1
|
Yu W, Yu S, Zhang F, Xu Q, Zhang X, Kong J. Ultrasensitive electrochemical sensor for lipopolysaccharide detection catalyzed by 3,4,9,10-perylenetetracarboxylic diimide. Anal Chim Acta 2025; 1352:343926. [PMID: 40210282 DOI: 10.1016/j.aca.2025.343926] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2024] [Revised: 02/15/2025] [Accepted: 03/10/2025] [Indexed: 04/12/2025]
Abstract
BACKGROUND Lipopolysaccharide (LPS), a bacterial endotoxin prevalent in Gram-negative pathogens (e.g., Escherichia coli), induces severe immune responses linked to endotoxemia and hepatitis. Despite its clinical significance, conventional LPS detection methods (e.g., limulus amebocyte lysate assays) face challenges including operational complexity, high cost, and limited sensitivity. Addressing these limitations necessitates the development of innovative strategies for ultrasensitive LPS quantification. RESULTS We present an electrochemical biosensor integrating dual-signal amplification: (1) affinity amplification via phenylboronic acid-cis-diol covalent binding on LPS polysaccharide chains, and (2) photocatalytic amplification using perylene diimide (PDI)-mediated atom transfer radical polymerization (Photo-ATRP) under red light (615-650 nm). Thiol-functionalized DNA aptamers enable specific LPS capture, while PDI catalyzes rapid ferrocene monomer polymerization, achieving exponential signal enhancement. The sensor demonstrates exceptional performance: (1) Ultrahigh sensitivity: Detection limit of 0.25 fg/mL. (2) Wide dynamic range: Linear response from 1.0 fg/mL to 0.1 pg/mL. (3) Robust specificity: Minimal interference in human serum matrices. SIGNIFICANCE This work establishes a paradigm for LPS detection through three key advances: (1) Operational simplicity: Eliminates enzymatic/nanomaterial dependencies via metal-free PDI photocatalysis. (2) Translational utility: Serum compatibility supports clinical diagnostics and point-of-care applications. (3) Catalytic innovation: Validates PDI as a high-efficiency photocatalyst for controlled polymer synthesis. The sensor's low-cost fabrication, rapid response (<4.5 h), and femtomolar sensitivity position it as a transformative tool for sepsis monitoring and biomedical research.
Collapse
Affiliation(s)
- Wenjie Yu
- School of Environmental and Biological Engineering, Nanjing University of Science and Technology, Nanjing, 210094, PR China
| | - Shuaibing Yu
- School of Environmental and Biological Engineering, Nanjing University of Science and Technology, Nanjing, 210094, PR China
| | - Fenghong Zhang
- School of Environmental and Biological Engineering, Nanjing University of Science and Technology, Nanjing, 210094, PR China
| | - Qinyuan Xu
- School of Environmental and Biological Engineering, Nanjing University of Science and Technology, Nanjing, 210094, PR China
| | - Xueji Zhang
- School of Biomedical Engineering, Shenzhen University Health Science Center, Shenzhen, 518060, PR China
| | - Jinming Kong
- School of Environmental and Biological Engineering, Nanjing University of Science and Technology, Nanjing, 210094, PR China.
| |
Collapse
|
2
|
Zutis E, Paidere G, Ruska R, Freimanis T, Cipa J, Zalubovskis R, Elksne M, Tars K, Kazaks A, Leitans J, Sarakovskis A, Anspoks A. Surface Functionalization of ITO for Dual-Mode Hypoxia-Associated Cancer Biomarker Detection. BIOSENSORS 2025; 15:186. [PMID: 40136983 PMCID: PMC11940081 DOI: 10.3390/bios15030186] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/03/2025] [Revised: 03/11/2025] [Accepted: 03/12/2025] [Indexed: 03/27/2025]
Abstract
Indium tin oxide (ITO) is a transparent conducting material with exceptional electrical and optical properties, widely used in biosensing and bioelectronics. Functionalization of ITO with linker molecules enables covalent attachment of biomolecules, allowing for dual-mode optical and electrochemical detection. Carbonic anhydrase IX (CA IX), a transmembrane enzyme overexpressed in hypoxic tumors, is a promising biomarker for cancer diagnostics due to its restricted expression in normal tissues. However, conventional detection methods are time-intensive and unsuitable for point-of-care applications. In this study, ITO surfaces were functionalized using silane-based chemistry to immobilize CA IX-specific antibodies, creating a novel biosensing platform. The biosensor utilized a secondary horseradish peroxidase (HRP)-conjugated antibody to catalyze the oxidation of luminol in the presence of hydrogen peroxide, producing a chemiluminescent and electrochemical signal. Characterization of the biosensor via a dual-mode optical and electrochemical approach revealed efficient antibody immobilization. Due to the high variation observed in the optical approach, limit of detection (LOD) experiments were conducted exclusively with electrochemistry, yielding an LOD of 266.4 ng/mL. These findings demonstrate the potential of ITO-based electrochemical biosensors for sensitive and selective CA IX detection, highlighting their applicability in cancer diagnostics and other biomedical fields.
Collapse
Affiliation(s)
- Edmunds Zutis
- Institute of Solid State Physics, University of Latvia, 8 Kengaraga Street, LV-1063 Riga, Latvia
| | - Gunita Paidere
- Institute of Solid State Physics, University of Latvia, 8 Kengaraga Street, LV-1063 Riga, Latvia
| | - Rihards Ruska
- Institute of Solid State Physics, University of Latvia, 8 Kengaraga Street, LV-1063 Riga, Latvia
| | - Toms Freimanis
- Latvian Institute of Organic Synthesis, 21 Aizkraukles Street, LV-1006 Riga, Latvia
| | - Janis Cipa
- Institute of Solid State Physics, University of Latvia, 8 Kengaraga Street, LV-1063 Riga, Latvia
| | - Raivis Zalubovskis
- Latvian Institute of Organic Synthesis, 21 Aizkraukles Street, LV-1006 Riga, Latvia
- Institute of Chemistry and Chemical Technology, Faculty of Natural Sciences and Technology, Riga Technical University, P. Valdena iela 3, LV-1048 Riga, Latvia
| | - Maira Elksne
- Institute of Solid State Physics, University of Latvia, 8 Kengaraga Street, LV-1063 Riga, Latvia
| | - Kaspars Tars
- Latvian Biomedical Research and Study Centre, 1 k-1 Ratsupites Street, LV-1067 Riga, Latvia
| | - Andris Kazaks
- Latvian Biomedical Research and Study Centre, 1 k-1 Ratsupites Street, LV-1067 Riga, Latvia
| | - Janis Leitans
- Latvian Biomedical Research and Study Centre, 1 k-1 Ratsupites Street, LV-1067 Riga, Latvia
| | - Anatolijs Sarakovskis
- Institute of Solid State Physics, University of Latvia, 8 Kengaraga Street, LV-1063 Riga, Latvia
| | - Andris Anspoks
- Institute of Solid State Physics, University of Latvia, 8 Kengaraga Street, LV-1063 Riga, Latvia
| |
Collapse
|
3
|
Chen CY, Kim E, Zakaria FR, Chu MJ, Wu B, Payne GF, Bentley WE. 3D Printed Spectroelectrochemical Platform for Redox-Based Bioelectronics. SMALL METHODS 2025:e2401843. [PMID: 39887954 DOI: 10.1002/smtd.202401843] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/30/2024] [Revised: 12/23/2024] [Indexed: 02/01/2025]
Abstract
Redox provides unique opportunities for interconverting molecular/biological information into electronic signals. Here, the fabrication of a 3D-printed multiwell device that can be interfaced into existing laboratory instruments (e.g., well-plate readers and microscopes) to enable advanced redox-based spectral and electrochemical capabilities is reported. In the first application, mediated probing is used as a soft sensing method for biomanufacturing: it is shown that electrochemical signal metrics can discern intact mAbs from partially reduced mAb variants (fragmentation), and that these near-real-time electrical measurements correlate to off-line chemical analysis. In the second application, operando spectroelectrochemical measurements are used to characterize a redox-active catechol-based hydrogel film: it is shown that electron transfer into/from the film correlates to the molecular switching of the film's redox state with the film's absorbance increasing upon oxidation and the film's fluorescence increasing upon reduction. In the final example, a synthetic biofilm containing redox-responsive E. coli is electro-assembled: it is shown that gene expression can be induced under reducing conditions (via reductive H2O2 generation) or oxidative conditions (via oxidation of a phenolic redox-signaling molecule). Overall, this work demonstrates that 3D printing allows the fabrication of bespoke electrochemical devices that can accelerate the understanding of redox-based phenomena in biology and enable the detection/characterization redox activities in technology.
Collapse
Affiliation(s)
- Chen-Yu Chen
- Fischell Department of Bioengineering, University of Maryland, College Park, MD, 20742, USA
- Institute for Bioscience and Biotechnology Research, University of Maryland, College Park, MD, 20742, USA
- Robert E. Fischell Institute for Biomedical Devices, University of Maryland, College Park, MD, 20742, USA
| | - Eunkyoung Kim
- Institute for Bioscience and Biotechnology Research, University of Maryland, College Park, MD, 20742, USA
- Robert E. Fischell Institute for Biomedical Devices, University of Maryland, College Park, MD, 20742, USA
| | - Fauziah Rahma Zakaria
- Fischell Department of Bioengineering, University of Maryland, College Park, MD, 20742, USA
- Institute for Bioscience and Biotechnology Research, University of Maryland, College Park, MD, 20742, USA
- Robert E. Fischell Institute for Biomedical Devices, University of Maryland, College Park, MD, 20742, USA
| | - Monica J Chu
- Fischell Department of Bioengineering, University of Maryland, College Park, MD, 20742, USA
- Institute for Bioscience and Biotechnology Research, University of Maryland, College Park, MD, 20742, USA
- Robert E. Fischell Institute for Biomedical Devices, University of Maryland, College Park, MD, 20742, USA
| | - Benjamin Wu
- Fischell Department of Bioengineering, University of Maryland, College Park, MD, 20742, USA
- Institute for Bioscience and Biotechnology Research, University of Maryland, College Park, MD, 20742, USA
- Robert E. Fischell Institute for Biomedical Devices, University of Maryland, College Park, MD, 20742, USA
| | - Gregory F Payne
- Institute for Bioscience and Biotechnology Research, University of Maryland, College Park, MD, 20742, USA
- Robert E. Fischell Institute for Biomedical Devices, University of Maryland, College Park, MD, 20742, USA
| | - William E Bentley
- Fischell Department of Bioengineering, University of Maryland, College Park, MD, 20742, USA
- Institute for Bioscience and Biotechnology Research, University of Maryland, College Park, MD, 20742, USA
- Robert E. Fischell Institute for Biomedical Devices, University of Maryland, College Park, MD, 20742, USA
| |
Collapse
|
4
|
Jadon N, Tomar P, Shrivastava S, Hosseinzadeh B, Kaya SI, Ozkan SA. Monitoring of Specific Phytoestrogens by Dedicated Electrochemical Sensors: A Review. Food Chem 2024; 460:140404. [PMID: 39068721 DOI: 10.1016/j.foodchem.2024.140404] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2024] [Revised: 07/05/2024] [Accepted: 07/07/2024] [Indexed: 07/30/2024]
Abstract
Phytoestrogens are non-steroidal estrogens produced from plants that can bind with the human body's estrogenic receptor site and be used as a substitute for maintaining hormonal balance. They are mainly classified as flavonoids, phenolic acids, lignans, stilbenes, and coumestans; some are resocyclic acids of lactones, which are mycotoxins and not natural phytoestrogen. Phytoestrogens have many beneficial medicinal properties, making them an important part of the daily diet. Electrochemical sensors are widely used analytical tools for analysing various pharmaceuticals, chemicals, pollutants and food items. Electrochemical sensors provide an extensive platform for highly sensitive and rapid analysis. Several reviews have been published on the importance of the biological and medicinal properties of phytoestrogens. However, this review provides an overview of recent work performed through electrochemical measurements with electrochemical sensors and biosensors for all the classes of phytoestrogens done so far since 2019.
Collapse
Affiliation(s)
- Nimisha Jadon
- Ankara University, Faculty of Pharmacy, Department of Analytical Chemistry, 06560 Ankara, Türkiye; School of Studies in Environmental Chemistry, Jiwaji University, Gwalior, M.P., 474011, India.
| | - Puja Tomar
- School of Studies in Environmental Chemistry, Jiwaji University, Gwalior, M.P., 474011, India
| | - Swati Shrivastava
- School of Studies in Environmental Chemistry, Jiwaji University, Gwalior, M.P., 474011, India
| | - Batoul Hosseinzadeh
- Ankara University, Faculty of Pharmacy, Department of Analytical Chemistry, 06560 Ankara, Türkiye
| | - S Irem Kaya
- University of Health Sciences, Gulhane Faculty of Pharmacy, Department of Analytical Chemistry, Ankara, Türkiye
| | - Sibel A Ozkan
- Ankara University, Faculty of Pharmacy, Department of Analytical Chemistry, 06560 Ankara, Türkiye.
| |
Collapse
|
5
|
Markandan K, Tiong YW, Sankaran R, Subramanian S, Markandan UD, Chaudhary V, Numan A, Khalid M, Walvekar R. Emergence of infectious diseases and role of advanced nanomaterials in point-of-care diagnostics: a review. Biotechnol Genet Eng Rev 2024; 40:3438-3526. [PMID: 36243900 DOI: 10.1080/02648725.2022.2127070] [Citation(s) in RCA: 15] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2022] [Accepted: 09/12/2022] [Indexed: 11/09/2022]
Abstract
Infectious outbreaks are the foremost global public health concern, challenging the current healthcare system, which claims millions of lives annually. The most crucial way to control an infectious outbreak is by early detection through point-of-care (POC) diagnostics. POC diagnostics are highly advantageous owing to the prompt diagnosis, which is economical, simple and highly efficient with remote access capabilities. In particular, utilization of nanomaterials to architect POC devices has enabled highly integrated and portable (compact) devices with enhanced efficiency. As such, this review will detail the factors influencing the emergence of infectious diseases and methods for fast and accurate detection, thus elucidating the underlying factors of these infections. Furthermore, it comprehensively highlights the importance of different nanomaterials in POCs to detect nucleic acid, whole pathogens, proteins and antibody detection systems. Finally, we summarize findings reported on nanomaterials based on advanced POCs such as lab-on-chip, lab-on-disc-devices, point-of-action and hospital-on-chip. To this end, we discuss the challenges, potential solutions, prospects of integrating internet-of-things, artificial intelligence, 5G communications and data clouding to achieve intelligent POCs.
