1
|
Cheng M, Xu Y, Xu X, Yan B, Zhang X, Borijihan G, Wang Y, Li Y. Quick separation and enrichment of chlorogenic acid and its analogues by a high-efficient molecularly imprinted nanoparticles and evaluation of antioxidant and hypoglycemic activities. Food Chem 2025; 480:143902. [PMID: 40120308 DOI: 10.1016/j.foodchem.2025.143902] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2024] [Revised: 01/02/2025] [Accepted: 03/13/2025] [Indexed: 03/25/2025]
Abstract
Multiple interaction strategy to target was tried to use in the design of surface imprinting polymer. To validate this, active chlorogenic acid, a representative phenolic acid compound existing in many natural products, was selected as the template molecule and a magnetic molecularly imprinted nanoparticles (CGA-MMIPs) was synthesized. The characterizations indicated CGA-MMIPs was 20-50 nm, stable below 229.56 °C and had a saturation magnetic intensity of 17.90 emu/g. The prepared CGA-MMIPs exhibited high adsorption capacity (441.81 mg/g) and fast adsorption equilibrium for chlorogenic acid. It also was easy separation, high selectivity and good reusability, which was successfully used in quick separation of chlorogenic acid from Orthosiphon aristatus and Taraxacum mongolicum and Salvia miltiorrhiza. Moreover, the isolated substances possessed great antioxidant and hypoglycemic activities. These verified the strategy was useful and had huge prospects in the quick separation of chlorogenic acid or other phenolic acid compounds from natural products.
Collapse
Affiliation(s)
- Mengqi Cheng
- Tianjin Key Laboratory for Modern Drug Delivery and High-Efficiency, Collaborative Innovation Center of Chemical Science and Engineering, School of Pharmaceutical Science and Technology, Faculty of Medicine, Tianjin University, Tianjin 300072, China
| | - Yanmei Xu
- Tianjin Key Laboratory for Modern Drug Delivery and High-Efficiency, Collaborative Innovation Center of Chemical Science and Engineering, School of Pharmaceutical Science and Technology, Faculty of Medicine, Tianjin University, Tianjin 300072, China.; Hebei Institute for Drug and Medical Device Control, Hebei 050033, China
| | - Xinyu Xu
- Tianjin Key Laboratory for Modern Drug Delivery and High-Efficiency, Collaborative Innovation Center of Chemical Science and Engineering, School of Pharmaceutical Science and Technology, Faculty of Medicine, Tianjin University, Tianjin 300072, China
| | - Bangqi Yan
- Tianjin Key Laboratory for Modern Drug Delivery and High-Efficiency, Collaborative Innovation Center of Chemical Science and Engineering, School of Pharmaceutical Science and Technology, Faculty of Medicine, Tianjin University, Tianjin 300072, China
| | - Xiao Zhang
- Tianjin Key Laboratory for Modern Drug Delivery and High-Efficiency, Collaborative Innovation Center of Chemical Science and Engineering, School of Pharmaceutical Science and Technology, Faculty of Medicine, Tianjin University, Tianjin 300072, China
| | - Guirong Borijihan
- Department of Chemistry and Environment, Hohhot Minzu College, Hohhot, Inner Mongolia 010051, China
| | - Yiwen Wang
- Tianjin Key Laboratory for Modern Drug Delivery and High-Efficiency, Collaborative Innovation Center of Chemical Science and Engineering, School of Pharmaceutical Science and Technology, Faculty of Medicine, Tianjin University, Tianjin 300072, China..
| | - Youxin Li
- Tianjin Key Laboratory for Modern Drug Delivery and High-Efficiency, Collaborative Innovation Center of Chemical Science and Engineering, School of Pharmaceutical Science and Technology, Faculty of Medicine, Tianjin University, Tianjin 300072, China.; Neurocritical Care Medicine Innovation Center, Ministry of Education, Tianjin University, China; State Key Laboratory of Advanced Medical Materials and Devices, Tianjin University, China.
| |
Collapse
|
2
|
Bai X, Xiao Y, Wu K, Liu T, Li Z. As(III) removal from drinking water using FMCTO@Fe 3O 4 in the adsorption-magnetic separation-sand filtration equipment: Trade-off between As removal efficiency and adsorbent utilization rate. WATER RESEARCH 2025; 277:123308. [PMID: 39978159 DOI: 10.1016/j.watres.2025.123308] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/07/2024] [Revised: 01/23/2025] [Accepted: 02/15/2025] [Indexed: 02/22/2025]
Abstract
Due to the carcinogenicity and high environmental mobility of arsenic (As), its contamination in the groundwater environment is widespread, continuously threatening human health through the food chain. The adsorption technologies for As removal, which demonstrate simplicity and cost-effectiveness, have received much attention. Despite these merits, the difficult separation between adsorbent and As-contaminated water in traditional adsorption limited the development of large-scale applications. An adsorbent of Fe-Mn-Cu ternary oxide modified with magnetite (FMCTO@Fe3O4) was synthesized to develop a highly efficient As removal device based on an Adsorption-magnetic separation integrated safety device. Its safety and applicability were evaluated by optimizing the reactor design parameters using dynamic experiments. X-ray photoelectron spectroscopy, X-ray diffraction, and zeta potential results show that FMCTO@Fe3O4 has high adsorption and oxidation performance, in which 77 % of As(III) in the section was oxidized to As(V). As particle (As-p) electrostatically adsorbed to the surface of the material, with a removal efficiency of 84 % in the magnetic separation section and manganese sand filtration section. In this process, FMCTO@Fe3O4 isolated from magnetic separation section showed far stronger adsorption capacity. Specifically, FMCTO@Fe3O4, after being used 2 or 3 times, achieved an 80 % As(tot) removal efficiency. The section B functional area recycled Fe (99.24 %), Cu (98.2 %), and Mn (98.6 %), which demonstrated the equipment with higher stability and economic recovery. This device is promising in groundwater As removal, providing theoretical support and application innovation for drinking water safety and security.
Collapse
Affiliation(s)
- Xue Bai
- School of Environmental and Municipal Engineering, Xian University of Architecture and Technology, Xian, Shaanxi, 710055, China
| | - Yuyang Xiao
- School of Environmental and Municipal Engineering, Xian University of Architecture and Technology, Xian, Shaanxi, 710055, China; Project Service Centre, Zhen'an County, Shangluo City, Shaanxi Province, 711500, China
| | - Kun Wu
- School of Environmental and Municipal Engineering, Xian University of Architecture and Technology, Xian, Shaanxi, 710055, China.
| | - Ting Liu
- College of Natural Resources and Environment, Northwest A&F University, Yangling, Shaanxi, 712100, China.
| | - Zhihua Li
- School of Environmental and Municipal Engineering, Xian University of Architecture and Technology, Xian, Shaanxi, 710055, China
| |
Collapse
|
3
|
Manousi N, Anthemidis A, Rosenberg E. Practicality evaluation of novel microextraction techniques for the determination of PFAS in food and water samples using the Blue Applicability Grade Index. Anal Chim Acta 2025; 1352:343864. [PMID: 40210266 DOI: 10.1016/j.aca.2025.343864] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2024] [Revised: 02/24/2025] [Accepted: 02/24/2025] [Indexed: 04/12/2025]
Abstract
BACKGROUND Due to their high stability, persistence, and non-degradability, per- and polyfluoroalkyl substances (PFAS) are considered to be "forever chemicals" that can be present in a wide range of samples. Towards the development of novel analytical strategies for the reduction of the environmental impact of the analytical scheme, a plethora of novel solid-phase microextraction and miniaturized extraction techniques have been proposed for the determination of PFAS. However, the evaluation of the applicability of these protocols in terms of their practicality is still scarce. RESULTS In this article, the Blue Analytical Grade Index (BAGI) was used to evaluate the practicality of the sorbent-based microextraction techniques that were developed during the last decade for PFAS. In total thirty-four protocols were evaluated, resulting in a minimum score of 50.0 and a maximum score of 77.5. SIGNIFICANCE These findings clearly indicate that there is significant room for improvement and there is still a need for the development of microextraction approaches with higher practicality. Moreover, with regards to the best-performing protocols, their greenness was also assessed using the AGREEprep metric to enable a more comprehensive comparison.
Collapse
Affiliation(s)
- Natalia Manousi
- Institute of Chemical Technologies and Analytics, TU Wien, Getreidemarkt 9/164, 1060, Vienna, Austria; Laboratory of Analytical Chemistry, Department of Chemistry, Aristotle University of Thessaloniki, Thessaloniki, 54124, Greece.
| | - Aristidis Anthemidis
- Laboratory of Analytical Chemistry, Department of Chemistry, Aristotle University of Thessaloniki, Thessaloniki, 54124, Greece
| | - Erwin Rosenberg
- Institute of Chemical Technologies and Analytics, TU Wien, Getreidemarkt 9/164, 1060, Vienna, Austria
| |
Collapse
|
4
|
Bedair A, Hamed M, Mansour FR. Reshaping Capillary Electrophoresis With State-of-the-Art Sample Preparation Materials: Exploring New Horizons. Electrophoresis 2024. [PMID: 39345230 DOI: 10.1002/elps.202400114] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2024] [Revised: 08/12/2024] [Accepted: 09/02/2024] [Indexed: 10/01/2024]
Abstract
Capillary electrophoresis (CE) is a powerful analysis technique with advantages such as high separation efficiency with resolution factors above 1.5, low sample consumption of less than 10 µL, cost-effectiveness, and eco-friendliness such as reduced solvent use and lower operational costs. However, CE also faces limitations, including limited detection sensitivity for low-concentration samples and interference from complex biological matrices. Prior to performing CE, it is common to utilize sample preparation procedures such as solid-phase microextraction (SPME) and liquid-phase microextraction (LPME) in order to improve the sensitivity and selectivity of the analysis. Recently, there have been advancements in the development of novel materials that have the potential to greatly enhance the performance of SPME and LPME. This review examines various materials and their uses in microextraction when combined with CE. These materials include carbon nanotubes, covalent organic frameworks, metal-organic frameworks, graphene and its derivatives, molecularly imprinted polymers, layered double hydroxides, ionic liquids, and deep eutectic solvents. The utilization of these innovative materials in extraction methods is being examined. Analyte recoveries and detection limits attained for a range of sample matrices are used to assess their effects on extraction selectivity, sensitivity, and efficiency. Exploring new materials for use in sample preparation techniques is important as it enables researchers to address current limitations of CE. The development of novel materials has the potential to greatly enhance extraction selectivity, sensitivity, and efficiency, thereby improving CE performance for complex biological analysis.
