1
|
Kang D, Yun D, Cho KH, Baek SS, Jeon J. Assessing Event-Driven Dynamics of Pesticides and Transformation Products in an Agricultural Stream Using Comprehensive Target, Suspect, and Nontarget Analysis. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2025; 59:9790-9801. [PMID: 40343730 DOI: 10.1021/acs.est.5c03068] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/11/2025]
Abstract
A comprehensive assessment of pesticide transport in surface waters is challenging due to discharge characteristics and the occurrence of transformation products (TPs). Detailed long-term sampling of pesticide concentrations, including rainfall and pesticide application events, is still lacking to better predict pesticide transport pathways and toxicity within agricultural catchments. In the present study, pesticide and TP transport dynamics were evaluated over a three-year monitoring period, which included 12 stormwater events and 7 dry events. An extensive target screening for 328 pesticides was conducted, while simultaneously performing suspect and nontarget analysis (SNTA) using liquid chromatography high-resolution mass spectrometry. Twenty-one pesticides and two TPs associated with the main crop, rice, were identified as the major pollutants. The risk assessment results, based on the stepwise toxicity data collection, suggested that insecticides, primarily neonicotinoids, exhibited severe ecological risk. Additionally, SNTA revealed the presence of 8 parent compounds and 46 TPs. TPs occurred following parent peak periods, indicating that integrated pesticide monitoring is a practical approach to risk assessment. A precautionary approach using SNTA of parent pesticides and TP identification suggests that the potential aquatic effects of pesticide TPs may be underestimated by a conventional pesticide monitoring strategy.
Collapse
Affiliation(s)
- Daeho Kang
- Department of Environmental Engineering, Changwon National University, Changwon, Gyeongsangnam-do 51140, Republic of Korea
| | - Daeun Yun
- Department of Civil Urban Earth and Environmental Engineering, Ulsan National Institute of Science and Technology, Ulsan 44919, Republic of Korea
| | - Kyung Hwa Cho
- Department of Civil Urban Earth and Environmental Engineering, Ulsan National Institute of Science and Technology, Ulsan 44919, Republic of Korea
| | - Sang-Soo Baek
- Department of Environmental Engineering, Yeungnam University, 280 Daehak-Ro, Gyeongsan-Si, Gyeongbuk 38541, Republic of Korea
| | - Junho Jeon
- Department of Environmental Engineering, Changwon National University, Changwon, Gyeongsangnam-do 51140, Republic of Korea
- School of Smart and Green Engineering, Changwon National University, Changwon, Gyeongsangnam-do 51140, Republic of Korea
| |
Collapse
|
2
|
Hu J, Lyu Y, Liu Y, You X, Helbling DE, Sun W. Incorporating Transformation Products for an Integrated Assessment of Antibiotic Pollution and Risks in Surface Water. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2025; 59:2815-2826. [PMID: 39884857 DOI: 10.1021/acs.est.4c12926] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/01/2025]
Abstract
The widespread presence of antibiotics in aquatic ecosystems is a global challenge, yet the occurrence and risks associated with their transformation products (TPs) remain poorly understood. This study investigated the occurrence and potential risks of antibiotics and their TPs in water along the Chaobai River in Beijing. We used high-resolution mass spectrometry and an integrated target, suspect, and nontarget screening approach to identify 21 parent antibiotics and 78 TPs among 90 water samples, with the majority from macrolides and sulfonamides. Notably, target quantification and machine-learning-assisted semiquantification revealed that the cumulative concentrations of TPs were higher than the cumulative concentrations of parent compounds, with average contributions of TPs ranging between 50.7 and 63.7%. Most downstream water samples were largely influenced by domestic sewage, as indicated by the significantly higher concentrations and proportions of TPs, as well as the greater diversity in their composition profiles compared to upstream and reservoir samples. Moreover, of the 78 TPs, 26.9, 67.9, and 6.4% exhibited greater persistence, mobility, or toxicity than their parent antibiotics, respectively. Sixteen macrolide TPs presented both greater ecological risks to aquatic organisms and higher resistance selection risks than their parent antibiotics. TPs contributed substantially to the overall antibiotic-related risks by an average of between 31.2 and 54.1%. This study highlights the occurrence of antibiotic TPs in river water, underscoring the need to consider TPs in comprehensive risk assessments of antibiotics.
Collapse
Affiliation(s)
- Jingrun Hu
- Key Laboratory of Water and Sediment Sciences, Ministry of Education, College of Environmental Sciences and Engineering, Peking University, Beijing 100871, China
- State Environmental Protection Key Laboratory of All Material Fluxes in River Ecosystems, Beijing 100871, China
| | - Yitao Lyu
- Key Laboratory of Water and Sediment Sciences, Ministry of Education, College of Environmental Sciences and Engineering, Peking University, Beijing 100871, China
- State Environmental Protection Key Laboratory of All Material Fluxes in River Ecosystems, Beijing 100871, China
| | - Yi Liu
- Key Laboratory of Water and Sediment Sciences, Ministry of Education, College of Environmental Sciences and Engineering, Peking University, Beijing 100871, China
- State Environmental Protection Key Laboratory of All Material Fluxes in River Ecosystems, Beijing 100871, China
| | - Xiuqi You
- Key Laboratory of Water and Sediment Sciences, Ministry of Education, College of Environmental Sciences and Engineering, Peking University, Beijing 100871, China
- State Environmental Protection Key Laboratory of All Material Fluxes in River Ecosystems, Beijing 100871, China
| | - Damian E Helbling
- School of Civil and Environmental Engineering, Cornell University, Ithaca, New York 14853, United States
| | - Weiling Sun
- Key Laboratory of Water and Sediment Sciences, Ministry of Education, College of Environmental Sciences and Engineering, Peking University, Beijing 100871, China
- State Environmental Protection Key Laboratory of All Material Fluxes in River Ecosystems, Beijing 100871, China
| |
Collapse
|
3
|
Hernández-Tenorio R. Degradation pathways of sulfamethoxazole under phototransformation processes: A data base of the major transformation products for their environmental monitoring. ENVIRONMENTAL RESEARCH 2024; 262:119863. [PMID: 39214487 DOI: 10.1016/j.envres.2024.119863] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/28/2024] [Revised: 07/23/2024] [Accepted: 08/26/2024] [Indexed: 09/04/2024]
Abstract
Sulfamethoxazole (SMX) is frequently detected in wastewater and aquatic environments worldwide at concentrations from ng L-1 to μg L-1. Unfortunately, SMX is not completely removed in municipal wastewater treatment plants (WWTPs), thus, SMX and their transformation products (TPs) are discharged into aquatic environments, where can be transformed by phototransformation reactions. In this study, the phototransformation of SMX as well as generation of their major TPs under photolysis and photocatalysis processes was reviewed. SMX can be totally removed under photolysis and photocatalysis processes in aqueous solutions using simulated or natural radiation. Degradation pathways such as isomerization, hydroxylation, fragmentation, nitration, and substitution reactions were identified during the generation of the major TPs of SMX. Particularly, 26 TPs were considered for the creation of a data base of the major TPs of SMX generated under phototransformation processes. These 26 compounds could be used as reference during the SMX monitoring both wastewater and water bodies, using analytic methodologies such as target analysis and suspect screening. A data base of the major TPs of pharmaceuticals active compounds (PhACs) as SMX could help to implementation of best environmental monitoring programs for the study of the environmental risks both PhACs and their TPs with highest occurrence in aquatic environments.
Collapse
Affiliation(s)
- Rafael Hernández-Tenorio
- Centro de Investigación y Asistencia en Tecnología y Diseño del Estado de Jalisco A.C., Sede Noreste, Vía de la Innovación 404, Autopista Monterrey-Aeropuerto Km 10, Parque PIIT, Apodaca, nuevo León, C.P. 66628, Mexico.
| |
Collapse
|
4
|
Fernández-García A, Martínez-Piernas AB, Moreno-González D, Gilbert-López B, García-Reyes JF. Chemical profiling of organic contaminants in rural surface waters combining target and non-target LC-HRMS/MS analysis. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 954:176587. [PMID: 39343398 DOI: 10.1016/j.scitotenv.2024.176587] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/16/2024] [Revised: 09/07/2024] [Accepted: 09/26/2024] [Indexed: 10/01/2024]
Abstract
The pollution of natural waters by contaminants of emerging concern (CECs) is one of the pressing problems due to their global distribution and potential negative effects on the environment and human health. In rural areas with lower population density and limited industrial development, less contamination is expected. However, the lack of wastewater treatment plants (WWTPs) or their poor removal efficiency can lead to significant input of pollutants. In this context, 11 streams of rural areas in the Guadalquivir River basin, southeast of Spain, were studied over two years to obtain an overview of the origin and distribution of contaminants. A target method using solid-phase extraction and liquid chromatography coupled to high resolution mass spectrometry (LC-HRMS) was developed for the analysis of 316 compounds in surface waters. A total of 78 target analytes were detected, comprising pesticides, pharmaceuticals, personal care products (PCPs), transformation products (TPs), and industrial chemicals. The flame retardant tributyl phosphate (16-3572 ng L-1) was detected in all samples, followed by caffeine (30-8090 ng L-1) and the analgesic tramadol (3-1493 ng L-1). The target approach was combined with a non-target analysis (NTA) strategy to obtain an overall perspective of the chemical profile of unexpected or unknown compounds in the samples. Up to 79 contaminants were tentatively identified, and 12 of them were finally confirmed with standards. Most of the contaminants determined by NTA were pharmaceuticals and their TPs. The results indicated that most of CECs have an urban origin despite traditional agriculture is the main economic activity in this region. Moreover, the absence of WWTPs in small towns is significant, as contamination levels at these sites were comparable to or higher than those in larger populations with sewage treatments.
Collapse
Affiliation(s)
- Alfonso Fernández-García
- Analytical Chemistry Research Group (FQM 323), Department of Physical and Analytical Chemistry, University of Jaén, Campus Las Lagunillas edif. B3, 23071 Jaén, Spain; University Research Institute for Olives Grove and Olive Oil (INUO), University of Jaén, Jaén, Spain
| | - Ana B Martínez-Piernas
- Analytical Chemistry Research Group (FQM 323), Department of Physical and Analytical Chemistry, University of Jaén, Campus Las Lagunillas edif. B3, 23071 Jaén, Spain; University Research Institute for Olives Grove and Olive Oil (INUO), University of Jaén, Jaén, Spain.
| | - David Moreno-González
- Analytical Chemistry Research Group (FQM 323), Department of Physical and Analytical Chemistry, University of Jaén, Campus Las Lagunillas edif. B3, 23071 Jaén, Spain; University Research Institute for Olives Grove and Olive Oil (INUO), University of Jaén, Jaén, Spain
| | - Bienvenida Gilbert-López
- Analytical Chemistry Research Group (FQM 323), Department of Physical and Analytical Chemistry, University of Jaén, Campus Las Lagunillas edif. B3, 23071 Jaén, Spain; University Research Institute for Olives Grove and Olive Oil (INUO), University of Jaén, Jaén, Spain
| | - Juan F García-Reyes
- Analytical Chemistry Research Group (FQM 323), Department of Physical and Analytical Chemistry, University of Jaén, Campus Las Lagunillas edif. B3, 23071 Jaén, Spain; University Research Institute for Olives Grove and Olive Oil (INUO), University of Jaén, Jaén, Spain
| |
Collapse
|
5
|
Fender CL, Good SP, Garcia-Jaramillo M. An integrated approach to evaluating water contaminants and evaporation in agricultural water distribution systems. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2024; 287:117277. [PMID: 39515202 PMCID: PMC11608095 DOI: 10.1016/j.ecoenv.2024.117277] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/28/2024] [Revised: 10/26/2024] [Accepted: 10/30/2024] [Indexed: 11/16/2024]
Abstract
This study presents an innovative approach for assessing water quality in agricultural irrigation networks, integrating stable isotope analysis, in vivo zebrafish screening, and comprehensive chemical profiling to investigate the occurrence, transformation, and potential toxicity of organic contaminants. Stable isotope analysis was used to measure evaporation as a proxy for water residence time in the canal, while liquid chromatography-high resolution mass spectrometry (LC-HRMS) identified a range of organic compounds in water samples collected from both the irrigation canal and its source river. Results indicated a reduction in contaminant levels in the canal compared to the river, with the most significant evaporation and concentration changes occurring at a holding reservoir, suggesting that managing residence time could help reduce water loss in arid irrigation networks. The data also highlighted how evaporation, particularly during the dry, hot season, influences contaminant dynamics. Hierarchical clustering of LC-HRMS results showed notable differences between the chemical profiles of canal and river samples, indicating that irrigation systems may contribute to the degradation or removal of certain compounds. Over 60 % of detected compounds were naturally derived, with anthropogenic contaminants like pesticides and personal care products further highlighting human impacts. Priority contaminants, including DEET and 2-naphthalene sulfonic acid, likely originated from urban activities upstream. Initial screening using zebrafish embryos showed bioactivity across sites, confirming the presence of contaminants needing further examination. Correlation analysis linked natural compounds to evaporation rates, suggesting that flora and fauna play significant roles in the chemical makeup of canal water. Overall, this approach provides a comprehensive framework for monitoring irrigation water, offering insights into contaminant behavior and supporting the development of standardized methods for assessing chemical fate and ecological risks in agricultural irrigation systems.
Collapse
Affiliation(s)
- Chloe L Fender
- Department of Environmental and Molecular Toxicology, Oregon State University, Corvallis, OR, USA
| | - Stephen P Good
- Department of Biological and Ecological Engineering, Oregon State University, Corvallis, OR, USA; Water Resources Graduate Program, Oregon State University, Corvallis, OR, USA
| | - Manuel Garcia-Jaramillo
- Department of Environmental and Molecular Toxicology, Oregon State University, Corvallis, OR, USA.
| |
Collapse
|
6
|
Gwak J, Cha J, Nam SI, Kim JH, Lee J, Moon HB, Khim JS, Hong S. Characterization of AhR-mediated potency in sediments from Kongsfjorden, Svalbard: Application of effect-directed analysis and nontarget screening. CHEMOSPHERE 2024; 368:143771. [PMID: 39566688 DOI: 10.1016/j.chemosphere.2024.143771] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/16/2024] [Revised: 11/13/2024] [Accepted: 11/16/2024] [Indexed: 11/22/2024]
Abstract
In this study, we aimed to identify the major aryl hydrocarbon receptor (AhR) agonists in surface sediments (S1-S10, n = 10) from Kongsfjorden, Arctic Svalbard, using effect-directed analysis. High AhR-mediated potencies were observed in the mid-polar fractions and RP-HPLC subfractions (F2.6-F2.8; log KOW 5-8) in the sediments of sites S2 and S3, which are located near abandoned coal mine areas, as assessed by the H4IIE-luc bioassay. The concentrations of traditional polycyclic aromatic hydrocarbon (t-PAHs), emerging PAHs, alkyl-PAHs, and styrene oligomers ranged from 6.1 to 2100 ng g-1 dry weight (dw), 0.5-1000 ng g-1 dw, 47 to 79,000 ng g-1 dw, and 4.2-130 ng g-1 dw, respectively, with elevated levels in S2 and S3. Principal component analysis coupled with multiple linear regression suggested that t-PAHs in sediments primarily originated from coal, petroleum combustion, and coal combustion. Twenty-four target AhR agonists accounted for 3.2%-100% (mean = 47%) of the total AhR-mediated potencies in S2 and S3. Nontarget screening via GC-QTOFMS in the highly potent fractions identified 48 AhR agonist candidates through four-step selection criteria. Among these, 27 compounds were identified as coal-derived substances. VirtualToxLab in silico modeling predicted that most of the 48 tentative AhR agonist candidates could bind to AhR. Overall, our findings indicate significant contamination of the Kongsfjorden sediments by coal-derived substances, highlighting the need for further studies to assess the ecological risks associated with these contaminants.
Collapse
Affiliation(s)
- Jiyun Gwak
- Department of Earth, Environmental & Space Sciences, Chungnam National University, Daejeon, 34134, Republic of Korea
| | - Jihyun Cha
- Department of Earth, Environmental & Space Sciences, Chungnam National University, Daejeon, 34134, Republic of Korea
| | - Seung-Il Nam
- Division of Glacier and Earth Sciences, Korea Polar Research Institute, Incheon, 21990, Republic of Korea
| | - Jung-Hyun Kim
- Division of Glacier and Earth Sciences, Korea Polar Research Institute, Incheon, 21990, Republic of Korea
| | - Junghyun Lee
- Department of Environmental Education, Kongju National University, Gongju, 32588, Republic of Korea
| | - Hyo-Bang Moon
- Department of Marine Science and Convergence Engineering, Hanyang University, Ansan, 15588, Republic of Korea
| | - Jong Seong Khim
- School of Earth and Environmental Sciences & Research Institute of Oceanography, Seoul National University, Seoul, 08826, Republic of Korea
| | - Seongjin Hong
- Department of Earth, Environmental & Space Sciences, Chungnam National University, Daejeon, 34134, Republic of Korea.
| |
Collapse
|
7
|
Malm L, Liigand J, Aalizadeh R, Alygizakis N, Ng K, Fro̷kjær EE, Nanusha MY, Hansen M, Plassmann M, Bieber S, Letzel T, Balest L, Abis PP, Mazzetti M, Kasprzyk-Hordern B, Ceolotto N, Kumari S, Hann S, Kochmann S, Steininger-Mairinger T, Soulier C, Mascolo G, Murgolo S, Garcia-Vara M, López de Alda M, Hollender J, Arturi K, Coppola G, Peruzzo M, Joerss H, van der Neut-Marchand C, Pieke EN, Gago-Ferrero P, Gil-Solsona R, Licul-Kucera V, Roscioli C, Valsecchi S, Luckute A, Christensen JH, Tisler S, Vughs D, Meekel N, Talavera Andújar B, Aurich D, Schymanski EL, Frigerio G, Macherius A, Kunkel U, Bader T, Rostkowski P, Gundersen H, Valdecanas B, Davis WC, Schulze B, Kaserzon S, Pijnappels M, Esperanza M, Fildier A, Vulliet E, Wiest L, Covaci A, Macan Schönleben A, Belova L, Celma A, Bijlsma L, Caupos E, Mebold E, Le Roux J, Troia E, de Rijke E, Helmus R, Leroy G, Haelewyck N, Chrastina D, Verwoert M, Thomaidis NS, Kruve A. Quantification Approaches in Non-Target LC/ESI/HRMS Analysis: An Interlaboratory Comparison. Anal Chem 2024; 96:16215-16226. [PMID: 39353203 PMCID: PMC11483430 DOI: 10.1021/acs.analchem.4c02902] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2024] [Revised: 09/16/2024] [Accepted: 09/16/2024] [Indexed: 10/04/2024]
Abstract
Nontargeted screening (NTS) utilizing liquid chromatography electrospray ionization high-resolution mass spectrometry (LC/ESI/HRMS) is increasingly used to identify environmental contaminants. Major differences in the ionization efficiency of compounds in ESI/HRMS result in widely varying responses and complicate quantitative analysis. Despite an increasing number of methods for quantification without authentic standards in NTS, the approaches are evaluated on limited and diverse data sets with varying chemical coverage collected on different instruments, complicating an unbiased comparison. In this interlaboratory comparison, organized by the NORMAN Network, we evaluated the accuracy and performance variability of five quantification approaches across 41 NTS methods from 37 laboratories. Three approaches are based on surrogate standard quantification (parent-transformation product, structurally similar or close eluting) and two on predicted ionization efficiencies (RandFor-IE and MLR-IE). Shortly, HPLC grade water, tap water, and surface water spiked with 45 compounds at 2 concentration levels were analyzed together with 41 calibrants at 6 known concentrations by the laboratories using in-house NTS workflows. The accuracy of the approaches was evaluated by comparing the estimated and spiked concentrations across quantification approaches, instrumentation, and laboratories. The RandFor-IE approach performed best with a reported mean prediction error of 15× and over 83% of compounds quantified within 10× error. Despite different instrumentation and workflows, the performance was stable across laboratories and did not depend on the complexity of water matrices.
