1
|
Alvim FALS, Alvim JC, Hibberd JM, Harvey AR, Blatt MR. A C4 plant K+ channel accelerates stomata to enhance C3 photosynthesis and water use efficiency. PLANT PHYSIOLOGY 2025; 197:kiaf039. [PMID: 39854630 PMCID: PMC11837344 DOI: 10.1093/plphys/kiaf039] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/16/2024] [Revised: 11/18/2024] [Accepted: 12/23/2024] [Indexed: 01/26/2025]
Abstract
Accelerating stomatal kinetics through synthetic optogenetics and mutations that enhance guard cell K+ flux has proven a viable strategy to improve water use efficiency and biomass production. Stomata of the model C4 species Gynandropsis gynandra, a relative of the C3 plant Arabidopsis thaliana, are similarly fast to open and close. We identified and cloned the guard cell rectifying outward K+ channel (GROK) of Gynandropsis and showed that GROK is preferentially expressed in stomatal guard cells. GROK is homologous to the Arabidopsis guard cell K+ channel GORK and, expressed in oocytes, yields a K+ current consistent with that of Gynandropsis guard cells. Complementing the Arabidopsis gork mutant with GROK promoted K+ channel gating and K+ flux, increasing stomatal kinetics and yielding gains in water use efficiency and biomass with varying light, especially under water limitation. Our findings demonstrate the potential for engineering a C4 K+ channel into guard cells of a C3 species, and they speak to the puzzle of how C4 species have evolved mechanisms that enhance water use efficiency and growth under stress.
Collapse
Affiliation(s)
- Fernanda A L S Alvim
- Laboratory of Plant Physiology and Biophysics, Bower Building, University of Glasgow, Glasgow G12 8QQ, UK
| | - Jonas Chaves Alvim
- Laboratory of Plant Physiology and Biophysics, Bower Building, University of Glasgow, Glasgow G12 8QQ, UK
| | - Julian M Hibberd
- Department of Plant Sciences, University of Cambridge, Downing Street, Cambridge CB2 3EA, UK
| | - Andrew R Harvey
- Physics & Astronomy, Kelvin Building, University of Glasgow, Glasgow G12 8QQ, UK
| | - Michael R Blatt
- Laboratory of Plant Physiology and Biophysics, Bower Building, University of Glasgow, Glasgow G12 8QQ, UK
| |
Collapse
|
2
|
Xu X, Liu H, Praat M, Pizzio GA, Jiang Z, Driever SM, Wang R, Van De Cotte B, Villers SLY, Gevaert K, Leonhardt N, Nelissen H, Kinoshita T, Vanneste S, Rodriguez PL, van Zanten M, Vu LD, De Smet I. Stomatal opening under high temperatures is controlled by the OST1-regulated TOT3-AHA1 module. NATURE PLANTS 2025; 11:105-117. [PMID: 39613896 DOI: 10.1038/s41477-024-01859-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/05/2023] [Accepted: 10/25/2024] [Indexed: 12/01/2024]
Abstract
Plants continuously respond to changing environmental conditions to prevent damage and maintain optimal performance. To regulate gas exchange with the environment and to control abiotic stress relief, plants have pores in their leaf epidermis, called stomata. Multiple environmental signals affect the opening and closing of these stomata. High temperatures promote stomatal opening (to cool down), and drought induces stomatal closing (to prevent water loss). Coinciding stress conditions may evoke conflicting stomatal responses, but the cellular mechanisms to resolve these conflicts are unknown. Here we demonstrate that the high-temperature-associated kinase TARGET OF TEMPERATURE 3 directly controls the activity of plasma membrane H+-ATPases to induce stomatal opening. OPEN STOMATA 1, which regulates stomatal closure to prevent water loss during drought stress, directly inactivates TARGET OF TEMPERATURE 3 through phosphorylation. Taken together, this signalling axis harmonizes stomatal opening and closing under high temperatures and/or drought. In the context of global climate change, understanding how different stress signals converge on stomatal regulation allows the development of climate-change-ready crops.
Collapse
Affiliation(s)
- Xiangyu Xu
- Department of Plant Biotechnology and Bioinformatics, Ghent University, Ghent, Belgium
- VIB Center for Plant Systems Biology, Ghent, Belgium
- Department of Plant and Microbial Biology, University of California at Berkeley, Berkeley, CA, USA
| | - Hongyan Liu
- Department of Plant Biotechnology and Bioinformatics, Ghent University, Ghent, Belgium
- VIB Center for Plant Systems Biology, Ghent, Belgium
| | - Myrthe Praat
- Plant Stress Resilience, Institute of Environmental Biology, Utrecht University, Utrecht, the Netherlands
- Green Biotechnology, Inholland University of Applied Sciences, Amsterdam, the Netherlands
| | - Gaston A Pizzio
- Instituto de Biología Molecular y Celular de Plantas, Consejo Superior de Investigaciones Científicas-Universidad Politécnica de Valencia, Valencia, Spain
| | - Zhang Jiang
- Plant Stress Resilience, Institute of Environmental Biology, Utrecht University, Utrecht, the Netherlands
| | - Steven Michiel Driever
- Centre for Crop Systems Analysis, Wageningen University and Research, Wageningen, the Netherlands
| | - Ren Wang
- Department of Plant Biotechnology and Bioinformatics, Ghent University, Ghent, Belgium
- VIB Center for Plant Systems Biology, Ghent, Belgium
| | - Brigitte Van De Cotte
- Department of Plant Biotechnology and Bioinformatics, Ghent University, Ghent, Belgium
- VIB Center for Plant Systems Biology, Ghent, Belgium
| | - Selwyn L Y Villers
- Department of Plant Biotechnology and Bioinformatics, Ghent University, Ghent, Belgium
- VIB Center for Plant Systems Biology, Ghent, Belgium
| | - Kris Gevaert
- Department of Biomolecular Medicine, Ghent University, Ghent, Belgium
- VIB Center for Medical Biotechnology, Ghent, Belgium
| | - Nathalie Leonhardt
- Aix Marseille University, CEA, CNRS UMR7265, Bioscience and Biotechnology Institute of Aix Marseille, Saint-Paul-lez-Durance, France
| | - Hilde Nelissen
- Department of Plant Biotechnology and Bioinformatics, Ghent University, Ghent, Belgium
- VIB Center for Plant Systems Biology, Ghent, Belgium
| | - Toshinori Kinoshita
- Institute of Transformative Bio-Molecules (WPI-ITbM), Nagoya University, Chikusa Nagoya, Japan
| | - Steffen Vanneste
- Department of Plant Biotechnology and Bioinformatics, Ghent University, Ghent, Belgium
- VIB Center for Plant Systems Biology, Ghent, Belgium
- Department of Plants and Crops, Faculty of Bioscience Engineering, Ghent University, Ghent, Belgium
| | - Pedro L Rodriguez
- Instituto de Biología Molecular y Celular de Plantas, Consejo Superior de Investigaciones Científicas-Universidad Politécnica de Valencia, Valencia, Spain
| | - Martijn van Zanten
- Plant Stress Resilience, Institute of Environmental Biology, Utrecht University, Utrecht, the Netherlands
| | - Lam Dai Vu
- Department of Plant Biotechnology and Bioinformatics, Ghent University, Ghent, Belgium
- VIB Center for Plant Systems Biology, Ghent, Belgium
- Department of Biomolecular Medicine, Ghent University, Ghent, Belgium
- VIB Center for Medical Biotechnology, Ghent, Belgium
- Cryptobiotix SA, Ghent, Belgium
| | - Ive De Smet
- Department of Plant Biotechnology and Bioinformatics, Ghent University, Ghent, Belgium.