Collapse
Affiliation(s)
- Alaa Bedair
- Department of Analytical Chemistry, Faculty of Pharmacy, University of Sadat City, Sadat City, Egypt
| | - Mahmoud Hamed
- Pharmaceutical Chemistry Department, Faculty of Pharmacy, Misr International University, Cairo, Egypt
| | - Fotouh R Mansour
- Pharmaceutical Analytical Chemistry Department, Faculty of Pharmacy, Tanta University, Tanta, Egypt
| |
Collapse
|
5
|
Li HZ, Qian HL, Xu ST, Yang C, Yan XP. Tuning the planarity of molecularly imprinted covalent organic frameworks for selective extraction of ochratoxin A in alcohol samples. Food Chem 2024; 451:139427. [PMID: 38692237 DOI: 10.1016/j.foodchem.2024.139427] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2024] [Revised: 04/16/2024] [Accepted: 04/18/2024] [Indexed: 05/03/2024]
Abstract
Here, we report a monomer planarity modulation strategy for room-temperature constructing molecularly imprinted-covalent organic frameworks (MI-COFs) for selective extraction of ochratoxin A (OTA). 2,4,6-triformylphloroglucinol (Tp) was used as basic building block, while three amino monomers with different planarity were employed as modulators to explore the effect of planarity on the selectivity of MI-COFs. The MI-TpTapa constructed from Tp and the lowest planarity of monomer Tapa gave the highest selectivity for OTA, and was further used as the adsorbent for dispersed-solid phase extraction (DSPE) of OTA in alcohol samples. Coupling MI-TpTapa based DSPE with high-performance liquid chromatography allowed the matrix-effect free determination of OTA in alcohol samples with the limit of detection of 0.023 μg kg-1 and the recoveries of 91.4-97.6%. The relative standard deviation (RSD, n = 6) of intra and inter day was <3.2%. This work provides a new way to construct MI-COFs for selective extraction of hazardous targets.
Collapse
Affiliation(s)
- Hao-Ze Li
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi 214122, China; International Joint Laboratory on Food Safety, Jiangnan University, Wuxi 214122, China; Institute of Analytical Food Safety, School of Food Science and Technology, Jiangnan University, Wuxi 214122, China
| | - Hai-Long Qian
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi 214122, China; International Joint Laboratory on Food Safety, Jiangnan University, Wuxi 214122, China; Institute of Analytical Food Safety, School of Food Science and Technology, Jiangnan University, Wuxi 214122, China
| | - Shu-Ting Xu
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi 214122, China; International Joint Laboratory on Food Safety, Jiangnan University, Wuxi 214122, China; Institute of Analytical Food Safety, School of Food Science and Technology, Jiangnan University, Wuxi 214122, China
| | - Cheng Yang
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi 214122, China; International Joint Laboratory on Food Safety, Jiangnan University, Wuxi 214122, China; Institute of Analytical Food Safety, School of Food Science and Technology, Jiangnan University, Wuxi 214122, China
| | - Xiu-Ping Yan
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi 214122, China; International Joint Laboratory on Food Safety, Jiangnan University, Wuxi 214122, China; Institute of Analytical Food Safety, School of Food Science and Technology, Jiangnan University, Wuxi 214122, China; Key Laboratory of Synthetic and Biological Colloids, Ministry of Education, Jiangnan University, Wuxi 214122, China.
| |
Collapse
|
6
|
Li W, Ba M, Song Y, Zhang Y, Xu X, Liu H, Li L, Liu X, Cai Z, Sun T. High Selectivity of A Novel Pillar[5]arene with Ester Units as a Gas Chromatographic Stationary Phase toward Aromatic Isomers. Chem Biodivers 2024; 21:e202301795. [PMID: 38268034 DOI: 10.1002/cbdv.202301795] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2023] [Revised: 01/22/2024] [Accepted: 01/24/2024] [Indexed: 01/26/2024]
Abstract
This work reports the first example of employing ester-functionalized pillar[5]arene (P5A-C10-OAc) stationary phase for gas chromatography (GC) separations. The as-fabricated P5A-C10-OAc column achieved improved column efficiency of 4270 plates/m and separation performance in contrast to the P5-C10-Br column. The P5A-C10-OAc column showed good separation performance for a wide range of analytes such as alkanes, bromoalkanes, ketones, fatty acid methyl esters, aldehydes, alcohols, halobenzenes, anilines, phenols, naphthalenes, and showed sharp and symmetrical peak shapes for analytes that are liable to peak-tailing in GC analysis. As testified by the challenging isomer mixtures (bromonitrobenzene, chloronitrobenzene, bromobenzaldehyde, chlorobenzaldehyde, nitrobenzaldehyde), the P5A-C10-OAc column exhibited comprehensively higher separation capability than the P5A-C10-Br, P5A-C10 and commercial HP-35 columns. This work demonstrates the great potential of pillararene-based stationary phases as a new type of stationary phases for GC separations.
Collapse
Affiliation(s)
- Wen Li
- Liaoning Province Professional and Technical Innovation Center for Fine Chemical Engineering of Aromatics Downstream, School of Petrochemical Engineering, Shenyang University of Technology, Liaoyang, 111003, P. R. China
| | - Mengyi Ba
- Liaoning Province Professional and Technical Innovation Center for Fine Chemical Engineering of Aromatics Downstream, School of Petrochemical Engineering, Shenyang University of Technology, Liaoyang, 111003, P. R. China
| | - Yanli Song
- Liaoning Province Professional and Technical Innovation Center for Fine Chemical Engineering of Aromatics Downstream, School of Petrochemical Engineering, Shenyang University of Technology, Liaoyang, 111003, P. R. China
| | - Yuanyuan Zhang
- Liaoning Province Professional and Technical Innovation Center for Fine Chemical Engineering of Aromatics Downstream, School of Petrochemical Engineering, Shenyang University of Technology, Liaoyang, 111003, P. R. China
| | - Xiang Xu
- Liaoning Province Professional and Technical Innovation Center for Fine Chemical Engineering of Aromatics Downstream, School of Petrochemical Engineering, Shenyang University of Technology, Liaoyang, 111003, P. R. China
| | - Haixin Liu
- Liaoning Province Professional and Technical Innovation Center for Fine Chemical Engineering of Aromatics Downstream, School of Petrochemical Engineering, Shenyang University of Technology, Liaoyang, 111003, P. R. China
| | - Leyao Li
- College of Chemistry and Chemical Engineering, Henan Key Laboratory of Function-Oriented Porous Materials, Luoyang Normal University, Luoyang, 471934, P. R. China
| | - Xinyi Liu
- College of Chemistry and Chemical Engineering, Henan Key Laboratory of Function-Oriented Porous Materials, Luoyang Normal University, Luoyang, 471934, P. R. China
| | - Zhiqiang Cai
- Liaoning Province Professional and Technical Innovation Center for Fine Chemical Engineering of Aromatics Downstream, School of Petrochemical Engineering, Shenyang University of Technology, Liaoyang, 111003, P. R. China
| | - Tao Sun
- College of Chemistry and Chemical Engineering, Henan Key Laboratory of Function-Oriented Porous Materials, Luoyang Normal University, Luoyang, 471934, P. R. China
| |
Collapse
|
7
|
He Z, Ma S, Huang P, Liang Q, Wang R. Covalent organic framework/layered double hydroxide composite-coated poly(ether ether ketone) jacket for stir bar sorptive extraction of Sudan dyes. J Sep Sci 2024; 47:e2300865. [PMID: 38471971 DOI: 10.1002/jssc.202300865] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2023] [Revised: 02/21/2024] [Accepted: 02/26/2024] [Indexed: 03/14/2024]
Abstract
A novel coating for stir bar sorptive extraction was developed by growing a covalent organic framework, TpPa-1 (derived from phenylenediamine and 1,3,5-trimethylphloroglucinol), onto the surface of Ni-Al layered double hydroxide. Using a poly(ether ether ketone) tube as the supporting substrate, a TpPa-1/layered double hydroxide-coated stir bar was fabricated and demonstrated excellent extraction performance for Sudan dyes. Notably, its extraction efficiency significantly exceeded that of stir bars modified with only TpPa-1 or Ni-Al layered double hydroxide. Based on this innovative coating, a stir bar sorptive extraction-high performance liquid chromatography method was established. This method exhibited low limits of detection (0.04-0.08 ng/mL) for the analysis of Sudan dyes. It also featured a wide linear range (0.25-100 or 200 ng/mL) and demonstrated good repeatability with relative standard deviations ≤6.22%. The recoveries obtained for spiked lake water and chili powder samples were 93.5%-105.2% and 87.8%-100.6%, respectively, demonstrating the practical potential of the developed method for detecting trace Sudan dyes in real samples.
Collapse
Affiliation(s)
- Zhenfu He
- School of Pharmacy, Guilin Medical University, Guilin, P. R. China
| | - Shumin Ma
- School of Pharmacy, Guilin Medical University, Guilin, P. R. China
| | - Peiqi Huang
- School of Pharmacy, Guilin Medical University, Guilin, P. R. China
| | - Qionghuan Liang
- School of Pharmacy, Guilin Medical University, Guilin, P. R. China
| | - Rong Wang
- School of Pharmacy, Guilin Medical University, Guilin, P. R. China
| |
Collapse
|
8
|
Ma M, Yang Y, Huang Z, Huang F, Li Q, Liu H. Recent progress in the synthesis and applications of covalent organic framework-based composites. NANOSCALE 2024; 16:1600-1632. [PMID: 38189523 DOI: 10.1039/d3nr05797f] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/09/2024]
Abstract
Covalent organic frameworks (COFs) have historically been of interest to researchers in different areas due to their distinctive characteristics, including well-ordered pores, large specific surface area, and structural tunability. In the past few years, as COF synthesis techniques developed, COF-based composites fabricated by integrating COFs and other functional materials including various kinds of metal or metal oxide nanoparticles, ionic liquids, metal-organic frameworks, silica, polymers, enzymes and carbon nanomaterials have emerged as a novel kind of porous hybrid material. Herein, we first provide a thorough summary of advanced strategies for preparing COF-based composites; then, the emerging applications of COF-based composites in diverse fields due to their synergistic effects are systematically highlighted, including analytical chemistry (sensing, extraction, membrane separation, and chromatographic separation) and catalysis. Finally, the current challenges associated with future perspectives of COF-based composites are also briefly discussed to inspire the advancement of more COF-based composites with excellent properties.
Collapse
Affiliation(s)
- Mingxuan Ma
- Department of Pharmacy, The Affiliated Hospital of Yangzhou University, Yangzhou University, Yangzhou, Jiangsu Province 225000, People's Republic of China.
| | - Yonghao Yang
- School of Medicine, Yangzhou University, Yangzhou, Jiangsu Province 225000, People's Republic of China
| | - Zhonghua Huang
- Department of Pharmacy, The Affiliated Hospital of Yangzhou University, Yangzhou University, Yangzhou, Jiangsu Province 225000, People's Republic of China.
| | - Fuhong Huang
- Department of Pharmacy, The Affiliated Hospital of Yangzhou University, Yangzhou University, Yangzhou, Jiangsu Province 225000, People's Republic of China.
| | - Quanliang Li
- Department of Pharmacy, The Affiliated Hospital of Yangzhou University, Yangzhou University, Yangzhou, Jiangsu Province 225000, People's Republic of China.
| | - Hongyu Liu
- Department of Pharmacy, The Affiliated Hospital of Yangzhou University, Yangzhou University, Yangzhou, Jiangsu Province 225000, People's Republic of China.
| |
Collapse
|
9
|
Yue Y, Ji D, Liu Y, Wei D. Chemical Sensors Based on Covalent Organic Frameworks. Chemistry 2024; 30:e202302474. [PMID: 37843045 DOI: 10.1002/chem.202302474] [Citation(s) in RCA: 10] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2023] [Revised: 10/11/2023] [Accepted: 10/11/2023] [Indexed: 10/17/2023]
Abstract
Covalent organic frameworks (COFs) are a type of crystalline porous polymer composed of light elements through strong covalent bonds. COFs have attracted considerable attention due to their unique designable structures and excellent material properties. Currently, COFs have shown outstanding potential in various fields, including gas storage, pollutant removal, catalysis, adsorption, optoelectronics, and their research in the sensing field is also increasingly flourishing. In this review, we focus on COF-based sensors. Firstly, we elucidate the fundamental principles of COF-based sensors. Then, we present the primary application areas of COF-based sensors and their recent advancements, encompassing gas, ions, organic compounds, and biomolecules sensing. Finally, we discuss the future trends and challenges faced by COF-based sensors, outlining their promising prospects in the field of sensing.