Collapse
Affiliation(s)
- Kalaimani Markandan
- Temasek Laboratories, Nanyang Technological University, Nanyang Drive, Singapore
- Faculty of Engineering, Technology and Built Environment, UCSI University, Kuala Lumpur, Malaysia
| | - Yong Wei Tiong
- NUS Environmental Research Institute, National University of Singapore, Engineering Drive, Singapore
| | - Revathy Sankaran
- Graduate School, University of Nottingham Malaysia Campus, Semenyih, Selangor, Malaysia
| | - Sakthinathan Subramanian
- Department of Materials & Mineral Resources Engineering, National Taipei University of Technology (NTUT), Taipei, Taiwan
| | | | - Vishal Chaudhary
- Research Cell & Department of Physics, Bhagini Nivedita College, University of Delhi, New Delhi, India
| | - Arshid Numan
- Graphene & Advanced 2D Materials Research Group (GAMRG), School of Engineering and Technology, Sunway University, Petaling Jaya, Selangor, Malaysia
- Sunway Materials Smart Science & Engineering (SMS2E) Research Cluster School of Engineering and Technology, Sunway University, Selangor, Malaysia
| | - Mohammad Khalid
- Graphene & Advanced 2D Materials Research Group (GAMRG), School of Engineering and Technology, Sunway University, Petaling Jaya, Selangor, Malaysia
- Sunway Materials Smart Science & Engineering (SMS2E) Research Cluster School of Engineering and Technology, Sunway University, Selangor, Malaysia
| | - Rashmi Walvekar
- Department of Chemical Engineering, School of Energy and Chemical Engineering, Xiamen University Malaysia, Sepang, Selangor, Malaysia
| |
Collapse
|
6
|
Gartner M, Szekeres A, Simeonov S, Covei M, Anastasescu M, Preda S, Calderon-Moreno JM, Predoana L, Stroescu H, Mitrea D, Nicolescu M. Structure, Optical and Electrical Properties of Nb(Zn) Doped Sol-Gel ITO Films: Effect of Substrates and Dopants. Molecules 2024; 29:5480. [PMID: 39598868 PMCID: PMC11597647 DOI: 10.3390/molecules29225480] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2024] [Revised: 11/13/2024] [Accepted: 11/19/2024] [Indexed: 11/29/2024] Open
Abstract
We present comparative studies of sol-gel ITO multilayered films undoped and doped with Nb or Zn (4 at.%). The films were obtained by successive depositions of five layers using the dip-coating sol-gel method on microscopic glass, SiO2/glass, and Si substrates. The influence of the type of substrates and dopant atoms on the structure and optical properties of the sol-gel ITO thin films is examined and discussed in detail. XRD patterns of these layers showed a polycrystalline structure with an average crystallite size of <11 nm. Raman spectroscopy confirmed the chemical bonding of dopants with oxygen and showed the absence of crystallized Nb(Zn)-oxide particles, indicated by the XRD pattern. Spectroscopic Ellipsometry and AFM imaging revealed a clear dependence of the optical parameters and surface morphology of the ITO and ITO:Nb(Zn) thin films on the type of substrates and dopants. The analysis of the current-voltage and capacitance-voltage characteristics of the Al/ITO/Si structures revealed the presence of charge carrier traps in the ITO bulk and the ITO-Si interface. The densities of these traps are obtained and the character of the current transport mechanism is established.
Collapse
Affiliation(s)
- Mariuca Gartner
- Institute of Physical Chemistry “Ilie Murgulescu”, Romanian Academy, 202 Splaiul Independentei, 060021 Bucharest, Romania; (M.G.); (M.A.); (S.P.); (L.P.); (D.M.); (M.N.)
| | - Anna Szekeres
- Institute of Solid State Physics, Bulgarian Academy of Sciences, 72 Tsarigradsko Chaussee, 1784 Sofia, Bulgaria;
| | - Simeon Simeonov
- Institute of Solid State Physics, Bulgarian Academy of Sciences, 72 Tsarigradsko Chaussee, 1784 Sofia, Bulgaria;
| | - Maria Covei
- Department of Product Design, Mechatronics and Environment, Transilvania University of Brasov, 29 Eroilor Bd., 500036 Brasov, Romania;
| | - Mihai Anastasescu
- Institute of Physical Chemistry “Ilie Murgulescu”, Romanian Academy, 202 Splaiul Independentei, 060021 Bucharest, Romania; (M.G.); (M.A.); (S.P.); (L.P.); (D.M.); (M.N.)
| | - Silviu Preda
- Institute of Physical Chemistry “Ilie Murgulescu”, Romanian Academy, 202 Splaiul Independentei, 060021 Bucharest, Romania; (M.G.); (M.A.); (S.P.); (L.P.); (D.M.); (M.N.)
| | - Jose Maria Calderon-Moreno
- Institute of Physical Chemistry “Ilie Murgulescu”, Romanian Academy, 202 Splaiul Independentei, 060021 Bucharest, Romania; (M.G.); (M.A.); (S.P.); (L.P.); (D.M.); (M.N.)
| | - Luminita Predoana
- Institute of Physical Chemistry “Ilie Murgulescu”, Romanian Academy, 202 Splaiul Independentei, 060021 Bucharest, Romania; (M.G.); (M.A.); (S.P.); (L.P.); (D.M.); (M.N.)
| | - Hermine Stroescu
- Institute of Physical Chemistry “Ilie Murgulescu”, Romanian Academy, 202 Splaiul Independentei, 060021 Bucharest, Romania; (M.G.); (M.A.); (S.P.); (L.P.); (D.M.); (M.N.)
| | - Daiana Mitrea
- Institute of Physical Chemistry “Ilie Murgulescu”, Romanian Academy, 202 Splaiul Independentei, 060021 Bucharest, Romania; (M.G.); (M.A.); (S.P.); (L.P.); (D.M.); (M.N.)
| | - Madalina Nicolescu
- Institute of Physical Chemistry “Ilie Murgulescu”, Romanian Academy, 202 Splaiul Independentei, 060021 Bucharest, Romania; (M.G.); (M.A.); (S.P.); (L.P.); (D.M.); (M.N.)
| |
Collapse
|
7
|
Singh KRB, Singh P, Singh J, Pandey SS. Nanobioengineered Al 2O 3 Core-Shell Nanoparticle Preparation Using Bauhinia Variegate Plant Extract for Efficient Photocatalysis and Electrochemical Sensing. ACS APPLIED BIO MATERIALS 2024; 7:7646-7658. [PMID: 39467769 PMCID: PMC11577312 DOI: 10.1021/acsabm.4c01213] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2024] [Revised: 09/22/2024] [Accepted: 10/21/2024] [Indexed: 10/30/2024]
Abstract
Core-shell-based nanomaterials have garnered considerable attention in the recent past not only in catalytic applications but also in their potentiality in selective and efficient sensing. Present research reports the first and successful biosynthesis of the core (c-Al2O3)-shell nanoparticles (NPs) using Bauhinia variegate blossom extract as reducing and capping agents. The synthesized c-Al2O3 NPs were characterized and utilized to fabricate nanobioengineered electrodes on indium tin oxide (ITO) substrates via electrophoretic deposition. Electrochemical analysis, including cyclic voltammetry and differential pulse voltammetry, revealed quasi-reversible processes with high electron-transfer rates (Ks = 0.66 s-1) and a diffusion coefficient (D = 5.84 × 10-2 cm2 s-1). The electrode exhibited a very high sensitivity (23.44 μA μM-1 cm-2) and a low detection limit (0.463 μM) for sodium azide (NaN3) over two linear ranges of 1-6 and 8-20 μM. Additionally, c-Al2O3 NPs demonstrated the effective photocatalytic degradation of crystal violet dye under visible light, following pseudo-first-order kinetics. The fabricated electrode showed excellent selectivity, stability, and reproducibility, highlighting its potential for environmental monitoring and clinical diagnostics.
Collapse
Affiliation(s)
- Kshitij RB Singh
- Graduate
School of Life Science and Systems Engineering, Kyushu Institute of Technology, 2-4 Hibikino, Wakamatsu, Kitakyushu 808-0196, Japan
| | - Pooja Singh
- Department
of Biotechnology, Indira Gandhi National
Tribal University, Amarkantak, Madhya Pradesh 484886, India
| | - Jay Singh
- Department
of Chemistry, Institute of Science, Banaras
Hindu University, Varanasi, Uttar Pradesh 221005, India
| | - Shyam S. Pandey
- Graduate
School of Life Science and Systems Engineering, Kyushu Institute of Technology, 2-4 Hibikino, Wakamatsu, Kitakyushu 808-0196, Japan
| |
Collapse
|
8
|
Sarangi S, Srivastava R, Gogoi-Tiwari J, Kar RK. Electrochemical Sensing of Phenylalanine using Polyaniline-Based Molecularly Imprinted Polymers. J Phys Chem B 2024; 128:10258-10271. [PMID: 39315767 DOI: 10.1021/acs.jpcb.4c04029] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/25/2024]
Abstract
Polyaniline (PANI)-based molecularly imprinted polymers were investigated for their efficacy in sensing phenylalanine (Phe) when fabricated on both glassy carbon electrode (GCE) and indium tin oxide (ITO) sheets. This study highlights the superior performance of PANI-MIP/ITO over PANI-MIP/GCE for sensing Phe, with clear and distinct redox responses. Molecular computation helps to understand the interaction mechanism between PANI and Phe, where molecular crowding, aggregated clusters, hydrogen bonding, and π-π stacking facilitate stable interactions. We tested the specificity of Phe sensing by PANI-MIP with different amino acids such as cysteine, tryptophan, and tyrosine as well as organic molecules such as ascorbic acid, allantoin, sucrose, and urea, confirming its remarkable electrochemical efficiency. The oxidation response curve yielded a limit of detection of 4.88 μM and a limit of quantification of 16.3 μM, comparable to or better than earlier reported sensors. This work demonstrates the promise of MIP-based electrochemical sensing. It also lays the groundwork for future investigations into optimizing PANI-MIPs with nanocomposites to develop more selective and stable sensors.
Collapse
Affiliation(s)
- Sonia Sarangi
- Jyoti and Bhupat Mehta School of Health Sciences and Technology, Indian Institute of Technology Guwahati, Guwahati 781039, Assam, India
| | - Ravishankar Srivastava
- Jyoti and Bhupat Mehta School of Health Sciences and Technology, Indian Institute of Technology Guwahati, Guwahati 781039, Assam, India
| | - Jully Gogoi-Tiwari
- School of Veterinary Medicine, Murdoch University, Perth 6150, Western Australia, Australia
| | - Rajiv K Kar
- Jyoti and Bhupat Mehta School of Health Sciences and Technology, Indian Institute of Technology Guwahati, Guwahati 781039, Assam, India
- Centre for Nanotechnology, Indian Institute of Technology Guwahati, Guwahati 781039, Assam, India
| |
Collapse
|
9
|
Kumar K, Singh KRB, Rathour RS, Singh J, Bhattacharya S, Pandey SS. Fabrication of Nanobioengineered Interfaces Utilizing Quaternary Nanocomposite for Highly Efficient and Selective Electrochemical Biosensing of Urea. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2024; 40:21052-21066. [PMID: 39222152 PMCID: PMC11465734 DOI: 10.1021/acs.langmuir.4c02457] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/28/2024] [Revised: 08/22/2024] [Accepted: 08/25/2024] [Indexed: 09/04/2024]
Abstract
Nanobioengineered interfaces have gained attention owing to their small size and high surface area-to-volume ratio for utilization as a platform for highly selective and sensitive biosensing applications owing to the integration of biological molecules with engineered nanomaterials/nanocomposites. In this work, a novel Ag-complex, [(PPh3)2Ag(SCOf)]-based quaternary Ag-S-Zn-O nanocomposites (NCs), was synthesized through an environmentally-friendly process. The results revealed the formation of the NCs with an average crystallite size and particle size of 36.08 and 40.22 nm, respectively. In addition, this is the first study to utilize such NCs synthesized via a single-source precursor method, offering enhanced sensor performance due to their unique structural properties. Further, these NCs were used to fabricate a urease (Ur)/Ag-S-Zn-O NCs/ITO nanobioengineered electrode for precise and sensitive electrochemical biosensing of urea. The interfacial kinetic studies revealed quasi-reversible processes with high electron transfer rates and linear current responses, indicating efficient reaction dynamics. A high diffusion coefficient and low surface concentration suggested a fast diffusion-controlled process, affirming the electrode's potential for rapid and sensitive urea detection. The biosensor demonstrated notable sensing properties such as high sensitivity (12.56 μA mM-1 cm-2) and a low detection limit (0.54 mM). The fabricated bioelectrode was highly selective and reproducible and demonstrated stability for up to 60 days. These results validate the potential of this nanobioengineered interface for next-generation biosensing applications, paving the way for advanced point-of-care diagnostics and real-time health monitoring.
Collapse
Affiliation(s)
- Krishna Kumar
- Department
of Chemistry, Institute of Science, Banaras
Hindu University, Varanasi 221005, India
| | - Kshitij RB Singh
- Graduate
School of Life Science and Systems Engineering, Kyushu Institute of Technology, 2-4 Hibikino, Wakamatsu, Kitakyushu 808-0196, Japan
| | - Ritu S. Rathour
- Department
of Chemistry, School of Applied Sciences, Amity University, Lucknow 226028, India
| | - Jay Singh
- Department
of Chemistry, Institute of Science, Banaras
Hindu University, Varanasi 221005, India
| | - Subrato Bhattacharya
- Department
of Chemistry, Institute of Science, Banaras
Hindu University, Varanasi 221005, India
| | - Shyam S. Pandey
- Graduate
School of Life Science and Systems Engineering, Kyushu Institute of Technology, 2-4 Hibikino, Wakamatsu, Kitakyushu 808-0196, Japan
| |
Collapse
|
10
|
Li P, Ma X, Gong G, Xu C, Zhang Z. Room-Temperature, Solution-Processed, Robust, Transparent, and Conductive SiO x/AgNW Nanocomposite Coating. ACS APPLIED MATERIALS & INTERFACES 2024; 16:43724-43733. [PMID: 39121209 DOI: 10.1021/acsami.4c07561] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/11/2024]
Abstract
AgNW networks show high promise as a conductive material due to excellent flexibility, low resistance, high transparency, and ease of large-scale preparation. However, the application of AgNW networks has been hindered by their inherent characteristics, such as easy oxidation degradation, chemical corrosion, and structural instability at high temperatures. In this study, a dense SiOx protective layer derived from perhydropolysilazane was introduced to fabricate a robust SiOx/AgNW nanocomposite coating through an all-solution process at room temperature. The achieved nanocomposite coating shows outstanding thermal stability up to 450 °C, resistance to ultraviolet radiation, and excellent mechanical performance by maintaining stability after 10,000 cycles of bending at a radius of 2.5 mm, 1000 cycles of peeling, and 1200 cycles of wearing. Meanwhile, the nanocomposite coating demonstrates exceptional chemical tolerance against HCl, Na2S, and organic solvents. A transparent heater based on the nanocomposite coating achieves a remarkable benchmark with a maximum temperature of 400 °C at 20 V. These features highlight the potential of the nanocomposite coating in flexible electronics, optoelectronics, touch screens, and high-performance heaters.