- VIB Center for Plant Systems Biology, Ghent, Belgium.
| |
Collapse
|
3
|
Sprent N, Cheung CYM, Shameer S, Ratcliffe RG, Sweetlove LJ, Töpfer N. Metabolic modeling reveals distinct roles of sugars and carboxylic acids in stomatal opening as well as unexpected carbon fluxes. THE PLANT CELL 2024; 37:koae252. [PMID: 39373603 DOI: 10.1093/plcell/koae252] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/28/2024] [Revised: 06/28/2024] [Accepted: 08/12/2024] [Indexed: 10/08/2024]
Abstract
Guard cell metabolism is crucial for stomatal dynamics, but a full understanding of its role is hampered by experimental limitations and the flexible nature of the metabolic network. To tackle this challenge, we constructed a time-resolved stoichiometric model of guard cell metabolism that accounts for energy and osmolyte requirements and which is integrated with the mesophyll. The model resolved distinct roles for starch, sugars, and malate in guard cell metabolism and revealed several unexpected flux patterns in central metabolism. During blue light-mediated stomatal opening, starch breakdown was the most efficient way to generate osmolytes with downregulation of glycolysis allowing starch-derived glucose to accumulate as a cytosolic osmolyte. Maltose could also accumulate as a cytosolic osmoticum, although this made the metabolic system marginally less efficient. The metabolic energy for stomatal opening was predicted to be derived independently of starch, using nocturnally accumulated citrate which was metabolized in the tricarboxylic acid cycle to malate to provide mitochondrial reducing power for ATP synthesis. In white light-mediated stomatal opening, malate transferred reducing equivalents from guard cell photosynthesis to mitochondria for ATP production. Depending on the capacity for guard cell photosynthesis, glycolysis showed little flux during the day but was crucial for energy metabolism at night. In summary, our analyses have corroborated recent findings in Arabidopsis guard cell research, resolved conflicting observations by highlighting the flexibility of guard cell metabolism, and proposed new metabolic flux modes for further experimental testing.
Collapse
Affiliation(s)
- Noah Sprent
- Department of Chemical Engineering, Imperial College London, South Kensington Campus, Exhibition Road, London SW7 2AZ, UK
| | - C Y Maurice Cheung
- Institute for Plant Sciences, University of Cologne, Zülpicher Str. 47b, 50674 Cologne, Germany
| | - Sanu Shameer
- School of Biology, Indian Institute of Science Education and Research Thiruvananthapuram, Maruthamala PO, Vithura, Thiruvananthapuram 695551, Kerala, India
| | - R George Ratcliffe
- Department of Biology, University of Oxford, South Parks Road, Oxford OX1 3RB, UK
| | - Lee J Sweetlove
- Department of Biology, University of Oxford, South Parks Road, Oxford OX1 3RB, UK
| | - Nadine Töpfer
- Institute for Plant Sciences, University of Cologne, Zülpicher Str. 47b, 50674 Cologne, Germany
| |
Collapse
|
4
|
Kang M, Liu Y, Weng Y, Wang H, Huang Y, Bai X. Trade-off strategies for driving the toxicity and metabolic remodeling of copper oxide nanoparticles and copper ions in Ipomoea aquatica. JOURNAL OF HAZARDOUS MATERIALS 2024; 480:136342. [PMID: 39488971 DOI: 10.1016/j.jhazmat.2024.136342] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/02/2024] [Revised: 10/24/2024] [Accepted: 10/27/2024] [Indexed: 11/05/2024]
Abstract
The ecological safety of copper oxide nanoparticles (CuO NPs) in the environment determines the advancement of nano-agriculture owing to breakthroughs in nanotechnology; however, the release of Cu2+ is an uncontrollable factor. Currently, the trade-off mechanisms of CuO NPs and Cu2+ dominating the potential hazards of plant-nano systems remain unclear. This study proposed the trade-off strategy for reconstructing physiological responses and metabolic profiles and deciphered the differential regulation of dominant CuO NPs and Cu2+ in plants. The results showed that 100 and 500 mg/kg CuO NPs promoted root fresh weight but reduced shoot fresh weight, while 1000 mg/kg Cu2+ demonstrated the strongest inhibition on both roots and shoots. The net photosynthetic perturbation in photosynthetic disorders is accompanied by superoxide anion and hydrogen peroxide accumulation, which are severe under 1000 mg/kg CuO NPs and Cu2+ stress. Metabolomics revealed that CuO NPs significantly altered coumaric acid and derivatives, for example, down-regulating coumaroyl hexoside (isomers of 690 and 691) by 40.79 %. Additionally, Cu2+ treatment severely interfered with the dominant metabolic response, activating plant hormone signal transduction and α-linolenic acid metabolism. The trade-off strategies of galactose metabolism, amino sugar and nucleotide sugar metabolism, pantothenate and coenzyme A (CoA) biosynthesis, and β-alanine metabolism as differential metabolism were confirmed by comparing the CuO NPs and Cu2+ exposure. Protein secondary structure analysis revealed specific regulation of protein conformation upon exposure to CuO NPs and Cu2+. These findings provide new insights into differential metabolism and environmental effects in plant-nano systems.