Collapse
Affiliation(s)
- Louise Malm
- Department
of Materials and Environmental Chemistry, Stockholm University, Svante Arrhenius väg 16, 11418 Stockholm, Sweden
| | | | - Reza Aalizadeh
- Laboratory
of Analytical Chemistry, Department of Chemistry, National and Kapodistrian University of Athens, Panepistimiopolis Zografou, 15771 Athens, Greece
- Department
of Environmental Health Sciences, Yale School of Public Health, Yale University, New Haven, Connecticut 06510, United States
| | - Nikiforos Alygizakis
- Laboratory
of Analytical Chemistry, Department of Chemistry, National and Kapodistrian University of Athens, Panepistimiopolis Zografou, 15771 Athens, Greece
- Environmental
Institute, Okružná
784/42, 97241 Koš, Slovak Republic
| | - Kelsey Ng
- Environmental
Institute, Okružná
784/42, 97241 Koš, Slovak Republic
- RECETOX,
Faculty of Science, Masaryk University, Kamenice 753/5, Building D29, 62500 Brno, Czech Republic
| | - Emil Egede Fro̷kjær
- Environmental
Metabolomics Lab, Aarhus University, Frederiksborgsvej 399, 4000 Roskilde, Denmark
| | - Mulatu Yohannes Nanusha
- Environmental
Metabolomics Lab, Aarhus University, Frederiksborgsvej 399, 4000 Roskilde, Denmark
| | - Martin Hansen
- Environmental
Metabolomics Lab, Aarhus University, Frederiksborgsvej 399, 4000 Roskilde, Denmark
| | - Merle Plassmann
- Department
of Environmental Science, Stockholm University, Svante Arrhenius väg 8, 11418 Stockholm, Sweden
| | - Stefan Bieber
- Analytisches
Forschungsinstitut für Non-Target Screening GmbH (AFIN-TS), Am Mittleren Moos 48, 86167 Augsburg, Germany
| | - Thomas Letzel
- Analytisches
Forschungsinstitut für Non-Target Screening GmbH (AFIN-TS), Am Mittleren Moos 48, 86167 Augsburg, Germany
| | - Lydia Balest
- Acquedotto
Pugliese SpA - Direzione Laboratori e Controllo Igienico Sanitario
(DIRLC), 70123 Bari, Italy
| | - Pier Paolo Abis
- Acquedotto
Pugliese SpA - Direzione Laboratori e Controllo Igienico Sanitario
(DIRLC), 70123 Bari, Italy
| | - Michele Mazzetti
- Agenzia
Regionale per l’Ambiente Toscana, Via G. Marradi 114, 57126 Livorno, Italy
| | - Barbara Kasprzyk-Hordern
- Department
of Chemistry, University of Bath, Bath BA2 7AY, U.K.
- Institute
for Sustainability, Bath BA2 7AY, U.K.
| | - Nicola Ceolotto
- Department
of Chemistry, University of Bath, Bath BA2 7AY, U.K.
- Institute
for Sustainability, Bath BA2 7AY, U.K.
| | - Sangeeta Kumari
- Department
of Chemistry, Vienna, BOKU University, Muthgasse 18, 1190 Vienna, Austria
| | - Stephan Hann
- Department
of Chemistry, Vienna, BOKU University, Muthgasse 18, 1190 Vienna, Austria
| | - Sven Kochmann
- Department
of Chemistry, Vienna, BOKU University, Muthgasse 18, 1190 Vienna, Austria
| | | | - Coralie Soulier
- BRGM, 3 avenue Claude
Guillemin, BP36009, 45060 Orléans Cedex 2, France
| | - Giuseppe Mascolo
- Water Research
Institute (IRSA), National Research Council
(CNR), Via F. De Blasio,
5, 70132 Bari, Italy
- Research
Institute for Geo-Hydrological Protection (IRPI), National Research Council (CNR), Via Amendola, 122/I, 70126 Bari, Italy
| | - Sapia Murgolo
- Water Research
Institute (IRSA), National Research Council
(CNR), Via F. De Blasio,
5, 70132 Bari, Italy
| | - Manuel Garcia-Vara
- Water,
Environmental and Food Chemistry Unit, Institute
of Environmental Assessment and Water Research, C/Jordi Girona 18-26, ES 08034 Barcelona, Spain
| | - Miren López de Alda
- Water,
Environmental and Food Chemistry Unit, Institute
of Environmental Assessment and Water Research, C/Jordi Girona 18-26, ES 08034 Barcelona, Spain
| | - Juliane Hollender
- Eawag,
Swiss Federal Institute of Aquatic Science and Technology, Überlandstrasse 133, 8600 Dübendorf, Switzerland
| | - Katarzyna Arturi
- Eawag,
Swiss Federal Institute of Aquatic Science and Technology, Überlandstrasse 133, 8600 Dübendorf, Switzerland
| | - Gianluca Coppola
- White
Lab Srl, Via Mons. Rodolfi
22, 36022 San Giuseppe
de Cassola (VI), Italy
| | - Massimo Peruzzo
- White
Lab Srl, Via Mons. Rodolfi
22, 36022 San Giuseppe
de Cassola (VI), Italy
| | - Hanna Joerss
- Department
for Organic Environmental Chemistry, Helmholtz
Centre Hereon, Max-Planck-Str.
1, 21502 Geesthacht, Germany
| | | | - Eelco N. Pieke
- Het Waterlaboratorium, J.W. Lucasweg 2, 2031 BE Haarlem, The Netherlands
| | - Pablo Gago-Ferrero
- Human Exposure
to Organic Pollutants Unit, Institute of
Environmental Assessment and Water Research, C/Jordi Girona 18-26, ES 08034 Barcelona, Spain
| | - Ruben Gil-Solsona
- Human Exposure
to Organic Pollutants Unit, Institute of
Environmental Assessment and Water Research, C/Jordi Girona 18-26, ES 08034 Barcelona, Spain
| | - Viktória Licul-Kucera
- Institute
for Analytical Research, Hochschulen Fresenius gem. Trägergesellschaft mbH, 65510 Idstein, Germany
- Institute
for Biodiversity and Ecosystem Dynamics, University of Amsterdam, 1012 WP Amsterdam, Netherlands
| | - Claudio Roscioli
- Water Research
Institute (IRSA), National Research Council
of Italy (CNR), via del
Mulino, 19, 20861 Brugherio, MB, Italy
| | - Sara Valsecchi
- Water Research
Institute (IRSA), National Research Council
of Italy (CNR), via del
Mulino, 19, 20861 Brugherio, MB, Italy
| | - Austeja Luckute
- Analytical
Chemistry Group, Department of Plant and Environmental Sciences, University of Copenhagen, Thorvaldsenvej 40, 1871 Frederiksberg, Denmark
| | - Jan H. Christensen
- Analytical
Chemistry Group, Department of Plant and Environmental Sciences, University of Copenhagen, Thorvaldsenvej 40, 1871 Frederiksberg, Denmark
| | - Selina Tisler
- Analytical
Chemistry Group, Department of Plant and Environmental Sciences, University of Copenhagen, Thorvaldsenvej 40, 1871 Frederiksberg, Denmark
| | - Dennis Vughs
- KWR Water
Research Institute, Groningenhaven 7, 3433 PE Nieuwegein, The Netherlands
| | - Nienke Meekel
- KWR Water
Research Institute, Groningenhaven 7, 3433 PE Nieuwegein, The Netherlands
| | - Begoña Talavera Andújar
- Luxembourg
Centre for Systems Biomedicine (LCSB), University
of Luxembourg, 6, Avenue
du Swing, L-4367 Belvaux, Luxembourg
| | - Dagny Aurich
- Luxembourg
Centre for Systems Biomedicine (LCSB), University
of Luxembourg, 6, Avenue
du Swing, L-4367 Belvaux, Luxembourg
| | - Emma L. Schymanski
- Luxembourg
Centre for Systems Biomedicine (LCSB), University
of Luxembourg, 6, Avenue
du Swing, L-4367 Belvaux, Luxembourg
| | - Gianfranco Frigerio
- Luxembourg
Centre for Systems Biomedicine (LCSB), University
of Luxembourg, 6, Avenue
du Swing, L-4367 Belvaux, Luxembourg
- Center
for Omics Sciences (COSR), IRCCS San Raffaele
Scientific Institute, 20132 Milan, Italy
| | - André Macherius
- Bavarian
Environment Agency, Bürgermeister-Ulrich-Str. 160, 86179 Augsburg, Germany
| | - Uwe Kunkel
- Bavarian
Environment Agency, Bürgermeister-Ulrich-Str. 160, 86179 Augsburg, Germany
| | - Tobias Bader
- Laboratory
for Operation Control and Research, Zweckverband
Landeswasserversorgung, Am Spitzigen Berg 1, 89129 Langenau, Germany
| | | | | | | | - W. Clay Davis
- US National
Institute of Standards and Technology, 331 Fort Johnson Rd, 29412 Charleston, South Carolina, United States
| | - Bastian Schulze
- Queensland
Alliance for Environmental Health Sciences, The University of Queensland, Woolloongabba, Queensland 4102, Australia
| | - Sarit Kaserzon
- Queensland
Alliance for Environmental Health Sciences, The University of Queensland, Woolloongabba, Queensland 4102, Australia
| | - Martijn Pijnappels
- Ministry
of Infrastructure and Water Management, Rijkswaterstaat Laboratory, Zuiderwagenplein 2, 8224 AD Lelystad, The Netherlands
| | - Mar Esperanza
- SUEZ-CIRSEE, 38 rue
du president Wilson, 78230 Le Pecq, France
| | - Aurélie Fildier
- Universite
Claude Bernard Lyon 1, CNRS, ISA, UMR5280, 5 rue de la Doua, F-69100 Villeurbanne, France
| | - Emmanuelle Vulliet
- Universite
Claude Bernard Lyon 1, CNRS, ISA, UMR5280, 5 rue de la Doua, F-69100 Villeurbanne, France
| | - Laure Wiest
- Universite
Claude Bernard Lyon 1, CNRS, ISA, UMR5280, 5 rue de la Doua, F-69100 Villeurbanne, France
| | - Adrian Covaci
- Toxicological
Centre, University of Antwerp, Universiteitsplein 1, 2610 Antwerp, Belgium
| | | | - Lidia Belova
- Toxicological
Centre, University of Antwerp, Universiteitsplein 1, 2610 Antwerp, Belgium
| | - Alberto Celma
- Environmental
and Public Health Analytical Chemistry, Research Institute for Pesticides and Water, University Jaume I, 12006 Castelló, Spain
- Department
of Aquatic Sciences and Assessment, Swedish
University of Agricultural Sciences, 75007 Uppsala, Sweden
| | - Lubertus Bijlsma
- Environmental
and Public Health Analytical Chemistry, Research Institute for Pesticides and Water, University Jaume I, 12006 Castelló, Spain
| | - Emilie Caupos
- LEESU, Univ Paris Est Creteil, Ecole des
Ponts, F-94010 Creteil, France
- Univ Paris
Est Creteil, CNRS, OSU-EFLUVE, F-94010 Creteil, France
| | | | - Julien Le Roux
- LEESU, Univ Paris Est Creteil, Ecole des
Ponts, F-94010 Creteil, France
| | - Eugenie Troia
- IBED Environmental
Chemistry and Mass Spectrometry Laboratories, University of Amsterdam, Science Park 904, 1098 XH Amsterdam, The Netherlands
| | - Eva de Rijke
- IBED Environmental
Chemistry and Mass Spectrometry Laboratories, University of Amsterdam, Science Park 904, 1098 XH Amsterdam, The Netherlands
| | - Rick Helmus
- IBED Environmental
Chemistry and Mass Spectrometry Laboratories, University of Amsterdam, Science Park 904, 1098 XH Amsterdam, The Netherlands
| | - Gaëla Leroy
- VEOLIA
Recherche et Innovation, Chemin de la Digue, 78600 Maisons-Laffitte, France
| | - Niels Haelewyck
- Vlaamse
Milieumaatschappij, Raymonde de Larochelaan 1, 9051 Gent, Sint-Denijs-Westerem, Belgium
| | - David Chrastina
- T. G.
Masaryk Water Research Institute, p. r. i., Macharova 5, 70200 Ostrava, Czech Republic
| | - Milan Verwoert
- WLN, Rijksstraatweg
85, 9756 AD Glimmen,
Groningen, The Netherlands
| | - Nikolaos S. Thomaidis
- Laboratory
of Analytical Chemistry, Department of Chemistry, National and Kapodistrian University of Athens, Panepistimiopolis Zografou, 15771 Athens, Greece
| | - Anneli Kruve
- Department
of Materials and Environmental Chemistry, Stockholm University, Svante Arrhenius väg 16, 11418 Stockholm, Sweden
- Department
of Environmental Science, Stockholm University, Svante Arrhenius väg 8, 11418 Stockholm, Sweden
| |
Collapse
|
8
|
Carneiro RB, Gil-Solsona R, Subirats J, Restrepo-Montes E, Zaiat M, Santos-Neto ÁJ, Gago-Ferrero P. Biotransformation pathways of pharmaceuticals and personal care products (PPCPs) during acidogenesis and methanogenesis of anaerobic digestion. JOURNAL OF HAZARDOUS MATERIALS 2024; 478:135444. [PMID: 39153297 DOI: 10.1016/j.jhazmat.2024.135444] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/15/2024] [Revised: 07/05/2024] [Accepted: 08/05/2024] [Indexed: 08/19/2024]
Abstract
Pharmaceuticals and personal care products (PPCPs) exhibit varying biodegradability during the acidogenic and methanogenic phases of anaerobic digestion. However, there is limited information regarding the end products generated during these processes. This work investigates the biotransformation products (BTPs) generated in a two-phase (TP) acidogenic-methanogenic (Ac-Mt) bioreactor using advanced suspect and nontarget strategies. Fourteen BTPs were confidently identified from ten parent PPCPs including carbamazepine (CBZ), naproxen (NPX), diclofenac (DCF), ibuprofen (IBU), acetaminophen (ACT), metoprolol (MTP), sulfamethoxazole (SMX), ciprofloxacin (CIP), methylparaben (MPB) and propylparaben (PPB). These BTPs were linked with oxidation reactions such as hydroxylation, demethylation and epoxidation. Their generation was related to organic acid production, since all metabolites were detected during acidogenesis, with some being subsequently consumed during methanogenesis, e.g., aminothiophenol and kynurenic acid. Another group of BTPs showed increased concentrations under methanogenic conditions, e.g., hydroxy-diclofenac and epoxy-carbamazepine. The most PPCPs showed high removal efficiencies (> 90 %) - SMX, CIP, NPX, MTP, ACT, MPB, PPB, while DCF, CBZ and IBU demonstrated higher persistence - DCF (42 %); CBZ (40 %), IBU (47 %). The phase separation of anaerobic digestion provided a deeper understanding of the biotransformation pathways of PPCPs, in addition to enhancing the biodegradability of the most persistent compounds, i.e., DCF, CBZ and IBU.
Collapse
Affiliation(s)
- Rodrigo B Carneiro
- Department of Environmental Chemistry, Institute of Environmental Assessment and Water Research (IDAEA), Severo Ochoa Excellence Center, Spanish Council of Scientific Research (CSIC), Jordi Girona 18-26, E-08034 Barcelona, Spain; Laboratory of Chromatography (CROMA), São Carlos Institute of Chemistry, University of São Paulo (USP), 400, Trabalhador São-Carlense Ave., São Carlos, São Paulo 13566-590, Brazil.
| | - Rubén Gil-Solsona
- Department of Environmental Chemistry, Institute of Environmental Assessment and Water Research (IDAEA), Severo Ochoa Excellence Center, Spanish Council of Scientific Research (CSIC), Jordi Girona 18-26, E-08034 Barcelona, Spain.
| | - Jessica Subirats
- Department of Environmental Chemistry, Institute of Environmental Assessment and Water Research (IDAEA), Severo Ochoa Excellence Center, Spanish Council of Scientific Research (CSIC), Jordi Girona 18-26, E-08034 Barcelona, Spain.
| | - Esteban Restrepo-Montes
- Department of Environmental Chemistry, Institute of Environmental Assessment and Water Research (IDAEA), Severo Ochoa Excellence Center, Spanish Council of Scientific Research (CSIC), Jordi Girona 18-26, E-08034 Barcelona, Spain.
| | - Marcelo Zaiat
- Laboratory of Biological Processes (LPB), São Carlos School of Engineering, University of São Paulo (USP), 1100, João Dagnone Ave., Santa Angelina, 13563-120 São Carlos, São Paulo, Brazil.
| | - Álvaro J Santos-Neto
- Laboratory of Chromatography (CROMA), São Carlos Institute of Chemistry, University of São Paulo (USP), 400, Trabalhador São-Carlense Ave., São Carlos, São Paulo 13566-590, Brazil.
| | - Pablo Gago-Ferrero
- Department of Environmental Chemistry, Institute of Environmental Assessment and Water Research (IDAEA), Severo Ochoa Excellence Center, Spanish Council of Scientific Research (CSIC), Jordi Girona 18-26, E-08034 Barcelona, Spain.
| |
Collapse
|
9
|
Tarábek P, Leonova N, Konovalova O, Kirchner M. Identification of organic contaminants in water and related matrices using untargeted liquid chromatography high-resolution mass spectrometry screening with MS/MS libraries. CHEMOSPHERE 2024; 366:143489. [PMID: 39374668 DOI: 10.1016/j.chemosphere.2024.143489] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/22/2024] [Revised: 09/02/2024] [Accepted: 10/04/2024] [Indexed: 10/09/2024]
Abstract
Nontargeted and suspect screening with liquid chromatography-high resolution mass spectrometry (LC-HRMS) has become an indispensable tool for quality assessment in the aquatic environment - complementary to targeted analysis of organic (micro)contaminants. An LC-HRMS method is presented, suitable for the analysis of a wide variety of water related matrices: surface water, groundwater, wastewater, sediment and sludge, including extracts from passive samplers and on-site solid phase enrichment, while focusing on the data processing aspect of the method. A field study is included to demonstrate the practical application and versatility of the whole process. HRMS/MS data were recorded following LC separation in both (ESI) positive and negative ionization modes using data dependent as well as data independent acquisition. Two vendor (Agilent's Personal Compound Database and Library and from National Institute of Standards and Technology) and one open (MassBank/EU) tandem mass spectral libraries were utilized for the identification of compounds via mass spectral match. The development of a novel software tool for parsing, grouping and reduction of MS/MS features in data files converted to mascot generic format (MGF) helped to substantially decrease the amount of time and effort needed for MS library search. While applying the method, in the course of the entire field study, 18771 detections (from 870 individual compounds) in total were recorded in 275 samples, resulting in 68.3 identified compounds per sample, on average. Among the top ten most frequently detected contaminants across all samples and sample types were pharmaceutical compounds carbamazepine, 4-acetamidoantipyrine, 4-formylaminoantipyrine, tramadol, lamotrigine and phenazone and industrial contaminants toluene-2-sulfonamide, tolytriazole, tris(2-butoxyethyl) phosphate and benzotriazole. Exploratory data analysis methods and tools enabled us to discover organic pollutant occurrence patterns within the comprehensive sets of qualitative data collected from various projects between the years 2018-2023. The results may be used as valuable inputs for future water quality monitoring programs.
