1
|
Fang W, Liu J, Lu N, Li R. The dynamics of nocturnal sap flow components of a typical revegetation shrub species on the semiarid Loess Plateau, China. FRONTIERS IN PLANT SCIENCE 2024; 15:1370362. [PMID: 38576789 PMCID: PMC10991760 DOI: 10.3389/fpls.2024.1370362] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/14/2024] [Accepted: 03/11/2024] [Indexed: 04/06/2024]
Abstract
Introduction The components of nighttime sap flux (En), which include transpiration (Qn) and stem water recharge (Rn), play important roles in water balance and drought adaptation in plant communities in water-limited regions. However, the quantitative and controlling factors of En components are unclear. Methods This study used the heat balance method to measure sap flow density in Vitex negundo on the Loess Plateau for a normal precipitation year (2021) and a wetter year (2022). Results The results showed that the mean values were 1.04 and 2.34 g h-1 cm-2 for Qn, 0.19 and 0.45 g h-1 cm-2 for Rn in 2021 and 2022, respectively, and both variables were greater in the wetter year. The mean contributions of Qn to En were 79.76% and 83.91% in 2021 and 2022, respectively, indicating that the En was mostly used for Qn. Although the vapor pressure deficit (VPD), air temperature (Ta) and soil water content (SWC) were significantly correlated with Qn and Rn on an hourly time scale, they explained a small fraction of the variance in Qn on a daily time scale. The main driving factor was SWC between 40-200 cm on a monthly time scale for the Qn and Rn variations. Rn was little affected by meteorological and SWC factors on a daily scale. During the diurnal course, Qn and Rn initially both declined after sundown because of decreasing VPD and Ta, and Qn was significantly greater than Rn, whereas the two variables increased when VPD was nearly zero and Ta decreased, and Rn was greater than Qn. Discussion These results provided a new understanding of ecophysiological responses and adaptation of V. negundo plantations to increasing drought severity and duration under climate changes.
Collapse
Affiliation(s)
- Weiwei Fang
- Key Research Institute of Yellow Civilization and Sustainable Development and Collaborative Innovation Center of Henan Province, Henan University, Kaifeng, China
| | - Jianbo Liu
- Tianjin Key Laboratory of Water Resources and Environment, Tianjin Normal University, Tianjin, China
| | - Nan Lu
- State Key Laboratory of Urban and Regional Ecology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Ruiping Li
- Key Research Institute of Yellow Civilization and Sustainable Development and Collaborative Innovation Center of Henan Province, Henan University, Kaifeng, China
| |
Collapse
|
2
|
Bruhn D, Faber AH, Cristophersen KS, Nielsen JS, Griffin KL. Measured leaf dark respiratory CO 2 -release is not controlled by stomatal conductance. PHYSIOLOGIA PLANTARUM 2024; 176:e14245. [PMID: 38450764 DOI: 10.1111/ppl.14245] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/09/2023] [Revised: 02/14/2024] [Accepted: 02/19/2024] [Indexed: 03/08/2024]
Abstract
Leaf dark respiratory CO2 -release (RD ) is, according to some literature, dependent on the rate of leaf transpiration. If this is true, then at a given vapor pressure deficit, the leaf stomatal conductance (gs ) will be expected to be a controlling factor of measured RD at any given time. We artificially lowered leaf gs by applying abscisic acid (ABA). Although leaf RD generally covaried temporally with gs , artificially lowering gs by applying ABA does not affect the measured leaf RD . These results indicate that observed diel fluctuations in gs are not directly influencing the measured leaf RD , thereby simplifying both future studies and the interpretation of past studies of the underlying environmental- and physiological drivers of temporal variation in leaf RD .
Collapse
Affiliation(s)
- Dan Bruhn
- Department of Chemistry and Bioscience, Aalborg University, Aalborg, Denmark
| | - Andreas H Faber
- Department of Chemistry and Bioscience, Aalborg University, Aalborg, Denmark
- Department of Ecoscience, Aarhus University, Aarhus, Denmark
| | | | | | - Kevin L Griffin
- Department of Earth and Environmental Sciences, Columbia University, Palisades, NY, USA
- Department of Ecology, Evolution and Environmental Biology, Columbia University, New York, NY, USA
- Lamont-Doherty Earth Observatory, Columbia University, Palisades, NY, USA
| |
Collapse
|
3
|
Feng W, Ma X, Yuan Z, Li W, Yan Y, Yang W. An Experimental Investigation of the Precipitation Utilization of Plants in Arid Regions. PLANTS (BASEL, SWITZERLAND) 2024; 13:594. [PMID: 38475440 DOI: 10.3390/plants13050594] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/22/2023] [Revised: 01/01/2024] [Accepted: 01/12/2024] [Indexed: 03/14/2024]
Abstract
What represents a water source for the ecological restoration of a plant in an arid region is still up to debate. To address this issue, we conducted an in situ experiment in the Ulan Buh Desert of China, to study desert plants absorbing atmospheric water vapor. We selected Tamarisk, a common drought-salt-tolerant species in the desert, for ecological restoration as our research subject, used a newly designed lysimeter to monitor precipitation infiltration, and a sap flow system to track reverse sap flow that occurred in the shoot, branch, and stem during the precipitation event, and observed the precipitation redistribution process of the Tamarisk plot. The results showed that Tamarisk indeed directly absorbs precipitation water: when precipitation occurs, the main stem, lateral branch, and shoot all show the signs of reversed sap flow, and the reversed sap flow accounted for 21.5% of the annual sap flow in the shoot and branch, and 13.6% in the stem. The precipitation event in the desert was dominated by light precipitation events, which accounted for 81% of the annual precipitation events. It was found that light precipitation can be directly absorbed by the Tamarisk leaves, especially during nighttime or cloudy days. Even when the precipitation is absent, it was found that desert plants can still absorb water from the unsaturated atmospheric vapor; even the absorbed atmospheric water vapor was transported from the leaves to the stem, forming a reversed sap flow, as a reversed sap flow was observed when the atmospheric relative humidity reached 75%. This study indicated that the effect of light precipitation on desert plants was significant and should not be overlooked in terms of managing the ecological and hydrological systems in arid regions.
Collapse
Affiliation(s)
- Wei Feng
- Department of Livestock, Xilingol Vocational College, Xilinhot 026000, China
- Institute of Ecological Protection and Restoration, China Academy of Forestry, Beijing 100093, China
- School of Soil and Water Conservation, Beijing Forestry University, Beijing 100083, China
| | - Xiaoxu Ma
- School of Soil and Water Conservation, Beijing Forestry University, Beijing 100083, China
| | - Zixuan Yuan
- School of Soil and Water Conservation, Beijing Forestry University, Beijing 100083, China
| | - Wei Li
- Institute of Ecological Protection and Restoration, China Academy of Forestry, Beijing 100093, China
| | - Yujie Yan
- School of Soil and Water Conservation, Beijing Forestry University, Beijing 100083, China
| | - Wenbin Yang
- Low-Coverage Sand Control Company, Hohhot 010000, China
| |
Collapse
|
4
|
Yang Y, He T, Ravindran P, Wen F, Krishnamurthy P, Wang L, Zhang Z, Kumar PP, Chae E, Lee C. All-organic transparent plant e-skin for noninvasive phenotyping. SCIENCE ADVANCES 2024; 10:eadk7488. [PMID: 38363835 PMCID: PMC10871535 DOI: 10.1126/sciadv.adk7488] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/08/2023] [Accepted: 01/16/2024] [Indexed: 02/18/2024]
Abstract
Real-time in situ monitoring of plant physiology is essential for establishing a phenotyping platform for precision agriculture. A key enabler for this monitoring is a device that can be noninvasively attached to plants and transduce their physiological status into digital data. Here, we report an all-organic transparent plant e-skin by micropatterning poly(3,4-ethylenedioxythiophene) polystyrene sulfonate (PEDOT:PSS) on polydimethylsiloxane (PDMS) substrate. This plant e-skin is optically and mechanically invisible to plants with no observable adverse effects to plant health. We demonstrate the capabilities of our plant e-skins as strain and temperature sensors, with the application to Brassica rapa leaves for collecting corresponding parameters under normal and abiotic stress conditions. Strains imposed on the leaf surface during growth as well as diurnal fluctuation of surface temperature were captured. We further present a digital-twin interface to visualize real-time plant surface environment, providing an intuitive and vivid platform for plant phenotyping.