Collapse
Affiliation(s)
- Pengfei Li
- School of Materials Science and Chemical Engineering, Harbin University of Science and Technology, Harbin 150040, People's Republic China
| | - Xu Ma
- School of Materials Science and Chemical Engineering, Harbin University of Science and Technology, Harbin 150040, People's Republic China
| | - Guifen Gong
- School of Materials Science and Chemical Engineering, Harbin University of Science and Technology, Harbin 150040, People's Republic China
| | - Caihong Xu
- Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, People's Republic of China
- University of Chinese Academy of Sciences, Beijing 100149, People's Republic of China
| | - Zongbo Zhang
- Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, People's Republic of China
| |
Collapse
|
11
|
Yang J, Zhou Y, Du S, Zhou T, Wang Y. Fabrication of Flexible Transparent Conductive Films via an Energy-Efficient In Situ Chemical Welding and Reinforcement Strategy. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2024; 40:16384-16392. [PMID: 39051492 DOI: 10.1021/acs.langmuir.4c01631] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/27/2024]
Abstract
Recently, flexible transparent conductive films composed of metal nanowires have received significant interest, particularly for flexible electronics. However, the high contact resistance among metal nanowires and the weak bonding effect between metal nanowires and substrates often result in films whose conductivity, adhesion, and flexibility fall short of the stringent requirements demanded by real-world uses. We developed a simple method to fabricate high-performance flexible transparent conductive films via successively spin-coating silver nanowires (AgNWs) and acidic silica sol onto the surface of the substrate. Under the capillary force of ethanol and the etching effect of hydrochloric acid, the adjacent AgNWs are induced to chemically weld in situ to form a stable network. The resulting composite film exhibits a sheet resistance of only 8.5 Ω/sq, marking an impressive 80% decrease compared with the pristine AgNW film. Meanwhile, the silica sol acts as a filler, improving light transmittance while further reinforcing the network structure and firmly bonding it to the substrate. Thus, the delamination of the nanowires under bending motion is effectively inhibited, and the resulting film was endowed with resistance remaining below 15 Ω/sq after 3000 bending and 200 tape peeling. The energy-efficient in situ chemical welding and reinforcement method for nanowires provides an innovative strategy for the batch preparation of flexible transparent conductive films.
Collapse
Affiliation(s)
| | - Yan Zhou
- National Institute of Metrology, Beijing 100029, China
| | - Shang Du
- National Institute of Metrology, Beijing 100029, China
| | - Tao Zhou
- National Institute of Metrology, Beijing 100029, China
| | - Ying Wang
- Midea Group Corporate Research Center, Guangdong 528311, China
| |
Collapse
|
12
|
Redondo-Fernández G, Cid-Barrio L, Fernández-Argüelles MT, de la Escosura-Muñiz A, Soldado A, Costa-Fernández JM. Controlled silver electrodeposition on gold nanoparticle antibody tags for ultrasensitive prostate specific antigen sensing using electrochemical and optical smartphone detection. Talanta 2024; 275:126095. [PMID: 38653118 DOI: 10.1016/j.talanta.2024.126095] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2023] [Revised: 02/23/2024] [Accepted: 04/10/2024] [Indexed: 04/25/2024]
Abstract
One of the current challenges in medicine is to achieve a rapid and unequivocal detection and quantification of extremely low levels of disease biomarkers in complex biological samples. Here, we present the development and analytical evaluation of a low-cost smartphone-based system designed for ultrasensitive detection of the prostate-specific antigen (PSA) using two detection alternatives: electrochemical or optical, by coupling the smartphone with a portable potentiostat or magnifying lenses. An antibody tagged with gold nanoparticles (AuNPs), and indium tin oxide coated polyethylene terephthalate platform (ITO-PET) have been used to develop a sandwich-type immunoassay. Then, a controlled silver electrodeposition on the AuNPs surface is carried out, enhancing their size greatly. Due to such strong nanoparticle-size amplification (from nm to μm), the final detection can be dual, by measuring current intensity or the number of silver-enlarged microstructures generated. The proposed strategies exhibited limit detections (LOD) of 102 and 37 fg/mL for electrochemical and optical detection respectively. The developed immunosensor reaches excellent selectivity and performance characteristics to quantify biomarkers at clinically relevant values without any pretreatment. These proposed procedures could be useful to check and verify possible recurrence after clinical treatment of tumors or even report levels of disease serum biomarkers in early stages.
Collapse
Affiliation(s)
- Guillermo Redondo-Fernández
- Department of Physical and Analytical Chemistry, University of Oviedo, Avda. Julián Clavería 8, 33006, Oviedo, Spain
| | - Laura Cid-Barrio
- Department of Physical and Analytical Chemistry, University of Oviedo, Avda. Julián Clavería 8, 33006, Oviedo, Spain
| | - María T Fernández-Argüelles
- Department of Physical and Analytical Chemistry, University of Oviedo, Avda. Julián Clavería 8, 33006, Oviedo, Spain
| | - Alfredo de la Escosura-Muñiz
- Department of Physical and Analytical Chemistry, University of Oviedo, Avda. Julián Clavería 8, 33006, Oviedo, Spain.
| | - Ana Soldado
- Department of Physical and Analytical Chemistry, University of Oviedo, Avda. Julián Clavería 8, 33006, Oviedo, Spain.
| | - José M Costa-Fernández
- Department of Physical and Analytical Chemistry, University of Oviedo, Avda. Julián Clavería 8, 33006, Oviedo, Spain
| |
Collapse
|
13
|
Li J, Chu H, Chen Z, Yiu CK, Qu Q, Li Z, Yu X. Recent Advances in Materials, Devices and Algorithms Toward Wearable Continuous Blood Pressure Monitoring. ACS NANO 2024; 18:17407-17438. [PMID: 38923501 DOI: 10.1021/acsnano.4c04291] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/28/2024]
Abstract
Continuous blood pressure (BP) tracking provides valuable insights into the health condition and functionality of the heart, arteries, and overall circulatory system of humans. The rapid development in flexible and wearable electronics has significantly accelerated the advancement of wearable BP monitoring technologies. However, several persistent challenges, including limited sensing capabilities and stability of flexible sensors, poor interfacial stability between sensors and skin, and low accuracy in BP estimation, have hindered the progress in wearable BP monitoring. To address these challenges, comprehensive innovations in materials design, device development, system optimization, and modeling have been pursued to improve the overall performance of wearable BP monitoring systems. In this review, we highlight the latest advancements in flexible and wearable systems toward continuous noninvasive BP tracking with a primary focus on materials development, device design, system integration, and theoretical algorithms. Existing challenges, potential solutions, and further research directions are also discussed to provide theoretical and technical guidance for the development of future wearable systems in continuous ambulatory BP measurement with enhanced sensing capability, robustness, and long-term accuracy.
Collapse
Affiliation(s)
- Jian Li
- Department of Biomedical Engineering, City University of Hong Kong, Hong Kong, China
- Hong Kong Centre for Cerebro-Cardiovascular Health Engineering (COCHE), Hong Kong, China
| | - Hongwei Chu
- Department of Biomedical Engineering, City University of Hong Kong, Hong Kong, China
- Shenzhen Key Laboratory of Flexible Printed Electronics Technology, School of Science, Harbin Institute of Technology (Shenzhen), Shenzhen, 518055, China
| | - Zhenlin Chen
- Department of Biomedical Engineering, City University of Hong Kong, Hong Kong, China
- Hong Kong Centre for Cerebro-Cardiovascular Health Engineering (COCHE), Hong Kong, China
| | - Chun Ki Yiu
- Department of Biomedical Engineering, City University of Hong Kong, Hong Kong, China
- Hong Kong Centre for Cerebro-Cardiovascular Health Engineering (COCHE), Hong Kong, China
| | - Qing'ao Qu
- Department of Biomedical Engineering, City University of Hong Kong, Hong Kong, China
| | - Zhiyuan Li
- Department of Biomedical Engineering, City University of Hong Kong, Hong Kong, China
| | - Xinge Yu
- Department of Biomedical Engineering, City University of Hong Kong, Hong Kong, China
- Hong Kong Centre for Cerebro-Cardiovascular Health Engineering (COCHE), Hong Kong, China
- City University of Hong Kong Shenzhen Research Institute, Shenzhen 518057, China
- Hong Kong Institute for Clean Energy, City University of Hong Kong, Kowloon, Hong Kong, China
| |
Collapse
|
14
|
Zhang Y, Zhang S, Xu Z, Zhang J, Qu Z, Liu W. A competitive-type photoelectrochemical aptasensor for 17 beta-estradiol detection in microfluidic devices based on a novel Au@Cd:SnO 2/SnS 2 nanocomposite. Mikrochim Acta 2024; 191:383. [PMID: 38861005 DOI: 10.1007/s00604-024-06478-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2024] [Accepted: 05/31/2024] [Indexed: 06/12/2024]
Abstract
A competitive-type photoelectrochemical (PEC) aptasensor coupled with a novel Au@Cd:SnO2/SnS2 nanocomposite was designed for the detection of 17β-estradiol (E2) in microfluidic devices. The designed Au@Cd:SnO2/SnS2 nanocomposites exhibit high photoelectrochemical activity owing to the good matching of cascade band-edge and the efficient separation of photo-generated e-/h+ pairs derived from the Cd-doped defects in the energy level. The Au@Cd:SnO2/SnS2 nanocomposites were loaded into carbon paste electrodes (CPEs) to immobilize complementary DNA (cDNA) and estradiol aptamer probe DNA (E2-Apt), forming a double-strand DNA structure on the CPE surface. As the target E2 interacts with the double-strand DNA, E2-Apt is sensitively released from the CPE, subsequently increasing the photocurrent intensity due to the reduced steric hindrance of the electrode surface. The competitive-type sensing mechanism, combined with high PEC activity of the Au@Cd:SnO2/SnS2 nanocomposites, contributed to the rapid and sensitive detection of E2 in a "signal on" manner. Under the optimized conditions, the PEC aptasensor exhibited a linear range from 1.0 × 10-13 mol L-1 to 3.2 × 10-6 mol L-1 and a detection limit of 1.2 × 10-14 mol L-1 (S/N = 3). Moreover, the integration of microfluidic device with smartphone controlled portable electrochemical workstation enables the on-site detection of E2. The small sample volume (10 µL) and short analysis time (40 min) demonstrated the great potential of this strategy for E2 detection in rat serum and river water. With these advantages, the PEC aptasensor can be utilized for point-of-care testing (POCT) in both clinical and environmental applications.
Collapse
Affiliation(s)
- Yonglun Zhang
- School of Pharmacy, Shenyang Pharmaceutical University, Shenyang, 110016, PR China
| | - Shihua Zhang
- School of Pharmacy, Shenyang Pharmaceutical University, Shenyang, 110016, PR China
| | - Zijing Xu
- School of Pharmacy, Shenyang Pharmaceutical University, Shenyang, 110016, PR China
| | - Jiaxing Zhang
- School of Pharmacy, Shenyang Pharmaceutical University, Shenyang, 110016, PR China
| | - Zhuangzhuang Qu
- School of Pharmacy, Shenyang Pharmaceutical University, Shenyang, 110016, PR China
| | - Weilu Liu
- School of Pharmacy, Shenyang Pharmaceutical University, Shenyang, 110016, PR China.
| |
Collapse
|
15
|
Raza S, Poria R, Kala D, Sharma N, Sharma AK, Florien N, Tuli HS, Kaushal A, Gupta S. Innovations in dengue virus detection: An overview of conventional and electrochemical biosensor approaches. Biotechnol Appl Biochem 2024; 71:481-500. [PMID: 38225854 DOI: 10.1002/bab.2553] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2023] [Accepted: 12/27/2023] [Indexed: 01/17/2024]
Abstract
Globally, people are in great threat due to the highly spreading of viral infectious diseases. Every year like 100-300 million cases of infections are found, and among them, above 80% are not recognized and irrelevant. Dengue virus (DENV) is an arbovirus infection that currently infects people most frequently. DENV encompasses four viral serotypes, and they each express comparable sign. From a mild febrile sickness to a potentially fatal dengue hemorrhagic fever, dengue can induce a variety of symptoms. Presently, the globe is being challenged by the untimely identification of dengue infection. Therefore, this review summarizes advances in the detection of dengue from conventional methods (nucleic acid-based, polymerase chain reaction-based, and serological approaches) to novel biosensors. This work illustrates an extensive study of the current designs and fabrication approaches involved in the formation of electrochemical biosensors for untimely identifications of dengue. Additionally, in electrochemical sensing of DENV, we skimmed through significances of biorecognition molecules like lectins, nucleic acid, and antibodies. The introduction of emerging techniques such as the CRISPR/Cas' system and their integration with biosensing platforms has also been summarized. Furthermore, the review revealed the importance of electrochemical approach compared with traditional diagnostic methods.
Collapse
Affiliation(s)
- Shadan Raza
- Department of Bio-Sciences and Technology, Maharishi Markandeshwar (Deemed to Be) University, Mullana, Ambala, India
| | - Renu Poria
- Department of Bio-Sciences and Technology, Maharishi Markandeshwar (Deemed to Be) University, Mullana, Ambala, India
| | - Deepak Kala
- Centera Laboratories, Institute of High Pressure Physics PAS, Warsaw, Poland
| | - Nishant Sharma
- Department of Bio-Sciences and Technology, Maharishi Markandeshwar (Deemed to Be) University, Mullana, Ambala, India
| | - Anil K Sharma
- Department of Biotechnology, Amity University of Punjab, Mohali, Punjab, India
| | - Nkurunziza Florien
- Department of Bio-Sciences and Technology, Maharishi Markandeshwar (Deemed to Be) University, Mullana, Ambala, India
| | - Hardeep S Tuli
- Department of Bio-Sciences and Technology, Maharishi Markandeshwar (Deemed to Be) University, Mullana, Ambala, India
| | - Ankur Kaushal
- Department of Bio-Sciences and Technology, Maharishi Markandeshwar (Deemed to Be) University, Mullana, Ambala, India
| | - Shagun Gupta
- Department of Bio-Sciences and Technology, Maharishi Markandeshwar (Deemed to Be) University, Mullana, Ambala, India
| |
Collapse
|
16
|
Cui Y, Sun M, Liu C, Deng Y. All-inorganic ultrathin high-sensitivity transparent temperature sensor based on a Mn-Co-Ni-O nanofilm. MICROSYSTEMS & NANOENGINEERING 2024; 10:70. [PMID: 38803351 PMCID: PMC11128445 DOI: 10.1038/s41378-024-00706-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/23/2024] [Revised: 03/25/2024] [Accepted: 04/14/2024] [Indexed: 05/29/2024]
Abstract
The demand for optically transparent temperature sensors in intelligent devices is increasing. However, the performance of these sensors, particularly in terms of their sensitivity and resolution, must be further enhanced. This study introduces a novel transparent and highly sensitive temperature sensor characterized by its ultrathin, freestanding design based on a Mn-Co-Ni-O nanofilm. The Mn-Co-Ni-O-based sensor exhibits remarkable sensitivity, with a temperature coefficient of resistance of -4% °C-1, and can detect minuscule temperature fluctuations as small as 0.03 °C. Additionally, the freestanding sensor can be transferred onto any substrate for versatile application while maintaining robust structural stability and excellent resistance to interference, indicating its suitability for operation in challenging environments. Its practical utility in monitoring the surface temperature of optical devices is demonstrated through vertical integration of the sensor and a micro light-emitting diode on a polyimide substrate. Moreover, an experiment in which the sensor is implanted in rats confirms its favorable biocompatibility, highlighting the promising applications of the sensor in the biomedical domain.