Collapse
Affiliation(s)
- Peter Tarábek
- Water Research Institute, Nábr. arm. gen. L. Svobodu 5, 81249, Bratislava, Slovakia.
| | - Nataliia Leonova
- Water Research Institute, Nábr. arm. gen. L. Svobodu 5, 81249, Bratislava, Slovakia
| | - Olga Konovalova
- Water Research Institute, Nábr. arm. gen. L. Svobodu 5, 81249, Bratislava, Slovakia
| | - Michal Kirchner
- Water Research Institute, Nábr. arm. gen. L. Svobodu 5, 81249, Bratislava, Slovakia
| |
Collapse
|
10
|
Liang W, Chen T, Zhang Y, Lu X, Liu X, Zhao C, Xu G. Fragmentation characteristics-based nontargeted screening method of exogenous chemical residues in animal-derived foods using reversed-phase and hydrophilic interaction liquid chromatography-high-resolution mass spectrometry. Talanta 2024; 275:126116. [PMID: 38640518 DOI: 10.1016/j.talanta.2024.126116] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2024] [Revised: 04/07/2024] [Accepted: 04/13/2024] [Indexed: 04/21/2024]
Abstract
Fragmentation characteristics are crucial for nontargeted screening to discover and identify unknown exogenous chemical residues in animal-derived foods. In this study, first, fragmentation characteristics of 51 classes of exogenous chemical residues were summarized based on experimental mass spectra of standards in reversed-phase and hydrophilic interaction liquid chromatography-high-resolution mass spectrometry (MS) and mass spectra from the MassBank of North America (MoNA) library. According to the proportion of fragmentation characteristics to the total number of chemical residues in each class, four screening levels were defined to classify 51 classes of chemical residues. Then, a nontargeted screening method was developed based on the fragmentation characteristics. The evaluation results of 82 standards indicated that more than 90 % of the chemical residues with MS/MS spectra can be identified at concentrations of 100 and 500 μg/kg, and about 80 % can be identified at 10 μg/kg. Finally, the nontargeted screening method was applied to 16 meat samples and 21 egg samples as examples. As a result, eight chemical residues and transformation products (TPs) of 5 classes in the exemplary samples were found and identified, in which 3 TPs of azithromycin were identified by fragmentation characteristics-assisted structure interpretation. The results demonstrated the practicability of the nontargeted screening method for routine risk screening of food safety.
Collapse
Affiliation(s)
- Wenying Liang
- CAS Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, 116023, China; University of Chinese Academy of Sciences, Beijing, 100049, China; Liaoning Province Key Laboratory of Metabolomics, Dalian, 116023, China.
| | - Tiantian Chen
- CAS Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, 116023, China; University of Chinese Academy of Sciences, Beijing, 100049, China; Liaoning Province Key Laboratory of Metabolomics, Dalian, 116023, China.
| | - Yujie Zhang
- CAS Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, 116023, China; University of Chinese Academy of Sciences, Beijing, 100049, China; Liaoning Province Key Laboratory of Metabolomics, Dalian, 116023, China.
| | - Xin Lu
- CAS Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, 116023, China; Liaoning Province Key Laboratory of Metabolomics, Dalian, 116023, China.
| | - Xinyu Liu
- CAS Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, 116023, China; Liaoning Province Key Laboratory of Metabolomics, Dalian, 116023, China.
| | - Chunxia Zhao
- CAS Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, 116023, China; Liaoning Province Key Laboratory of Metabolomics, Dalian, 116023, China.
| | - Guowang Xu
- CAS Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, 116023, China; University of Chinese Academy of Sciences, Beijing, 100049, China; Liaoning Province Key Laboratory of Metabolomics, Dalian, 116023, China.
| |
Collapse
|
11
|
Samanipour S, Barron LP, van Herwerden D, Praetorius A, Thomas KV, O’Brien JW. Exploring the Chemical Space of the Exposome: How Far Have We Gone? JACS AU 2024; 4:2412-2425. [PMID: 39055136 PMCID: PMC11267556 DOI: 10.1021/jacsau.4c00220] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/08/2024] [Revised: 05/29/2024] [Accepted: 05/31/2024] [Indexed: 07/27/2024]
Abstract
Around two-thirds of chronic human disease can not be explained by genetics alone. The Lancet Commission on Pollution and Health estimates that 16% of global premature deaths are linked to pollution. Additionally, it is now thought that humankind has surpassed the safe planetary operating space for introducing human-made chemicals into the Earth System. Direct and indirect exposure to a myriad of chemicals, known and unknown, poses a significant threat to biodiversity and human health, from vaccine efficacy to the rise of antimicrobial resistance as well as autoimmune diseases and mental health disorders. The exposome chemical space remains largely uncharted due to the sheer number of possible chemical structures, estimated at over 1060 unique forms. Conventional methods have cataloged only a fraction of the exposome, overlooking transformation products and often yielding uncertain results. In this Perspective, we have reviewed the latest efforts in mapping the exposome chemical space and its subspaces. We also provide our view on how the integration of data-driven approaches might be able to bridge the identified gaps.
Collapse
Affiliation(s)
- Saer Samanipour
- Van’t
Hoff Institute for Molecular Sciences (HIMS), University of Amsterdam, Amsterdam 1090 GD, The Netherlands
- UvA
Data Science Center, University of Amsterdam, Amsterdam 1090 GD, The Netherlands
- Queensland
Alliance for Environmental Health Sciences (QAEHS), The University of Queensland, Cornwall Street, Woolloongabba, Queensland 4102, Australia
| | - Leon Patrick Barron
- Van’t
Hoff Institute for Molecular Sciences (HIMS), University of Amsterdam, Amsterdam 1090 GD, The Netherlands
- MRC
Centre for Environment and Health, Environmental Research Group, School
of Public Health, Faculty of Medicine, Imperial
College London, London W12 0BZ, United Kingdom
| | - Denice van Herwerden
- Van’t
Hoff Institute for Molecular Sciences (HIMS), University of Amsterdam, Amsterdam 1090 GD, The Netherlands
| | - Antonia Praetorius
- Institute
for Biodiversity and Ecosystem Dynamics (IBED), University of Amsterdam, Amsterdam 1090 GD, The Netherlands
| | - Kevin V. Thomas
- Queensland
Alliance for Environmental Health Sciences (QAEHS), The University of Queensland, Cornwall Street, Woolloongabba, Queensland 4102, Australia
| | - Jake William O’Brien
- Van’t
Hoff Institute for Molecular Sciences (HIMS), University of Amsterdam, Amsterdam 1090 GD, The Netherlands
- Queensland
Alliance for Environmental Health Sciences (QAEHS), The University of Queensland, Cornwall Street, Woolloongabba, Queensland 4102, Australia
| |
Collapse
|
12
|
Turnipseed SB. Analysis of chemical contaminants in fish using high resolution mass spectrometry - A review. TRENDS IN ENVIRONMENTAL ANALYTICAL CHEMISTRY 2024; 42:e00227. [PMID: 38957876 PMCID: PMC11215702 DOI: 10.1016/j.teac.2024.e00227] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/04/2024]
Abstract
High resolution mass spectrometry (HRMS) has become an important tool in environmental and food safety analysis. This review highlights how HRMS has been used to analyze chemical contaminants in fish. Measuring and documenting chemical contaminants in fish serves not only as an indicator of environmental conditions but can also monitor the health of these animals and help protect an important source of human food. The incidence and significance of contaminants including veterinary drugs, human drugs and personal care products, pesticides, persistent organic pollutants, per- and poly fluorinated substances, and marine toxins will be reviewed. The advantage of HRMS over traditional MS is its ability to expand the number of compounds that can be detected and identified. This is true whether HRMS is used for targeted analytes, or more broadly for suspect screening and nontargeted analyses. The classes of compounds, types of fish or seafood, options for data acquisition and analysis, and reports of unexpected findings from recent HMRS methods for chemical contaminants in fish are summarized.
Collapse
Affiliation(s)
- Sherri B Turnipseed
- US Food and Drug Administration, Animal Drugs Research Center, Denver, CO, USA
| |
Collapse
|
13
|
Li N, Liu J, Ying G, Lee JCK, Leung TF, Covaci A, Deng WJ. Endocrine disrupting chemicals in children's and their parents' urine: Is the exposure related to the Chinese and Western lifestyle? Int J Hyg Environ Health 2024; 259:114383. [PMID: 38652942 DOI: 10.1016/j.ijheh.2024.114383] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2023] [Revised: 03/26/2024] [Accepted: 04/16/2024] [Indexed: 04/25/2024]
Abstract
Children are known to be more vulnerable to exposure to endocrine-disrupting chemicals (EDCs) compared to adults, but evaluating the exposure pathways can be challenging. This research employed target and non-target analysis (NTA) to examine the exposure characteristics of EDCs in spot urine samples collected from 46 children's (aged 3-12 years) and their parents in Hong Kong (Chinese/Western lifestyle) and Guangzhou (mainly Chinese lifestyle). The results revealed that the geometric mean concentrations of phthalate esters metabolites (mPAEs) and bisphenols (BPs) in children's urine were 127.3 μg/gcrea and 2.5 μg/gcrea in Guangzhou, and 93.7 μg/gcrea and 2.9 μg/gcrea in Hong Kong, respectively, which were consistent with global levels. NTA identified a total of 1069 compounds, including 106 EDCs, commonly detected in food, cosmetics, and drugs. Notable regional differences were observed between Guangzhou and Hong Kong with potential sources of EDCs including dietary and cosmetic additives, toys, flooring and dust, as well as differences in lifestyles, diet, and living environment. However, age was found to significantly impact EDC exposure. The quantified EDCs (mPAEs and BPs) posed possible health risks to 60% of the children. Moreover, the presence of caffeine in children's urine, which exhibited higher detection rates in children from Hong Kong (95.6%) and Guangzhou (44.4%), warrants further attention. The sources of EDCs exposure in these regions need to be fully confirmed.
Collapse
Affiliation(s)
- Na Li
- Department of Science and Environmental Studies, The Education University of Hong Kong, Tai Po, N.T., Hong Kong China; Key Laboratory of Drinking Water Science and Technology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, China
| | - Jing Liu
- The Environmental Research Institute, MOE Key Laboratory of Environmental Theoretical Chemistry, South China Normal University, Guangzhou, 510006, China
| | - Guangguo Ying
- The Environmental Research Institute, MOE Key Laboratory of Environmental Theoretical Chemistry, South China Normal University, Guangzhou, 510006, China
| | - John Chi-Kin Lee
- Academy of Applied Policy Studies and Education Futures, The Education University of Hong Kong, Tai Po, N.T., Hong Kong China
| | - Ting Fan Leung
- Department of Paediatrics & Prince of Wales Hospital, The Chinese University of Hong Kong, Shatin, N.T., Hong Kong China
| | - Adrian Covaci
- Toxicological Center, University of Antwerp, 2610, Wilrijk, Belgium.
| | - Wen-Jing Deng
- Department of Science and Environmental Studies, The Education University of Hong Kong, Tai Po, N.T., Hong Kong China.
| |
Collapse
|
14
|
Xu Q, Li M, Xiao O, Chen J, Dai X, Kong Z, Tan J. Residual behavior of dinotefuran and its metabolites during Huangjiu fermentation and their effects on flavor. Food Chem 2024; 441:138300. [PMID: 38183720 DOI: 10.1016/j.foodchem.2023.138300] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2023] [Revised: 12/05/2023] [Accepted: 12/26/2023] [Indexed: 01/08/2024]
Abstract
Yellow rice wine (Huangjiu) is a traditional Chinese alcoholic beverage. However, there is a risk of pesticide residues in Huangjiu due to pesticide indiscriminate use. In this study, the residues of dinotefuran and its metabolites during Huangjiu fermentation and their effects on flavor substances were studied. The initial concentrations of dinotefuran ranged from 856.3 to 1874.9 μg/L, and its half-life was no more than 3.65 d. At 24 d of Huangjiu fermentation, the terminal residues of dinotefuran, 1-methyl-3-(tetrahydro-3-furylmethyl)urea (UF) and 1-methyl-3-(tetrahydro-3-furylmethyl)guanidine (DN) were 195.1-535.3 μg/L, 38.33-48.70 μg/L and 37.8-74.1 μg/L, respectively. Twenty potential degradation compounds were identified by ultra-high performance liquid chromatography-quadrupole time-of-flight mass spectrometry (UHPLC-QTOF-MS), and their toxicity was evaluated. Finally, the effect of dinotefuran on physicochemical properties and total phenol content of Huangjiu were analyzed. The risk of rancidity was significantly increased and bitter amino acids were formed. These findings provide a guidance and the safe production of Huangjiu.
Collapse
Affiliation(s)
- Qisi Xu
- College of Food Science and Technology, Hebei Agricultural University, Baoding, Hebei, China; State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Minmin Li
- Key Laboratory of Agro-products Quality and Safety Control in Storage and Transport Process, Ministry of Agriculture and Rural Affairs/Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Ouli Xiao
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Jieyin Chen
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, China; Western Agricultural Research Center, Chinese Academy of Agricultural Sciences, Changji 831100, China
| | - Xiaofeng Dai
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Zhiqiang Kong
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, China; Western Agricultural Research Center, Chinese Academy of Agricultural Sciences, Changji 831100, China.
| | - Jianxin Tan
- College of Food Science and Technology, Hebei Agricultural University, Baoding, Hebei, China.
| |
Collapse
|
15
|
Hübner U, Spahr S, Lutze H, Wieland A, Rüting S, Gernjak W, Wenk J. Advanced oxidation processes for water and wastewater treatment - Guidance for systematic future research. Heliyon 2024; 10:e30402. [PMID: 38726145 PMCID: PMC11079112 DOI: 10.1016/j.heliyon.2024.e30402] [Citation(s) in RCA: 12] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2024] [Revised: 04/23/2024] [Accepted: 04/25/2024] [Indexed: 05/12/2024] Open
Abstract
Advanced oxidation processes (AOPs) are a growing research field with a large variety of different process variants and materials being tested at laboratory scale. However, despite extensive research in recent years and decades, many variants have not been transitioned to pilot- and full-scale operation. One major concern are the inconsistent experimental approaches applied across different studies that impede identification, comparison, and upscaling of the most promising AOPs. The aim of this tutorial review is to streamline future studies on the development of new solutions and materials for advanced oxidation by providing guidance for comparable and scalable oxidation experiments. We discuss recent developments in catalytic, ozone-based, radiation-driven, and other AOPs, and outline future perspectives and research needs. Since standardized experimental procedures are not available for most AOPs, we propose basic rules and key parameters for lab-scale evaluation of new AOPs including selection of suitable probe compounds and scavengers for the measurement of (major) reactive species. A two-phase approach to assess new AOP concepts is proposed, consisting of (i) basic research and proof-of-concept (technology readiness levels (TRL) 1-3), followed by (ii) process development in the intended water matrix including a cost comparison with an established process, applying comparable and scalable parameters such as UV fluence or ozone consumption (TRL 3-5). Subsequent demonstration of the new process (TRL 6-7) is briefly discussed, too. Finally, we highlight important research tools for a thorough mechanistic process evaluation and risk assessment including screening for transformation products that should be based on chemical logic and combined with complementary tools (mass balance, chemical calculations).
Collapse
Affiliation(s)
- Uwe Hübner
- Chair of Urban Water Systems Engineering, Technical University of Munich, Am Coulombwall 3, 85748, Garching, Germany
- Xylem Services GmbH, Boschstraße 4-14, 32051, Herford, Germany
| | - Stephanie Spahr
- Leibniz Institute of Freshwater Ecology and Inland Fisheries (IGB), Müggelseedamm 301, 12587, Berlin, Germany
| | - Holger Lutze
- Department of Civil and Environmental Engineering, Institute IWAR, Chair of Environmental Analytics and Pollutants, Technical University of Darmstadt, Franziska-Braun-Straße 7, 64287, Darmstadt, Germany
- IWW Water Centre, Moritzstraße 26, 45476, Mülheim an der Ruhr, Germany
- Centre for Water and Environmental Research (ZWU), Universitätsstraße 5, 45141, Essen, Germany
| | - Arne Wieland
- Xylem Services GmbH, Boschstraße 4-14, 32051, Herford, Germany
| | - Steffen Rüting
- Xylem Services GmbH, Boschstraße 4-14, 32051, Herford, Germany
| | - Wolfgang Gernjak
- Catalan Institute for Water Research (ICRA), 17003, Girona, Spain
- Catalan Institution for Research and Advanced Studies (ICREA), 08010, Barcelona, Spain
| | - Jannis Wenk
- University of Bath, Department of Chemical Engineering and Water Innovation & Research Centre (WIRC@Bath), Bath, BA2 7AY, United Kingdom
| |
Collapse
|
16
|
Shen K, Kang D, Choi Y, Jeon J. Target and Suspect Screening for Organic Additives in Six Classifications of Personal Care Products Using Liquid Chromatography-High-Resolution Mass Spectrometry. JOURNAL OF THE AMERICAN SOCIETY FOR MASS SPECTROMETRY 2024; 35:839-854. [PMID: 38587268 DOI: 10.1021/jasms.3c00413] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/09/2024]
Abstract
Personal care products (PCPs) are integral components of daily human existence, including a large number of chemicals intentionally added for functional attributes (e.g., preservatives and fragrances) or unintentionally present, such as plasticizers. This investigation aimed to optimize the methodology for target and suspect screening via liquid chromatography-high-resolution mass spectrometry, focusing on nine prevalent organic additives (comprising bisphenols A, F, and S, methyl, ethyl, propyl, and butylparaben, 5-chloro-2-methyl-4-isothiazolin-3-one, and 4-hydroxybenzoic acid). A total of 50 high-selling PCPs were purchased from the local online market as samples. In detail, PCP samples were classified into body washes, shampoos, hair conditioners, facial cleansers, body lotions, and moisture creams. For calibration, the quality assurance and quality control results demonstrated a coefficient of determination (R2) surpassing 0.999, with detection and quantification limits ranging from 2.5 to 100.0 ng/g. For recovery experiments, replicate recoveries (n = 5) ranged from 61 to 134%. In purchased PCP samples, five of the nine target compounds were detected via a target screening. Methylparaben exhibited the highest concentration (7860 mg/kg) in a facial cleanser, which is known as an endocrine-disrupting chemical. A total of 248 suspects of organic additives were screened in PCPs, leading to a tentative identification of 9. Confirmation (confidence level 1) via reference standards was achieved for three suspects, while six were tentatively identified with a confidence level of 2. This two-step extraction methodology utilizing methyl tert-butyl ether and isopropyl alcohol enabled simultaneous analysis of diverse chemical groups with distinct properties.