Collapse
Affiliation(s)
- Yanqin Yang
- Department of Electrical and Computer Engineering, National University of Singapore, Singapore 117583, Singapore
- Center for Intelligent Sensors and MEMS (CISM), National University of Singapore, Singapore 117608, Singapore
| | - Tianyiyi He
- Department of Electrical and Computer Engineering, National University of Singapore, Singapore 117583, Singapore
- Center for Intelligent Sensors and MEMS (CISM), National University of Singapore, Singapore 117608, Singapore
| | - Pratibha Ravindran
- Department of Biological Sciences and Research Center for Sustainable Urban Farming, National University of Singapore, Singapore 117558, Singapore
| | - Feng Wen
- Department of Electrical and Computer Engineering, National University of Singapore, Singapore 117583, Singapore
- Center for Intelligent Sensors and MEMS (CISM), National University of Singapore, Singapore 117608, Singapore
| | - Pannaga Krishnamurthy
- Department of Biological Sciences and Research Center for Sustainable Urban Farming, National University of Singapore, Singapore 117558, Singapore
| | - Luwei Wang
- Department of Electrical and Computer Engineering, National University of Singapore, Singapore 117583, Singapore
- Center for Intelligent Sensors and MEMS (CISM), National University of Singapore, Singapore 117608, Singapore
| | - Zixuan Zhang
- Department of Electrical and Computer Engineering, National University of Singapore, Singapore 117583, Singapore
- Center for Intelligent Sensors and MEMS (CISM), National University of Singapore, Singapore 117608, Singapore
| | - Prakash P Kumar
- Department of Biological Sciences and Research Center for Sustainable Urban Farming, National University of Singapore, Singapore 117558, Singapore
| | - Eunyoung Chae
- Department of Biological Sciences and Research Center for Sustainable Urban Farming, National University of Singapore, Singapore 117558, Singapore
| | - Chengkuo Lee
- Department of Electrical and Computer Engineering, National University of Singapore, Singapore 117583, Singapore
- Center for Intelligent Sensors and MEMS (CISM), National University of Singapore, Singapore 117608, Singapore
- National University of Singapore Suzhou Research Institute (NUSRI), Suzhou Industrial Park, Suzhou 215123, China
- NUS Graduate School-Integrative Sciences and Engineering Programme (ISEP), National University of Singapore, Singapore 119077, Singapore
| |
Collapse
|
5
|
Yan Y, Ryu Y, Dechant B, Li B, Kim J. Dark respiration explains nocturnal stomatal conductance in rice regardless of drought and nutrient stress. PLANT, CELL & ENVIRONMENT 2023; 46:3748-3759. [PMID: 37651619 DOI: 10.1111/pce.14710] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/21/2022] [Revised: 06/20/2023] [Accepted: 08/23/2023] [Indexed: 09/02/2023]
Abstract
The ecological mechanism underlying nocturnal stomatal conductance (gsn ) in C3 and C4 plants remains elusive. In this study, we proposed a 'coordinated leaf trait' hypothesis to explain gsn in rice plants. We conducted an open-field experiment by applying drought, nutrient stress and the combined drought-nutrient stress. We found that gsn was neither strongly reduced by drought nor consistently increased by nutrient stress. With the aforementioned multiple abiotic stressors considered as random effects, gsn exhibited a strong positive correlation with dark respiration (Rn ). Notably, gsn primed early morning (5:00-7:00) photosynthesis through faster stomatal response time. This photosynthesis priming effect diminished after mid-morning (9:00). Leaves were cooled by gsn -derived transpiration. However, our results clearly suggest that evaporative cooling did not reduce dark respiration cost. Our results indicate that gsn is more closely related to carbon respiration and assimilation than water and nutrient availability, and that dark respiration can explain considerable variation of gsn .
Collapse
Affiliation(s)
- Yulin Yan
- Interdisciplinary Program in Agricultural and Forest Meteorology, Seoul National University, Seoul, South Korea
| | - Youngryel Ryu
- Interdisciplinary Program in Agricultural and Forest Meteorology, Seoul National University, Seoul, South Korea
- Department of Landscape Architecture and Rural Systems Engineering, Seoul National University, Seoul, South Korea
- Interdisciplinary Program in Landscape Architecture, Seoul National University, Seoul, South Korea
| | - Benjamin Dechant
- Research Institute of Agriculture and Life Sciences, Seoul National University, Seoul, South Korea
- German Centre for Integrative Biodiversity Research, Leipzig, Germany
- Leipzig University, Leipzig, Germany
| | - Bolun Li
- Research Institute of Agriculture and Life Sciences, Seoul National University, Seoul, South Korea
| | - Jongmin Kim
- Interdisciplinary Program in Landscape Architecture, Seoul National University, Seoul, South Korea
| |
Collapse
|
6
|
Hasanuzzaman M, Chakraborty K, Zhou M, Shabala S. Measuring residual transpiration in plants: a comparative analysis of different methods. FUNCTIONAL PLANT BIOLOGY : FPB 2023; 50:983-992. [PMID: 37726012 DOI: 10.1071/fp23157] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/24/2022] [Accepted: 08/28/2023] [Indexed: 09/21/2023]
Abstract
Residual transpiration (RT) is defined as a loss of water through the leaf cuticle while stomata are closed. Reduced RT might be a potentially valuable trait for improving plant performance under water deficit conditions imposed by either drought or salinity. Due to the presence of stomata on the leaf surface, it is technically challenging to measure RT. RT has been estimated by the water loss through either astomatous leaf surface or isolated astomatous cuticular layers. This approach is not suitable for all species (e.g. not applicable to grasses) and is difficult and too time consuming for large-scale screening in breeding programs. Several alternative methods may be used to quantify the extent of RT; each of them comes with its own advantages and limitations. In this study, we have undertaken a comparative assessment of eight various methods of assessing RT, using barley (Hordeum vulgare ) plants as a model species. RT measured by water retention curves and a portable gas exchange (infrared gas analyser; IRGA) system had low resolution and were not able to differentiate between RT rates from young and old leaves. Methods based on quantification of the water loss at several time-points were found to be the easiest and least time-consuming compared to others. Of these, the 'three time-points water loss' method is deemed as the most suitable for the high throughput screening of plant germplasm for RT traits.
Collapse
Affiliation(s)
- Md Hasanuzzaman
- University of Tasmania, Hobart, Tas. 7001, Australia; and Sher-e-Bangla Agricultural University, Sher-e-Bangla Nagar, Dhaka, 1207, Bangladesh
| | - Koushik Chakraborty
- University of Tasmania, Hobart, Tas. 7001, Australia; and ICAR-National Rice Research Institute, Cuttack, Odisha, India
| | - Meixue Zhou
- University of Tasmania, Hobart, Tas. 7001, Australia
| | - Sergey Shabala
- University of Tasmania, Hobart, Tas. 7001, Australia; and International Research Centre for Environmental Membrane Biology, Foshan University, Foshan 528000, China; and School of Biological Sciences, University of Western Australia, Crawley, WA 6009, Australia
| |
Collapse
|
7
|
Vadez V, Pilloni R, Grondin A, Hajjarpoor A, Belhouchette H, Brouziyne Y, Chehbouni G, Kharrou MH, Zitouna-Chebbi R, Mekki I, Molénat J, Jacob F, Bossuet J. Water use efficiency across scales: from genes to landscapes. JOURNAL OF EXPERIMENTAL BOTANY 2023; 74:4770-4788. [PMID: 36779607 PMCID: PMC10474597 DOI: 10.1093/jxb/erad052] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/17/2022] [Accepted: 02/10/2023] [Indexed: 06/18/2023]
Abstract
Water scarcity is already set to be one of the main issues of the 21st century, because of competing needs between civil, industrial, and agricultural use. Agriculture is currently the largest user of water, but its share is bound to decrease as societies develop and clearly it needs to become more water efficient. Improving water use efficiency (WUE) at the plant level is important, but translating this at the farm/landscape level presents considerable challenges. As we move up from the scale of cells, organs, and plants to more integrated scales such as plots, fields, farm systems, and landscapes, other factors such as trade-offs need to be considered to try to improve WUE. These include choices of crop variety/species, farm management practices, landscape design, infrastructure development, and ecosystem functions, where human decisions matter. This review is a cross-disciplinary attempt to analyse approaches to addressing WUE at these different scales, including definitions of the metrics of analysis and consideration of trade-offs. The equations we present in this perspectives paper use similar metrics across scales to make them easier to connect and are developed to highlight which levers, at different scales, can improve WUE. We also refer to models operating at these different scales to assess WUE. While our entry point is plants and crops, we scale up the analysis of WUE to farm systems and landscapes.
