1
|
Wang Y, Liu Q, Shao Z, Wang XS, Chen YF, Bai JJ, Chen ML, Wang JH. Investigation on effects of TiO 2 on cucumber seedlings using ICP-OES and LA-ICP-MS. Anal Chim Acta 2025; 1352:343917. [PMID: 40210275 DOI: 10.1016/j.aca.2025.343917] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2024] [Revised: 03/01/2025] [Accepted: 03/06/2025] [Indexed: 04/12/2025]
Abstract
With the expansion of TiO2 applications in various fields, TiO2 inevitably enters the soil, increasing the possibility of plant roots being exposed to high concentrations of TiO2. Therefore, it is important to study plant growth under TiO2 exposure conditions. In this study, the combination method of inductively coupled plasma emission spectroscopy (ICP-OES) and laser ablation inductively coupled plasma mass spectroscopy (LA-ICP-MS) was used to evaluate the effect of TiO2 on the content and distribution of nutrient elements in different parts of cucumber seedlings. The results showed that the low concentrations (50 mg/L, 100 mg/L and 200 mg/L) of TiO2 had gradually enhanced the growth of cucumber seedlings, while the high concentration (500 mg/L) of TiO2 had a significant inhibitory effect on the plant. The contents of elements (Ti, K, Ca, Mg, Mn, Fe, Zn, and Cu) in cucumber seedling roots, stems and leaves incubated with 200 mg/L TiO2 were determined by ICP-OES, and the results showed that the uptake of TiO2 increased the content of nutrient elements in the plant. High-resolution imaging of Ti, Ca, Mg, Mn, Fe, Zn, and Cu in roots, stems, and leaves using LA-ICP-MS showed that Ti accumulated mainly at the margins of the leaves. Ca, Mg, Mn, Fe, Zn, and Cu in the leaves were mainly concentrated in the main veins and lateral veins. By evaluating the content and distribution of elements in the plant with ICP-OES and LA-ICP-MS, it provides a new idea to study the mechanism of nanoparticles in the plant. It provides a theoretical basis for the correct use of nanomaterials, which is of great significance in promoting the sustainable development of agriculture.
Collapse
Affiliation(s)
- Yu Wang
- Research Center for Analytical Sciences, Department of Chemistry, College of Sciences, Northeastern University, Shenyang, 110819, China; Department of Forensic Chemistry, Criminal Investigation Police University of China, Shenyang, 110035, China
| | - Qi Liu
- Research Center for Analytical Sciences, Department of Chemistry, College of Sciences, Northeastern University, Shenyang, 110819, China
| | - Zhen Shao
- Research Center for Analytical Sciences, Department of Chemistry, College of Sciences, Northeastern University, Shenyang, 110819, China
| | - Xue-Sheng Wang
- Research Center for Analytical Sciences, Department of Chemistry, College of Sciences, Northeastern University, Shenyang, 110819, China
| | - Ya-Fei Chen
- Research Center for Analytical Sciences, Department of Chemistry, College of Sciences, Northeastern University, Shenyang, 110819, China
| | - Jun-Jie Bai
- Research Center for Analytical Sciences, Department of Chemistry, College of Sciences, Northeastern University, Shenyang, 110819, China
| | - Ming-Li Chen
- Research Center for Analytical Sciences, Department of Chemistry, College of Sciences, Northeastern University, Shenyang, 110819, China.
| | - Jian-Hua Wang
- Research Center for Analytical Sciences, Department of Chemistry, College of Sciences, Northeastern University, Shenyang, 110819, China
| |
Collapse
|
2
|
Jiang T, Chen J, Xu K, Sharon B, Li L, Guo J, Liu L, Ge J, Lin H, Tian S, Lu L. Citrus yellow vein clearing virus infection triggers phloem remobilization of iron- and zinc-nicotianamine in citrus. PLANT PHYSIOLOGY 2025; 197:kiae528. [PMID: 39392931 DOI: 10.1093/plphys/kiae528] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/06/2024] [Accepted: 09/09/2024] [Indexed: 10/13/2024]
Abstract
Citrus yellow vein clearing virus (CYVCV) is a worldwide and highly destructive disease of citrus, but the mechanisms involved in CYVCV-inhibited plant growth are not well understood. This study examined nutrient levels and their cellular distribution in different organs of healthy and CYVCV-affected citrus (Citrus reticulata 'Kanpei') plants. We found that CYVCV-infected plants exhibit characteristic symptoms, including a significant reduction in iron (Fe) and other elemental nutrients in the shoots. Our data suggest that CYVCV-induced chlorosis in citrus leaf veins is primarily due to iron deficiency, leading to reduced chlorophyll synthesis. Further analysis revealed a marked decrease in iron concentration within the pith and xylem of citrus petioles post-CYVCV infection, contrasting with increased Fe and zinc (Zn) concentrations in the phloem. Moreover, a substantial accumulation of starch granules was observed in the pith, xylem, and phloem vessels of infected plants, with vessel blockage due to starch accumulation reaching up to 81%, thus significantly obstructing Fe transport in the xylem. Additionally, our study detected an upregulation of genes associated with nicotinamide metabolism and Fe and Zn transport following CYVCV infection, leading to increased levels of nicotinamide metabolites. This suggests that CYVCV-infected citrus plants may induce nicotinamide synthesis in response to Fe deficiency stress, facilitating the transport of Fe and Zn in the phloem as nicotinamide-bound complexes. Overall, our findings provide insight into the mechanisms of long-distance Fe and Zn transport in citrus plants in response to CYVCV infection and highlight the role of nutritional management in mitigating the adverse effects of CYVCV, offering potential strategies for cultivating CYVCV-resistant citrus varieties.
Collapse
Affiliation(s)
- Tianchi Jiang
- Zhejiang Provincial Key Laboratory of Subtropic Soil and Plant Nutrition, Zhejiang University, Hangzhou 310058, China
| | - Jiuzhou Chen
- Key Laboratory of Environment Remediation and Ecological Health (Zhejiang University, College of Environmental & Resource Science), Ministry of Education, Hangzhou 310058, China
| | - Kuan Xu
- Key Laboratory of Environment Remediation and Ecological Health (Zhejiang University, College of Environmental & Resource Science), Ministry of Education, Hangzhou 310058, China
| | - Bone Sharon
- Stanford Synchrotron Radiation Lightsource, SLAC National Accelerator Laboratory, Menlo Park, CA 94025, USA
| | - Luxi Li
- Advanced Photon Source, Argonne National Laboratory, Lemont, IL 60439, USA
| | - Jiansheng Guo
- Center of Cryo-Electron Microscopy, Zhejiang University School of Medicine, Hangzhou 310058, China
| | - Lianghui Liu
- Zhejiang Provincial Key Laboratory of Subtropic Soil and Plant Nutrition, Zhejiang University, Hangzhou 310058, China
| | - Jun Ge
- Zhejiang Provincial Key Laboratory of Subtropic Soil and Plant Nutrition, Zhejiang University, Hangzhou 310058, China
| | - Haizhong Lin
- Agricultural Technology Extension Center of Huangyan District, Taizhou 318020, China
| | - Shengke Tian
- Key Laboratory of Environment Remediation and Ecological Health (Zhejiang University, College of Environmental & Resource Science), Ministry of Education, Hangzhou 310058, China
| | - Lingli Lu
- Zhejiang Provincial Key Laboratory of Subtropic Soil and Plant Nutrition, Zhejiang University, Hangzhou 310058, China
- Key Laboratory of Environment Remediation and Ecological Health (Zhejiang University, College of Environmental & Resource Science), Ministry of Education, Hangzhou 310058, China
| |
Collapse
|
3
|
Hu L, Wu Q, Wu C, Zhang C, Wu Z, Shi M, Zhang M, Duan S, Wang HB, Jin HL. Light signaling-dependent regulation of plastid RNA processing in Arabidopsis. JOURNAL OF INTEGRATIVE PLANT BIOLOGY 2025; 67:375-390. [PMID: 39352303 DOI: 10.1111/jipb.13779] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/30/2023] [Accepted: 09/02/2024] [Indexed: 02/13/2025]
Abstract
Light is a vital environmental signal that regulates the expression of plastid genes. Plastids are crucial organelles that respond to light, but the effects of light on plastid RNA processing following transcription remain unclear. In this study, we systematically examined the influence of light exposure on plastid RNA processing, focusing on RNA splicing and RNA editing. We demonstrated that light promotes the splicing of transcripts from the plastid genes rps12, ndhA, atpF, petB, and rpl2. Additionally, light increased the editing rate of the accD transcript at nucleotide 794 (accD-794) and the ndhF transcript at nucleotide 290 (ndhF-290), while decreasing the editing rate of the clpP transcript at nucleotide 559 (clpP-559). We have identified key regulators of signaling pathways, such as CONSTITUTIVELY PHOTOMORPHOGENIC 1 (COP1), ELONGATED HYPOCOTYL 5 (HY5), and PHYTOCHROME-INTERACTING FACTORs (PIFs), as important players in the regulation of plastid RNA splicing and editing. Notably, COP1 was required for GENOMES UNCOUPLED1 (GUN1)-dependent repression of clpP-559 editing in the light. We showed that HY5 and PIF1 bind to the promoters of nuclear genes encoding plastid-localized RNA processing factors in a light-dependent manner. This study provides insight into the mechanisms underlying light-mediated post-transcriptional regulation of plastid gene expression.
Collapse
Affiliation(s)
- Lili Hu
- Institute of Medical Plant Physiology and Ecology, School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, Guangzhou, 510006, China
- School of Life Sciences, Sun Yat-sen University, Guangzhou, 510275, China
| | - Qian Wu
- Institute of Medical Plant Physiology and Ecology, School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, Guangzhou, 510006, China
| | - Chunyu Wu
- Institute of Medical Plant Physiology and Ecology, School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, Guangzhou, 510006, China
| | - Chunmei Zhang
- School of Life Sciences, Sun Yat-sen University, Guangzhou, 510275, China
| | - Ziying Wu
- Institute of Medical Plant Physiology and Ecology, School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, Guangzhou, 510006, China
| | - Meihui Shi
- Institute of Medical Plant Physiology and Ecology, School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, Guangzhou, 510006, China
| | - Man Zhang
- Institute of Medical Plant Physiology and Ecology, School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, Guangzhou, 510006, China
| | - Sujuan Duan
- Institute of Medical Plant Physiology and Ecology, School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, Guangzhou, 510006, China
| | - Hong-Bin Wang
- Institute of Medical Plant Physiology and Ecology, School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, Guangzhou, 510006, China
- Key Laboratory of Chinese Medicinal Resource from Lingnan, Guangzhou University of Chinese Medicine, Ministry of Education, Guangzhou, 510006, China
| | - Hong-Lei Jin
- Institute of Medical Plant Physiology and Ecology, School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, Guangzhou, 510006, China
- Guangzhou Key Laboratory of Chinese Medicine Research on Prevention and Treatment of Osteoporosis, The Third Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, 510375, China
- State Key Laboratory of Traditional Chinese Medicine Syndrome, Guangzhou University of Chinese Medicine, Guangzhou, 510006, China
| |
Collapse
|
4
|
Xie W, Peng C, Wang W, Chen X, Tan J, Zhang W. Combined Toxicity of Multi-Walled Carbon Nanotubes and Cu 2+ on the Growth of Ryegrass: Effect of Surface Modification, Dose, and Exposure Time Pattern. NANOMATERIALS (BASEL, SWITZERLAND) 2024; 14:1746. [PMID: 39513826 PMCID: PMC11547606 DOI: 10.3390/nano14211746] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/27/2024] [Revised: 10/27/2024] [Accepted: 10/28/2024] [Indexed: 11/16/2024]
Abstract
The escalating release of multi-walled carbon nanotubes (MWCNTs) into the environment has raised concerns due to their potential ecotoxicological impacts. However, their combined phytotoxicity with heavy metals such as copper (Cu) is still unclear. This study investigated the individual and combined toxic effects of MWCNTs (MWCNT, MWCNT-OH, and MWCNT-COOH) and Cu2+ on ryegrass (Lolium multiflorum), uniquely considering different addition orders. The results show that Cu severely inhibited the growth of ryegrass while MWCNTs exhibited a hormesis effect on ryegrass. When MWCNT and Cu were combined, the malondialdehyde (MDA) content in ryegrass showed a 32.39% increase at 20 mg/L MWCNT exposure, suggesting reduced oxidative stress. However, at the higher concentration of 1000 mg/L, it led to a significant 75.22% reduction in ryegrass biomass. MWCNT-COOH had the most pronounced effect, reducing the total chlorophyll content by 39.76% compared to unmodified MWCNT and by 10.67% compared to MWCNT-OH (500 mg/L). Additionally, pre-induced MWCNTs might alleviate the Cu in the plant by 23.08-35.38% through adsorption in the nutrient solution. Small molecule organic acids and amino acids primarily mediated the response to environmental stress in ryegrass. This research provides crucial insights into understanding the complex interactions of MWCNT and Cu2+ and their combined effects on plant ecosystems.
Collapse
Affiliation(s)
- Wenwen Xie
- State Environmental Protection Key Laboratory of Environmental Risk Assessment and Control on Chemical Process, School of Resource and Environmental Engineering, East China University of Science and Technology, Shanghai 200237, China; (W.X.); (W.W.); (X.C.); (W.Z.)
| | - Cheng Peng
- State Environmental Protection Key Laboratory of Environmental Risk Assessment and Control on Chemical Process, School of Resource and Environmental Engineering, East China University of Science and Technology, Shanghai 200237, China; (W.X.); (W.W.); (X.C.); (W.Z.)
- Shanghai Institute of Pollution Control and Ecological Security, Shanghai 200092, China
| | - Weiping Wang
- State Environmental Protection Key Laboratory of Environmental Risk Assessment and Control on Chemical Process, School of Resource and Environmental Engineering, East China University of Science and Technology, Shanghai 200237, China; (W.X.); (W.W.); (X.C.); (W.Z.)
| | - Xiaoyi Chen
- State Environmental Protection Key Laboratory of Environmental Risk Assessment and Control on Chemical Process, School of Resource and Environmental Engineering, East China University of Science and Technology, Shanghai 200237, China; (W.X.); (W.W.); (X.C.); (W.Z.)
| | - Jiaqi Tan
- Department of Biological Sciences, Louisiana State University, Baton Rouge, LA 70803, USA
| | - Wei Zhang
- State Environmental Protection Key Laboratory of Environmental Risk Assessment and Control on Chemical Process, School of Resource and Environmental Engineering, East China University of Science and Technology, Shanghai 200237, China; (W.X.); (W.W.); (X.C.); (W.Z.)
| |
Collapse
|
5
|
Charagh S, Wang H, Wang J, Raza A, Hui S, Cao R, Zhou L, Tang S, Hu P, Hu S. Leveraging multi-omics tools to comprehend responses and tolerance mechanisms of heavy metals in crop plants. Funct Integr Genomics 2024; 24:194. [PMID: 39441418 DOI: 10.1007/s10142-024-01481-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2024] [Revised: 10/14/2024] [Accepted: 10/15/2024] [Indexed: 10/25/2024]
Abstract
Extreme anthropogenic activities and current farming techniques exacerbate the effects of water and soil impurity by hazardous heavy metals (HMs), severely reducing agricultural output and threatening food safety. In the upcoming years, plants that undergo exposure to HM might cause a considerable decline in the development as well as production. Hence, plants have developed sophisticated defensive systems to evade or withstand the harmful consequences of HM. These mechanisms comprise the uptake as well as storage of HMs in organelles, their immobilization via chemical formation by organic chelates, and their removal using many ion channels, transporters, signaling networks, and TFs, amid other approaches. Among various cutting-edge methodologies, omics, most notably genomics, transcriptomics, proteomics, metabolomics, miRNAomics, phenomics, and epigenomics have become game-changing approaches, revealing information about the genes, proteins, critical metabolites as well as microRNAs that govern HM responses and resistance systems. With the help of integrated omics approaches, we will be able to fully understand the molecular processes behind plant defense, enabling the development of more effective crop protection techniques in the face of climate change. Therefore, this review comprehensively presented omics advancements that will allow resilient and sustainable crop plants to flourish in areas contaminated with HMs.
Collapse
Affiliation(s)
- Sidra Charagh
- State Key Laboratory of Rice Biology and Breeding, China National Rice Research Institute, Hangzhou, 310006, China
| | - Hong Wang
- State Key Laboratory of Rice Biology and Breeding, China National Rice Research Institute, Hangzhou, 310006, China
| | - Jingxin Wang
- State Key Laboratory of Rice Biology and Breeding, China National Rice Research Institute, Hangzhou, 310006, China
| | - Ali Raza
- Guangdong Key Laboratory of Plant Epigenetics, College of Life Sciences and Oceanography, Shenzhen University, Shenzhen, 518060, China
| | - Suozhen Hui
- State Key Laboratory of Rice Biology and Breeding, China National Rice Research Institute, Hangzhou, 310006, China
| | - Ruijie Cao
- State Key Laboratory of Rice Biology and Breeding, China National Rice Research Institute, Hangzhou, 310006, China
| | - Liang Zhou
- State Key Laboratory of Rice Biology and Breeding, China National Rice Research Institute, Hangzhou, 310006, China
| | - Shaoqing Tang
- State Key Laboratory of Rice Biology and Breeding, China National Rice Research Institute, Hangzhou, 310006, China
| | - Peisong Hu
- State Key Laboratory of Rice Biology and Breeding, China National Rice Research Institute, Hangzhou, 310006, China.
| | - Shikai Hu
- State Key Laboratory of Rice Biology and Breeding, China National Rice Research Institute, Hangzhou, 310006, China.
| |
Collapse
|
6
|
El-Sappah AH, Zhu Y, Huang Q, Chen B, Soaud SA, Abd Elhamid MA, Yan K, Li J, El-Tarabily KA. Plants' molecular behavior to heavy metals: from criticality to toxicity. FRONTIERS IN PLANT SCIENCE 2024; 15:1423625. [PMID: 39280950 PMCID: PMC11392792 DOI: 10.3389/fpls.2024.1423625] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/26/2024] [Accepted: 07/22/2024] [Indexed: 09/18/2024]
Abstract
The contamination of soil and water with high levels of heavy metals (HMs) has emerged as a significant obstacle to agricultural productivity and overall crop quality. Certain HMs, although serving as essential micronutrients, are required in smaller quantities for plant growth. However, when present in higher concentrations, they become very toxic. Several studies have shown that to balance out the harmful effects of HMs, complex systems are needed at the molecular, physiological, biochemical, cellular, tissue, and whole plant levels. This could lead to more crops being grown. Our review focused on HMs' resources, occurrences, and agricultural implications. This review will also look at how plants react to HMs and how they affect seed performance as well as the benefits that HMs provide for plants. Furthermore, the review examines HMs' transport genes in plants and their molecular, biochemical, and metabolic responses to HMs. We have also examined the obstacles and potential for HMs in plants and their management strategies.
