1
|
Elhusseiny MH, Elsayed MM, Mady WH, Mahana O, Bakry NR, Abdelaziz O, Arafa AS, Shahein MA, Eid S, Naguib MM. Genetic features of avian influenza (A/H5N8) clade 2.3.4.4b isolated from quail in Egypt. Virus Res 2024; 350:199482. [PMID: 39396573 PMCID: PMC11532269 DOI: 10.1016/j.virusres.2024.199482] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2024] [Revised: 10/05/2024] [Accepted: 10/10/2024] [Indexed: 10/15/2024]
Abstract
Several genotypes of the highly pathogenic avian influenza (HPAI) virus H5N8 subtype within clade 2.3.4.4b continue to circulate in different species of domestic birds across Egypt. It is believed that quail contribute to virus replication and adaptation to other gallinaceous poultry species and humans. This study provides genetic characterization of the full genome of HPAI H5N8 isolated from quail in Egypt. The virus was isolated from a commercial quail farm associated with respiratory signs. To characterize the genetic features of the detected virus, gene sequencing via Sanger technology and phylogenetic analysis were performed. The results revealed high nucleotide identity with the HPAI H5N8 virus from Egypt, which has multiple basic amino acid motifs PLREKRRKR/GLF at the hemagglutinin (HA) cleavage site. Phylogenetic analysis of the eight gene segments revealed that the quail isolate is grouped with HPAI H5N8 viruses of clade 2.3.4.4b and closely related to the most recent circulating H5N8 viruses in Egypt. Whole-genome characterization revealed amino acid preferences for avian receptors with few mutations, indicating their affinity for human-like receptors and increased virulence in mammals, such as S123P, S133A, T156A and A263T in the HA gene. In addition, the sequencing results revealed a lack of markers associated with influenza antiviral resistance in the neuraminidase and matrix-2 coding proteins. The results of the present study support the spread of HPAIV H5N8 to species other than chickens in Egypt. Therefore, continuous surveillance of AIV in different bird species in Egypt followed by full genomic characterization is needed for better virus control and prevention.
Collapse
Affiliation(s)
- Mohamed H Elhusseiny
- Reference Laboratory for Veterinary Quality Control on Poultry Production, Animal Health Research Institute, Agriculture Research Center (ARC), Giza, Egypt
| | - Moataz M Elsayed
- Reference Laboratory for Veterinary Quality Control on Poultry Production, Animal Health Research Institute, Agriculture Research Center (ARC), Giza, Egypt
| | - Wesam H Mady
- Reference Laboratory for Veterinary Quality Control on Poultry Production, Animal Health Research Institute, Agriculture Research Center (ARC), Giza, Egypt
| | - Osama Mahana
- Reference Laboratory for Veterinary Quality Control on Poultry Production, Animal Health Research Institute, Agriculture Research Center (ARC), Giza, Egypt
| | - Neveen R Bakry
- Reference Laboratory for Veterinary Quality Control on Poultry Production, Animal Health Research Institute, Agriculture Research Center (ARC), Giza, Egypt
| | - Ola Abdelaziz
- Reference Laboratory for Veterinary Quality Control on Poultry Production, Animal Health Research Institute, Agriculture Research Center (ARC), Giza, Egypt
| | - Abdel-Sattar Arafa
- Reference Laboratory for Veterinary Quality Control on Poultry Production, Animal Health Research Institute, Agriculture Research Center (ARC), Giza, Egypt
| | | | - Samah Eid
- Reference Laboratory for Veterinary Quality Control on Poultry Production, Animal Health Research Institute, Agriculture Research Center (ARC), Giza, Egypt
| | - Mahmoud M Naguib
- Reference Laboratory for Veterinary Quality Control on Poultry Production, Animal Health Research Institute, Agriculture Research Center (ARC), Giza, Egypt; Zoonosis Science Center, Department of Medical Biochemistry and Microbiology, Uppsala University, Uppsala, Sweden; Department of Infection Biology & Microbiomes, Institute of Infection, Veterinary and Ecological Sciences, University of Liverpool, Liverpool L3 5RF, UK.
| |
Collapse
|
2
|
Tiwari A, Meriläinen P, Lindh E, Kitajima M, Österlund P, Ikonen N, Savolainen-Kopra C, Pitkänen T. Avian Influenza outbreaks: Human infection risks for beach users - One health concern and environmental surveillance implications. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 943:173692. [PMID: 38825193 DOI: 10.1016/j.scitotenv.2024.173692] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/22/2024] [Revised: 05/30/2024] [Accepted: 05/30/2024] [Indexed: 06/04/2024]
Abstract
Despite its popularity for water activities, such as swimming, surfing, fishing, and rafting, inland and coastal bathing areas occasionally experience outbreaks of highly pathogenic avian influenza virus (HPAI), including A(H5N1) clade 2.3.4.4b. Asymptomatic infections and symptomatic outbreaks often impact many aquatic birds, which increase chances of spill-over events to mammals and pose concerns for public health. This review examined the existing literature to assess avian influenza virus (AIV) transmission risks to beachgoers and the general population. A comprehensive understanding of factors governing such crossing of the AIV host range is currently lacking. There is limited knowledge on key factors affecting risk, such as species-specific interactions with host cells (including binding, entry, and replication via viral proteins hemagglutinin, neuraminidase, nucleoprotein, and polymerase basic protein 2), overcoming host restrictions, and innate immune response. AIV efficiently transmits between birds and to some extent between marine scavenger mammals in aquatic environments via consumption of infected birds. However, the current literature lacks evidence of zoonotic AIV transmission via contact with the aquatic environment or consumption of contaminated water. The zoonotic transmission risk of the circulating A(H5N1) clade 2.3.4.4b virus to the general population and beachgoers is currently low. Nevertheless, it is recommended to avoid direct contact with sick or dead birds and to refrain from bathing in locations where mass bird mortalities are reported. Increasing reports of AIVs spilling over to non-human mammals have raised valid concerns about possible virus mutations that lead to crossing the species barrier and subsequent risk of human infections and outbreaks.
Collapse
Affiliation(s)
- Ananda Tiwari
- Expert Microbiology Unit, Finnish Institute for Health and Welfare, Neulaniementie 4, Kuopio FI-70701, Finland; Department of Food Hygiene and Environmental Health, Faculty of Veterinary Medicine, University of Helsinki, Agnes Sjöbergin katu 2, Helsinki FI-00014, Finland.
| | - Päivi Meriläinen
- Environmental Health Unit, Finnish Institute for Health and Welfare, Neulaniementie 4, Kuopio FI-70701, Finland
| | - Erika Lindh
- Expert Microbiology Unit, Finnish Institute for Health and Welfare, Mannerheimintie 166, Helsinki FI-00271, Finland
| | - Masaaki Kitajima
- Research Center for Water Environment Technology, School of Engineering, The University of Tokyo, 2-11-16 Yayoi, Bunkyo-ku, Tokyo 113-0032, Japan
| | - Pamela Österlund
- Expert Microbiology Unit, Finnish Institute for Health and Welfare, Mannerheimintie 166, Helsinki FI-00271, Finland
| | - Niina Ikonen
- Expert Microbiology Unit, Finnish Institute for Health and Welfare, Mannerheimintie 166, Helsinki FI-00271, Finland
| | - Carita Savolainen-Kopra
- Expert Microbiology Unit, Finnish Institute for Health and Welfare, Mannerheimintie 166, Helsinki FI-00271, Finland
| | - Tarja Pitkänen
- Expert Microbiology Unit, Finnish Institute for Health and Welfare, Neulaniementie 4, Kuopio FI-70701, Finland; Department of Food Hygiene and Environmental Health, Faculty of Veterinary Medicine, University of Helsinki, Agnes Sjöbergin katu 2, Helsinki FI-00014, Finland
| |
Collapse
|
3
|
Barnes AP, Sparks N, Helgesen IS, Soliman T. Financial impacts of a housing order on commercial free range egg layers in response to highly pathogenic avian influenza. Prev Vet Med 2024; 228:106209. [PMID: 38714017 DOI: 10.1016/j.prevetmed.2024.106209] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2023] [Revised: 04/08/2024] [Accepted: 04/10/2024] [Indexed: 05/09/2024]
Abstract
Recent annual outbreaks of Highly Pathogenic Avian Influenza (HPAI) have led to mandatory housing orders on commercial free-range flocks. Indefinite periods of housing, after poultry have had access to range, could have production and financial consequences for free range egg producers. The impact of these housing orders on the performance of commercial flocks is seldom explored at a business level, predominantly due to the paucity of commercially sensitive data. The aim of this paper is to assess the financial and production impacts of a housing order on commercial free-range egg layers. We use a unique data set showing week by week performance of layers gathered from 9 UK based farms over the period 2020-2022. These data cover an average of 100,000 laying hens and include two imposed housing orders, in 2020/2021 and in 2021/22. We applied a random intercept linear regression to assess impacts on physical outputs and inputs, bird mortality and the impacts on revenue, feed costs and margin over feed cost. Feed use and feed costs per bird increased during the housing order which is a consequence of increased control over diet intake in housed compared to ranged birds. An increase in revenue was also found, ostensibly due to a higher proportion of large eggs produced, leading to a higher margin over feed cost. Overall, these large commercial poultry sheds were able to mitigate some of the potential adverse economic effects of housing orders. Potential negative impacts may occur dependant on the duration of the housing order and those farms with less control over their input costs.