Collapse
Affiliation(s)
- Vincent Vadez
- French National Research Institute for Sustainable Development (IRD), UMR DIADE, University of Montpellier, 911 Av. Agropolis BP65401, 34394, Montpellier, France
- International Crops Research Institute for the Semi-Arid Tropics (ICRISAT), Patancheru, 502 324, Telangana, India
- LMI LAPSE, CERAAS-ISRA, Thiès, Senegal
| | - Raphael Pilloni
- French National Research Institute for Sustainable Development (IRD), UMR DIADE, University of Montpellier, 911 Av. Agropolis BP65401, 34394, Montpellier, France
| | - Alexandre Grondin
- French National Research Institute for Sustainable Development (IRD), UMR DIADE, University of Montpellier, 911 Av. Agropolis BP65401, 34394, Montpellier, France
| | - Amir Hajjarpoor
- French National Research Institute for Sustainable Development (IRD), UMR DIADE, University of Montpellier, 911 Av. Agropolis BP65401, 34394, Montpellier, France
| | - Hatem Belhouchette
- ABSys, Université de Montpellier, CIHEAM-IAMM, CIRAD, INRAE, Institut Agro, Montpellier, France
| | - Youssef Brouziyne
- International Water Management Institute (IWMI), MENA Office, Giza 12661, Egypt
| | - Ghani Chehbouni
- International Water Research Institute (IWRI), Mohammed VI Polytechnic University (UM6P) UMR CESBIO, Benguerir 43150, Morocco
| | - Mohamed Hakim Kharrou
- International Water Research Institute (IWRI), Mohammed VI Polytechnic University (UM6P) UMR CESBIO, Benguerir 43150, Morocco
| | | | - Insaf Mekki
- INRGREF, Carthage University, B.P. 10, 2080 Ariana, Tunisia
| | - Jérôme Molénat
- UMR LISAH, Université de Montpellier, INRAE, IRD, Institut Agro Montpellier, AgroParisTech, Montpellier, France
| | - Frédéric Jacob
- UMR LISAH, Université de Montpellier, INRAE, IRD, Institut Agro Montpellier, AgroParisTech, Montpellier, France
| | | |
Collapse
|
8
|
McAusland L, Acevedo‐Siaca LG, Pinto RS, Pinto F, Molero G, Garatuza‐Payan J, Reynolds MP, Murchie EH, Yepez EA. Night-time warming in the field reduces nocturnal stomatal conductance and grain yield but does not alter daytime physiological responses. THE NEW PHYTOLOGIST 2023; 239:1622-1636. [PMID: 37430457 PMCID: PMC10952344 DOI: 10.1111/nph.19075] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/12/2023] [Accepted: 05/11/2023] [Indexed: 07/12/2023]
Abstract
Global nocturnal temperatures are rising more rapidly than daytime temperatures and have a large effect on crop productivity. In particular, stomatal conductance at night (gsn ) is surprisingly poorly understood and has not been investigated despite constituting a significant proportion of overall canopy water loss. Here, we present the results of 3 yr of field data using 12 spring Triticum aestivum genotypes which were grown in NW Mexico and subjected to an artificial increase in night-time temperatures of 2°C. Under nocturnal heating, grain yields decreased (1.9% per 1°C) without significant changes in daytime leaf-level physiological responses. Under warmer nights, there were significant differences in the magnitude and decrease in gsn , values of which were between 9 and 33% of daytime rates while respiration appeared to acclimate to higher temperatures. Decreases in grain yield were genotype-specific; genotypes categorised as heat tolerant demonstrated some of the greatest declines in yield in response to warmer nights. We conclude the essential components of nocturnal heat tolerance in wheat are uncoupled from resilience to daytime temperatures, raising fundamental questions for physiological breeding. Furthermore, this study discusses key physiological traits such as pollen viability, root depth and irrigation type may also play a role in genotype-specific nocturnal heat tolerance.
Collapse
Affiliation(s)
- Lorna McAusland
- Division of Plant and Crop Sciences, School of BiosciencesUniversity of NottinghamLeicestershireLE12 5RDUK
| | - Liana G. Acevedo‐Siaca
- International Maize and Wheat Improvement Centre (CIMMYT)Carretera México‐Veracruz Km 45, El Batán, TexcocoMéxicoCP 56237Mexico
| | - R. Suzuky Pinto
- Instituto Tecnológico de Sonora (ITSON)5 de Febrero 818 Sur, Col. Centro, Cd. Obregón, SonoraMéxicoCP 85000Mexico
| | - Francisco Pinto
- International Maize and Wheat Improvement Centre (CIMMYT)Carretera México‐Veracruz Km 45, El Batán, TexcocoMéxicoCP 56237Mexico
| | - Gemma Molero
- International Maize and Wheat Improvement Centre (CIMMYT)Carretera México‐Veracruz Km 45, El Batán, TexcocoMéxicoCP 56237Mexico
| | - Jaime Garatuza‐Payan
- Instituto Tecnológico de Sonora (ITSON)5 de Febrero 818 Sur, Col. Centro, Cd. Obregón, SonoraMéxicoCP 85000Mexico
| | - Matthew P. Reynolds
- International Maize and Wheat Improvement Centre (CIMMYT)Carretera México‐Veracruz Km 45, El Batán, TexcocoMéxicoCP 56237Mexico
| | - Erik H. Murchie
- Division of Plant and Crop Sciences, School of BiosciencesUniversity of NottinghamLeicestershireLE12 5RDUK
| | - Enrico A. Yepez
- Instituto Tecnológico de Sonora (ITSON)5 de Febrero 818 Sur, Col. Centro, Cd. Obregón, SonoraMéxicoCP 85000Mexico
| |
Collapse
|
9
|
Kupper P, Tullus A, Rohula-Okunev G. Night-time water relations and gas exchange in cut shoots of five boreal dwarf shrub species: impact of soil water availability. PHYSIOLOGY AND MOLECULAR BIOLOGY OF PLANTS : AN INTERNATIONAL JOURNAL OF FUNCTIONAL PLANT BIOLOGY 2023; 29:1193-1203. [PMID: 37829697 PMCID: PMC10564692 DOI: 10.1007/s12298-023-01350-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/15/2023] [Revised: 08/03/2023] [Accepted: 08/21/2023] [Indexed: 10/14/2023]
Abstract
Recent findings suggest that drought may affect plants' daytime and night-time stomatal regulation differently. However, knowledge of night-time stomatal behaviour in dwarf shrubs growing in boreal ecosystems is lacking. We sampled cut shoots from dwarf shrub species to elucidate their capacity to transpire at night and the effect of drought on stomatal regulation. The shoots' water relations and gas exchange were measured under controlled conditions in a growth chamber. The studied species demonstrated considerable differences in their diurnal water use. The night-time water use percentage of daytime water use (NWU) reached up to 90% in Andromeda polifolia and Vaccinium uliginosum. In Rhododendron tomentosum, Vaccinium myrtillus and Chamaedaphne calyculata, the NWU was 62, 27 and 26%, respectively. The shoots of C. calyculata showed a significant increase (P < 0.001) in the transpiration rate (E) during the night. However, in R. tomentosum, a decrease (P < 0.05) in nightly E was observed. The shoot conductance (g) at the end of the night was lower than daytime g in all studied species, but the difference was not significant for V. uliginosum. Across the species, NWU was negatively related (P < 0.001) to the soil volumetric water content (SWC) in the plant habitat. However, daytime E and g were positively related (P < 0.05) to the habitat SWC. Only in V. myrtillus was night-time E higher (P < 0.05) in dry conditions than in wet conditions. Our results demonstrate high variability in diurnal water relations in dwarf shrubs, which can keep stomata open in the dark even when drought limits daytime g and E.