Collapse
Affiliation(s)
- Ahmed H El-Sappah
- College of Agriculture, Forestry, and Food Engineering, Yibin University, Yibin, Sichuan, China
- Department of Genetics, Faculty of Agriculture, Zagazig University, Zagazig, Egypt
| | - Yumin Zhu
- College of Agriculture, Forestry, and Food Engineering, Yibin University, Yibin, Sichuan, China
| | - Qiulan Huang
- College of Agriculture, Forestry, and Food Engineering, Yibin University, Yibin, Sichuan, China
| | - Bo Chen
- College of Agriculture, Forestry, and Food Engineering, Yibin University, Yibin, Sichuan, China
| | - Salma A Soaud
- Department of Genetics, Faculty of Agriculture, Zagazig University, Zagazig, Egypt
| | | | - Kuan Yan
- College of Agriculture, Forestry, and Food Engineering, Yibin University, Yibin, Sichuan, China
| | - Jia Li
- College of Agriculture, Forestry, and Food Engineering, Yibin University, Yibin, Sichuan, China
| | - Khaled A El-Tarabily
- Department of Biology, College of Science, United Arab Emirates University, Al Ain, United Arab Emirates
| |
Collapse
|
7
|
Kunz HH, Armbruster U, Mühlbauer S, de Vries J, Davis GA. Chloroplast ion homeostasis - what do we know and where should we go? THE NEW PHYTOLOGIST 2024; 243:543-559. [PMID: 38515227 DOI: 10.1111/nph.19661] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/01/2023] [Accepted: 02/01/2024] [Indexed: 03/23/2024]
Abstract
Plant yields heavily depend on proper macro- and micronutrient supply from the soil. In the leaf cells, nutrient ions fulfill specific roles in biochemical reactions, especially photosynthesis housed in the chloroplast. Here, a well-balanced ion homeostasis is maintained by a number of ion transport proteins embedded in the envelope and thylakoid membranes. Ten years ago, the first alkali metal transporters from the K+ EFFLUX ANTIPORTER family were discovered in the model plant Arabidopsis. Since then, our knowledge about the physiological importance of these carriers and their substrates has greatly expanded. New insights into the role of alkali ions in plastid gene expression and photoprotective mechanisms, both prerequisites for plant productivity in natural environments, were gained. The discovery of a Cl- channel in the thylakoid and several additional plastid alkali and alkali metal transport proteins have advanced the field further. Nevertheless, scientists still have long ways to go before a complete systemic understanding of the chloroplast's ion transportome will emerge. In this Tansley review, we highlight and discuss the achievements of the last decade. More importantly, we make recommendations on what areas to prioritize, so the field can reach the next milestones. One area, laid bare by our similarity-based comparisons among phototrophs is our lack of knowledge what ion transporters are used by cyanobacteria to buffer photosynthesis fluctuations.
Collapse
Affiliation(s)
- Hans-Henning Kunz
- Plant Biochemistry, Biology, LMU Munich, Großhadernerstr. 2-4, 82152, Planegg-Martinsried, Germany
| | - Ute Armbruster
- Institute of Molecular Photosynthesis, Heinrich Heine University Düsseldorf, 40225, Düsseldorf, Germany
- CEPLAS - Cluster of Excellence on Plant Sciences, Heinrich Heine University Düsseldorf, 40225, Düsseldorf, Germany
| | - Susanne Mühlbauer
- Plant Biochemistry, Biology, LMU Munich, Großhadernerstr. 2-4, 82152, Planegg-Martinsried, Germany
| | - Jan de Vries
- Department of Applied Bioinformatics, Institute for Microbiology and Genetics, Goettingen Center for Molecular Biosciences (GZMB), Campus Institute Data Science (CIDAS), University of Goettingen, Goldschmidtstr. 1, D-37077, Göttingen, Germany
| | - Geoffry A Davis
- Plant Biochemistry, Biology, LMU Munich, Großhadernerstr. 2-4, 82152, Planegg-Martinsried, Germany
- Department of Life Sciences, Imperial College London, London, SW7 2AZ, UK
| |
Collapse
|
8
|
Xu E, Liu Y, Gu D, Zhan X, Li J, Zhou K, Zhang P, Zou Y. Molecular Mechanisms of Plant Responses to Copper: From Deficiency to Excess. Int J Mol Sci 2024; 25:6993. [PMID: 39000099 PMCID: PMC11240974 DOI: 10.3390/ijms25136993] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2024] [Revised: 06/20/2024] [Accepted: 06/22/2024] [Indexed: 07/16/2024] Open
Abstract
Copper (Cu) is an essential nutrient for plant growth and development. This metal serves as a constituent element or enzyme cofactor that participates in many biochemical pathways and plays a key role in photosynthesis, respiration, ethylene sensing, and antioxidant systems. The physiological significance of Cu uptake and compartmentalization in plants has been underestimated, despite the importance of Cu in cellular metabolic processes. As a micronutrient, Cu has low cellular requirements in plants. However, its bioavailability may be significantly reduced in alkaline or organic matter-rich soils. Cu deficiency is a severe and widespread nutritional disorder that affects plants. In contrast, excessive levels of available Cu in soil can inhibit plant photosynthesis and induce cellular oxidative stress. This can affect plant productivity and potentially pose serious health risks to humans via bioaccumulation in the food chain. Plants have evolved mechanisms to strictly regulate Cu uptake, transport, and cellular homeostasis during long-term environmental adaptation. This review provides a comprehensive overview of the diverse functions of Cu chelators, chaperones, and transporters involved in Cu homeostasis and their regulatory mechanisms in plant responses to varying Cu availability conditions. Finally, we identified that future research needs to enhance our understanding of the mechanisms regulating Cu deficiency or stress in plants. This will pave the way for improving the Cu utilization efficiency and/or Cu tolerance of crops grown in alkaline or Cu-contaminated soils.
Collapse
Affiliation(s)
- Ending Xu
- Anhui Province Key Laboratory of Rice Germplasm Innovation and Molecular Improvement, Rice Research Institute, Anhui Academy of Agricultural Sciences, Hefei 230031, China
| | - Yuanyuan Liu
- Department of Biochemistry & Molecular Biology, College of Life Science, Nanjing Agriculture University, Nanjing 210095, China
| | - Dongfang Gu
- Anhui Province Key Laboratory of Rice Germplasm Innovation and Molecular Improvement, Rice Research Institute, Anhui Academy of Agricultural Sciences, Hefei 230031, China
| | - Xinchun Zhan
- Anhui Province Key Laboratory of Rice Germplasm Innovation and Molecular Improvement, Rice Research Institute, Anhui Academy of Agricultural Sciences, Hefei 230031, China
| | - Jiyu Li
- Institute of Horticultural Research, Anhui Academy of Agricultural Sciences, Hefei 230031, China
| | - Kunneng Zhou
- Anhui Province Key Laboratory of Rice Germplasm Innovation and Molecular Improvement, Rice Research Institute, Anhui Academy of Agricultural Sciences, Hefei 230031, China
| | - Peijiang Zhang
- Anhui Province Key Laboratory of Rice Germplasm Innovation and Molecular Improvement, Rice Research Institute, Anhui Academy of Agricultural Sciences, Hefei 230031, China
| | - Yu Zou
- Anhui Province Key Laboratory of Rice Germplasm Innovation and Molecular Improvement, Rice Research Institute, Anhui Academy of Agricultural Sciences, Hefei 230031, China
| |
Collapse
|
9
|
Voloshyna IM, Netiaha YM, Nechaiuk YV, Khomenko VG, Shkotova LV. The influence of metal nanoparticles on plants. BIOPOLYMERS AND CELL 2024; 40:83-95. [DOI: 10.7124/bc.000aaf] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/06/2025]
Affiliation(s)
| | | | | | | | - L. V. Shkotova
- 'Institute of Molecular Biology and Genetics, NAS of Ukraine'
| |
Collapse
|
10
|
Yong S, Chen Q, Xu F, Fu H, Liang G, Guo Q. Exploring the interplay between angiosperm chlorophyll metabolism and environmental factors. PLANTA 2024; 260:25. [PMID: 38861219 PMCID: PMC11166782 DOI: 10.1007/s00425-024-04437-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/15/2024] [Accepted: 05/09/2024] [Indexed: 06/12/2024]
Abstract
MAIN CONCLUSION In this review, we summarize how chlorophyll metabolism in angiosperm is affected by the environmental factors: light, temperature, metal ions, water, oxygen, and altitude. The significance of chlorophyll (Chl) in plant leaf morphogenesis and photosynthesis cannot be overstated. Over time, researchers have made significant advancements in comprehending the biosynthetic pathway of Chl in angiosperms, along with the pivotal enzymes and genes involved in this process, particularly those related to heme synthesis and light-responsive mechanisms. Various environmental factors influence the stability of Chl content in angiosperms by modulating Chl metabolic pathways. Understanding the interplay between plants Chl metabolism and environmental factors has been a prominent research topic. This review mainly focuses on angiosperms, provides an overview of the regulatory mechanisms governing Chl metabolism, and the impact of environmental factors such as light, temperature, metal ions (iron and magnesium), water, oxygen, and altitude on Chl metabolism. Understanding these effects is crucial for comprehending and preserving the homeostasis of Chl metabolism.
Collapse
Affiliation(s)
- Shunyuan Yong
- Key Laboratory of Agricultural Biosafety and Green Production of Upper Yangtze River (Ministry of Education), College of Horticulture and Landscape Architecture, Southwest University, Chongqing, 400715, People's Republic of China
- State Cultivation Base of Crop Stress Biology for Southern Mountainous Land of Southwest University, Academy of Agricultural Sciences of Southwest University, Chongqing, 400715, People's Republic of China
| | - Qian Chen
- Key Laboratory of Agricultural Biosafety and Green Production of Upper Yangtze River (Ministry of Education), College of Horticulture and Landscape Architecture, Southwest University, Chongqing, 400715, People's Republic of China
- State Cultivation Base of Crop Stress Biology for Southern Mountainous Land of Southwest University, Academy of Agricultural Sciences of Southwest University, Chongqing, 400715, People's Republic of China
| | - Fan Xu
- College of Agronomy and Biotechnology, Southwest University, Chongqing, 400715, People's Republic of China
| | - Hao Fu
- Key Laboratory of Agricultural Biosafety and Green Production of Upper Yangtze River (Ministry of Education), College of Horticulture and Landscape Architecture, Southwest University, Chongqing, 400715, People's Republic of China
- State Cultivation Base of Crop Stress Biology for Southern Mountainous Land of Southwest University, Academy of Agricultural Sciences of Southwest University, Chongqing, 400715, People's Republic of China
| | - Guolu Liang
- Key Laboratory of Agricultural Biosafety and Green Production of Upper Yangtze River (Ministry of Education), College of Horticulture and Landscape Architecture, Southwest University, Chongqing, 400715, People's Republic of China
- State Cultivation Base of Crop Stress Biology for Southern Mountainous Land of Southwest University, Academy of Agricultural Sciences of Southwest University, Chongqing, 400715, People's Republic of China
| | - Qigao Guo
- Key Laboratory of Agricultural Biosafety and Green Production of Upper Yangtze River (Ministry of Education), College of Horticulture and Landscape Architecture, Southwest University, Chongqing, 400715, People's Republic of China.
- State Cultivation Base of Crop Stress Biology for Southern Mountainous Land of Southwest University, Academy of Agricultural Sciences of Southwest University, Chongqing, 400715, People's Republic of China.
| |
Collapse
|
11
|
Zou Y, Huang Y, Zhang D, Chen H, Liang Y, Hao M, Yin Y. Molecular Mechanisms of Chlorophyll Deficiency in Ilex × attenuata 'Sunny Foster' Mutant. PLANTS (BASEL, SWITZERLAND) 2024; 13:1284. [PMID: 38794356 PMCID: PMC11124982 DOI: 10.3390/plants13101284] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/05/2024] [Revised: 05/01/2024] [Accepted: 05/04/2024] [Indexed: 05/26/2024]
Abstract
Ilex × attenuata 'Sunny Foster' represents a yellow leaf mutant originating from I. × attenuata 'Foster#2', a popular ornamental woody cultivar. However, the molecular mechanisms underlying this leaf color mutation remain unclear. Using a comprehensive approach encompassing cytological, physiological, and transcriptomic methodologies, notable distinctions were discerned between the mutant specimen and its wild type. The mutant phenotype displayed aberrant chloroplast morphology, diminished chlorophyll content, heightened carotenoid/chlorophyll ratios, and a decelerated rate of plant development. Transcriptome analysis identified differentially expressed genes (DEGs) related to chlorophyll metabolism, carotenoid biosynthesis and photosynthesis. The up-regulation of CHLD and CHLI subunits leads to decreased magnesium chelatase activity, while the up-regulation of COX10 increases heme biosynthesis-both impair chlorophyll synthesis. Conversely, the down-regulation of HEMD hindered chlorophyll synthesis, and the up-regulation of SGR enhanced chlorophyll degradation, resulting in reduced chlorophyll content. Additionally, genes linked to carotenoid biosynthesis, flavonoid metabolism, and photosynthesis were significantly down-regulated. We also identified 311 putative differentially expressed transcription factors, including bHLHs and GLKs. These findings shed light on the molecular mechanisms underlying leaf color mutation in I. × attenuata 'Sunny Foster' and provide a substantial gene reservoir for enhancing leaf color through breeding techniques.
Collapse
Affiliation(s)
- Yiping Zou
- College of Forestry, Nanjing Forestry University, Nanjing 210037, China; (Y.Z.)
- Institute of Botany, Jiangsu Province and Chinese Academy of Sciences (Nanjing Botanical Garden Mem. Sun Yat-Sen), Nanjing 210014, China
- Jiangsu Qinghao Landscape Horticulture Co., Ltd., Nanjing 211225, China
| | - Yajian Huang
- College of Forestry, Nanjing Forestry University, Nanjing 210037, China; (Y.Z.)
| | - Donglin Zhang
- Department of Horticulture, University of Georgia, Athens, GA 30602, USA
| | - Hong Chen
- Institute of Botany, Jiangsu Province and Chinese Academy of Sciences (Nanjing Botanical Garden Mem. Sun Yat-Sen), Nanjing 210014, China
| | - Youwang Liang
- College of Forestry, Nanjing Forestry University, Nanjing 210037, China; (Y.Z.)
| | - Mingzhuo Hao
- College of Forestry, Nanjing Forestry University, Nanjing 210037, China; (Y.Z.)
- Jiangsu Qinghao Landscape Horticulture Co., Ltd., Nanjing 211225, China
| | - Yunlong Yin
- College of Forestry, Nanjing Forestry University, Nanjing 210037, China; (Y.Z.)
- Institute of Botany, Jiangsu Province and Chinese Academy of Sciences (Nanjing Botanical Garden Mem. Sun Yat-Sen), Nanjing 210014, China
| |
Collapse
|
12
|
Lilay GH, Thiébaut N, du Mee D, Assunção AGL, Schjoerring JK, Husted S, Persson DP. Linking the key physiological functions of essential micronutrients to their deficiency symptoms in plants. THE NEW PHYTOLOGIST 2024; 242:881-902. [PMID: 38433319 DOI: 10.1111/nph.19645] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/04/2023] [Accepted: 02/12/2024] [Indexed: 03/05/2024]
Abstract
In this review, we untangle the physiological key functions of the essential micronutrients and link them to the deficiency responses in plants. Knowledge of these responses at the mechanistic level, and the resulting deficiency symptoms, have improved over the last decade and it appears timely to review recent insights for each of them. A proper understanding of the links between function and symptom is indispensable for an accurate and timely identification of nutritional disorders, thereby informing the design and development of sustainable fertilization strategies. Similarly, improved knowledge of the molecular and physiological functions of micronutrients will be important for breeding programmes aiming to develop new crop genotypes with improved nutrient-use efficiency and resilience in the face of changing soil and climate conditions.
Collapse
Affiliation(s)
- Grmay Hailu Lilay
- Plant and Soil Science Section, Department of Plant and Environmental Sciences, Faculty of Science, University of Copenhagen, Thorvaldsensvej 40, Frederiksberg C, 1871, Denmark
| | - Noémie Thiébaut
- Plant and Soil Science Section, Department of Plant and Environmental Sciences, Faculty of Science, University of Copenhagen, Thorvaldsensvej 40, Frederiksberg C, 1871, Denmark
- Earth and Life Institute, Faculty of Bioscience Engineering, Université Catholique de Louvain, Louvain-la-Neuve, 1348, Belgium
| | - Dorine du Mee
- Plant and Soil Science Section, Department of Plant and Environmental Sciences, Faculty of Science, University of Copenhagen, Thorvaldsensvej 40, Frederiksberg C, 1871, Denmark
| | - Ana G L Assunção
- CIBIO-InBIO, Research Centre in Biodiversity and Genetic Resources, University of Porto, Vairão, 4485-661, Portugal
| | - Jan Kofod Schjoerring
- Plant and Soil Science Section, Department of Plant and Environmental Sciences, Faculty of Science, University of Copenhagen, Thorvaldsensvej 40, Frederiksberg C, 1871, Denmark
| | - Søren Husted
- Plant and Soil Science Section, Department of Plant and Environmental Sciences, Faculty of Science, University of Copenhagen, Thorvaldsensvej 40, Frederiksberg C, 1871, Denmark
| | - Daniel Pergament Persson
- Plant and Soil Science Section, Department of Plant and Environmental Sciences, Faculty of Science, University of Copenhagen, Thorvaldsensvej 40, Frederiksberg C, 1871, Denmark
| |
Collapse
|
13
|
Jin Y, Li Y, Qi Y, Wei Q, Yang G, Ma X. A modified cultivation strategy to enhance biomass production and lipid accumulation of Tetradesmus obliquus FACHB-14 with copper stress and light quality induction. BIORESOURCE TECHNOLOGY 2024; 400:130677. [PMID: 38588782 DOI: 10.1016/j.biortech.2024.130677] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/25/2024] [Revised: 04/04/2024] [Accepted: 04/06/2024] [Indexed: 04/10/2024]
Abstract
In this study, a two-stage culture strategy was refined to concurrently enhance the growth and lipid accumulation of Tetradesmus obliquus. The results unveiled that, during the initial stage, the optimal conditions for biomass accumulation were achieved with 0.02 mg·L-1 Cu2+ concentration and red light. Under these conditions, biomass accumulation reached 0.628 g·L-1, marking a substantial 23.62 % increase compared to the control group. In the second stage, the optimal conditions for lipid accumulation were identified as 0.5 mg·L-1 Cu2+ concentration and red light, achieving 64.25 mg·g-1·d-1 and marking a 128.38 % increase over the control. Furthermore, the fatty acid analysis results revealed an 18.85 % increase in the saturated fatty acid content, indicating enhanced combustion performance of microalgae cultivated under the dual stress of red light and 0.5 mg·L-1 Cu2+. This study offers insights into the potential application of Tetradesmus obliquus in biofuel production.