Collapse
Affiliation(s)
- Andrew P Barnes
- Department of Rural Economy, Environment and Society, SRUC, West Mains Road, Edinburgh, Scotland EH9 3JG, UK.
| | - Nick Sparks
- Department of Rural Economy, Environment and Society, SRUC, West Mains Road, Edinburgh, Scotland EH9 3JG, UK
| | - Irmelin S Helgesen
- Department of Economics, NTNU, Postboks 8900, Trondheim, Torgarden 7491, Norway
| | - Tarek Soliman
- Department of Rural Economy, Environment and Society, SRUC, West Mains Road, Edinburgh, Scotland EH9 3JG, UK
| |
Collapse
|
4
|
Trovão NS, Khan SM, Lemey P, Nelson MI, Cherry JL. Comparative evolution of influenza A virus H1 and H3 head and stalk domains across host species. mBio 2024; 15:e0264923. [PMID: 38078770 PMCID: PMC10886446 DOI: 10.1128/mbio.02649-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2023] [Accepted: 11/02/2023] [Indexed: 01/17/2024] Open
Abstract
IMPORTANCE For decades, researchers have studied the rapid evolution of influenza A viruses for vaccine design and as a useful model system for the study of host/parasite evolution. By performing an exhaustive analysis of hemagglutinin protein (HA) sequences from 49 lineages independently evolving in birds, swine, canines, equines, and humans over the last century, our work uncovers surprising features of HA evolution. In particular, the canine H3 stalk, unlike human H3 and H1 stalk domains, is not evolving slowly, suggesting that evolution in the stalk domain is not universally constrained across all host species. Therefore, a broader multi-host perspective on HA evolution may be useful during the evaluation and design of stalk-targeted vaccine candidates.
Collapse
Affiliation(s)
- Nidia S Trovão
- Fogarty International Center, National Institutes of Health, Bethesda, Maryland, USA
| | - Sairah M Khan
- Fogarty International Center, National Institutes of Health, Bethesda, Maryland, USA
| | - Philippe Lemey
- Department of Microbiology, Immunology and Transplantation, Rega Institute, KU Leuven, Leuven, Belgium
| | - Martha I Nelson
- Fogarty International Center, National Institutes of Health, Bethesda, Maryland, USA
- National Center for Biotechnology Information, National Library of Medicine, National Institutes of Health, Bethesda, Maryland, USA
| | - Joshua L Cherry
- Fogarty International Center, National Institutes of Health, Bethesda, Maryland, USA
- National Center for Biotechnology Information, National Library of Medicine, National Institutes of Health, Bethesda, Maryland, USA
| |
Collapse
|
5
|
Xie R, Edwards KM, Wille M, Wei X, Wong SS, Zanin M, El-Shesheny R, Ducatez M, Poon LLM, Kayali G, Webby RJ, Dhanasekaran V. The episodic resurgence of highly pathogenic avian influenza H5 virus. Nature 2023; 622:810-817. [PMID: 37853121 DOI: 10.1038/s41586-023-06631-2] [Citation(s) in RCA: 97] [Impact Index Per Article: 48.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2023] [Accepted: 09/11/2023] [Indexed: 10/20/2023]
Abstract
Highly pathogenic avian influenza (HPAI) H5N1 activity has intensified globally since 2021, increasingly causing mass mortality in wild birds and poultry and incidental infections in mammals1-3. However, the ecological and virological properties that underscore future mitigation strategies still remain unclear. Using epidemiological, spatial and genomic approaches, we demonstrate changes in the origins of resurgent HPAI H5 and reveal significant shifts in virus ecology and evolution. Outbreak data show key resurgent events in 2016-2017 and 2020-2021, contributing to the emergence and panzootic spread of H5N1 in 2021-2022. Genomic analysis reveals that the 2016-2017 epizootics originated in Asia, where HPAI H5 reservoirs are endemic. In 2020-2021, 2.3.4.4b H5N8 viruses emerged in African poultry, featuring mutations altering HA structure and receptor binding. In 2021-2022, a new H5N1 virus evolved through reassortment in wild birds in Europe, undergoing further reassortment with low-pathogenic avian influenza in wild and domestic birds during global dissemination. These results highlight a shift in the HPAI H5 epicentre beyond Asia and indicate that increasing persistence of HPAI H5 in wild birds is facilitating geographic and host range expansion, accelerating dispersion velocity and increasing reassortment potential. As earlier outbreaks of H5N1 and H5N8 were caused by more stable genomic constellations, these recent changes reflect adaptation across the domestic-bird-wild-bird interface. Elimination strategies in domestic birds therefore remain a high priority to limit future epizootics.
Collapse
Affiliation(s)
- Ruopeng Xie
- School of Public Health, LKS Faculty of Medicine, The University of Hong Kong, Hong Kong SAR, China
- HKU-Pasteur Research Pole, LKS Faculty of Medicine, The University of Hong Kong, Hong Kong SAR, China
| | - Kimberly M Edwards
- School of Public Health, LKS Faculty of Medicine, The University of Hong Kong, Hong Kong SAR, China
- HKU-Pasteur Research Pole, LKS Faculty of Medicine, The University of Hong Kong, Hong Kong SAR, China
| | - Michelle Wille
- Sydney Institute for Infectious Diseases, School of Medical Sciences, The University of Sydney, Sydney, New South Wales, Australia
- Department of Microbiology and Immunology, at the Peter Doherty Institute for Infection and Immunity, The University of Melbourne, Melbourne, Victoria, Australia
| | - Xiaoman Wei
- School of Public Health, LKS Faculty of Medicine, The University of Hong Kong, Hong Kong SAR, China
- HKU-Pasteur Research Pole, LKS Faculty of Medicine, The University of Hong Kong, Hong Kong SAR, China
| | - Sook-San Wong
- School of Public Health, LKS Faculty of Medicine, The University of Hong Kong, Hong Kong SAR, China
- HKU-Pasteur Research Pole, LKS Faculty of Medicine, The University of Hong Kong, Hong Kong SAR, China
| | - Mark Zanin
- School of Public Health, LKS Faculty of Medicine, The University of Hong Kong, Hong Kong SAR, China
- Centre for Immunology & Infection, Hong Kong Science and Technology Park, Hong Kong SAR, China
| | - Rabeh El-Shesheny
- Center of Scientific Excellence for Influenza Viruses, National Research Centre, Giza, Egypt
| | - Mariette Ducatez
- IHAP, Université de Toulouse, Institut national de recherche pour l'agriculture, l'alimentation et l'environnement, Ecole Nationale Vétérinaire de Toulouse, Toulouse, France
| | - Leo L M Poon
- School of Public Health, LKS Faculty of Medicine, The University of Hong Kong, Hong Kong SAR, China
- HKU-Pasteur Research Pole, LKS Faculty of Medicine, The University of Hong Kong, Hong Kong SAR, China
- Centre for Immunology & Infection, Hong Kong Science and Technology Park, Hong Kong SAR, China
| | | | - Richard J Webby
- Department of Infectious Diseases, St Jude Children's Research Hospital, Memphis, TN, USA
| | - Vijaykrishna Dhanasekaran
- School of Public Health, LKS Faculty of Medicine, The University of Hong Kong, Hong Kong SAR, China.