Collapse
Affiliation(s)
- Mengen Kang
- Key Laboratory of Integrated Regulation and Resource Development on Shallow Lake of Ministry of Education, College of Environment, Hohai University, Nanjing 210098, China
| | - Yi Liu
- Key Laboratory of Integrated Regulation and Resource Development on Shallow Lake of Ministry of Education, College of Environment, Hohai University, Nanjing 210098, China
| | - Yuzhu Weng
- Key Laboratory of Integrated Regulation and Resource Development on Shallow Lake of Ministry of Education, College of Environment, Hohai University, Nanjing 210098, China
| | - Haoke Wang
- Key Laboratory of Integrated Regulation and Resource Development on Shallow Lake of Ministry of Education, College of Environment, Hohai University, Nanjing 210098, China
| | - Yue Huang
- Key Laboratory of Integrated Regulation and Resource Development on Shallow Lake of Ministry of Education, College of Environment, Hohai University, Nanjing 210098, China
| | - Xue Bai
- Key Laboratory of Integrated Regulation and Resource Development on Shallow Lake of Ministry of Education, College of Environment, Hohai University, Nanjing 210098, China; Yangtze Institute for Conservation and Development, Hohai University, Nanjing 210098, China.
| |
Collapse
|
5
|
Lefoulon C, Blatt MR. Guard cell K+ channels of Kalanchoë follow the diel cycle of crassulacean acid metabolism. PLANT PHYSIOLOGY 2024; 196:2300-2303. [PMID: 39324632 PMCID: PMC11638099 DOI: 10.1093/plphys/kiae506] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/19/2024] [Revised: 09/05/2024] [Accepted: 09/05/2024] [Indexed: 09/27/2024]
Abstract
The activity of outward-rectifying but not inward-rectifying K + channels of Kalanchoë stomata follows the diel cycle of crassulacean acid metabolism.
Collapse
Affiliation(s)
- Cécile Lefoulon
- Laboratory of Plant Physiology and Biophysics, University of Glasgow, Bower Building, Glasgow G12 8QQ, UK
| | - Michael R Blatt
- Laboratory of Plant Physiology and Biophysics, University of Glasgow, Bower Building, Glasgow G12 8QQ, UK
| |
Collapse
|
6
|
Jiang H, Su J, Ren Z, Wang D, Hills A, Kinoshita T, Blatt MR, Wang Y, Wang Y. Dual function of overexpressing plasma membrane H +-ATPase in balancing carbon-water use. SCIENCE ADVANCES 2024; 10:eadp8017. [PMID: 39514663 PMCID: PMC11546806 DOI: 10.1126/sciadv.adp8017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/15/2024] [Accepted: 10/04/2024] [Indexed: 11/16/2024]
Abstract
Stomata respond slowly to changes in light when compared with photosynthesis, undermining plant water-use efficiency (WUE). We know much about stomatal mechanics, yet efforts to accelerate stomatal responsiveness have been limited despite the breadth of potential targets for manipulation. Here, we use mechanistic modeling to establish a hierarchy of putative targets affecting stomatal kinetics. Counterintuitively, modeling predicted that overexpressing plasma membrane H+-ATPases could speed stomata and enhance WUE under fluctuating light, even though overexpressed H+-ATPases is known to promote stomatal opening and reduce WUE in the steady state. Experiments validated the prediction, implicating an unexpected role of the H+-ATPases in improving WUE under fluctuating light. It suggests that H+-ATPases have a dual function, acting as a facilitator of carbon assimilation and water use, depending on the light conditions. These findings highlight the importance of integrating in silico modeling with experiments in future efforts toward enhancing stomatal function.
Collapse
Affiliation(s)
- Hangjin Jiang
- Institute of Crop Science, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou 310058, China
- Center for Data Science, Zhejiang University, Hangzhou 310058, China
| | - Jinghan Su
- Institute of Crop Science, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou 310058, China
| | - Zirong Ren
- College of Urban and Environmental Sciences, Peking University, Beijing 100871, China
| | - Dexian Wang
- College of Urban and Environmental Sciences, Peking University, Beijing 100871, China
| | - Adrian Hills
- Laboratory of Plant Physiology and Biophysics, University of Glasgow, Bower Building, Glasgow G12 8QQ, UK
| | - Toshinori Kinoshita
- Institute of Transformative Bio-Molecules (WPI-ITbM), Nagoya University, Chikusa, Nagoya, 464-8602, Japan
| | - Michael R. Blatt
- Laboratory of Plant Physiology and Biophysics, University of Glasgow, Bower Building, Glasgow G12 8QQ, UK
| | - Yin Wang
- College of Urban and Environmental Sciences, Peking University, Beijing 100871, China
| | - Yizhou Wang
- Institute of Crop Science, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou 310058, China
- Zhejiang Provincial Key Laboratory of Crop Germplasm Innovation and Utilization, Zhejiang University, Hangzhou 310058, China
- Key Lab of Plant Factory for Generation-adding Breeding of Ministry of Agriculture, Zhejiang University, Hangzhou 310058, China
| |
Collapse
|
7
|
Nguyen TH, Blatt MR. Surrounded by luxury: The necessities of subsidiary cells. PLANT, CELL & ENVIRONMENT 2024; 47:3316-3329. [PMID: 38436128 DOI: 10.1111/pce.14872] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/01/2023] [Revised: 02/12/2024] [Accepted: 02/20/2024] [Indexed: 03/05/2024]
Abstract
The evolution of stomata marks one of the key advances that enabled plants to colonise dry land while allowing gas exchange for photosynthesis. In large measure, stomata retain a common design across species that incorporates paired guard cells with little variation in structure. By contrast, the cells of the stomatal complex immediately surrounding the guard cells vary widely in shape, size and count. Their origins in development are similarly diverse. Thus, the surrounding cells are likely a luxury that the necessity of stomatal control cannot do without (with apologies to Oscar Wilde). Surrounding cells are thought to support stomatal movements as solute reservoirs and to shape stomatal kinetics through backpressure on the guard cells. Their variety may also reflect a substantial diversity in function. Certainly modelling, kinetic analysis and the few electrophysiological studies to date give hints of much more complex contributions in stomatal physiology. Even so, our knowledge of the cells surrounding the guard cells in the stomatal complex is far from complete.