Collapse
Affiliation(s)
- Yuanrong Jin
- School of Resources, Environment and Materials, Guangxi University, No. 100 Daxue Road, Nanning, Guangxi 530004, PR China
| | - Yinting Li
- School of Resources, Environment and Materials, Guangxi University, No. 100 Daxue Road, Nanning, Guangxi 530004, PR China
| | - Yingying Qi
- School of Resources, Environment and Materials, Guangxi University, No. 100 Daxue Road, Nanning, Guangxi 530004, PR China
| | - Qun Wei
- School of Resources, Environment and Materials, Guangxi University, No. 100 Daxue Road, Nanning, Guangxi 530004, PR China
| | - Gairen Yang
- Forestry College of Guangxi University, Guangxi Key Laboratory of Forest Ecology and Conservation, Guangxi University, No. 100 Daxue Road, Nanning 530004, PR China
| | - Xiangmeng Ma
- School of Resources, Environment and Materials, Guangxi University, No. 100 Daxue Road, Nanning, Guangxi 530004, PR China; Key Laboratory of Environmental Protection (Guangxi University), Education Department of Guangxi Zhuang Autonomous Region, Guangxi Nanning 530004, PR China; Guangxi Key Laboratory of Emerging Contaminants Monitoring, Early Warning and Environmental Health Risk Assessment, PR China.
| |
Collapse
|
14
|
Kircheva N, Angelova S, Dudev T. Carbonic Anhydrases: Different Active Sites, Same Metal Selectivity Rules. Molecules 2024; 29:1995. [PMID: 38731486 PMCID: PMC11085502 DOI: 10.3390/molecules29091995] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2024] [Revised: 04/22/2024] [Accepted: 04/23/2024] [Indexed: 05/13/2024] Open
Abstract
Carbonic anhydrases are mononuclear metalloenzymes catalyzing the reversible hydration of carbon dioxide in organisms belonging to all three domains of life. Although the mechanism of the catalytic reaction is similar, different families of carbonic anhydrases do not have a common ancestor nor do they exhibit significant resemblance in the amino acid sequence or the structure and composition of the metal-binding sites. Little is known about the physical principles determining the metal affinity and selectivity of the catalytic centers, and how well the native metal is protected from being dislodged by other metal species from the local environment. Here, we endeavor to shed light on these issues by studying (via a combination of density functional theory calculations and polarizable continuum model computations) the thermodynamic outcome of the competition between the native metal cation and its noncognate competitor in various metal-binding sites. Typical representatives of the competing cations from the cellular environments of the respective classes of carbonic anhydrases are considered. The calculations reveal how the Gibbs energy of the metal competition changes when varying the metal type, structure, composition, and solvent exposure of the active center. Physical principles governing metal competition in different carbonic anhydrase metal-binding sites are delineated.
Collapse
Affiliation(s)
- Nikoleta Kircheva
- Institute of Optical Materials and Technologies “Acad. J. Malinowski”, Bulgarian Academy of Sciences, 1113 Sofia, Bulgaria; (N.K.); (S.A.)
| | - Silvia Angelova
- Institute of Optical Materials and Technologies “Acad. J. Malinowski”, Bulgarian Academy of Sciences, 1113 Sofia, Bulgaria; (N.K.); (S.A.)
- University of Chemical Technology and Metallurgy, 8 St. Kliment Ohridski Blvd, 1756 Sofia, Bulgaria
| | - Todor Dudev
- Faculty of Chemistry and Pharmacy, Sofia University “St. Kliment Ohridski”, 1164 Sofia, Bulgaria
| |
Collapse
|
15
|
Yu X, Liu Y, Yue L, Zeng X, Huang Y, Xue H, Xu B, Zhang J, Xiao X, Yang L, Lei T, Jiang M, Jiang B, Gao S, Li X. Effects of cadmium and zinc interactions on the physiological biochemistry and enrichment characteristics of Iris pseudacorus. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2024; 275:116275. [PMID: 38564858 DOI: 10.1016/j.ecoenv.2024.116275] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/07/2023] [Revised: 03/26/2024] [Accepted: 03/29/2024] [Indexed: 04/04/2024]
Abstract
Compound pollution with cadmium (Cd) and zinc (Zn) is common in nature. The effects of compounded Cd and Zn on the growth and development of Iris pseudacorus in the environment and the plant's potential to remediate heavy metals in the environment remain unclear. In this study, the effects of single and combined Cd and Zn stress on I. pseudacorus growth and the enrichment of heavy metals in I. pseudacorus seedlings were investigated. The results showed that under Cd (160 μM) and Zn (800 μM) stress, plant growth was significantly inhibited and photosynthetic performance was affected. Cd+Zn200 (160 μM + 200 μM) reduced the levels of malondialdehyde, hydrogen peroxide, and non-protein thiols by 31.29%, 53.20%, and 13.29%, respectively, in the aboveground tissues compared with levels in the single Cd treatment. However, Cd+Zn800 (160 μM + 800 μM) had no effect. Cd and Zn800 inhibited the absorption of mineral elements, while Zn200 had little effect on plants. Compared with that for Cd treatment alone, Cd + Zn200 and Cd+Zn800 reduced the Cd content in aboveground tissues by 54.15% and 49.92%, respectively, but had no significant effect on Cd in the root system. Zn significantly reduced the Cd content in subcellular components and limited the content and proportion of Cd extracted using water and ethanol. These results suggest that a low supply of Zn reduces Cd accumulation in aboveground tissues by promoting antioxidant substances and heavy metal chelating agents, thus protecting the photosynthetic systems. The addition of Zn also reduced the mobility and bioavailability of Cd to alleviate its toxicity in I. pseudacorus.
Collapse
Affiliation(s)
- Xiaofang Yu
- College of Landscape Architecture, Sichuan Agricultural University, Chengdu 611130, China.
| | - Yujia Liu
- College of Landscape Architecture, Sichuan Agricultural University, Chengdu 611130, China
| | - Linjie Yue
- College of Landscape Architecture, Sichuan Agricultural University, Chengdu 611130, China
| | - Xiaoxuan Zeng
- College of Landscape Architecture, Sichuan Agricultural University, Chengdu 611130, China
| | - Yuwei Huang
- College of Landscape Architecture, Sichuan Agricultural University, Chengdu 611130, China
| | - Hanyue Xue
- College of Landscape Architecture, Sichuan Agricultural University, Chengdu 611130, China
| | - Bin Xu
- College of Landscape Architecture, Sichuan Agricultural University, Chengdu 611130, China
| | - Junrui Zhang
- College of Landscape Architecture, Sichuan Agricultural University, Chengdu 611130, China
| | - Xue Xiao
- Triticeae research Institute of Sichuan Agricultural University, Chengdu, Sichuan 611130, China
| | - Lijuan Yang
- College of Landscape Architecture, Sichuan Agricultural University, Chengdu 611130, China
| | - Ting Lei
- College of Landscape Architecture, Sichuan Agricultural University, Chengdu 611130, China
| | - Mingyan Jiang
- College of Landscape Architecture, Sichuan Agricultural University, Chengdu 611130, China
| | - Beibei Jiang
- College of Landscape Architecture, Sichuan Agricultural University, Chengdu 611130, China
| | - Suping Gao
- College of Landscape Architecture, Sichuan Agricultural University, Chengdu 611130, China
| | - Xi Li
- College of Landscape Architecture, Sichuan Agricultural University, Chengdu 611130, China
| |
Collapse
|
16
|
Grosjean N, Yee EF, Kumaran D, Chopra K, Abernathy M, Biswas S, Byrnes J, Kreitler DF, Cheng JF, Ghosh A, Almo SC, Iwai M, Niyogi KK, Pakrasi HB, Sarangi R, van Dam H, Yang L, Blaby IK, Blaby-Haas CE. A hemoprotein with a zinc-mirror heme site ties heme availability to carbon metabolism in cyanobacteria. Nat Commun 2024; 15:3167. [PMID: 38609367 PMCID: PMC11014987 DOI: 10.1038/s41467-024-47486-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2023] [Accepted: 04/02/2024] [Indexed: 04/14/2024] Open
Abstract
Heme has a critical role in the chemical framework of the cell as an essential protein cofactor and signaling molecule that controls diverse processes and molecular interactions. Using a phylogenomics-based approach and complementary structural techniques, we identify a family of dimeric hemoproteins comprising a domain of unknown function DUF2470. The heme iron is axially coordinated by two zinc-bound histidine residues, forming a distinct two-fold symmetric zinc-histidine-iron-histidine-zinc site. Together with structure-guided in vitro and in vivo experiments, we further demonstrate the existence of a functional link between heme binding by Dri1 (Domain related to iron 1, formerly ssr1698) and post-translational regulation of succinate dehydrogenase in the cyanobacterium Synechocystis, suggesting an iron-dependent regulatory link between photosynthesis and respiration. Given the ubiquity of proteins containing homologous domains and connections to heme metabolism across eukaryotes and prokaryotes, we propose that DRI (Domain Related to Iron; formerly DUF2470) functions at the molecular level as a heme-dependent regulatory domain.
Collapse
Affiliation(s)
- Nicolas Grosjean
- Biology Department, Brookhaven National Laboratory, Upton, NY, USA
- US Department of Energy Joint Genome Institute, Lawrence Berkeley National Laboratory, Berkeley, CA, USA
| | - Estella F Yee
- National Synchrotron Light Source II, Brookhaven National Laboratory, Upton, NY, USA
| | - Desigan Kumaran
- Biology Department, Brookhaven National Laboratory, Upton, NY, USA
| | - Kriti Chopra
- Computational Science Initiative, Brookhaven National Laboratory, Upton, NY, USA
| | - Macon Abernathy
- Stanford Synchrotron Radiation Lightsource, SLAC National Accelerator Laboratory, Menlo Park, CA, USA
| | - Sandeep Biswas
- Department of Biology, Washington University, St. Louis, MO, USA
| | - James Byrnes
- National Synchrotron Light Source II, Brookhaven National Laboratory, Upton, NY, USA
| | - Dale F Kreitler
- National Synchrotron Light Source II, Brookhaven National Laboratory, Upton, NY, USA
| | - Jan-Fang Cheng
- US Department of Energy Joint Genome Institute, Lawrence Berkeley National Laboratory, Berkeley, CA, USA
| | - Agnidipta Ghosh
- Department of Biochemistry, Albert Einstein College of Medicine, Bronx, NY, USA
| | - Steven C Almo
- Department of Biochemistry, Albert Einstein College of Medicine, Bronx, NY, USA
| | - Masakazu Iwai
- Department of Plant and Microbial Biology, University of California, Berkeley, CA, USA
- Molecular Biophysics and Integrated Bioimaging Division, Lawrence Berkeley National Laboratory, Berkeley, CA, USA
| | - Krishna K Niyogi
- Department of Plant and Microbial Biology, University of California, Berkeley, CA, USA
- Molecular Biophysics and Integrated Bioimaging Division, Lawrence Berkeley National Laboratory, Berkeley, CA, USA
- Howard Hughes Medical Institute, University of California, Berkeley, CA, USA
| | | | - Ritimukta Sarangi
- Stanford Synchrotron Radiation Lightsource, SLAC National Accelerator Laboratory, Menlo Park, CA, USA
| | - Hubertus van Dam
- Condensed Matter Physics and Materials Science Department, Brookhaven National Laboratory, Upton, NY, USA
| | - Lin Yang
- National Synchrotron Light Source II, Brookhaven National Laboratory, Upton, NY, USA
| | - Ian K Blaby
- US Department of Energy Joint Genome Institute, Lawrence Berkeley National Laboratory, Berkeley, CA, USA
- Environmental Genomics and Systems Biology Division, Lawrence Berkeley National Laboratory, Berkeley, CA, USA
| | - Crysten E Blaby-Haas
- Biology Department, Brookhaven National Laboratory, Upton, NY, USA.
- US Department of Energy Joint Genome Institute, Lawrence Berkeley National Laboratory, Berkeley, CA, USA.
- The Molecular Foundry, Lawrence Berkeley National Laboratory, Berkeley, CA, USA.
| |
Collapse
|
17
|
Wang N, Wang X, Chen L, Liu H, Wu Y, Huang M, Fang L. Biological roles of soil microbial consortium on promoting safe crop production in heavy metal(loid) contaminated soil: A systematic review. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 912:168994. [PMID: 38043809 DOI: 10.1016/j.scitotenv.2023.168994] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/14/2023] [Revised: 11/08/2023] [Accepted: 11/27/2023] [Indexed: 12/05/2023]
Abstract
Heavy metal(loid) (HM) pollution of agricultural soils is a growing global environmental concern that affects planetary health. Numerous studies have shown that soil microbial consortia can inhibit the accumulation of HMs in crops. However, our current understanding of the effects and mechanisms of inhibition is fragmented. In this review, we summarise extant studies and knowledge to provide a comprehensive view of HM toxicity on crop growth and development at the biological, cellular and the molecular levels. In a meta-analysis, we find that microbial consortia can improve crop resistance and reduce HM uptake, which in turn promotes healthy crop growth, demonstrating that microbial consortia are more effective than single microorganisms. We then review three main mechanisms by which microbial consortia reduce the toxicity of HMs to crops and inhibit HMs accumulation in crops: 1) reducing the bioavailability of HMs in soil (e.g. biosorption, bioaccumulation and biotransformation); 2) improving crop resistance to HMs (e.g. facilitating the absorption of nutrients); and 3) synergistic effects between microorganisms. Finally, we discuss the prospects of microbial consortium applications in simultaneous crop safety production and soil remediation, indicating that they play a key role in sustainable agricultural development, and conclude by identifying research challenges and future directions for the microbial consortium to promote safe crop production.
Collapse
Affiliation(s)
- Na Wang
- State Key Laboratory of Soil Erosion and Dryland Farming on the Loess Plateau, The Research Center of Soil and Water Conservation and Ecological Environment, CAS and MOE, Yangling 712100, China; State Key Laboratory of Soil Erosion and Dryland Farming on the Loess Plateau, Institute of Soil and Water Conservation, CAS and MWR, Yangling 712100, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Xiangxiang Wang
- College of Natural Resources and Environment, Northwest A&F University, Yangling 712100, China
| | - Li Chen
- College of Natural Resources and Environment, Northwest A&F University, Yangling 712100, China
| | - Hongjie Liu
- College of Natural Resources and Environment, Northwest A&F University, Yangling 712100, China
| | - Yanfang Wu
- Palm Eco-Town Development Co., Ltd., Zhengzhou 450000, China
| | - Min Huang
- Key Laboratory of Green Utilization of Critical Nonmetallic Mineral Resources, Ministry of Education, Wuhan University of Technology, Wuhan 430070, China
| | - Linchuan Fang
- State Key Laboratory of Soil Erosion and Dryland Farming on the Loess Plateau, The Research Center of Soil and Water Conservation and Ecological Environment, CAS and MOE, Yangling 712100, China; State Key Laboratory of Soil Erosion and Dryland Farming on the Loess Plateau, Institute of Soil and Water Conservation, CAS and MWR, Yangling 712100, China; Key Laboratory of Green Utilization of Critical Nonmetallic Mineral Resources, Ministry of Education, Wuhan University of Technology, Wuhan 430070, China.
| |
Collapse
|
18
|
Liu D, Zhang Z, Hao Y, Li M, Yu H, Zhang X, Mi H, Cheng L, Zhao Y. Decoding the complete organelle genomic architecture of Stewartia gemmata: an early-diverging species in Theaceae. BMC Genomics 2024; 25:114. [PMID: 38273225 PMCID: PMC10811901 DOI: 10.1186/s12864-024-10016-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2023] [Accepted: 01/15/2024] [Indexed: 01/27/2024] Open
Abstract
BACKGROUND Theaceae, comprising 300 + species, holds significance in biodiversity, economics, and culture, notably including the globally consumed tea plant. Stewartia gemmata, a species of the earliest diverging tribe Stewartieae, is critical to offer insights into Theaceae's origin and evolutionary history. RESULT We sequenced the complete organelle genomes of Stewartia gemmata using short/long reads sequencing technologies. The chloroplast genome (158,406 bp) exhibited a quadripartite structure including the large single-copy region (LSC), a small single-copy region (SSC), and a pair of inverted repeat regions (IRs); 114 genes encoded 80 proteins, 30 tRNAs, and four rRNAs. The mitochondrial genome (681,203 bp) exhibited alternative conformations alongside a monocyclic structure: 61 genes encoding 38 proteins, 20 tRNAs, three rRNAs, and RNA editing-impacting genes, including ATP6, RPL16, COX2, NAD4L, NAD5, NAD7, and RPS1. Comparative analyses revealed frequent recombination events and apparent rRNA gene gains and losses in the mitochondrial genome of Theaceae. In organelle genomes, the protein-coding genes exhibited a strong A/U bias at codon endings; ENC-GC3 analysis implies selection-driven codon bias. Transposable elements might facilitate interorganelle sequence transfer. Phylogenetic analysis confirmed Stewartieae's early divergence within Theaceae, shedding light on organelle genome characteristics and evolution in Theaceae. CONCLUSIONS We studied the detailed characterization of organelle genomes, including genome structure, composition, and repeated sequences, along with the identification of lateral gene transfer (LGT) events and complexities. The discovery of a large number of repetitive sequences and simple sequence repeats (SSRs) has led to new insights into molecular phylogenetic markers. Decoding the Stewartia gemmata organellar genome provides valuable genomic resources for further studies in tea plant phylogenomics and evolutionary biology.