- HKU-Pasteur Research Pole, LKS Faculty of Medicine, The University of Hong Kong, Hong Kong SAR, China.
| |
Collapse
|
6
|
Byrne AMP, James J, Mollett BC, Meyer SM, Lewis T, Czepiel M, Seekings AH, Mahmood S, Thomas SS, Ross CS, Byrne DJF, McMenamy MJ, Bailie V, Lemon K, Hansen RDE, Falchieri M, Lewis NS, Reid SM, Brown IH, Banyard AC. Investigating the Genetic Diversity of H5 Avian Influenza Viruses in the United Kingdom from 2020-2022. Microbiol Spectr 2023; 11:e0477622. [PMID: 37358418 PMCID: PMC10433820 DOI: 10.1128/spectrum.04776-22] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2022] [Accepted: 04/27/2023] [Indexed: 06/27/2023] Open
Abstract
Since 2020, the United Kingdom and Europe have experienced annual epizootics of high-pathogenicity avian influenza virus (HPAIV). The first epizootic, during the autumn/winter of 2020-2021, involved six H5Nx subtypes, although H5N8 HPAIV dominated in the United Kingdom. While genetic assessments of the H5N8 HPAIVs within the United Kingdom demonstrated relative homogeneity, there was a background of other genotypes circulating at a lower degree with different neuraminidase and internal genes. Following a small number of detections of H5N1 in wild birds over the summer of 2021, the autumn/winter of 2021-2022 saw another European H5 HPAIV epizootic that dwarfed the prior epizootic. This second epizootic was dominated almost exclusively by H5N1 HPAIV, although six distinct genotypes were defined. We have used genetic analysis to evaluate the emergence of different genotypes and proposed reassortment events that have been observed. The existing data suggest that the H5N1 viruses circulating in Europe during late 2020 continued to circulate in wild birds throughout 2021, with minimal adaptation, but then went on to reassort with AIVs in the wild bird population. We have undertaken an in-depth genetic assessment of H5 HPAIVs detected in the United Kingdom over two winter seasons and demonstrate the utility of in-depth genetic analyses in defining the diversity of H5 HPAIVs circulating in avian species, the potential for zoonotic risk, and whether incidents of lateral spread can be defined over independent incursions of infections from wild birds. This provides key supporting data for mitigation activities. IMPORTANCE High-pathogenicity avian influenza virus (HPAIV) outbreaks devastate avian species across all sectors, having both economic and ecological impacts through mortalities in poultry and wild birds, respectively. These viruses can also represent a significant zoonotic risk. Since 2020, the United Kingdom has experienced two successive outbreaks of H5 HPAIV. While H5N8 HPAIV was predominant during the 2020-2021 outbreak, other H5 subtypes were also detected. The following year, there was a shift in the subtype dominance to H5N1 HPAIV, but multiple H5N1 genotypes were detected. Through the thorough utilization of whole-genome sequencing, it was possible to track and characterize the genetic evolution of these H5 HPAIVs in United Kingdom poultry and wild birds. This enabled us to assess the risk posed by these viruses at the poultry-wild bird and the avian-human interfaces and to investigate the potential lateral spread between infected premises, a key factor in understanding the threat to the commercial sector.
Collapse
Affiliation(s)
- Alexander M. P. Byrne
- Virology Department, Animal and Plant Health Agency, Addlestone, Surrey, United Kingdom
| | - Joe James
- Virology Department, Animal and Plant Health Agency, Addlestone, Surrey, United Kingdom
- WOAH/FAO International Reference Laboratory for Avian Influenza, Swine Influenza and Newcastle Disease, Animal and Plant Health Agency (APHA-Weybridge), Addlestone, Surrey, United Kingdom
| | - Benjamin C. Mollett
- Virology Department, Animal and Plant Health Agency, Addlestone, Surrey, United Kingdom
| | - Stephanie M. Meyer
- Virology Department, Animal and Plant Health Agency, Addlestone, Surrey, United Kingdom
- WOAH/FAO International Reference Laboratory for Avian Influenza, Swine Influenza and Newcastle Disease, Animal and Plant Health Agency (APHA-Weybridge), Addlestone, Surrey, United Kingdom
| | - Thomas Lewis
- Virology Department, Animal and Plant Health Agency, Addlestone, Surrey, United Kingdom
- WOAH/FAO International Reference Laboratory for Avian Influenza, Swine Influenza and Newcastle Disease, Animal and Plant Health Agency (APHA-Weybridge), Addlestone, Surrey, United Kingdom
| | - Magdalena Czepiel
- Virology Department, Animal and Plant Health Agency, Addlestone, Surrey, United Kingdom
- WOAH/FAO International Reference Laboratory for Avian Influenza, Swine Influenza and Newcastle Disease, Animal and Plant Health Agency (APHA-Weybridge), Addlestone, Surrey, United Kingdom
| | - Amanda H. Seekings
- Virology Department, Animal and Plant Health Agency, Addlestone, Surrey, United Kingdom
| | - Sahar Mahmood
- Virology Department, Animal and Plant Health Agency, Addlestone, Surrey, United Kingdom
| | - Saumya S. Thomas
- Virology Department, Animal and Plant Health Agency, Addlestone, Surrey, United Kingdom
| | - Craig S. Ross
- Virology Department, Animal and Plant Health Agency, Addlestone, Surrey, United Kingdom
| | - Dominic J. F. Byrne
- School of Biological Sciences, University of Manchester, Manchester, United Kingdom
| | | | - Valerie Bailie
- Agri-Food and Bioscience Institute, Belfast, United Kingdom
| | - Ken Lemon
- Agri-Food and Bioscience Institute, Belfast, United Kingdom
| | - Rowena D. E. Hansen
- Veterinary Exotics and Notifiable Disease Unit, Animal and Plant Health Agency, Addlestone, Surrey, United Kingdom
| | - Marco Falchieri
- Virology Department, Animal and Plant Health Agency, Addlestone, Surrey, United Kingdom
| | - Nicola S. Lewis
- Department of Pathology and Population Sciences, Royal Veterinary College, University of London, Hertfordshire, United Kingdom
- Worldwide Influenza Centre, The Francis Crick Institute, London, United Kingdom
| | - Scott M. Reid
- Virology Department, Animal and Plant Health Agency, Addlestone, Surrey, United Kingdom
| | - Ian H. Brown
- Virology Department, Animal and Plant Health Agency, Addlestone, Surrey, United Kingdom
- WOAH/FAO International Reference Laboratory for Avian Influenza, Swine Influenza and Newcastle Disease, Animal and Plant Health Agency (APHA-Weybridge), Addlestone, Surrey, United Kingdom
| | - Ashley C. Banyard
- Virology Department, Animal and Plant Health Agency, Addlestone, Surrey, United Kingdom
- WOAH/FAO International Reference Laboratory for Avian Influenza, Swine Influenza and Newcastle Disease, Animal and Plant Health Agency (APHA-Weybridge), Addlestone, Surrey, United Kingdom
| |
Collapse
|
7
|
Zhang Z, Nishimura A, Trovão NS, Cherry JL, Holbrook AJ, Ji X, Lemey P, Suchard MA. Accelerating Bayesian inference of dependency between mixed-type biological traits. PLoS Comput Biol 2023; 19:e1011419. [PMID: 37639445 PMCID: PMC10491301 DOI: 10.1371/journal.pcbi.1011419] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2022] [Revised: 09/08/2023] [Accepted: 08/09/2023] [Indexed: 08/31/2023] Open
Abstract
Inferring dependencies between mixed-type biological traits while accounting for evolutionary relationships between specimens is of great scientific interest yet remains infeasible when trait and specimen counts grow large. The state-of-the-art approach uses a phylogenetic multivariate probit model to accommodate binary and continuous traits via a latent variable framework, and utilizes an efficient bouncy particle sampler (BPS) to tackle the computational bottleneck-integrating many latent variables from a high-dimensional truncated normal distribution. This approach breaks down as the number of specimens grows and fails to reliably characterize conditional dependencies between traits. Here, we propose an inference pipeline for phylogenetic probit models that greatly outperforms BPS. The novelty lies in 1) a combination of the recent Zigzag Hamiltonian Monte Carlo (Zigzag-HMC) with linear-time gradient evaluations and 2) a joint sampling scheme for highly correlated latent variables and correlation matrix elements. In an application exploring HIV-1 evolution from 535 viruses, the inference requires joint sampling from an 11,235-dimensional truncated normal and a 24-dimensional covariance matrix. Our method yields a 5-fold speedup compared to BPS and makes it possible to learn partial correlations between candidate viral mutations and virulence. Computational speedup now enables us to tackle even larger problems: we study the evolution of influenza H1N1 glycosylations on around 900 viruses. For broader applicability, we extend the phylogenetic probit model to incorporate categorical traits, and demonstrate its use to study Aquilegia flower and pollinator co-evolution.