Collapse
Affiliation(s)
- Thanh-Hao Nguyen
- Laboratory of Plant Physiology and Biophysics, School of Molecular Biosciences, Bower Building, University of Glasgow, Glasgow, UK
| | - Michael R Blatt
- Laboratory of Plant Physiology and Biophysics, School of Molecular Biosciences, Bower Building, University of Glasgow, Glasgow, UK
| |
Collapse
|
8
|
Su J, He B, Li P, Yu B, Cen Q, Xia L, Jing Y, Wu F, Karnik R, Xue D, Blatt MR, Wang Y. Overexpression of tonoplast Ca 2+-ATPase in guard cells synergistically enhances stomatal opening and drought tolerance. JOURNAL OF INTEGRATIVE PLANT BIOLOGY 2024; 66:1587-1602. [PMID: 38923303 DOI: 10.1111/jipb.13721] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/04/2024] [Revised: 05/25/2024] [Accepted: 05/27/2024] [Indexed: 06/28/2024]
Abstract
Stomata play a crucial role in plants by controlling water status and responding to drought stress. However, simultaneously improving stomatal opening and drought tolerance has proven to be a significant challenge. To address this issue, we employed the OnGuard quantitative model, which accurately represents the mechanics and coordination of ion transporters in guard cells. With the guidance of OnGuard, we successfully engineered plants that overexpressed the main tonoplast Ca2+-ATPase gene, ACA11, which promotes stomatal opening and enhances plant growth. Surprisingly, these transgenic plants also exhibited improved drought tolerance due to reduced water loss through their stomata. Again, OnGuard assisted us in understanding the mechanism behind the unexpected stomatal behaviors observed in the ACA11 overexpressing plants. Our study revealed that the overexpression of ACA11 facilitated the accumulation of Ca2+ in the vacuole, thereby influencing Ca2+ storage and leading to an enhanced Ca2+ elevation in response to abscisic acid. This regulatory cascade finely tunes stomatal responses, ultimately leading to enhanced drought tolerance. Our findings underscore the importance of tonoplast Ca2+-ATPase in manipulating stomatal behavior and improving drought tolerance. Furthermore, these results highlight the diverse functions of tonoplast-localized ACA11 in response to different conditions, emphasizing its potential for future applications in plant enhancement.
Collapse
Affiliation(s)
- Jinghan Su
- Institute of Crop Science, Zhejiang University, Hangzhou, 310058, China
| | - Bingqing He
- Institute of Crop Science, Zhejiang University, Hangzhou, 310058, China
| | - Peiyuan Li
- Institute of Crop Science, Zhejiang University, Hangzhou, 310058, China
| | - Baiyang Yu
- Institute of Crop Science, Zhejiang University, Hangzhou, 310058, China
| | - Qiwen Cen
- Institute of Crop Science, Zhejiang University, Hangzhou, 310058, China
| | - Lingfeng Xia
- Laboratory of Plant Physiology and Biophysics, University of Glasgow, Glasgow, G12 8QQ, UK
| | - Yi Jing
- BGI Research, Sanya, 572025, China
| | - Feibo Wu
- Institute of Crop Science, Zhejiang University, Hangzhou, 310058, China
| | - Rucha Karnik
- Laboratory of Plant Physiology and Biophysics, University of Glasgow, Glasgow, G12 8QQ, UK
| | - Dawei Xue
- College of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou, 311121, China
| | - Michael R Blatt
- Laboratory of Plant Physiology and Biophysics, University of Glasgow, Glasgow, G12 8QQ, UK
| | - Yizhou Wang
- Institute of Crop Science, Zhejiang University, Hangzhou, 310058, China
- Zhejiang Provincial Key Laboratory of Crop Germplasm, Zhejiang University, Hangzhou, 310058, China
| |
Collapse
|
9
|
Blatt MR. A charged existence: A century of transmembrane ion transport in plants. PLANT PHYSIOLOGY 2024; 195:79-110. [PMID: 38163639 PMCID: PMC11060664 DOI: 10.1093/plphys/kiad630] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/27/2023] [Accepted: 11/01/2023] [Indexed: 01/03/2024]
Abstract
If the past century marked the birth of membrane transport as a focus for research in plants, the past 50 years has seen the field mature from arcane interest to a central pillar of plant physiology. Ion transport across plant membranes accounts for roughly 30% of the metabolic energy consumed by a plant cell, and it underpins virtually every aspect of plant biology, from mineral nutrition, cell expansion, and development to auxin polarity, fertilization, plant pathogen defense, and senescence. The means to quantify ion flux through individual transporters, even single channel proteins, became widely available as voltage clamp methods expanded from giant algal cells to the fungus Neurospora crassa in the 1970s and the cells of angiosperms in the 1980s. Here, I touch briefly on some key aspects of the development of modern electrophysiology with a focus on the guard cells of stomata, now without dispute the premier plant cell model for ion transport and its regulation. Guard cells have proven to be a crucible for many technical and conceptual developments that have since emerged into the mainstream of plant science. Their study continues to provide fundamental insights and carries much importance for the global challenges that face us today.
Collapse
Affiliation(s)
- Michael R Blatt
- Laboratory of Plant Physiology and Biophysics, University of Glasgow, Bower Building, Glasgow G12 8QQ, UK
| |
Collapse
|
10
|
Peláez-Vico MÁ, Zandalinas SI, Devireddy AR, Sinha R, Mittler R. Systemic stomatal responses in plants: Coordinating development, stress, and pathogen defense under a changing climate. PLANT, CELL & ENVIRONMENT 2024; 47:1171-1184. [PMID: 38164061 DOI: 10.1111/pce.14797] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/21/2023] [Revised: 11/30/2023] [Accepted: 12/15/2023] [Indexed: 01/03/2024]
Abstract
To successfully survive, develop, grow and reproduce, multicellular organisms must coordinate their molecular, physiological, developmental and metabolic responses among their different cells and tissues. This process is mediated by cell-to-cell, vascular and/or volatile communication, and involves electric, chemical and/or hydraulic signals. Within this context, stomata serve a dual role by coordinating their responses to the environment with their neighbouring cells at the epidermis, but also with other stomata present on other parts of the plant. As stomata represent one of the most important conduits between the plant and its above-ground environment, as well as directly affect photosynthesis, respiration and the hydraulic status of the plant by controlling its gas and vapour exchange with the atmosphere, coordinating the overall response of stomata within and between different leaves and tissues plays a cardinal role in plant growth, development and reproduction. Here, we discuss different examples of local and systemic stomatal coordination, the different signalling pathways that mediate them, and the importance of systemic stomatal coordination to our food supply, ecosystems and weather patterns, under our changing climate. We further discuss the potential biotechnological implications of regulating systemic stomatal responses for enhancing agricultural productivity in a warmer and CO2 -rich environment.