Collapse
Affiliation(s)
- Kailin Shen
- Department of Environmental Engineering, Changwon National University, Changwon, Gyeongsangnamdo 51140, Korea
| | - Daeho Kang
- Department of Environmental Engineering, Changwon National University, Changwon, Gyeongsangnamdo 51140, Korea
| | - Younghun Choi
- Graduate School of FEED of Eco-Friendly Offshore Structure, Changwon National University, Changwon, Gyeongsangnamdo 51140, Korea
| | - Junho Jeon
- Department of Environmental Engineering, Changwon National University, Changwon, Gyeongsangnamdo 51140, Korea
- School of Smart and Green Engineering, Changwon National University, Changwon, Gyeongsangnamdo 51140, Korea
| |
Collapse
|
17
|
Wang R, Tang H, Yang R, Zhang J. Emerging contaminants in water environments: progress, evolution, and prospects. WATER SCIENCE AND TECHNOLOGY : A JOURNAL OF THE INTERNATIONAL ASSOCIATION ON WATER POLLUTION RESEARCH 2024; 89:2763-2782. [PMID: 38822613 DOI: 10.2166/wst.2024.151] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/15/2024] [Accepted: 04/29/2024] [Indexed: 06/03/2024]
Abstract
This article employs bibliometric tools like VOSviewer, Bibliometrix, and CiteSpace for a comprehensive visual analysis of 1,612 documents on Emerging Contaminants in Waters from the Web of Science database. The objective is to elucidate the historical development, research hotspots, and trends in international studies of this field, offering valuable insights and guidance for future research directions. The analysis reveals a consistent increase in publications from 2003 to 2023, with the United States, China, and Spain being the most prolific contributors. A detailed examination of keyword co-occurrence and cluster analysis shows a predominant focus on themes such as pollutant detection, risk assessment, and biogeochemical cycling. Furthermore, the study underscores the significance of forming interdisciplinary networks among authors and institutions, highlighting its critical role in enhancing the quality and innovation of scientific research. The findings of this study not only chart the progression and focal points of research in this domain but also underscore the pivotal role of international collaboration, serving as an indispensable reference for shaping future research trajectories and fostering global cooperation.
Collapse
Affiliation(s)
- Ruiqi Wang
- Nanjing Water Group Co., Ltd, Nanjing 210000, China; R.W. and H.T. contributed equally to this work and should be regarded as co-first authors
| | - Huanchen Tang
- College of Fashion and Art Design, Donghua University, Shanghai 200051, China E-mail: ; R.W. and H.T. contributed equally to this work and should be regarded as co-first authors
| | - Ruitao Yang
- School of Finance and Economics, Jingjiang College, Jiangsu University, Zhenjiang 212028, China
| | - Jingduo Zhang
- College of Civil Engineering, Nanjing Forestry University, Nanjing 210037, China
| |
Collapse
|
18
|
Jia Q, Liao GQ, Chen L, Qian YZ, Yan X, Qiu J. Pesticide residues in animal-derived food: Current state and perspectives. Food Chem 2024; 438:137974. [PMID: 37979266 DOI: 10.1016/j.foodchem.2023.137974] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2023] [Revised: 11/02/2023] [Accepted: 11/10/2023] [Indexed: 11/20/2023]
Abstract
Pesticides are widely used in the cultivation and breeding of agricultural products all over the world. However, their direct use or indirect pollution in animal breeding may lead to residual accumulation, migration, and metabolism in animal-derived foods, posing potential health risks to humans through the food chain. Therefore, it is necessary to detect pesticide residues in animal-derived food using simple, reliable, and sensitive methods. This review summarizes sample extraction and clean-up methods, as well as the instrumental determination technologies such as chromatography and chromatography-mass spectrometry for residual analysis in animal-derived foods, including meat, eggs and milk. Additionally, we perspectives on the future of this field. This information aims to assist relevant researchers in this area, contribute to the development of ideas and novel technical methods for residual detection, metabolic research and risk assessment of pesticides in animal-derived food.
Collapse
Affiliation(s)
- Qi Jia
- Institute of Quality Standards and Testing Technology for Agro-Products, Chinese Academy of Agricultural Sciences, China; Key Laboratory of Agri-food Quality and Safety, Ministry of Agriculture and Rural Affairs, Beijing 100081, China.
| | - Guang-Qin Liao
- Institute of Quality Standards and Testing Technology for Agro-Products, Chinese Academy of Agricultural Sciences, China; Key Laboratory of Agri-food Quality and Safety, Ministry of Agriculture and Rural Affairs, Beijing 100081, China.
| | - Lu Chen
- Institute of Quality Standards and Testing Technology for Agro-Products, Chinese Academy of Agricultural Sciences, China; Key Laboratory of Agri-food Quality and Safety, Ministry of Agriculture and Rural Affairs, Beijing 100081, China
| | - Yong-Zhong Qian
- Institute of Quality Standards and Testing Technology for Agro-Products, Chinese Academy of Agricultural Sciences, China; Key Laboratory of Agri-food Quality and Safety, Ministry of Agriculture and Rural Affairs, Beijing 100081, China
| | - Xue Yan
- New Hope Liuhe Co., Ltd./Key Laboratory of Feed and Livestock and Poultry Products Quality & Safety Control, Ministry of Agriculture, Chengdu, Sichuan 610023, China.
| | - Jing Qiu
- Institute of Quality Standards and Testing Technology for Agro-Products, Chinese Academy of Agricultural Sciences, China; Key Laboratory of Agri-food Quality and Safety, Ministry of Agriculture and Rural Affairs, Beijing 100081, China.
| |
Collapse
|
19
|
Qian Y, Guan L, Ke Y, Wang L, Wang X, Yu N, Yu Q, Wei S, Geng J. Unveiling intricate transformation pathways of emerging contaminants during wastewater treatment processes through simplified network analysis. WATER RESEARCH 2024; 253:121299. [PMID: 38387265 DOI: 10.1016/j.watres.2024.121299] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/12/2023] [Revised: 01/11/2024] [Accepted: 02/08/2024] [Indexed: 02/24/2024]
Abstract
As the key stage for purifying wastewater, elimination of emerging contaminants (ECs) is found to be fairly low in wastewater treatment plants (WWTPs). However, less knowledge is obtained regarding the transformation pathways between various chemical structures of ECs under different treatment processes. This study unveiled the transformation pathways of ECs with different structures in 15 WWTPs distributed across China by simplified network analysis (SNA) we proposed. After treatment, the molecular weight of the whole component of wastewater decreased and the hydrophilicity increased. There are significant differences in the structure of eliminated, consistent and formed pollutants. Amino acids, peptides, and analogues (AAPAs) were detected most frequently and most removable. Benzenoids were refractory. Triazoles were often produced. The high-frequency reactions in different WWTPs were similar, (de)methylation and dehydration occurred most frequently. Different biological treatment processes performed similarly, while some advanced treatment processes differed, such as a significant increase of -13.976 (2HO reaction) paired mass distances (PMDs) in the chlorine alone process. Further, the common structural transformation was uncovered. 4 anti-hypertensive drugs, including irbesartan, valsartan, olmesartan, and losartan, were identified, along with 22 transformation products (TPs) of them. OH2 and H2O PMDs occurred most frequently and in 80.81 % of the parent-transformation product pairs, the intensity of the product was higher than parent in effluents, whose risk should be considered in future assessment activity. Together our results provide a macrography perspective on the transformation processes of ECs in WWTPs. In the future, selectively adopting wastewater treatment technology according to structures is conductive for eliminating recalcitrant ECs in WWTPs.
Collapse
Affiliation(s)
- Yuli Qian
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, 210023 Jiangsu, China
| | - Linchang Guan
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, 210023 Jiangsu, China
| | - Yunhao Ke
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, 210023 Jiangsu, China
| | - Liye Wang
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, 210023 Jiangsu, China
| | - Xuebing Wang
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, 210023 Jiangsu, China
| | - Nanyang Yu
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, 210023 Jiangsu, China
| | - Qingmiao Yu
- Key Laboratory of the Three Gorges Reservoir Region's Eco-Environment, Ministry of Education, Chongqing University, Chongqing 400044, China
| | - Si Wei
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, 210023 Jiangsu, China.
| | - Jinju Geng
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, 210023 Jiangsu, China; Key Laboratory of the Three Gorges Reservoir Region's Eco-Environment, Ministry of Education, Chongqing University, Chongqing 400044, China.
| |
Collapse
|
20
|
Sandoval MA, Calzadilla W, Vidal J, Brillas E, Salazar-González R. Contaminants of emerging concern: Occurrence, analytical techniques, and removal with electrochemical advanced oxidation processes with special emphasis in Latin America. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2024; 345:123397. [PMID: 38272166 DOI: 10.1016/j.envpol.2024.123397] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/03/2023] [Revised: 12/02/2023] [Accepted: 01/17/2024] [Indexed: 01/27/2024]
Abstract
The occurrence of contaminants of emerging concern (CECs) in environmental systems is gradually more studied worldwide. However, in Latin America, the presence of contaminants of emerging concern, together with their environmental and toxicological impacts, has recently been gaining wide interest in the scientific community. This paper presents a critical review about the source, fate, and occurrence of distinct emerging contaminants reported during the last two decades in various countries of Latin America. In recent years, Brazil, Chile, and Colombia are the main countries that have conducted research on the presence of these pollutants in biological and aquatic compartments. Data gathered indicated that pharmaceuticals, pesticides, and personal care products are the most assessed CECs in Latin America, being the most common compounds the followings: atrazine, acenaphthene, caffeine, carbamazepine, ciprofloxacin, diclofenac, diuron, estrone, losartan, sulfamethoxazole, and trimethoprim. Most common analytical methodologies for identifying these compounds were HPLC and GC coupled with mass spectrometry with the potential to characterize and quantify complex substances in the environment at low concentrations. Most CECs' monitoring and detection were observed near to urban areas which confirm the out-of-date wastewater treatment plants and sanitization infrastructures limiting the removal of these pollutants. Therefore, the implementation of tertiary treatment should be required. In this tenor, this review also summarizes some studies of CECs removal using electrochemical advanced oxidation processes that showed satisfactory performance. Finally, challenges, recommendations, and future perspectives are discussed.
Collapse
Affiliation(s)
- Miguel A Sandoval
- Instituto Tecnológico Superior de Guanajuato, Tecnológico Nacional de México, Carretera Estatal Guanajuato-Puentecillas Km. 10.5, 36262, Guanajuato, Mexico
| | - Wendy Calzadilla
- Research Group of Analysis, Treatments, Electrochemistry, Recovery and Reuse of Water, (WATER2), Departamento de Química Inorgánica, Facultad de Química y de Farmacia, Pontificia Universidad Católica de Chile, Chile
| | - Jorge Vidal
- Departamento de Química de Los Materiales, Facultad de Química y Biología, Universidad de Santiago de Chile, Chile
| | - Enric Brillas
- Laboratori d'Electroquímica dels Materials i del Medi Ambient, Departament de Ciència de Materials i de Química Física, Facultat de Química, Universitat de Barcelona, Martí i Franquès 1-11, 08028 Barcelona, Spain
| | - Ricardo Salazar-González
- Departamento de Química de Los Materiales, Facultad de Química y Biología, Universidad de Santiago de Chile, Chile.
| |
Collapse
|
21
|
Xiong Y, Liu J, Yu J, Chen D, Li T, Zhou F, Wu T, Liu X, Du Y. OPEs-ID: A software for non-targeted screening of organophosphate esters based on liquid chromatography-high-resolution mass spectrometry. JOURNAL OF HAZARDOUS MATERIALS 2024; 465:133275. [PMID: 38157816 DOI: 10.1016/j.jhazmat.2023.133275] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/31/2023] [Revised: 12/05/2023] [Accepted: 12/13/2023] [Indexed: 01/03/2024]
Abstract
Organophosphate esters (OPEs) are widely used as flame retardants and plasticizers, presenting a potential threat to the environment and human health. To date, no automatic software exists for the nontargeted screening of OPEs. In this study, OPEs-ID, a user-friendly software, was developed for the identification of OPEs using liquid chromatography-high-resolution mass spectrometry. The main workflow of OPEs-ID included fragments-dependent precursor ion screening, elemental composition determination, extracted ion chromatograms (EIC) comparison, and molecular structure identification via MetFrag strategy. A mixture of 17 OPE standards was identified with an identification rate of 100% by OPEs-ID. OPEs-ID demonstrated a rate of 94.1% for correctly ranking within the top 1 candidate in a local database (41.2% in PubChem) for the 17 OPE standards, which remarkably improved the identification when compared to conventional in silico fragmentation algorithms. Using a pooled airborne fine particle sample (PM2.5), OPEs-ID could automatically retrieve 22 valid molecules with structure candidates. The detection frequencies of 9 newly identified OPEs were between 13% and 100% in the 32 PM2.5 samples. Their semi-quantification concentrations were comparable to those of some traditional OPEs. Overall, OPEs-ID offers a powerful tool to significantly enrich our understanding of the OPEs present in the environment.
Collapse
Affiliation(s)
- Yinran Xiong
- School of Chemistry & Molecular Engineering and Research Centre of Analysis and Test, East China University of Science and Technology, Shanghai 200237, China; Chongqing Municipal Key Laboratory of Scientific Utilization of Tobacco Resources, Chongqing 400060, China
| | - Jinyue Liu
- School of Chemistry & Molecular Engineering and Research Centre of Analysis and Test, East China University of Science and Technology, Shanghai 200237, China
| | - Jing Yu
- School of Chemistry & Molecular Engineering and Research Centre of Analysis and Test, East China University of Science and Technology, Shanghai 200237, China
| | - Da Chen
- School of Environment and Guangdong Key Laboratory of Environmental Pollution and Health, Jinan University, Guangzhou 510632, China
| | - Tiantian Li
- China CDC Key Laboratory of Environment and Population Health, National Institute of Environmental Health, Chinese Center for Disease Control and Prevention, Beijing 100021, China
| | - Fengli Zhou
- School of Environment and Guangdong Key Laboratory of Environmental Pollution and Health, Jinan University, Guangzhou 510632, China
| | - Ting Wu
- School of Chemistry & Molecular Engineering and Research Centre of Analysis and Test, East China University of Science and Technology, Shanghai 200237, China.
| | - Xiaotu Liu
- School of Environment and Guangdong Key Laboratory of Environmental Pollution and Health, Jinan University, Guangzhou 510632, China.
| | - Yiping Du
- School of Chemistry & Molecular Engineering and Research Centre of Analysis and Test, East China University of Science and Technology, Shanghai 200237, China.
| |
Collapse
|
22
|
An L, Chen B, Zhang Y, Li H, Huang R, Li F, Tang Y. Compound Similarity Network as a Novel Data Mining Strategy for High-Throughput Investigation of Degradation Pathways of Organic Pollutants in Industrial Wastewater Treatment. Anal Chem 2024; 96:3951-3959. [PMID: 38377587 DOI: 10.1021/acs.analchem.3c05983] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/22/2024]
Abstract
Identification of degradation products and pathways is crucial for investigating emerging pollutants and evaluation of wastewater treatment methods. Nontargeted analysis is a powerful tool to comprehensively investigate the degradation pathways of organic pollutants in real-world wastewater samples but often generates large data sets, making it difficult to effectively locate the exact information on interests. Herein, to efficiently establish the linkages among compounds in the same degradation pathways, we introduce a compound similarity network (CSN) as a novel data mining strategy for LC-MS-based nontargeted analysis of complex wastewater samples. Different from molecular networks that cluster compounds based on MS/MS spectra similarity, our CSN strategy harnesses molecular fingerprints to establish linkages among compounds and thus is spectra-independent. The effectiveness of CSN was demonstrated by nontargeted identification of degradation pathways and products of organic pollutants in leather industrial wastewater that underwent laboratory-scale activated carbon adsorption (ACD) and ozonation treatments. Utilizing CSN in interpreting nontargeted data, we tentatively annotated 4324 compounds in the untreated leather industrial wastewater, 3246 after ACD, and 3777 after ACD/ozonation. We located 145 potential degradation pathways of organic pollutants in the ACD/ozonation process using CSN and validated 7 pathways with 15 chemical standards. CSN also revealed 5 clusters of emerging pollutants, from which 3 compounds were selected for in vitro cytotoxicity study to evaluate their potential biohazards as new pollutants. As CSN offers an efficient way to connect massive compounds and to find multiple degradation pathways in a high-throughput manner, we anticipate that it will find wide applications in nontargeted analysis of diverse environmental samples.
Collapse
Affiliation(s)
- Lirong An
- Analytical & Testing Center, Key Laboratory of Green Chemistry & Technology of Ministry of Education, College of Chemistry, Sichuan University, Chengdu, Sichuan 610064, China
| | - Bin Chen
- Analytical & Testing Center, Key Laboratory of Green Chemistry & Technology of Ministry of Education, College of Chemistry, Sichuan University, Chengdu, Sichuan 610064, China
| | - Yuchen Zhang
- Sichuan Provincial Key Laboratory of Universities on Environmental Science and Engineering, MOE Key Laboratory of Deep Earth Science and Engineering, College of Architecture and Environment, Sichuan University, Chengdu, Sichuan 610065, China
| | - Hailiang Li
- Analytical & Testing Center, Key Laboratory of Green Chemistry & Technology of Ministry of Education, College of Chemistry, Sichuan University, Chengdu, Sichuan 610064, China
| | - Rongfu Huang
- Sichuan Provincial Key Laboratory of Universities on Environmental Science and Engineering, MOE Key Laboratory of Deep Earth Science and Engineering, College of Architecture and Environment, Sichuan University, Chengdu, Sichuan 610065, China
| | - Feng Li
- Analytical & Testing Center, Key Laboratory of Green Chemistry & Technology of Ministry of Education, College of Chemistry, Sichuan University, Chengdu, Sichuan 610064, China
| | - Yanan Tang
- Analytical & Testing Center, Key Laboratory of Green Chemistry & Technology of Ministry of Education, College of Chemistry, Sichuan University, Chengdu, Sichuan 610064, China
| |
Collapse
|
23
|
Pu S, McCord JP, Bangma J, Sobus JR. Establishing performance metrics for quantitative non-targeted analysis: a demonstration using per- and polyfluoroalkyl substances. Anal Bioanal Chem 2024; 416:1249-1267. [PMID: 38289355 PMCID: PMC10850229 DOI: 10.1007/s00216-023-05117-4] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2023] [Revised: 12/15/2023] [Accepted: 12/19/2023] [Indexed: 02/09/2024]
Abstract
Non-targeted analysis (NTA) is an increasingly popular technique for characterizing undefined chemical analytes. Generating quantitative NTA (qNTA) concentration estimates requires the use of training data from calibration "surrogates," which can yield diminished predictive performance relative to targeted analysis. To evaluate performance differences between targeted and qNTA approaches, we defined new metrics that convey predictive accuracy, uncertainty (using 95% inverse confidence intervals), and reliability (the extent to which confidence intervals contain true values). We calculated and examined these newly defined metrics across five quantitative approaches applied to a mixture of 29 per- and polyfluoroalkyl substances (PFAS). The quantitative approaches spanned a traditional targeted design using chemical-specific calibration curves to a generalizable qNTA design using bootstrap-sampled calibration values from "global" chemical surrogates. As expected, the targeted approaches performed best, with major benefits realized from matched calibration curves and internal standard correction. In comparison to the benchmark targeted approach, the most generalizable qNTA approach (using "global" surrogates) showed a decrease in accuracy by a factor of ~4, an increase in uncertainty by a factor of ~1000, and a decrease in reliability by ~5%, on average. Using "expert-selected" surrogates (n = 3) instead of "global" surrogates (n = 25) for qNTA yielded improvements in predictive accuracy (by ~1.5×) and uncertainty (by ~70×) but at the cost of further-reduced reliability (by ~5%). Overall, our results illustrate the utility of qNTA approaches for a subclass of emerging contaminants and present a framework on which to develop new approaches for more complex use cases.
Collapse
Affiliation(s)
- Shirley Pu
- US Environmental Protection Agency, Office of Research and Development, Center for Computational Toxicology and Exposure, 109 TW Alexander Dr., Research Triangle Park, NC, 27711, USA.