Collapse
Affiliation(s)
- Yang Yue
- State Key Laboratory of Molecular Engineering of Polymers, Fudan University, Shanghai, 200433, China
- Laboratory of Molecular Materials and Devices, Department of Materials Science, Fudan University, Shanghai, 200433, China
| | - Daizong Ji
- State Key Laboratory of Molecular Engineering of Polymers, Fudan University, Shanghai, 200433, China
- Department of Macromolecular Science, Fudan University, Shanghai, 200433, China
- Laboratory of Molecular Materials and Devices, Department of Materials Science, Fudan University, Shanghai, 200433, China
| | - Yunqi Liu
- Laboratory of Molecular Materials and Devices, Department of Materials Science, Fudan University, Shanghai, 200433, China
- Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, China
| | - Dacheng Wei
- State Key Laboratory of Molecular Engineering of Polymers, Fudan University, Shanghai, 200433, China
- Department of Macromolecular Science, Fudan University, Shanghai, 200433, China
- Laboratory of Molecular Materials and Devices, Department of Materials Science, Fudan University, Shanghai, 200433, China
| |
Collapse
|
10
|
Liu Q, Yang Y, Zou Y, Wang L, Li Z, Wang M, Li L, Tian M, Wang D, Gao D. Fluorescent covalent organic frameworks for environmental pollutant detection sensors and enrichment sorbents: a mini-review. ANALYTICAL METHODS : ADVANCING METHODS AND APPLICATIONS 2023; 15:5919-5946. [PMID: 37916394 DOI: 10.1039/d3ay01166f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/03/2023]
Abstract
Covalent organic frameworks (COFs) are a class of porous crystalline materials based on organic building blocks containing light elements, such as C, H, O, N, and B, interconnected by covalent bonds. Because of their regular crystal structure, high porosity, stable mechanical structure, satisfactory specific surface area, easy functionalization, and high tunability, they have important applications in several fields. Currently, most of the established methods based on COFs can only be used for individual detection or adsorption of the target. Impressively, fluorescent COFs as a special member of the COF family are able to achieve highly selective and sensitive detection of target pollutants by fluorescence enhancement or quenching. The construction of a dual-functional platform for detection and adsorption based on fluorescent COFs can enable the simultaneous realization of visual monitoring and adsorption of target pollutants. Therefore, this paper reviews the research progress of fluorescent COFs as fluorescence sensors and adsorbents. First, the fluorescent COFs were classified according to the different bonding modes between the building blocks, and then the applications of fluorescent COF-based detection and adsorption bifunctional materials for various environmental contaminants were highlighted. Finally, the challenges and future application prospects of fluorescent COFs are discussed.
Collapse
Affiliation(s)
- Qiuyi Liu
- School of Pharmacy, Southwest Medical University, Luzhou, Sichuan, 646000, China.
| | - Yulian Yang
- School of Pharmacy, Southwest Medical University, Luzhou, Sichuan, 646000, China.
| | - Yuemeng Zou
- School of Pharmacy, Southwest Medical University, Luzhou, Sichuan, 646000, China.
| | - Luchun Wang
- School of Pharmacy, Southwest Medical University, Luzhou, Sichuan, 646000, China.
| | - Zhu Li
- School of Pharmacy, Southwest Medical University, Luzhou, Sichuan, 646000, China.
| | - Mingyue Wang
- School of Pharmacy, Southwest Medical University, Luzhou, Sichuan, 646000, China.
| | - Lingling Li
- School of Pharmacy, Southwest Medical University, Luzhou, Sichuan, 646000, China.
| | - Meng Tian
- School of Pharmacy, Southwest Medical University, Luzhou, Sichuan, 646000, China.
| | - Dandan Wang
- School of Pharmacy, Southwest Medical University, Luzhou, Sichuan, 646000, China.
| | - Die Gao
- School of Pharmacy, Southwest Medical University, Luzhou, Sichuan, 646000, China.
| |
Collapse
|
11
|
Sun S, Wang L, Wang J, Lv W, Yu Q, Pei D, Han S, Li X, Wang M, Liu S, Quan X, Lv M. Homochiral organic molecular cage RCC3-R-modified silica as a new multimodal and multifunctional stationary phase for high-performance liquid chromatography. J Sep Sci 2023; 46:e2200935. [PMID: 37349859 DOI: 10.1002/jssc.202200935] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2022] [Revised: 06/01/2023] [Accepted: 06/02/2023] [Indexed: 06/24/2023]
Abstract
In this work, homochiral reduced imine cage was covalently bonded to the surface of the silica to prepare a novel high-performance liquid chromatography stationary phase, which was applied for the multiple separation modes such as normal phase, reversed-phase, ion exchange, and hydrophilic interaction chromatography. The successful preparation of the homochiral reduced imine cage bonded silica stationary phase was confirmed by performing a series of methods including X-ray photoelectron spectroscopy, thermogravimetric analysis, and infrared spectroscopy. From the extracted results of the chiral resolution in normal phase and reversed-phase modes, it was demonstrated that seven chiral compounds were successfully separated, among which the resolution of 1-phenylethanol reached the value of 3.97. Moreover, the multifunctional chromatographic performance of the new molecular cage stationary phase was systematically investigated in the modes of reversed-phase, ion exchange, and hydrophilic interaction chromatography for the separation and analysis of a total of 59 compounds in eight classes. This work demonstrated that the homochiral reduced imine cage not only achieved multiseparation modes and multiseparation functions performance with high stability, but also expanded the application of the organic molecular cage in the field of liquid chromatography.
Collapse
Affiliation(s)
- Shanshan Sun
- School of Pharmacy, Jining Medical University, Jining, P. R. China
| | - Litao Wang
- School of Pharmacy, Jining Medical University, Jining, P. R. China
| | - Jiasheng Wang
- School of Pharmacy, Jining Medical University, Jining, P. R. China
| | - Wenjing Lv
- School of Pharmacy, Jining Medical University, Jining, P. R. China
| | - Qinghua Yu
- School of Pharmacy, Jining Medical University, Jining, P. R. China
- School of Pharmacy, Weifang Medical University, Weifang, P. R. China
| | - Dong Pei
- Qingdao Center of Resource Chemistry & New Materials, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences, Qingdao, P. R. China
| | - Siqi Han
- School of Pharmacy, Jining Medical University, Jining, P. R. China
| | - Xingyu Li
- School of Pharmacy, Jining Medical University, Jining, P. R. China
| | - Miao Wang
- School of Pharmacy, Jining Medical University, Jining, P. R. China
| | - Sheng Liu
- College of Food Science and Engineering, Shandong Agriculture and Engineering University, Jinan, P. R. China
| | - Xiangao Quan
- School of Pharmacy, Jining Medical University, Jining, P. R. China
| | - Mei Lv
- School of Pharmacy, Jining Medical University, Jining, P. R. China
| |
Collapse
|
12
|
Vardhan H, Rummer G, Deng A, Ma S. Large-Scale Synthesis of Covalent Organic Frameworks: Challenges and Opportunities. MEMBRANES 2023; 13:696. [PMID: 37623757 PMCID: PMC10456518 DOI: 10.3390/membranes13080696] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/19/2023] [Revised: 07/25/2023] [Accepted: 07/25/2023] [Indexed: 08/26/2023]
Abstract
Connecting organic building blocks by covalent bonds to design porous crystalline networks has led to covalent organic frameworks (COFs), consequently transferring the flexibility of dynamic linkages from discrete architectures to extended structures. By virtue of the library of organic building blocks and the diversity of dynamic linkages and topologies, COFs have emerged as a novel field of organic materials that propose a platform for tailor-made complex structural design. Progress over the past two decades in the design, synthesis, and functional exploration of COFs in diverse applications successively established these frameworks in materials chemistry. The large-scale synthesis of COFs with uniform structures and properties is of profound importance for commercialization and industrial applications; however, this is in its infancy at present. An innovative designing and synthetic approaches have paved novel ways to address future hurdles. This review article highlights the fundamental of COFs, including designing principles, coupling reactions, topologies, structural diversity, synthetic strategies, characterization, growth mechanism, and activation aspects of COFs. Finally, the major challenges and future trends for large-scale COF fabrication are outlined.
Collapse
Affiliation(s)
- Harsh Vardhan
- Department of Chemistry and Fermentation Sciences, Appalachian State University, 525 Rivers Street, Boone, NC 28608, USA
| | - Grace Rummer
- Department of Chemistry and Fermentation Sciences, Appalachian State University, 525 Rivers Street, Boone, NC 28608, USA
| | - Angela Deng
- Department of Chemistry and Fermentation Sciences, Appalachian State University, 525 Rivers Street, Boone, NC 28608, USA
| | - Shengqian Ma
- Department of Chemistry, University of North Texas, Denton, TX 76203, USA
| |
Collapse
|
13
|
Huang Y, Feng D, Li X, Li W, Ren J, Zhong H. Covalent organic frameworks assisted for food safety analysis. Crit Rev Food Sci Nutr 2023; 64:11006-11025. [PMID: 37417398 DOI: 10.1080/10408398.2023.2230506] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/08/2023]
Abstract
Food safety incidents threaten human health and life safety. It is an effective method to prevent and control the occurrence of food safety events by enhancing the rapid and sensitive detection of food contaminants. Emerging porous materials provide for the development of efficient and stable detection methods. Covalent organic frameworks (COFs) are favored by researchers for their highly ordered pore structure, large specific surface area, and good structural and functional designability. Especially in the sensing field, COFs play the roles of carriers, conductors, quenchers, and reporters, and have broad application prospects. To better understand COFs-based sensing studies, this review briefly introduces the characteristics and different functional roles of COFs in food safety analysis, focusing on the applications of COFs in the detection of various food contaminants (including foodborne pathogens, mycotoxins, pesticides, antibiotics, heavy metals, and others). Finally, the challenges and opportunities for COFs-based sensing are discussed to facilitate further applications and development of COFs in food safety.