Collapse
Affiliation(s)
- María Ángeles Peláez-Vico
- Division of Plant Sciences and Technology, College of Agriculture Food and Natural Resources and Interdisciplinary Plant Group, University of Missouri, Columbia, Missouri, USA
| | - Sara I Zandalinas
- Department of Biology, Biochemistry and Environmental Sciences, University Jaume I, Castelló de la Plana, Spain
| | - Amith R Devireddy
- Center for Bioenergy Innovation and Biosciences Division, Oak Ridge National Laboratory, Oak Ridge, Tennessee, USA
| | - Ranjita Sinha
- Division of Plant Sciences and Technology, College of Agriculture Food and Natural Resources and Interdisciplinary Plant Group, University of Missouri, Columbia, Missouri, USA
| | - Ron Mittler
- Division of Plant Sciences and Technology, College of Agriculture Food and Natural Resources and Interdisciplinary Plant Group, University of Missouri, Columbia, Missouri, USA
| |
Collapse
|
11
|
Lemonnier P, Lawson T. Calvin cycle and guard cell metabolism impact stomatal function. Semin Cell Dev Biol 2024; 155:59-70. [PMID: 36894379 DOI: 10.1016/j.semcdb.2023.03.001] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2022] [Revised: 03/01/2023] [Accepted: 03/01/2023] [Indexed: 03/09/2023]
Abstract
Stomatal conductance (gs) determines CO2 uptake for photosynthesis (A) and water loss through transpiration, which is essential for evaporative cooling and maintenance of optimal leaf temperature as well as nutrient uptake. Stomata adjust their aperture to maintain an appropriate balance between CO2 uptake and water loss and are therefore critical to overall plant water status and productivity. Although there is considerable knowledge regarding guard cell (GC) osmoregulation (which drives differences in GC volume and therefore stomatal opening and closing), as well as the various signal transduction pathways that enable GCs to sense and respond to different environmental stimuli, little is known about the signals that coordinate mesophyll demands for CO2. Furthermore, chloroplasts are a key feature in GCs of many species, however, their role in stomatal function is unclear and a subject of debate. In this review we explore the current evidence regarding the role of these organelles in stomatal behaviour, including GC electron transport and Calvin-Benson-Bassham (CBB) cycle activity as well as their possible involvement correlating gs and A along with other potential mesophyll signals. We also examine the roles of other GC metabolic processes in stomatal function.
Collapse
Affiliation(s)
- P Lemonnier
- School of Life Sciences, University of Essex, Wivenhoe Park, Colchester CO4 3SQ, UK
| | - T Lawson
- School of Life Sciences, University of Essex, Wivenhoe Park, Colchester CO4 3SQ, UK.
| |
Collapse
|
12
|
Silva‐Alvim FAL, Alvim JC, Harvey A, Blatt MR. Speedy stomata of a C 4 plant correlate with enhanced K + channel gating. PLANT, CELL & ENVIRONMENT 2024; 47:817-831. [PMID: 38013592 PMCID: PMC10953386 DOI: 10.1111/pce.14775] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/04/2023] [Revised: 11/08/2023] [Accepted: 11/15/2023] [Indexed: 11/29/2023]
Abstract
Stomata are microscopic pores at the surface of plant leaves that facilitate gaseous diffusion to support photosynthesis. The guard cells around each stoma regulate the pore aperture. Plants that carry out C4 photosynthesis are usually more resilient than C3 plants to stress, and their stomata operate over a lower dynamic range of CO2 within the leaf. What makes guard cells of C4 plants more responsive than those of C3 plants? We used gas exchange and electrophysiology, comparing stomatal kinetics of the C4 plant Gynandropsis gynandra and the phylogenetically related C3 plant Arabidopsis thaliana. We found, with varying CO2 and light, that Gynandropsis showed faster changes in stomata conductance and greater water use efficiency when compared with Arabidopsis. Electrophysiological analysis of the dominant K+ channels showed that the outward-rectifying channels, responsible for K+ loss during stomatal closing, were characterised by a greater maximum conductance and substantial negative shift in the voltage dependence of gating, indicating a reduced inhibition by extracellular K+ and enhanced capacity for K+ flux. These differences correlated with the accelerated stomata kinetics of Gynandropsis, suggesting that subtle changes in the biophysical properties of a key transporter may prove a target for future efforts to engineer C4 stomatal kinetics.
Collapse
Affiliation(s)
| | - Jonas Chaves Alvim
- Laboratory of Plant Physiology and Biophysics, Bower BuildingUniversity of GlasgowGlasgowUK
| | - Andy Harvey
- Physics & AstronomyUniversity of GlasgowGlasgowUK
| | - Michael R. Blatt
- Laboratory of Plant Physiology and Biophysics, Bower BuildingUniversity of GlasgowGlasgowUK
| |
Collapse
|
13
|
Huang X, Luo G, Ma Z, Yao B, Du Y, Yang Y. Modeling the effect of grazing on carbon and water use efficiencies in grasslands on the Qinghai-Tibet Plateau. BMC Ecol Evol 2024; 24:26. [PMID: 38408884 PMCID: PMC10898080 DOI: 10.1186/s12862-024-02215-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2023] [Accepted: 02/12/2024] [Indexed: 02/28/2024] Open
Abstract
BACKGROUND Carbon and water use efficiencies (CUE and WUE, respectively) are vital indicators of the adaptability of plants to environmental conditions. However, the effects of grazing and climate change on the spatiotemporal changes in CUE and WUE in Qinghai-Tibet Plateau grasslands (QTPG) are still unclear. RESULTS Using the enhanced Biome-BGCMuSo model in combination with observed data, we estimated and analyzed the spatiotemporal variations in CUE and WUE and their responses to grazing in QTPG from 1979 to 2018. The mean annual CUE was 0.7066 in QTPG from 1979 to 2018 under the actual climate scenario. In general, the grassland CUE was low in the southeast and high in the northwest. Grazing generally decreased CUE in QTPG from 1979 to 2018, and there was an increasing trend in the difference in CUE between the grazing and nongrazing scenarios. The difference in CUE was generally greater in the northwest than in the southeast. The mean annual WUE was 0.5591 g C/kg H2O in QTPG from 1979 to 2018 under the actual climate scenario. After 2000, the grassland WUE exhibited a fluctuating upward trend. In general, the grassland WUE was greater in the southeast than in the northwest. Grazing generally decreased WUE in QTPG from 1979 to 2018, and there was an increasing trend in the difference in WUE between the grazing and nongrazing scenarios. The difference in WUE was generally greater in the northwest than in the southeast. CONCLUSIONS The findings of this study suggested that the spatiotemporal changes in CUE and WUE in QTPG were closely related to changes in the natural environment and grazing management.