Collapse
Affiliation(s)
- Daliang Liu
- Henan International Joint Laboratory of Tea-Oil Tree Biology and High-Value Utilization, College of Life Sciences, Xinyang Normal University, Xinyang, 464000, China
- Key Laboratory of Functional Agriculture in Higher Education of Guizhou Province, College of Agriculture, Guizhou University, Guiyang, 550025, China
- State Key Laboratory of Public Big Data, College of Computer Science and Technology, Guizhou University, Guiyang, 550025, China
| | - Zhihan Zhang
- Key Laboratory of Functional Agriculture in Higher Education of Guizhou Province, College of Agriculture, Guizhou University, Guiyang, 550025, China
- State Key Laboratory of Public Big Data, College of Computer Science and Technology, Guizhou University, Guiyang, 550025, China
- College of Engineering and Technology, Northeast Forestry University, Harbin, 150040, China
| | - Yanlin Hao
- Henan International Joint Laboratory of Tea-Oil Tree Biology and High-Value Utilization, College of Life Sciences, Xinyang Normal University, Xinyang, 464000, China
| | - Mengge Li
- Henan International Joint Laboratory of Tea-Oil Tree Biology and High-Value Utilization, College of Life Sciences, Xinyang Normal University, Xinyang, 464000, China
| | - Houlin Yu
- Department of Biochemistry and Molecular Biology, University of Massachusetts Amherst, Amherst, MA, 01003, USA
- Present address: Broad Institute of MIT and Harvard, Cambridge, MA, 02142, USA
| | - Xingruo Zhang
- Department of Public Health Sciences, University of Chicago, Chicago, IL, 60637, USA
| | - Haoyang Mi
- Department of Biomedical Engineering, Johns Hopkins University, Baltimore, MD, 21205, USA
| | - Lin Cheng
- Henan International Joint Laboratory of Tea-Oil Tree Biology and High-Value Utilization, College of Life Sciences, Xinyang Normal University, Xinyang, 464000, China.
| | - Yiyong Zhao
- Key Laboratory of Functional Agriculture in Higher Education of Guizhou Province, College of Agriculture, Guizhou University, Guiyang, 550025, China.
- State Key Laboratory of Public Big Data, College of Computer Science and Technology, Guizhou University, Guiyang, 550025, China.
| |
Collapse
|
19
|
Deng S, Wang WX. A surge of copper accumulation in cell division revealed its cyclical kinetics in synchronized green alga Chlamydomonas reinhardtii. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 899:165566. [PMID: 37474058 DOI: 10.1016/j.scitotenv.2023.165566] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/01/2023] [Revised: 07/13/2023] [Accepted: 07/14/2023] [Indexed: 07/22/2023]
Abstract
Trace transition metal uptake is tightly associated with cellular biological processes. Herein, we demonstrated that copper (Cu) bioaccumulation and uptake were controlled by the cell cycle. A cyclical kinetics of Cu bioaccumulation and surge in S/M phase were observed in the synchronized green algae Chlamydomonas reinhardtii. The labile Cu(I) content also increased in the S/M phase, although the increase was moderate. Based on the comparative analysis of bioaccumulation and transcriptome data, we found the CRR1-mediated Cu uptake pathway, and CTR1 and CTR2 transporters were regulated by the intracellular Cu quota and suppressed during cell division with high Cu content. In contrast, we hypothesized a novel intracellular Cu-quota-independent Cu(I) uptake pathway in which the transporter COPT1 might be responsible for the Cu influx during cell division. Besides, a plunge of ATX1 expression level was also observed during cell division, which indicated an inhibition of the secretory pathway of Cu with the participation of ATX1 in terms of transcriptome level, probably resulting in reduced Cu efflux. Additionally, both fluorometric probe staining and transcriptomic data demonstrated that mitochondria were the dominant destination for the extra Cu content in S/M phase. Finally, some cytotoxic responses were also observed in S/M phase. Pathways related to reactive oxygen species and glutamine metabolic process were enriched in GO term and KEGG enrichment analysis, and glutathione content and cell membrane permeability determined by fluorometric probes also increased during cell division. This study showed a sharp increase of Cu uptake in cell division and revealed the genetic regulation mechanisms for the cell cycle control of Cu uptake.
Collapse
Affiliation(s)
- Shaoxi Deng
- School of Energy and Environment and State Key Laboratory of Marine Pollution, City University of Hong Kong, Kowloon, Hong Kong, China; Research Centre for the Oceans and Human Health, City University of Hong Kong Shenzhen Research Institute, Shenzhen 518057, China
| | - Wen-Xiong Wang
- School of Energy and Environment and State Key Laboratory of Marine Pollution, City University of Hong Kong, Kowloon, Hong Kong, China; Research Centre for the Oceans and Human Health, City University of Hong Kong Shenzhen Research Institute, Shenzhen 518057, China.
| |
Collapse
|
20
|
Mishima K, Kano N. Contribution Factors of the First Kind Calculated for the Marcus Electron-Transfer Rate and Their Applications. J Phys Chem B 2023; 127:8509-8524. [PMID: 37782079 DOI: 10.1021/acs.jpcb.3c03420] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/03/2023]
Abstract
In this study, we applied the concept of the "contribution factor of the first kind (CFFK)" to the original electron-transfer (ET) rate theory proposed by Marcus. Mathematical derivations provided simple and convenient formulas for estimating the relative contributions of ten physical and chemical parameters involved in the Marcus ET rate formula: (1) the maximum strength of the electronic coupling energy between two molecules, (2) the exponential decay rate of the electronic coupling energy versus the distance between both molecules, (3) the distance between both molecules, (4) the equilibrium distance between both molecules, (5) the Gibbs free energy, (6) reorganization free energy in the prefactor of the Marcus ET rate equation, (7) reorganization free energy in the denominator of the exponential term, (8) reorganization free energy in the argument of the exponential term, (9) Boltzmann constant times absolute temperature in the prefactor of the rate equation, and (10) Boltzmann constant times absolute temperature in the denominator of the exponential term. We applied our theories to (i) ET reactions at bacterial photosynthesis reaction centers, PSI and PSII, and soluble ferredoxins (Fd); (ii) intraprotein ET reactions for designed azurin mutants; and (iii) ET reactions in flavodoxin (Fld). The formulas and calculations suggest that the theory behind the CFFK is useful for quantitatively identifying major and minor physical and chemical factors and corresponding trade-offs, all of which affect the magnitude of the Marcus ET rate.
Collapse
Affiliation(s)
- Kenji Mishima
- Independent Researcher, Bunkyo-ku, Tokyo 113-0024, Japan
| | - Naoki Kano
- Department of Chemistry and Chemical Engineering, Faculty of Engineering, Niigata University, 8050 Ikarashi 2-Nocho, Nishi-ku, Niigata 950-2181, Japan
| |
Collapse
|
21
|
Zou Y, Xu E, Fan Y, Zhang P, Zhang W, Chen X. OsPML2, a chloroplast envelope localized transporter is involved in manganese homeostasis in rice. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2023; 203:108054. [PMID: 37757723 DOI: 10.1016/j.plaphy.2023.108054] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/01/2023] [Revised: 09/17/2023] [Accepted: 09/22/2023] [Indexed: 09/29/2023]
Abstract
Manganese (Mn), a vital element, plays crucial roles in various biochemical and physiological processes by serving as an essential cofactor for numerous enzymes and acting as a catalytically active metal within biological clusters. In this study, we investigate the role of PHOTOSYNTHESIS-AFFECTED MUTANT 71-LIKE 2 (OsPML2), a member of the UNCHARACTERIZED PROTEIN FAMILY 0016 (UPF0016) family, in regulating Mn homeostasis in rice. OsPML2 was highly expressed in young leaves, ovaries, and stigmas. Cross sections from young leaves revealed that OsPML2 was mainly expressed in the phloem region and mesophyll cells. Furthermore, heterologous expression of OsPML2 restored the growth of Mn uptake-defective yeast strain Δsmf1 under Mn-limited conditions. Subcellular localization analysis demonstrated that OsPML2 was specifically localized in the chloroplast envelope. Knockdown of OsPML2 resulted in reduced chloroplast Mn content, significantly affecting plant growth under Mn deficiency. Furthermore, analysis of isolated thylakoid membranes using blue native gels indicated a compromised accumulation of photosystem II (PSII) complexes in OsPML2 knockdown lines. Additionally, grain yield, grain length, and width were significantly reduced in OsPML2 knockdown plants. Collectively, our findings provide insights into the transport function of OsPML2, which facilitates Mn transport from the cytosol to chloroplast stroma and influences the accumulation of PSII complexes in rice.
Collapse
Affiliation(s)
- Yu Zou
- Rice Research Institute, Anhui Academy of Agricultural Sciences, Hefei, Anhui, 230031, China
| | - Ending Xu
- Rice Research Institute, Anhui Academy of Agricultural Sciences, Hefei, Anhui, 230031, China; Department of Biochemistry & Molecular Biology, College of Life Science, Nanjing Agriculture University, Nanjing, Jiangsu, 210095, China
| | - Ye Fan
- Department of Biochemistry & Molecular Biology, College of Life Science, Nanjing Agriculture University, Nanjing, Jiangsu, 210095, China
| | - Peijiang Zhang
- Rice Research Institute, Anhui Academy of Agricultural Sciences, Hefei, Anhui, 230031, China
| | - Wei Zhang
- Department of Biochemistry & Molecular Biology, College of Life Science, Nanjing Agriculture University, Nanjing, Jiangsu, 210095, China.
| | - Xi Chen
- Department of Biochemistry & Molecular Biology, College of Life Science, Nanjing Agriculture University, Nanjing, Jiangsu, 210095, China.
| |
Collapse
|
22
|
Sági-Kazár M, Sárvári É, Cseh B, Illés L, May Z, Hegedűs C, Barócsi A, Lenk S, Solymosi K, Solti Á. Iron uptake of etioplasts is independent from photosynthesis but applies the reduction-based strategy. FRONTIERS IN PLANT SCIENCE 2023; 14:1227811. [PMID: 37636109 PMCID: PMC10457162 DOI: 10.3389/fpls.2023.1227811] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/23/2023] [Accepted: 07/21/2023] [Indexed: 08/29/2023]
Abstract
Introduction Iron (Fe) is one of themost important cofactors in the photosynthetic apparatus, and its uptake by chloroplasts has also been associated with the operation of the photosynthetic electron transport chain during reduction-based plastidial Fe uptake. Therefore, plastidial Fe uptake was considered not to be operational in the absence of the photosynthetic activity. Nevertheless, Fe is also required for enzymatic functions unrelated to photosynthesis, highlighting the importance of Fe acquisition by non-photosynthetic plastids. Yet, it remains unclear how these plastids acquire Fe in the absence of photosynthetic function. Furthermore, plastids of etiolated tissues should already possess the ability to acquire Fe, since the biosynthesis of thylakoid membrane complexes requires a massive amount of readily available Fe. Thus, we aimed to investigate whether the reduction-based plastidial Fe uptake solely relies on the functioning photosynthetic apparatus. Methods In our combined structure, iron content and transcript amount analysis studies, we used Savoy cabbage plant as a model, which develops natural etiolation in the inner leaves of the heads due to the shading of the outer leaf layers. Results Foliar and plastidial Fe content of Savoy cabbage leaves decreased towards the inner leaf layers. The leaves of the innermost leaf layers proved to be etiolated, containing etioplasts that lacked the photosynthetic machinery and thus were photosynthetically inactive. However, we discovered that these etioplasts contained, and were able to take up, Fe. Although the relative transcript abundance of genes associated with plastidial Fe uptake and homeostasis decreased towards the inner leaf layers, both ferric chelate reductase FRO7 transcripts and activity were detected in the innermost leaf layer. Additionally, a significant NADP(H) pool and NAD(P)H dehydrogenase activity was detected in the etioplasts of the innermost leaf layer, indicating the presence of the reducing capacity that likely supports the reduction-based Fe uptake of etioplasts. Discussion Based on these findings, the reduction-based plastidial Fe acquisition should not be considered exclusively dependent on the photosynthetic functions.
Collapse
Affiliation(s)
- Máté Sági-Kazár
- Department of Plant Physiology and Molecular Plant Biology, Institute of Biology, ELTE Eötvös Loránd University, Budapest, Hungary
- Doctoral School of Biology, Institute of Biology, ELTE Eötvös Loránd University, Budapest, Hungary
| | - Éva Sárvári
- Department of Plant Physiology and Molecular Plant Biology, Institute of Biology, ELTE Eötvös Loránd University, Budapest, Hungary
| | - Barnabás Cseh
- Department of Plant Physiology, Umeå Plant Science Centre, Umeå University, Umeå, Sweden
| | - Levente Illés
- Department of Atomic Physics, Budapest University of Technology and Economics, Budapest, Hungary
| | - Zoltán May
- Institute of Materials and Environmental Chemistry, Research Centre for Natural Sciences, Eötvös Loránd Research Network, Budapest, Hungary
| | - Csaba Hegedűs
- Department of Plant Physiology and Molecular Plant Biology, Institute of Biology, ELTE Eötvös Loránd University, Budapest, Hungary
| | - Attila Barócsi
- Department of Atomic Physics, Budapest University of Technology and Economics, Budapest, Hungary
| | - Sándor Lenk
- Department of Atomic Physics, Budapest University of Technology and Economics, Budapest, Hungary
| | - Katalin Solymosi
- Department of Plant Anatomy, Institute of Biology, ELTE Eötvös Loránd University, Budapest, Hungary
| | - Ádám Solti
- Department of Plant Physiology and Molecular Plant Biology, Institute of Biology, ELTE Eötvös Loránd University, Budapest, Hungary
| |
Collapse
|
23
|
Sammarco I, Münzbergová Z, Latzel V. Response of Fragaria vesca to projected change in temperature, water availability and concentration of CO 2 in the atmosphere. Sci Rep 2023; 13:10678. [PMID: 37393360 PMCID: PMC10314927 DOI: 10.1038/s41598-023-37901-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2023] [Accepted: 06/29/2023] [Indexed: 07/03/2023] Open
Abstract
The high rate of climate change may soon expose plants to conditions beyond their adaptation limits. Clonal plants might be particularly affected due to limited genotypic diversity of their populations, potentially decreasing their adaptability. We therefore tested the ability of a widely distributed predominantly clonally reproducing herb (Fragaria vesca) to cope with periods of drought and flooding in climatic conditions predicted to occur at the end of the twenty-first century, i.e. on average 4 °C warmer and with twice the concentration of CO2 in the air (800 ppm) than the current state. We found that F. vesca can phenotypically adjust to future climatic conditions, although its drought resistance may be reduced. Increased temperature and CO2 levels in the air had a far greater effect on growth, phenology, reproduction, and gene expression than the temperature increase itself, and promoted resistance of F. vesca to repeated flooding periods. Higher temperature promoted clonal over sexual reproduction, and increased temperature and CO2 concentration in the air triggered change in expression of genes controlling the level of self-pollination. We conclude that F. vesca can acclimatise to predicted climate change, but the increased ratio of clonal to sexual reproduction and the alteration of genes involved in the self-(in)compatibility system may be associated with reduced genotypic diversity of its populations, which may negatively impact its ability to genetically adapt to novel climate in the long-term.
Collapse
Affiliation(s)
- Iris Sammarco
- Institute of Botany, Czech Academy of Sciences, Průhonice, Czechia.
- Department of Botany, Faculty of Science, Charles University, Prague, Czechia.
| | - Zuzana Münzbergová
- Institute of Botany, Czech Academy of Sciences, Průhonice, Czechia
- Department of Botany, Faculty of Science, Charles University, Prague, Czechia
| | - Vít Latzel
- Institute of Botany, Czech Academy of Sciences, Průhonice, Czechia.
| |
Collapse
|
24
|
Chen X, Zhao Y, Zhong Y, Chen J, Qi X. Deciphering the functional roles of transporter proteins in subcellular metal transportation of plants. PLANTA 2023; 258:17. [PMID: 37314548 DOI: 10.1007/s00425-023-04170-8] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/21/2023] [Accepted: 05/31/2023] [Indexed: 06/15/2023]
Abstract
MAIN CONCLUSION The role of transporters in subcellular metal transport is of great significance for plants in coping with heavy metal stress and maintaining their proper growth and development. Heavy metal toxicity is a serious long-term threat to plant growth and agricultural production, becoming a global environmental concern. Excessive heavy metal accumulation not only damages the biochemical and physiological functions of plants but also causes chronic health hazard to human beings through the food chain. To deal with heavy metal stress, plants have evolved a series of elaborate mechanisms, especially a variety of spatially distributed transporters, to strictly regulate heavy metal uptake and distribution. Deciphering the subcellular role of transporter proteins in controlling metal absorption, transport and separation is of great significance for understanding how plants cope with heavy metal stress and improving their adaptability to environmental changes. Hence, we herein introduce the detrimental effects of excessive common essential and non-essential heavy metals on plant growth, and describe the structural and functional characteristics of transporter family members, with a particular emphasis on their roles in maintaining heavy metal homeostasis in various organelles. Besides, we discuss the potential of controlling transporter gene expression by transgenic approaches in response to heavy metal stress. This review will be valuable to researchers and breeders for enhancing plant tolerance to heavy metal contamination.
