023] Open
Abstract
Cancer is a fatal disease with a complex pathophysiology. Lack of specificity and cytotoxicity, as well as the multidrug resistance of traditional cancer chemotherapy, are the most common limitations that often cause treatment failure. Thus, in recent years, significant efforts have concentrated on the development of a modernistic field called nano-oncology, which provides the possibility of using nanoparticles (NPs) with the aim to detect, target, and treat cancer diseases. In comparison with conventional anticancer strategies, NPs provide a targeted approach, preventing undesirable side effects. What is more, nanoparticle-based drug delivery systems have shown good pharmacokinetics and precise targeting, as well as reduced multidrug resistance. It has been documented that, in cancer cells, NPs promote reactive oxygen species (ROS) production, induce cell cycle arrest and apoptosis, activate ER (endoplasmic reticulum) stress, modulate various signaling pathways, etc. Furthermore, their ability to inhibit tumor growth in vivo has also been documented. In this paper, we have reviewed the role of silver NPs (AgNPs) in cancer nanomedicine, discussing numerous mechanisms by which they render anticancer properties under both in vitro and in vivo conditions, as well as their potential in the diagnosis of cancer.
Collapse
|