Collapse
Affiliation(s)
- Xiaotao Huang
- School of Geographical Sciences and Tourism, Zhaotong University, 657000, Zhaotong, Yunnan, China
| | - Geping Luo
- State Key Laboratory of Desert and Oasis Ecology, Xinjiang Institute of Ecology and Geography, Chinese Academy of Sciences, 830011, Urumqi, Xinjiang, China.
| | - Zhen Ma
- Key Laboratory of Restoration Ecology for Cold Regions Laboratory in Qinghai, Northwest Institute of Plateau Biology, Chinese Academy of Sciences, 810008, Xining, Qinghai, China
| | - Buqing Yao
- Key Laboratory of Restoration Ecology for Cold Regions Laboratory in Qinghai, Northwest Institute of Plateau Biology, Chinese Academy of Sciences, 810008, Xining, Qinghai, China.
| | - Yangong Du
- Key Laboratory of Restoration Ecology for Cold Regions Laboratory in Qinghai, Northwest Institute of Plateau Biology, Chinese Academy of Sciences, 810008, Xining, Qinghai, China
| | - Yongsheng Yang
- Key Laboratory of Restoration Ecology for Cold Regions Laboratory in Qinghai, Northwest Institute of Plateau Biology, Chinese Academy of Sciences, 810008, Xining, Qinghai, China
| |
Collapse
|
14
|
Nguyen T, Silva‐Alvim FAL, Hills A, Blatt MR. OnGuard3e: A predictive, ecophysiology-ready tool for gas exchange and photosynthesis research. PLANT, CELL & ENVIRONMENT 2023; 46:3644-3658. [PMID: 37498151 PMCID: PMC10946835 DOI: 10.1111/pce.14674] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/14/2023] [Revised: 06/20/2023] [Accepted: 07/17/2023] [Indexed: 07/28/2023]
Abstract
Gas exchange across the stomatal pores of leaves is a focal point in studies of plant-environmental relations. Stomata regulate atmospheric exchange with the inner air spaces of the leaf. They open to allow CO2 entry for photosynthesis and close to minimize water loss. Models that focus on the phenomenology of stomatal conductance generally omit the mechanics of the guard cells that regulate the pore aperture. The OnGuard platform fills this gap and offers a truly mechanistic approach with which to analyse stomatal gas exchange, whole-plant carbon assimilation and water-use efficiency. Previously, OnGuard required specialist knowledge of membrane transport, signalling and metabolism. Here we introduce OnGuard3e, a software package accessible to ecophysiologists and membrane biologists alike. We provide a brief guide to its use and illustrate how the package can be applied to explore and analyse stomatal conductance, assimilation and water use efficiencies, addressing a range of experimental questions with truly predictive outputs.
Collapse
Affiliation(s)
- Thanh‐Hao Nguyen
- Laboratory of Plant Physiology and BiophysicsUniversity of GlasgowGlasgowUK
| | | | - Adrian Hills
- Laboratory of Plant Physiology and BiophysicsUniversity of GlasgowGlasgowUK
| | - Michael R. Blatt
- Laboratory of Plant Physiology and BiophysicsUniversity of GlasgowGlasgowUK
| |
Collapse
|
15
|
Nguyen TBA, Lefoulon C, Nguyen TH, Blatt MR, Carroll W. Engineering stomata for enhanced carbon capture and water-use efficiency. TRENDS IN PLANT SCIENCE 2023; 28:1290-1309. [PMID: 37423785 DOI: 10.1016/j.tplants.2023.06.002] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/13/2023] [Revised: 05/29/2023] [Accepted: 06/02/2023] [Indexed: 07/11/2023]
Abstract
Stomatal pores facilitate gaseous exchange between the inner air spaces of the leaf and the atmosphere. As gatekeepers that balance CO2 entry for photosynthesis against transpirational water loss, they are a focal point for efforts to improve crop performance, especially in the efficiency of water use, within the changing global environment. Until recently, engineering strategies had focused on stomatal conductance in the steady state. These strategies are limited by the physical constraints of CO2 and water exchange such that gains in water-use efficiency (WUE) commonly come at a cost in carbon assimilation. Attention to stomatal speed and responsiveness circumvents these constraints and offers alternatives to enhancing WUE that also promise increases in carbon assimilation in the field.
Collapse
Affiliation(s)
- Thu Binh-Anh Nguyen
- Laboratory of Plant Physiology and Biophysics, Bower Building, University of Glasgow, Glasgow, G12 8QQ, UK
| | - Cecile Lefoulon
- Laboratory of Plant Physiology and Biophysics, Bower Building, University of Glasgow, Glasgow, G12 8QQ, UK
| | - Thanh-Hao Nguyen
- Laboratory of Plant Physiology and Biophysics, Bower Building, University of Glasgow, Glasgow, G12 8QQ, UK
| | - Michael R Blatt
- Laboratory of Plant Physiology and Biophysics, Bower Building, University of Glasgow, Glasgow, G12 8QQ, UK.
| | - William Carroll
- Laboratory of Plant Physiology and Biophysics, Bower Building, University of Glasgow, Glasgow, G12 8QQ, UK
| |
Collapse
|
16
|
Vadez V, Pilloni R, Grondin A, Hajjarpoor A, Belhouchette H, Brouziyne Y, Chehbouni G, Kharrou MH, Zitouna-Chebbi R, Mekki I, Molénat J, Jacob F, Bossuet J. Water use efficiency across scales: from genes to landscapes. JOURNAL OF EXPERIMENTAL BOTANY 2023; 74:4770-4788. [PMID: 36779607 PMCID: PMC10474597 DOI: 10.1093/jxb/erad052] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/17/2022] [Accepted: 02/10/2023] [Indexed: 06/18/2023]
Abstract
Water scarcity is already set to be one of the main issues of the 21st century, because of competing needs between civil, industrial, and agricultural use. Agriculture is currently the largest user of water, but its share is bound to decrease as societies develop and clearly it needs to become more water efficient. Improving water use efficiency (WUE) at the plant level is important, but translating this at the farm/landscape level presents considerable challenges. As we move up from the scale of cells, organs, and plants to more integrated scales such as plots, fields, farm systems, and landscapes, other factors such as trade-offs need to be considered to try to improve WUE. These include choices of crop variety/species, farm management practices, landscape design, infrastructure development, and ecosystem functions, where human decisions matter. This review is a cross-disciplinary attempt to analyse approaches to addressing WUE at these different scales, including definitions of the metrics of analysis and consideration of trade-offs. The equations we present in this perspectives paper use similar metrics across scales to make them easier to connect and are developed to highlight which levers, at different scales, can improve WUE. We also refer to models operating at these different scales to assess WUE. While our entry point is plants and crops, we scale up the analysis of WUE to farm systems and landscapes.