Collapse
Affiliation(s)
- Xingqi Chen
- School of Chemistry and Life Sciences, Suzhou University of Science and Technology, Suzhou, 215011, China
| | - Yuanchun Zhao
- School of Chemistry and Life Sciences, Suzhou University of Science and Technology, Suzhou, 215011, China
| | - Yuqing Zhong
- Environmental Monitoring Station of Suzhou City, Suzhou, 215004, China
| | - Jiajia Chen
- School of Chemistry and Life Sciences, Suzhou University of Science and Technology, Suzhou, 215011, China
| | - Xin Qi
- School of Chemistry and Life Sciences, Suzhou University of Science and Technology, Suzhou, 215011, China.
| |
Collapse
|
25
|
Saito A, Hoshi K, Wakabayashi Y, Togashi T, Shigematsu T, Katori M, Ohyama T, Higuchi K. Barley Cultivar Sarab 1 Has a Characteristic Region on the Thylakoid Membrane That Protects Photosystem I under Iron-Deficient Conditions. PLANTS (BASEL, SWITZERLAND) 2023; 12:2111. [PMID: 37299090 PMCID: PMC10255597 DOI: 10.3390/plants12112111] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/30/2023] [Revised: 05/23/2023] [Accepted: 05/24/2023] [Indexed: 06/12/2023]
Abstract
The barley cultivar Sarab 1 (SRB1) can continue photosynthesis despite its low Fe acquisition potential via roots and dramatically reduced amounts of photosystem I (PSI) reaction-center proteins under Fe-deficient conditions. We compared the characteristics of photosynthetic electron transfer (ET), thylakoid ultrastructure, and Fe and protein distribution on thylakoid membranes among barley cultivars. The Fe-deficient SRB1 had a large proportion of functional PSI proteins by avoiding P700 over-reduction. An analysis of the thylakoid ultrastructure clarified that SRB1 had a larger proportion of non-appressed thylakoid membranes than those in another Fe-tolerant cultivar, Ehimehadaka-1 (EHM1). Separating thylakoids by differential centrifugation further revealed that the Fe-deficient SRB1 had increased amounts of low/light-density thylakoids with increased Fe and light-harvesting complex II (LHCII) than did EHM1. LHCII with uncommon localization probably prevents excessive ET from PSII leading to elevated NPQ and lower PSI photodamage in SRB1 than in EHM1, as supported by increased Y(NPQ) and Y(ND) in the Fe-deficient SRB1. Unlike this strategy, EHM1 may preferentially supply Fe cofactors to PSI, thereby exploiting more surplus reaction center proteins than SRB1 under Fe-deficient conditions. In summary, SRB1 and EHM1 support PSI through different mechanisms during Fe deficiency, suggesting that barley species have multiple strategies for acclimating photosynthetic apparatus to Fe deficiency.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - Kyoko Higuchi
- Laboratory of Biochemistry in Plant Productivity, Department of Agricultural Chemistry, Tokyo University of Agriculture, Setagaya-ku, Tokyo 156-8502, Japan; (A.S.); (T.O.)
| |
Collapse
|
26
|
Vargas J, Gómez I, Vidal EA, Lee CP, Millar AH, Jordana X, Roschzttardtz H. Growth Developmental Defects of Mitochondrial Iron Transporter 1 and 2 Mutants in Arabidopsis in Iron Sufficient Conditions. PLANTS (BASEL, SWITZERLAND) 2023; 12:1176. [PMID: 36904036 PMCID: PMC10007191 DOI: 10.3390/plants12051176] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/03/2023] [Revised: 01/25/2023] [Accepted: 02/22/2023] [Indexed: 06/18/2023]
Abstract
Iron is the most abundant micronutrient in plant mitochondria, and it has a crucial role in biochemical reactions involving electron transfer. It has been described in Oryza sativa that Mitochondrial Iron Transporter (MIT) is an essential gene and that knockdown mutant rice plants have a decreased amount of iron in their mitochondria, strongly suggesting that OsMIT is involved in mitochondrial iron uptake. In Arabidopsis thaliana, two genes encode MIT homologues. In this study, we analyzed different AtMIT1 and AtMIT2 mutant alleles, and no phenotypic defects were observed in individual mutant plants grown in normal conditions, confirming that neither AtMIT1 nor AtMIT2 are individually essential. When we generated crosses between the Atmit1 and Atmit2 alleles, we were able to isolate homozygous double mutant plants. Interestingly, homozygous double mutant plants were obtained only when mutant alleles of Atmit2 with the T-DNA insertion in the intron region were used for crossings, and in these cases, a correctly spliced AtMIT2 mRNA was generated, although at a low level. Atmit1 Atmit2 double homozygous mutant plants, knockout for AtMIT1 and knockdown for AtMIT2, were grown and characterized in iron-sufficient conditions. Pleiotropic developmental defects were observed, including abnormal seeds, an increased number of cotyledons, a slow growth rate, pinoid stems, defects in flower structures, and reduced seed set. A RNA-Seq study was performed, and we could identify more than 760 genes differentially expressed in Atmit1 Atmit2. Our results show that Atmit1 Atmit2 double homozygous mutant plants misregulate genes involved in iron transport, coumarin metabolism, hormone metabolism, root development, and stress-related response. The phenotypes observed, such as pinoid stems and fused cotyledons, in Atmit1 Atmit2 double homozygous mutant plants may suggest defects in auxin homeostasis. Unexpectedly, we observed a possible phenomenon of T-DNA suppression in the next generation of Atmit1 Atmit2 double homozygous mutant plants, correlating with increased splicing of the AtMIT2 intron containing the T-DNA and the suppression of the phenotypes observed in the first generation of the double mutant plants. In these plants with a suppressed phenotype, no differences were observed in the oxygen consumption rate of isolated mitochondria; however, the molecular analysis of gene expression markers, AOX1a, UPOX, and MSM1, for mitochondrial and oxidative stress showed that these plants express a degree of mitochondrial perturbation. Finally, we could establish by a targeted proteomic analysis that a protein level of 30% of MIT2, in the absence of MIT1, is enough for normal plant growth under iron-sufficient conditions.
Collapse
Affiliation(s)
- Joaquín Vargas
- Departamento de Genética Molecular y Microbiología, Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Santiago 8331150, Chile
| | - Isabel Gómez
- Departamento de Genética Molecular y Microbiología, Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Santiago 8331150, Chile
| | - Elena A. Vidal
- ANID-Millennium Science Initiative Program-Millennium Institute for Integrative Biology (iBio), Santiago 8331150, Chile
- Centro de Genómica y Bioinformática, Facultad de Ciencias, Ingeniería y Tecnología, Universidad Mayor, Santiago 8580745, Chile
- Escuela de Biotecnología, Facultad de Ciencias, Ingeniería y Tecnología, Universidad Mayor, Santiago 8580745, Chile
| | - Chun Pong Lee
- ARC Centre of Excellence in Plant Energy Biology, School of Molecular Sciences, The University of Western Australia, Bayliss Building M316, Crawley, WA 6009, Australia
| | - A. Harvey Millar
- ARC Centre of Excellence in Plant Energy Biology, School of Molecular Sciences, The University of Western Australia, Bayliss Building M316, Crawley, WA 6009, Australia
| | - Xavier Jordana
- Departamento de Genética Molecular y Microbiología, Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Santiago 8331150, Chile
| | - Hannetz Roschzttardtz
- Departamento de Genética Molecular y Microbiología, Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Santiago 8331150, Chile
| |
Collapse
|
27
|
Cao YH, Ren W, Gao HJ, Lü XP, Zhao Q, Zhang H, Rensing C, Zhang JL. HaASR2 from Haloxylon ammodendron confers drought and salt tolerance in plants. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2023; 328:111572. [PMID: 36563942 DOI: 10.1016/j.plantsci.2022.111572] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/08/2022] [Revised: 12/13/2022] [Accepted: 12/15/2022] [Indexed: 06/17/2023]
Abstract
Abscisic acid (ABA), stress, and ripening-induced proteins (ASR), which belong to the ABA/WDS domain superfamily, are involved in the plant response to abiotic stresses. Haloxylon ammodendron is a succulent xerohalophyte species that exhibits strong resistance to abiotic stress. In this study, we isolated HaASR2 from H. ammodendron and demonstrated its detailed molecular function for drought and salt stress tolerance. HaASR2 interacted with the HaNHX1 protein, and its expression was significantly up-regulated under osmotic stress. Overexpression of HaASR2 improved drought and salt tolerance by enhancing water use efficiency and photosynthetic capacity in Arabidopsis thaliana. Overexpression of HaASR2 maintained the homeostasis of reactive oxygen species (ROS) and decreased sensitivity to exogenous ABA and endogenous ABA levels by down-regulating ABA biosynthesis genes under drought stress. Furthermore, a transcriptomic comparison between wild-type and HaASR2 transgenic Arabidopsis plants indicated that HaASR2 significantly induced the expression of 896 genes in roots and 406 genes in shoots under osmotic stress. Gene ontology (GO) enrichment analysis showed that those DEGs were mainly involved in ROS scavenging, metal ion homeostasis, response to hormone stimulus, etc. The results demonstrated that HaASR2 from the desert shrub, H. ammodendron, plays a critical role in plant adaptation to drought and salt stress and could be a promising gene for the genetic improvement of crop abiotic stress tolerance.
Collapse
Affiliation(s)
- Yan-Hua Cao
- State Key Laboratory of Herbage Improvement and Grassland Agro-ecosystems, Lanzhou 730000, People's Republic of China; Key Laboratory of Grassland Livestock Industry Innovation, Ministry of Agriculture and Rural Affairs, Lanzhou 730000, People's Republic of China; Engineering Research Center of Grassland Industry, Ministry of Education, Lanzhou 730000, People's Republic of China; College of Pastoral Agricultural Science and Technology, Lanzhou University, Lanzhou 730000, People's Republic of China
| | - Wei Ren
- State Key Laboratory of Herbage Improvement and Grassland Agro-ecosystems, Lanzhou 730000, People's Republic of China; Key Laboratory of Grassland Livestock Industry Innovation, Ministry of Agriculture and Rural Affairs, Lanzhou 730000, People's Republic of China; Engineering Research Center of Grassland Industry, Ministry of Education, Lanzhou 730000, People's Republic of China; College of Pastoral Agricultural Science and Technology, Lanzhou University, Lanzhou 730000, People's Republic of China
| | - Hui-Juan Gao
- State Key Laboratory of Herbage Improvement and Grassland Agro-ecosystems, Lanzhou 730000, People's Republic of China; Key Laboratory of Grassland Livestock Industry Innovation, Ministry of Agriculture and Rural Affairs, Lanzhou 730000, People's Republic of China; Engineering Research Center of Grassland Industry, Ministry of Education, Lanzhou 730000, People's Republic of China; College of Pastoral Agricultural Science and Technology, Lanzhou University, Lanzhou 730000, People's Republic of China
| | - Xin-Pei Lü
- State Key Laboratory of Herbage Improvement and Grassland Agro-ecosystems, Lanzhou 730000, People's Republic of China; Key Laboratory of Grassland Livestock Industry Innovation, Ministry of Agriculture and Rural Affairs, Lanzhou 730000, People's Republic of China; Engineering Research Center of Grassland Industry, Ministry of Education, Lanzhou 730000, People's Republic of China; College of Pastoral Agricultural Science and Technology, Lanzhou University, Lanzhou 730000, People's Republic of China
| | - Qi Zhao
- State Key Laboratory of Herbage Improvement and Grassland Agro-ecosystems, Lanzhou 730000, People's Republic of China; Key Laboratory of Grassland Livestock Industry Innovation, Ministry of Agriculture and Rural Affairs, Lanzhou 730000, People's Republic of China; Engineering Research Center of Grassland Industry, Ministry of Education, Lanzhou 730000, People's Republic of China; College of Pastoral Agricultural Science and Technology, Lanzhou University, Lanzhou 730000, People's Republic of China
| | - Hong Zhang
- Department of Biological Sciences, Texas Tech University, Lubbock, TX 79409, USA
| | - Christopher Rensing
- State Key Laboratory of Herbage Improvement and Grassland Agro-ecosystems, Lanzhou 730000, People's Republic of China; Key Laboratory of Grassland Livestock Industry Innovation, Ministry of Agriculture and Rural Affairs, Lanzhou 730000, People's Republic of China; Engineering Research Center of Grassland Industry, Ministry of Education, Lanzhou 730000, People's Republic of China; College of Pastoral Agricultural Science and Technology, Lanzhou University, Lanzhou 730000, People's Republic of China; Institute of Environmental Microbiology, Fujian Agriculture and Forestry University, Fuzhou 350002, People's Republic of China.
| | - Jin-Lin Zhang
- State Key Laboratory of Herbage Improvement and Grassland Agro-ecosystems, Lanzhou 730000, People's Republic of China; Key Laboratory of Grassland Livestock Industry Innovation, Ministry of Agriculture and Rural Affairs, Lanzhou 730000, People's Republic of China; Engineering Research Center of Grassland Industry, Ministry of Education, Lanzhou 730000, People's Republic of China; College of Pastoral Agricultural Science and Technology, Lanzhou University, Lanzhou 730000, People's Republic of China.
| |
Collapse
|
28
|
Ahmad I, Rawoof A, Islam K, Momo J, Anju T, Kumar A, Ramchiary N. Diversity and expression analysis of ZIP transporters and associated metabolites under zinc and iron stress in Capsicum. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2023; 196:415-430. [PMID: 36758289 DOI: 10.1016/j.plaphy.2023.01.060] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/03/2022] [Revised: 12/16/2022] [Accepted: 01/29/2023] [Indexed: 06/18/2023]
Abstract
The members of ZRT, IRT-like protein (ZIP) family are involved in the uptake and transportation of several metal ions. Here, we report a comprehensive identification of ZIP transporter genes from Capsicum annuum, C. chinense, and C. baccatum, and their expression analysis under Zn and Fe stress. Changes in root morphology and differential accumulation of several metabolites from sugars, amino acids, carboxylic acids, and fatty acids in root and leaf tissues of plants in the absence of Zn and Fe were observed. Further, metabolites such as L-aspartic acid, 2-ketoglutaric acids, β-L-fucopyranose, quininic acid, chlorogenic acid, and aucubin were significantly upregulated in root and leaf tissues under Zn/Fe deprived conditions. qRT-PCR analysis of 17 CaZIPs in different tissues revealed tissue-specific expression of CaZIP1-2, CaZIP4-8, CaZIP13, and CaZIP16-17 under normal conditions. However, the absence of Zn and Fe significantly induced the expression of CaZIP4-5, CaZIP7-9, and CaZIP14 genes in root and leaf tissues. Additionally, in the absence of Fe, upregulation of CaZIP4-5 and CaZIP8 and increased uptake of mineral elements Cu, Zn, Mg, P, and S were observed in roots, suggesting their potential role in metal-ion uptake in Capsicum. The identified genes provide the basis for future studies of mineral uptake and their biofortification to increase the nutritional values in Capsicum.
Collapse
Affiliation(s)
- Ilyas Ahmad
- Translational and Evolutionary Genomics Lab, School of Life Sciences, Jawaharlal Nehru University, New Delhi, 110067, India
| | - Abdul Rawoof
- Translational and Evolutionary Genomics Lab, School of Life Sciences, Jawaharlal Nehru University, New Delhi, 110067, India
| | - Khushbu Islam
- Translational and Evolutionary Genomics Lab, School of Life Sciences, Jawaharlal Nehru University, New Delhi, 110067, India
| | - John Momo
- Translational and Evolutionary Genomics Lab, School of Life Sciences, Jawaharlal Nehru University, New Delhi, 110067, India
| | - Thattantavide Anju
- Department of Plant Science, School of Biological Sciences, Central University of Kerala, Kasaragod, 671316, Kerala, India
| | - Ajay Kumar
- Department of Plant Science, School of Biological Sciences, Central University of Kerala, Kasaragod, 671316, Kerala, India
| | - Nirala Ramchiary
- Translational and Evolutionary Genomics Lab, School of Life Sciences, Jawaharlal Nehru University, New Delhi, 110067, India.
| |
Collapse
|
29
|
Gao L, Su Y, Fan H, Xie Y, Mehmood T, Liu S, Bao R, Peng L. Impacts of microplastic-petroleum pollution on nutrient uptake, growth, and antioxidative activity of Chlorella vulgaris. AQUATIC TOXICOLOGY (AMSTERDAM, NETHERLANDS) 2023; 255:106395. [PMID: 36628878 DOI: 10.1016/j.aquatox.2023.106395] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/12/2022] [Revised: 12/09/2022] [Accepted: 01/05/2023] [Indexed: 06/17/2023]
Abstract
As one of the emerging pollutants, microplastics (MPs; <5 mm) can interact with co-contaminants such as petroleum in marine aquatic systems, and their combined toxicity has not been fully investigated. Therefore, this study focused on pollutants such as micro-sized polyethylene (mPE) and petroleum, aiming to explore their single and combined toxicities to microalga Chlorella vulgaris in terms of the cell growth, antioxidative enzymes, and nutrients utilization. The results showed that the MPs alone (particle sizes (i.e., 13, 165, 550 μm), concentrations (i.e., 0.01, 0.1, and 1 g/L), and aging degrees (i.e., aged for 0 d and 90 d under UVA)), and petroleum alone (5% water accommodated fraction, WAF), and their combinations (i.e., 5% WAF + 165 μm-0.1 g/L-aged 0 d mPE, 5% WAF + 165 μm-0.1 g/L-aged 90 d mPE) all posed toxicities risk to C. vulgaris, following an increase in oxidative stress. The cellular utilization of elements such as Fe, Si, Ca, and Mg was inhibited, whereas the uptake of Mn, NO3--N, and PO43--P increased as compared to the control experiments. Furthermore, the relationship between nutrients and growth indicators was analyzed using a structural equation model. The results indicated that Fe and Mn directly affected the indirect NO3--N absorption by C. vulgaris, which indirectly affected the dry cell weight (DCW) of the microalgae. The path coefficient of Fe and Mn affecting nitrate was 0.399 and 0.388, respectively. The absorption of N was the key step for C. vulgaris resist stress. This study provides a novel analysis of the effects of MPs on the growth of microalgae from the perspective of nutrient elements, thereby providing a useful basis for further exploration of the associated mechanisms.
Collapse
Affiliation(s)
- Liu Gao
- Key Laboratory of Agro-Forestry Environmental Processes and Ecological Regulation of Hainan Province; College of Ecology and Environment, Hainan University
| | - Yuanyuan Su
- Key Laboratory of Agro-Forestry Environmental Processes and Ecological Regulation of Hainan Province; College of Ecology and Environment, Hainan University
| | | | - Yang Xie
- Yangzhou Jiejia Testing Technology Co., Ltd
| | - Tariq Mehmood
- Key Laboratory of Agro-Forestry Environmental Processes and Ecological Regulation of Hainan Province; College of Ecology and Environment, Hainan University
| | - Siyu Liu
- Key Laboratory of Agro-Forestry Environmental Processes and Ecological Regulation of Hainan Province; College of Ecology and Environment, Hainan University
| | - Ruiqi Bao
- Key Laboratory of Agro-Forestry Environmental Processes and Ecological Regulation of Hainan Province; College of Ecology and Environment, Hainan University
| | - Licheng Peng
- Key Laboratory of Agro-Forestry Environmental Processes and Ecological Regulation of Hainan Province; College of Ecology and Environment, Hainan University.
| |
Collapse
|
30
|
Lafuente MT, Sampedro R, Vélez D, Romero P. Deficient copper availability on organoleptic and nutritional quality of tomato fruit. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2023; 326:111537. [PMID: 36400126 DOI: 10.1016/j.plantsci.2022.111537] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/07/2022] [Accepted: 11/13/2022] [Indexed: 06/16/2023]
Abstract
Copper (Cu) is an essential micronutrient for plants because it functions as a redox-active cofactor in vital processes inside the cells. Arable lands are often deficient in micronutrient contents and require the application of enriched fertilisers, whose overuse poses a high risk for human health, the environment and the food safety. Here, we aimed to decipher the effects of Cu deficiency during fruit growth on Cu and other micronutrients contents and on the fruit nutritional value and quality of tomato, the most consumed fruit worldwide, throughout the maturation process. Changes in the contents of important micronutrients for fruit physiology and human health, such as Fe and Mn, occurred in response to Cu deficient growing conditions at different fruit ripening stages, while lower Cu levels were detected in those fruit along the whole maturation process. Cu deficiency delayed changes in lycopene content and fruit colour, but increased acidity, and advanced the rise in antioxidant capacity and vitamin C content during fruit colour change from green to light red in the Moneymaker tomato; although this time lag eventually caught up in the most mature fruit stage. Cu deficiency also increased total phenolic and flavonoid contents only in green fruit.