Collapse
Affiliation(s)
- Ying Huang
- Hunan Province Key Laboratory of Edible Forestry Resources Safety and Processing Utilization, National Engineering Laboratory for Deep Process of Rice and Byproducts, Central South University of Forestry and Technology, Changsha, PR China
| | - Donghui Feng
- Hunan Province Key Laboratory of Edible Forestry Resources Safety and Processing Utilization, National Engineering Laboratory for Deep Process of Rice and Byproducts, Central South University of Forestry and Technology, Changsha, PR China
| | - Xu Li
- Hunan Province Key Laboratory of Edible Forestry Resources Safety and Processing Utilization, National Engineering Laboratory for Deep Process of Rice and Byproducts, Central South University of Forestry and Technology, Changsha, PR China
| | - Wang Li
- Hunan Province Key Laboratory of Edible Forestry Resources Safety and Processing Utilization, National Engineering Laboratory for Deep Process of Rice and Byproducts, Central South University of Forestry and Technology, Changsha, PR China
| | - Jiali Ren
- Hunan Province Key Laboratory of Edible Forestry Resources Safety and Processing Utilization, National Engineering Laboratory for Deep Process of Rice and Byproducts, Central South University of Forestry and Technology, Changsha, PR China
| | - Haiyan Zhong
- Hunan Province Key Laboratory of Edible Forestry Resources Safety and Processing Utilization, National Engineering Laboratory for Deep Process of Rice and Byproducts, Central South University of Forestry and Technology, Changsha, PR China
| |
Collapse
|
14
|
Xue R, Liu YS, Huang SL, Yang GY. Recent Progress of Covalent Organic Frameworks Applied in Electrochemical Sensors. ACS Sens 2023; 8:2124-2148. [PMID: 37276465 DOI: 10.1021/acssensors.3c00269] [Citation(s) in RCA: 29] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
As an emerging porous crystalline organic material, the covalent organic frameworks (COFs) are given more and more attention in many fields, such as gas storage and separation, catalysis, energy storage and conversion, luminescent devices, drug delivery, pollutant adsorption and removal, analysis and detection due to their special advantages of high crystallinity, flexible designability, controllable porosities and topologies, intrinsic chemical and thermal stability. In recent years, the COFs are applied in analytical chemistry, for instance, chromatography, solid-phase microextraction, luminescent and colorimetric sensing, surface-enhanced Raman scattering and electroanalytical chemistry. The COFs decorated electrodes show high performance for detecting trace substances with remarkable selectivity and sensitivity, such as heavy metal ions, glucose, hydrogen peroxide, drugs, antibiotics, explosives, phenolic compounds, pesticides, disease metabolites and so on. This review mainly summarized the application of COF based electrochemical sensor according to different target analytes.
Collapse
Affiliation(s)
- Rui Xue
- MOE Key Laboratory of Cluster Science, Beijing Key Laboratory of Photoelectronic/Electrophotonic Conversion Materials, School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing 100081, P. R. China
| | - Yin-Sheng Liu
- Key Lab of Bioelectrochemistry and Environmental Analysis of Gansu Province, Key Lab of Eco-Environments Related Polymer Materials of MOE, College of Chemistry and Chemical Engineering, Northwest Normal University, Lanzhou 730070, P. R. China
| | - Sheng-Li Huang
- MOE Key Laboratory of Cluster Science, Beijing Key Laboratory of Photoelectronic/Electrophotonic Conversion Materials, School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing 100081, P. R. China
| | - Guo-Yu Yang
- MOE Key Laboratory of Cluster Science, Beijing Key Laboratory of Photoelectronic/Electrophotonic Conversion Materials, School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing 100081, P. R. China
| |
Collapse
|
15
|
Xu L, Hu W, Wu F, Zhang J. In situ growth of porous organic framework on iron wire for microextraction of polycyclic aromatic hydrocarbons. Talanta 2023; 264:124732. [PMID: 37279625 DOI: 10.1016/j.talanta.2023.124732] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2023] [Revised: 05/20/2023] [Accepted: 05/23/2023] [Indexed: 06/08/2023]
Abstract
In this work, a novel spherical metal organic framework (MOF) was first in situ grown on the surface of iron wire (IW), in which IW served as the substrate and metal source for MOF (type NH2-MIL88) growth without adding additional metal salts in the process, while spherical NH2-MIL88 provided more active sites for further construction of multifunctional composites. Subsequently, a covalent organic framework (COF) was covalently bonded to the surface of the NH2-MIL88 to obtain the IW@NH2-MIL88@COF fibers, which were used for headspace solid-phase microextraction (HS-SPME) of polycyclic aromatic hydrocarbons (PAHs) in milk samples prior to determination by gas chromatography-flame ionization detection (GC-FID). Compared with the fiber prepared by physical coating, the IW@NH2-MIL88@COF fiber prepared by in situ growth and covalent bonding exhibits better stability and possesses more uniform layer. The extraction mechanism of the IW@NH2-MIL88@COF fiber for PAHs was discussed, which mainly owed to π-π interactions and hydrophobic interactions. After optimization of the primary extraction conditions, the SPME-GC-FID method was established for five PAHs with a wide linear range (1-200 ng mL-1), good linearity coefficient (0.9935-0.9987) and low detection limits (0.017-0.028 ng mL-1). The relative recoveries for PAHs detection in milk samples ranged from 64.69 to 113.97%. This work not only provides new ideas for the in situ growth of other types of MOF, but also provides new methods for the construction of multifunctional composites.
Collapse
Affiliation(s)
- Li Xu
- School of Chemistry and Environmental Engineering, Hubei Key Laboratory of Novel Reactor and Green Chemical Technology, Wuhan Institute of Technology, Wuhan, 430205, PR China
| | - Wei Hu
- School of Chemistry and Environmental Engineering, Hubei Key Laboratory of Novel Reactor and Green Chemical Technology, Wuhan Institute of Technology, Wuhan, 430205, PR China
| | - Fengshou Wu
- School of Chemical Engineering and Pharmacy, Key Laboratory for Green Chemical Process of Ministry of Education, Wuhan Institute of Technology, Wuhan, 430205, China
| | - Juan Zhang
- School of Chemistry and Environmental Engineering, Hubei Key Laboratory of Novel Reactor and Green Chemical Technology, Wuhan Institute of Technology, Wuhan, 430205, PR China.
| |
Collapse
|
16
|
Zhu J, Wen W, Tian Z, Zhang X, Wang S. Covalent organic framework: A state-of-the-art review of electrochemical sensing applications. Talanta 2023; 260:124613. [PMID: 37146454 DOI: 10.1016/j.talanta.2023.124613] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2022] [Revised: 04/25/2023] [Accepted: 04/26/2023] [Indexed: 05/07/2023]
Abstract
Covalent organic framework (COF), a kind of porous polymer with crystalline properties, is a periodic porous framework material with precise regulation at atomic level, which can be formed by the orderly connection of pre-designed organic construction units through covalent bonds. Compared with metal-organic frameworks, COFs exhibit unique performance, including tailor-made functions, stronger load ability, structural diversity, ordered porosity, intrinsic stability and excellent adsorption features, are more conducive to the expansion of electrochemical sensing applications and the universality of applications. In addition, COFs can accurately integrate organic structural units with atomic precision into ordered structures, so that the structural diversity and application of COFs can be greatly enriched by designing new construction units and adopting reasonable functional strategies. In this review, we mainly summarized state-of-the-art recent advances of the classification and synthesis strategy of COFs, the design of functionalized COF for electrochemical sensors and COFs-based electrochemical sensing. Then, an overview of the considerable recent advances made in applying outstanding COFs to establish electrochemical sensing platform, including electrochemical sensor based on voltammetry, amperometry, electrochemical impedance spectroscopy, electrochemiluminescence, photoelectrochemical sensor and others. Finally, we discussed the positive outlooks, critical challenges and bright directions of COFs-based electrochemical sensing in the field of disease diagnosis, environmental monitoring, food safety, drug analysis, etc.
Collapse
Affiliation(s)
- Junlun Zhu
- Hubei Key Laboratory for Processing and Application of Catalytic Materials, College of Chemistry and Chemical Engineering, Huanggang Normal University, Huanggang, 438000, PR China
| | - Wei Wen
- Hubei Collaborative Innovation Center for Advanced Organic Chemical Materials, Ministry of Education Key Laboratory for the Synthesis and Application of Organic Functional Molecules, College of Chemistry and Chemical Engineering, Hubei University, Wuhan, 430062, PR China
| | - Zhengfang Tian
- Hubei Key Laboratory for Processing and Application of Catalytic Materials, College of Chemistry and Chemical Engineering, Huanggang Normal University, Huanggang, 438000, PR China.
| | - Xiuhua Zhang
- Hubei Collaborative Innovation Center for Advanced Organic Chemical Materials, Ministry of Education Key Laboratory for the Synthesis and Application of Organic Functional Molecules, College of Chemistry and Chemical Engineering, Hubei University, Wuhan, 430062, PR China
| | - Shengfu Wang
- Hubei Collaborative Innovation Center for Advanced Organic Chemical Materials, Ministry of Education Key Laboratory for the Synthesis and Application of Organic Functional Molecules, College of Chemistry and Chemical Engineering, Hubei University, Wuhan, 430062, PR China.
| |
Collapse
|
17
|
Curulli A. Functional Nanomaterials Enhancing Electrochemical Biosensors as Smart Tools for Detecting Infectious Viral Diseases. Molecules 2023; 28:molecules28093777. [PMID: 37175186 PMCID: PMC10180161 DOI: 10.3390/molecules28093777] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2023] [Revised: 04/18/2023] [Accepted: 04/24/2023] [Indexed: 05/15/2023] Open
Abstract
Electrochemical biosensors are known as analytical tools, guaranteeing rapid and on-site results in medical diagnostics, food safety, environmental protection, and life sciences research. Current research focuses on developing sensors for specific targets and addresses challenges to be solved before their commercialization. These challenges typically include the lowering of the limit of detection, the widening of the linear concentration range, the analysis of real samples in a real environment and the comparison with a standard validation method. Nowadays, functional nanomaterials are designed and applied in electrochemical biosensing to support all these challenges. This review will address the integration of functional nanomaterials in the development of electrochemical biosensors for the rapid diagnosis of viral infections, such as COVID-19, middle east respiratory syndrome (MERS), influenza, hepatitis, human immunodeficiency virus (HIV), and dengue, among others. The role and relevance of the nanomaterial, the type of biosensor, and the electrochemical technique adopted will be discussed. Finally, the critical issues in applying laboratory research to the analysis of real samples, future perspectives, and commercialization aspects of electrochemical biosensors for virus detection will be analyzed.