Collapse
Affiliation(s)
- Vincent Vadez
- French National Research Institute for Sustainable Development (IRD), UMR DIADE, University of Montpellier, 911 Av. Agropolis BP65401, 34394, Montpellier, France
- International Crops Research Institute for the Semi-Arid Tropics (ICRISAT), Patancheru, 502 324, Telangana, India
- LMI LAPSE, CERAAS-ISRA, Thiès, Senegal
| | - Raphael Pilloni
- French National Research Institute for Sustainable Development (IRD), UMR DIADE, University of Montpellier, 911 Av. Agropolis BP65401, 34394, Montpellier, France
| | - Alexandre Grondin
- French National Research Institute for Sustainable Development (IRD), UMR DIADE, University of Montpellier, 911 Av. Agropolis BP65401, 34394, Montpellier, France
| | - Amir Hajjarpoor
- French National Research Institute for Sustainable Development (IRD), UMR DIADE, University of Montpellier, 911 Av. Agropolis BP65401, 34394, Montpellier, France
| | - Hatem Belhouchette
- ABSys, Université de Montpellier, CIHEAM-IAMM, CIRAD, INRAE, Institut Agro, Montpellier, France
| | - Youssef Brouziyne
- International Water Management Institute (IWMI), MENA Office, Giza 12661, Egypt
| | - Ghani Chehbouni
- International Water Research Institute (IWRI), Mohammed VI Polytechnic University (UM6P) UMR CESBIO, Benguerir 43150, Morocco
| | - Mohamed Hakim Kharrou
- International Water Research Institute (IWRI), Mohammed VI Polytechnic University (UM6P) UMR CESBIO, Benguerir 43150, Morocco
| | | | - Insaf Mekki
- INRGREF, Carthage University, B.P. 10, 2080 Ariana, Tunisia
| | - Jérôme Molénat
- UMR LISAH, Université de Montpellier, INRAE, IRD, Institut Agro Montpellier, AgroParisTech, Montpellier, France
| | - Frédéric Jacob
- UMR LISAH, Université de Montpellier, INRAE, IRD, Institut Agro Montpellier, AgroParisTech, Montpellier, France
| | | |
Collapse
|
17
|
Westgeest AJ, Dauzat M, Simonneau T, Pantin F. Leaf starch metabolism sets the phase of stomatal rhythm. THE PLANT CELL 2023; 35:3444-3469. [PMID: 37260348 PMCID: PMC10473205 DOI: 10.1093/plcell/koad158] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/17/2023] [Revised: 04/25/2023] [Accepted: 05/15/2023] [Indexed: 06/02/2023]
Abstract
In leaves of C3 and C4 plants, stomata open during the day to favor CO2 entry for photosynthesis and close at night to prevent inefficient transpiration of water vapor. The circadian clock paces rhythmic stomatal movements throughout the diel (24-h) cycle. Leaf transitory starch is also thought to regulate the diel stomatal movements, yet the underlying mechanisms across time (key moments) and space (relevant leaf tissues) remain elusive. Here, we developed PhenoLeaks, a pipeline to analyze the diel dynamics of transpiration, and used it to screen a series of Arabidopsis (Arabidopsis thaliana) mutants impaired in starch metabolism. We detected a sinusoidal, endogenous rhythm of transpiration that overarches days and nights. We determined that a number of severe mutations in starch metabolism affect the endogenous rhythm through a phase shift, resulting in delayed stomatal movements throughout the daytime and diminished stomatal preopening during the night. Nevertheless, analysis of tissue-specific mutations revealed that neither guard-cell nor mesophyll-cell starch metabolisms are strictly required for normal diel patterns of transpiration. We propose that leaf starch influences the timing of transpiration rhythm through an interplay between the circadian clock and sugars across tissues, while the energetic effect of starch-derived sugars is usually nonlimiting for endogenous stomatal movements.
Collapse
Affiliation(s)
| | - Myriam Dauzat
- LEPSE, Univ Montpellier, INRAE, Institut Agro, Montpellier, France
| | | | - Florent Pantin
- LEPSE, Univ Montpellier, INRAE, Institut Agro, Montpellier, France
- Univ Angers, Institut Agro, INRAE, IRHS, SFR QUASAV, Angers F-49000, France
| |
Collapse
|
18
|
Li J, Nie K, Wang L, Zhao Y, Qu M, Yang D, Guan X. The Molecular Mechanism of GhbHLH121 in Response to Iron Deficiency in Cotton Seedlings. PLANTS (BASEL, SWITZERLAND) 2023; 12:1955. [PMID: 37653872 PMCID: PMC10224022 DOI: 10.3390/plants12101955] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/06/2023] [Revised: 05/04/2023] [Accepted: 05/08/2023] [Indexed: 09/02/2023]
Abstract
Iron deficiency caused by high pH of saline-alkali soil is a major source of abiotic stress affecting plant growth. However, the molecular mechanism underlying the iron deficiency response in cotton (Gossypium hirsutum) is poorly understood. In this study, we investigated the impacts of iron deficiency at the cotton seedling stage and elucidated the corresponding molecular regulation network, which centered on a hub gene GhbHLH121. Iron deficiency induced the expression of genes with roles in the response to iron deficiency, especially GhbHLH121. The suppression of GhbHLH121 with virus-induced gene silence technology reduced seedlings' tolerance to iron deficiency, with low photosynthetic efficiency and severe damage to the structure of the chloroplast. Contrarily, ectopic expression of GhbHLH121 in Arabidopsis enhanced tolerance to iron deficiency. Further analysis of protein/protein interactions revealed that GhbHLH121 can interact with GhbHLH IVc and GhPYE. In addition, GhbHLH121 can directly activate the expression of GhbHLH38, GhFIT, and GhPYE independent of GhbHLH IVc. All told, GhbHLH121 is a positive regulator of the response to iron deficiency in cotton, directly regulating iron uptake as the upstream gene of GhFIT. Our results provide insight into the complex network of the iron deficiency response in cotton.
Collapse
Affiliation(s)
- Jie Li
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, Hybrid Cotton R & D Engineering Research Center (the Ministry of Education), College of Agriculture, Nanjing Agricultural University, Nanjing 210095, China;
- Zhejiang Provincial Key Laboratory of Crop Genetic Resources, Institute of Crop Science, Plant Precision Breeding Academy, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou 300058, China; (K.N.); (L.W.); (Y.Z.)
| | - Ke Nie
- Zhejiang Provincial Key Laboratory of Crop Genetic Resources, Institute of Crop Science, Plant Precision Breeding Academy, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou 300058, China; (K.N.); (L.W.); (Y.Z.)