Collapse
Affiliation(s)
- Zhenyu Zhang
- Department of Biostatistics, Fielding School of Public Health, University of California Los Angeles, Los Angeles, California, United States of America
| | - Akihiko Nishimura
- Department of Biostatistics, Bloomberg School of Public Health, Johns Hopkins University, Baltimore, Maryland, United States of America
| | - Nídia S. Trovão
- Division of International Epidemiology and Population Studies, Fogarty International Center, National Institutes of Health, Bethesda, Maryland, United States of America
| | - Joshua L. Cherry
- Division of International Epidemiology and Population Studies, Fogarty International Center, National Institutes of Health, Bethesda, Maryland, United States of America
- National Center for Biotechnology Information, National Library of Medicine, National Institutes of Health, Bethesda, Maryland, United States of America
| | - Andrew J. Holbrook
- Department of Biostatistics, Fielding School of Public Health, University of California Los Angeles, Los Angeles, California, United States of America
| | - Xiang Ji
- Department of Mathematics, Tulane University, New Orleans, Louisiana, United States of America
| | - Philippe Lemey
- Department of Microbiology, Immunology and Transplantation, Rega Institute, KU Leuven, Leuven, Belgium
| | - Marc A. Suchard
- Department of Biostatistics, Fielding School of Public Health, University of California Los Angeles, Los Angeles, California, United States of America
- Department of Biomathematics, University of California Los Angeles, Los Angeles, California, United States of America
- Department of Human Genetics, University of California Los Angeles, Los Angeles, California, United States of America
| |
Collapse
|
8
|
Delabouglise A, Fournié G, Peyre M, Antoine-Moussiaux N, Boni MF. Elasticity and substitutability of food demand and emerging disease risk on livestock farms. ROYAL SOCIETY OPEN SCIENCE 2023; 10:221304. [PMID: 36938540 PMCID: PMC10014248 DOI: 10.1098/rsos.221304] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/10/2022] [Accepted: 02/20/2023] [Indexed: 06/18/2023]
Abstract
Disease emergence in livestock is a product of environment, epidemiology and economic forces. The environmental factors contributing to novel pathogen emergence in humans have been studied extensively, but the two-way relationship between farm microeconomics and outbreak risk has received comparably little attention. We introduce a game-theoretic model where farmers produce and sell two goods, one of which (e.g. pigs, poultry) is susceptible to infection by a pathogen. We model market and epidemiological effects at both the individual farm level and the community level. We find that in the case of low demand elasticity for livestock meat, the presence of an animal pathogen causing production losses can lead to a bistable system where two outcomes are possible: (i) successful disease control or (ii) maintained disease circulation, where farmers slaughter their animals at a low rate, face substantial production losses, but maintain large herds because of the appeal of high meat prices. Our observations point to the potentially critical effect of price elasticity of demand for livestock products on the success or failure of livestock disease control policies. We show the potential epidemiological benefits of (i) policies aimed at stabilizing livestock product prices, (ii) subsidies for alternative agricultural activities during epidemics, and (iii) diversifying agricultural production and sources of proteins available to consumers.
Collapse
Affiliation(s)
- Alexis Delabouglise
- CIRAD, UMR ASTRE, Montpellier 34398, France
- UMR ASTRE, University of Montpellier, CIRAD, INRAE, Montpellier, France
| | - Guillaume Fournié
- Department of Pathobiology and Population Sciences, Royal Veterinary College, Veterinary Epidemiology, Economics and Public Health Group, University of London, Hawkshead Lane, Hatfield, Hertfordshire AL97TA, UK
- Universitá de Lyon, INRAE, VetAgro Sup, UMR EPIA, Marcy l'Etoile, France
- Université Clermont Auvergne, INRAE, VetAgro Sup, UMR EPIA, Saint Genes Champanelle, France
| | - Marisa Peyre
- CIRAD, UMR ASTRE, Montpellier 34398, France
- UMR ASTRE, University of Montpellier, CIRAD, INRAE, Montpellier, France
| | - Nicolas Antoine-Moussiaux
- FARAH-Fundamental and Applied Research for Animals and Health, University of Liège, Avenue de Cureghem 7A-7D, Liège 4000, Belgium
| | - Maciej F. Boni
- Department of Biology, Center for Infectious Disease Dynamics, Pennsylvania State University, University Park, PA 16802, USA
| |
Collapse
|
9
|
Katayama M, Onuma M, Kato N, Nakajima N, Fukuda T. Organoids containing neural-like cells derived from chicken iPSCs respond to poly:IC through the RLR family. PLoS One 2023; 18:e0285356. [PMID: 37141289 PMCID: PMC10159107 DOI: 10.1371/journal.pone.0285356] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2023] [Accepted: 04/20/2023] [Indexed: 05/05/2023] Open
Abstract
There is still much room for development in pluripotent stem cell research on avian species compared to human stem cell studies. Neural cells are useful for the evaluation of risk assessment of infectious diseases since several avian species die of encephalitis derived from infectious diseases. In this study, we attempted to develop induced pluripotent stem cells (iPSCs) technology for avian species by forming organoids containing neural-like cells. In our previous study, we established two types iPSCs from chicken somatic cells, the first is iPSCs with PB-R6F reprogramming vector and the second is iPSCs with PB-TAD-7F reprogramming vector. In this study, we first compared the nature of these two cell types using RNA-seq analysis. The total gene expression of iPSCs with PB-TAD-7F was closer to that of chicken ESCs than that of iPSCs with PB-R6F; therefore, we used iPSCs with PB-TAD-7F to form organoids containing neural-like cells. We successfully established organoids containing neural-like cells from iPSCs using PB-TAD-7F. Furthermore, our organoids responded to poly:IC through the RIG-I-like receptor (RLR) family. In this study, we developed iPSCs technology for avian species via organoid formation. In the future, organoids containing neural-like cells from avian iPSCs can develop as a new evaluation tool for infectious disease risk in avian species, including endangered avian species.
Collapse
Affiliation(s)
- Masafumi Katayama
- Biodiversity Division, National Institute for Environmental Studies, Onogawa, Tsukuba, Ibaraki, Japan
| | - Manabu Onuma
- Biodiversity Division, National Institute for Environmental Studies, Onogawa, Tsukuba, Ibaraki, Japan
| | - Noriko Kato
- Biodiversity Division, National Institute for Environmental Studies, Onogawa, Tsukuba, Ibaraki, Japan
| | - Nobuyoshi Nakajima
- Biodiversity Division, National Institute for Environmental Studies, Onogawa, Tsukuba, Ibaraki, Japan
| | - Tomokazu Fukuda
- Graduate School of Science and Engineering, Iwate University, Ueda, Morioka-city, Japan
| |
Collapse
|
10
|
Rosenberg NA, Boni MF. Mathematical epidemiology for a later age. Theor Popul Biol 2022; 144:81-83. [PMID: 35247319 PMCID: PMC8890614 DOI: 10.1016/j.tpb.2022.02.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
11
|
Temporal Dynamics of Influenza A(H5N1) Subtype before and after the Emergence of H5N8. Viruses 2021; 13:v13081565. [PMID: 34452430 PMCID: PMC8412109 DOI: 10.3390/v13081565] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2021] [Revised: 07/30/2021] [Accepted: 08/02/2021] [Indexed: 01/10/2023] Open
Abstract
Highly pathogenic avian influenza (HPAI) viruses continue to circulate worldwide, causing numerous outbreaks among bird species and severe public health concerns. H5N1 and H5N8 are the two most fundamental HPAI subtypes detected in birds in the last two decades. The two viruses may compete with each other while sharing the same host population and, thus, suppress the spread of one of the viruses. In this study, we performed a statistical analysis to investigate the temporal correlation of the HPAI H5N1 and HPAI H5N8 subtypes using globally reported data in 2015-2020. This was joined with an in-depth analysis using data generated via our national surveillance program in Egypt. A total of 6412 outbreaks were reported worldwide during this period, with 39% (2529) as H5N1 and 61% (3883) as H5N8. In Egypt, 65% of positive cases were found in backyards, while only 12% were found in farms and 23% in live bird markets. Overall, our findings depict a trade-off between the number of positive H5N1 and H5N8 samples around early 2017, which is suggestive of the potential replacement between the two subtypes. Further research is still required to elucidate the underpinning mechanisms of this competitive dynamic. This, in turn, will implicate the design of effective strategies for disease control.