Collapse
Affiliation(s)
- Priit Kupper
- Institute of Ecology and Earth Sciences, University of Tartu, Liivi 2, 50409 Tartu, Estonia
| | - Arvo Tullus
- Institute of Ecology and Earth Sciences, University of Tartu, Liivi 2, 50409 Tartu, Estonia
| | - Gristin Rohula-Okunev
- Institute of Ecology and Earth Sciences, University of Tartu, Liivi 2, 50409 Tartu, Estonia
| |
Collapse
|
10
|
Groenveld T, Obiero C, Yu Y, Flury M, Keller M. Predawn leaf water potential of grapevines is not necessarily a good proxy for soil moisture. BMC PLANT BIOLOGY 2023; 23:369. [PMID: 37488482 PMCID: PMC10367393 DOI: 10.1186/s12870-023-04378-6] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Subscribe] [Scholar Register] [Received: 04/09/2023] [Accepted: 07/12/2023] [Indexed: 07/26/2023]
Abstract
BACKGROUND In plant water relations research, predawn leaf water potential (Ψpd) is often used as a proxy for soil water potential (Ψsoil), without testing the underlying assumptions that nighttime transpiration is negligible and that enough time has passed for a hydrostatic equilibrium to be established. The goal of this research was to test the assumption Ψpd = Ψsoil for field-grown grapevines. RESULTS A field trial was conducted with 30 different cultivars of wine grapes grown in a single vineyard in arid southeastern Washington, USA, for two years. The Ψpd and the volumetric soil water content (θv) under each sampled plant were measured multiple times during several dry-down cycles. The results show that in wet soil (Ψsoil > - 0.14 MPa or relative extractable water content, θe > 0.36), Ψpd was significantly lower than Ψsoil for all 30 cultivars. Under dry soil conditions (Ψsoil < - 0.14 MPa or θe < 0.36) Ψpd lined up better with Ψsoil. There were differences between cultivars, but these were not consistent over the years. CONCLUSION These results suggest that for wet soils Ψpd of grapevines cannot be used as a proxy for Ψsoil, while the Ψpd = Ψsoil assumption may hold for dry soils.
Collapse
Affiliation(s)
- Thomas Groenveld
- Department of Viticulture and Enology, Irrigated Agriculture Research and Extension Center, Washington State University, Prosser, WA, USA
- Present Address: Central and Northern Arava Research and Development Center, Hatzeva, Israel
| | - Charles Obiero
- Department of Viticulture and Enology, Irrigated Agriculture Research and Extension Center, Washington State University, Prosser, WA, USA
| | - Yingxue Yu
- Department of Crop and Soil Sciences, Puyallup Research & Extension Center, Washington State University, Puyallup, WA, USA
- Department of Crop and Soil Sciences, Washington State University, WA, Pullman, USA
| | - Markus Flury
- Department of Crop and Soil Sciences, Puyallup Research & Extension Center, Washington State University, Puyallup, WA, USA
- Department of Crop and Soil Sciences, Washington State University, WA, Pullman, USA
| | - Markus Keller
- Department of Viticulture and Enology, Irrigated Agriculture Research and Extension Center, Washington State University, Prosser, WA, USA.
| |
Collapse
|
11
|
Wu S, Gu X, Zheng Y, Chen L. Nocturnal sap flow as compensation for water deficits: an implicit water-saving strategy used by mangroves in stressful environments. FRONTIERS IN PLANT SCIENCE 2023; 14:1118970. [PMID: 37223786 PMCID: PMC10200988 DOI: 10.3389/fpls.2023.1118970] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/08/2022] [Accepted: 04/11/2023] [Indexed: 05/25/2023]
Abstract
As part of the plant water-use process, plant nocturnal sap flow (Q n) has been demonstrated to have important ecophysiological significance to compensate for water loss. The purpose of this study was to explore nocturnal water-use strategies to fill the knowledge gap in mangroves, by measuring three species co-occurring in a subtropical estuary. Sap flow was monitored over an entire year using thermal diffusive probes. Stem diameter and leaf-level gas exchange were measured in summer. The data were used to explore the different nocturnal water balance maintaining mechanisms among species. The Q n existed persistently and contributed markedly over 5.5%~24.0% of the daily sap flow (Q) across species, which was associated with two processes, nocturnal transpiration (E n) and nocturnal stem water refilling (R n). We found that the stem recharge of the Kandelia obovata and Aegiceras corniculatum occurred mainly after sunset and that the high salinity environment drove higher Q n while stem recharge of the Avicennia marina mainly occurred in the daytime and the high salinity environment inhibited the Q n. The diversity of stem recharge patterns and response to sap flow to high salinity conditions were the main reasons for the differences in Q n/Q among species. For Kandelia obovata and Aegiceras corniculatum, R n was the main contributor to Q n, which was driven by the demands of stem water refilling after diurnal water depletion and high salt environment. Both of the species have a strict control over the stomata to reduce water loss at night. In contrast, Avicennia marina maintained a low Q n, driven by vapor pressure deficit, and the Q n mainly used for E n, which adapts to high salinity conditions by limiting water dissipation at night. We conclude that the diverse ways Q n properties act as water-compensating strategies among the co-occurring mangrove species might help the trees to overcoming water scarcity.
Collapse
|
12
|
Lu Y, Fricke W. Salt Stress-Regulation of Root Water Uptake in a Whole-Plant and Diurnal Context. Int J Mol Sci 2023; 24:ijms24098070. [PMID: 37175779 PMCID: PMC10179082 DOI: 10.3390/ijms24098070] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2023] [Revised: 04/25/2023] [Accepted: 04/27/2023] [Indexed: 05/15/2023] Open
Abstract
This review focuses on the regulation of root water uptake in plants which are exposed to salt stress. Root water uptake is not considered in isolation but is viewed in the context of other potential tolerance mechanisms of plants-tolerance mechanisms which relate to water relations and gas exchange. Plants spend between one third and half of their lives in the dark, and salt stress does not stop with sunset, nor does it start with sunrise. Surprisingly, how plants deal with salt stress during the dark has received hardly any attention, yet any growth response to salt stress over days, weeks, months and years is the integrative result of how plants perform during numerous, consecutive day/night cycles. As we will show, dealing with salt stress during the night is a prerequisite to coping with salt stress during the day. We hope to highlight with this review not so much what we know, but what we do not know; and this relates often to some rather basic questions.
Collapse
Affiliation(s)
- Yingying Lu
- School of Biology and Environmental Science, University College Dublin (UCD), Belfield, D04 N2E5 Dublin, Ireland
| | - Wieland Fricke
- School of Biology and Environmental Science, University College Dublin (UCD), Belfield, D04 N2E5 Dublin, Ireland
| |
Collapse
|
13
|
Faralli M, Bianchedi PL, Moser C, Bontempo L, Bertamini M. Nitrogen control of transpiration in grapevine. PHYSIOLOGIA PLANTARUM 2023; 175:e13906. [PMID: 37006174 DOI: 10.1111/ppl.13906] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/02/2022] [Revised: 03/13/2023] [Accepted: 03/28/2023] [Indexed: 06/19/2023]
Abstract
Transpiration per unit of leaf area is the end-product of the root-to-leaf water transport within the plant, and it is regulated by a series of morpho-physiological resistances and hierarchical signals. The rate of water transpired sustains a series of processes such as nutrient absorption and leaf evaporative cooling, with stomata being the end-valves that maintain the optimal water loss under specific degrees of evaporative demand and soil moisture conditions. Previous work provided evidence of a partial modulation of water flux following nitrogen availability linking high nitrate availability with tight stomatal control of transpiration in several species. In this work, we tested the hypothesis that stomatal control of transpiration, among others signals, is partially modulated by soil nitrate ( NO 3 - ) availability in grapevine, with reduced NO 3 - availability (alkaline soil pH, reduced fertilization, and distancing NO 3 - source) associated with decreased water-use efficiency and higher transpiration. We observed a general trend when NO 3 - was limiting with plants increasing either stomatal conductance or root-shoot ratio in four independent experiments with strong associations between leaf water status, stomatal behavior, root aquaporins expression, and xylem sap pH. Carbon and oxygen isotopic signatures confirm the proximal measurements, suggesting the robustness of the signal that persists over weeks and under different gradients of NO 3 - availability and leaf nitrogen content. Nighttime stomatal conductance was unaffected by NO 3 - manipulation treatments, while application of high vapor pressure deficit conditions nullifies the differences between treatments. Genotypic variation for transpiration increase under limited NO 3 - availability was observed between rootstocks indicating that breeding (e.g., for high soil pH tolerance) unintentionally selected for enhanced mass flow nutrient acquisition under restrictive or nutrient-buffered conditions. We provide evidence of a series of specific traits modulated by NO 3 - availability and suggest that NO 3 - fertilization is a potential candidate for optimizing grapevine water-use efficiency and root exploration under the climate-change scenario.