Collapse
Affiliation(s)
- Antonella Curulli
- Consiglio Nazionale delle Ricerche (CNR), Istituto per lo Studio dei Materiali Nanostrutturati (ISMN), 00161 Rome, Italy
| |
Collapse
|
18
|
Zhang C, Li Y, Yuan H, Lu Z, Zhang Q, Zhao L. Methacrylate bonded covalent organic framework monolithic column online coupling with high-performance liquid chromatography for analysis of trace estrogens in food. J Chromatogr B Analyt Technol Biomed Life Sci 2023; 1222:123697. [PMID: 37059013 DOI: 10.1016/j.jchromb.2023.123697] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2023] [Revised: 03/22/2023] [Accepted: 03/29/2023] [Indexed: 04/03/2023]
Abstract
Covalent organic frameworks (COFs) are a burgeoning class of crystalline porous materials with unique properties and have been considered as a promising functional extraction medium in sample pretreatment. In this study, a new methacrylate-bonded COF (TpTh-MA) was well designed and synthesized via the aldehyde-amine condensation reaction, and the TpTh-MA was incorporated into poly (ethylene dimethacrylate) porous monolith by a facile polymerization reaction inside capillary to prepare a novel TpTh-MA monolithic column. The fabricated TpTh-MA monolithic column was characterized with scanning electron microscope, Fourier transform infrared spectrometer, X-ray diffraction, and N2 adsorption-desorption experiments. Then, the homogeneous porous structure, good permeability and high mechanical stability of TpTh-MA monolithic column was used as separation and enrichment media of capillary microextraction, which was coupled with high-performance liquid chromatography fluorescence detection for online enrichment and analysis of trace estrogens. The main experimental parameters influencing the extraction efficiency were systematically investigated. The adsorption mechanism for three estrogens was also explored and discussed based on hydrophobic effect, π-π affinity and hydrogen bonding interaction, which contributed to its strong recognition affinity to target compounds. The enrichment factors of the TpTh-MA monolithic column micro extraction method for the three estrogens were 107-114, indicating a significant preconcentration ability. Under optimal conditions, a new online analysis method was developed and exhibited good sensitivity and wide linearity range of 0.25-100.0 µg·L-1 with a coefficient of determination (R2) higher than 0.9990 and a low limit of detection with 0.05-0.07 µg·L-1. The method was successfully applied for online analysis of three estrogens of milk and shrimp samples and the recoveries obtained from spiking experiments were in range of 81.4-113% and 77.9-111%, with the relative standard deviations of 2.6-7.9% and 2.1-8.3% (n = 5), respectively. The results revealed the great potential for the application of the COFs-bonded monolithic column in the field of sample pretreatment.
Collapse
Affiliation(s)
- Chengjiang Zhang
- School of Pharmacy, Zunyi Medical University, Zunyi 563000, China.
| | - Yuhuang Li
- School of Pharmacy, Zunyi Medical University, Zunyi 563000, China
| | - Hongmei Yuan
- School of Pharmacy, Zunyi Medical University, Zunyi 563000, China
| | - Zeyi Lu
- School of Pharmacy, Zunyi Medical University, Zunyi 563000, China
| | - Qi Zhang
- School of Pharmacy, Zunyi Medical University, Zunyi 563000, China
| | - Lirong Zhao
- School of Pharmacy, Zunyi Medical University, Zunyi 563000, China
| |
Collapse
|
19
|
Zhai Y, Bao Y, Ning T, Chen P, Di S, Zhu S. Room temperature fabrication of magnetic covalent organic frameworks for efficient enrichment of parabens in water. J Chromatogr A 2023; 1692:463850. [PMID: 36773400 DOI: 10.1016/j.chroma.2023.463850] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2022] [Revised: 02/02/2023] [Accepted: 02/02/2023] [Indexed: 02/09/2023]
Abstract
A novel 4 + 2 covalent magnetic organic framework (COF) with core-shell structure was synthesized for the first time with N, N, N', N'-Tetrakis (4-aminophenyl)-1, 4- benzenediamine (TPDA) and 2, 6-Pyridinedicarboxaldehyde (PCBA) at room temperature. The synthesized magnetic TPDA-PCBA-COF has a large specific surface area and superparamagnetism, which makes it an ideal sorbent for trace analytes enrichment. To this end, we combined it with magnetic solid phase extraction (MSPE) to enrich trace parabens in environmental water. The parameters affecting the enrichment efficiency of magnetic solid phase extraction, such as the amount of Fe3O4@TPDA-PCBA-COF, extraction time, pH of samples, salt concentration, desorption solvent volume and desorption time, were optimized. A simple method for extraction and determination of parabens in water samples by MSPE combined with high performance liquid chromatography (HPLC) was established under optimized conditions. The validation results revealed that the linear ranges were at 1.0-5.0 × 102 ng mL-1 with R value between 0.9915 and 0.9999, the spiked recoveries were in the range of 82.8% to 99.9% and RSDs were lower than 10%. The method was further applied to the determination of parabens in water samples, with recoveries in the range of 82.2% to 110.0% and RSDs ≤ 7.7%. These results suggest that the magnetic TPDA-PCBA-COF could be used as a promising adsorbent for efficient extraction and quantitation of parabens in environmental water samples.
Collapse
Affiliation(s)
- Yixin Zhai
- State Key Laboratory of Biogeology and Environmental Geology, China University of Geosciences, Wuhan 430074, China
| | - Yue Bao
- State Key Laboratory of Biogeology and Environmental Geology, China University of Geosciences, Wuhan 430074, China
| | - Tao Ning
- Faculty of Materials Science and Chemistry, China University of Geosciences, Wuhan 430074, China
| | - Pin Chen
- State Key Laboratory of Biogeology and Environmental Geology, China University of Geosciences, Wuhan 430074, China
| | - Siyuan Di
- State Key Laboratory of Biogeology and Environmental Geology, China University of Geosciences, Wuhan 430074, China
| | - Shukui Zhu
- State Key Laboratory of Biogeology and Environmental Geology, China University of Geosciences, Wuhan 430074, China.
| |
Collapse
|
20
|
Yuan J, Huang W, Tong W, Chen Z, Li H, Chen J, Lin Z. In-situ growth of covalent organic framework on stainless steel needles as solid-phase microextraction probe coupled with electrospray ionization mass spectrometry for rapid and sensitive determination of tricyclic antidepressants in biosamples. J Chromatogr A 2023; 1695:463955. [PMID: 37004299 DOI: 10.1016/j.chroma.2023.463955] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2022] [Revised: 03/22/2023] [Accepted: 03/27/2023] [Indexed: 03/30/2023]
Abstract
Tricyclic antidepressants (TCAs) including amitriptyline (AT), doxepin (DOX) and nortriptyline (NT) are the first-line drugs for the clinical treatment of depression; however, monitoring TCA concentrations in biological fluids and tissues is necessary to improve therapeutic effect and determine the cause of death in patients. It is of great significance to develop a rapid and sensitive method for real-time monitoring of TCAs in various biosamples. In this work, we fabricated a novel covalent organic framework (COF) based solid-phase microextraction (SPME) probe by an in-situ step-by-step strategy, which was obtained by sequentially modifying 1,3,5-tri (4-aminophenyl) benzene (TPB) and 2, 5-divinylbenzaldehyde (DVA) on the surface of polydopamine layer. The TPB-DVA-COF-SPME probe possessed high specific surface area (1244 m2·g - 1), regular pores (3.23 nm), good hydrophobicity and stability, resulting in efficient enrichment for TCAs. Furthermore, the combination of TPB-DVA-COF-SPME probe and ambient electrospray ionization mass spectrometry system (ESI/MS) was firstly proposed for rapid and sensitive determination of TCAs in biosamples. As a result, the developed method exhibited low limits of detection (LODs) (0.1-0.5 μg∙L - 1), high enrichment factors (39-218), and low relative standard deviations (RSDs) for one probe (1.2-3.8%) and probe-to-probe (2.0-3.7%). Benefiting from these outstanding performance, TPB-DVA-COF-SPME probe was further successfully applied to biosamples (i.e., serum, liver, kidney, and brain) with excellent reusability, indicating the promising applicability of the TPB-DVA-COF-SPME-ESI/MS as a powerful tool for drug monitoring.
Collapse
Affiliation(s)
- Jiahao Yuan
- Ministry of Education Key Laboratory of Analytical Science for Food Safety and Biology, Fujian Provincial Key Laboratory of Analysis and Detection Technology for Food Safety, College of Chemistry, Fuzhou University, Fuzhou, Fujian 350108, China
| | - Weini Huang
- Ministry of Education Key Laboratory of Analytical Science for Food Safety and Biology, Fujian Provincial Key Laboratory of Analysis and Detection Technology for Food Safety, College of Chemistry, Fuzhou University, Fuzhou, Fujian 350108, China
| | - Wei Tong
- Ministry of Education Key Laboratory of Analytical Science for Food Safety and Biology, Fujian Provincial Key Laboratory of Analysis and Detection Technology for Food Safety, College of Chemistry, Fuzhou University, Fuzhou, Fujian 350108, China
| | - Zihan Chen
- Ministry of Education Key Laboratory of Analytical Science for Food Safety and Biology, Fujian Provincial Key Laboratory of Analysis and Detection Technology for Food Safety, College of Chemistry, Fuzhou University, Fuzhou, Fujian 350108, China
| | - Heming Li
- Ministry of Education Key Laboratory of Analytical Science for Food Safety and Biology, Fujian Provincial Key Laboratory of Analysis and Detection Technology for Food Safety, College of Chemistry, Fuzhou University, Fuzhou, Fujian 350108, China
| | - Jiajing Chen
- Ministry of Education Key Laboratory of Analytical Science for Food Safety and Biology, Fujian Provincial Key Laboratory of Analysis and Detection Technology for Food Safety, College of Chemistry, Fuzhou University, Fuzhou, Fujian 350108, China
| | - Zian Lin
- Ministry of Education Key Laboratory of Analytical Science for Food Safety and Biology, Fujian Provincial Key Laboratory of Analysis and Detection Technology for Food Safety, College of Chemistry, Fuzhou University, Fuzhou, Fujian 350108, China.
| |
Collapse
|
21
|
Li S, Ma J, Guan J, Li J, Wang X, Sun X, Chen L. Selective cationic covalent organic framework for high throughput rapid extraction of novel polyfluoroalkyl substances. JOURNAL OF HAZARDOUS MATERIALS 2023; 442:130125. [PMID: 36303337 DOI: 10.1016/j.jhazmat.2022.130125] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/24/2022] [Revised: 09/21/2022] [Accepted: 10/02/2022] [Indexed: 06/16/2023]
Abstract
Novel per- and polyfluoroalkyl substances (PFASs) raise global concerns due to their toxic effects on environment and human health. However, researches on analytical methods of novel PFASs are lacking. Here, a kind of selective cationic covalent organic framework (iCOF) was designed and loaded on the surface of cotton as an adsorbent. Then, a simple solid-phase extraction (SPE) method based on the cotton@iCOF was developed for high throughput rapid extraction of six novel PFASs in water samples, coupled with ultrahigh-performance liquid chromatography-tandem mass spectrometry (UHPLC-MS/MS) determination. Several important SPE parameters, such as the amount of iCOF, sample pH, desorption conditions and salinity were systematically investigated. Under optimal conditions, the limits of detection and quantification of this SPE-UHPLC-MS/MS method were as low as 0.08-2.14 ng/L and 0.28-7.15 ng/L, respectively. The recoveries were 77.9-117.6 % for the tap water and surface water, and F-53 B in surface water were detected. Notably, this SPE process was rapid (1 h for 500 mL water sample) compared with commercial SPE (normal 2-3 h), owing to little resistance of cotton@iCOF and omission of nitrogen blowing process, and high throughput with 12 samples concurrently extracted. Additionally, various characterization means and density functional theory (DFT) calculations showed that ion-exchange effect, hydrophobic interaction, hydrogen bonding and ordered channel structure synergistically contributed to the PFASs adsorption on cotton@iCOF. The cotton@iCOF-based SPE method with simplicity, rapidity, selectivity and efficiency provided new research ideas for the analysis and control of ionic emerging pollutants in water.