Collapse
|
12
|
Epidemiology, Genetic Characterization, and Pathogenesis of Avian Influenza H5N8 Viruses Circulating in Northern and Southern Parts of Egypt, 2017-2019. Animals (Basel) 2021; 11:ani11082208. [PMID: 34438666 PMCID: PMC8388380 DOI: 10.3390/ani11082208] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2021] [Revised: 07/16/2021] [Accepted: 07/21/2021] [Indexed: 12/14/2022] Open
Abstract
Simple Summary During 2020–2021, highly pathogenic avian influenza (HPAI) viruses of subtype H5N8 were spreading rapidly, and two genetically distinct lineages were detected in Europe, the Middle East, and Southeast Asia. HPAI H5N8 viruses have been circulating in Egyptian poultry flocks since 2016. In this study, 74 commercial chicken farms tested positive for HPAI H5N8 virus. Genetic characterization of the hemagglutinin (HA) and the neuraminidase (NA) of Egyptian HPAI H5N8 viruses showed a relationship with those recently isolated in Europe. Abstract Highly pathogenic avian influenza (HPAI) viruses of subtype H5N8 continue to circulate, causing huge economic losses and serious impact on poultry production worldwide. Recently, HPAIV H5N8 has been spreading rapidly, and a large number of HPAI H5N8 outbreaks have been reported in Eurasia 2020–2021. In this study, we conducted an epidemiological survey of HPAI H5N8 virus at different geographical locations in Egypt from 2017 to 2019. This was followed by genetic and pathogenic studies. Our findings highlight the wide spread of HPAI H5N8 viruses in Egypt, including in 22 governorates. The genetic analyses of the hemagglutinin (HA) and neuraminidase (NA) gene segments emphasized a phylogenetic relatedness between the Egyptian HPAI H5N8 viruses and viruses of clade 2.3.4.4b recently isolated in Europe. These findings suggest that a potential back transmission of Egyptian HPAI H5N8 virus has occurred from domestic poultry in Egypt to migratory wild birds, followed by further spread to different countries. This highlights the importance of continuous epidemiological and genetic studies of AIVs at the domestic–wild bird interface.
Collapse
|
13
|
Das PK, Samanta I. Role of backyard poultry in South-East Asian countries: post COVID-19 perspective. WORLD POULTRY SCI J 2021. [DOI: 10.1080/00439339.2021.1893620] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Affiliation(s)
- P. K. Das
- Department of Veterinary Physiology, West Bengal University of Animal & Fishery Science, Kolkata, West Bengal, India
| | - I. Samanta
- Department of Veterinary Microbiology, West Bengal University of Animal & Fishery Sciences, Kolkata, West Bengal, India
| |
Collapse
|
14
|
Ayala AJ, Yabsley MJ, Hernandez SM. A Review of Pathogen Transmission at the Backyard Chicken-Wild Bird Interface. Front Vet Sci 2020; 7:539925. [PMID: 33195512 PMCID: PMC7541960 DOI: 10.3389/fvets.2020.539925] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2020] [Accepted: 08/13/2020] [Indexed: 01/31/2023] Open
Abstract
Habitat conversion and the expansion of domesticated, invasive species into native habitats are increasingly recognized as drivers of pathogen emergence at the agricultural-wildlife interface. Poultry agriculture is one of the largest subsets of this interface, and pathogen spillover events between backyard chickens and wild birds are becoming more commonly reported. Native wild bird species are under numerous anthropogenic pressures, but the risks of pathogen spillover from domestic chickens have been historically underappreciated as a threat to wild birds. Now that the backyard chicken industry is one of the fastest growing industries in the world, it is imperative that the principles of biosecurity, specifically bioexclusion and biocontainment, are legislated and implemented. We reviewed the literature on spillover events of pathogens historically associated with poultry into wild birds. We also reviewed the reasons for biosecurity failures in backyard flocks that lead to those spillover events and provide recommendations for current and future backyard flock owners.
Collapse
Affiliation(s)
- Andrea J. Ayala
- Department of Population Health, College of Veterinary Medicine, University of Georgia, Athens, GA, United States
| | - Michael J. Yabsley
- Daniel B. Warnell School of Forestry and Natural Resources, University of Georgia, Athens, GA, United States
- Southeastern Cooperative Wildlife Disease Study, Athens, GA, United States
| | - Sonia M. Hernandez
- Daniel B. Warnell School of Forestry and Natural Resources, University of Georgia, Athens, GA, United States
- Southeastern Cooperative Wildlife Disease Study, Athens, GA, United States
| |
Collapse
|
15
|
Li QY, Xu MM, Dong H, Zhao JH, Xing JH, Wang G, Yao JY, Huang HB, Shi CW, Jiang YL, Wang JZ, Kang YH, Ullah N, Yang WT, Yang GL, Wang CF. Lactobacillus plantarum surface-displayed influenza antigens (NP-M2) with FliC flagellin stimulate generally protective immune responses against H9N2 influenza subtypes in chickens. Vet Microbiol 2020; 249:108834. [PMID: 32919197 DOI: 10.1016/j.vetmic.2020.108834] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2020] [Accepted: 08/23/2020] [Indexed: 01/11/2023]
Abstract
The H9N2 avian influenza virus (AIV) causes serious economic losses to the poultry industry every year. Vaccines that induce a mucosal immune response may be successful against influenza virus infection because its transmission occurs primarily in the mucosa. To develop novel and potent oral vaccines based on Lactobacillus plantarum (L. plantarum) to control the spread of AIV in poultry industry, in the present study, we constructed and expressed fusions of the influenza antigens NP and M2 with the Salmonella Typhimurium flagellinprotein FliC on the surface of L. plantarum. Oral immunization of chicks was performed, and serum antibodies, mucosal antibodies, and specific cellular immunity were detected. Immunizing chicks with avian influenza virus was evaluated. The results showed high levels of IgG in addition to high levels of secretory immunoglobulin A (sIgA) in chickens orally administered recombinant L. plantarum. In addition, the fusion may significantly increase the levels of NP- and M2-specific T cell-mediated immunity in the case of mucosal administration of NC8-pSIP409-pgsA'-NP-M2-FliC. Recombinant NC8-pSIP409-pgsA'-NP-M2-FliC mediated effectively protected chickens against influenza virus and reduced virus titers in the lung. Our study outcomes indicate that the expression of influenza NP-M2 and a mucosal adjuvant (FliC), by L. plantarum could generate a mucosal vaccine candidate for animals in the future to defend against AIVs.
Collapse
Affiliation(s)
- Qiong-Yan Li
- College of Animal Science and Technology, College of Veterinary Medicine, Jilin Provincial Engineering Research Center of Animal Probiotics, Key Laboratory of Animal Production and Product Quality Safety of Ministry of Education, Jilin Agricultural University, Changchun, China
| | - Man-Man Xu
- College of Animal Science and Technology, College of Veterinary Medicine, Jilin Provincial Engineering Research Center of Animal Probiotics, Key Laboratory of Animal Production and Product Quality Safety of Ministry of Education, Jilin Agricultural University, Changchun, China
| | - Hang Dong
- College of Animal Science and Technology, College of Veterinary Medicine, Jilin Provincial Engineering Research Center of Animal Probiotics, Key Laboratory of Animal Production and Product Quality Safety of Ministry of Education, Jilin Agricultural University, Changchun, China
| | - Jin-Hui Zhao
- College of Animal Science and Technology, College of Veterinary Medicine, Jilin Provincial Engineering Research Center of Animal Probiotics, Key Laboratory of Animal Production and Product Quality Safety of Ministry of Education, Jilin Agricultural University, Changchun, China
| | - Jun-Hong Xing
- College of Animal Science and Technology, College of Veterinary Medicine, Jilin Provincial Engineering Research Center of Animal Probiotics, Key Laboratory of Animal Production and Product Quality Safety of Ministry of Education, Jilin Agricultural University, Changchun, China
| | - Guan Wang
- College of Animal Science and Technology, College of Veterinary Medicine, Jilin Provincial Engineering Research Center of Animal Probiotics, Key Laboratory of Animal Production and Product Quality Safety of Ministry of Education, Jilin Agricultural University, Changchun, China
| | - Jia-Yun Yao
- College of Animal Science and Technology, College of Veterinary Medicine, Jilin Provincial Engineering Research Center of Animal Probiotics, Key Laboratory of Animal Production and Product Quality Safety of Ministry of Education, Jilin Agricultural University, Changchun, China; Agriculture Ministry Key Laboratory of Healthy Freshwater Aquaculture, Key Laboratory of Fish Health and Nutrition of Zhejiang Province, Zhejiang Institute of Freshwater Fisheries, Huzhou, China
| | - Hai-Bin Huang
- College of Animal Science and Technology, College of Veterinary Medicine, Jilin Provincial Engineering Research Center of Animal Probiotics, Key Laboratory of Animal Production and Product Quality Safety of Ministry of Education, Jilin Agricultural University, Changchun, China
| | - Chun-Wei Shi
- College of Animal Science and Technology, College of Veterinary Medicine, Jilin Provincial Engineering Research Center of Animal Probiotics, Key Laboratory of Animal Production and Product Quality Safety of Ministry of Education, Jilin Agricultural University, Changchun, China
| | - Yan-Long Jiang
- College of Animal Science and Technology, College of Veterinary Medicine, Jilin Provincial Engineering Research Center of Animal Probiotics, Key Laboratory of Animal Production and Product Quality Safety of Ministry of Education, Jilin Agricultural University, Changchun, China
| | - Jian-Zhong Wang
- College of Animal Science and Technology, College of Veterinary Medicine, Jilin Provincial Engineering Research Center of Animal Probiotics, Key Laboratory of Animal Production and Product Quality Safety of Ministry of Education, Jilin Agricultural University, Changchun, China
| | - Yuan-Huan Kang
- College of Animal Science and Technology, College of Veterinary Medicine, Jilin Provincial Engineering Research Center of Animal Probiotics, Key Laboratory of Animal Production and Product Quality Safety of Ministry of Education, Jilin Agricultural University, Changchun, China
| | - Naveed Ullah
- College of Animal Science and Technology, College of Veterinary Medicine, Jilin Provincial Engineering Research Center of Animal Probiotics, Key Laboratory of Animal Production and Product Quality Safety of Ministry of Education, Jilin Agricultural University, Changchun, China
| | - Wen-Tao Yang
- College of Animal Science and Technology, College of Veterinary Medicine, Jilin Provincial Engineering Research Center of Animal Probiotics, Key Laboratory of Animal Production and Product Quality Safety of Ministry of Education, Jilin Agricultural University, Changchun, China.