- Hainan Institute, Zhejiang University, Yongyou Industry Park, Yazhou Bay Sci-Tech City, Sanya 572000, China
| | - Luyao Wang
- Zhejiang Provincial Key Laboratory of Crop Genetic Resources, Institute of Crop Science, Plant Precision Breeding Academy, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou 300058, China; (K.N.); (L.W.); (Y.Z.)
- Hainan Institute, Zhejiang University, Yongyou Industry Park, Yazhou Bay Sci-Tech City, Sanya 572000, China
| | - Yongyan Zhao
- Zhejiang Provincial Key Laboratory of Crop Genetic Resources, Institute of Crop Science, Plant Precision Breeding Academy, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou 300058, China; (K.N.); (L.W.); (Y.Z.)
| | - Mingnan Qu
- Hainan Yazhou Bay Seed Lab, Yazhou Bay Science and Technology City, Yazhou District, Sanya 572025, China;
| | - Donglei Yang
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, Hybrid Cotton R & D Engineering Research Center (the Ministry of Education), College of Agriculture, Nanjing Agricultural University, Nanjing 210095, China;
| | - Xueying Guan
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, Hybrid Cotton R & D Engineering Research Center (the Ministry of Education), College of Agriculture, Nanjing Agricultural University, Nanjing 210095, China;
- Zhejiang Provincial Key Laboratory of Crop Genetic Resources, Institute of Crop Science, Plant Precision Breeding Academy, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou 300058, China; (K.N.); (L.W.); (Y.Z.)
- Hainan Institute, Zhejiang University, Yongyou Industry Park, Yazhou Bay Sci-Tech City, Sanya 572000, China
- Hainan Yazhou Bay Seed Lab, Yazhou Bay Science and Technology City, Yazhou District, Sanya 572025, China;
| |
Collapse
|
19
|
Jiang H, Liu X, Xiao P, Wang Y, Xie Q, Wu X, Ding H. Functional insights of plant bcl-2-associated ahanogene (BAG) proteins: Multi-taskers in diverse cellular signal transduction pathways. FRONTIERS IN PLANT SCIENCE 2023; 14:1136873. [PMID: 37056491 PMCID: PMC10086319 DOI: 10.3389/fpls.2023.1136873] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/03/2023] [Accepted: 03/06/2023] [Indexed: 06/19/2023]
Abstract
Bcl-2-associated athanogene (BAG) gene family is a highly conserved molecular chaperone cofactor in evolution from yeast to humans and plants playing important roles in a variety of signal pathways. Plant BAG proteins have special structures, especially those containing CaM-binding IQ motifs which are unique to plants. While early studies focused more on the structure and physiological function of plant BAGs, recent studies have revealed many novel functional mechanisms involved in multiple cellular processes. How to achieve signal specificity has become an interesting topic of plant BAG research. In this review, we have provided a historic view of plant BAG research and summarized recent advances in the establishment of BAG as essential components in normal plant growth, environmental stress response, and plant immunity. Based on the relationship between BAG proteins and their newly interacting proteins, this review highlights the functional mechanisms of various cellular signals mediated by plant BAGs. Future work needs to focus on the post-translational modification of BAG proteins, and on understanding how specificity is achieved among BAG signaling pathways.
Collapse
Affiliation(s)
- Hailong Jiang
- College of Bioscience and Biotechnology, Yangzhou University, Yangzhou, China
| | - Xiaoya Liu
- College of Bioscience and Biotechnology, Yangzhou University, Yangzhou, China
| | - Peixiang Xiao
- College of Bioscience and Biotechnology, Yangzhou University, Yangzhou, China
| | - Yan Wang
- College of Bioscience and Biotechnology, Yangzhou University, Yangzhou, China
| | - Qihui Xie
- College of Bioscience and Biotechnology, Yangzhou University, Yangzhou, China
| | - Xiaoxia Wu
- College of Bioscience and Biotechnology, Yangzhou University, Yangzhou, China
- Joint International Research Laboratory of Agriculture and Agri-Product Safety of Ministry of Education of China, Yangzhou, China
| | - Haidong Ding
- College of Bioscience and Biotechnology, Yangzhou University, Yangzhou, China
- Joint International Research Laboratory of Agriculture and Agri-Product Safety of Ministry of Education of China, Yangzhou, China
| |
Collapse
|
20
|
Rui M, Jing Y, Jiang H, Wang Y. Quantitative System Modeling Bridges the Gap between Macro- and Microscopic Stomatal Model. Adv Biol (Weinh) 2022; 6:e2200131. [PMID: 35957522 DOI: 10.1002/adbi.202200131] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2022] [Revised: 07/21/2022] [Indexed: 01/28/2023]
Abstract
An understanding of stomatal function is vital for the carbon and water cycle in nature. In the past decades, various stomatal models with different functions have been established to investigate and predict stomatal behavior and its association with plants' responses to the changing climate, but with limited biological information provided. On the other hand, many stomatal models at the molecular level focus on simulating and predicting molecular practices and ignore the dynamic quantitative information. As a result, stomatal models are often divided between the microscopic and macroscopic scales. Quantitative systems analysis offers an effective in silico approach to explore the link between microscopic gene function and macroscopic physiological traits. As a first step, a systems model, OnGuard, is developed for the investigation of guard cell ion homeostasis and its relevance to the dynamic stomatal movements. The system model has already yielded a series of important predictions to guide molecular physiological studies in stomata. It also exhibits great potential in breeding practice, which represents a key step toward "Breeding by design" of improving plant carbon-water use efficiency. Here, the development of stomatal models is reviewed, and the future perspectives on stomatal modeling for agricultural and ecological applications are discussed.
Collapse
Affiliation(s)
- Mengmeng Rui
- Institute of Crop Science, College of Agriculture and Biotechnology, Zijingang Campus, Zhejiang University, Hangzhou, 310058, P. R. China
| | - Yi Jing
- BGI-Sanya, Sanya, 572025, P. R. China
| | - Hangjin Jiang
- Center for Data Science, Zhejiang University, Hangzhou, 310058, P. R. China
| | - Yizhou Wang
- Institute of Crop Science, College of Agriculture and Biotechnology, Zijingang Campus, Zhejiang University, Hangzhou, 310058, P. R. China.,Hainan Yazhou Bay Seed Laboratory, Sanya, 572025, P. R. China.,Zhejiang Provincial Key Laboratory of Crop Germplasm, Zhejiang University, Hangzhou, 310058, P. R. China
| |
Collapse
|