Collapse
Affiliation(s)
- Shuang Li
- School of Environmental & Municipal Engineering, Qingdao University of Technology, Qingdao 266033, China
| | - Jiping Ma
- School of Environmental & Municipal Engineering, Qingdao University of Technology, Qingdao 266033, China.
| | - Jing Guan
- School of Environmental & Municipal Engineering, Qingdao University of Technology, Qingdao 266033, China
| | - Jinhua Li
- CAS Key Laboratory of Coastal Environmental Processes and Ecological Remediation, Shandong Key Laboratory of Coastal Environmental Processes, Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai 264003, China; Laboratory for Marine Biology and Biotechnology, Pilot National Laboratory for Marine Science and Technology, Qingdao 266237, China
| | - Xiaoyan Wang
- School of Pharmacy, Binzhou Medical University, Yantai 264003, China
| | - Xiyan Sun
- CAS Key Laboratory of Coastal Environmental Processes and Ecological Remediation, Shandong Key Laboratory of Coastal Environmental Processes, Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai 264003, China
| | - Lingxin Chen
- CAS Key Laboratory of Coastal Environmental Processes and Ecological Remediation, Shandong Key Laboratory of Coastal Environmental Processes, Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai 264003, China; Laboratory for Marine Biology and Biotechnology, Pilot National Laboratory for Marine Science and Technology, Qingdao 266237, China.
| |
Collapse
|
22
|
He J, Wen X, Wu L, Chen H, Hu J, Hou X. Dielectric barrier discharge plasma for nanomaterials: Fabrication, modification and analytical applications. Trends Analyt Chem 2022. [DOI: 10.1016/j.trac.2022.116715] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
|
23
|
Wang Q, Wu Y, Guo W, Zhang F, Zhang F. A magnetic covalent organic framework as selective adsorbent for preconcentration of multi strobilurin fungicides in foods. Food Chem 2022; 392:133190. [DOI: 10.1016/j.foodchem.2022.133190] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2021] [Revised: 04/18/2022] [Accepted: 05/06/2022] [Indexed: 11/24/2022]
|
24
|
Selective Detection of Nucleotides in Infant Formula Using an N-Rich Covalent Triazine Porous Polymer. NANOMATERIALS 2022; 12:nano12132213. [PMID: 35808047 PMCID: PMC9268561 DOI: 10.3390/nano12132213] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/04/2022] [Revised: 06/03/2022] [Accepted: 06/15/2022] [Indexed: 01/27/2023]
Abstract
The aromatic structure and the rich nitrogen content of polymers based on covalent triazine-based frameworks (CTF) and their unique hydrophilic-lipophilic-balanced adsorption properties make them promising candidates for an adsorbent that can be used for sample pretreatment. Herein, a new covalent triazine-based framework (CTF-DBF) synthesized by a Friedel−Crafts reaction was used for the determination of the content of nucleotides in commercial infant formula. It was shown that the synthetic materials had an amorphous microporous structure, a BET surface area of up to 595.59 m2/g, and 0.39 nm and 0.54 nm micropores. The versatile adsorption properties of this material were evaluated by quantum chemistry theory calculations and batch adsorption experiments using five nucleotides as probes. The quantum chemistry results demonstrated that CTF-DBF can participate in multiple interactions with nucleotides. All the analyses performed present good linearity with R2 > 0.9993. The detection limits of targets ranged from 0.3 to 0.5 mg/kg, the spiked recoveries were between 85.8 and 105.3% and the relative standard deviations (RSD, n = 6) were between 1.1 and 4.5%. All these results suggest that this versatile CTF-DBF has great potential for sample pretreatment.
Collapse
|
25
|
Bagheri AR, Aramesh N, Liu Z, Chen C, Shen W, Tang S. Recent Advances in the Application of Covalent Organic Frameworks in Extraction: A Review. Crit Rev Anal Chem 2022; 54:565-598. [PMID: 35757859 DOI: 10.1080/10408347.2022.2089838] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Covalent organic frameworks (COFs) are a class of emerging materials that are synthesized based on the covalent bonds between different building blocks. COFs possess unique attributes in terms of high porosity, tunable structure, ordered channels, easy modification, large surface area, and great physical and chemical stability. Due to these features, COFs have been extensively applied as adsorbents in various extraction modes. Enhanced extraction performance could be reached with modified COFs, where COFs are presented as composites with other materials including nanomaterials, carbon and its derivatives, silica, metal-organic frameworks, molecularly imprinted polymers, etc. This review article describes the recent advances, developments, and applications of COF-based materials being utilized as adsorbents in the extraction methods. The COFs, their properties, their synthesis approaches as well as their composite structures are reviewed. Most importantly, suggested mechanisms for the extraction of analyte(s) by COF-based materials are also discussed. Finally, the current challenges and future prospects of COF-based materials in extraction methods are summarized and considered in order to provide more insights into this field.
Collapse
Affiliation(s)
| | - Nahal Aramesh
- Department of Chemistry, University of Isfahan, Isfahan, Iran
| | - Zhiqiang Liu
- School of Environmental and Chemical Engineering, Jiangsu University of Science and Technology, Zhenjiang, Jiangsu Province, China
| | - Chengbo Chen
- Department of Medicinal Chemistry, University of Washington, Seattle, WA, USA
| | - Wei Shen
- School of Environmental and Chemical Engineering, Jiangsu University of Science and Technology, Zhenjiang, Jiangsu Province, China
| | - Sheng Tang
- School of Environmental and Chemical Engineering, Jiangsu University of Science and Technology, Zhenjiang, Jiangsu Province, China
| |
Collapse
|
26
|
Yang J, Cao Y, Si W, Zhang J, Wang J, Qu Y, Qin W. Covalent Organic Frameworks Doped with Different Ratios of OMe/OH as Fluorescent and Colorimetric Sensors. CHEMSUSCHEM 2022; 15:e202200100. [PMID: 35322938 DOI: 10.1002/cssc.202200100] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/17/2022] [Revised: 03/23/2022] [Indexed: 06/14/2023]
Abstract
Improving the luminescence properties of covalent organic frameworks (COFs) has always been an important issue. Here, a series of COFs (([OMe]x -TzDa (TzDa is composed only by monomerics Tz and Da, OMe represents the incorporation of monomeric Dm)) with different ratios of OMe and OH were designed and synthesized. The photochemical behavior of [OMe]x -TzDa changed significantly due to the synergistic effect of aggregation induced emission (AIE), intramolecular charge transfer (ICT), and excited-state intramolecular proton transfer (ESIPT) effects. [OMe]2 -TzDa, which contained a ratio of 2/1 of OMe/OH, showed the strongest fluorescence emission in water and the best linear relationship for the detection of pH. Furthermore, [OMe]2 -TzDa was used to monitor HCl and NH3 gases and showed a color change, visible to the naked eye. Therefore, a "confidential pigment" was successfully made. Moreover, [OMe]2 -TzDa was also applied to detect N2 H4 . The work indicates the [OMe]2 -TzDa can serve as the first fluorescence sensor to detect pH, HCl and NH3 gases, which also shows a good response to N2 H4 .
Collapse
Affiliation(s)
- Jilu Yang
- College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou, 730000, P. R. China
| | - Yuping Cao
- College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou, 730000, P. R. China
| | - Wenbo Si
- College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou, 730000, P. R. China
| | - Jin Zhang
- College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou, 730000, P. R. China
| | - Jiemin Wang
- College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou, 730000, P. R. China
| | - Yi Qu
- College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou, 730000, P. R. China
| | - Wenwu Qin
- College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou, 730000, P. R. China
| |
Collapse
|
27
|
Duan R, Qi M. Separation performance of pentiptycene-functionalized triblock copolymers towards the isomers of xylenes, phenols and anilines and the complex components in essential oil. J Chromatogr A 2022; 1669:462927. [DOI: 10.1016/j.chroma.2022.462927] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2022] [Revised: 02/22/2022] [Accepted: 03/01/2022] [Indexed: 10/19/2022]
|
28
|
Chen A, Guo H, Luan J, Li Y, He X, Chen L, Zhang Y. The electrospun polyacrylonitrile/covalent organic framework nanofibers for efficient enrichment of trace sulfonamides residues in food samples. J Chromatogr A 2022; 1668:462917. [PMID: 35247720 DOI: 10.1016/j.chroma.2022.462917] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2021] [Revised: 02/18/2022] [Accepted: 02/20/2022] [Indexed: 10/19/2022]
Abstract
In this work, the electrospun polyacrylonitrile/covalent organic frameworks Tp-BD nanofibers (PAN/Tp-BD) were synthesized and applied as an adsorbent for thin film microextraction (TFME) of seven sulfonamides in animal derived food samples. The morphology, structure, porosity, and stability of the prepared nanofibers were investigated. The PAN/Tp-BD nanofibers exhibited good chemical stability, high flexibility, porous fibrous structure, and excellent extraction efficiency. Based on the PAN/Tp-BD nanofibers as the adsorbent, a thin film microextraction-high performance liquid chromatography (TFME-HPLC) method for the determination of seven sulfonamides (SAs) in food samples was developed. Under the optimal conditions, the TFME-HPLC exhibited the low limit of detection (0.10-0.18 ng·mL-1), the low limit of quantitation (0.33-0.60 ng·mL-1), the wide linear range (0.5-50 ng·mL-1) with correlation coefficients between 0.994 and 0.998, and good enrichment factors between 39.7 to 170.1 towards 20 ng/mL SAs solution. The relative standard deviation (RSD) was lower than 11% in the interday and intraday analysis. Furthermore, the applicability of PAN/Tp-BD nanofibers was demonstrated for measuring trace SAs residues in the spiked food samples with recoveries ranging from 85.3% to 115.2%. The results demonstrated that the PAN/Tp-BD nanofibers have great potential for the efficient extraction of sulfonamides from complex food samples.
Collapse
Affiliation(s)
- An Chen
- College of Chemistry, Tianjin Key Laboratory of Biosensing and Molecular Recognition, Nankai University, Tianjin 300071, China
| | - Hongying Guo
- College of Chemistry, Tianjin Key Laboratory of Biosensing and Molecular Recognition, Nankai University, Tianjin 300071, China
| | - Jingyi Luan
- College of Chemistry, Tianjin Key Laboratory of Biosensing and Molecular Recognition, Nankai University, Tianjin 300071, China
| | - Yijun Li
- College of Chemistry, Tianjin Key Laboratory of Biosensing and Molecular Recognition, Nankai University, Tianjin 300071, China; National Demonstration Center for Experimental Chemistry Education, Nankai University, Tianjin 300071, China
| | - Xiwen He
- College of Chemistry, Tianjin Key Laboratory of Biosensing and Molecular Recognition, Nankai University, Tianjin 300071, China
| | - Langxing Chen
- College of Chemistry, Tianjin Key Laboratory of Biosensing and Molecular Recognition, Nankai University, Tianjin 300071, China.
| | - Yukui Zhang
- College of Chemistry, Tianjin Key Laboratory of Biosensing and Molecular Recognition, Nankai University, Tianjin 300071, China; Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China
| |
Collapse
|
29
|
Li S, Ma J, Wu G, Li J, Wang X, Chen L. Magnetic covalent-organic frameworks for the simultaneous extraction of eleven emerging aromatic disinfection byproducts in water samples coupled with UHPLC-MS/MS determination. JOURNAL OF HAZARDOUS MATERIALS 2022; 424:127687. [PMID: 34776299 DOI: 10.1016/j.jhazmat.2021.127687] [Citation(s) in RCA: 40] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/20/2021] [Revised: 10/15/2021] [Accepted: 10/30/2021] [Indexed: 06/13/2023]
Abstract
A simple method based on magnetic solid-phase extraction (MSPE) was developed for the simultaneous extraction of eleven emerging aromatic disinfection byproducts (DBPs) in water samples coupled with ultrahigh-performance liquid chromatography-tandem mass spectrometry (UHPLC-MS/MS) determination. A magnetic covalent-organic framework (COF) material, namely, Fe3O4 @TpBD, was facilely synthesized and fully characterized, followed by an MSPE process. Several important MSPE parameters, such as the magnetic ratio, Fe3O4 @TpBD amount and sample pH, were systematically investigated. Under optimal conditions, the limits of detection and quantification of this COF-MSPE-UHPLC-MS/MS method were as low as 0.07-1.81 ng/L and 0.24-5.99 ng/L, respectively. Good precision was obtained with relative standard deviations (RSDs) of 1.3-10.9% (intraday) and 4.3-15.9% (interday). Furthermore, the validated method was proven applicable to real water samples; for example, the recoveries were 86.8-115.1% for the secondary effluent, and several DBPs in swimming pool water were detected. Notably, the MSPE process required only 7 min, ensuring that the DBPs were relatively stable during the whole analysis process and that Fe3O4 @TpBD demonstrated excellent reusability. The COF-based MSPE method with simplicity, rapidity and efficiency provided an ideal sample pretreatment alternative to determine trace DBPs in complex matrices.