- Oak Ridge Institute for Science and Education (ORISE) Participant, 109 TW Alexander Dr., Research Triangle Park, NC, 27711, USA.
| | - James P McCord
- US Environmental Protection Agency, Office of Research and Development, Center for Environmental Measurement and Modeling, 109 TW Alexander Dr., Research Triangle Park, NC, 27711, USA.
| | - Jacqueline Bangma
- US Environmental Protection Agency, Office of Research and Development, Center for Environmental Measurement and Modeling, 109 TW Alexander Dr., Research Triangle Park, NC, 27711, USA
| | - Jon R Sobus
- US Environmental Protection Agency, Office of Research and Development, Center for Computational Toxicology and Exposure, 109 TW Alexander Dr., Research Triangle Park, NC, 27711, USA.
| |
Collapse
|
24
|
Hernández-Tenorio R. Hydroxylated transformation products of pharmaceutical active compounds: Generation from processes used in wastewater treatment plants and its environmental monitoring. CHEMOSPHERE 2024; 349:140753. [PMID: 38006923 DOI: 10.1016/j.chemosphere.2023.140753] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/18/2023] [Revised: 10/28/2023] [Accepted: 11/16/2023] [Indexed: 11/27/2023]
Abstract
Pharmaceutical active compounds (PhACs) are organic pollutants detected in wastewater and aquatic environments worldwide in concentrations ranging from ng L-1 to μg L-1. Wastewater effluents containing PhACs residues is discharged in municipal sewage and, subsequently collected in municipal wastewater treatment plants (WWTPs) where are not entirely removed. Thus, PhACs and its transformation products (TPs) are discharged into water bodies. In the current work, the transformation of PhACs under treatments used in municipal WWTPs such as biological, photolysis, chlorination, and ozonation processes was reviewed. Data set of the major transformation pathways were obtained of studies that performed the PhACs removal and TPs monitoring during batch-scale experiments using gas and liquid chromatography coupled with tandem mass spectrometry (GC/LC-MS/MS). Several transformation pathways as dealkylation, hydroxylation, oxidation, acetylation, aromatic ring opening, chlorination, dehalogenation, photo-substitution, and ozone attack reactions were identified during the transformation of PhACs. Especially, hydroxylation reaction was identified as transformation pathway in all the processes. During the elucidation of hydroxylated TPs several isobaric compounds as monohydroxylated and dihydroxylated were identified. However, hydroxylated TPs monitoring in wastewater and aquatic environments is a topic scarcely studied due to that has no environmental significance, lack of available analytic standars of hydroxylated TPs and lack of analytic methods for their identification. Thus, screening strategy for environmental monitoring of hydroxylated TPs was proposed through target and suspect screening using GC/LC-MS/MS systems. In the next years, more studies on the hydroxylated TPs monitoring are necessary for its detection in WWTPs effluents as well as studies on their environmental effects in aquatic environments.
Collapse
Affiliation(s)
- Rafael Hernández-Tenorio
- Centro de Investigación y Asistencia en Tecnología y Diseño Del Estado de Jalisco A.C., Sede Noreste, Vía de La Innovación 404, Autopista Monterrey-Aeropuerto Km 10, Parque PIIT, Apodaca, Nuevo León, C.P. 66628, Mexico.
| |
Collapse
|
25
|
Montone CM, Giannelli Moneta B, Laganà A, Piovesana S, Taglioni E, Cavaliere C. Transformation products of antibacterial drugs in environmental water: Identification approaches based on liquid chromatography-high resolution mass spectrometry. J Pharm Biomed Anal 2024; 238:115818. [PMID: 37944459 DOI: 10.1016/j.jpba.2023.115818] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2023] [Revised: 10/11/2023] [Accepted: 10/25/2023] [Indexed: 11/12/2023]
Abstract
In recent years, the presence of antibiotics in the aquatic environment has caused increasing concern for the possible consequences on human health and ecosystems, including the development of antibiotic-resistant bacteria. However, once antibiotics enter the environment, mainly through hospital and municipal discharges and the effluents of wastewater treatment plants, they can be subject to transformation reactions, driven by both biotic (e.g. microorganism and mammalian metabolisms) and abiotic factors (e.g. oxidation, photodegradation, and hydrolysis). The resulting transformation products (TPs) can be less or more active than their parent compounds, therefore the inclusion of TPs in monitoring programs should be mandatory. However, only the reference standards of a few known TPs are available, whereas many other TPs are still unknown, due to the high diversity of possible transformation reactions in the environment. Modern high-resolution mass spectrometry (HRMS) instrumentation is now ready to tackle this problem through suspect and untargeted screening approaches. However, for handling the large amount of data typically encountered in the analysis of environmental samples, these approaches also require suitable processing workflows and accurate tandem mass spectra interpretation. The compilation of a suspect list containing the possible monoisotopic masses of TPs retrieved from the literature and/or from laboratory simulated degradation experiments showed unique advantages. However, the employment of in silico prediction tools could improve the identification reliability. In this review, the most recent strategies relying on liquid chromatography-HRMS for the analysis of environmental TPs of the main antibiotic classes were examined, whereas TPs formed during water treatments or disinfection were not included.
Collapse
Affiliation(s)
- Carmela Maria Montone
- Department of Chemistry, Sapienza University of Rome, p.le Aldo Moro 5, 00185 Rome, Italy
| | | | - Aldo Laganà
- Department of Chemistry, Sapienza University of Rome, p.le Aldo Moro 5, 00185 Rome, Italy
| | - Susy Piovesana
- Department of Chemistry, Sapienza University of Rome, p.le Aldo Moro 5, 00185 Rome, Italy
| | - Enrico Taglioni
- Department of Chemistry, Sapienza University of Rome, p.le Aldo Moro 5, 00185 Rome, Italy
| | - Chiara Cavaliere
- Department of Chemistry, Sapienza University of Rome, p.le Aldo Moro 5, 00185 Rome, Italy.
| |
Collapse
|
26
|
Wu G, Wu T, Chen Y, He X, Liu P, Wang D, Geng J, Zhang XX. A comprehensive insight into the transformation pathways and products of fluoxetine and venlafaxine in wastewater based on molecular networking nontarget screening. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 907:167727. [PMID: 37864996 DOI: 10.1016/j.scitotenv.2023.167727] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/29/2023] [Revised: 10/04/2023] [Accepted: 10/08/2023] [Indexed: 10/23/2023]
Abstract
Fluoxetine (FLX) and venlafaxine (VEN) are widely used antidepressant pharmaceuticals and were frequently detected in wastewater. Despite incomplete mineralization during biological wastewater treatment processes has been revealed, little is known about their transformation products (TPs) formed in the biological systems. To fill this gap, batch reactors and molecular networking nontarget screening were employed to identify the TPs and explore the transformation pathways of FLX and VEN in wastewater. On the basis, the concentrations of the TPs in wastewater treatment plants (WWTPs) were determined and their toxicity was predicted. The removal rate constants per unit of biomass of FLX and VEN were up to 0.3192 and 0.1644 L/(gMLSS*d) in batch experiments, respectively. Subsequently, 11 TPs of VEN and 11 TPs of FLX were tentatively identified, among which 9 TPs of FLX and 5 TPs of VEN were newly reported in this study. The proposed transformation pathways provided new insights into the transformation reactions including dehydrogenation, N-formylation and hydroxylation for FLX, and formylation, epoxidation and methylation for VEN. Particularly, N-succinylation and demethylation were the dominant transformation pathways for FLX and VEN during transformation processes. The results of sampling campaigns revealed that the accumulated concentration of TPs were higher than the concentrations of VEN in effluent of WWTPs. In silico prediction results suggested that certain TPs have higher toxicity, persistence and biodegradability than their corresponding parent compounds of FLX and VEN. In addition, VEN-TP264(a) showed higher ecological risks than VEN. This study revealed the transformation processes and fate of FLX and VEN in wastewater, indicating that greater concerns should be exerted on the toxicity detection and control of the TPs of FLX and VEN in the treated wastewater.
Collapse
Affiliation(s)
- Gang Wu
- State Key Laboratory of Pollution Control and Resource Reuse, School of Environment, Nanjing University, Nanjing 210023, Jiangsu, China
| | - Tianshu Wu
- State Key Laboratory of Pollution Control and Resource Reuse, School of Environment, Nanjing University, Nanjing 210023, Jiangsu, China
| | - Yiran Chen
- State Key Laboratory of Pollution Control and Resource Reuse, School of Environment, Nanjing University, Nanjing 210023, Jiangsu, China; School of Environment, Hohai University, Nanjing 211100, Jiangsu, China
| | - Xiwei He
- State Key Laboratory of Pollution Control and Resource Reuse, School of Environment, Nanjing University, Nanjing 210023, Jiangsu, China
| | - Peng Liu
- State Key Laboratory of Pollution Control and Resource Reuse, School of Environment, Nanjing University, Nanjing 210023, Jiangsu, China
| | - Depeng Wang
- State Key Laboratory of Pollution Control and Resource Reuse, School of Environment, Nanjing University, Nanjing 210023, Jiangsu, China
| | - Jinju Geng
- State Key Laboratory of Pollution Control and Resource Reuse, School of Environment, Nanjing University, Nanjing 210023, Jiangsu, China; Key Laboratory of the Three Gorges Reservoir Region's Eco-Environment, Ministry of Education, Chongqing University, Chongqing 400044, China
| | - Xu-Xiang Zhang
- State Key Laboratory of Pollution Control and Resource Reuse, School of Environment, Nanjing University, Nanjing 210023, Jiangsu, China.
| |
Collapse
|
27
|
Ivanic FM, Butler M, Borón CI, Candal RJ. Assessing the transformation products and fate of Oxytetracycline by simulated aerobic degradation tests. CHEMOSPHERE 2023; 343:140284. [PMID: 37758075 DOI: 10.1016/j.chemosphere.2023.140284] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/28/2023] [Revised: 09/01/2023] [Accepted: 09/24/2023] [Indexed: 10/01/2023]
Abstract
Oxytetracycline (OTC) is a widely used broad-spectrum antibiotic, whose presence in water and sediments was reported in various regions of the world. The effects of OTC and other tetracyclines on the environment have been intensively studied although many of their transformation products (TPs) formed in the environment and their impact have not been yet fully characterized. Abiotic and biotic degradation tests under aerobic conditions at two pH values were carried out using OTC in artificial water/sediment systems to assess the effect of these variables on the environmental fate of the pollutant. HPLC-MSn was employed to detect and identify the main degradation products and pathways. Several transformations involved in the process were identified including alcohol oxidation, decarbonylation and hydroxylation. Differences in TPs and kinetics were found among degradation conditions, remarking a faster degradation of both OTC and TPs in the presence of microorganisms and at lower pH values. In summary, a total of 44 TPs were detected and structures were proposed for 20 of them, none of them having been previously reported. Furthermore, OTC degradation generated 24 TPs which remained in either solution or sediment, although none of them displayed higher algae toxicity than OTC. These results might be useful for planning future remediation and monitoring strategies.
Collapse
Affiliation(s)
- Federico M Ivanic
- IIIA-UNSAM-CONICET, Instituto de Investigación e Ingeniería Ambiental, Escuela de Hábitat y Sostenibilidad (EHyS), Universidad Nacional de San Martín (UNSAM), Campus Miguelete, 25 de mayo y Francia, 1650-San Martín, Provincia de Buenos Aires, Argentina
| | - Matías Butler
- IIIA-UNSAM-CONICET, Instituto de Investigación e Ingeniería Ambiental, Escuela de Hábitat y Sostenibilidad (EHyS), Universidad Nacional de San Martín (UNSAM), Campus Miguelete, 25 de mayo y Francia, 1650-San Martín, Provincia de Buenos Aires, Argentina.
| | - Carlos I Borón
- IIIA-UNSAM-CONICET, Instituto de Investigación e Ingeniería Ambiental, Escuela de Hábitat y Sostenibilidad (EHyS), Universidad Nacional de San Martín (UNSAM), Campus Miguelete, 25 de mayo y Francia, 1650-San Martín, Provincia de Buenos Aires, Argentina
| | - Roberto J Candal
- IIIA-UNSAM-CONICET, Instituto de Investigación e Ingeniería Ambiental, Escuela de Hábitat y Sostenibilidad (EHyS), Universidad Nacional de San Martín (UNSAM), Campus Miguelete, 25 de mayo y Francia, 1650-San Martín, Provincia de Buenos Aires, Argentina
| |
Collapse
|
28
|
Hu J, Lyu Y, Chen H, Li S, Sun W. Suspect and Nontarget Screening Reveal the Underestimated Risks of Antibiotic Transformation Products in Wastewater Treatment Plant Effluents. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2023; 57:17439-17451. [PMID: 37930269 DOI: 10.1021/acs.est.3c05008] [Citation(s) in RCA: 29] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/07/2023]
Abstract
Antibiotics are anthropogenic contaminants with a global presence and of deep concern in aquatic environments, while less is known about the occurrence and risks of their transformation products (TPs). Herein, we developed a comprehensive suspect and nontarget screening workflow based on high-resolution mass spectrometry to identify unknown antibiotic TPs in wastewater treatment plant effluents. We identified 211 compounds (35 parent antibiotics and 176 TPs) at confidence levels of ≥3 and 107 TPs originated from macrolides. TPs were quantified by 17 TPs standards and semiquantified by the predicted response factors and accounted for 55.6-95.1% (76.7% on average) of the total concentrations of parents and TPs. 22.2%, 63.1%, and 18.8% of the identified TPs were estimated to be more persistent, mobile, and toxic than their parent antibiotics, respectively. Further ecological risk assessment based on concentrations and toxicity to aquatic organisms revealed that the cumulative risks of TPs were generally higher than those of parents. Despite the newly formed N-oxide TPs, the tertiary treatment process (mainly ozonation) could decrease the averaged 20.3% of concentrations and 36.2% of the risks of antibiotic-related compounds. This study highlights the necessity to include antibiotic TPs in environmental scrutiny and risk assessment of antibiotics in different aquatic environments.
Collapse
Affiliation(s)
- Jingrun Hu
- Key Laboratory of Water and Sediment Sciences, Ministry of Education, College of Environmental Sciences and Engineering, Peking University, Beijing 100871, China
- State Environmental Protection Key Laboratory of All Material Fluxes in River Ecosystems, Beijing 100871, China
| | - Yitao Lyu
- Key Laboratory of Water and Sediment Sciences, Ministry of Education, College of Environmental Sciences and Engineering, Peking University, Beijing 100871, China
- State Environmental Protection Key Laboratory of All Material Fluxes in River Ecosystems, Beijing 100871, China
| | - Huan Chen
- Department of Environmental Engineering and Earth Sciences, Clemson University, Clemson, South Carolina 29634, United States
| | - Si Li
- Beijing Key Laboratory of Farmland Soil Pollution Prevention and Remediation, College of Resources and Environmental Sciences, China Agricultural University, Beijing 100193, China
| | - Weiling Sun
- Key Laboratory of Water and Sediment Sciences, Ministry of Education, College of Environmental Sciences and Engineering, Peking University, Beijing 100871, China
- State Environmental Protection Key Laboratory of All Material Fluxes in River Ecosystems, Beijing 100871, China
| |
Collapse
|
29
|
Göldner V, Ulke J, Kirchner B, Skalka D, Schmalz M, Heuckeroth S, Karst U. Electrochemistry-mass spectrometry bridging the gap between suspect and target screening of valsartan transformation products in wastewater treatment plant effluent. WATER RESEARCH 2023; 244:120525. [PMID: 37669607 DOI: 10.1016/j.watres.2023.120525] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/26/2023] [Revised: 08/06/2023] [Accepted: 08/23/2023] [Indexed: 09/07/2023]
Abstract
Degradation of xenobiotics in wastewater treatment plants may lead to the formation of transformation products with higher persistence or increased (eco-)toxic potential compared to the parent compounds. Accordingly, the identification of transformation products from wastewater treatment plant effluents has gained increasing attention. Here, we show the potential of electrochemistry hyphenated to liquid chromatography and mass spectrometry for the prediction of oxidative degradation in wastewater treatment plants using the antihypertensive drug valsartan as a model compound. This approach identifies seven electrochemical transformation products of valsartan, which are used to conduct a suspect screening in effluent of the main wastewater treatment plant in the city of Münster in Germany. Apart from the parent compound valsartan, an electrochemically predicted transformation product, the N-dealkylated ETP336, is detected in wastewater treatment plant effluent. Subsequently, a targeted liquid chromatographytandem mass spectrometry method for the detection of valsartan and its electrochemical transformation products is set up. Here, electrochemical oxidation is used to generate reference materials of the transformation products in situ by hyphenating electrochemistry online to a triple quadrupole mass spectrometer. Using this setup, multiple reaction monitoring transitions are set up without the need for laborious and costly synthesis and isolation of reference materials for the transformation products. The targeted method is then applied to extracts from wastewater treatment plant effluent and the presence of ETP336 and valsartan in the samples is verified. The presented workflow can be used to set up targeted analysis methods for previously unknown transformation products even without the need for expensive high-resolution mass spectrometers.
Collapse
Affiliation(s)
- Valentin Göldner
- Institute of Inorganic and Analytical Chemistry, University of Münster, Corrensstraße 48, 48149, Münster, Germany; International Graduate School for Battery Chemistry, Characterization, Analysis, Recycling and Application (BACCARA), University of Münster, Corrensstraße 40, 48149, Münster, Germany
| | - Jessica Ulke
- Institute of Inorganic and Analytical Chemistry, University of Münster, Corrensstraße 48, 48149, Münster, Germany
| | - Benedict Kirchner
- Institute of Inorganic and Analytical Chemistry, University of Münster, Corrensstraße 48, 48149, Münster, Germany
| | - Dominik Skalka
- Institute of Inorganic and Analytical Chemistry, University of Münster, Corrensstraße 48, 48149, Münster, Germany
| | - Marie Schmalz
- Institute of Inorganic and Analytical Chemistry, University of Münster, Corrensstraße 48, 48149, Münster, Germany
| | - Steffen Heuckeroth
- Institute of Inorganic and Analytical Chemistry, University of Münster, Corrensstraße 48, 48149, Münster, Germany
| | - Uwe Karst
- Institute of Inorganic and Analytical Chemistry, University of Münster, Corrensstraße 48, 48149, Münster, Germany; International Graduate School for Battery Chemistry, Characterization, Analysis, Recycling and Application (BACCARA), University of Münster, Corrensstraße 40, 48149, Münster, Germany.
| |
Collapse
|
30
|
Charkoftaki G, Aalizadeh R, Santos-Neto A, Tan WY, Davidson EA, Nikolopoulou V, Wang Y, Thompson B, Furnary T, Chen Y, Wunder EA, Coppi A, Schulz W, Iwasaki A, Pierce RW, Cruz CSD, Desir GV, Kaminski N, Farhadian S, Veselkov K, Datta R, Campbell M, Thomaidis NS, Ko AI, Thompson DC, Vasiliou V. An AI-powered patient triage platform for future viral outbreaks using COVID-19 as a disease model. Hum Genomics 2023; 17:80. [PMID: 37641126 PMCID: PMC10463861 DOI: 10.1186/s40246-023-00521-4] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2023] [Accepted: 07/30/2023] [Indexed: 08/31/2023] Open
Abstract
Over the last century, outbreaks and pandemics have occurred with disturbing regularity, necessitating advance preparation and large-scale, coordinated response. Here, we developed a machine learning predictive model of disease severity and length of hospitalization for COVID-19, which can be utilized as a platform for future unknown viral outbreaks. We combined untargeted metabolomics on plasma data obtained from COVID-19 patients (n = 111) during hospitalization and healthy controls (n = 342), clinical and comorbidity data (n = 508) to build this patient triage platform, which consists of three parts: (i) the clinical decision tree, which amongst other biomarkers showed that patients with increased eosinophils have worse disease prognosis and can serve as a new potential biomarker with high accuracy (AUC = 0.974), (ii) the estimation of patient hospitalization length with ± 5 days error (R2 = 0.9765) and (iii) the prediction of the disease severity and the need of patient transfer to the intensive care unit. We report a significant decrease in serotonin levels in patients who needed positive airway pressure oxygen and/or were intubated. Furthermore, 5-hydroxy tryptophan, allantoin, and glucuronic acid metabolites were increased in COVID-19 patients and collectively they can serve as biomarkers to predict disease progression. The ability to quickly identify which patients will develop life-threatening illness would allow the efficient allocation of medical resources and implementation of the most effective medical interventions. We would advocate that the same approach could be utilized in future viral outbreaks to help hospitals triage patients more effectively and improve patient outcomes while optimizing healthcare resources.