Collapse
Affiliation(s)
- Michele Faralli
- Center Agriculture Food Environment (C3A), University of Trento, via Mach 1, San Michele all'Adige, TN, 38098, Italy
- Research and Innovation Centre, Fondazione Edmund Mach, via Mach 1, San Michele all'Adige, TN, 38098, Italy
| | - Pier Luigi Bianchedi
- Technology Transfer Centre, Fondazione Edmund Mach, via Mach 1, San Michele all'Adige, TN, 38098, Italy
| | - Claudio Moser
- Research and Innovation Centre, Fondazione Edmund Mach, via Mach 1, San Michele all'Adige, TN, 38098, Italy
| | - Luana Bontempo
- Research and Innovation Centre, Fondazione Edmund Mach, via Mach 1, San Michele all'Adige, TN, 38098, Italy
| | - Massimo Bertamini
- Center Agriculture Food Environment (C3A), University of Trento, via Mach 1, San Michele all'Adige, TN, 38098, Italy
- Research and Innovation Centre, Fondazione Edmund Mach, via Mach 1, San Michele all'Adige, TN, 38098, Italy
| |
Collapse
|
14
|
Vega C, Chi CJE, Fernández V, Burkhardt J. Nocturnal Transpiration May Be Associated with Foliar Nutrient Uptake. PLANTS (BASEL, SWITZERLAND) 2023; 12:531. [PMID: 36771616 PMCID: PMC9919148 DOI: 10.3390/plants12030531] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/03/2022] [Revised: 01/10/2023] [Accepted: 01/19/2023] [Indexed: 06/18/2023]
Abstract
Aerosols can contribute to plant nutrition via foliar uptake. The conditions for this are best at night because the humidity is high and hygroscopic, saline deposits can deliquesce as a result. Still, stomata tend to be closed at night to avoid unproductive water loss. However, if needed, nutrients are on the leaf surface, and plants could benefit from nocturnal stomatal opening because it further increases humidity in the leaf boundary layer and allows for stomatal nutrient uptake. We tested this hypothesis on P-deficient soil by comparing the influence of ambient aerosols and additional foliar P application on nocturnal transpiration. We measured various related leaf parameters, such as the foliar water loss, minimum leaf conductance (gmin), turgor loss point, carbon isotope ratio, contact angle, specific leaf area (SLA), tissue element concentration, and stomatal and cuticular characteristics. For untreated leaves grown in filtered, aerosol-free air (FA), nocturnal transpiration consistently decreased overnight, which was not observed for leaves grown in unfiltered ambient air (AA). Foliar application of a soluble P salt increased nocturnal transpiration for AA and FA leaves. Crusts on stomatal rims were shown by scanning electron microscopy, supporting the idea of stomatal uptake of deliquescent salts. Turgor loss point and leaf moisture content indicated a higher accumulation of solutes, due to foliar uptake by AA plants than FA plants. The hypothesis that deliquescent leaf surface salts may play a role in triggering nocturnal transpiration was supported by the results. Still, further experiments are required to characterize this phenomenon better.
Collapse
Affiliation(s)
- Clara Vega
- Departamento de Sistemas y Recursos Naturales, Universidad Politécnica de Madrid, Ciudad Universitaria s/n, 28040 Madrid, Spain
| | - Chia-Ju Ellen Chi
- Plant Nutrition Group, Institute of Crop Science and Resource Conservation, University of Bonn, Karlrobert-Kreiten-Strasse 13, D-53115 Bonn, Germany
| | - Victoria Fernández
- Departamento de Sistemas y Recursos Naturales, Universidad Politécnica de Madrid, Ciudad Universitaria s/n, 28040 Madrid, Spain
| | - Juergen Burkhardt
- Plant Nutrition Group, Institute of Crop Science and Resource Conservation, University of Bonn, Karlrobert-Kreiten-Strasse 13, D-53115 Bonn, Germany
| |
Collapse
|
15
|
Sharma N, Banerjee BP, Hayden M, Kant S. An Open-Source Package for Thermal and Multispectral Image Analysis for Plants in Glasshouse. PLANTS (BASEL, SWITZERLAND) 2023; 12:317. [PMID: 36679030 PMCID: PMC9866171 DOI: 10.3390/plants12020317] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/13/2022] [Revised: 01/03/2023] [Accepted: 01/06/2023] [Indexed: 06/17/2023]
Abstract
Advanced plant phenotyping techniques to measure biophysical traits of crops are helping to deliver improved crop varieties faster. Phenotyping of plants using different sensors for image acquisition and its analysis with novel computational algorithms are increasingly being adapted to measure plant traits. Thermal and multispectral imagery provides novel opportunities to reliably phenotype crop genotypes tested for biotic and abiotic stresses under glasshouse conditions. However, optimization for image acquisition, pre-processing, and analysis is required to correct for optical distortion, image co-registration, radiometric rescaling, and illumination correction. This study provides a computational pipeline that optimizes these issues and synchronizes image acquisition from thermal and multispectral sensors. The image processing pipeline provides a processed stacked image comprising RGB, green, red, NIR, red edge, and thermal, containing only the pixels present in the object of interest, e.g., plant canopy. These multimodal outputs in thermal and multispectral imageries of the plants can be compared and analysed mutually to provide complementary insights and develop vegetative indices effectively. This study offers digital platform and analytics to monitor early symptoms of biotic and abiotic stresses and to screen a large number of genotypes for improved growth and productivity. The pipeline is packaged as open source and is hosted online so that it can be utilized by researchers working with similar sensors for crop phenotyping.
Collapse
Affiliation(s)
- Neelesh Sharma
- Agriculture Victoria, Grains Innovation Park, 110 Natimuk Rd, Horsham, VIC 3400, Australia
| | - Bikram Pratap Banerjee
- Agriculture Victoria, Grains Innovation Park, 110 Natimuk Rd, Horsham, VIC 3400, Australia
| | - Matthew Hayden
- AgriBio, Centre for AgriBioscience, Agriculture Victoria, 5 Ring Road, Melbourne, VIC 3083, Australia
- School of Applied Systems Biology, La Trobe University, Melbourne, VIC 3083, Australia
| | - Surya Kant
- Agriculture Victoria, Grains Innovation Park, 110 Natimuk Rd, Horsham, VIC 3400, Australia
- AgriBio, Centre for AgriBioscience, Agriculture Victoria, 5 Ring Road, Melbourne, VIC 3083, Australia
- School of Applied Systems Biology, La Trobe University, Melbourne, VIC 3083, Australia
| |
Collapse
|
16
|
Lu Y, Jeffers R, Raju A, Kenny T, Ratchanniyasamu E, Fricke W. Does night-time transpiration provide any benefit to wheat (Triticum aestivum L.) plants which are exposed to salt stress? PHYSIOLOGIA PLANTARUM 2023; 175:e13839. [PMID: 36511643 PMCID: PMC10107941 DOI: 10.1111/ppl.13839] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/10/2022] [Accepted: 12/09/2022] [Indexed: 05/27/2023]
Abstract
The study aimed to test whether night-time transpiration provides any potential benefit to wheat plants which are subjected to salt stress. Hydroponically grown wheat plants were grown at four levels of salt stress (50, 100, 150, and 200 mM NaCl) for 5-8 days prior to harvest (day 14-18). Salt stress caused large decreases in transpiration and leaf elongation rates during day and night. The quantitative relation between the diurnal use of water for transpiration and leaf growth was comparatively little affected by salt. Night-time transpirational water loss occurred predominantly through stomata in support of respiration. Diurnal gas exchange and leaf growth were functionally linked to each other through the provision of resources (carbon, energy) and an increase in leaf surface area. Diurnal rates of water use associated with leaf cell expansive growth were highly correlated with the water potential of the xylem, which was dominated by the tension component. The tissue-specific expression level of nine candidate aquaporin genes in elongating and mature leaf tissue was little affected by salt stress or day/night changes. Growing plants under conditions of reduced night-time transpirational water loss by increasing the relative humidity (RH) during the night to 95% had little effect on the growth response to salt stress, nor was the accumulation of Na+ and Cl- in shoot tissue altered. We conclude that night-time gas exchange supports the growth in leaf area over a 24 h day/night period. Night-time transpirational water loss neither decreases nor increases the tolerance to salt stress in wheat.