Collapse
Affiliation(s)
- Yuanyuan Cui
- Research Institute for Frontier Science, Beihang University, Beijing, 100191 China
- School of Materials Science and Engineering, Beihang University, Beijing, 100191 China
- Key Laboratory of Intelligent Sensing Materials and Chip Integration Technology of Zhejiang Province, Hangzhou Innovation Institute of Beihang University, Hangzhou, 310051 China
| | - Mengwei Sun
- School of Materials Science and Engineering, Beihang University, Beijing, 100191 China
| | - Changbo Liu
- School of Materials Science and Engineering, Beihang University, Beijing, 100191 China
- Key Laboratory of Intelligent Sensing Materials and Chip Integration Technology of Zhejiang Province, Hangzhou Innovation Institute of Beihang University, Hangzhou, 310051 China
| | - Yuan Deng
- Research Institute for Frontier Science, Beihang University, Beijing, 100191 China
- Key Laboratory of Intelligent Sensing Materials and Chip Integration Technology of Zhejiang Province, Hangzhou Innovation Institute of Beihang University, Hangzhou, 310051 China
| |
Collapse
|
17
|
Yoon N, Jung Y, Kim G, Kwon J, Yang H. Low-interference and sensitive electrochemical detection of glucose and lactate using boron-doped diamond electrode and electron mediator menadione. ANAL SCI 2024; 40:853-861. [PMID: 38246930 DOI: 10.1007/s44211-023-00497-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2023] [Accepted: 12/11/2023] [Indexed: 01/23/2024]
Abstract
To minimize background interference in electrochemical enzymatic biosensors employing electron mediators, it is essential for the electrochemical oxidation of electroactive interfering species (ISs), such as ascorbic acid (AA), to proceed slowly, and for the redox reactions between electron mediators and ISs to occur at a low rate. In this study, we introduce a novel combination of a working electrode and an electron mediator that effectively mitigates interference effects. Compared to commonly used electrodes such as Au, glassy carbon, and indium tin oxide (ITO), boron-doped diamond (BDD) electrodes demonstrate significantly lower anodic current (i.e., lower background levels) in the presence of AA. Additionally, menadione (MD) exhibits notably slower reactivity with AA compared to other electron mediators such as Ru(NH3)63+, 4-amino-1-naphthol, and 1,4-naphthoquinone, primarily due to the lower formal potential of MD compared to AA. This synergistic combination of BDD electrode and MD is effectively applied in three biosensors: (i) glucose detection using electrochemical-enzymatic (EN) redox cycling, (ii) glucose detection using electrochemical-enzymatic-enzymatic (ENN) redox cycling, and (iii) lactate detection using ENN redox cycling. Our developed approach significantly outperforms the combination of ITO electrode and MD in minimizing IS interference. Glucose in artificial serum can be detected with detection limits of ~ 20 μM and ~ 3 μM in EN and ENN redox cycling, respectively. Furthermore, lactate in human serum can be detected with a detection limit of ~ 30 μM. This study demonstrates sensitive glucose and lactate detection with minimal interference, eliminating the need for (bio)chemical agents to remove interfering species.
Collapse
Affiliation(s)
- Nakyeong Yoon
- Department of Chemistry, Pusan National University, Busan, 46241, Korea
| | - Youngjin Jung
- Department of Chemistry, Pusan National University, Busan, 46241, Korea
| | - Gyeongho Kim
- Department of Chemistry, Pusan National University, Busan, 46241, Korea
| | - Jungwook Kwon
- Department of Chemistry, Pusan National University, Busan, 46241, Korea
| | - Haesik Yang
- Department of Chemistry, Pusan National University, Busan, 46241, Korea.
| |
Collapse
|
18
|
Song X, Yan H, Zhang Y, Zhou W, Li S, Zhang J, Ciampi S, Zhang L. Hydroxylation of the indium tin oxide electrode promoted by surface bubbles. Chem Commun (Camb) 2024; 60:4186-4189. [PMID: 38530669 DOI: 10.1039/d4cc00307a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/28/2024]
Abstract
Adherent bubbles at electrodes are generally treated as reaction penalties. Herein, in situ hydroxylation of indium tin oxide surfaces can be easily achieved by applying a constant potential of +1.0 V in the presence of bubbles. Its successful hydroxylation is further demonstrated by preparing a ferrocene-terminated film, which is confirmed by cyclic voltammetry and X-ray photoelectron spectroscopy.
Collapse
Affiliation(s)
- Xiaoxue Song
- Institute of Quantum and Sustainable Technology (IQST), School of Chemistry and Chemical Engineering, Jiangsu University, Zhenjiang City, 212013, Jiangsu Province, China.
| | - Hui Yan
- Institute of Quantum and Sustainable Technology (IQST), School of Chemistry and Chemical Engineering, Jiangsu University, Zhenjiang City, 212013, Jiangsu Province, China.
| | - Yuqiao Zhang
- Institute of Quantum and Sustainable Technology (IQST), School of Chemistry and Chemical Engineering, Jiangsu University, Zhenjiang City, 212013, Jiangsu Province, China.
| | - Weiqiang Zhou
- Institute of Quantum and Sustainable Technology (IQST), School of Chemistry and Chemical Engineering, Jiangsu University, Zhenjiang City, 212013, Jiangsu Province, China.
| | - Shun Li
- Institute of Quantum and Sustainable Technology (IQST), School of Chemistry and Chemical Engineering, Jiangsu University, Zhenjiang City, 212013, Jiangsu Province, China.
| | - Jianming Zhang
- Institute of Quantum and Sustainable Technology (IQST), School of Chemistry and Chemical Engineering, Jiangsu University, Zhenjiang City, 212013, Jiangsu Province, China.
| | - Simone Ciampi
- School of Molecular and Life Sciences, Curtin University, Bentley, Western Australia 6102, Australia.
| | - Long Zhang
- Institute of Quantum and Sustainable Technology (IQST), School of Chemistry and Chemical Engineering, Jiangsu University, Zhenjiang City, 212013, Jiangsu Province, China.
| |
Collapse
|
19
|
Mishu SJ, Rahman MA, Dhar N. Highly sensitive refractive index sensing with a dual-band optically transparent ITO-based perfect metamaterial absorber for biomedical applications. Heliyon 2024; 10:e26842. [PMID: 38562491 PMCID: PMC10982902 DOI: 10.1016/j.heliyon.2024.e26842] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2023] [Revised: 02/15/2024] [Accepted: 02/20/2024] [Indexed: 04/04/2024] Open
Abstract
In this paper, a dual-band optically transparent square-shaped perfect metamaterial absorber operating in the frequency range from 2 to 4 terahertz (THz) is proposed. The structure consists of an indium tin oxide (ITO)-based split ring resonator (SRR) structure with additional splits and rectangular inner strips to form the top layer over the lead glass substrate. Perfect absorption is attained in the frequencies of 2.089 and 3.892 THz with absorbances of 99.99% and 99.98% in TE polarization mode, respectively. Perfect absorption is also achieved in TM polarization mode at 2.23 THz. Broadband absorption is found in TM polarization mode with full width half maximum (FWHM) of 1.1742. The proposed structure has one polarization-insensitive band in TE polarization mode. Absorbance is greater than 80% and 90% in the successive absorption peaks even at 60° and 75° of incidence, respectively. The resonance frequency is sensitive to the refractive index of the medium. As a result, the proposed metamaterial structure may be implemented as a refractive index (RI) sensor with a high sensitivity of 1109 GHz/RIU and 1954 GHz/RIU in both absorption bands for a refractive index range of 1.34 to 1.40. It's interesting to note that the refractive index of most biological samples ranges from 1.3 to 1.39. The figure of merit (FOM) of the proposed sensor can reach as high as 10 and 14 for the 1st and 2nd frequency bands. As a result, the proposed sensor has a high sensitivity and can be employed in medical applications. Potential applications of the proposed absorber include imaging, biomedical sensing, etc.
Collapse
Affiliation(s)
- Sumaia Jahan Mishu
- Department of Electrical and Electronic Engineering, Chittagong University of Engineering and Technology, Chattogram 4349, Bangladesh
| | - Muhammad Asad Rahman
- Department of Electrical and Electronic Engineering, Chittagong University of Engineering and Technology, Chattogram 4349, Bangladesh
| | - Nipa Dhar
- Department of Electrical and Electronic Engineering, Chittagong University of Engineering and Technology, Chattogram 4349, Bangladesh
| |
Collapse
|
20
|
Minenkov A, Hollweger S, Duchoslav J, Erdene-Ochir O, Weise M, Ermilova E, Hertwig A, Schiek M. Monitoring the Electrochemical Failure of Indium Tin Oxide Electrodes via Operando Ellipsometry Complemented by Electron Microscopy and Spectroscopy. ACS APPLIED MATERIALS & INTERFACES 2024; 16:9517-9531. [PMID: 38324480 PMCID: PMC10895603 DOI: 10.1021/acsami.3c17923] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/29/2023] [Revised: 01/12/2024] [Accepted: 01/24/2024] [Indexed: 02/09/2024]
Abstract
Transparent conductive oxides such as indium tin oxide (ITO) are standards for thin film electrodes, providing a synergy of high optical transparency and electrical conductivity. In an electrolytic environment, the determination of an inert electrochemical potential window is crucial to maintain a stable material performance during device operation. We introduce operando ellipsometry, combining cyclic voltammetry (CV) with spectroscopic ellipsometry, as a versatile tool to monitor the evolution of both complete optical (i.e., complex refractive index) and electrical properties under wet electrochemical operational conditions. In particular, we trace the degradation of ITO electrodes caused by electrochemical reduction in a pH-neutral, water-based electrolyte environment during electrochemical cycling. With the onset of hydrogen evolution at negative bias voltages, indium and tin are irreversibly reduced to the metallic state, causing an advancing darkening, i.e., a gradual loss of transparency, with every CV cycle, while the conductivity is mostly conserved over multiple CV cycles. Post-operando analysis reveals the reductive (loss of oxygen) formation of metallic nanodroplets on the surface. The reductive disruption of the ITO electrode happens at the solid-liquid interface and proceeds gradually from the surface to the bottom of the layer, which is evidenced by cross-sectional transmission electron microscopy imaging and complemented by energy-dispersive X-ray spectroscopy mapping. As long as a continuous part of the ITO layer remains at the bottom, the conductivity is largely retained, allowing repeated CV cycling. We consider operando ellipsometry a sensitive and nondestructive tool to monitor early stage material and property changes, either by tracing failure points, controlling intentional processes, or for sensing purposes, making it suitable for various research fields involving solid-liquid interfaces and electrochemical activity.
Collapse
Affiliation(s)
- Alexey Minenkov
- Christian
Doppler Laboratory for Nanoscale Phase Transformations, Center for
Surface- and Nanoanalytics (ZONA), Johannes
Kepler University, A-4040 Linz, Austria
| | - Sophia Hollweger
- Center
for Surface- and Nanoanalytics (ZONA), Institute for Physical Chemistry
(IPC) & Linz Institute for Organic Solar Cells (LIOS), Johannes Kepler University, A-4040 Linz, Austria
| | - Jiri Duchoslav
- Christian
Doppler Laboratory for Nanoscale Phase Transformations, Center for
Surface- and Nanoanalytics (ZONA), Johannes
Kepler University, A-4040 Linz, Austria
| | - Otgonbayar Erdene-Ochir
- Center
for Surface- and Nanoanalytics (ZONA), Institute for Physical Chemistry
(IPC) & Linz Institute for Organic Solar Cells (LIOS), Johannes Kepler University, A-4040 Linz, Austria
| | - Matthias Weise
- FB 6.1
Oberflächenanalytik und Grenzflächenchemie, Bundesanstalt für Materialforschung und -prüfung
(BAM), Unter den Eichen
44-46, D-12203 Berlin, Germany
| | - Elena Ermilova
- FB 6.1
Oberflächenanalytik und Grenzflächenchemie, Bundesanstalt für Materialforschung und -prüfung
(BAM), Unter den Eichen
44-46, D-12203 Berlin, Germany
| | - Andreas Hertwig
- FB 6.1
Oberflächenanalytik und Grenzflächenchemie, Bundesanstalt für Materialforschung und -prüfung
(BAM), Unter den Eichen
44-46, D-12203 Berlin, Germany
| | - Manuela Schiek
- Center
for Surface- and Nanoanalytics (ZONA), Institute for Physical Chemistry
(IPC) & Linz Institute for Organic Solar Cells (LIOS), Johannes Kepler University, A-4040 Linz, Austria
| |
Collapse
|
21
|
Hlaváčová T, Skládal P. Photoelectrochemical Enzyme Biosensor for Malate Using Quantum Dots on Indium Tin Oxide/Plastics as a Sensing Surface. BIOSENSORS 2023; 14:11. [PMID: 38248388 PMCID: PMC10813686 DOI: 10.3390/bios14010011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/23/2023] [Revised: 11/19/2023] [Accepted: 12/15/2023] [Indexed: 01/23/2024]
Abstract
A photoelectrochemical biosensor for malate was developed using an indium tin oxide (ITO) layer deposited on a poly(ethylene terephthalate) plastic sheet as a transparent electrode material for the immobilization of malate dehydrogenase together with CdTe quantum dots. Different approaches were compared for the construction of the bioactive layer; the highest response was achieved by depositing malate dehydrogenase together with CdTe nanoparticles and covering it with a Nafion/water (1:1) mixture. The amperometric signal of this biosensor was recorded during irradiation with a near-UV LED in the flow-through mode. The limit of detection was 0.28 mmol/L, which is adequate for analyzing malic acid levels in drinks such as white wines and fruit juices. The results confirm that the cheap ITO layer deposited on the plastic sheet after cutting into rectangular electrodes allows for the economic production of photoelectrochemical (bio)sensors. The combination of NAD+-dependent malate dehydrogenase with quantum dots was also compatible with such an ITO surface.
Collapse
Affiliation(s)
| | - Petr Skládal
- Department of Biochemistry, Faculty of Science, Masaryk University, Kamenice 5, CZ-62500 Brno, Czech Republic;
| |
Collapse
|
22
|
Ho HY, Kao WS, Deval P, Dai CY, Chen YH, Yu ML, Lin CH, Yu LS. Rapid and sensitive LAMP/CRISPR-powered diagnostics to detect different hepatitis C virus genotypes using an ITO-based EG-FET biosensing platform. SENSORS AND ACTUATORS B: CHEMICAL 2023; 394:134278. [DOI: 10.1016/j.snb.2023.134278] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/11/2023]
|
23
|
Wang J, Ji H. Effect of preparation conditions on the properties of nano ZnO powders during ultrasonic assisted direct precipitation process. PLoS One 2023; 18:e0286765. [PMID: 37651379 PMCID: PMC10470927 DOI: 10.1371/journal.pone.0286765] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2023] [Accepted: 05/23/2023] [Indexed: 09/02/2023] Open
Abstract
Transparent conductive thin films (TCO) are widely used for their excellent photoelectric properties. To prepare high-quality ZnO targets, starting with the original ZnO powder is necessary. This paper aims to explore the basic technology and method of ultrasonic-assisted direct precipitation for mass production of ZnO powder and to analyze the effects of factors such as precipitating agent, surfactant, calcination temperature, and solvent on the powder's morphology, particle size, and crystallinity. The study found that the type and amount of precipitants and surfactants affect the powder's morphology and dispersibility, while calcination temperature mainly affects the powder's morphology and crystallinity. The ethanol content in the solvent mainly affects the grain size. After testing different variables, the optimal conditions for preparing spherical ZnO powder were found to be using (NH4)2·CO3 as the precipitant, adding 3% wt of PEG-400 and 3% wt of TEA at a calcination temperature of 320°C and a 60% ethanol solvent. This resulted in a smooth surface, uniform particle size distribution, good dispersibility, high crystallinity, and particle sizes between 26-32nm.