Collapse
Affiliation(s)
- Georgia Charkoftaki
- Department of Environmental Health Sciences, Yale School of Public Health, Yale University, New Haven, CT, USA
| | - Reza Aalizadeh
- Laboratory of Analytical Chemistry, Department of Chemistry, National and Kapodistrian University of Athens, Athens, Zografou, 15771, Greece
| | - Alvaro Santos-Neto
- São Carlos Institute of Chemistry, University of São Paulo, São Carlos, SP, 13566-590, Brazil
| | - Wan Ying Tan
- Department of Environmental Health Sciences, Yale School of Public Health, Yale University, New Haven, CT, USA
- Internal Medicine Residency Program, Department of Internal Medicine, Norwalk Hospital, Norwalk, CT, USA
| | - Emily A Davidson
- Department of Environmental Health Sciences, Yale School of Public Health, Yale University, New Haven, CT, USA
- Department of Cellular and Molecular Physiology, Yale University School of Medicine, New Haven, CT, USA
| | - Varvara Nikolopoulou
- Laboratory of Analytical Chemistry, Department of Chemistry, National and Kapodistrian University of Athens, Athens, Zografou, 15771, Greece
| | - Yewei Wang
- Department of Environmental Health Sciences, Yale School of Public Health, Yale University, New Haven, CT, USA
| | - Brian Thompson
- Department of Environmental Health Sciences, Yale School of Public Health, Yale University, New Haven, CT, USA
| | - Tristan Furnary
- Department of Environmental Health Sciences, Yale School of Public Health, Yale University, New Haven, CT, USA
- Harvard Medical School, Harvard University, Boston, MA, USA
| | - Ying Chen
- Department of Environmental Health Sciences, Yale School of Public Health, Yale University, New Haven, CT, USA
| | - Elsio A Wunder
- Department of Epidemiology of Microbial Diseases, Yale School of Public Health, Yale University, New Haven, CT, USA
- Institute Gonçalo Moniz, Fundação Oswaldo Cruz, Brazilian Ministry of Health, Salvador, Brazil
| | - Andreas Coppi
- Center for Outcomes Research and Evaluation, Yale-New Haven Hospital, New Haven, CT, USA
| | - Wade Schulz
- Center for Outcomes Research and Evaluation, Yale-New Haven Hospital, New Haven, CT, USA
- Department of Laboratory Medicine, Yale University School of Medicine, New Haven, CT, USA
| | - Akiko Iwasaki
- Department of Immunobiology, Yale University School of Medicine, New Haven, CT, USA
- Howard Hughes Medical Institute, MD, Chevy Chase, USA
| | - Richard W Pierce
- Department of Pediatrics , Yale School of Medicine, New Haven, CT, USA
| | - Charles S Dela Cruz
- Section of Pulmonary, Critical Care and Sleep Medicine, Yale University School of Medicine, New Haven, CT, USA
| | - Gary V Desir
- Department of Internal Medicine, Section of Nephrology, Yale University School of Medicine, New Haven, CT, USA
| | - Naftali Kaminski
- Section of Pulmonary, Critical Care and Sleep Medicine, Yale University School of Medicine, New Haven, CT, USA
| | - Shelli Farhadian
- Department of Internal Medicine, Section of Infectious Diseases, Yale School of Medicine, New Haven, CT, USA
- Department of Neurology, Yale School of Medicine, New Haven, CT, USA
- Department of Epidemiology of Microbial Diseases, Yale School of Public Health, Yale University, New Haven, USA
| | - Kirill Veselkov
- Department of Environmental Health Sciences, Yale School of Public Health, Yale University, New Haven, CT, USA
- Department of Surgery and Cancer, Imperial College London, South Kensington Campus, London, UK
| | - Rupak Datta
- Veterans Affairs Connecticut Healthcare System, CT, West Haven, USA
- Department of Internal Medicine, Yale School of Medicine, CT, New Haven, USA
| | - Melissa Campbell
- Department of Pediatrics, Division of Pediatric Infectious Diseases, School of Medicine, Duke University, NC, Durham, USA
| | - Nikolaos S Thomaidis
- Department of Environmental Health Sciences, Yale School of Public Health, Yale University, New Haven, CT, USA
- Laboratory of Analytical Chemistry, Department of Chemistry, National and Kapodistrian University of Athens, Athens, Zografou, 15771, Greece
| | - Albert I Ko
- Department of Epidemiology of Microbial Diseases, Yale School of Public Health, Yale University, New Haven, CT, USA
- Institute Gonçalo Moniz, Fundação Oswaldo Cruz, Brazilian Ministry of Health, Salvador, Brazil
- Department of Internal Medicine, Section of Infectious Diseases, Yale School of Medicine, New Haven, CT, USA
| | - David C Thompson
- Department of Environmental Health Sciences, Yale School of Public Health, Yale University, New Haven, CT, USA
| | - Vasilis Vasiliou
- Department of Environmental Health Sciences, Yale School of Public Health, Yale University, New Haven, CT, USA.
| |
Collapse
|
31
|
Sepman H, Malm L, Peets P, MacLeod M, Martin J, Breitholtz M, Kruve A. Bypassing the Identification: MS2Quant for Concentration Estimations of Chemicals Detected with Nontarget LC-HRMS from MS 2 Data. Anal Chem 2023; 95:12329-12338. [PMID: 37548594 PMCID: PMC10448440 DOI: 10.1021/acs.analchem.3c01744] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2023] [Accepted: 07/23/2023] [Indexed: 08/08/2023]
Abstract
Nontarget analysis by liquid chromatography-high-resolution mass spectrometry (LC-HRMS) is now widely used to detect pollutants in the environment. Shifting away from targeted methods has led to detection of previously unseen chemicals, and assessing the risk posed by these newly detected chemicals is an important challenge. Assessing exposure and toxicity of chemicals detected with nontarget HRMS is highly dependent on the knowledge of the structure of the chemical. However, the majority of features detected in nontarget screening remain unidentified and therefore the risk assessment with conventional tools is hampered. Here, we developed MS2Quant, a machine learning model that enables prediction of concentration from fragmentation (MS2) spectra of detected, but unidentified chemicals. MS2Quant is an xgbTree algorithm-based regression model developed using ionization efficiency data for 1191 unique chemicals that spans 8 orders of magnitude. The ionization efficiency values are predicted from structural fingerprints that can be computed from the SMILES notation of the identified chemicals or from MS2 spectra of unidentified chemicals using SIRIUS+CSI:FingerID software. The root mean square errors of the training and test sets were 0.55 (3.5×) and 0.80 (6.3×) log-units, respectively. In comparison, ionization efficiency prediction approaches that depend on assigning an unequivocal structure typically yield errors from 2× to 6×. The MS2Quant quantification model was validated on a set of 39 environmental pollutants and resulted in a mean prediction error of 7.4×, a geometric mean of 4.5×, and a median of 4.0×. For comparison, a model based on PaDEL descriptors that depends on unequivocal structural assignment was developed using the same dataset. The latter approach yielded a comparable mean prediction error of 9.5×, a geometric mean of 5.6×, and a median of 5.2× on the validation set chemicals when the top structural assignment was used as input. This confirms that MS2Quant enables to extract exposure information for unidentified chemicals which, although detected, have thus far been disregarded due to lack of accurate tools for quantification. The MS2Quant model is available as an R-package in GitHub for improving discovery and monitoring of potentially hazardous environmental pollutants with nontarget screening.
Collapse
Affiliation(s)
- Helen Sepman
- Department
of Materials and Environmental Chemistry, Stockholm University, Svante Arrhenius väg 16, 106
91 Stockholm, Sweden
- Department
of Environmental Science, Stockholm University, Svante Arrhenius väg 8, 106 91 Stockholm, Sweden
| | - Louise Malm
- Department
of Materials and Environmental Chemistry, Stockholm University, Svante Arrhenius väg 16, 106
91 Stockholm, Sweden
| | - Pilleriin Peets
- Department
of Materials and Environmental Chemistry, Stockholm University, Svante Arrhenius väg 16, 106
91 Stockholm, Sweden
| | - Matthew MacLeod
- Department
of Environmental Science, Stockholm University, Svante Arrhenius väg 8, 106 91 Stockholm, Sweden
| | - Jonathan Martin
- Science
for Life Laboratory, Department of Environmental Science, Stockholm University, Svante Arrhenius väg 8, 106 91 Stockholm, Sweden
| | - Magnus Breitholtz
- Department
of Environmental Science, Stockholm University, Svante Arrhenius väg 8, 106 91 Stockholm, Sweden
| | - Anneli Kruve
- Department
of Materials and Environmental Chemistry, Stockholm University, Svante Arrhenius väg 16, 106
91 Stockholm, Sweden
- Department
of Environmental Science, Stockholm University, Svante Arrhenius väg 8, 106 91 Stockholm, Sweden
| |
Collapse
|
32
|
Trostel L, Coll C, Fenner K, Hafner J. Combining predictive and analytical methods to elucidate pharmaceutical biotransformation in activated sludge. ENVIRONMENTAL SCIENCE. PROCESSES & IMPACTS 2023; 25:1322-1336. [PMID: 37539453 DOI: 10.1039/d3em00161j] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/05/2023]
Abstract
While man-made chemicals in the environment are ubiquitous and a potential threat to human health and ecosystem integrity, the environmental fate of chemical contaminants such as pharmaceuticals is often poorly understood. Biodegradation processes driven by microbial communities convert chemicals into transformation products (TPs) that may themselves have adverse ecological effects. The detection of TPs formed during biodegradation has been continuously improved thanks to the development of TP prediction algorithms and analytical workflows. Here, we contribute to this advance by (i) reviewing past applications of TP identification workflows, (ii) applying an updated workflow for TP prediction to 42 pharmaceuticals in biodegradation experiments with activated sludge, and (iii) benchmarking 5 different pathway prediction models, comprising 4 prediction models trained on different datasets provided by enviPath, and the state-of-the-art EAWAG pathway prediction system. Using the updated workflow, we could tentatively identify 79 transformation products for 31 pharmaceutical compounds. Compared to previous works, we have further automatized several steps that were previously performed by hand. By benchmarking the enviPath prediction system on experimental data, we demonstrate the usefulness of the pathway prediction tool to generate suspect lists for screening, and we propose new avenues to improve their accuracy. Moreover, we provide a well-documented workflow that can be (i) readily applied to detect transformation products in activated sludge and (ii) potentially extended to other environmental studies.
Collapse
Affiliation(s)
- Leo Trostel
- Department of Environmental Chemistry, Swiss Federal Institute of Aquatic Science and Technology (Eawag), Dübendorf, 8600, Zürich, Switzerland.
| | - Claudia Coll
- Department of Environmental Chemistry, Swiss Federal Institute of Aquatic Science and Technology (Eawag), Dübendorf, 8600, Zürich, Switzerland.
| | - Kathrin Fenner
- Department of Environmental Chemistry, Swiss Federal Institute of Aquatic Science and Technology (Eawag), Dübendorf, 8600, Zürich, Switzerland.
- Department of Chemistry, University of Zürich, 8057 Zürich, Switzerland
| | - Jasmin Hafner
- Department of Environmental Chemistry, Swiss Federal Institute of Aquatic Science and Technology (Eawag), Dübendorf, 8600, Zürich, Switzerland.
- Department of Chemistry, University of Zürich, 8057 Zürich, Switzerland
| |
Collapse
|
33
|
European Chemicals Agency (ECHA) and European Food Safety Authority (EFSA), Hofman‐Caris R, Dingemans M, Reus A, Shaikh SM, Muñoz Sierra J, Karges U, der Beek TA, Nogueiro E, Lythgo C, Parra Morte JM, Bastaki M, Serafimova R, Friel A, Court Marques D, Uphoff A, Bielska L, Putzu C, Ruggeri L, Papadaki P. Guidance document on the impact of water treatment processes on residues of active substances or their metabolites in water abstracted for the production of drinking water. EFSA J 2023; 21:e08194. [PMID: 37644961 PMCID: PMC10461463 DOI: 10.2903/j.efsa.2023.8194] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/31/2023] Open
Abstract
This guidance document provides a tiered framework for risk assessors and facilitates risk managers in making decisions concerning the approval of active substances (AS) that are chemicals in plant protection products (PPPs) and biocidal products, and authorisation of the products. Based on the approaches presented in this document, a conclusion can be drawn on the impact of water treatment processes on residues of the AS or its metabolites in surface water and/or groundwater abstracted for the production of drinking water, i.e. the formation of transformation products (TPs). This guidance enables the identification of actual public health concerns from exposure to harmful compounds generated during the processing of water for the production of drinking water, and it focuses on water treatment methods commonly used in the European Union (EU). The tiered framework determines whether residues from PPP use or residues from biocidal product use can be present in water at water abstraction locations. Approaches, including experimental methods, are described that can be used to assess whether harmful TPs may form during water treatment and, if so, how to assess the impact of exposure to these water treatment TPs (tTPs) and other residues including environmental TPs (eTPs) on human and domesticated animal health through the consumption of TPs via drinking water. The types of studies or information that would be required are described while avoiding vertebrate testing as much as possible. The framework integrates the use of weight-of-evidence and, when possible alternative (new approach) methods to avoid as far as possible the need for additional testing.
Collapse
|
34
|
Jiang X, Xiao L, Chen Y, Huang C, Wang J, Tang X, Wan K, Xu H. Degradation of the Novel Heterocyclic Insecticide Pyraquinil in Water: Kinetics, Degradation Pathways, Transformation Products Identification, and Toxicity Assessment. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2023. [PMID: 37378629 DOI: 10.1021/acs.jafc.3c01971] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/29/2023]
Abstract
As new pesticides are continuously introduced into agricultural systems, it is essential to investigate their environmental behavior and toxicity effects to better evaluate their potential risks. In this study, the degradation kinetics, pathways, and aquatic toxicity of the new fused heterocyclic insecticide pyraquinil in water under different conditions were investigated for the first time. Pyraquinil was classified as an easily degradable pesticide in natural water, and hydrolyzes faster in alkaline conditions and at higher temperatures. The formation trends of the main transformation products (TPs) of pyraquinil were also quantified. Fifteen TPs were identified in water using ultrahigh-performance liquid chromatography coupled to quadrupole Orbitrap high-resolution mass spectrometry (UHPLC-Orbitrap-HRMS) and Compound Discoverer software, which adopted suspect and nontarget screening strategies. Among them, twelve TPs were reported for the first time and 11 TPs were confirmed by synthesis of their standards. The proposed degradation pathways have demonstrated that the 4,5-dihydropyrazolo[1,5-a]quinazoline skeleton of pyraquinil is stable enough to retain in its TPs. ECOSAR prediction and laboratory tests showed that pyraquinil was "very toxic" or "toxic" to aquatic organisms, while the toxicities of all of the TPs are substantially lower than that of pyraquinil except for TP484, which was predicted to pose a higher toxicity. The results are important for elucidating the fate and assessing the environmental risks of pyraquinil, and provide guidance for scientific and reasonable use.
Collapse
Affiliation(s)
- Xunyuan Jiang
- Institute of Quality Standard and Monitoring Technology for Agro-products of Guangdong Academy of Agricultural Sciences, Guangdong Provincial Key Laboratory of Quality & Safety Risk Assessment for Agro-products, and Key Laboratory of Testing and Evaluation for Agro-product Safety and Quality (Guangzhou), Ministry of Agriculture and Rural Affairs, Guangzhou 510640, China
| | - Lu Xiao
- Institute of Quality Standard and Monitoring Technology for Agro-products of Guangdong Academy of Agricultural Sciences, Guangdong Provincial Key Laboratory of Quality & Safety Risk Assessment for Agro-products, and Key Laboratory of Testing and Evaluation for Agro-product Safety and Quality (Guangzhou), Ministry of Agriculture and Rural Affairs, Guangzhou 510640, China
| | - Yan Chen
- Institute of Quality Standard and Monitoring Technology for Agro-products of Guangdong Academy of Agricultural Sciences, Guangdong Provincial Key Laboratory of Quality & Safety Risk Assessment for Agro-products, and Key Laboratory of Testing and Evaluation for Agro-product Safety and Quality (Guangzhou), Ministry of Agriculture and Rural Affairs, Guangzhou 510640, China
| | - Congling Huang
- Institute of Quality Standard and Monitoring Technology for Agro-products of Guangdong Academy of Agricultural Sciences, Guangdong Provincial Key Laboratory of Quality & Safety Risk Assessment for Agro-products, and Key Laboratory of Testing and Evaluation for Agro-product Safety and Quality (Guangzhou), Ministry of Agriculture and Rural Affairs, Guangzhou 510640, China
| | - Jiale Wang
- Institute of Quality Standard and Monitoring Technology for Agro-products of Guangdong Academy of Agricultural Sciences, Guangdong Provincial Key Laboratory of Quality & Safety Risk Assessment for Agro-products, and Key Laboratory of Testing and Evaluation for Agro-product Safety and Quality (Guangzhou), Ministry of Agriculture and Rural Affairs, Guangzhou 510640, China
| | - Xuemei Tang
- Institute of Quality Standard and Monitoring Technology for Agro-products of Guangdong Academy of Agricultural Sciences, Guangdong Provincial Key Laboratory of Quality & Safety Risk Assessment for Agro-products, and Key Laboratory of Testing and Evaluation for Agro-product Safety and Quality (Guangzhou), Ministry of Agriculture and Rural Affairs, Guangzhou 510640, China
| | - Kai Wan
- Institute of Quality Standard and Monitoring Technology for Agro-products of Guangdong Academy of Agricultural Sciences, Guangdong Provincial Key Laboratory of Quality & Safety Risk Assessment for Agro-products, and Key Laboratory of Testing and Evaluation for Agro-product Safety and Quality (Guangzhou), Ministry of Agriculture and Rural Affairs, Guangzhou 510640, China
| | - Hanhong Xu
- National Key Laboratory of Green Pesticide and Key Laboratory of Natural Pesticide and Chemical Biology, Ministry of Education, South China Agricultural University, Guangzhou 510640, China
| |
Collapse
|
35
|
Nováková P, Švecová H, Bořík A, Grabic R. Novel nontarget LC-HRMS-based approaches for evaluation of drinking water treatment. ENVIRONMENTAL MONITORING AND ASSESSMENT 2023; 195:739. [PMID: 37233798 DOI: 10.1007/s10661-023-11348-w] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Subscribe] [Scholar Register] [Received: 09/30/2022] [Accepted: 05/03/2023] [Indexed: 05/27/2023]
Abstract
A conventional evaluation methodology for drinking water pollution focuses on analysing hundreds of compounds, usually by liquid chromatography-tandem mass spectrometry. High-resolution mass spectrometry allows comprehensive evaluation of all detected signals (compounds) based on their elemental composition, intensity, and numbers. We combined target analysis of 192 emerging micropollutants with nontarget (NT) full-scan/MS/MS methods to describe the impact of treatment steps in detail and assess drinking water treatment efficiency without compound identification. The removal efficiency based on target analytes ranged from - 143 to 97%, depending on the treatment section, technologies, and season. The same effect calculated for all signals detected in raw water by the NT method ranged between 19 and 65%. Ozonation increased the removal of micropollutants from the raw water but simultaneously caused the formation of new compounds. Moreover, ozonation byproducts showed higher persistence than products formed during other types of treatment. We evaluated chlorinated and brominated organics detected by specific isotopic patterns within the developed workflow. These compounds indicated anthropogenic raw water pollution but also potential treatment byproducts. We could match some of these compounds with libraries available in the software. We can conclude that passive sampling combined with nontargeted analysis shows to be a promising approach for water treatment control, especially for long-term monitoring of changes in technology lines because passive sampling dramatically reduces the number of samples and provides time-weighted average information for 2 to 4 weeks.