Collapse
Affiliation(s)
- Shuang Li
- School of Environmental & Municipal Engineering, State-Local Joint Engineering Research Center of Urban Sewage Treatment and Resource Recovery, Qingdao University of Technology, Qingdao 266033, China
| | - Jiping Ma
- School of Environmental & Municipal Engineering, State-Local Joint Engineering Research Center of Urban Sewage Treatment and Resource Recovery, Qingdao University of Technology, Qingdao 266033, China.
| | - Gege Wu
- School of Environmental & Municipal Engineering, State-Local Joint Engineering Research Center of Urban Sewage Treatment and Resource Recovery, Qingdao University of Technology, Qingdao 266033, China
| | - Jinhua Li
- Research Centre for Coastal Environmental Engineering and Technology, Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai 264003, China; CAS Key Laboratory of Coastal Environmental Processes and Ecological Remediation, Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai 264003, China
| | - Xiaoyan Wang
- School of Pharmacy, Binzhou Medical University, Yantai 264003, China
| | - Lingxin Chen
- Research Centre for Coastal Environmental Engineering and Technology, Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai 264003, China; CAS Key Laboratory of Coastal Environmental Processes and Ecological Remediation, Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai 264003, China.
| |
Collapse
|
30
|
Fikarova K, Moore E, Nicolau A, Horstkotte B, Maya F. Recent trends on the implementation of reticular materials in column‐centered separations. J Sep Sci 2022; 45:1411-1424. [PMID: 35080129 PMCID: PMC9305254 DOI: 10.1002/jssc.202100849] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2021] [Revised: 01/07/2022] [Accepted: 01/20/2022] [Indexed: 11/30/2022]
Abstract
Advances in the development of column‐based analytical separations are strongly linked to the development of novel materials. Stationary phases for chromatographic separation are usually based on silica and polymer materials. Nevertheless, recent advances have been made using porous crystalline reticular materials, such as metal‐organic frameworks and covalent organic frameworks. However, the direct packing of these materials is often limited due to their small crystal size and nonspherical shape. In this review, recent strategies to incorporate porous crystalline materials as stationary phases for liquid‐phase separations are covered. Moreover, we discuss the potential future directions in their development and integration into suitable supports for analytical applications. Finally, we discuss the main challenges to be solved to take full advantage of these materials as stationary phases for analytical separations.
Collapse
Affiliation(s)
- Katerina Fikarova
- Australian Centre for Research on Separation Science (ACROSS) School of Natural Sciences (Chemistry) University of Tasmania Tasmania Australia
- Faculty of Pharmacy in Hradec Králové Department of Analytical Chemistry Charles University Hradec Králové Czech Republic
| | - Edward Moore
- Australian Centre for Research on Separation Science (ACROSS) School of Natural Sciences (Chemistry) University of Tasmania Tasmania Australia
| | - Alma Nicolau
- Australian Centre for Research on Separation Science (ACROSS) School of Natural Sciences (Chemistry) University of Tasmania Tasmania Australia
| | - Burkhard Horstkotte
- Faculty of Pharmacy in Hradec Králové Department of Analytical Chemistry Charles University Hradec Králové Czech Republic
| | - Fernando Maya
- Australian Centre for Research on Separation Science (ACROSS) School of Natural Sciences (Chemistry) University of Tasmania Tasmania Australia
| |
Collapse
|
31
|
Liu SS, Liu QQ, Huang SZ, Zhang C, Dong XY, Zang SQ. Sulfonic and phosphonic porous solids as proton conductors. Coord Chem Rev 2022. [DOI: 10.1016/j.ccr.2021.214241] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
|
32
|
Huang YY, Pang YH, Shen XF, Jiang R, Wang YY. Covalent organic framework DQTP modified pencil graphite electrode for simultaneous determination of bisphenol A and bisphenol S. Talanta 2022; 236:122859. [PMID: 34635243 DOI: 10.1016/j.talanta.2021.122859] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2021] [Revised: 05/07/2021] [Accepted: 09/05/2021] [Indexed: 02/07/2023]
Abstract
The sensitivity and selectivity of electrochemical analysis are challenging due to the materials used for electrode modification as well as electrical conductivity, catalytic activity and recognition ability of the working electrode. In this work, a portable 3D-printed electrochemical electrode clamp was designed and applied in combination with the developed covalent organic framework (COF DQTP)-modified pencil graphite electrode (DQTP/PGE). The β-ketoenamine-linked COF DQTP synthesized by 1,3,5-triformylphloroglucinol (TP) and 2,6-diaminoanthraquinone (DQ) through solvothermal method is a porous crystalline with excellent conductivity and large periodic π-arrays, coupled with commercial available pencil graphite electrode to fabricate a disposable sensor for simultaneous determination of environmental endocrine disruptors bisphenol A and bisphenol S. The DQTP/PGE sensor exhibited high electrical conductivity and catalytic activity, and a good linearity was obtained in a range of 0.5-30 μM for two bisphenols with a detection limit of 0.15 μM (S/N = 3). Moreover, the sensor showed a reproducible and stable response over one month with negligible interference, and an accepted recovery with real food packaging samples.
Collapse
Affiliation(s)
- Yu-Ying Huang
- State Key Laboratory of Food Science and Technology, School of Food Science and Technology, Jiangnan University, Wuxi, 214122, China
| | - Yue-Hong Pang
- State Key Laboratory of Food Science and Technology, School of Food Science and Technology, Jiangnan University, Wuxi, 214122, China.
| | - Xiao-Fang Shen
- State Key Laboratory of Food Science and Technology, School of Food Science and Technology, Jiangnan University, Wuxi, 214122, China
| | - Rui Jiang
- State Key Laboratory of Food Science and Technology, School of Food Science and Technology, Jiangnan University, Wuxi, 214122, China
| | - Yi-Ying Wang
- State Key Laboratory of Food Science and Technology, School of Food Science and Technology, Jiangnan University, Wuxi, 214122, China
| |
Collapse
|
33
|
Sarfaraz S, Yar M, Ans M, Gilani MA, Ludwig R, Hashmi MA, Hussain M, Muhammad S, Ayub K. Computational investigation of a covalent triazine framework (CTF-0) as an efficient electrochemical sensor. RSC Adv 2022; 12:3909-3923. [PMID: 35425404 PMCID: PMC8981076 DOI: 10.1039/d1ra08738j] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2021] [Accepted: 01/15/2022] [Indexed: 12/12/2022] Open
Abstract
In the current study, a covalent triazine framework (CTF-0) was evaluated as an electrochemical sensor against industrial pollutants i.e., O3, NO, SO2, SO3, and CO2. The deep understanding of analytes@CTF-0 complexation was acquired by interaction energy, NCI, QTAIM, SAPT0, EDD, NBO and FMO analyses. The outcome of interaction energy analyses clearly indicates that all the analytes are physiosorbed onto the CTF-0 surface. NCI and QTAIM analysis were employed to understand the nature of the non-covalent interactions. Furthermore, SAPT0 analysis revealed that dispersion has the highest contribution towards total SAPT0 energy. In NBO analysis, the highest charge transfer is obtained in the case of SO3@CTF-0 (−0.167 e−) whereas the lowest charge transfer is observed in CO2@CTF-0. The results of NBO charge transfer are also verified through EDD analysis. FMO analysis revealed that the highest reduction in the HOMO–LUMO energy gap is observed in the case of O3 (5.03 eV) adsorption onto the CTF-0 surface, which indicates the sensitivity of CTF-0 for O3 analytes. We strongly believe that these results might be productive for experimentalists to tailor a highly sensitive electrochemical sensor using covalent triazine-based frameworks (CTFs). In the current study, a covalent triazine framework (CTF-0) was evaluated as an electrochemical sensor against industrial pollutants i.e., O3, NO, SO2, SO3, and CO2.![]()
Collapse
Affiliation(s)
- Sehrish Sarfaraz
- Department of Chemistry, COMSATS University, Abbottabad Campus, KPK, Pakistan, 22060
| | - Muhammad Yar
- Department of Chemistry, COMSATS University, Abbottabad Campus, KPK, Pakistan, 22060
| | - Muhammad Ans
- Department of Chemistry, University of Agriculture Faisalabad, 38000, Faisalabad, Pakistan
| | - Mazhar Amjad Gilani
- Department of Chemistry, COMSATS University Islamabad, Lahore Campus, 54600, Pakistan
| | - Ralf Ludwig
- Universität Rostock, Institut für Chemie, Abteilung für Physikalische Chemie, Dr.-Lorenz-Weg 1, 18059 Rostock, Germany
- Leibniz-Institut für Katalyse an der Universität Rostock, Albert-Einstein-Strasse 29a, 18059 Rostock, Germany
| | - Muhammad Ali Hashmi
- Department of Chemistry, Division of Science & Technology, University of Education, 54770 Lahore, Pakistan
| | - Masroor Hussain
- Department of Data Science, Ghulam Ishaq Khan Institute of Engineering Sciences and Technology, Topi, KPK, Pakistan
| | - Shabbir Muhammad
- Department of Chemistry, College of Science, King Khalid University, P. O. Box 9004, Abha, 61413, Saudi Arabia
| | - Khurshid Ayub
- Department of Chemistry, COMSATS University, Abbottabad Campus, KPK, Pakistan, 22060
| |
Collapse
|
34
|
Meng Z, Mirica KA. Covalent organic frameworks as multifunctional materials for chemical detection. Chem Soc Rev 2021; 50:13498-13558. [PMID: 34787136 PMCID: PMC9264329 DOI: 10.1039/d1cs00600b] [Citation(s) in RCA: 110] [Impact Index Per Article: 27.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2021] [Indexed: 12/17/2022]
Abstract
Sensitive and selective detection of chemical and biological analytes is critical in various scientific and technological fields. As an emerging class of multifunctional materials, covalent organic frameworks (COFs) with their unique properties of chemical modularity, large surface area, high stability, low density, and tunable pore sizes and functionalities, which together define their programmable properties, show promise in advancing chemical detection. This review demonstrates the recent progress in chemical detection where COFs constitute an integral component of the achieved function. This review highlights how the unique properties of COFs can be harnessed to develop different types of chemical detection systems based on the principles of chromism, luminescence, electrical transduction, chromatography, spectrometry, and others to achieve highly sensitive and selective detection of various analytes, ranging from gases, volatiles, ions, to biomolecules. The key parameters of detection performance for target analytes are summarized, compared, and analyzed from the perspective of the detection mechanism and structure-property-performance correlations of COFs. Conclusions summarize the current accomplishments and analyze the challenges and limitations that exist for chemical detection under different mechanisms. Perspectives on how future directions of research can advance the COF-based chemical detection through innovation in novel COF design and synthesis, progress in device fabrication, and exploration of novel modes of detection are also discussed.