Collapse
Affiliation(s)
- Yingying Lu
- School of Biology and Environmental SciencesUniversity College DublinDublinRepublic of Ireland
| | - Ruth Jeffers
- School of Biology and Environmental SciencesUniversity College DublinDublinRepublic of Ireland
| | - Anakha Raju
- School of Biology and Environmental SciencesUniversity College DublinDublinRepublic of Ireland
| | - Tamara Kenny
- School of Biology and Environmental SciencesUniversity College DublinDublinRepublic of Ireland
| | | | - Wieland Fricke
- School of Biology and Environmental SciencesUniversity College DublinDublinRepublic of Ireland
| |
Collapse
|
17
|
Šantrůček J. The why and how of sunken stomata: does the behaviour of encrypted stomata and the leaf cuticle matter? ANNALS OF BOTANY 2022; 130:285-300. [PMID: 35452520 PMCID: PMC9486903 DOI: 10.1093/aob/mcac055] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/30/2021] [Accepted: 04/21/2022] [Indexed: 06/09/2023]
Abstract
BACKGROUND Stomatal pores in many species are separated from the atmosphere by different anatomical obstacles produced by leaf epidermal cells, especially by sunken stomatal crypts, stomatal antechambers and/or hairs (trichomes). The evolutionary driving forces leading to sunken or 'hidden' stomata whose antechambers are filled with hairs or waxy plugs are not fully understood. The available hypothetical explanations are based mainly on mathematical modelling of water and CO2 diffusion through superficial vs. sunken stomata, and studies of comparative autecology. A better understanding of this phenomenon may result from examining the interactions between the leaf cuticle and stomata and from functional comparisons of sunken vs. superficially positioned stomata, especially when transpiration is low, for example at night or during severe drought. SCOPE I review recent ideas as to why stomata are hidden and test experimentally whether hidden stomata may behave differently from those not covered by epidermal structures and so are coupled more closely to the atmosphere. I also quantify the contribution of stomatal vs. cuticular transpiration at night using four species with sunken stomata and three species with superficial stomata. CONCLUSIONS Partitioning of leaf conductance in darkness (gtw) into stomatal and cuticular contributions revealed that stomatal conductance dominated gtw across all seven investigated species with antechambers with different degrees of prominence. Hidden stomata contributed, on average, less to gtw (approx. 70 %) than superficial stomata (approx. 80 %) and reduced their contribution dramatically with increasing gtw. In contrast, species with superficial stomata kept their proportion in gtw invariant across a broad range of gtw. Mechanisms behind the specific behaviour of hidden stomata and the multipurpose origin of sunken stomata are discussed.
Collapse
|
18
|
The Morpho-Physio-Biochemical Attributes of Urban Trees for Resilience in Regional Ecosystems in Cities: A Mini-Review. URBAN SCIENCE 2022. [DOI: 10.3390/urbansci6020037] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
Increased urbanization means human beings become the dominant species and reduction in canopy cover. Globally, urban trees grow under challenging and complex circumstances with urbanization trends of increasing anthropogenic carbon dioxide (CO2) emissions, high temperature and drought stress. This study aims to provide a better understanding of urban trees’ morpho-physio-biochemical attributes that can support sustainable urban greening programs and urban climate change mitigation policies. Globally, urban dwellers’ population is on the rise and spreading to suburban areas over time with an increase in domestic CO2 emissions. Uncertainty and less information on urban tree diversification and resistance to abiotic stress may create deterioration of ecosystem resilience over time. This review uses general parameters for urban tree physiology studies and employs three approaches for evaluating ecosystem resilience based on urban stress resistance in relation to trees’ morphological, physiological and biochemical attributes. Due to the lack of a research model of ecosystem resilience and urban stress resistance of trees, this review demonstrates that the model concept supports future urban tree physiology research needs. In particular, it is necessary to develop integral methodologies and an urban tree research concept to assess how main and combined effects of drought and/or climate changes affect indigenous and exotic trees that are commonly grown in cities.
Collapse
|
19
|
Su Y, Wang X, Sun Y, Wu H. Sap Flow Velocity in Fraxinus pennsylvanica in Response to Water Stress and Microclimatic Variables. FRONTIERS IN PLANT SCIENCE 2022; 13:884526. [PMID: 35620691 PMCID: PMC9127660 DOI: 10.3389/fpls.2022.884526] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/26/2022] [Accepted: 04/14/2022] [Indexed: 06/15/2023]
Abstract
In arid and semiarid regions with water shortage, forestry development is limited by water availability. Understanding how tree sap flow responds to water stress and microclimatic variables is essential for the management of trees and the understanding of the eco-physiological properties of trees in arid areas. In the city of Tianjin in northern China, we measured the sap flow of Fraxinus pennsylvanica, a widely distributed urban greening tree species in semiarid regions of China. We measured the sap flow in four F. pennsylvanica trees over 6 months (April-September 2021), using a thermal diffusion probe method, and simultaneously monitored microclimatic variables and soil moisture. Results indicated that high nighttime sap flow velocity might be produced under the water stress condition. In addition, the nighttime sap flow velocity under the water stress condition was more susceptible to the combined effects of meteorological factors at night. The daytime sap flow velocity exerted a highly significant positive effect on the nighttime sap flow velocity during the whole research period, and the model fit was higher in the early growing season than that in the late growing season (early growing season: R 2 = 0.51, P < 0.01; late growing season: R 2 = 0.36, P < 0.01). Vapor pressure deficit had a positive effect on daytime sap flow. However, net vapor pressure deficit restrained daytime sap flow velocity when the intercorrelation between the microclimatic variables was removed. Our study highlights that drought areas perhaps have higher nighttime sap flow and that more emphasis should be placed on nighttime sap flow and the response of nighttime sap flow to microclimatic variables. In addition, the influence of other microclimatic variables on vapor pressure deficit needs to be considered when analyzing the relationship between daytime sap flow and vapor pressure deficit. An increase in net VPD can suppress the daytime sap flow.
Collapse
|
20
|
McAusland L, Smith KE, Williams A, Molero G, Murchie EH. Nocturnal stomatal conductance in wheat is growth-stage specific and shows genotypic variation. THE NEW PHYTOLOGIST 2021; 232:162-175. [PMID: 34143507 DOI: 10.1111/nph.17563] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/03/2021] [Accepted: 06/09/2021] [Indexed: 06/12/2023]
Abstract
Nocturnal stomatal conductance (gsn ) represents a significant source of water loss, with implications for metabolism, thermal regulation and water-use efficiency. With increasing nocturnal temperatures due to climate change, it is vital to identify and understand variation in the magnitude and responses of gsn in major crops. We assessed interspecific variation in gsn and daytime stomatal conductance (gs ) in a wild relative and modern spring wheat genotype. To investigate intraspecific variation, we grew six modern wheat genotypes and two landraces under well watered, simulated field conditions. For the diurnal data, higher gsn in the wild relative was associated with significantly lower nocturnal respiration and higher daytime CO2 assimilation while both species exhibited declines in gsn post-dusk and pre-dawn. Lifetime gsn achieved rates of 5.7-18.9% of gs . Magnitude of gsn was genotype specific 'and positively correlated with gs . gsn and gs were significantly higher on the adaxial surface. No relationship was determined between harvest characteristics, stomatal morphology and gsn , while cuticular conductance was genotype specific. Finally, for the majority of genotypes, gsn declined with age. Here we present the discovery that variation in gsn occurs across developmental, morphological and temporal scales in nonstressed wheat, presenting opportunities for exploiting intrinsic variation under heat or water stressed conditions.
Collapse
Affiliation(s)
- Lorna McAusland
- School of Biosciences, University of Nottingham, Sutton Bonington, LE12 5RD, UK
| | - Kellie E Smith
- School of Biosciences, University of Nottingham, Sutton Bonington, LE12 5RD, UK
| | - Alexander Williams
- School of Biosciences, University of Nottingham, Sutton Bonington, LE12 5RD, UK
| | - Gemma Molero
- International Maize and Wheat Improvement Center (CIMMYT), Km. 45, Carretera Mexico, El Batan, Texcoco, CP 56237, Mexico
| | - Erik H Murchie
- School of Biosciences, University of Nottingham, Sutton Bonington, LE12 5RD, UK
| |
Collapse
|
21
|
Dynamics of Nocturnal Evapotranspiration and Its Biophysical Controls over a Desert Shrubland of Northwest China. FORESTS 2021. [DOI: 10.3390/f12101296] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Knowledge about the dynamics and biophysical controlling mechanism of nocturnal evapotranspiration (ETN) in desert-dwelling shrub ecosystem is still lacking. Using the eddy covariance measurements of latent heat flux in a dried shrubland in northwest China, we examined the dynamics of ETN and its biophysical controls at multiple timescales during growing-seasons from 2012 to 2014. The ETN was larger in the mid-growing season (usually in mid-summer) than in spring and autumn. The maximum daily ETN was 0.21, 0.17, and 0.14 mm night−1 in years 2012–2014, respectively. At the diel scale, ETN decreased from 21:00 to 5:00, then began to increase. ETN were mainly controlled by soil volumetric water content at 30 cm depth (VWC30), by vapor pressure deficit (VPD) and normalized difference vegetation index (NDVI) at leaf expanding and expanded stage, and by air temperature (Ta) and wind speed (Ws) at the leaf coloring stage. At the seasonal scale, variations of ETN were mainly driven by Ta, VPD, and VWC10. Averaged annual ETN was 4% of daytime ET. The summer drought in 2013 and the spring drought in 2014 caused the decline of daily evapotranspiration (ET). The present results demonstrated that ETN is a significant part of the water cycle and needs to be seriously considered in ET and related studies. The findings here can help with the sustainable management of water in desert ecosystems undergoing climate change.