| | - Gui-Lian Yang
- College of Animal Science and Technology, College of Veterinary Medicine, Jilin Provincial Engineering Research Center of Animal Probiotics, Key Laboratory of Animal Production and Product Quality Safety of Ministry of Education, Jilin Agricultural University, Changchun, China.
| | - Chun-Feng Wang
- College of Animal Science and Technology, College of Veterinary Medicine, Jilin Provincial Engineering Research Center of Animal Probiotics, Key Laboratory of Animal Production and Product Quality Safety of Ministry of Education, Jilin Agricultural University, Changchun, China.
| |
Collapse
|
16
|
Delabouglise A, Thanh NTL, Xuyen HTA, Nguyen-Van-Yen B, Tuyet PN, Lam HM, Boni MF. Poultry farmer response to disease outbreaks in smallholder farming systems in southern Vietnam. eLife 2020; 9:59212. [PMID: 32840482 PMCID: PMC7505654 DOI: 10.7554/elife.59212] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2020] [Accepted: 08/21/2020] [Indexed: 01/24/2023] Open
Abstract
Avian influenza outbreaks have been occurring on smallholder poultry farms in Asia for two decades. Farmer responses to these outbreaks can slow down or accelerate virus transmission. We used a longitudinal survey of 53 small-scale chicken farms in southern Vietnam to investigate the impact of outbreaks with disease-induced mortality on harvest rate, vaccination, and disinfection behaviors. We found that in small broiler flocks (≤16 birds/flock) the estimated probability of harvest was 56% higher when an outbreak occurred, and 214% higher if an outbreak with sudden deaths occurred in the same month. Vaccination and disinfection were strongly and positively correlated with the number of birds. Small-scale farmers – the overwhelming majority of poultry producers in low-income countries – tend to rely on rapid sale of birds to mitigate losses from diseases. As depopulated birds are sent to markets or trading networks, this reactive behavior has the potential to enhance onward transmission. The past few decades have seen the circulation of avian influenza viruses increase in domesticated poultry, regularly creating outbreaks associated with heavy economic loss. In addition, these viruses can sometimes ‘jump’ into humans, potentially allowing new diseases – including pandemics – to emerge. The Mekong river delta, in southern Vietnam, is one of the regions with the highest circulation of avian influenza. There, a large number of farmers practice poultry farming on a small scale, with limited investments in disease prevention such as vaccination or disinfection. Yet, it was unclear how the emergence of an outbreak could change the behavior of farmers. To learn more, Delabouglise et al. monitored 53 poultry farms, with fewer than 1000 chickens per farm, monthly for over a year and a half. In particular, they tracked when outbreaks occurred on each farm, and how farmers reacted. Overall, poultry farms with more than 17 chickens were more likely to vaccinate their animals and use disinfection practices than smaller farms. However, disease outbreaks did not affect vaccination or disinfection practices. When an outbreak occurred, farmers with fewer than 17 chickens tended to sell their animals earlier. For instance, they were 214% more likely to send their animals to market if an outbreak with sudden deaths occurred that month. Even if they do not make as much money selling immature individuals, this strategy may allow them to mitigate economical loss: they can sell animals that may die soon, saving on feeding costs and potentially avoiding further contamination. However, as animals were often sold alive in markets or to itinerant sellers, this practice increases the risk of spreading diseases further along the trade circuits. These data could be most useful to regional animal health authorities, which have detailed knowledge of local farming systems and personal connections in the communities where they work. This can allow them to effect change. They could work with small poultry farmers to encourage them to adopt efficient disease management strategies. Ultimately, this could help control the spread of avian influenza viruses, and potentially help to avoid future pandemics.
Collapse
Affiliation(s)
- Alexis Delabouglise
- Center for Infectious Diseases Dynamics, The Pennsylvania State University, University Park, United States.,UMR ASTRE, CIRAD, INRAE, Université de Montpellier, Montpellier, France
| | - Nguyen Thi Le Thanh
- Wellcome Trust Major Overseas Programme, Oxford University Clinical Research Unit, Ho Chi Minh City, Viet Nam
| | - Huynh Thi Ai Xuyen
- Ca Mau sub-Department of Livestock Production and Animal Health, Ca Mau, Viet Nam
| | - Benjamin Nguyen-Van-Yen
- Wellcome Trust Major Overseas Programme, Oxford University Clinical Research Unit, Ho Chi Minh City, Viet Nam.,École Normale Supérieure, CNRS UMR 8197, Paris, France
| | - Phung Ngoc Tuyet
- Ca Mau sub-Department of Livestock Production and Animal Health, Ca Mau, Viet Nam
| | - Ha Minh Lam
- Wellcome Trust Major Overseas Programme, Oxford University Clinical Research Unit, Ho Chi Minh City, Viet Nam.,Centre for Tropical Medicine and Global Health, Nuffield Department of Medicine, University of Oxford, Oxford, United Kingdom
| | - Maciej F Boni
- Center for Infectious Diseases Dynamics, The Pennsylvania State University, University Park, United States.,Wellcome Trust Major Overseas Programme, Oxford University Clinical Research Unit, Ho Chi Minh City, Viet Nam.,Centre for Tropical Medicine and Global Health, Nuffield Department of Medicine, University of Oxford, Oxford, United Kingdom
| |
Collapse
|
17
|
Indrawan D, Cahyadi ER, Daryanto A, Hogeveen H. The role of farm business type on biosecurity practices in West Java broiler farms. Prev Vet Med 2020; 176:104910. [PMID: 32032799 DOI: 10.1016/j.prevetmed.2020.104910] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2018] [Revised: 01/29/2020] [Accepted: 01/29/2020] [Indexed: 11/19/2022]
Abstract
Biosecurity is important to prevent introduction and spread of infectious diseases, including Highly Pathogenic Avian Influenza (HPAI). HPAI is currently endemic in Indonesia and it has triggered the adoption of a biosecurity policy. Although there is anecdotal evidence about the level of biosecurity on Indonesian broiler farms, formal evidence is lacking, as well as knowledge about determinants of low biosecurity levels. This paper has two main objectives: 1) to assess the levels of biosecurity measures across different farm business types, and (2) to analyze the determining factors, with a special reference to farm business type, for the level of biosecurity and the availability of biosecurity infrastructure in the West Java poultry farms. A multi-stage sampling procedure was applied to collect data from approximately 400 broiler farmers in four districts in West Java province, namely Ciamis, Tasikmalaya, Subang and Sukabumi. Data were collected through farmer interviews and direct observation at the farms. The Biosecurity Control Score (BCS), consisting of 16 practice indicators, and the Farm Infrastructures for Biosecurity (FIB) list consisting of 16 building or physical set-ups as biosecurity facilities were used to assess the level of biosecurity. Determinants of biosecurity measures were analyzed via tobit regression analysis. The results show that the BCS was associated with the total number of birds per cycle, and risk perception (P < 0.05). The BCS was significantly (P < 0.05) higher for the farm business types 'independent farming', 'price contract farming' and 'company' compared to the 'makloon contract farming' business type (farming for a fee). Physical set-ups as farm infrastructure for biosecurity (FIB) were associated with the total number of birds per cycle, and with risk perception (P < 0.05). FIB was significantly (P < 0.05) higher for the farm business types 'independent farming', 'price contract farming' and 'company' compared to makloon contract farming. The results of this study suggest that business types play a significant role in determining biosecurity practices; a makloon contract farm (farming for a fee) tends to have a lower level of biosecurity than other business types due to lack of incentives. Consequently, in developing incentives for improved biosecurity measures. policymakers should encourage farm registration, and at the same time develop incentives that support the independent and price contract farming.