Collapse
Affiliation(s)
- Jingfeng Wang
- Zhengzhou Railway Vocational and Technical College, Zhengzhou, Henan, PR China
| | - Haiyang Ji
- Zhengzhou Railway Vocational and Technical College, Zhengzhou, Henan, PR China
| |
Collapse
|
24
|
Kappalakandy Valapil K, Filipiak MS, Rekiel W, Jarosińska E, Nogala W, Jönsson-Niedziółka M, Witkowska Nery E. Fabrication of ITO microelectrodes and electrode arrays using a low-cost CO 2 laser plotter. LAB ON A CHIP 2023; 23:3802-3810. [PMID: 37551427 DOI: 10.1039/d3lc00266g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/09/2023]
Abstract
Good electronic (Rs = ∼5 Ω sq-1) and optical properties (transmittance: >83%) make indium tin oxide (ITO) an attractive electrode substrate. Despite the commercial availability of high-quality ITO and some low-cost methods for direct deposition being in use by now, the definition of patterns is still a concern. Putting their popularity and extensive use aside, the manufacturing of ITO electrodes so far lacks a rapid, highly reproducible, flexible, cost-effective, easy patterning process that could surpass difficult, time-consuming techniques such as lithography. Herein, we present a low-cost method based on CO2 laser irradiation for preparing ITO microelectrodes and electrode arrays. Electrodes of different sizes and shapes were examined to identify the performance of the proposed methods. Direct ablation of the ITO layer was optimized for rectangular electrodes of 25, 50, and 100 μm in width, while laser cutting of scotch tape stencils and subsequent wet etching were used to create circular electrodes with a diameter of 1.75 mm. A multielectrode array system consisting 8 of these circular electrodes was fabricated on a (25 × 25) mm2 plate, characterized electrochemically through cyclic voltammetry (CV) and scanning electrochemical microscopy (SECM), and as an example application used for monitoring the anchoring behavior of HeLa and HepG2 cell cultures through cell-based electrochemical impedance spectroscopy. Together, the direct ablation method and preparation of laser cut stencils form a complete toolbox, which allows for low-cost and fast fabrication of ITO electrodes for a wide variety of applications. To demonstrate the general availability of the method, we have also prepared a batch of electrodes using a laser plotter in a local printing shop, achieving high intra-workshop reproducibility.
Collapse
Affiliation(s)
| | - Marcin Szymon Filipiak
- Institute of Physical Chemistry, Polish Academy of Sciences, Warsaw, ul. Kasprzaka 44/52, 01-224 Warsaw, Poland.
| | - Weronika Rekiel
- Institute of Physical Chemistry, Polish Academy of Sciences, Warsaw, ul. Kasprzaka 44/52, 01-224 Warsaw, Poland.
| | - Elżbieta Jarosińska
- Institute of Physical Chemistry, Polish Academy of Sciences, Warsaw, ul. Kasprzaka 44/52, 01-224 Warsaw, Poland.
| | - Wojciech Nogala
- Institute of Physical Chemistry, Polish Academy of Sciences, Warsaw, ul. Kasprzaka 44/52, 01-224 Warsaw, Poland.
| | - Martin Jönsson-Niedziółka
- Institute of Physical Chemistry, Polish Academy of Sciences, Warsaw, ul. Kasprzaka 44/52, 01-224 Warsaw, Poland.
| | - Emilia Witkowska Nery
- Institute of Physical Chemistry, Polish Academy of Sciences, Warsaw, ul. Kasprzaka 44/52, 01-224 Warsaw, Poland.
| |
Collapse
|
25
|
Li P, Peng Y, Cai J, Bai Y, Li Q, Pang H. Recent Advances in Metal-Organic Frameworks (MOFs) and Their Composites for Non-Enzymatic Electrochemical Glucose Sensors. Bioengineering (Basel) 2023; 10:733. [PMID: 37370664 DOI: 10.3390/bioengineering10060733] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2023] [Revised: 06/07/2023] [Accepted: 06/16/2023] [Indexed: 06/29/2023] Open
Abstract
In recent years, with pressing needs such as diabetes management, the detection of glucose in various substrates has attracted unprecedented interest from researchers in academia and industry. As a relatively new glucose sensor, non-enzymatic target detection has the characteristics of high sensitivity, good stability and simple manufacturing process. However, it is urgent to explore novel materials with low cost, high stability and excellent performance to modify electrodes. Metal-organic frameworks (MOFs) and their composites have the advantages of large surface area, high porosity and high catalytic efficiency, which can be utilized as excellent materials for electrode modification of non-enzymatic electrochemical glucose sensors. However, MOFs and their composites still face various challenges and difficulties that limit their further commercialization. This review introduces the applications and the challenges of MOFs and their composites in non-enzymatic electrochemical glucose sensors. Finally, an outlook on the development of MOFs and their composites is also presented.
Collapse
Affiliation(s)
- Panpan Li
- Guangling College, Yangzhou University, Yangzhou 225009, China
| | - Yi Peng
- School of Chemistry and Chemical Engineering, Yangzhou University, Yangzhou 225009, China
| | - Jinpeng Cai
- School of Chemistry and Chemical Engineering, Yangzhou University, Yangzhou 225009, China
| | - Yang Bai
- School of Pharmacy, Changzhou University, Changzhou 213164, China
- State Key Laboratory of Coordination Chemistry, Nanjing University, Nanjing 210008, China
| | - Qing Li
- Guangling College, Yangzhou University, Yangzhou 225009, China
| | - Huan Pang
- School of Chemistry and Chemical Engineering, Yangzhou University, Yangzhou 225009, China
| |
Collapse
|
26
|
Jiao X, Xu X, Zhang Y. Optical properties of the dual circularly polarized lights reflected from ITO films under electric and thermal fields. JOURNAL OF THE OPTICAL SOCIETY OF AMERICA. A, OPTICS, IMAGE SCIENCE, AND VISION 2023; 40:1016-1021. [PMID: 37706754 DOI: 10.1364/josaa.489330] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/07/2023] [Accepted: 04/09/2023] [Indexed: 09/15/2023]
Abstract
Indium tin oxide (ITO) is widely used in optoelectronic devices due to its excellent optical and electrical properties. The real-time characterization of the ITO surface under electric and thermal fields plays an important role in determining its performance. The Goos-Hänchen (GH) and Imbert-Fedorov (IF) shifts and polarization properties of the dual circularly polarized lights reflected from ITO films can be used to describe its features. The dual circularly polarized lights, right circularly polarized (RCP, S 3≈+1) and left circularly polarized (LCP, S 3≈-1) lights, are obtained by rotating the linear polarizer and quarter-wave plate. The polarization properties and the lateral shifts of the RCP and LCP lights were studied by a polarimeter and a slim beam profiler. The results show that the polarization properties of the dual circularly polarized lights are mainly affected by temperature. The degree of the polarization properties of the RCP and LCP lights changed from 97.85% to 97.40%, and from 98.40 % to 83.50%, respectively. The reflectivity of the RCP and LCP lights changed from 42.19% to 40.37%, and from 43.80% to 0.80%, respectively. The GH and IF shifts of the RCP light are 156.50 µm and186.00 µm, respectively. The GH and IF shifts of the LCP light are 233.00 µm and 257.00 µm, respectively. The ITO film has more effect on the LCP light than that of the RCP light due to its strong ITO film (400) plane.
Collapse
|
27
|
Aung HH, Qi Z, Niu Y, Guo Y. Rapid Production of Carbon Nanotube Film for Bioelectronic Applications. NANOMATERIALS (BASEL, SWITZERLAND) 2023; 13:nano13111749. [PMID: 37299652 DOI: 10.3390/nano13111749] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/27/2023] [Revised: 05/16/2023] [Accepted: 05/22/2023] [Indexed: 06/12/2023]
Abstract
Flexible electronics have enormous potential for applications that are not achievable in standard electronics. In particular, important technological advances have been made in terms of their performance characteristics and potential range of applications, ranging from medical care, packaging, lighting and signage, consumer electronics, and alternative energy. In this study, we develop a novel method for fabricating flexible conductive carbon nanotube (CNT) films on various substrates. The fabricated conductive CNT films exhibited satisfactory conductivity, flexibility, and durability. The conductivity of the conductive CNT film was maintained at the same level of sheet resistance after bending cycles. The fabrication process is dry, solution-free, and convenient for mass production. Scanning electron microscopy revealed that CNTs were uniformly dispersed over the substrate. The prepared conductive CNT film was applied to collect an electrocardiogram (ECG) signal, which showed good performance compared to traditional electrodes. The conductive CNT film determined the long-term stability of the electrodes under bending or other mechanical stresses. The well-demonstrated fabrication process for flexible conductive CNT films has great potential in the field of bioelectronics.
Collapse
Affiliation(s)
- Hein Htet Aung
- School of Physics, Beijing Institute of Technology, Haidian, Beijing 100081, China
| | - Zhiying Qi
- School of Physics, Beijing Institute of Technology, Haidian, Beijing 100081, China
| | - Yue Niu
- School of Physics, Beijing Institute of Technology, Haidian, Beijing 100081, China
| | - Yao Guo
- School of Physics, Beijing Institute of Technology, Haidian, Beijing 100081, China
| |
Collapse
|
28
|
Avelino KYPS, Silva-Junior AG, Pitta MGR, Errachid A, Oliveira MDL, Andrade CAS. Nanoimmunosensor for the electrochemical detection of oncostatin M receptor and monoclonal autoantibodies in systemic sclerosis. Talanta 2023; 256:124285. [PMID: 36706502 DOI: 10.1016/j.talanta.2023.124285] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2022] [Revised: 01/05/2023] [Accepted: 01/18/2023] [Indexed: 01/22/2023]
Abstract
Systemic sclerosis (SSc) is a chronic, autoimmune disease that primarily affects connective tissue. SSc can be classified into limited cutaneous (lSSc) and diffuse cutaneous (dSSc). Oncostatin M receptor (sOSMR) is an important inflammatory biomarker expressed in the serum of patients with autoimmune diseases. A nanoengineered immunosensor surface was developed. The biosensor was composed of a conductive layer of polypyrrole, electrodeposited gold nanoparticles, and sOSMR protein for anti-human OSMR monoclonal antibody biorecognition. The electrochemical response evaluated by cyclic voltammetry and electrochemical impedance spectroscopy indicated the detection of the target analyte present in clinical samples from lSSc and dSSc patients. The voltammetric anodic shift for lSSc specimens was 82.7% ± 0.9-93.6% ± 3.2, and dSSc specimens was 118.7 ± 2.6 to 379.6 ± 2.6, revealing a differential diagnostic character for SSc subtypes. The sensor platform was adapted for identifying sOSMR, using anti-OSMR antibodies as bioreceptors. With a linear response range estimated from 0.005 to 500 pg mL-1 and a limit of detection of 0.42 pg mL-1, the sensing strategy demonstrated high sensitivity in identifying the human OSMR protein in clinical samples. The proposed biosensor is a promising and innovative tool for SSc-related biomarker research.
Collapse
Affiliation(s)
- Karen Y P S Avelino
- Programa de Pós-Graduação em Inovação Terapêutica, Universidade Federal de Pernambuco, 50670-901, Recife, PE, Brazil; Laboratório de Biodispositivos Nanoestruturados, Departamento de Bioquímica, Universidade Federal de Pernambuco, 50670-901, Recife, PE, Brazil
| | - Alberto G Silva-Junior
- Programa de Pós-Graduação em Inovação Terapêutica, Universidade Federal de Pernambuco, 50670-901, Recife, PE, Brazil; Laboratório de Biodispositivos Nanoestruturados, Departamento de Bioquímica, Universidade Federal de Pernambuco, 50670-901, Recife, PE, Brazil
| | - Maira G R Pitta
- Laboratório de Imunomodulação e Novas Abordagens Terapêuticas, Núcleo de Pesquisa em Inovação Terapêutica, Universidade Federal de Pernambuco, 50670-901, Recife, PE, Brazil
| | - Abdelhamid Errachid
- Université Claude Bernard Lyon 1, Institut des Sciences Analytiques (ISA), 5 rue de la Doua, 69100, Lyon, Villeurbane, France
| | - Maria D L Oliveira
- Programa de Pós-Graduação em Inovação Terapêutica, Universidade Federal de Pernambuco, 50670-901, Recife, PE, Brazil; Laboratório de Biodispositivos Nanoestruturados, Departamento de Bioquímica, Universidade Federal de Pernambuco, 50670-901, Recife, PE, Brazil
| | - César A S Andrade
- Programa de Pós-Graduação em Inovação Terapêutica, Universidade Federal de Pernambuco, 50670-901, Recife, PE, Brazil; Laboratório de Biodispositivos Nanoestruturados, Departamento de Bioquímica, Universidade Federal de Pernambuco, 50670-901, Recife, PE, Brazil.
| |
Collapse
|
29
|
Johannessen E, Johansson J, Hartvigsen G, Horsch A, Årsand E, Henriksen A. Collecting health-related research data using consumer-based wireless smart scales. Int J Med Inform 2023; 173:105043. [PMID: 36934610 DOI: 10.1016/j.ijmedinf.2023.105043] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2022] [Revised: 02/26/2023] [Accepted: 03/09/2023] [Indexed: 03/16/2023]
Abstract
BACKGROUND Serious public-health concerns such as overweight and obesity are in many cases caused by excess intake of food combined with decreases in physical activity. Smart scales with wireless data transfer can, together with smart watches and trackers, observe changes in the population's health. They can present us with a picture of our metabolism, body health, and disease risks. Combining body composition data with physical activity measurements from devices such as smart watches could contribute to building a human digital twin. OBJECTIVE The objectives of this study were to (1) investigate the evolution of smart scales in the last decade, (2) map status and supported sensors of smart scales, (3) get an overview of how smart scales have been used in research, and (4) identify smart scales for current and future research. METHOD We searched for devices through web shops and smart scale tests/reviews, extracting data from the manufacturer's official website, user manuals when available, and data from web shops. We also searched scientific literature databases for smart scale usage in scientific papers. RESULT We identified 165 smart scales with a wireless connection from 72 different manufacturers, released between 2009 and end of 2021. Of these devices, 49 (28%) had been discontinued by end of 2021. We found that the use of major variables such as fat and muscle mass have been as good as constant over the years, and that minor variables such as visceral fat and protein mass have increased since 2015. The main contribution is a representative overview of consumer grade smart scales between 2009 and 2021. CONCLUSION The last six years have seen a distinct increase of these devices in the marketplace, measuring body composition with bone mass, muscle mass, fat mass, and water mass, in addition to weight. Still, the number of research projects featuring connected smart scales are few. One reason could be the lack of professionally accurate measurements, though trend analysis might be a more feasible usage scenario.
Collapse
Affiliation(s)
- Erlend Johannessen
- Department of Computer Science, UiT, The Arctic University of Norway, Tromsø, Norway.
| | - Jonas Johansson
- Department of Community Medicine, UiT, The Arctic University of Norway, Tromsø, Norway
| | - Gunnar Hartvigsen
- Department of Computer Science, UiT, The Arctic University of Norway, Tromsø, Norway; Department of Health and Nursing Science, University of Agder, Grimstad, Norway
| | - Alexander Horsch
- Department of Computer Science, UiT, The Arctic University of Norway, Tromsø, Norway
| | - Eirik Årsand
- Department of Computer Science, UiT, The Arctic University of Norway, Tromsø, Norway
| | - André Henriksen
- Department of Computer Science, UiT, The Arctic University of Norway, Tromsø, Norway
| |
Collapse
|
30
|
Lee S, Lee H, Yeon SY, Chung TD. Enhanced adhesion of functional layers by controlled electrografting of ethylenediamine on ITO for electrochemical immunoassay in microfluidic channel. Biosens Bioelectron 2023; 229:115201. [PMID: 36947919 DOI: 10.1016/j.bios.2023.115201] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2022] [Revised: 02/26/2023] [Accepted: 03/04/2023] [Indexed: 03/11/2023]
Abstract
Two-electrode (2E) system of the interdigitated electrode array (IDA), which operates neither reference nor counter electrodes, has great potential to miniaturize multiplex immunoassay in a microfluidic chip for point-of-care testing. However, it is necessary to firmly immobilize the mediator layer on IDA made of indium tin oxide (ITO) which is chemically inert. It is important because the mediator determines the electrochemical potential in the 2E system, but the layer is easy to be detached during the washing processes of immunoassay. Here, we controlled the concentration of ethylenediamine (EDA) to generate a permeable and robust film to adhere to mediators on the ITO IDA chip. Electrooxidation of EDA yielded thin oligomeric ethyleneimine (OEI) film and it provided amine groups for immobilizing the mediator, poly(toluidine blue) (pTB), via common conjugation reaction. Despite repeated flows in the microchannel, which are essential for sensitive immunoassay, the pTB/OEI layer was hardly washed and still remained on the ITO IDA. Myoglobin was measured down to ∼ pg/mL level. Therefore, the ITO IDA modified with the OEI film in the 2E system constituted a stable platform that withstands washing steps for sensitive electrochemical detection in the miniaturized immunoassay.