Collapse
Affiliation(s)
- Petra Nováková
- Faculty of Fisheries and Protection of Waters, South Bohemian Research Centre of Aquaculture and Biodiversity of Hydrocenoses, University of South Bohemia in České Budějovice, Zátiší 728/II, 389 25, Vodňany, Czech Republic.
| | - Helena Švecová
- Faculty of Fisheries and Protection of Waters, South Bohemian Research Centre of Aquaculture and Biodiversity of Hydrocenoses, University of South Bohemia in České Budějovice, Zátiší 728/II, 389 25, Vodňany, Czech Republic
| | - Adam Bořík
- Faculty of Fisheries and Protection of Waters, South Bohemian Research Centre of Aquaculture and Biodiversity of Hydrocenoses, University of South Bohemia in České Budějovice, Zátiší 728/II, 389 25, Vodňany, Czech Republic
| | - Roman Grabic
- Faculty of Fisheries and Protection of Waters, South Bohemian Research Centre of Aquaculture and Biodiversity of Hydrocenoses, University of South Bohemia in České Budějovice, Zátiší 728/II, 389 25, Vodňany, Czech Republic
| |
Collapse
|
36
|
Wu G, Qian Y, Fan F, Zhang Z, Zhang Y, Yu Q, Zhang X, Ren H, Geng J, Liu H. Revealing specific transformation pattern of sulfonamides during wastewater biological treatment processes by molecular networking nontarget screening. WATER RESEARCH 2023; 235:119895. [PMID: 36989798 DOI: 10.1016/j.watres.2023.119895] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/13/2022] [Revised: 02/26/2023] [Accepted: 03/17/2023] [Indexed: 06/19/2023]
Abstract
Biotransformation of emerging contaminants (ECs) is of importance in various natural and engineered systems to eliminate the adverse effects of ECs toward organisms. In wastewater, structurally similar ECs may transform through similar reactions triggered by common enzymes. However, the transformation pattern for them was scarcely studied. To fill the research gaps, five sulfonamides were chosen as the targeted ECs with similar structure to explore the transformation pattern in wastewater biological treatment experiments at lab scale. Through molecular networking based nontarget screening, 45 transformation products (TPs) of sulfonamides were identified and 14 of them were newly found. On the basis, five specific transformation patterns were summarized for sulfonamides by transformation pathways comparing, reaction frequency analyzing and dominant TPs comparing. Results suggested that pterin-chelation and formylation (dominant transformation pathway) and acetylation, methylation and deamination reactions were commonly occurred for sulfonamides in wastewater. Among them, the role of formylation as the dominant transformation pathway for sulfonamides transformed in wastewater was firstly reported in present study. Subsequent frontier molecular orbital calculation suggested the active site of amino (N1H2-) may contribute the specific transformation pattern of sulfonamides. Present study reveals the specific transformation pattern of sulfonamides from the aspect of TPs and transformation pathways. In the future, knowledge on the specific transformation pattern can be used to regulate and enhance the removal of a class of ECs with similar structure rather than just one of ECs.
Collapse
Affiliation(s)
- Gang Wu
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing 210023, Jiangsu, China
| | - Yuli Qian
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing 210023, Jiangsu, China
| | - Fan Fan
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing 210023, Jiangsu, China
| | - Zhizhao Zhang
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing 210023, Jiangsu, China
| | - Yao Zhang
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing 210023, Jiangsu, China
| | - Qingmiao Yu
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing 210023, Jiangsu, China; Key Laboratory of the Three Gorges Reservoir Region's Eco-Environment, Ministry of Education, Chongqing University, Chongqing 400044, China
| | - Xuxiang Zhang
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing 210023, Jiangsu, China
| | - Hongqiang Ren
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing 210023, Jiangsu, China
| | - Jinju Geng
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing 210023, Jiangsu, China; Key Laboratory of the Three Gorges Reservoir Region's Eco-Environment, Ministry of Education, Chongqing University, Chongqing 400044, China.
| | - Hualiang Liu
- Jiangsu Province Center for Disease Control and Prevention, Nanjing, Jiangsu, 210009, China.
| |
Collapse
|
37
|
Man Y, Wu C, Yu B, Mao L, Zhu L, Zhang L, Zhang Y, Jiang H, Yuan S, Zheng Y, Liu X. Abiotic transformation of kresoxim-methyl in aquatic environments: Structure elucidation of transformation products by LC-HRMS and toxicity assessment. WATER RESEARCH 2023; 233:119723. [PMID: 36801572 DOI: 10.1016/j.watres.2023.119723] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/16/2022] [Revised: 02/02/2023] [Accepted: 02/07/2023] [Indexed: 06/18/2023]
Abstract
In this study, abiotic transformation of an important strobilurin fungicide, kresoxim-methyl, was investigated under controlled laboratory conditions for the first time by studying its kinetics of hydrolysis and photolysis, degradation pathways and toxicity of possibly formed transformation products (TPs). The results indicated that kresoxim-methyl showed a fast degradation in pH9 solutions with DT50 of 0.5 d but relatively stable under neutral or acidic environments in the dark. It was prone to photochemical reactions under simulated sunlight, and the photolysis behavior was easily affected by different natural substances such as humic acid (HA), Fe3+and NO3-which are ubiquitous in natural water, showing the complexity of degradation mechanisms and pathways of this chemical compound. The potential multiple photo-transformation pathways via photoisomerization, hydrolyzation of methyl ester, hydroxylation, cleavage of oxime ether and cleavage of benzyl ether were observed. 18 TPs generated from these transformations were structurally elucidated based on an integrated workflow combining suspect and nontarget screening by high resolution mass spectrum (HRMS), and two of them were confirmed with reference standards. Most of TPs, as far as we know, have never been described before. The in-silico toxicity assessment showed that some of TPs were still toxic or very toxic to aquatic organisms, although they exhibit lower aquatic toxicity compared to the parent compound. Therefore, the potential hazards of the TPs of kresoxim-methyl merits further evaluation.
Collapse
Affiliation(s)
- Yanli Man
- State Key Laboratory for Biology of Plant Disease and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, 100193, China
| | - Chi Wu
- State Key Laboratory for Biology of Plant Disease and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, 100193, China
| | - Bochi Yu
- State Key Laboratory for Biology of Plant Disease and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, 100193, China
| | - Liangang Mao
- State Key Laboratory for Biology of Plant Disease and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, 100193, China
| | - Lizhen Zhu
- State Key Laboratory for Biology of Plant Disease and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, 100193, China
| | - Lan Zhang
- State Key Laboratory for Biology of Plant Disease and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, 100193, China
| | - Yanning Zhang
- State Key Laboratory for Biology of Plant Disease and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, 100193, China
| | - Hongyun Jiang
- State Key Laboratory for Biology of Plant Disease and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, 100193, China
| | - Shankui Yuan
- Environment Division, Institute for the Control of Agrochemicals, Ministry of Agriculture and Rural Affairs, Beijing, 100125, China
| | - Yongquan Zheng
- Shandong Engineering Research Center for Environment-Friendly Agricultural Pest Management, College of Plant Health and Medicine, Qingdao Agricultural University, Qingdao, 266109, China.
| | - Xingang Liu
- State Key Laboratory for Biology of Plant Disease and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, 100193, China.
| |
Collapse
|
38
|
Wu G, Wang X, Zhang X, Ren H, Wang Y, Yu Q, Wei S, Geng J. Nontarget screening based on molecular networking strategy to identify transformation products of citalopram and sertraline in wastewater. WATER RESEARCH 2023; 232:119509. [PMID: 36801596 DOI: 10.1016/j.watres.2022.119509] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/21/2022] [Revised: 11/20/2022] [Accepted: 12/17/2022] [Indexed: 06/18/2023]
Abstract
Citalopram (CIT) and sertraline (SER) are highly consumed antidepressants worldwide and have been extensively detected in wastewater. Due to the incomplete mineralization, transformation products (TPs) of them can be detected in wastewater. Comparing with parent compounds, knowledge on TPs are limited. To fill these research gaps, lab-scale batch experiments, WWTPs sampling and in silico toxicity prediction were implemented to investigate the structure, occurrence and toxicity of TPs. Based on molecular networking nontarget strategy, 13 TPs of CIT and 12 TPs of SER were tentatively identified. Among them, 4 TPs from CIT and 5 TPs from SER were newly found in present study. TPs identification results compared with results obtained from previous nontarget strategies demonstrated that the excellent performances for molecular networking strategy on candidate TPs prioritizing and new TPs finding, especially for low abundance TPs. Further, transformation pathways for CIT and SER in wastewater were proposed. Newly identified TPs provided insights on defluorination, formylation and methylation for CIT and dehydrogenation, N-malonylation and N-acetoxylation for SER transformed in wastewater. Nitrile hydrolysis and N-succinylation were found to be the dominant transformation pathways for CIT and SER in wastewater, respectively. WWTPs sampling results shown the concentrations of SER and CIT ranged from 0.46 to 28.66 ng/L and 17.16 to 58.36 ng/L. In addition, 7 TPs of CIT and 2 TPs of SER found in lab-scale wastewater samples were found in WWTPs. In silico results suggested 2 TPs of CIT may be more toxic than CIT toward all three trophic levels organisms. Present study provides new insights into the transformation processes of CIT and SER in wastewater. In addition, the necessity of paying more attention on TPs was further highlighted from the aspects of toxicity for TPs of CIT and SER in effluent of WWTPs.
Collapse
Affiliation(s)
- Gang Wu
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing 210023, Jiangsu, China
| | - Xuebing Wang
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing 210023, Jiangsu, China
| | - Xuxiang Zhang
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing 210023, Jiangsu, China
| | - Hongqiang Ren
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing 210023, Jiangsu, China
| | - Yanru Wang
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing 210023, Jiangsu, China
| | - Qingmiao Yu
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing 210023, Jiangsu, China; Key Laboratory of the Three Gorges Reservoir Region's Eco-Environment, Ministry of Education, Chongqing University, Chongqing 400044, China
| | - Si Wei
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing 210023, Jiangsu, China
| | - Jinju Geng
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing 210023, Jiangsu, China; Key Laboratory of the Three Gorges Reservoir Region's Eco-Environment, Ministry of Education, Chongqing University, Chongqing 400044, China.
| |
Collapse
|
39
|
Yang F, Zhao F. Mechanism of visible light enhances microbial degradation of Bisphenol A. JOURNAL OF HAZARDOUS MATERIALS 2023; 443:130214. [PMID: 36327837 DOI: 10.1016/j.jhazmat.2022.130214] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/28/2022] [Revised: 10/17/2022] [Accepted: 10/18/2022] [Indexed: 06/16/2023]
Abstract
Bisphenol A (BPA) is a toxic endocrine disruptor detected in various environments. Microbial metabolic/enzymatic degradation has been thought to be the main pathway for BPA attenuation in natural environments. In this study, we found that under visible light conditions, superoxide produced by bacteria was the main reason for the rapid removal of BPA, accounting for 57 % of the total removal rate. With visible light, the bacteria degraded BPA at a rate of 0.22 mg/L/d, and the total removal within 8 days reached 85 %, which is 4.7 times compared with that of dark culture. The intermediate product 4-iso-propenylphenol, which was considered as an end-product of microbial degradation of BPA in previous reports, was detected in large quantities at 24 h in culture but gradually decreased in our experiment. Community analysis suggested bacteria with aromatic hydrocarbon degradation ability were more enriched under light incubation. Moreover, the bacteria showed well degradation ability to various pharmaceutically active but nonbiodegradable compounds including diclofenac and fluoxetine, with a removal rate of 88 % and 20 %, respectively. Our study revealed the organic pollutant transformation pathway under the combined action of light and microorganisms, providing new insights into the microbial treatment of aromatic hydrocarbon pollutants.
Collapse
Affiliation(s)
- Fan Yang
- CAS Key Laboratory of Urban Pollutant Conversion, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, PR China; University of Chinese Academy of Sciences, Beijing 100049, PR China
| | - Feng Zhao
- CAS Key Laboratory of Urban Pollutant Conversion, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, PR China.
| |
Collapse
|
40
|
Xia D, Liu H, Lu Y, Liu Y, Liang J, Xie D, Lu G, Qiu J, Wang R. Utility of a non-target screening method to explore the chlorination of similar sulfonamide antibiotics: Pathways and NCl intermediates. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 858:160042. [PMID: 36356741 DOI: 10.1016/j.scitotenv.2022.160042] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/31/2022] [Revised: 10/23/2022] [Accepted: 11/04/2022] [Indexed: 06/16/2023]
Abstract
Sulfonamides (SAs) are ubiquitous antibiotics that are increasingly detected in aquatic environments and can react with free available chlorine to produce transformation products (TPs) during disinfection. However, the TPs generated during chlorination remains poorly understood. Here, a non-target screening method based on the PyHRMS program was used to assess the transformation pathways of five SAs, particularly the transient NCl intermediates, during a simulated chlorination process. We observed 210 TPs during SA chlorination using a non-target screening method based on high-resolution mass spectrometry, and the reaction mechanisms mainly included chlorine substitution, desulfonation, and hydroxylation. Among the TPs, 87 were tentatively proposed to be NCl intermediates as they instantly disappeared after quenching with Na2S2O3. The MS2 spectra of 13 of these potential NCl intermediates were obtained, and all displayed an [M-Cl]+ fragment. A diagnostic fragment ion (DFI) strategy was applied to explore the structural relationship between parent compounds and TPs. Based on the result, five SAs and 101 TPs (if their MS2 spectra were available) could be connected through the same fragments, and this method was also proved effective in a real wastewater treatment plant effluent sample. We believe this novel method can help explore the TPs of organic compounds during chlorination in drinking water plants.
Collapse
Affiliation(s)
- Di Xia
- State Environmental Protection Key Laboratory of Environmental Pollution Health Risk Assessment, South China Institute of Environmental Sciences, Ministry of Ecology and Environment, Guangzhou 510655, China
| | - He Liu
- State Environmental Protection Key Laboratory of Environmental Pollution Health Risk Assessment, South China Institute of Environmental Sciences, Ministry of Ecology and Environment, Guangzhou 510655, China
| | - Yang Lu
- State Environmental Protection Key Laboratory of Environmental Pollution Health Risk Assessment, South China Institute of Environmental Sciences, Ministry of Ecology and Environment, Guangzhou 510655, China
| | - Yanchen Liu
- School of Environmental Science and Engineering, Guangdong University of Technology, Guangzhou 510006, China
| | - Jiahao Liang
- School of Environment and Energy, South China University of Technology, Guangzhou 510006, China
| | - Danping Xie
- State Environmental Protection Key Laboratory of Environmental Pollution Health Risk Assessment, South China Institute of Environmental Sciences, Ministry of Ecology and Environment, Guangzhou 510655, China
| | - Guining Lu
- School of Environment and Energy, South China University of Technology, Guangzhou 510006, China
| | - Jinrong Qiu
- State Environmental Protection Key Laboratory of Environmental Pollution Health Risk Assessment, South China Institute of Environmental Sciences, Ministry of Ecology and Environment, Guangzhou 510655, China
| | - Rui Wang
- State Environmental Protection Key Laboratory of Environmental Pollution Health Risk Assessment, South China Institute of Environmental Sciences, Ministry of Ecology and Environment, Guangzhou 510655, China.
| |
Collapse
|
41
|
Alam R, Mahmood RA, Islam S, Ardiati FC, Solihat NN, Alam MB, Lee SH, Yanto DHY, Kim S. Understanding the biodegradation pathways of azo dyes by immobilized white-rot fungus, Trametes hirsuta D7, using UPLC-PDA-FTICR MS supported by in silico simulations and toxicity assessment. CHEMOSPHERE 2023; 313:137505. [PMID: 36509189 DOI: 10.1016/j.chemosphere.2022.137505] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/08/2022] [Revised: 10/13/2022] [Accepted: 12/06/2022] [Indexed: 06/17/2023]
Abstract
No biodegradation methods are absolute in the treatment of all textile dyes, which leads to structure-dependent degradation. In this study, biodegradation of three azo dyes, reactive black 5 (RB5), acid blue 113 (AB113), and acid orange 7 (AO7), was investigated using an immobilized fungus, Trametes hirsuta D7. The degraded metabolites were identified using UPLC-PDA-FTICR MS and the biodegradation pathway followed was proposed. RB5 (92%) and AB113 (97%) were effectively degraded, whereas only 30% of AO7 was degraded. Molecular docking simulations were performed to determine the reason behind the poor degradation of AO7. Weak binding affinity, deficiency in H-bonding interactions, and the absence of interactions between the azo (-NN-) group and active residues of the model laccase enzyme were responsible for the low degradation efficiency of AO7. Furthermore, cytotoxicity and genotoxicity assays confirmed that the fungus-treated dye produced non-toxic metabolites. The observations of this study will be useful for understanding and further improving enzymatic dye biodegradation.