Collapse
Affiliation(s)
- Dikky Indrawan
- Business Economics, Department of Social Sciences Wageningen UR, Hollandseweg 1 Building 201 P.O. Box 8130, 6700 EW, Wageningen, The Netherlands; School of Business, IPB University (Bogor Agricultural University), Jl. Raya Pajajaran, SB-IPB Building 16151, Bogor, Indonesia.
| | - Eko Ruddy Cahyadi
- Department Management, Faculty of Economic and Management, IPB University (Bogor Agricultural University), Jl. Agatis, 16680, Bogor, Indonesia
| | - Arief Daryanto
- School of Business, IPB University (Bogor Agricultural University), Jl. Raya Pajajaran, SB-IPB Building 16151, Bogor, Indonesia
| | - Henk Hogeveen
- Business Economics, Department of Social Sciences Wageningen UR, Hollandseweg 1 Building 201 P.O. Box 8130, 6700 EW, Wageningen, The Netherlands; Department of Farm Animal Health-Epidemiology, Utrecht University, Yalelaan 7, 84 CL, Utrecht, The Netherlands
| |
Collapse
|
18
|
Delabouglise A, Boni MF. Game theory of vaccination and depopulation for managing livestock diseases and zoonoses on small-scale farms. Epidemics 2019; 30:100370. [PMID: 31587878 DOI: 10.1016/j.epidem.2019.100370] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2019] [Revised: 09/05/2019] [Accepted: 09/05/2019] [Indexed: 11/26/2022] Open
Abstract
Livestock producers adapt their farm management to epidemiological risks in different ways, through veterinary interventions but also by modulating their farm size and the removal rate of animals. The objective of this theoretical study was to elucidate how these behavioral adaptations may affect the epidemiology of highly-pathogenic avian influenza in domestic poultry and the outcome of the implemented control policies. We studied a symmetric population game where the players are broiler poultry farmers at risk of infection and where the between-farms disease transmission is both environmental and mediated by poultry trade. Three types of farmer behaviors were modelled: vaccination, depopulation, and cessation of poultry farming. We found that the transmission level of the disease through trade networks has strong qualitative effects on the system's epidemiological-economic equilibria. In the case of low trade-based transmission, when the monetary cost of infection is high, depopulation behavior can maintain a stable disease-free equilibrium. In addition, vaccination behavior can lead to eradication by private incentives alone - an outcome not seen for human diseases. In a scenario of high trade-based transmission, depopulation behavior has perverse epidemiological effects as it accelerates the spread of disease via poultry trade. In this situation, state interventions should focus on making vaccination technologies available at a low price rather than penalizing infected farms.
Collapse
Affiliation(s)
- Alexis Delabouglise
- Center for Infectious Disease Dynamics, Department of Biology, Pennsylvania State University, University Park, PA 16802, USA.
| | - Maciej F Boni
- Center for Infectious Disease Dynamics, Department of Biology, Pennsylvania State University, University Park, PA 16802, USA
| |
Collapse
|
19
|
Germeraad EA, Sanders P, Hagenaars TJ, Jong MCMD, Beerens N, Gonzales JL. Virus Shedding of Avian Influenza in Poultry: A Systematic Review and Meta-Analysis. Viruses 2019; 11:v11090812. [PMID: 31480744 PMCID: PMC6784017 DOI: 10.3390/v11090812] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2019] [Revised: 08/14/2019] [Accepted: 08/21/2019] [Indexed: 11/19/2022] Open
Abstract
Understanding virus shedding patterns of avian influenza virus (AIV) in poultry is important for understanding host-pathogen interactions and developing effective control strategies. Many AIV strains were studied in challenge experiments in poultry, but no study has combined data from those studies to identify general AIV shedding patterns. These systematic review and meta-analysis were performed to summarize qualitative and quantitative information on virus shedding levels and duration for different AIV strains in experimentally infected poultry species. Methods were designed based on the Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA) guidelines. Four electronic databases were used to collect literature. A total of 1155 abstract were screened, with 117 studies selected for the qualitative analysis and 71 studies for the meta-analysis. A large heterogeneity in experimental methods was observed and the quantitative analysis showed that experimental variables such as species, virus origin, age, inoculation route and dose, affect virus shedding (mean, peak and duration) for highly pathogenic AIV (HPAIV), low pathogenic AIV (LPAIV) or both. In conclusion, this study highlights the need to standardize experimental procedures, it provides a comprehensive summary of the shedding patterns of AIV strains by infected poultry and identifies the variables that influence the level and duration of AIV shedding.
Collapse
Affiliation(s)
- Evelien A Germeraad
- Department of Virology, Wageningen Bioveterinary Research (WBVR), P.O. Box 65, 8200 AB Lelystad, The Netherlands.
| | - Pim Sanders
- Department of Bacteriology and Epidemiology, WBVR, P.O. Box 65, 8200 AB Lelystad, The Netherlands
- Quantitative Veterinary Epidemiology, Wageningen UR, P.O. Box 338, 6700AH Wageningen, The Netherlands
| | - Thomas J Hagenaars
- Department of Bacteriology and Epidemiology, WBVR, P.O. Box 65, 8200 AB Lelystad, The Netherlands
| | - Mart C M de Jong
- Quantitative Veterinary Epidemiology, Wageningen UR, P.O. Box 338, 6700AH Wageningen, The Netherlands
| | - Nancy Beerens
- Department of Virology, Wageningen Bioveterinary Research (WBVR), P.O. Box 65, 8200 AB Lelystad, The Netherlands
| | - Jose L Gonzales
- Department of Bacteriology and Epidemiology, WBVR, P.O. Box 65, 8200 AB Lelystad, The Netherlands
| |
Collapse
|
20
|
Delabouglise A, Nguyen-Van-Yen B, Thanh NTL, Xuyen HTA, Tuyet PN, Lam HM, Boni MF. Poultry population dynamics and mortality risks in smallholder farms of the Mekong river delta region. BMC Vet Res 2019; 15:205. [PMID: 31208467 PMCID: PMC6580564 DOI: 10.1186/s12917-019-1949-y] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2018] [Accepted: 06/04/2019] [Indexed: 12/22/2022] Open
Abstract
BACKGROUND Poultry farming is widely practiced by rural households in Vietnam and the vast majority of domestic birds are kept on small household farms. However, smallholder poultry production is constrained by several issues such as infectious diseases, including avian influenza viruses whose circulation remains a threat to public health. This observational study describes the demographic structure and dynamics of small-scale poultry farms of the Mekong river delta region. METHOD Fifty three farms were monitored over a 20-month period, with farm sizes, species, age, arrival/departure of poultry, and farm management practices recorded monthly. RESULTS Median flock population sizes were 16 for chickens (IQR: 10-40), 32 for ducks (IQR: 18-101) and 11 for Muscovy ducks (IQR: 7-18); farm size distributions for the three species were heavily right-skewed. Muscovy ducks were kept for long periods and outdoors, while chickens and ducks were farmed indoors or in pens. Ducks had a markedly higher removal rate (broilers: 0.14/week; layer/breeders: 0.05/week) than chickens and Muscovy ducks (broilers: 0.07/week; layer/breeders: 0.01-0.02/week) and a higher degree of specialization resulting in a substantially shorter life span. The rate of mortality due to disease did not differ much among species, with birds being less likely to die from disease at older ages, but frequency of disease symptoms differed by species. Time series of disease-associated mortality were correlated with population size for Muscovy ducks (Kendall's coefficient τ = 0.49, p-value < 0.01) and with frequency of outdoor grazing for ducks (τ = 0.33, p-value = 0.05). CONCLUSION The study highlights some challenges to disease control in small-scale multispecies poultry farms. The rate of interspecific contact and overlap between flocks of different ages is high, making small-scale farms a suitable environment for pathogens circulation. Muscovy ducks are farmed outdoors with little investment in biosecurity and few inter-farm movements. Ducks and chickens are more at-risk of introduction of pathogens through movements of birds from one farm to another. Ducks are farmed in large flocks with high turnover and, as a result, are more vulnerable to disease spread and require a higher vaccination coverage to maintain herd immunity.