Collapse
Affiliation(s)
- Sunmi Lee
- Program in Nano Science and Technology, Graduate School of Convergence Science and Technology, Seoul National University, Suwon-Si, Gyeonggi-do, 16229, Republic of Korea
| | - Haeyeon Lee
- Department of Chemistry, Seoul National University, Seoul, 08826, Republic of Korea
| | - Song Yi Yeon
- Department of Chemistry, Seoul National University, Seoul, 08826, Republic of Korea
| | - Taek Dong Chung
- Program in Nano Science and Technology, Graduate School of Convergence Science and Technology, Seoul National University, Suwon-Si, Gyeonggi-do, 16229, Republic of Korea; Department of Chemistry, Seoul National University, Seoul, 08826, Republic of Korea; Advanced Institute of Convergence Technology, Suwon-Si, Gyeonggi-do, 16229, Republic of Korea.
| |
Collapse
|
31
|
Kim J, Park S, Yang H. Wash-free photoelectrochemical DNA detection based on photoredox catalysis combined with electroreduction and light blocking by magnetic microparticles. Talanta 2023; 253:123872. [PMID: 36113336 DOI: 10.1016/j.talanta.2022.123872] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2022] [Accepted: 08/22/2022] [Indexed: 12/13/2022]
Abstract
To obtain a sensitive, wash-free photoelectrochemical biosensor based on electron mediation between an electrode and a photoredox catalyst (PC) label, unavoidable O2-related reactions should have no effect or be beneficial, and the rate of electron mediation should depend on the distance between the PC label and electrode. A wash-free photoelectrochemical biosensor that (i) combines photoredox catalysis of a PC label with electrochemical reduction of an electron mediator, and (ii) uses a light-blocking multilayer of magnetic microparticles was developed. O2 participates as an electron acceptor in photoredox catalysis; thus, increasing rather than decreasing the electrochemical signal. Upon photoirradiation from the opposite side of a transparent indium tin oxide (ITO) electrode in contact with the solution, the light intensity in the solution is sharply decreased by the light-blocking multilayer, which increases the contribution of affinity-bound PC labels on the ITO electrode to the electrochemical signal compared to that of unbound PC labels in solution. Utilizing eosin Y (EY2-) and Fe(CN)64- as the PC and electron mediator (i.e., electron donor), respectively, enabled rapid redox cycling based on photoredox catalysis combined with electroreduction. The cathodic charge is mainly related to electron transfer from Fe(CN)64- to excited EY2- (Type I photosensitization), rather than energy transfer from excited EY2- to O2, which generates 1O2 (Type II photosensitization). The developed detection scheme was applied to wash-free detection of a model target DNA. Detection limits of ∼200 pM were obtained in both phosphate-buffered saline and serum without washing. The developed scheme enables simple photoelectrochemical detection.
Collapse
Affiliation(s)
- Jihyeon Kim
- Department of Chemistry and Chemistry Institute for Functional Materials, Pusan National University, Busan 46241, Republic of Korea
| | - Seonhwa Park
- Department of Chemistry and Chemistry Institute for Functional Materials, Pusan National University, Busan 46241, Republic of Korea
| | - Haesik Yang
- Department of Chemistry and Chemistry Institute for Functional Materials, Pusan National University, Busan 46241, Republic of Korea.
| |
Collapse
|
32
|
Structural, Optical, and Sensing Properties of Nb-Doped ITO Thin Films Deposited by the Sol–Gel Method. Gels 2022; 8:gels8110717. [DOI: 10.3390/gels8110717] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2022] [Revised: 11/02/2022] [Accepted: 11/03/2022] [Indexed: 11/09/2022] Open
Abstract
The aim of the present study was the development of Nb-doped ITO thin films for carbon monoxide (CO) sensing applications. The detection of CO is imperious because of its high toxicity, with long-term exposure having a negative impact on human health. Using a feasible sol–gel method, the doped ITO thin films were prepared at room temperature and deposited onto various substrates (Si, SiO2/glass, and glass). The structural, morphological, and optical characterization was performed by the following techniques: X-ray diffractometry (XRD), atomic force microscopy (AFM), scanning electron microscopy (SEM), transmission electron microscopy (TEM), and UV/Vis/NIR spectroscopic ellipsometry (SE). The analysis revealed a crystalline structure and a low surface roughness of the doped ITO-based thin films. XTEM analysis (cross-sectional transmission electron microscopy) showed that the film has crystallites of the order of 5–10 nm and relatively large pores (around 3–5 nm in diameter). A transmittance value of 80% in the visible region and an optical band-gap energy of around 3.7 eV were found for dip-coated ITO/Nb films on SiO2/glass and glass supports. The EDX measurements proved the presence of Nb in the ITO film in a molar ratio of 3.7%, close to the intended one (4%). Gas testing measurements were carried out on the ITO undoped and doped thin films deposited on glass substrate. The presence of Nb in the ITO matrix increases the electrical signal and the sensitivity to CO detection, leading to the highest response for 2000 ppm CO concentration at working temperature of 300 °C.
Collapse
|
33
|
Banakar M, Hamidi M, Khurshid Z, Zafar MS, Sapkota J, Azizian R, Rokaya D. Electrochemical Biosensors for Pathogen Detection: An Updated Review. BIOSENSORS 2022; 12:bios12110927. [PMID: 36354437 PMCID: PMC9688024 DOI: 10.3390/bios12110927] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/17/2022] [Revised: 10/18/2022] [Accepted: 10/22/2022] [Indexed: 05/30/2023]
Abstract
Electrochemical biosensors are a family of biosensors that use an electrochemical transducer to perform their functions. In recent decades, many electrochemical biosensors have been created for pathogen detection. These biosensors for detecting infections have been comprehensively studied in terms of transduction elements, biorecognition components, and electrochemical methods. This review discusses the biorecognition components that may be used to identify pathogens. These include antibodies and aptamers. The integration of transducers and electrode changes in biosensor design is a major discussion topic. Pathogen detection methods can be categorized by sample preparation and secondary binding processes. Diagnostics in medicine, environmental monitoring, and biothreat detection can benefit from electrochemical biosensors to ensure food and water safety. Disposable and reusable biosensors for process monitoring, as well as multiplexed and conformal pathogen detection, are all included in this review. It is now possible to identify a wide range of diseases using biosensors that may be applied to food, bodily fluids, and even objects' surfaces. The sensitivity of optical techniques may be superior to electrochemical approaches, but optical methods are prohibitively expensive and challenging for most end users to utilize. On the other hand, electrochemical approaches are simpler to use, but their efficacy in identifying infections is still far from satisfactory.
Collapse
Affiliation(s)
- Morteza Banakar
- Dental Research Center, Dentistry Research Institute, Tehran University of Medical Sciences, Tehran 14176-14411, Iran
- Health Policy Research Center, Institute of Health, Shiraz University of Medical Sciences, Shiraz 71348-45794, Iran
| | - Masoud Hamidi
- Department of Medical Biotechnology, Faculty of Paramedicine, Guilan University of Medical Sciences, Rasht 41887-94755, Iran
| | - Zohaib Khurshid
- Department of Prosthodontics and Implantology, College of Dentistry, King Faisal University, Al-Hofuf, Al Ahsa 31982, Saudi Arabia
- Center of Excellence for Regenerative Dentistry, Department of Anatomy, Faculty of Dentistry, Chulalongkorn University, Bangkok 10330, Thailand
| | - Muhammad Sohail Zafar
- Department of Restorative Dentistry, College of Dentistry, Taibah University, Al Madinah, Al Munawwarah 41311, Saudi Arabia
- Department of Dental Materials, Islamic International Dental College, Riphah International University, Islamabad 44000, Pakistan
| | - Janak Sapkota
- Research Center of Applied Sciences and Technology, Kritipur 44600, Nepal
| | - Reza Azizian
- Pediatric Infectious Diseases Research Center (PIDRC), Tehran University of Medical Sciences, Tehran 14197-33151, Iran
- Biomedical Innovation & Start-Up Association (Biomino), Tehran University of Medical Sciences, Tehran 14166-34793, Iran
| | - Dinesh Rokaya
- Department of Clinical Dentistry, Walailak University International College of Dentistry, Walailak University, Bangkok 10400, Thailand
| |
Collapse
|
34
|
Yan Z, Xing J, He R, Guo Q, Li J. Probe-Integrated Label-Free Electrochemical Immunosensor Based on Binary Nanocarbon Composites for Detection of CA19-9. Molecules 2022; 27:molecules27206778. [PMID: 36296370 PMCID: PMC9607002 DOI: 10.3390/molecules27206778] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2022] [Revised: 09/25/2022] [Accepted: 10/01/2022] [Indexed: 11/16/2022] Open
Abstract
Convenient and sensitive detection of tumor biomarkers is crucial for the early diagnosis and treatment of cancer. Herein, we present a probe-integrated and label-free electrochemical immunosensor based on binary nanocarbon composites and surface-immobilized methylene blue (MB) redox probes for detection of carbohydrate antigen 199 (CA19-9), which is closely associated with gastric malignancies. Nanocarbon composites consisting of electrochemically reduced graphene oxides and carbon nanotubes (ErGO-CNT) are electrodeposited onto an indium tin oxide (ITO) electrode surface to form a 3D nanocomposite film, which could provide high surface area to immobilize abundant MB probes, facilitate the electron transfer of MB, and therefore, improve sensitivity. Polydopamine (PDA) served as a bifunctional linker is able to immobilize anti-CA19-9 antibodies and stabilize the inner probe, conferring the sensing interface with specific recognition capacity. Electrochemical detection of CA19-9 is achieved based on the decrease of the redox signal of MB after specific binding of CA19-9 with a wide linear range of 0.1 mU/mL to 100 U/mL and a limit of detection (LOD) of 0.54 nU/mL (S/N = 3). The constructed electrochemical immunosensor has good selectivity, repeatability, reproducibility, and stability. Furthermore, determination of CA19-9 in human serum samples is also realized.
Collapse
Affiliation(s)
- Zhengzheng Yan
- General Surgery Department, Shanxi Bethune Hospital, Shanxi Academy of Medical Sciences, Tongji Shanxi Hospital, Third Hospital of Shanxi Medical University, Taiyuan 030032, China
| | - Jun Xing
- Department of Breast Surgery, Shanxi Bethune Hospital, Shanxi Academy of Medical Sciences, Tongji Shanxi Hospital, Third Hospital of Shanxi Medical University, Taiyuan 030032, China
- Correspondence:
| | - Ruochong He
- General Surgery Department, Shanxi Bethune Hospital, Shanxi Academy of Medical Sciences, Tongji Shanxi Hospital, Third Hospital of Shanxi Medical University, Taiyuan 030032, China
| | - Qinping Guo
- General Surgery Department, Shanxi Bethune Hospital, Shanxi Academy of Medical Sciences, Tongji Shanxi Hospital, Third Hospital of Shanxi Medical University, Taiyuan 030032, China
| | - Ji Li
- General Surgery Department, Shanxi Bethune Hospital, Shanxi Academy of Medical Sciences, Tongji Shanxi Hospital, Third Hospital of Shanxi Medical University, Taiyuan 030032, China
| |
Collapse
|
35
|
Mobed A, Kohansal F, Dolati S, Hasanzadeh M. A novel immuno-device based on the specific binding of AuNP-supported CTAB with biotinylated antibody of hyaluronic acid toward an early-stage recognition of a biomarker: a bioanalytical assay in real samples using disposal biosensor technology. RSC Adv 2022; 12:28473-28488. [PMID: 36320526 PMCID: PMC9533320 DOI: 10.1039/d2ra04984h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2022] [Accepted: 09/19/2022] [Indexed: 11/10/2022] Open
Abstract
Hyaluronic Acid (HA) is a non-sulfated glycosaminoglycan, which is a potential biomarker that could be evaluated in the diagnosis of some cancers. For the first time, a novel label-free electrochemical immunosensor was developed based on modified ITO-PET (indium tin oxide-polyethylene terephthalate) electrodes for the sensitive recognition of hyaluronic acid (HA) in real samples. A disposable ITO-coated PET electrode was modified with gold nanoparticles (AuNPs) to construct a suitable substrate for the efficient immobilization of biotinylated antibodies of HA. Importantly, the encapsulation of biotinylated antibody of HA in KCC1-NH-CS2 was performed successfully, which was another innovative part of this bio-device construction. For determining the immobilization steps and optimization of the biosensor, electrochemical impedance spectroscopy (EIS) and cyclic voltammetry (CV) techniques were used. Furthermore, the morphological characterization of each ITO electrode surface was performed by field emission scanning electron microscopy (FESEM). Specific binding of gold nanoparticles supported CTAB to ITO-PET and its bioconjugation with the biotinylated antibody of HA was studied using the electroanalysis of the sensor performance. For the better performance of the antibody to generate an immunocomplex with HA (antigen), its encapsulation was performed, which led to the excellent behavior of the immunosensor. The proposed HA immunosensor indicated excellent reproducibility, high selectivity, and long-term stability. The HA electrochemical immunosensor performed perfectly with a wide determination range (0.078 to 160 ng mL-1) and a low limit of quantification (0.078 ng mL-1) in human plasma samples. It is recommended that the designed biosensor can be used as a diagnostic tool in clinical bioassays in the near future.