Collapse
Affiliation(s)
- María Teresa Lafuente
- Department of Food Biotechnology, Institute of Chemistry and Food Technology (IATA-CSIC), Avenida Dr. Catedrático Agustín Escardino 7, 46980 Paterna, Valencia, Spain.
| | - Raúl Sampedro
- Department of Food Biotechnology, Institute of Chemistry and Food Technology (IATA-CSIC), Avenida Dr. Catedrático Agustín Escardino 7, 46980 Paterna, Valencia, Spain.
| | - Dinoraz Vélez
- Department of Food Quality and Preservation, Institute of Chemistry and Food Technology (IATA-CSIC), Avenida Dr. Catedrático Agustín Escardino 7, 46980 Paterna, Valencia, Spain.
| | - Paco Romero
- Department of Food Biotechnology, Institute of Chemistry and Food Technology (IATA-CSIC), Avenida Dr. Catedrático Agustín Escardino 7, 46980 Paterna, Valencia, Spain.
| |
Collapse
|
31
|
Huang Y, Bai X, Li C, Kang M, Weng Y, Gong D. Modulation mechanism of phytotoxicity on Ipomoea aquatica Forssk. by surface coating-modified copper oxide nanoparticles and its health risk assessment. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2022; 314:120288. [PMID: 36180003 DOI: 10.1016/j.envpol.2022.120288] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/29/2022] [Revised: 09/21/2022] [Accepted: 09/23/2022] [Indexed: 06/16/2023]
Abstract
To evaluate the influence of surface coatings on nano-fertilizers uptake and their phytotoxicity to crops and its health risk to Chinese adults, trisodium citrate (TC) and polyethylene glycol (PEG) coatings were prepared on the surface of copper oxide nanoparticles (CuO NPs), respectively, with 100 and 500 mg/L of bare CuO NPs, TC-CuO NPs, and PEG-CuO NPs were exposed to soil-grown Ipomoea aquatica Forssk. Combined bio-transmission electron microscopy and micro-CT observed cellular migration of coated CuO NPs in symplastic and apoplastic pathways, as well as nanoparticles transported through vascular tissues to the above-ground parts. Since TC-CuO NPs had less inhibition on vascular phylogeny of I. aquatica roots which was determined by RT-qPCR, their migration in plants was more efficient, thus exhibiting greater phytotoxicity to shoots. Meanwhile, coatings significantly reduced the phytotoxicity of CuO NPs by stimulating plant antioxidant defense. The risk of CuO nano-fertilizers on human dietary safety was evaluated, the HQ > 1 in the 500 mg/L CuO NPs treatment indicated a potential health risk to Chinese adults, which was reduced by the coatings. This work explored for the first time the mechanism of coating effects on nanoparticles migration efficiency and phytotoxicity at the molecular level and demonstrated that the migration of nanoparticles between tissues could have an impact on phytotoxicity. It implied that coating can be tailored to target nanoparticles to specific regions of the plant. In addition, this study highlights the potential health risks associated with the consumption of I. aquatica fertilized with CuO NPs and provides valuable insights into the environmental applications of nano-fertilizers.
Collapse
Affiliation(s)
- Yue Huang
- Key Laboratory of Integrated Regulation and Resource Development on Shallow Lake of Ministry of Education, College of Environment, Hohai University, Nanjing, 210098, PR China
| | - Xue Bai
- Key Laboratory of Integrated Regulation and Resource Development on Shallow Lake of Ministry of Education, College of Environment, Hohai University, Nanjing, 210098, PR China; Yangtze Institute for Conservation and Development, Hohai University, Nanjing, 210098, PR China.
| | - Chang Li
- Key Laboratory of Integrated Regulation and Resource Development on Shallow Lake of Ministry of Education, College of Environment, Hohai University, Nanjing, 210098, PR China
| | - Meng'en Kang
- Key Laboratory of Integrated Regulation and Resource Development on Shallow Lake of Ministry of Education, College of Environment, Hohai University, Nanjing, 210098, PR China
| | - Yuzhu Weng
- Key Laboratory of Integrated Regulation and Resource Development on Shallow Lake of Ministry of Education, College of Environment, Hohai University, Nanjing, 210098, PR China
| | - Dongqing Gong
- Key Laboratory of Integrated Regulation and Resource Development on Shallow Lake of Ministry of Education, College of Environment, Hohai University, Nanjing, 210098, PR China
| |
Collapse
|
32
|
Niu G, Wang Y, Dai G, Xie S, Jin Y, Yang J, Huang J. Effects of 12-Year Nitrogen Addition and Mowing on Plant-Soil Micronutrients in a Typical Steppe. PLANTS (BASEL, SWITZERLAND) 2022; 11:3042. [PMID: 36432772 PMCID: PMC9697658 DOI: 10.3390/plants11223042] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/05/2022] [Revised: 11/08/2022] [Accepted: 11/09/2022] [Indexed: 06/16/2023]
Abstract
Changes in soil micronutrient availability may have adverse consequences on grassland productivity, yet it’s still largely unclear how concurrent human practices, such as fertilization and mowing, affect micronutrient cycling in the plant-soil systems. Here, we measured six essential micronutrient (Fe, Mn, Cu, Zn, Co and Mo) contents in both plant pool (separated as aboveground plant parts, litter, and belowground roots) at the community level and soil pool (0−10 cm depth) after 12-year consecutive nitrogen (N) addition (0, 2, 10, and 50 g N m−2 year−1) and mowing in a typical steppe of the Mongolian Plateau. The results show that (i) medium-N (10 g m−2 year−1) and high-N (50 g m−2 year−1) addition rates significantly increased contents of soil-available Fe (+310.0%, averaging across the two N addition rates), Mn (+149.2%), Co (+123.6%) and Mo (+73.9%) irrespective of mowing treatment, whereas these addition treatments usually decreased contents of soil total Fe (−8.9%), Mn (−21.6%), Cu (−15.9%), Zn (−19.5%), Co (−16.4%) and Mo (−34.7%). (ii) Contents of Fe in aboveground plant parts, litter, and roots significantly decreased, whereas plant Mn increased with N addition. Contents of above ground plant Cu, Zn, Co, and Mo significantly decreased at high-N addition rate, whereas contents of micronutrients in roots and litters, except for Fe, generally increased with N addition. Moreover, the total amount of micronutrients in the plant pool (contents × biomass) significantly increased at the medium-N addition rate but decreased at the high-N addition rate. All N addition rates significantly enlarged the pool of litter micronutrients, and roots could hold more micronutrients under N addition, especially combined with mowing treatment. Importantly, although mowing could regulate the effects of N addition on variables (i) and (ii), the effects were weaker overall than those of N addition. (iii) Changes in root micronutrients, except for Mn, could explain corresponding changes in plant micronutrients (R2: 0.19−0.56, all p < 0.01), and significant linear correlations were also observed between soil-available Fe and Fe in plant and roots. Aboveground plant Mn was significantly correlated with soil-available Mn, while Co and Mo in roots were also significantly correlated with soil-available Co and Mo. These results indicate that soil micronutrient supply capacity may decrease due to a decrease in total micronutrient contents after long-term N addition and mowing. They also suggest that different magnitude responses of soil micronutrients in plants (i.e., litters, roots) and soil should be considered when comprehensively examining nutrient cycling in grassland ecosystems.
Collapse
Affiliation(s)
- Guoxiang Niu
- Key Laboratory of Vegetation Restoration and Management of Degraded Ecosystems, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou 510650, China
- South China National Botanical Garden, Guangzhou 510650, China
| | - Yinliu Wang
- State Key Laboratory of Vegetation and Environmental Change, Institute of Botany, Chinese Academy of Sciences, Xiangshan, Beijing 100093, China
| | - Guangyi Dai
- South China National Botanical Garden, Guangzhou 510650, China
- Opening public laboratory, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou 510650, China
| | - Siwei Xie
- College of Sciences, University of Strathclyde, Glasgow G4 0LZ, UK
| | - Yiqian Jin
- International department, High School Affiliated to South China Normal University, Guangzhou 510650, China
| | - Junjie Yang
- State Key Laboratory of Vegetation and Environmental Change, Institute of Botany, Chinese Academy of Sciences, Xiangshan, Beijing 100093, China
| | - Jianhui Huang
- State Key Laboratory of Vegetation and Environmental Change, Institute of Botany, Chinese Academy of Sciences, Xiangshan, Beijing 100093, China
| |
Collapse
|
33
|
Assunção AGL. The F-bZIP-regulated Zn deficiency response in land plants. PLANTA 2022; 256:108. [PMID: 36348172 PMCID: PMC9643250 DOI: 10.1007/s00425-022-04019-6] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/10/2022] [Accepted: 10/22/2022] [Indexed: 06/16/2023]
Abstract
This review describes zinc sensing and transcriptional regulation of the zinc deficiency response in Arabidopsis, and discusses how their evolutionary conservation in land plants facilitates translational approaches for improving the Zn nutritional value of crop species. Zinc is an essential micronutrient for all living organisms due to its presence in a large number of proteins, as a structural or catalytic cofactor. In plants, zinc homeostasis mechanisms comprise uptake from soil, transport and distribution throughout the plant to provide adequate cellular zinc availability. Here, I discuss the transcriptional regulation of the response to zinc deficiency and the zinc sensing mechanisms in Arabidopsis, and their evolutionary conservation in land plants. The Arabidopsis F-group basic region leucine-zipper (F-bZIP) transcription factors bZIP19 and bZIP23 function simultaneously as sensors of intracellular zinc status, by direct binding of zinc ions, and as the central regulators of the zinc deficiency response, with their target genes including zinc transporters from the ZRT/IRT-like Protein (ZIP) family and nicotianamine synthase enzymes that produce the zinc ligand nicotianamine. I note that this relatively simple mechanism of zinc sensing and regulation, together with the evolutionary conservation of F-bZIP transcription factors across land plants, offer important research opportunities. One of them is to use the F-bZIP-regulated zinc deficiency response as a tractable module for evolutionary and comparative functional studies. Another research opportunity is translational research in crop plants, modulating F-bZIP activity as a molecular switch to enhance zinc accumulation. This should become a useful plant-based solution to alleviate effects of zinc deficiency in soils, which impact crop production and crop zinc content, with consequences for human nutrition globally.
Collapse
Affiliation(s)
- Ana G L Assunção
- Department of Plant and Environmental Sciences, University of Copenhagen, 1871, Frederiksberg, Denmark.
- CIBIO-InBIO, Research Centre in Biodiversity and Genetic Resources, University of Porto, 4485-661, Vairão, Portugal.
| |
Collapse
|
34
|
Wang Z, Wu J, Sun Z, Jiang W, Liu Y, Tang J, Meng X, Su X, Wu L, Wang L, Guo X, Peng D, Xing S. ICP-MS based metallomics and GC-MS based metabolomics reveals the physiological and metabolic responses of Dendrobium huoshanense plants exposed to Fe 3O 4 nanoparticles. Front Nutr 2022; 9:1013756. [PMID: 36245500 PMCID: PMC9558897 DOI: 10.3389/fnut.2022.1013756] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2022] [Accepted: 08/30/2022] [Indexed: 11/23/2022] Open
Abstract
It is found that the growth of Dendrobium huoshanense was dependent on Fe3O4, while the bioavailability of plants to ordinary Fe3O4 was low on the earth. In order to improve the growth, quality and yield of D. huoshanense, we used Fe3O4 NPs (100 or 200 mg/L) that was easily absorbed by plants as nano-fertilizer to hydroponically treat seedlings of D. huoshanense for 3 weeks. Fe3O4 NPs induced not only earlier flowering and increased sugar content and photosynthesis, but also stressed to plants, increased MDA content and related antioxidant enzymes activities. Inductively Coupled Plasma Mass Spectrometry (ICP-MS) revealed that Fe3O4 NPs caused a significant accumulation of Fe and some other nutrient elements (Mn, Co, B, Mo) in stems of D. huoshanense. Metabolomics revealed that the metabolites were reprogrammed in D. huoshanense when under Fe3O4 NPs exposure. Fe3O4 NPs inhibited antioxidant defense-related pathways, demonstrating that Fe3O4 NPs have antioxidant capacity to protect D. huoshanense from damage. As the first study associating Fe3O4 NPs with the quality of D. huoshanense, it provided vital insights into the molecular mechanisms of how D. huoshanense responds to Fe3O4 NPs, ensuring the reasonable use of Fe3O4 NPs as nano-fertilizer.
Collapse
Affiliation(s)
- Zhaojian Wang
- College of Pharmacy, Anhui University of Chinese Medicine, Hefei, China
| | - Jing Wu
- College of Pharmacy, Anhui University of Chinese Medicine, Hefei, China
| | - Zongping Sun
- Anhui Province Key Laboratory of Environmental Hormone and Reproduction, Anhui Province Key Laboratory of Embryo Development and Reproductive Regulation, Fuyang Normal University, Fuyang, China
| | - Weimin Jiang
- Hunan Key Laboratory for Conservation and Utilization of Biological Resources in the Nanyue Mountainous Region, College of Life Sciences and Environment, Hengyang Normal University, Hengyang, China
| | - Yingying Liu
- College of Humanities and International Education Exchange, Anhui University of Chinese Medicine, Hefei, China
| | - Jun Tang
- Anhui Province Key Laboratory of Environmental Hormone and Reproduction, Anhui Province Key Laboratory of Embryo Development and Reproductive Regulation, Fuyang Normal University, Fuyang, China
| | - Xiaoxi Meng
- Department of Horticultural Science, University of Minnesota, Saint Paul, MN, United States
| | - Xinglong Su
- College of Pharmacy, Anhui University of Chinese Medicine, Hefei, China
| | - Liping Wu
- College of Pharmacy, Anhui University of Chinese Medicine, Hefei, China
| | - Longhai Wang
- School of Integrated Chinese and Western Medicine, Anhui University of Chinese Medicine, Hefei, China
| | - Xiaohu Guo
- College of Pharmacy, Anhui University of Chinese Medicine, Hefei, China
| | - Daiyin Peng
- College of Pharmacy, Anhui University of Chinese Medicine, Hefei, China
- Institute of Traditional Chinese Medicine Resources Protection and Development, Anhui Academy of Chinese Medicine, Hefei, China
- MOE-Anhui Joint Collaborative Innovation Center for Quality Improvement of Anhui Genuine Chinese Medicinal Materials, Hefei, China
| | - Shihai Xing
- College of Pharmacy, Anhui University of Chinese Medicine, Hefei, China
- Institute of Traditional Chinese Medicine Resources Protection and Development, Anhui Academy of Chinese Medicine, Hefei, China
- Anhui Province Key Laboratory of Research & Development of Chinese Medicine, Hefei, China
| |
Collapse
|
35
|
Ren W, Liu C, Yan S, Jiang Z, Wang T, Wang Z, Zhang M, Liu M, Sun J, Gao J, Ma W. Structural Characterization of the Acer ukurunduense Chloroplast Genome Relative to Related Species in the Acer Genus. Front Genet 2022; 13:849182. [PMID: 35910210 PMCID: PMC9329572 DOI: 10.3389/fgene.2022.849182] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2022] [Accepted: 06/09/2022] [Indexed: 11/29/2022] Open
Abstract
Acer ukurunduense refers to a deciduous tree distributed in Northeast Asia and is a widely used landscaping tree species. Although several studies have been conducted on the species’ ecological and economic significance, limited information is available on its phylo-genomics. Our study newly constitutes the complete chloroplast genome of A. ukurunduense into a 156,645-bp circular DNA, which displayed a typical quadripartite structure. In addition, 133 genes were identified, containing 88 protein-coding genes, 37 tRNA genes, and eight rRNA genes. In total, 107 simple sequence repeats and 49 repetitive sequences were observed. Thirty-two codons indicated that biased usages were estimated across 20 protein-coding genes (CDS) in A. ukurunduense. Four hotspot regions (trnK-UUU/rps16, ndhF/rpl32, rpl32/trnL-UAG, and ycf1) were detected among the five analyzed Acer species. Those hotspot regions may be useful molecular markers and contribute to future population genetics studies. The phylogenetic analysis demonstrated that A. ukurunduense is most closely associated with the species of Sect. Palmata. A. ukurunduense and A. pubipetiolatum var. pingpienense diverged in 22.11 Mya. We selected one of the hypervariable regions (trnK-UUU/rps16) to develop a new molecular marker and designed primers and confirmed that the molecular markers could accurately discriminate five Acer species through Sanger sequencing. By sequencing the cp genome of A. ukurunduense and comparing it with the relative species of Acer, we can effectively address the phylogenetic problems of Acer at the species level and provide insights into future research on population genetics and genetic diversity.
Collapse
Affiliation(s)
- Weichao Ren
- School of Pharmacy, Heilongjiang University of Chinese Medicine, Harbin, China
| | - Chi Liu
- Faculty of Electrical Engineering and Information Technology, Technical University of Chemnitz, Chemnitz, Germany
| | - Song Yan
- School of Pharmacy, Heilongjiang University of Chinese Medicine, Harbin, China
| | - Zhehui Jiang
- School of Forestry, Northeast Forestry University, Harbin, China
| | - Tianhao Wang
- School of Forestry, Northeast Forestry University, Harbin, China
| | - Zhen Wang
- School of Pharmacy, Heilongjiang University of Chinese Medicine, Harbin, China
| | - Meiqi Zhang
- School of Pharmacy, Heilongjiang University of Chinese Medicine, Harbin, China
| | - Meiqi Liu
- School of Pharmacy, Heilongjiang University of Chinese Medicine, Harbin, China
| | - Jiaying Sun
- School of Pharmacy, Heilongjiang University of Chinese Medicine, Harbin, China
| | - Jinhui Gao
- Yichun Branch of Heilongjiang Academy of Forestry, Yichun, China
- *Correspondence: Jinhui Gao, ; Wei Ma,
| | - Wei Ma
- School of Pharmacy, Heilongjiang University of Chinese Medicine, Harbin, China
- Jiangsu Kanion Pharmaceutical Co. Ltd., Lianyungang, China
- State Key Laboratory of New-tech for Chinese Medicine Pharmaceutical Process, Lianyungang, China
- Key Laboratory of Basic and Application Research of Beiyao (Heilongjiang University of Chinese Medicine), Ministry of Education, Harbin, China
- *Correspondence: Jinhui Gao, ; Wei Ma,
| |
Collapse
|
36
|
Tergemina E, Elfarargi AF, Flis P, Fulgione A, Göktay M, Neto C, Scholle M, Flood PJ, Xerri SA, Zicola J, Döring N, Dinis H, Krämer U, Salt DE, Hancock AM. A two-step adaptive walk rewires nutrient transport in a challenging edaphic environment. SCIENCE ADVANCES 2022; 8:eabm9385. [PMID: 35584228 PMCID: PMC9116884 DOI: 10.1126/sciadv.abm9385] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/22/2021] [Accepted: 04/01/2022] [Indexed: 06/15/2023]
Abstract
Most well-characterized cases of adaptation involve single genetic loci. Theory suggests that multilocus adaptive walks should be common, but these are challenging to identify in natural populations. Here, we combine trait mapping with population genetic modeling to show that a two-step process rewired nutrient homeostasis in a population of Arabidopsis as it colonized the base of an active stratovolcano characterized by extremely low soil manganese (Mn). First, a variant that disrupted the primary iron (Fe) uptake transporter gene (IRT1) swept quickly to fixation in a hard selective sweep, increasing Mn but limiting Fe in the leaves. Second, multiple independent tandem duplications occurred at NRAMP1 and together rose to near fixation in the island population, compensating the loss of IRT1 by improving Fe homeostasis. This study provides a clear case of a multilocus adaptive walk and reveals how genetic variants reshaped a phenotype and spread over space and time.