Collapse
Affiliation(s)
- Rafiqul Alam
- Department of Chemistry, Kyungpook National University, Daegu, 41566, Republic of Korea
| | - Raisul Awal Mahmood
- Department of Chemistry, Kyungpook National University, Daegu, 41566, Republic of Korea
| | - Syful Islam
- Department of Chemistry, Kyungpook National University, Daegu, 41566, Republic of Korea
| | - Fenny Clara Ardiati
- Research Center for Applied Microbiology, National Research and Innovation Agency (BRIN), Bogor, 16911, Indonesia
| | - Nissa Nurfajrin Solihat
- Research Center for Biomass and Bioproducts, National Research and Innovation Agency (BRIN), Bogor, 16911, Indonesia
| | - Md Badrul Alam
- Department of Food Science and Biotechnology, Graduate School, Kyungpook National University, Daegu, 41566, Republic of Korea
| | - Sang Han Lee
- Department of Food Science and Biotechnology, Graduate School, Kyungpook National University, Daegu, 41566, Republic of Korea
| | - Dede Heri Yuli Yanto
- Research Center for Applied Microbiology, National Research and Innovation Agency (BRIN), Bogor, 16911, Indonesia; Research Collaboration Center for Marine Biomaterials, Jatinangor, 45360, Indonesia.
| | - Sunghwan Kim
- Department of Chemistry, Kyungpook National University, Daegu, 41566, Republic of Korea; Mass Spectrometry Converging Research Center and Green-Nano Materials Research Center, Daegu, 41566, Republic of Korea.
| |
Collapse
|
42
|
Suspect Screening of Chemicals in Hospital Wastewaters Using Effect-Directed Analysis Approach as Prioritization Strategy. Molecules 2023; 28:molecules28031212. [PMID: 36770879 PMCID: PMC9921743 DOI: 10.3390/molecules28031212] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2022] [Revised: 01/18/2023] [Accepted: 01/19/2023] [Indexed: 01/28/2023] Open
Abstract
The increasing number of contaminants in the environment has pushed water monitoring programs to find out the most hazardous known and unknown chemicals in the environment. Sample treatment-simplification methods and non-target screening approaches can help researchers to not overlook potential chemicals present in complex aqueous samples. In this work, an effect-directed analysis (EDA) protocol using the sea urchin embryo test (SET) as a toxicological in vivo bioassay was used as simplified strategy to identify potential unknown chemicals present in a very complex aqueous matrix such as hospital effluent. The SET bioassay was used for the first time here to evaluate potential toxic fractions in hospital effluent, which were obtained after a two-step fractionation using C18 and aminopropyl chromatographic semi-preparative columns. The unknown compounds present in the toxic fractions were identified by means of liquid chromatography coupled to a Q Exactive Orbitrap high-resolution mass spectrometer (LC-HRMS) and using a suspect analysis approach. The results were complemented by gas chromatography-mass spectrometry analysis (GC-MS) in order to identify the widest range of chemical compounds present in the sample and the toxic fractions. Using EDA as sample treatment simplification method, the number of unknown chemicals (>446 features) detected in the raw sample was narrowed down to 94 potential toxic candidates identified in the significantly toxic fractions. Among them, the presence of 25 compounds was confirmed with available chemical standards including 14 pharmaceuticals, a personal care product, six pesticides and four industrial products. The observations found in this work emphasize the difficulties in identifying potential toxicity drivers in complex water samples, as in the case of hospital wastewater.
Collapse
|
43
|
Gkotsis G, Nika MC, Athanasopoulou AI, Vasilatos K, Alygizakis N, Boschert M, Osterauer R, Höpker KA, Thomaidis NS. Advanced throughput analytical strategies for the comprehensive HRMS screening of organic micropollutants in eggs of different bird species. CHEMOSPHERE 2023; 312:137092. [PMID: 36332731 DOI: 10.1016/j.chemosphere.2022.137092] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/15/2022] [Revised: 10/11/2022] [Accepted: 10/30/2022] [Indexed: 06/16/2023]
Abstract
Raptors are ideal indicators for biomonitoring studies using wildlife in order to assess the environmental pollution in the terrestrial ecosystem, since they are placed in the highest trophic position in the food webs and their life expectancy is relatively long. In this study, 26 eggs of 4 bird species (Peregrine falcon, Eurasian curlew, Little owl and Eagle owl) collected in Germany, were investigated for the presence of persistent organic pollutants (POPs) and thousands of contaminants of emerging concern (CECs). Generic sample preparation protocols were followed for the extraction of the analytes and the purification of the extracts, and the samples were analyzed both by liquid (LC) and gas chromatography (GC) coupled to high resolution mass spectrometry (HRMS), for capturing a wide range of organic micropollutants with different physicochemical properties. State-of-the-art screening methodologies were applied in the acquired HRMS data, including wide-scope target analysis of 2448 known pollutants and suspect screening of over 65,000 environmentally relevant compounds. Overall, 58 pollutants from different chemical classes, such as plant protection products, per- and polyfluoroalkyl substances and medicinal products, as well as their transformation products, were determined through target analysis. Most of the detected compounds were lipophilic (logP>2), although the presence of (semi)polar contaminants should not be overlooked, underlying the need for holistic analytical approaches in environmental monitoring studies. p,p'-DDE, PCB 153 and PCB138, PFOS and methylparaben were the most frequently detected compounds. 50 additional substances were identified and semi-quantified through suspect screening workflows, including mainly compounds of industrial use with high production volume.
Collapse
Affiliation(s)
- Georgios Gkotsis
- National and Kapodistrian University of Athens, Panepistimiopolis Zographou, 15771, Athens, Greece
| | - Maria-Christina Nika
- National and Kapodistrian University of Athens, Panepistimiopolis Zographou, 15771, Athens, Greece.
| | - Antonia I Athanasopoulou
- National and Kapodistrian University of Athens, Panepistimiopolis Zographou, 15771, Athens, Greece
| | - Konstantinos Vasilatos
- National and Kapodistrian University of Athens, Panepistimiopolis Zographou, 15771, Athens, Greece
| | - Nikiforos Alygizakis
- National and Kapodistrian University of Athens, Panepistimiopolis Zographou, 15771, Athens, Greece; Environmental Institute s.r.o., Okruzna 784/42, 97241, Kos, Slovak Republic
| | | | - Raphaela Osterauer
- State Institute for Environment Baden-Wuerttemberg (LUBW), Griesbachstr. 1, 76185 Karlsruhe, Germany
| | - Kai-Achim Höpker
- State Institute for Environment Baden-Wuerttemberg (LUBW), Griesbachstr. 1, 76185 Karlsruhe, Germany
| | - Nikolaos S Thomaidis
- National and Kapodistrian University of Athens, Panepistimiopolis Zographou, 15771, Athens, Greece.
| |
Collapse
|
44
|
Beretsou VG, Nika MC, Manoli K, Michael C, Sui Q, Lundy L, Revitt DM, Thomaidis NS, Fatta-Kassinos D. Multiclass target analysis of contaminants of emerging concern including transformation products, soil bioavailability assessment and retrospective screening as tools to evaluate risks associated with reclaimed water reuse. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 852:158391. [PMID: 36049679 DOI: 10.1016/j.scitotenv.2022.158391] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/10/2022] [Revised: 08/25/2022] [Accepted: 08/25/2022] [Indexed: 06/15/2023]
Abstract
The occurrence of 200 multiclass contaminants of emerging concern (CECs) encompassing 168 medicinal products and transformation products (TPs), 5 artificial sweeteners, 12 industrial chemicals, and 15 other compounds was investigated in influent and effluent wastewater samples collected during 7 consecutive days from 5 wastewater treatment plants (WWTPs) located in Cyprus. The methodology included a generic solid-phase extraction protocol using mixed-bed cartridges followed by Ultra-High Performance Liquid Chromatography coupled with Quadrupole-Time of Flight Mass Spectrometry (UHPLC-QTOF-MS) analysis. A total of 63 CECs were detected at least in one sample, with 52 and 55 out of the 200 compounds detected in influents and effluents, respectively. Ten (10) out of the 24 families of parent compounds and associated TPs were found in the wastewater samples (influent or effluent). 1-H-benzotriazole, carbamazepine, citalopram, lamotrigine, sucralose, tramadol, and venlafaxine (>80 % frequency of appearance in effluents) were assessed with respect to their bioavailability in soil as part of different scenarios of irrigation with reclaimed water following a qualitative approach. A high score of 12 (high probability) was predicted for 2 scenarios, a low score of 3 (rare occasions) for 2 scenarios, while the rest 28 scenarios had scores 5-8 (unlikely or limited possibility) and 9-11 (possibly). Retrospective screening was performed with the use of a target database of 2466 compounds and led to the detection of 158 additional compounds (medicinal products (65), medicinal products TPs (15), illicit drugs (7), illicit drugs TPs (3), industrial chemicals (11), plant protection products (25), plant protection products TPs (10), and various other compounds (22). This work aspires to showcase how the presence of CECs in wastewater could be investigated and assessed at WWTP level, including an expert-based methodology for assessing the soil bioavailability of CECs, with the aim to develop sustainable practices and enhance reclaimed water reuse.
Collapse
Affiliation(s)
- Vasiliki G Beretsou
- Department of Civil and Environmental Engineering, School of Engineering, University of Cyprus, P.O. Box 20537, 1678 Nicosia, Cyprus; Nireas-International Water Research Center, School of Engineering, University of Cyprus, P.O. Box 20537, 1678 Nicosia, Cyprus
| | - Maria-Christina Nika
- Laboratory of Analytical Chemistry, Department of Chemistry, National and Kapodistrian University of Athens, Panepistimiopolis Zografou, 15771 Athens, Greece
| | - Kyriakos Manoli
- Nireas-International Water Research Center, School of Engineering, University of Cyprus, P.O. Box 20537, 1678 Nicosia, Cyprus
| | - Costas Michael
- Nireas-International Water Research Center, School of Engineering, University of Cyprus, P.O. Box 20537, 1678 Nicosia, Cyprus
| | - Qian Sui
- State Environmental Protection Key Laboratory of Environmental Risk Assessment and Control on Chemical Process, School of Resources and Environmental Engineering, East China University of Science and Technology, Shanghai 200237, China; Shanghai Institute of Pollution Control and Ecological Security, Shanghai 200092, China
| | - Lian Lundy
- Middlesex University, Department of Natural Sciences, School of Science and Technology, London NW4 4BT, United Kingdom
| | - D Michael Revitt
- Middlesex University, Department of Natural Sciences, School of Science and Technology, London NW4 4BT, United Kingdom
| | - Nikolaos S Thomaidis
- Laboratory of Analytical Chemistry, Department of Chemistry, National and Kapodistrian University of Athens, Panepistimiopolis Zografou, 15771 Athens, Greece.
| | - Despo Fatta-Kassinos
- Department of Civil and Environmental Engineering, School of Engineering, University of Cyprus, P.O. Box 20537, 1678 Nicosia, Cyprus; Nireas-International Water Research Center, School of Engineering, University of Cyprus, P.O. Box 20537, 1678 Nicosia, Cyprus.
| |
Collapse
|
45
|
Mass Spectrometric Methods for Non-Targeted Screening of Metabolites: A Future Perspective for the Identification of Unknown Compounds in Plant Extracts. SEPARATIONS 2022. [DOI: 10.3390/separations9120415] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Phyto products are widely used in natural products, such as medicines, cosmetics or as so-called “superfoods”. However, the exact metabolite composition of these products is still unknown, due to the time-consuming process of metabolite identification. Non-target screening by LC-HRMS/MS could be a technique to overcome these problems with its capacity to identify compounds based on their retention time, accurate mass and fragmentation pattern. In particular, the use of computational tools, such as deconvolution algorithms, retention time prediction, in silico fragmentation and sophisticated search algorithms, for comparison of spectra similarity with mass spectral databases facilitate researchers to conduct a more exhaustive profiling of metabolic contents. This review aims to provide an overview of various techniques and tools for non-target screening of phyto samples using LC-HRMS/MS.
Collapse
|
46
|
Cao G, Zhang J, Wang W, Wu P, Ru Y, Cai Z. Mass spectrometry analysis of a ubiquitous tire rubber-derived quinone in the environment. Trends Analyt Chem 2022. [DOI: 10.1016/j.trac.2022.116756] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
|
47
|
Pesticides Identification and Sustainable Viticulture Practices to Reduce Their Use: An Overview. MOLECULES (BASEL, SWITZERLAND) 2022; 27:molecules27238205. [PMID: 36500297 PMCID: PMC9735622 DOI: 10.3390/molecules27238205] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/31/2022] [Revised: 11/18/2022] [Accepted: 11/21/2022] [Indexed: 11/27/2022]
Abstract
The use of pesticides is a necessary practice in the modern era. Therefore, it is impossible to ignore the pesticide market, which has developed into one of the most lucrative in the world. Nowadays, humans are subjected to many potential risks, and significant amounts of toxic compounds enter their bodies through food, drink, and the air itself. Identification and quantification of these hazardous compounds is crucial for the sustainable development of an increasing world population which poses high climatic and political constraints on agricultural production systems. The maximum residue limits for pesticides have been regulated by the Codex Alimentarius Commission and European Union to protect human health. In this review, we have summarized and explained the analytical methods for pesticide extraction and determination. Also, sustainable viticulture practices like organic vineyards, tillage, biopesticides, nanobiopesticides, and precision viticulture are briefly discussed. These new techniques allow wine growers to be more profitable and efficient, while contributing to the reduction of pests and increasing the quality of wines.
Collapse
|
48
|
Kharel S, Tentscher PR, Bester K. Further transformation of the primary ozonation products of tramadol- and venlafaxine N-oxide: Mechanistic and structural considerations. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 845:157259. [PMID: 35817117 DOI: 10.1016/j.scitotenv.2022.157259] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/10/2022] [Revised: 06/04/2022] [Accepted: 07/05/2022] [Indexed: 06/15/2023]
Abstract
Ozonation has been used to effectively remove micropollutants from the secondary effluent in several wastewater treatment plants. It is known that ozonation transforms tertiary amine compounds into their respective N-oxides, however in an earlier study a mass balance could not be closed at elevated ozone concentrations, leading to the assumption that more ozonation products are possible. This study was conducted to elucidate which (hitherto unknown) ozonation products can be formed from venlafaxine and tramadol when ozonating wastewater. Ozonation experiments were performed with tramadol and venlafaxine N-oxide in two different set-ups. Both tramadol- and venlafaxine N-oxide degraded during ozonation in pure (deionized) water in both semi-continuous and batch mode ozonation set-ups. 13 and 17 new transformation products were detected from tramadol- and venlafaxine N-oxide respectively, using high resolution mass spectrometry with ESI(+) ionization. Empirical chemical formulas were proposed based on the determination of the exact masses and interpretation of the product ion spectra. These transformation products result from the addition of one to three oxygen atoms and removal of C, -CH2, C2H2, C3H6, etc., from the parent molecule, respectively. Quenching experiments suggested that most of the transformation products originated from the direct reaction with ozone (eight for tramadol N-oxide and ten for venlafaxine N-oxide), whereas fewer products originated from the reaction with OH radicals (three for tramadol N-oxide and three for venlafaxine N-oxide). Reaction mechanisms and chemical structures of products are proposed, based on the available active sites and past literature on ozone reaction mechanisms. The experimental results are compared to theory and literature on ozone reactive sites and ozone reaction mechanisms. All in all this shows that there can be multiple ozonation products, and ozonation pathways can be complex, even if initially only one ozonation product is formed.
Collapse
Affiliation(s)
- Suman Kharel
- Aarhus University, Department of Environmental Science, Frederiksborgvej 399, 4000 Roskilde, Denmark; Centre for Water Technology (WATEC) at Aarhus University, Frederiksborgvej 399, 4000 Roskilde, Denmark
| | - Peter R Tentscher
- Department of Chemistry and Bioscience, Aalborg University, 9220 Aalborg East, Denmark
| | - Kai Bester
- Aarhus University, Department of Environmental Science, Frederiksborgvej 399, 4000 Roskilde, Denmark; Centre for Water Technology (WATEC) at Aarhus University, Frederiksborgvej 399, 4000 Roskilde, Denmark.
| |
Collapse
|
49
|
Rocco K, Margoum C, Richard L, Coquery M. Enhanced database creation with in silico workflows for suspect screening of unknown tebuconazole transformation products in environmental samples by UHPLC-HRMS. JOURNAL OF HAZARDOUS MATERIALS 2022; 440:129706. [PMID: 35961075 DOI: 10.1016/j.jhazmat.2022.129706] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/04/2022] [Revised: 07/12/2022] [Accepted: 07/30/2022] [Indexed: 06/15/2023]
Abstract
The search and identification of organic contaminants in agricultural watersheds has become a crucial effort to better characterize watershed contamination by pesticides. The past decade has brought a more holistic view of watershed contamination via the deployment of powerful analytical strategies such as non-target and suspect screening analysis that can search more contaminants and their transformation products. However, suspect screening analysis remains broadly confined to known molecules, primarily due to the lack of analytical standards and suspect databases for unknowns such as pesticide transformation products. Here we developed a novel workflow by cross-comparing the results of various in silico prediction tools against literature data to create an enhanced database for suspect screening of pesticide transformation products. This workflow was applied on tebuconazole, used here as a model pesticide, and resulted in a suspect screening database counting 291 transformation products. The chromatographic retention times and tandem mass spectra were predicted for each of these compounds using 6 models based on multilinear regression and more complex machine-learning algorithms. This comprehensive approach to the investigation and identification of tebuconazole transformation products was retrospectively applied on environmental samples and found 6 transformation products identified for the first time in river water samples.
Collapse
Affiliation(s)
- Kevin Rocco
- INRAE, UR RiverLy, 69625 Villeurbanne, France.
| | | | | | | |
Collapse
|
50
|
Knoche L, Lisec J, Koch M. Analysis of electrochemical and liver microsomal transformation products of lasalocid by LC/HRMS. RAPID COMMUNICATIONS IN MASS SPECTROMETRY : RCM 2022; 36:e9349. [PMID: 35781351 DOI: 10.1002/rcm.9349] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/21/2022] [Revised: 05/09/2022] [Accepted: 06/30/2022] [Indexed: 06/15/2023]
Abstract
RATIONALE Lasalocid (LAS), an ionophore, is used in cattle and poultry farming as feed additive for its antibiotic and growth-promoting properties. Literature on transformation products (TP) resulting from LAS degradation is limited. So far, only hydroxylation is found to occur as the metabolic reaction during the LAS degradation. To investigate potential TPs of LAS, we used electrochemistry (EC) and liver microsome (LM) assays to synthesize TPs, which were identified using liquid chromatography high-resolution mass spectrometry (LC/HRMS). METHODS Electrochemically produced TPs were analyzed online by direct coupling of the electrochemical cell to the electrospray ionization (ESI) source of a Sciex Triple-TOF high resolution mass spectrometer. Then, EC-treated LAS solution was collected and analyzed offline using LC/HRMS to confirm stable TPs and improve their annotation with a chemical structure due to informative MS/MS spectra. In a complementary approach, TPs formed by rat and human microsomal incubation were investigated using LC/HRMS. The resulting data were used to investigate LAS modification reactions and elucidate the chemical structure of obtained TPs. RESULTS The online measurements identified a broad variety of TPs, resulting from modification reactions like (de-)hydrogenation, hydration, methylation, oxidation as well as adduct formation with methanol. We consistently observed different ion complexations of LAS and LAS-TPs (Na+ ; 2Na+ K+ ; NaNH4 + ; KNH4 + ). Two stable methylated EC-TPs were found, structurally annotated, and assigned to a likely modification reaction. Using LM incubation, seven TPs were formed, mostly by oxidation/hydroxylation. After the identification of LM-TPs as Na+ -complexes, we identified LM-TPs as K+ -complexes. CONCLUSION We identified and characterized TPs of LAS using EC- and LM-based methods. Moreover, we found different ion complexes of LAS-based TPs. This knowledge, especially the different ion complexes, may help elucidate the metabolic and environmental degradation pathways of LAS.
Collapse
Affiliation(s)
- Lisa Knoche
- Department of Analytical Chemistry and Reference Materials, Organic Trace Analysis and Food Analysis, Bundesanstalt für Materialforschung und -prüfung (BAM), Berlin, Germany
- Institute of Nutritional Science, University of Potsdam, Potsdam, Germany
| | - Jan Lisec
- Department of Analytical Chemistry and Reference Materials, Organic Trace Analysis and Food Analysis, Bundesanstalt für Materialforschung und -prüfung (BAM), Berlin, Germany
| | - Matthias Koch
- Department of Analytical Chemistry and Reference Materials, Organic Trace Analysis and Food Analysis, Bundesanstalt für Materialforschung und -prüfung (BAM), Berlin, Germany
| |
Collapse
|