Collapse
Affiliation(s)
- Ahmad Mobed
- Infectious and Tropical Diseases Research Center, Tabriz University of Medical Sciences Tabriz Iran
- Physical Medicine and Rehabilitation Research Center, Aging Research Institute, Tabriz University of Medical Sciences Tabriz Iran
- Pharmaceutical Analysis Research Center, Tabriz University of Medical Sciences Tabriz Iran
| | - Fereshteh Kohansal
- Pharmaceutical Analysis Research Center, Tabriz University of Medical Sciences Tabriz Iran
| | - Sanam Dolati
- Physical Medicine and Rehabilitation Research Center, Aging Research Institute, Tabriz University of Medical Sciences Tabriz Iran
| | - Mohammad Hasanzadeh
- Pharmaceutical Analysis Research Center, Tabriz University of Medical Sciences Tabriz Iran
| |
Collapse
|
36
|
Martinez-Duarte R, Mager D, Korvink JG, Islam M. Evaluating carbon-electrode dielectrophoresis under the ASSURED criteria. FRONTIERS IN MEDICAL TECHNOLOGY 2022; 4:922737. [PMID: 35958120 PMCID: PMC9360481 DOI: 10.3389/fmedt.2022.922737] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2022] [Accepted: 07/07/2022] [Indexed: 11/30/2022] Open
Abstract
Extreme point-of-care refers to medical testing in unfavorable conditions characterized by a lack of primary resources or infrastructure. As witnessed in the recent past, considerable interest in developing devices and technologies exists for extreme point-of-care applications, for which the World Health Organization has introduced a set of encouraging and regulating guidelines. These are referred to as the ASSURED criteria, an acronym for Affordable (A), Sensitive (S), Specific (S), User friendly (U), Rapid and Robust (R), Equipment-free (E), and Delivered (D). However, the current extreme point of care devices may require an intermediate sample preparation step for performing complex biomedical analysis, including the diagnosis of rare-cell diseases and early-stage detection of sepsis. This article assesses the potential of carbon-electrode dielectrophoresis (CarbonDEP) for sample preparation competent in extreme point-of-care, following the ASSURED criteria. We first discuss the theory and utility of dielectrophoresis (DEP) and the advantages of using carbon microelectrodes for this purpose. We then critically review the literature relevant to the use of CarbonDEP for bioparticle manipulation under the scope of the ASSURED criteria. Lastly, we offer a perspective on the roadmap needed to strengthen the use of CarbonDEP in extreme point-of-care applications.
Collapse
Affiliation(s)
- Rodrigo Martinez-Duarte
- Multiscale Manufacturing Laboratory, Mechanical Engineering Department, Clemson University, Clemson, SC, United States
- *Correspondence: Rodrigo Martinez-Duarte
| | - Dario Mager
- Institute of Microstructure Technology, Karlsruhe Institute of Technology, Eggenstein-Leopoldshafen, Germany
| | - Jan G. Korvink
- Institute of Microstructure Technology, Karlsruhe Institute of Technology, Eggenstein-Leopoldshafen, Germany
- Jan G. Korvink
| | - Monsur Islam
- Institute of Microstructure Technology, Karlsruhe Institute of Technology, Eggenstein-Leopoldshafen, Germany
- Monsur Islam
| |
Collapse
|
37
|
Cao C, Hu B, Tu G, Ji X, Li Z, Xu F, Chang T, Jin P, Cao X. Sputtering Flexible VO 2 Films for Effective Thermal Modulation. ACS APPLIED MATERIALS & INTERFACES 2022; 14:28105-28113. [PMID: 35679605 DOI: 10.1021/acsami.2c05482] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Flexible vanadium dioxide (VO2) thermochromic films show great potential for large-scale fabrication and possess broader applications compared with VO2 coatings on rigid substrates. However, the fabrication of flexible VO2 films remains a challenge so far, leading to the scarcity of research on flexible VO2 films for smart windows. With the aim to obtain a flexible VO2-based films with excellent optical properties and a long service life, we designed and successfully fabricated a flexible ITO/VO2/ITO (IVI) film on the colorless transparent polyimide substrate, which could be directly attached to glasses for indoor temperature modulation. This flexible IVI film effectively enhances the luminous transmittance (Tlum) and solar modulation ability (ΔTsol) (15 and 68% increase relative to a VO2 single layer), reduces the thermal emissivity (εT) (50.7% decrease relative to a VO2 single layer), and exhibits better durability than previously reported structures. Such excellent comprehensive performance offers it great potential in practical applications on smart windows. This work is supposed to provide a new strategy for facile direct fabrication of flexible VO2 films and broaden the applications of flexible VO2 in more coatings and devices.
Collapse
Affiliation(s)
- Cuicui Cao
- State Key Laboratory of High Performance Ceramics and Superfine Microstructure, Shanghai Institute of Ceramics, Chinese Academy of Sciences, Shanghai 200050, China
- Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Bin Hu
- Wuhan National Laboratory for Optoelectronics, Huazhong University of Science and Technology, Wuhan 430074, China
| | - Guoli Tu
- Wuhan National Laboratory for Optoelectronics, Huazhong University of Science and Technology, Wuhan 430074, China
| | - Xiaowei Ji
- State Key Laboratory of High Performance Ceramics and Superfine Microstructure, Shanghai Institute of Ceramics, Chinese Academy of Sciences, Shanghai 200050, China
- College of Chemistry and Materials Science, Shanghai Normal University, Shanghai 200234, China
| | - Zhongshao Li
- State Key Laboratory of High Performance Ceramics and Superfine Microstructure, Shanghai Institute of Ceramics, Chinese Academy of Sciences, Shanghai 200050, China
- School of Materials Science and Engineering, Shanghai University, Shanghai 200444, China
| | - Fang Xu
- State Key Laboratory of High Performance Ceramics and Superfine Microstructure, Shanghai Institute of Ceramics, Chinese Academy of Sciences, Shanghai 200050, China
- Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Tianci Chang
- Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, Guangdong, China
| | - Ping Jin
- State Key Laboratory of High Performance Ceramics and Superfine Microstructure, Shanghai Institute of Ceramics, Chinese Academy of Sciences, Shanghai 200050, China
| | - Xun Cao
- State Key Laboratory of High Performance Ceramics and Superfine Microstructure, Shanghai Institute of Ceramics, Chinese Academy of Sciences, Shanghai 200050, China
- Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing 100049, China
| |
Collapse
|
38
|
Khan S, Stamate E. Comparative Study of Aluminum-Doped Zinc Oxide, Gallium-Doped Zinc Oxide and Indium-Doped Tin Oxide Thin Films Deposited by Radio Frequency Magnetron Sputtering. NANOMATERIALS (BASEL, SWITZERLAND) 2022; 12:1539. [PMID: 35564248 PMCID: PMC9104591 DOI: 10.3390/nano12091539] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/24/2022] [Revised: 04/27/2022] [Accepted: 04/27/2022] [Indexed: 12/11/2022]
Abstract
A timely replacement of the rather expensive indium-doped tin oxide with aluminum-doped zinc oxide is hindered by the poor uniformity of electronic properties when deposited by magnetron sputtering. Recent results demonstrated the ability to improve the uniformity and to decrease the resistivity of aluminum-doped zinc oxide thin films by decreasing the energy of the oxygen-negative ions assisting in thin film growth by using a tuning electrode. In this context, a comparative study was designed to elucidate if the same phenomenology holds for gallium-doped zinc oxide and indium-doped tin oxide as well. The metal oxide thin films have been deposited in the same setup for similar discharge parameters, and their properties were measured with high spatial resolution and correlated with the erosion track on the target's surface. Furthermore, the films were also subject to post annealing and degradation tests by wet etching. While the tuning electrode was able to reduce the self-bias for all three materials, only the doped zinc oxide films exhibited properties correlating with the erosion track.
Collapse
Affiliation(s)
| | - Eugen Stamate
- National Center for Nano Fabrication and Characterization, Technical University of Denmark, Ørsteds Plads 347, 2800 Kongens Lyngby, Denmark
| |
Collapse
|
39
|
Ma Y, Li Q, Wang S, Wang Y, Liu H, Wang X, Zhao B, Jiang Z, Ruan W. Observation of tunable surface plasmon resonances and surface enhanced infrared absorption (SEIRA) based on indium tin oxide (ITO) nanoparticle substrates. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2022; 271:120914. [PMID: 35074675 DOI: 10.1016/j.saa.2022.120914] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/10/2021] [Revised: 01/09/2022] [Accepted: 01/16/2022] [Indexed: 06/14/2023]
Abstract
The application of surface enhanced infrared absorption (SEIRA) is severely restricted in many fields due to the SEIRA substrates are constructed mainly from expensive noble metals. Therefore, the development of new SEIRA substrates other than the noble metallic ones is very valuable. Here we introduced a new semiconductor SEIRA substrate, the indium tin oxide (ITO) nanoparticles (NPs), to study the SEIRA property. The results demonstrate that the ITO NPs show the SEIRA property and the enhancement is dependent to the doping ratio of the heteroatoms of tin. The ITO NPs with the 5% atomic doping ratio show the highest SEIRA enhancement factor (EF), which is about 24. The limit of detection (LOD) of the 1,1'-dicarboxyferrocene (dcFc) molecule was as low as 10-5 mol/L. The present study proves that the tin-doped indium oxide can be used as a new and inexpensive semiconductor SEIRA substrate. It also proves that the doped semiconductor NPs have strong potentials for being used as emerging SEIRA substrates.
Collapse
Affiliation(s)
- Yan Ma
- State Key Laboratory of Supramolecular Structure and Materials, Institute of Theoretical Chemistry, College of Chemistry, Jilin University, Changchun 130012, P. R. China
| | - Qianwen Li
- State Key Laboratory of Supramolecular Structure and Materials, Institute of Theoretical Chemistry, College of Chemistry, Jilin University, Changchun 130012, P. R. China
| | - Siyu Wang
- State Key Laboratory of Supramolecular Structure and Materials, Institute of Theoretical Chemistry, College of Chemistry, Jilin University, Changchun 130012, P. R. China
| | - Yanan Wang
- State Key Laboratory of Supramolecular Structure and Materials, Institute of Theoretical Chemistry, College of Chemistry, Jilin University, Changchun 130012, P. R. China
| | - Hongye Liu
- State Key Laboratory of Supramolecular Structure and Materials, Institute of Theoretical Chemistry, College of Chemistry, Jilin University, Changchun 130012, P. R. China
| | - Xu Wang
- State Key Laboratory of Supramolecular Structure and Materials, Institute of Theoretical Chemistry, College of Chemistry, Jilin University, Changchun 130012, P. R. China
| | - Bing Zhao
- State Key Laboratory of Supramolecular Structure and Materials, Institute of Theoretical Chemistry, College of Chemistry, Jilin University, Changchun 130012, P. R. China
| | - Ziping Jiang
- Department of Hand and Foot Surgery, First Hospital of Jilin University, Jilin University, Changchun 130021, P. R. China.
| | - Weidong Ruan
- State Key Laboratory of Supramolecular Structure and Materials, Institute of Theoretical Chemistry, College of Chemistry, Jilin University, Changchun 130012, P. R. China.
| |
Collapse
|
40
|
Fabrication of alkoxysilane substituted polymer-modified disposable biosensing platform: Toward sperm protein 17 sensing as a new cancer biomarker. Talanta 2022; 243:123376. [DOI: 10.1016/j.talanta.2022.123376] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2021] [Revised: 01/31/2022] [Accepted: 03/08/2022] [Indexed: 12/24/2022]
|
41
|
Fattahi A, Koohsari P, Shadman Lakmehsari M, Ghandi K. The Impact of the Surface Modification on Tin-Doped Indium Oxide Nanocomposite Properties. NANOMATERIALS (BASEL, SWITZERLAND) 2022; 12:155. [PMID: 35010105 PMCID: PMC8746389 DOI: 10.3390/nano12010155] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/10/2021] [Revised: 12/27/2021] [Accepted: 12/31/2021] [Indexed: 02/04/2023]
Abstract
This review provides an analysis of the theoretical methods to study the effects of surface modification on structural properties of nanostructured indium tin oxide (ITO), mainly by organic compounds. The computational data are compared with experimental data such as X-ray diffraction (XRD), atomic force microscopy (AFM) and energy-dispersive X-ray spectroscopy (EDS) data with the focus on optoelectronic and electrocatalytic properties of the surface to investigate potential relations of these properties and applications of ITO in fields such as biosensing and electronic device fabrication. Our analysis shows that the change in optoelectronic properties of the surface is mainly due to functionalizing the surface with organic molecules and that the electrocatalytic properties vary as a function of size.
Collapse
Affiliation(s)
- Arash Fattahi
- Department of Chemistry, University of Guelph, Guelph, ON N1G 2W1, Canada;
| | - Peyman Koohsari
- Department of Chemistry, Faculty of Science, University of Zanjan, Zanjan P.O. Box 45195-313, Iran; (P.K.); (M.S.L.)
| | - Muhammad Shadman Lakmehsari
- Department of Chemistry, Faculty of Science, University of Zanjan, Zanjan P.O. Box 45195-313, Iran; (P.K.); (M.S.L.)
| | - Khashayar Ghandi
- Department of Chemistry, University of Guelph, Guelph, ON N1G 2W1, Canada;
| |
Collapse
|
42
|
Electrochemical aptamer-based nanobiosensors for diagnosing Alzheimer's disease: A review. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2022; 135:112689. [DOI: 10.1016/j.msec.2022.112689] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/20/2021] [Revised: 01/20/2022] [Accepted: 01/27/2022] [Indexed: 12/22/2022]
|
43
|
Chia JY, Lertvanithphol T, Chaikeeree T, Seawsakul K, Thamrongsiripak N, Nakajima H, Songsiriritthigul P, Horprathum M, Nuntawong N. Work function alteration of the porous indium tin oxide nanorods film by electron beam irradiation technique. Radiat Phys Chem Oxf Engl 1993 2021. [DOI: 10.1016/j.radphyschem.2021.109664] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
|
44
|
Zhou S, Wang X, Jiang L, Sun H, Huo D, Hou C. A three-dimensional hydrogel-modified indium tin oxide electrode with enhanced performance for in situ electrochemical detection of extracellular H 2O 2. Analyst 2021; 146:5403-5412. [PMID: 34346414 DOI: 10.1039/d1an00875g] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Two different electrochemical sensors (Hemin-G4/Au/GCE and Hemin-G4/Au/ITO) were developed and applied to explore the electrocatalytic capacity of H2O2 reduction. Due to the excellent catalytic activity of Hemin-G4 and high conductivity of gold nanoparticles, both electrodes show excellent electrochemical performances towards H2O2 with a low LOD (0.67 μM for Hemin-G4/Au/GCE and 0.65 μM for Hemin-G4/Au/ITO), rapid response (<4 s), and high selectivity and sensitivity (314.33 μA mM-1 cm-2 for Hemin-G4/Au/GCE and 322.22 μA mM-1 cm-2 for Hemin-G4/Au/ITO). The two electrodes allow sensitive capture of H2O2 produced by A549 cells. Compared with the conventional method of detection in cell suspensions, an ITO electrode with a large specific surface area and good biocompatibility can provide a promising platform for cell adhesion, so as to realize real-time and in situ detection of extracellular H2O2. The experimental results show that A549 cells can adhere to the surface of the Hemin-G4/Au/ITO electrode and grow well. This is benefitted from the three-dimensional structure of the Hemin-G4/Au hydrogel, which provides a suitable microenvironment for cell adhesion and growth. Furthermore, the in situ detection shows a faster response time than that of in-solution detection. This is because the H2O2 generated by the cells can be directly captured by the ITO electrode, which avoids diffusion from the solution to the electrode. These results indicate that the self-supporting hydrogel modified ITO electrode has great application prospects in basic biomedical research and continuous dynamic surveillance of diseases.