Collapse
Affiliation(s)
- Emmanuel Tergemina
- Department of Plant Developmental Biology, Max Planck Institute for Plant Breeding Research, 50829 Cologne, Germany
| | - Ahmed F. Elfarargi
- Department of Plant Developmental Biology, Max Planck Institute for Plant Breeding Research, 50829 Cologne, Germany
| | - Paulina Flis
- Future Food Beacon of Excellence and the School of Biosciences, University of Nottingham, Sutton Bonington Campus, Nr Loughborough, LE12 5RD Nottingham, UK
| | - Andrea Fulgione
- Department of Plant Developmental Biology, Max Planck Institute for Plant Breeding Research, 50829 Cologne, Germany
| | - Mehmet Göktay
- Department of Plant Developmental Biology, Max Planck Institute for Plant Breeding Research, 50829 Cologne, Germany
| | - Célia Neto
- Department of Plant Developmental Biology, Max Planck Institute for Plant Breeding Research, 50829 Cologne, Germany
| | - Marleen Scholle
- Faculty of Biology and Biotechnology, Ruhr University Bochum, 44801 Bochum, Germany
| | - Pádraic J. Flood
- Department of Plant Developmental Biology, Max Planck Institute for Plant Breeding Research, 50829 Cologne, Germany
| | - Sophie-Asako Xerri
- Department of Plant Developmental Biology, Max Planck Institute for Plant Breeding Research, 50829 Cologne, Germany
| | - Johan Zicola
- Department of Plant Developmental Biology, Max Planck Institute for Plant Breeding Research, 50829 Cologne, Germany
| | - Nina Döring
- Department of Plant Developmental Biology, Max Planck Institute for Plant Breeding Research, 50829 Cologne, Germany
| | - Herculano Dinis
- Parque Natural do Fogo, Direção Nacional do Ambiente, 115 Chã d’Areia, Praia, Santiago, Cabo Verde, Africa
- Associação Projecto Vitó, 8234, Xaguate, Cidade de São Filipe, Fogo, Cabo Verde, Africa
| | - Ute Krämer
- Faculty of Biology and Biotechnology, Ruhr University Bochum, 44801 Bochum, Germany
| | - David E. Salt
- Future Food Beacon of Excellence and the School of Biosciences, University of Nottingham, Sutton Bonington Campus, Nr Loughborough, LE12 5RD Nottingham, UK
| | - Angela M. Hancock
- Department of Plant Developmental Biology, Max Planck Institute for Plant Breeding Research, 50829 Cologne, Germany
| |
Collapse
|
37
|
Coordination of Chloroplast Activity with Plant Growth: Clues Point to TOR. PLANTS 2022; 11:plants11060803. [PMID: 35336685 PMCID: PMC8953291 DOI: 10.3390/plants11060803] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/11/2022] [Revised: 03/14/2022] [Accepted: 03/16/2022] [Indexed: 11/17/2022]
Abstract
Photosynthesis is the defining function of most autotrophic organisms. In the plantae kingdom, chloroplasts host this function and ensure growth. However, these organelles are very sensitive to stressful conditions and the photosynthetic process can cause photooxidative damage if not perfectly regulated. In addition, their function is energivorous in terms of both chemical energy and nutrients. To coordinate chloroplast activity with the cell’s need, continuous signaling is required: from chloroplasts to cytoplasm and from nucleus to chloroplasts. In this opinion article, several mechanisms that ensure this communication are reported and the many clues that point to an important role of the Target of Rapamycin (TOR) kinase in the coordination between the eukaryotic and prokaryotic sides of plants are highlighted.
Collapse
|
38
|
Hendrix S, Verbruggen N, Cuypers A, Meyer AJ. Essential trace metals in plant responses to heat stress. JOURNAL OF EXPERIMENTAL BOTANY 2022; 73:1775-1788. [PMID: 35018415 DOI: 10.1093/jxb/erab507] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/22/2021] [Accepted: 11/17/2021] [Indexed: 06/14/2023]
Abstract
Essential trace metals function as structural components or cofactors in many proteins involved in a wide range of physiological processes in plants. Hence, trace metal deficiency can significantly hamper plant growth and development. On the other hand, excess concentrations of trace metals can also induce phytotoxicity, for example via an enhanced production of reactive oxygen species. Besides their roles in plant growth under favourable environmental conditions, trace metals also contribute to plant responses to biotic and abiotic stresses. Heat is a stress factor that will become more prevalent due to increasing climate change and is known to negatively affect crop yield and quality, posing a severe threat to food security for future generations. Gaining insight into heat stress responses is essential to develop strategies to optimize plant growth and quality under unfavourable temperatures. In this context, trace metals deserve particular attention as they contribute to defence responses and are important determinants of plant nutritional value. Here, we provide an overview of heat-induced effects on plant trace metal homeostasis and the involvement of trace metals and trace metal-dependent enzymes in plant responses to heat stress. Furthermore, avenues for future research on the interactions between heat stress and trace metals are discussed.
Collapse
Affiliation(s)
- Sophie Hendrix
- Institute of Crop Science and Resource Conservation (INRES), University of Bonn, Bonn, Germany
- Environmental Biology, Centre for Environmental Sciences, Hasselt University, Diepenbeek, Belgium
| | - Nathalie Verbruggen
- Laboratory of Plant Physiology and Molecular Genetics, Université Libre de Bruxelles, Brussels, Belgium
| | - Ann Cuypers
- Environmental Biology, Centre for Environmental Sciences, Hasselt University, Diepenbeek, Belgium
| | - Andreas J Meyer
- Institute of Crop Science and Resource Conservation (INRES), University of Bonn, Bonn, Germany
| |
Collapse
|
39
|
Assunção AGL, Cakmak I, Clemens S, González-Guerrero M, Nawrocki A, Thomine S. Micronutrient homeostasis in plants for more sustainable agriculture and healthier human nutrition. JOURNAL OF EXPERIMENTAL BOTANY 2022; 73:1789-1799. [PMID: 35134869 PMCID: PMC8921004 DOI: 10.1093/jxb/erac014] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/30/2021] [Accepted: 01/28/2022] [Indexed: 05/03/2023]
Abstract
The provision of sustainable, sufficient, and nutritious food to the growing population is a major challenge for agriculture and the plant research community. In this respect, the mineral micronutrient content of food crops deserves particular attention. Micronutrient deficiencies in cultivated soils and plants are a global problem that adversely affects crop production and plant nutritional value, as well as human health and well-being. In this review, we call for awareness of the importance and relevance of micronutrients in crop production and quality. We stress the need for better micronutrient nutrition in human populations, not only in developing but also in developed nations, and describe strategies to identify and characterize new varieties with high micronutrient content. Furthermore, we explain how adequate nutrition of plants with micronutrients impacts metabolic functions and the capacity of plants to express tolerance mechanisms against abiotic and biotic constraints. Finally, we provide a brief overview and a critical discussion on current knowledge, future challenges, and specific technological needs for research on plant micronutrient homeostasis. Research in this area is expected to foster the sustainable development of nutritious and healthy food crops for human consumption.
Collapse
Affiliation(s)
- Ana G L Assunção
- Department of Plant and Environmental Sciences, University of Copenhagen, 1871 Frederiksberg, Denmark
- CIBIO-InBIO, Research Centre in Biodiversity and Genetic Resources, University of Porto, 4485-661 Vairão, Portugal
| | - Ismail Cakmak
- Faculty of Engineering and Natural Sciences, Sabanci University, 34956 Istanbul, Turkey
| | - Stephan Clemens
- Department of Plant Physiology and Faculty of Life Sciences: Food, Nutrition and Health, University of Bayreuth, 95440 Bayreuth, Germany
| | - Manuel González-Guerrero
- Centro de Biotecnología y Genómica de Plantas (UPM-INIA), Universidad Politécnica de Madrid, 28223 Pozuelo de Alarcón (Madrid), Spain
| | | | | |
Collapse
|
40
|
Schneider A. Insights into manganese transport: A matter of phosphorylation. MOLECULAR PLANT 2022; 15:385-387. [PMID: 34968733 DOI: 10.1016/j.molp.2021.12.014] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/16/2021] [Revised: 12/23/2021] [Accepted: 12/23/2021] [Indexed: 06/14/2023]
Affiliation(s)
- Anja Schneider
- Plant Science, Faculty of Biology, Ludwig-Maximilians-Universität München, Munich, Germany.
| |
Collapse
|
41
|
Chakdar H, Thapa S, Srivastava A, Shukla P. Genomic and proteomic insights into the heavy metal bioremediation by cyanobacteria. JOURNAL OF HAZARDOUS MATERIALS 2022; 424:127609. [PMID: 34772552 DOI: 10.1016/j.jhazmat.2021.127609] [Citation(s) in RCA: 32] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/02/2021] [Revised: 10/16/2021] [Accepted: 10/24/2021] [Indexed: 06/13/2023]
Abstract
Heavy metals (HMs) pose a global ecological threat due to their toxic effects on aquatic and terrestrial life. Effective remediation of HMs from the environment can help to restore soil's fertility and ecological vigor, one of the key Sustainable Development Goals (SDG) set by the United Nations. The cyanobacteria have emerged as a potential option for bioremediation of HMs due to their unique adaptations and robust metabolic machineries. Generally, cyanobacteria deploy multifarious mechanisms such as biosorption, bioaccumulation, activation of metal transporters, biotransformation and induction of detoxifying enzymes to sequester and minimize the toxic effects of heavy metals. Therefore, understanding the physiological responses and regulation of adaptation mechanisms at molecular level is necessary to unravel the candidate genes and proteins which can be manipulated to improve the bioremediation efficiency of cyanobacteria. Chaperons, cellular metabolites (extracellular polymers, biosurfactants), transcriptional regulators, metal transporters, phytochelatins and metallothioneins are some of the potential targets for strain engineering. In the present review, we have discussed the potential of cyanobacteria for HM bioremediation and provided a deeper insight into their genomic and proteomic regulation of various tolerance mechanisms. These approaches might pave new possibilities of implementing genetic engineering strategies for improving bioremediation efficiency with a future perspective.
Collapse
Affiliation(s)
- Hillol Chakdar
- Microbial Technology Unit II, ICAR-National Bureau of Agriculturally Important Microorganisms (NBAIM), Mau 275103, Uttar Pradesh, India
| | - Shobit Thapa
- Microbial Technology Unit II, ICAR-National Bureau of Agriculturally Important Microorganisms (NBAIM), Mau 275103, Uttar Pradesh, India
| | - Amit Srivastava
- Department of Chemistry, Purdue University, 560 Oval Drive, West Lafayette, ID 47907-2048, United States
| | - Pratyoosh Shukla
- School of Biotechnology, Institute of Science, Banaras Hindu University, Varanasi 221005, Uttar Pradesh, India; Enzyme Technology and Protein Bioinformatics Laboratory, Department of Microbiology, Maharshi Dayanand University, Rohtak 124001, Haryana, India.
| |
Collapse
|
42
|
Du Q, Jiang M, Sun S, Wang L, Liu S, Jiang C, Gao H, Chen H, Li Y, Wang B, Liu C. The complete chloroplast genome sequence of Clerodendranthus spicatus, a medicinal plant for preventing and treating kidney diseases from Lamiaceae family. Mol Biol Rep 2022; 49:3073-3083. [PMID: 35059973 DOI: 10.1007/s11033-022-07135-4] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2021] [Accepted: 01/10/2022] [Indexed: 12/25/2022]
Abstract
BACKGROUND Clerodendranthus spicatus (Thunb.) C. Y. Wu ex H. W. Li is one of the most important medicines for the treatment of nephrology in the southeast regions of China. To understand the taxonomic classification of Clerodendranthus species and identify species discrimination markers, we sequenced and characterized its chloroplast genome in the current study. METHODS AND RESULTS Total genomic DNA were isolated from dried leaves of C. spicatus and sequenced using an Illumina sequencing platform. The data were assembled and annotated by the NOVOPlasty software and CpGAVAS2 web service. The complete chloroplast genome of C. spicatus was 152,155 bp, including a large single-copy region of 83,098 bp, a small single-copy region of 17,665 bp, and a pair of inverted repeat regions of 25,696 bp. The Isoleucine codons are the most abundant, accounting for 4.17% of all codons. The codons of AUG, UUA, and AGA demonstrated a high degree of usage bias. Twenty-eight simple sequence repeats, thirty-six tandem repeats, and forty interspersed repeats were identified. The distribution of the specific rps19, ycf1, rpl2, trnH, psbA genes were analyzed. Analysis of the genetic distance of the intergenic spacer regions shows that ndhG-ndhI, accD-psaI, rps15-ycf1, rpl20-clpP, ccsA-ndhD regions have high K2p values. Phylogenetic analysis showed that C. spicatu is closely related to two Lamiaceae species, Tectona grandis, and Glechoma longituba. CONCLUSIONS In this study, we sequenced and characterized the chloroplast genome of C. spicatus. Phylogenomic analysis has identified species closely related to C. spicatus, which represent potential candidates for the development of drugs improving renal functions.
Collapse
Affiliation(s)
- Qing Du
- Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing, 100193, People's Republic of China.,College of Pharmacy, Qinghai Provincial Key Laboratory of Phytochemistry of Qinghai Tibet Plateau, Qinghai Minzu University, Xining, Qinghai, 810007, People's Republic of China.,Fresh Sky-Right (Beijing) International Science and Technology Co. Ltd, Beijing, 100187, People's Republic of China
| | - Mei Jiang
- Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing, 100193, People's Republic of China.,School of Pharmaceutical Sciences, Qilu University of Technology, Shandong Academy of Sciences, Jinan, Shandong, 250353, People's Republic of China
| | - Sihui Sun
- College of Pharmacy, Xiangnan University, Chenzhou, Hunan, 423000, People's Republic of China
| | - Liqiang Wang
- College of Pharmacy, Heze University, Heze, Shandong, 274015, People's Republic of China
| | - Shengyu Liu
- Institute of Medical Information & Library, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, 100193, People's Republic of China
| | - Chuanbei Jiang
- Genepioneer Biotechnologies Inc., Nanjing, Jiangsu, 210023, People's Republic of China
| | - Haidong Gao
- Genepioneer Biotechnologies Inc., Nanjing, Jiangsu, 210023, People's Republic of China
| | - Haimei Chen
- Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing, 100193, People's Republic of China
| | - Yong Li
- College of Pharmacy, Xiangnan University, Chenzhou, Hunan, 423000, People's Republic of China
| | - Bin Wang
- College of Pharmacy, Xiangnan University, Chenzhou, Hunan, 423000, People's Republic of China.
| | - Chang Liu
- Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing, 100193, People's Republic of China.
| |
Collapse
|
43
|
Raza A, Tabassum J, Zahid Z, Charagh S, Bashir S, Barmukh R, Khan RSA, Barbosa F, Zhang C, Chen H, Zhuang W, Varshney RK. Advances in "Omics" Approaches for Improving Toxic Metals/Metalloids Tolerance in Plants. FRONTIERS IN PLANT SCIENCE 2022; 12:794373. [PMID: 35058954 PMCID: PMC8764127 DOI: 10.3389/fpls.2021.794373] [Citation(s) in RCA: 40] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/13/2021] [Accepted: 11/22/2021] [Indexed: 05/17/2023]
Abstract
Food safety has emerged as a high-urgency matter for sustainable agricultural production. Toxic metal contamination of soil and water significantly affects agricultural productivity, which is further aggravated by extreme anthropogenic activities and modern agricultural practices, leaving food safety and human health at risk. In addition to reducing crop production, increased metals/metalloids toxicity also disturbs plants' demand and supply equilibrium. Counterbalancing toxic metals/metalloids toxicity demands a better understanding of the complex mechanisms at physiological, biochemical, molecular, cellular, and plant level that may result in increased crop productivity. Consequently, plants have established different internal defense mechanisms to cope with the adverse effects of toxic metals/metalloids. Nevertheless, these internal defense mechanisms are not adequate to overwhelm the metals/metalloids toxicity. Plants produce several secondary messengers to trigger cell signaling, activating the numerous transcriptional responses correlated with plant defense. Therefore, the recent advances in omics approaches such as genomics, transcriptomics, proteomics, metabolomics, ionomics, miRNAomics, and phenomics have enabled the characterization of molecular regulators associated with toxic metal tolerance, which can be deployed for developing toxic metal tolerant plants. This review highlights various response strategies adopted by plants to tolerate toxic metals/metalloids toxicity, including physiological, biochemical, and molecular responses. A seven-(omics)-based design is summarized with scientific clues to reveal the stress-responsive genes, proteins, metabolites, miRNAs, trace elements, stress-inducible phenotypes, and metabolic pathways that could potentially help plants to cope up with metals/metalloids toxicity in the face of fluctuating environmental conditions. Finally, some bottlenecks and future directions have also been highlighted, which could enable sustainable agricultural production.