Collapse
Affiliation(s)
- Alexis Delabouglise
- Center for Infectious Disease Dynamics, Department of Biology, Pennsylvania State University, Millenium Sciences Complex, Pollock road, University Park, PA, 16802, USA.
| | - Benjamin Nguyen-Van-Yen
- Oxford University Clinical Research Unit, Wellcome Trust Major Overseas Programme, Ho Chi Minh City, Vietnam.,École Normale Supérieure, CNRS UMR 8197, 46 rue d'Ulm, Paris, France
| | - Nguyen Thi Le Thanh
- Oxford University Clinical Research Unit, Wellcome Trust Major Overseas Programme, Ho Chi Minh City, Vietnam
| | - Huynh Thi Ai Xuyen
- Ca Mau sub-Department of Livestock Production and Animal Health, Ca Mau, Vietnam
| | - Phung Ngoc Tuyet
- Ca Mau sub-Department of Livestock Production and Animal Health, Ca Mau, Vietnam
| | - Ha Minh Lam
- Oxford University Clinical Research Unit, Wellcome Trust Major Overseas Programme, Ho Chi Minh City, Vietnam.,Center for Tropical Medicine and Global Health, Nuffield Department of Medicine, University of Oxford, Oxford, UK
| | - Maciej F Boni
- Center for Infectious Disease Dynamics, Department of Biology, Pennsylvania State University, Millenium Sciences Complex, Pollock road, University Park, PA, 16802, USA.,Oxford University Clinical Research Unit, Wellcome Trust Major Overseas Programme, Ho Chi Minh City, Vietnam.,Center for Tropical Medicine and Global Health, Nuffield Department of Medicine, University of Oxford, Oxford, UK
| |
Collapse
|
21
|
Hamilton-Webb A, Naylor R, Little R, Maye D. Compensation and exotic livestock disease management: the views of animal keepers and veterinarians in England. Vet Rec 2016; 179:513. [DOI: 10.1136/vr.103571] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/26/2016] [Indexed: 11/03/2022]
Affiliation(s)
- A. Hamilton-Webb
- Royal; Agricultural University, School of Real Estate and Land Management; Cirencester UK
| | - R. Naylor
- Royal; Agricultural University, School of Real Estate and Land Management; Cirencester UK
| | - R. Little
- Department of Geography; University of Sheffield; Sheffield UK
| | - D. Maye
- Countryside and Community Research Institute; Gloucester UK
| |
Collapse
|
22
|
Barnes AP, Moxey AP, Vosough Ahmadi B, Borthwick FA. The effect of animal health compensation on 'positive' behaviours towards exotic disease reporting and implementing biosecurity: A review, a synthesis and a research agenda. Prev Vet Med 2015; 122:42-52. [PMID: 26422364 DOI: 10.1016/j.prevetmed.2015.09.003] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2015] [Revised: 09/03/2015] [Accepted: 09/04/2015] [Indexed: 11/18/2022]
Abstract
With an increasing burden on public sector budgets, increased responsibility and cost sharing mechanisms for animal diseases are being considered. To achieve this, fiscal and non-fiscal intervention policies need to be designed such that they consistently promote positive disease risk management practices by animal keepers. This paper presents a review of the available evidence towards whether and how the level and type of funding mechanism affects change within biosecurity behaviours and the frequency of disease reporting. A Nuffield Health Ladder of Interventions approach is proposed as a way to frame the debate surrounding both current compensation mechanisms and how it is expected to change behaviour. Results of the review reveal a division between economic modelling approaches, which implicitly assume a causal link between payments and positive behaviours, and socio-geographic approaches which tend to ignore the influence of compensation mechanisms on influencing behaviours. Generally, economic studies suggest less than full compensation rates will encourage positive behaviours, but the non-economic literature indicate significant variation in response to compensation reflecting heterogeneity of livestock keepers in terms of their values, goals, risk attitudes, size of operation, animal species and production chain characteristics. This may be of encouragement to Western Governments seeking to shift cost burdens as it may induce greater targeting of non-fiscal mechanisms, or suggest more novel ways to augment current compensation mechanisms to both increase responsibility sharing and reduce this cost burden. This review suggests that a range of regulatory, fiscal and nudging policies are required to achieve socially optimal results with respect to positive behaviour change. However, the lack of directly available evidence which proves these causal links may hinder progress towards this optimal mixture of choice and non-choice based interventions.
Collapse
Affiliation(s)
- Andrew Peter Barnes
- Land Economy, Environment and Society Research Group, SRUC, West Mains Road, King's Buildings, EH9 3JG Edinburgh, UK.
| | | | - Bouda Vosough Ahmadi
- Land Economy, Environment and Society Research Group, SRUC, West Mains Road, King's Buildings, EH9 3JG Edinburgh, UK.
| | - Fiona Ann Borthwick
- Land Economy, Environment and Society Research Group, SRUC, West Mains Road, King's Buildings, EH9 3JG Edinburgh, UK.
| |
Collapse
|
23
|
A game-theoretic approach to valuating toxoplasmosis vaccination strategies. Theor Popul Biol 2015; 105:33-8. [PMID: 26319752 DOI: 10.1016/j.tpb.2015.08.003] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2014] [Revised: 07/02/2015] [Accepted: 08/17/2015] [Indexed: 12/21/2022]
Abstract
The protozoan Toxoplasma gondii is a parasite often found in wild and domestic cats, and it is the cause of the disease toxoplasmosis. More than 60 million people in the United States carry the parasite, and the Centers for Disease Control have placed toxoplasmosis in their disease classification group Neglected Parasitic Infections as one of five parasitic diseases targeted as priorities for public health action. In recent years, there has been significant progress toward the development of a practical vaccine, so vaccination programs may soon be a viable approach to controlling the disease. Anticipating the availability of a toxoplasmosis vaccine, we are interested in determining when cat owners should vaccinate their own pets. We have created a mathematical model describing the conditions under which vaccination is advantageous. Our model can be used to predict the average vaccination level in the population. We find that there is a critical vaccine cost threshold above which no one will use the vaccine. A vaccine cost slightly below this threshold, however, results in high usage of the vaccine, and consequently in a significant reduction in population seroprevalence. Not surprisingly, we find that populations may achieve herd immunity only if the cost of vaccine is zero.
Collapse
|
24
|
|
25
|
Wallace RG, Bergmann L, Kock R, Gilbert M, Hogerwerf L, Wallace R, Holmberg M. The dawn of Structural One Health: a new science tracking disease emergence along circuits of capital. Soc Sci Med 2014; 129:68-77. [PMID: 25311784 DOI: 10.1016/j.socscimed.2014.09.047] [Citation(s) in RCA: 67] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2013] [Revised: 08/07/2014] [Accepted: 09/24/2014] [Indexed: 01/30/2023]
Abstract
The One Health approach integrates health investigations across the tree of life, including, but not limited to, wildlife, livestock, crops, and humans. It redresses an epistemological alienation at the heart of much modern population health, which has long segregated studies by species. Up to this point, however, One Health research has also omitted addressing fundamental structural causes underlying collapsing health ecologies. In this critical review we unpack the relationship between One Health science and its political economy, particularly the conceptual and methodological trajectories by which it fails to incorporate social determinants of epizootic spillover. We also introduce a Structural One Health that addresses the research gap. The new science, open to incorporating developments across the social sciences, addresses foundational processes underlying multispecies health, including the place-specific deep-time histories, cultural infrastructure, and economic geographies driving disease emergence. We introduce an ongoing project on avian influenza to illustrate Structural One Health's scope and ambition. For the first time researchers are quantifying the relationships among transnational circuits of capital, associated shifts in agroecological landscapes, and the genetic evolution and spatial spread of a xenospecific pathogen.
Collapse
Affiliation(s)
| | - Luke Bergmann
- Department of Geography, University of Washington, USA
| | - Richard Kock
- Pathology & Pathogen Biology, The Royal Veterinary College, England, UK
| | - Marius Gilbert
- Biological Control and Spatial Ecology, Université Libre de Bruxelles, Belgium; Fonds National de la Recherche Scientifique, Belgium
| | - Lenny Hogerwerf
- Faculty of Veterinary Medicine, Department of Farm Animal Health, Utrecht University, The Netherlands
| | - Rodrick Wallace
- Division of Epidemiology, The New York State Psychiatric Institute, USA
| | | |
Collapse
|
26
|
|
27
|
Hassan L. Emerging Zoonoses in Domesticated Livestock of Southeast Asia. ENCYCLOPEDIA OF AGRICULTURE AND FOOD SYSTEMS 2014. [PMCID: PMC7152182 DOI: 10.1016/b978-0-444-52512-3.00216-3] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
Southeast Asia, identified as one of the hotspot for emerging and reemerging diseases is an area of emerging market with doubling population size within the next few years. The livestock industry is growing rapidly to cater for the population need via intensification and various diversification methods. This article discusses a few relevant emerging and emerging zoonoses within the past two decades and highlights the impact of these diseases to the animal industry and public health in the region.
Collapse
|