Collapse
Affiliation(s)
- Shiying Zhou
- Key Laboratory for Biorheological Science and Technology of Ministry of Education, State and Local Joint Engineering Laboratory for Vascular Implants, Bioengineering College of Chongqing University, Chongqing 400044, PR China.
| | | | | | | | | | | |
Collapse
|
45
|
Suni II. Substrate Materials for Biomolecular Immobilization within Electrochemical Biosensors. BIOSENSORS 2021; 11:239. [PMID: 34356710 PMCID: PMC8301891 DOI: 10.3390/bios11070239] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/16/2021] [Revised: 07/01/2021] [Accepted: 07/08/2021] [Indexed: 01/17/2023]
Abstract
Electrochemical biosensors have potential applications for agriculture, food safety, environmental monitoring, sports medicine, biomedicine, and other fields. One of the primary challenges in this field is the immobilization of biomolecular probes atop a solid substrate material with adequate stability, storage lifetime, and reproducibility. This review summarizes the current state of the art for covalent bonding of biomolecules onto solid substrate materials. Early research focused on the use of Au electrodes, with immobilization of biomolecules through ω-functionalized Au-thiol self-assembled monolayers (SAMs), but stability is usually inadequate due to the weak Au-S bond strength. Other noble substrates such as C, Pt, and Si have also been studied. While their nobility has the advantage of ensuring biocompatibility, it also has the disadvantage of making them relatively unreactive towards covalent bond formation. With the exception of Sn-doped In2O3 (indium tin oxide, ITO), most metal oxides are not electrically conductive enough for use within electrochemical biosensors. Recent research has focused on transition metal dichalcogenides (TMDs) such as MoS2 and on electrically conductive polymers such as polyaniline, polypyrrole, and polythiophene. In addition, the deposition of functionalized thin films from aryldiazonium cations has attracted significant attention as a substrate-independent method for biofunctionalization.
Collapse
Affiliation(s)
- Ian Ivar Suni
- Materials Technology Center, Southern Illinois University, Carbondale, IL 62901, USA; ; Tel.: +1-618-453-7822
- School of Chemistry and Biomolecular Sciences, Southern Illinois University, Carbondale, IL 62901, USA
- School of Mechanical, Aerospace and Materials Engineering, Southern Illinois University, Carbondale, IL 62901, USA
| |
Collapse
|
46
|
Singh KR, Nayak V, Singh J, Singh AK, Singh RP. Potentialities of bioinspired metal and metal oxide nanoparticles in biomedical sciences. RSC Adv 2021; 11:24722-24746. [PMID: 35481029 PMCID: PMC9036962 DOI: 10.1039/d1ra04273d] [Citation(s) in RCA: 56] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2021] [Accepted: 07/01/2021] [Indexed: 12/15/2022] Open
Abstract
To date, various reports have shown that metallic gold bhasma at the nanoscale form was used as medicine as early as 2500 B.C. in India, China, and Egypt. Owing to their unique physicochemical, biological, and electronic properties, they have broad utilities in energy, environment, agriculture and more recently, the biomedical field. The biomedical domain has been used in drug delivery, imaging, diagnostics, therapeutics, and biosensing applications. In this review, we will discuss and highlight the increasing control over metal and metal oxide nanoparticle structures as smart nanomaterials utilized in the biomedical domain to advance the role of biosynthesized nanoparticles for improving human health through wide applications in the targeted drug delivery, controlled release drug delivery, wound dressing, tissue scaffolding, and medical implants. In addition, we have discussed concerns related to the role of these types of nanoparticles as an anti-viral agent by majorly highlighting the ways to combat the Severe Acute Respiratory Syndrome Coronavirus-2 (SARS-CoV-2) pandemic, along with their prospects.
Collapse
Affiliation(s)
- Kshitij Rb Singh
- Department of Chemistry, Govt. V.Y.T. PG Autonomous College Durg Chhattisgarh (491001) India
| | - Vanya Nayak
- Department of Biotechnology, Faculty of Science, Indira Gandhi National Tribal University Amarkantak Madhya Pradesh (484886) India +91-91-0934-6565
| | - Jay Singh
- Department of Chemistry, Institute of Science, Banaras Hindu University Varanasi Uttar Pradesh (221005) India
| | - Ajaya Kumar Singh
- Department of Chemistry, Govt. V.Y.T. PG Autonomous College Durg Chhattisgarh (491001) India
| | - Ravindra Pratap Singh
- Department of Biotechnology, Faculty of Science, Indira Gandhi National Tribal University Amarkantak Madhya Pradesh (484886) India +91-91-0934-6565
| |
Collapse
|
47
|
Bagheri Hariri M, Siavash Moakhar R, Sharifi Abdar P, Zargarnezhad H, Shone M, Rahmani SA, Moradi N, Niksefat V, Shayar Bahadori K, Dolati A. Facile and ultra-sensitive voltammetric electrodetection of Hg 2+ in aqueous media using electrodeposited AuPtNPs/ITO. ANALYTICAL METHODS : ADVANCING METHODS AND APPLICATIONS 2021; 13:2688-2700. [PMID: 34036981 DOI: 10.1039/d1ay00361e] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
In this study, we have investigated the use of electrodeposited Au-Pt nanoparticles (AuPtNPs) on indium tin oxide (ITO) for the detection of Hg2+ heavy ions in water samples. The mechanism of AuPtNP electrocrystallization on ITO glass in an aqueous solution containing 0.5 mM HAuCl4 + 0.5 mM H2PtCl6 is described for the first time. The nucleation mechanism of monometallic AuNPs on ITO was found to be progressive; however, a transition from progressive to instantaneous was observed for bimetallic AuPtNPs at elevated overpotentials. The modified ITOs were then assessed for the electrodetection of Hg2+ in aqueous media. It was shown by differential pulse voltammetry (DPV) that the sensitivity of the constructed AuPtNPs/ITO electrode toward Hg2+ was about 2.08 μA nM-1. An approximate detection limit of 4.03 nM Hg2+ was achieved, which is below the permissible level of 30.00 nM Hg2+ in drinking water, according to the World Health Organization (WHO). Characterization of AuPt nanostructures was carried out by X-ray diffraction (XRD) patterns, scanning electron microscopy (SEM), and different electrochemical techniques (cyclic voltammetry (CV), chronoamperometry, and electrochemical impedance spectroscopy (EIS)). Our results indicate a good potential of a facile and robust electrochemical assembly for on-site detection of heavy metals in water samples.
Collapse
Affiliation(s)
- Mohiedin Bagheri Hariri
- Institute for Corrosion and Multiphase Technology, Department of Chemical and Biomolecular Engineering, Ohio University, Athens, Ohio 45701, USA.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
48
|
Nsabimana J, Wang Y, Ruan Q, Li T, Shen H, Yang C, Zhu Z. An electrochemical method for a rapid and sensitive immunoassay on digital microfluidics with integrated indium tin oxide electrodes coated on a PET film. Analyst 2021; 146:4473-4479. [PMID: 34227625 DOI: 10.1039/d1an00513h] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Electrochemical detection is the simplest analytical tool to be integrated into digital microfluidics (DMF). It offers the advantages of small size, with detector electrodes incorporated into the device by patterning, and high compatibility with portable analytical instruments. Indium tin oxide (ITO) coated on glass has been commonly used for the top plate of DMF due to its good conductivity and transparency. However, instability and the low current response of ITO electrodes patterned on glass hindered their application for immunoassays. It has been reported that ITO coated on polyethylene terephthalate (PET) has better conductivity, owing to its higher carrier concentration, faster mobility and lower resistivity. Herein, we investigated the use of ITO electrodes patterned on PET film as the top plate of DMF for a simple and stable electrochemical immunoassay using square wave voltammetry (SWV), with an excellent peak resolution and high sensitivity. A magnetic bead-based immunoassay for H5N1 antigen was performed on a DMF platform with a limit of detection of 0.6 ng mL-1 in buffer and 18 ng mL-1 in human serum. These results showed the good electrochemical performance of ITO coated on a PET film, a lightweight, shock resistant and cost-effective material, which is promising for DMF fabrication and transparent electrodes for various electroanalytical methods.
Collapse
Affiliation(s)
- Jacques Nsabimana
- The MOE Key Laboratory of Spectrochemical Analysis & Instrumentation, The key Laboratory of Chemical Biology of Fujian Province, State Key Laboratory of Physical Chemistry of Solid Surfaces, Collaborative Innovation Center of Chemistry for Energy Materials, Department of Chemical Biology, College of Chemistry and Chemical Engineering, Pen-Tung Sah Institute of Micro-Nano Science and Technology, Xiamen University, Xiamen 361005, P.R. China.
| | - Yang Wang
- The MOE Key Laboratory of Spectrochemical Analysis & Instrumentation, The key Laboratory of Chemical Biology of Fujian Province, State Key Laboratory of Physical Chemistry of Solid Surfaces, Collaborative Innovation Center of Chemistry for Energy Materials, Department of Chemical Biology, College of Chemistry and Chemical Engineering, Pen-Tung Sah Institute of Micro-Nano Science and Technology, Xiamen University, Xiamen 361005, P.R. China.
| | - Qingyu Ruan
- The MOE Key Laboratory of Spectrochemical Analysis & Instrumentation, The key Laboratory of Chemical Biology of Fujian Province, State Key Laboratory of Physical Chemistry of Solid Surfaces, Collaborative Innovation Center of Chemistry for Energy Materials, Department of Chemical Biology, College of Chemistry and Chemical Engineering, Pen-Tung Sah Institute of Micro-Nano Science and Technology, Xiamen University, Xiamen 361005, P.R. China.
| | - Tingyu Li
- The MOE Key Laboratory of Spectrochemical Analysis & Instrumentation, The key Laboratory of Chemical Biology of Fujian Province, State Key Laboratory of Physical Chemistry of Solid Surfaces, Collaborative Innovation Center of Chemistry for Energy Materials, Department of Chemical Biology, College of Chemistry and Chemical Engineering, Pen-Tung Sah Institute of Micro-Nano Science and Technology, Xiamen University, Xiamen 361005, P.R. China.
| | - Haicong Shen
- The MOE Key Laboratory of Spectrochemical Analysis & Instrumentation, The key Laboratory of Chemical Biology of Fujian Province, State Key Laboratory of Physical Chemistry of Solid Surfaces, Collaborative Innovation Center of Chemistry for Energy Materials, Department of Chemical Biology, College of Chemistry and Chemical Engineering, Pen-Tung Sah Institute of Micro-Nano Science and Technology, Xiamen University, Xiamen 361005, P.R. China.
| | - Chaoyong Yang
- The MOE Key Laboratory of Spectrochemical Analysis & Instrumentation, The key Laboratory of Chemical Biology of Fujian Province, State Key Laboratory of Physical Chemistry of Solid Surfaces, Collaborative Innovation Center of Chemistry for Energy Materials, Department of Chemical Biology, College of Chemistry and Chemical Engineering, Pen-Tung Sah Institute of Micro-Nano Science and Technology, Xiamen University, Xiamen 361005, P.R. China. and Institute of Molecular Medicine, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200127, P.R. China
| | - Zhi Zhu
- The MOE Key Laboratory of Spectrochemical Analysis & Instrumentation, The key Laboratory of Chemical Biology of Fujian Province, State Key Laboratory of Physical Chemistry of Solid Surfaces, Collaborative Innovation Center of Chemistry for Energy Materials, Department of Chemical Biology, College of Chemistry and Chemical Engineering, Pen-Tung Sah Institute of Micro-Nano Science and Technology, Xiamen University, Xiamen 361005, P.R. China.
| |
Collapse
|
49
|
O'Connell L, Marcoux PR, Roupioz Y. Strategies for Surface Immobilization of Whole Bacteriophages: A Review. ACS Biomater Sci Eng 2021; 7:1987-2014. [PMID: 34038088 DOI: 10.1021/acsbiomaterials.1c00013] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
Bacteriophage immobilization is a key unit operation in emerging biotechnologies, enabling new possibilities for biodetection of pathogenic microbes at low concentration, production of materials with novel antimicrobial properties, and fundamental research on bacteriophages themselves. Wild type bacteriophages exhibit extreme binding specificity for a single species, and often for a particular subspecies, of bacteria. Since their specificity originates in epitope recognition by capsid proteins, which can be altered by chemical or genetic modification, their binding specificity may also be redirected toward arbitrary substrates and/or a variety of analytes in addition to bacteria. The immobilization of bacteriophages on planar and particulate substrates is thus an area of active and increasing scientific interest. This review assembles the knowledge gained so far in the immobilization of whole phage particles, summarizing the main chemistries, and presenting the current state-of-the-art both for an audience well-versed in bioconjugation methods as well as for those who are new to the field.
Collapse
Affiliation(s)
- Larry O'Connell
- Université Grenoble Alpes, CEA, LETI, F38054 Grenoble, France.,Université Grenoble Alpes, CNRS, CEA, IRIG, SyMMES, 38000 Grenoble, France
| | | | - Yoann Roupioz
- Université Grenoble Alpes, CNRS, CEA, IRIG, SyMMES, 38000 Grenoble, France
| |
Collapse
|
50
|
Correia AR, Sampaio I, Comparetti EJ, Vieira NCS, Zucolotto V. Detecting cancer cells with a highly sensitive LbL-based biosensor. Talanta 2021; 233:122506. [PMID: 34215121 DOI: 10.1016/j.talanta.2021.122506] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2021] [Revised: 04/30/2021] [Accepted: 05/05/2021] [Indexed: 10/21/2022]
Abstract
Early diagnosis of cancer is crucial for therapeutic methods to be more effective and to decrease the mortality rate due to this disease. Current diagnostic methods include imaging techniques that require expensive equipment and specialized personnel, making it difficult to apply them to many patients. To overcome these limitations, many biosensors have been developed to monitor cancer biomarkers. Here, we report on the electrochemical biosensor for selective detection of tumor cells using a simple and low-cost methodology. Layer-by-layer (LbL) self-assembly was used to modify indium tin oxide (ITO) electrodes with alternating layers of polyallylamine hydrochloride (PAH) and folic acid (FA), which binds to overexpressed folate receptors alpha (FRα) in tumor cells. The LbL-based biosensor showed high sensitivity in detecting cervical cancer cells (HeLa cells) using cyclic voltammetry (CV) and electrochemical impedance spectroscopy (EIS). A linear dependence with the logarithm cell concentration was observed and excellent detection limits were found, 4 cells mL-1 and 19 cells mL-1 for EIS and CV measurements, respectively. The developed biosensor also presented great reproducibility (RSD = 1.7%) and repeatability (RSD = 1.8%). The selectivity was confirmed after the biosensor interaction with healthy cells (HMEC cells), which did not produce significant changes in the electrochemical signals. Furthermore, it was demonstrated that selective detection of tumor cells occurs via an interaction with FA. The LbL-based biosensor provides a simple, accurate, and cost-effective platform to be applied in the early diagnosis of cancer.
Collapse
Affiliation(s)
- Abilene Rodrigues Correia
- GNano - Nanomedicine and Nanotoxicology Group, São Carlos Institute of Physics, University of São Paulo, CP 369, 13560-970, São Carlos, SP, Brazil
| | - Isabella Sampaio
- GNano - Nanomedicine and Nanotoxicology Group, São Carlos Institute of Physics, University of São Paulo, CP 369, 13560-970, São Carlos, SP, Brazil.
| | - Edson José Comparetti
- GNano - Nanomedicine and Nanotoxicology Group, São Carlos Institute of Physics, University of São Paulo, CP 369, 13560-970, São Carlos, SP, Brazil
| | - Nirton Cristi Silva Vieira
- GNano - Nanomedicine and Nanotoxicology Group, São Carlos Institute of Physics, University of São Paulo, CP 369, 13560-970, São Carlos, SP, Brazil; Institute of Science and Technology, Federal University of São Paulo, 12231-280, São José dos Campos, SP, Brazil
| | - Valtencir Zucolotto
- GNano - Nanomedicine and Nanotoxicology Group, São Carlos Institute of Physics, University of São Paulo, CP 369, 13560-970, São Carlos, SP, Brazil
| |
Collapse
|