Collapse
Affiliation(s)
- Ali Raza
- Key Laboratory of Ministry of Education for Genetics, Breeding and Multiple Utilization of Crops, Center of Legume Crop Genetics and Systems Biology/College of Agriculture, Oil Crops Research Institute, Fujian Agriculture and Forestry University (FAFU), Fuzhou, China
| | - Javaria Tabassum
- State Key Laboratory of Rice Biology, China National Rice Research Institute, Chinese Academy of Agricultural Sciences (CAAS), Hangzhou, China
| | - Zainab Zahid
- School of Civil and Environmental Engineering (SCEE), Institute of Environmental Sciences and Engineering (IESE), National University of Sciences and Technology (NUST), Islamabad, Pakistan
| | - Sidra Charagh
- State Key Laboratory of Rice Biology, China National Rice Research Institute, Chinese Academy of Agricultural Sciences (CAAS), Hangzhou, China
| | - Shanza Bashir
- School of Civil and Environmental Engineering (SCEE), Institute of Environmental Sciences and Engineering (IESE), National University of Sciences and Technology (NUST), Islamabad, Pakistan
| | - Rutwik Barmukh
- Center of Excellence in Genomics & Systems Biology, International Crops Research Institute for the Semi-Arid Tropics (ICRISAT), Hyderabad, India
| | - Rao Sohail Ahmad Khan
- Centre of Agricultural Biochemistry and Biotechnology (CABB), University of Agriculture, Faisalabad, Pakistan
| | - Fernando Barbosa
- Department of Clinical Analysis, Toxicology and Food Sciences, University of Sao Paulo, Ribeirão Preto, Brazil
| | - Chong Zhang
- Key Laboratory of Ministry of Education for Genetics, Breeding and Multiple Utilization of Crops, Center of Legume Crop Genetics and Systems Biology/College of Agriculture, Oil Crops Research Institute, Fujian Agriculture and Forestry University (FAFU), Fuzhou, China
| | - Hua Chen
- Key Laboratory of Ministry of Education for Genetics, Breeding and Multiple Utilization of Crops, Center of Legume Crop Genetics and Systems Biology/College of Agriculture, Oil Crops Research Institute, Fujian Agriculture and Forestry University (FAFU), Fuzhou, China
| | - Weijian Zhuang
- Key Laboratory of Ministry of Education for Genetics, Breeding and Multiple Utilization of Crops, Center of Legume Crop Genetics and Systems Biology/College of Agriculture, Oil Crops Research Institute, Fujian Agriculture and Forestry University (FAFU), Fuzhou, China
| | - Rajeev K. Varshney
- Key Laboratory of Ministry of Education for Genetics, Breeding and Multiple Utilization of Crops, Center of Legume Crop Genetics and Systems Biology/College of Agriculture, Oil Crops Research Institute, Fujian Agriculture and Forestry University (FAFU), Fuzhou, China
- Center of Excellence in Genomics & Systems Biology, International Crops Research Institute for the Semi-Arid Tropics (ICRISAT), Hyderabad, India
- State Agricultural Biotechnology Centre, Centre for Crop and Food Innovation, Food Futures Institute, Murdoch University, Murdoch, WA, Australia
| |
Collapse
|
44
|
Fernandes GF, Pontes MA, Machado FB, Ferrão LF. Electronic structure and stability of transition metal acetylacetonates TM(AcAc)n (TM = Cr, Fe, Co, Ni, Cu; n = 1, 2, 3). COMPUT THEOR CHEM 2022. [DOI: 10.1016/j.comptc.2021.113502] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
|
45
|
He J, Rössner N, Hoang MTT, Alejandro S, Peiter E. Transport, functions, and interaction of calcium and manganese in plant organellar compartments. PLANT PHYSIOLOGY 2021; 187:1940-1972. [PMID: 35235665 PMCID: PMC8890496 DOI: 10.1093/plphys/kiab122] [Citation(s) in RCA: 49] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/02/2020] [Accepted: 03/02/2021] [Indexed: 05/05/2023]
Abstract
Calcium (Ca2+) and manganese (Mn2+) are essential elements for plants and have similar ionic radii and binding coordination. They are assigned specific functions within organelles, but share many transport mechanisms to cross organellar membranes. Despite their points of interaction, those elements are usually investigated and reviewed separately. This review takes them out of this isolation. It highlights our current mechanistic understanding and points to open questions of their functions, their transport, and their interplay in the endoplasmic reticulum (ER), vesicular compartments (Golgi apparatus, trans-Golgi network, pre-vacuolar compartment), vacuoles, chloroplasts, mitochondria, and peroxisomes. Complex processes demanding these cations, such as Mn2+-dependent glycosylation or systemic Ca2+ signaling, are covered in some detail if they have not been reviewed recently or if recent findings add to current models. The function of Ca2+ as signaling agent released from organelles into the cytosol and within the organelles themselves is a recurrent theme of this review, again keeping the interference by Mn2+ in mind. The involvement of organellar channels [e.g. glutamate receptor-likes (GLR), cyclic nucleotide-gated channels (CNGC), mitochondrial conductivity units (MCU), and two-pore channel1 (TPC1)], transporters (e.g. natural resistance-associated macrophage proteins (NRAMP), Ca2+ exchangers (CAX), metal tolerance proteins (MTP), and bivalent cation transporters (BICAT)], and pumps [autoinhibited Ca2+-ATPases (ACA) and ER Ca2+-ATPases (ECA)] in the import and export of organellar Ca2+ and Mn2+ is scrutinized, whereby current controversial issues are pointed out. Mechanisms in animals and yeast are taken into account where they may provide a blueprint for processes in plants, in particular, with respect to tunable molecular mechanisms of Ca2+ versus Mn2+ selectivity.
Collapse
Affiliation(s)
- Jie He
- Faculty of Natural Sciences III, Plant Nutrition Laboratory, Institute of Agricultural and Nutritional Sciences, Martin Luther University Halle-Wittenberg, D-06099 Halle (Saale), Germany
| | - Nico Rössner
- Faculty of Natural Sciences III, Plant Nutrition Laboratory, Institute of Agricultural and Nutritional Sciences, Martin Luther University Halle-Wittenberg, D-06099 Halle (Saale), Germany
| | - Minh T T Hoang
- Faculty of Natural Sciences III, Plant Nutrition Laboratory, Institute of Agricultural and Nutritional Sciences, Martin Luther University Halle-Wittenberg, D-06099 Halle (Saale), Germany
| | - Santiago Alejandro
- Faculty of Natural Sciences III, Plant Nutrition Laboratory, Institute of Agricultural and Nutritional Sciences, Martin Luther University Halle-Wittenberg, D-06099 Halle (Saale), Germany
| | - Edgar Peiter
- Faculty of Natural Sciences III, Plant Nutrition Laboratory, Institute of Agricultural and Nutritional Sciences, Martin Luther University Halle-Wittenberg, D-06099 Halle (Saale), Germany
- Author for communication:
| |
Collapse
|
46
|
Iron Supplement-Enhanced Growth and Development of Hydrangea macrophylla In Vitro under Normal and High pH. Cells 2021; 10:cells10113151. [PMID: 34831377 PMCID: PMC8622367 DOI: 10.3390/cells10113151] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2021] [Revised: 11/11/2021] [Accepted: 11/11/2021] [Indexed: 11/17/2022] Open
Abstract
Hydrangea macrophylla is a popular perennial ornamental shrub commercially grown as potted plants, landscape plants, and cut flowers. In the process of reproduction and production of ornamental plants, the absorption of nutrients directly determines the value of the ornamental plants. Hydrangea macrophylla is very sensitive to the content and absorption of the micronutrient iron (Fe) that affects growth of its shoots. However, the physiological activity of Fe as affected by deficiency or supplementation is unknown. This work aimed at preliminary exploring the relationship between Fe and photosynthesis, and also to find the most favorable iron source and level of pH for the growth of H. macrophylla. Two Fe sources, non-chelated iron sulfate (FeSO4) and iron ethylenediaminetetraacetic acid (Fe-EDTA), were supplemented to the multipurpose medium with a final Fe concentration of 2.78 mg·L-1. The medium without any Fe supplementation was used as the control. The pH of the agar-solidified medium was adjusted to either 4.70, 5.70, or 6.70, before autoclaving. The experiment was conducted in a culture room for 60 days with 25/18 °C day and night temperatures, and a 16-hour photoperiod provided at a light intensity of 50 mmol·m-2·s-1 photosynthetic photon flux density (PPFD) from white light-emitting diodes. Supplementary Fe increased the tissue Fe content, and leaves were greener with the medium pH of 4.70, regardless of the Fe source. Compared to the control, the number of leaves for plantlets treated with FeSO4 and Fe-EDTA were 2.0 and 1.5 times greater, respectively. The chlorophyll, macronutrient, and micronutrient contents were the greatest with Fe-EDTA at pH 4.70. Furthermore, the Fe in the leaf affected the photosynthesis by regulating stomata development, pigment content, and antioxidant system, and also by adjusting the expression of genes related to Fe absorption, transport, and redistribution. Supplementation of Fe in a form chelated with EDTA along with a medium pH of 4.70 was found to be the best for the growth and development of H. macrophylla plantlets cultured in vitro.
Collapse
|
47
|
Transcriptome Profiling of Cu Stressed Petunia Petals Reveals Candidate Genes Involved in Fe and Cu Crosstalk. Int J Mol Sci 2021; 22:ijms222111604. [PMID: 34769033 PMCID: PMC8583722 DOI: 10.3390/ijms222111604] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2021] [Revised: 10/21/2021] [Accepted: 10/23/2021] [Indexed: 11/16/2022] Open
Abstract
Copper (Cu) is an essential element for most living plants, but it is toxic for plants when present in excess. To better understand the response mechanism under excess Cu in plants, especially in flowers, transcriptome sequencing on petunia buds and opened flowers under excess Cu was performed. Interestingly, the transcript level of FIT-independent Fe deficiency response genes was significantly affected in Cu stressed petals, probably regulated by basic-helix-loop-helix 121 (bHLH121), while no difference was found in Fe content. Notably, the expression level of bHLH121 was significantly down-regulated in petals under excess Cu. In addition, the expression level of genes related to photosystem II (PSII), photosystem I (PSI), cytochrome b6/f complex, the light-harvesting chlorophyll II complex and electron carriers showed disordered expression profiles in petals under excess Cu, thus photosynthesis parameters, including the maximum PSII efficiency (FV/FM), nonphotochemical quenching (NPQ), quantum yield of the PSII (ΦPS(II)) and photochemical quenching coefficient (qP), were reduced in Cu stressed petals. Moreover, the chlorophyll a content was significantly reduced, while the chlorophyll b content was not affected, probably caused by the increased expression of chlorophyllide a oxygenase (CAO). Together, we provide new insight into excess Cu response and the Cu–Fe crosstalk in flowers.
Collapse
|
48
|
Wang T, Amee M, Wang G, Xie Y, Hu T, Xu H. FaHSP17.8-CII orchestrates lead tolerance and accumulation in shoots via enhancing antioxidant enzymatic response and PSII activity in tall fescue. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2021; 223:112568. [PMID: 34332250 DOI: 10.1016/j.ecoenv.2021.112568] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/18/2021] [Revised: 06/07/2021] [Accepted: 07/25/2021] [Indexed: 06/13/2023]
Abstract
Tall fescue (Festuca arundinacea Schreb.) shows huge potential for lead (Pb) phytoremediation, while little is known on the molecular mechanisms involved in Pb tolerance and accumulation. Here, genetic engineering strategy was firstly used to investigate Pb tolerance and accumulation in tall fescue. The transgenic tall fescue overexpressing a class II (CII) sHSP gene FaHSP17.8-CII was generated. After exposure to 1000 mg/L Pb(NO3)2, two FaHSP17.8-CII overexpressing lines, OE#3 and OE#7, showed higher tolerance to Pb as illustrated by the reduced levels of electrolyte leakage (EL) and malondialdehyde (MDA) as compared to the wild-type (WT) plants under Pb stress. Moreover, the FaHSP17.8-CII overexpression lines, OE#3 and OE#7, exhibited 36.3% and 46.6% higher shoot Pb accumulation relative to the WT grasses. When the grasses were exposed to Pb stress, the two OE lines had higher CAT, POD and SOD activities as compared to WT. Additionally, overexpression of FaHSP17.8-CII improved the synthesis of chlorophyll and transcript abundance of FapsbC, FapsbD and FapsbE, and alleviated the photoinhibition of PSII in tall fescue under Pb stress. This study provides an initial genetic engineering strategy to improve Pb phytoremediation efficiency in tall fescue by FaHSP17.8-CII overexpression.
Collapse
Affiliation(s)
- Tao Wang
- College of Agriculture, Henan University of Science and Technology, Luoyang, China
| | - Maurice Amee
- CAS Key Laboratory of Plant Germplasm Enhancement and Specialty Agriculture, Wuhan Botanical Garden, The Innovative Academy of Seed Design, Chinese Academy of Sciences, Wuhan 430074, China; Center of Economic Botany, Core Botanical Gardens, Chinese Academy of Sciences, Wuhan 430074, China
| | - Guangyang Wang
- School of Resources and Environmental Engineering, Ludong University, Yantai, China
| | - Yan Xie
- CAS Key Laboratory of Plant Germplasm Enhancement and Specialty Agriculture, Wuhan Botanical Garden, The Innovative Academy of Seed Design, Chinese Academy of Sciences, Wuhan 430074, China; Center of Economic Botany, Core Botanical Gardens, Chinese Academy of Sciences, Wuhan 430074, China
| | - Tao Hu
- CAS Key Laboratory of Plant Germplasm Enhancement and Specialty Agriculture, Wuhan Botanical Garden, The Innovative Academy of Seed Design, Chinese Academy of Sciences, Wuhan 430074, China; Center of Economic Botany, Core Botanical Gardens, Chinese Academy of Sciences, Wuhan 430074, China.
| | - Huawei Xu
- College of Agriculture, Henan University of Science and Technology, Luoyang, China.
| |
Collapse
|
49
|
Hu T, Wang T, Wang G, Bi A, Wassie M, Xie Y, Xu H, Chen L. Overexpression of FaHSP17.8-CII improves cadmium accumulation and tolerance in tall fescue shoots by promoting chloroplast stability and photosynthetic electron transfer of PSII. JOURNAL OF HAZARDOUS MATERIALS 2021; 417:125932. [PMID: 34020353 DOI: 10.1016/j.jhazmat.2021.125932] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/09/2021] [Revised: 04/14/2021] [Accepted: 04/18/2021] [Indexed: 06/12/2023]
Abstract
Genetic improvement could play a significant role in enhancing the Cd accumulation, translocation and tolerance in plants. In this study, for the first time, we constructed transgenic tall fescue overexpressing a class II (CII) sHSP gene FaHSP17.8-CII, which enhanced Cd tolerance and the root-to-shoot Cd translocation. After exposed to 400 μM CdCl2, two FaHSP17.8-CII overexpressing lines (OE#3 and OE#7) exhibited 30% and 40% more shoot fresh weight, respectively, relative to the wild-type (WT). Both transgenic lines showed higher tolerance to Cd, as evidenced by lower levels of electrolyte leakage and malondialdehyde compared to the WT plants under Cd stress. FaHSP17.8-CII overexpression increased shoot Cd contents 49-59% over the WT plants. The Cd translocation factor of root-to-shoot in OE grasses was 69-85% greater than WT under Cd stress. Furthermore, overexpression of FaHSP17.8-CII reduced Cd-induced damages of chloroplast ultra-structure and chlorophyll synthesis, and then improved photosystem II (PSII) function under Cd stress, which resulted in less reactive oxygen species (ROS) accumulation in OE grasses than that in WT exposed to Cd stress. The study suggests a novel FaHSP17.8-CII-PSII-ROS module to understand the mechanisms of Cd detoxification and tolerance, which provides a new strategy to improve phytoremediation efficiency in Cd-stressed grasses.
Collapse
Affiliation(s)
- Tao Hu
- CAS Key Laboratory of Plant Germplasm Enhancement and Specialty Agriculture, Wuhan Botanical Garden, The Innovative Academy of Seed Design, Chinese Academy of Sciences, Wuhan 430074, China; Center of Economic Botany, Core Botanical Gardens, Chinese Academy of Sciences, Wuhan 430074, China
| | - Tao Wang
- College of Agriculture, Henan University of Science and Technology, Luoyang, China
| | - Guangyang Wang
- CAS Key Laboratory of Plant Germplasm Enhancement and Specialty Agriculture, Wuhan Botanical Garden, The Innovative Academy of Seed Design, Chinese Academy of Sciences, Wuhan 430074, China; School of Resources and Environmental Engineering, Ludong University, Yantai, China
| | - Aoyue Bi
- CAS Key Laboratory of Plant Germplasm Enhancement and Specialty Agriculture, Wuhan Botanical Garden, The Innovative Academy of Seed Design, Chinese Academy of Sciences, Wuhan 430074, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Misganaw Wassie
- CAS Key Laboratory of Plant Germplasm Enhancement and Specialty Agriculture, Wuhan Botanical Garden, The Innovative Academy of Seed Design, Chinese Academy of Sciences, Wuhan 430074, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yan Xie
- CAS Key Laboratory of Plant Germplasm Enhancement and Specialty Agriculture, Wuhan Botanical Garden, The Innovative Academy of Seed Design, Chinese Academy of Sciences, Wuhan 430074, China; Center of Economic Botany, Core Botanical Gardens, Chinese Academy of Sciences, Wuhan 430074, China
| | - Huawei Xu
- College of Agriculture, Henan University of Science and Technology, Luoyang, China
| | - Liang Chen
- CAS Key Laboratory of Plant Germplasm Enhancement and Specialty Agriculture, Wuhan Botanical Garden, The Innovative Academy of Seed Design, Chinese Academy of Sciences, Wuhan 430074, China; Center of Economic Botany, Core Botanical Gardens, Chinese Academy of Sciences, Wuhan 430074, China.
| |
Collapse
|
50
|
Jogawat A, Yadav B, Narayan OP. Metal transporters in organelles and their roles in heavy metal transportation and sequestration mechanisms in plants. PHYSIOLOGIA PLANTARUM 2021; 173:259-275. [PMID: 33586164 DOI: 10.1111/ppl.13370] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/08/2020] [Revised: 01/23/2021] [Accepted: 02/11/2021] [Indexed: 05/19/2023]
Abstract
Heavy metal toxicity is one of the major concerns for agriculture and health. Accumulation of toxic heavy metals at high concentrations in edible parts of crop plants is the primary cause of disease in humans and cattle. A dramatic increase in industrialization, urbanization, and other high anthropogenic activities has led to the accumulation of heavy metals in agricultural soil, which has consequently disrupted soil conditions and affected crop yield. By now, plants have developed several mechanisms to cope with heavy metal stress. However, not all plants are equally effective in dealing with the toxicity of high heavy metal concentrations. Plants have modified their anatomy, morphophysiology, and molecular networks to survive under changing environmental conditions. Heavy metal sequestration is one of the essential processes evolved by some plants to deal with heavy metals' toxic concentration. Some plants even have the ability to accumulate metals in high quantities in the shoots/organelles without toxic effects. For intercellular and interorganeller metal transport, plants harbor spatially distributed various transporters which mainly help in uptake, translocation, and redistribution of metals. This review discusses different heavy metal transporters in different organelles and their roles in metal sequestration and redistribution to help plants cope with heavy metal stress. A good understanding of the processes at stake helps in developing more tolerant crops without affecting their productivity.
Collapse
Affiliation(s)
| | - Bindu Yadav
- School of Environmental Sciences, Jawaharlal Nehru University, New Delhi, India
| | | |
Collapse
|