Collapse
|
22
|
Zhang Q, Yang Y, Peng S, Li Y. Nighttime transpirational cooling enabled by circadian regulation of stomatal conductance is related to stomatal anatomy and leaf morphology in rice. PLANTA 2021; 254:12. [PMID: 34165635 DOI: 10.1007/s00425-021-03661-w] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/21/2021] [Accepted: 06/11/2021] [Indexed: 06/13/2023]
Abstract
Rice genotypes with larger stomata maintain higher nocturnal stomatal conductance, thus having lower nocturnal leaf temperature via transpirational cooling. Incomplete night stomatal closure has been widely observed, but the mechanisms and functions of nocturnal stomatal conductance (gs,n) are not fully understood. Stomatal anatomy, leaf morphology, gs,n and nocturnal leaf temperature (Tleaf,n) were measured in 30 Oryza genotypes. Nocturnal leaf conductance (gn) showed a significant circadian rhythm; it gradually increased by 58% from 20:30 to 04:30. Contrary to cuticular conductance (gcut), gs,n was highly correlated with gn. Moreover, gs,n accounted for 76% of gn. Tleaf,n was significantly lower than the air temperature, and was negatively correlated with both gs,n and nocturnal transpiration rate (En). gs,n was positively correlated with stomatal size, intervein distance between major veins (IVDmajor), leaf thickness (LT), individual leaf area (LA), and leaf width (LW). It was also found negatively correlated with stomatal density. Reversely, Tleaf,n was negatively correlated with stomatal size, IVDmajor, intervein distance between minor veins, LA and LW. Tleaf,n presented a positive correlation with stomatal density. This study highlights the importance of stomatal anatomy and leaf morphology on regulating gs,n and Tleaf,n. The underlying mechanisms to the determinants of gs,n and the physiological and ecological functions of the Tleaf,n regulation on rice growth and production were carefully discussed.
Collapse
Affiliation(s)
- Qiangqiang Zhang
- National Key Laboratory of Crop Genetic Improvement, Ministry of Agriculture Key Laboratory of Crop Ecophysiology and Farming System in the Middle Reaches of the Yangtze River, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, 430070, Hubei, China
| | - Yuhan Yang
- National Key Laboratory of Crop Genetic Improvement, Ministry of Agriculture Key Laboratory of Crop Ecophysiology and Farming System in the Middle Reaches of the Yangtze River, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, 430070, Hubei, China
| | - Shaobing Peng
- National Key Laboratory of Crop Genetic Improvement, Ministry of Agriculture Key Laboratory of Crop Ecophysiology and Farming System in the Middle Reaches of the Yangtze River, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, 430070, Hubei, China
| | - Yong Li
- National Key Laboratory of Crop Genetic Improvement, Ministry of Agriculture Key Laboratory of Crop Ecophysiology and Farming System in the Middle Reaches of the Yangtze River, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, 430070, Hubei, China.
| |
Collapse
|
23
|
López JR, Schoppach R, Sadok W. Harnessing nighttime transpiration dynamics for drought tolerance in grasses. PLANT SIGNALING & BEHAVIOR 2021; 16:1875646. [PMID: 33465000 PMCID: PMC7971256 DOI: 10.1080/15592324.2021.1875646] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/16/2020] [Revised: 01/08/2021] [Accepted: 01/09/2021] [Indexed: 06/12/2023]
Abstract
Non-negligible nighttime transpiration rates (TRN) have been identified in grasses such as wheat and barley. Evidence from the last 30 years indicate that in drought-prone environments with high evaporative demand, TRN could amount to 8-55% of daytime TR, leading several investigators to hypothesize that reducing TRN might represent a viable water-saving strategy that minimizes seemingly 'wasteful' water loss that is not traded for CO2 fixation. More recently however, evidence suggests that actual increases in TRN during pre-dawn hours, which are presumably controlled by the circadian clock, mediate drought tolerance - not through water conservation - but by enabling maximized gas exchange early in the morning before midday depression sets in. Finally, new findings point to a previously undocumented role for leaf sheaths as substantial contributors (up to 45%) of canopy TRN, although the extent of their involvement in these two strategies remains unknown. In this paper, we synthesize and reconcile key results from experimental and simulation-based modeling efforts conducted at scales ranging from the leaf tissue to the field plot on wheat and barley to show that both strategies could in fact concomitantly enable yield gains under limited water supply. We propose a simple framework highlighting the role played by TRN dynamics in drought tolerance and provide a synthesis of potential research directions, with an emphasis on the need for further examining the role played by the circadian clock and leaf sheath gas exchange.
Collapse
Affiliation(s)
- Jose R. López
- Department of Agronomy and Plant Genetics, University of Minnesota, St. Paul, MN, USA
| | - Rémy Schoppach
- Department of Agronomy and Plant Genetics, University of Minnesota, St. Paul, MN, USA
| | - Walid Sadok
- Department of Agronomy and Plant Genetics, University of Minnesota, St. Paul, MN, USA
| |
Collapse
|
24
|
Kupper P, Kaasik A, Kukumägi M, Rohula-Okunev G, Rusalepp L, Sõber A. Predawn leaf conductance depends on previous day irradiance but is not related to growth in aspen saplings grown under artificially manipulated air humidity. FUNCTIONAL PLANT BIOLOGY : FPB 2021; 48:422-433. [PMID: 33287949 DOI: 10.1071/fp20254] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/18/2020] [Accepted: 11/17/2020] [Indexed: 06/12/2023]
Abstract
Recent studies have suggested that predawn stomatal opening may enhance early-morning photosynthesis (A) and improve the relative growth rate of trees. However, the causality between night-time stomatal conductance, A, and tree growth is disputable because stomatal opening in darkness can be mediated by previous day photosynthate loads and might be a consequence of growth-related processes like dark respiration (R). To identify linkages between night-time leaf conductance (gl_night), A, R, and tree growth, we conducted an experiment in hybrid aspen saplings grown under different air relative humidity (RH) conditions and previous day irradiance level (IR_pday). Predawn leaf conductance (gl_predawn) depended on RH, IR_pday and R (P < 0.05), whereas early-morning gross A (Agross_PAR500) depended on IR_pday and gl_predawn (P < 0.001). Daytime net A was positively related to Agross_PAR500 and leaf [N] (P < 0.05). Tree diameter and height increment correlated positively with gl at the beginning and middle of the night (P < 0.05) but not before dawn. Although our results demonstrate that gl_night was related to tree growth, the relationship was not determined by R. The linkage between gl_predawn and Agross_PAR500 was modified by IR_pday, indicating that daily CO2 assimilation probably provides feedback for stomatal opening before dawn.
Collapse
Affiliation(s)
- Priit Kupper
- Institute of Ecology and Earth Sciences, University of Tartu, 51005 Tartu, Estonia; and Corresponding author.
| | - Ants Kaasik
- Institute of Ecology and Earth Sciences, University of Tartu, 51005 Tartu, Estonia
| | - Mai Kukumägi
- Institute of Ecology and Earth Sciences, University of Tartu, 51005 Tartu, Estonia
| | | | - Linda Rusalepp
- Institute of Ecology and Earth Sciences, University of Tartu, 51005 Tartu, Estonia
| | - Anu Sõber
- Institute of Ecology and Earth Sciences, University of Tartu, 51005 Tartu, Estonia
| |
Collapse
|
25
|
Urban Green Infrastructure Monitoring Using Remote Sensing from Integrated Visible and Thermal Infrared Cameras Mounted on a Moving Vehicle. SENSORS 2021; 21:s21010295. [PMID: 33406717 PMCID: PMC7796311 DOI: 10.3390/s21010295] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/26/2020] [Revised: 12/28/2020] [Accepted: 12/30/2020] [Indexed: 12/15/2022]
Abstract
Climate change forecasts higher temperatures in urban environments worsening the urban heat island effect (UHI). Green infrastructure (GI) in cities could reduce the UHI by regulating and reducing ambient temperatures. Forest cities (i.e., Melbourne, Australia) aimed for large-scale planting of trees to adapt to climate change in the next decade. Therefore, monitoring cities' green infrastructure requires close assessment of growth and water status at the tree-by-tree resolution for its proper maintenance and needs to be automated and efficient. This project proposed a novel monitoring system using an integrated visible and infrared thermal camera mounted on top of moving vehicles. Automated computer vision algorithms were used to analyze data gathered at an Elm trees avenue in the city of Melbourne, Australia (n = 172 trees) to obtain tree growth in the form of effective leaf area index (LAIe) and tree water stress index (TWSI), among other parameters. Results showed the tree-by-tree variation of trees monitored (5.04 km) between 2016-2017. The growth and water stress parameters obtained were mapped using customized codes and corresponded with weather trends and urban management. The proposed urban tree monitoring system could be a useful tool for city planning and GI monitoring, which can graphically show the diurnal, spatial, and temporal patterns of change of LAIe and TWSI to monitor the effects of climate change on the GI of cities.
Collapse
|
26
|
Qin H, Arteaga C, Chowdhury FI, Granda E, Yao Y, Han Y, Resco de Dios V. Radiation and Drought Impact Residual Leaf Conductance in Two Oak Species With Implications for Water Use Models. FRONTIERS IN PLANT SCIENCE 2020; 11:603581. [PMID: 33329674 PMCID: PMC7732681 DOI: 10.3389/fpls.2020.603581] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/11/2020] [Accepted: 11/10/2020] [Indexed: 05/27/2023]
Abstract
Stomatal closure is one of the earliest responses to water stress but residual water losses may continue through the cuticle and incomplete stomatal closure. Residual conductance (g res ) plays a large role in determining time to mortality but we currently do not understand how do drought and shade interact to alter g res because the underlying drivers are largely unknown. Furthermore, g res may play an important role in models of water use, but the exact form in which g res should be incorporated into modeling schemes is currently being discussed. Here we report the results of a study where two different oak species were experimentally subjected to highly contrasting levels of drought (resulting in 0, 50 and 80% losses of hydraulic conductivity) and radiation (photosynthetic photon flux density at 1,500 μmol m-2 s-1 or 35-45 μmol m-2 s-1). We observed that the effects of radiation and drought were interactive and species-specific and g res correlated positively with concentrations of leaf non-structural carbohydrates and negatively with leaf nitrogen. We observed that different forms of measuring g res , based on either nocturnal conductance under high atmospheric water demand or on the water mass loss of detached leaves, exerted only a small influence on a model of stomatal conductance and also on a coupled leaf gas exchange model. Our results indicate that, while understanding the drivers of g res and the effects of different stressors may be important to better understand mortality, small differences in g res across treatments and measurements exert only a minor impact on stomatal models in two closely related species.
Collapse
Affiliation(s)
- Haiyan Qin
- School of Life Sciences and Engineering, Southwest University of Science and Technology, Mianyang, China
| | - Carles Arteaga
- Department of Crop and Forest Sciences, University of Lleida, Lleida, Spain
| | - Faqrul Islam Chowdhury
- Institute of Forestry and Environmental Sciences, University of Chittagong, Chattogram, Bangladesh
| | - Elena Granda
- Department of Life Sciences, University of Alcalá, Alcalá de Henares, Spain
| | - Yinan Yao
- School of Life Sciences and Engineering, Southwest University of Science and Technology, Mianyang, China
| | - Ying Han
- School of Life Sciences and Engineering, Southwest University of Science and Technology, Mianyang, China
| | - Víctor Resco de Dios
- School of Life Sciences and Engineering, Southwest University of Science and Technology, Mianyang, China
- Department of Crop and Forest Sciences, University of Lleida, Lleida, Spain
- Joint Research Unit CTFC-AGROTECNIO, Universitat de Lleida, Lleida, Spain
| |
Collapse
|
27
|
Schoppach R, Sinclair TR, Sadok W. Sleep tight and wake-up early: nocturnal transpiration traits to increase wheat drought tolerance in a Mediterranean environment. FUNCTIONAL PLANT BIOLOGY : FPB 2020; 47:1117-1127. [PMID: 32684244 DOI: 10.1071/fp20044] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/09/2020] [Accepted: 06/20/2020] [Indexed: 06/11/2023]
Abstract
In wheat, night-time transpiration rate (TRN) could amount to 14-55% of daytime transpiration rate (TR), depending on the cultivar and environment. Recent evidence suggests that TRN is much less responsive to soil drying than daytime TR, and that such 'wasteful' water losses would increase the impact of drought on yields. In contrast, other evidence indicates that pre-dawn, circadian increases in TRN may enable enhanced radiation use efficiency, resulting in increased productivity under water deficit. Until now, there have been no attempts to evaluate these seemingly conflicting hypotheses in terms of their impact on yields in any crop. Here, using the Mediterranean environment of Tunisia as a case study, we undertook a simulation modelling approach using SSM-Wheat to evaluate yield outcomes resulting from these TRN trait modifications. TRN represented 15% of daytime TR-generated yield penalties of up to 20%, and these worsened when TRN was not sensitive to soil drying TR. For the same TRN level (15%), simulating a predawn increase in TRN alleviated yield penalties, leading to yield gains of up to 25%. Overall, this work suggests that decreasing TRN but increasing pre-dawn circadian control would be a viable breeding target to increase drought tolerance in a Mediterranean environment.
Collapse
Affiliation(s)
- Rémy Schoppach
- Department of Agronomy and Plant Genetics, University of Minnesota, St. Paul, MN 55108-6026, USA
| | - Thomas R Sinclair
- Crop Science Department, North Carolina State University, Raleigh, NC 27695-7620, USA
| | - Walid Sadok
- Department of Agronomy and Plant Genetics, University of Minnesota, St. Paul, MN 55108-6026, USA; and Corresponding author.
| |
Collapse
|
28
|
Saini G, Fricke W. Photosynthetically active radiation impacts significantly on root and cell hydraulics in barley (Hordeum vulgare L.). PHYSIOLOGIA PLANTARUM 2020; 170:357-372. [PMID: 32639611 DOI: 10.1111/ppl.13164] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/07/2020] [Accepted: 07/01/2020] [Indexed: 06/11/2023]
Abstract
Photosynthetically active radiation (PAR) affects transpirational water loss, yet we do not know through which mechanisms root water uptake is adjusted in parallel. Here, we exposed hydroponically grown barley plants to three levels of PAR [Normal (control), Low, High] and focused on the role which aquaporins (AQPs), apoplastic barriers (Casparian bands, suberin lamellae) and root morphology play in the adjustment of root hydraulic conductivity (Lp). Plants were analyzed when they were 14-18 days (d) old. Root and cell Lp, which involves AQP activity, was determined through exudation and cell pressure probe measurements, respectively. Gene expression of AQPs was analyzed through qPCR. The formation of apoplastic barriers was studied through staining of cross-sections. The rate of transpirational water loss per plant and unit leaf area increased in response to high-PAR and decreased in response to low-PAR treatments, both during day and night. Hydraulic conductivity in roots decreased significantly at organ and cell level in response to Low-PAR, and increased (organ) or did not change (cell level) in response to High-PAR. The formation of apoplastic barriers was little affected by PAR. Gene expression of AQPs tended to be highest in the Low-PAR treatment. Lateral roots, showing few apoplastic barriers, contributed the least in Low- and the most to root surface area in High-PAR plants. It is concluded that barley plants which experience changes in shoot transpirational water loss in response to PAR adjust root water uptake through changes in root Lp, and that these changes are mediated through altered AQP activity and root morphology.
Collapse
Affiliation(s)
- Gurvin Saini
- School of Biology and Environmental Sciences, University College Dublin, Belfield, Republic of Ireland
| | - Wieland Fricke
- School of Biology and Environmental Sciences, University College Dublin, Belfield, Republic of Ireland
| |
Collapse
|
29
|
Sadok W, Jagadish SVK. The Hidden Costs of Nighttime Warming on Yields. TRENDS IN PLANT SCIENCE 2020; 25:644-651. [PMID: 32526169 DOI: 10.1016/j.tplants.2020.02.003] [Citation(s) in RCA: 43] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/08/2019] [Revised: 02/05/2020] [Accepted: 02/06/2020] [Indexed: 05/18/2023]
Abstract
Nighttime warming poses a threat to global food security as it is driving yield declines worldwide, but our understanding of the physiological basis of this phenomenon remains very limited. Furthermore, it is often assumed that such declines are driven solely by increases in nighttime temperature (TNight). Here we argue that, in addition to temperature, increases in nighttime evaporative demand may 'conspire' to penalize yields and end-use quality traits. We propose an ecophysiological framework outlining the possible mechanistic basis of such declines in yield and quality. We suggest ways to use the proposed framework as a guide to future efforts aimed at alleviating productivity losses by integrating crop ecophysiology with modeling, breeding, and management.
Collapse
Affiliation(s)
- Walid Sadok
- Department of Agronomy and Plant Genetics, University of Minnesota Twin Cities, MN, USA.
| | | |
Collapse
|