Collapse
Affiliation(s)
- Zheng Meng
- Department of Chemistry, Burke Laboratory, 41 College Street, Dartmouth College, Hanover, NH 03755, USA.
| | - Katherine A Mirica
- Department of Chemistry, Burke Laboratory, 41 College Street, Dartmouth College, Hanover, NH 03755, USA.
| |
Collapse
|
35
|
LIN S, DING Q, ZHANG W, ZHANG L, LU Q. [Novel adsorption material for solid phase extraction in sample pretreatment of plant hormones]. Se Pu 2021; 39:1281-1290. [PMID: 34811999 PMCID: PMC9404001 DOI: 10.3724/sp.j.1123.2021.03045] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2021] [Indexed: 11/29/2022] Open
Abstract
Plant hormones (PHs) are of significance in plant growth, as they regulate the various processes related to plant growth, development, and resistance. Sensitive and precise quantitative analysis of PHs is a bottleneck in plant science research. Currently, liquid chromatography-tandem mass spectrometry is used for the accurate and efficient detection of PHs. Sample pretreatment is an indispensable step in the chromatography-mass spectrometry analysis of PHs because it directly affects the sensitivity and accuracy of subsequent detection methods. Among various pretreatment methods for PHs, solid phase extraction (SPE) is the most widely used. Various new types of SPE, such as dispersive SPE, magnetic SPE, and solid phase microextraction, have been developed by modifying the extraction cartridge. The choice of adsorption material is the key factor in the abovementioned SPE methods, which has a decisive effect on the extraction, purification, and enrichment effects of the target substance in the sample pretreatment process. Carbon-based materials, including carbon nanotubes, graphene, carbon and nitrogen compounds, as well as organic frameworks, including metal organic frameworks and covalent organic materials, are suitable adsorption materials because of their designable structure, large specific surface area, and good stability. Molecularly imprinted polymers and supramolecular compounds show specific molecular recognition based on host-guest interactions, which can significantly improve the selectivity of sample pretreatment methods. In this paper, SPE-related technology and the abovementioned types of functionalized adsorption materials in the pretreatment of PHs prevalent in the past five years have been reviewed. The related development trends are also summarized.
Collapse
|
36
|
He X, Jiang Z, Akakuru OU, Li J, Wu A. Nanoscale covalent organic frameworks: from controlled synthesis to cancer therapy. Chem Commun (Camb) 2021; 57:12417-12435. [PMID: 34734601 DOI: 10.1039/d1cc04846e] [Citation(s) in RCA: 102] [Impact Index Per Article: 25.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Covalent organic frameworks (COFs), as a new type of crystalline porous materials, mainly consist of light-weight elements (H, B, C, N and O) linked by dynamic covalent bonds to form periodical structures of two or three dimensions. As an attribute of their low density, large surface area, and excellent adjustable pore size, COFs show great potential in many fields including energy storage and separation, catalysis, sensing, and biomedicine. However, compared with metal organic frameworks (MOFs), the relatively large size and irregular morphology of COFs affect their biocompatibility and bioavailability in vivo, thus impeding their further biomedical applications. This Review focuses on the controlled design strategies of nanoscale COFs (NCOFs), unique properties of NCOFs for biomedical applications, and recent progress in NCOFs for cancer therapy. In addition, current challenges for the biomedical use of NCOFs and perspectives for further improvements are presented.
Collapse
Affiliation(s)
- Xuelu He
- Cixi Institute of Biomedical Engineering, CAS Key Laboratory of Magnetic Materials and Devices, Key Laboratory of Additive Manufacturing Materials of Zhejiang Province, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo 315201, P. R. China. .,University of Chinese Academy of Sciences, Beijing 100049, China
| | - Zhenqi Jiang
- Cixi Institute of Biomedical Engineering, CAS Key Laboratory of Magnetic Materials and Devices, Key Laboratory of Additive Manufacturing Materials of Zhejiang Province, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo 315201, P. R. China.
| | - Ozioma Udochukwu Akakuru
- Cixi Institute of Biomedical Engineering, CAS Key Laboratory of Magnetic Materials and Devices, Key Laboratory of Additive Manufacturing Materials of Zhejiang Province, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo 315201, P. R. China. .,University of Chinese Academy of Sciences, Beijing 100049, China
| | - Juan Li
- Cixi Institute of Biomedical Engineering, CAS Key Laboratory of Magnetic Materials and Devices, Key Laboratory of Additive Manufacturing Materials of Zhejiang Province, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo 315201, P. R. China. .,Advanced Energy Science and Technology Guangdong Laboratory, Huizhou 516000, P. R. China
| | - Aiguo Wu
- Cixi Institute of Biomedical Engineering, CAS Key Laboratory of Magnetic Materials and Devices, Key Laboratory of Additive Manufacturing Materials of Zhejiang Province, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo 315201, P. R. China. .,Advanced Energy Science and Technology Guangdong Laboratory, Huizhou 516000, P. R. China
| |
Collapse
|
37
|
Kumar S, Kulkarni VV, Jangir R. Covalent‐Organic Framework Composites: A Review Report on Synthesis Methods. ChemistrySelect 2021. [DOI: 10.1002/slct.202102435] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Affiliation(s)
- Shubham Kumar
- Department of Chemistry Sardar Vallabhbhai National Institute of Technology, Ichchanath Surat 395 007 Gujarat INDIA
| | - Vihangraj V. Kulkarni
- Faculty of Environmental Engineering Department of Civil Engineering National Institute of Technology Silchar Silchar 788010 Assam INDIA
| | - Ritambhara Jangir
- Department of Chemistry Sardar Vallabhbhai National Institute of Technology, Ichchanath Surat 395 007 Gujarat, INDIA
| |
Collapse
|
38
|
Zhao H, Qi M. A selective and inert stationary phase combining triptycene with tocopheryl polyethylene glycol succinate for capillary gas chromatography. J Chromatogr A 2021; 1657:462575. [PMID: 34601254 DOI: 10.1016/j.chroma.2021.462575] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2021] [Revised: 09/04/2021] [Accepted: 09/21/2021] [Indexed: 11/26/2022]
Abstract
This work reports a selective and inert triptycene-based stationary phase (TPT) combining the triptycene framework with tocopheryl polyethylene glycol succinate (TPGS) units for capillary gas chromatography (GC). The TPT stationary phase was physically coated onto a capillary column by static coating method with the column efficiency of 4200 plates/m and moderate polarity. As demonstrated, the TPT column exhibited high inertness towards organic bases, including basic heterocycles, aliphatic and aromatic amines, showing distinct advantages over the TPGS and commercial columns. Also, the TPT column displayed high-resolution performance towards the isomers of methylpyridines, toluidines, xylidines and alkanes (C6-C8). Moreover, it showed excellent separation repeatability and reproducibility with RSD values in the range of 0.03%-0.07% for run-to-run, 0.12%-0.18% for day-to-day and 2.3%-3.6% for column-to- column (n = 4). Its applications to purity test of chemical products and to GC-MS analysis of the essential oil of Artemisia annua L. demonstrated its good potential for practical analyses. The present work has novelty in constructing highly selective and inert stationary phases and providing a feasible strategy for concurrently addressing the related problems in GC analyses. Its methodology and findings is of important value in terms of fundamental researches and practical applications.
Collapse
Affiliation(s)
- Huiru Zhao
- Key Laboratory of Cluster Science, Ministry of Education of China, Beijing Key Laboratory of Photoelectronic/Electrophotonic Conversion Materials, School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing 100081, China
| | - Meiling Qi
- Key Laboratory of Cluster Science, Ministry of Education of China, Beijing Key Laboratory of Photoelectronic/Electrophotonic Conversion Materials, School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing 100081, China.
| |
Collapse
|
39
|
Octadecylamine and glucose-coderived hydrophobic carbon dots-modified porous silica for chromatographic separation. CHINESE CHEM LETT 2021. [DOI: 10.1016/j.cclet.2021.04.052] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
40
|
|
41
|
Porphyrin-based covalent organic framework coated stainless steel fiber for solid-phase microextraction of polycyclic aromatic hydrocarbons in water and soil samples. Microchem J 2021. [DOI: 10.1016/j.microc.2021.106364] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
|
42
|
Covalent organic frameworks for fluorescent sensing: Recent developments and future challenges. Coord Chem Rev 2021. [DOI: 10.1016/j.ccr.2021.213957] [Citation(s) in RCA: 90] [Impact Index Per Article: 22.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
|
43
|
Faraji M, Shirani M, Rashidi-Nodeh H. The recent advances in magnetic sorbents and their applications. Trends Analyt Chem 2021. [DOI: 10.1016/j.trac.2021.116302] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/09/2023]
|
44
|
Wen G, Xiao Y, Chen S, Zhang X, Jiang Z. A nanosol SERS/RRS aptamer assay of trace cobalt(ii) by covalent organic framework BtPD-loaded nanogold catalytic amplification. NANOSCALE ADVANCES 2021; 3:3846-3859. [PMID: 36133010 PMCID: PMC9417635 DOI: 10.1039/d1na00208b] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/20/2021] [Accepted: 05/04/2021] [Indexed: 06/14/2023]
Abstract
The determination of heavy metal ions has always been a hot topic in the field of environmental analysis. In this study, a new covalent organic framework-loaded gold nanoparticle (AuCOF) nanocatalytic amplification signal strategy was developed to determine trace Co2+ in water. The COF of BtPD was synthesized from 1,3,5-benzene tricarboxaldehyde and p-phenylenediamine, and a new kind of AuBtPD nanosol was prepared by reduction of HAuCl4 to AuNPs on the BtPD carrier. It has strong catalysis of the new indicator reaction of sodium formate reducing HAuCl4 to AuNP sol with strong resonance Rayleigh scattering (RRS) at 370 nm and surface enhanced resonance Raman scattering (SERS) activity at 1614 cm-1 in the presence of a Victoria blue 4R (VB4R) molecular probe. Combining the nanocatalytic reaction to amplify the dual-scattering signals and specific aptamer (Apt) of cobalt ions, a new, fast, stable, sensitive and specific dual mode method for detecting Co2+ was established; the RRS signal I 370nm and SERS signal I 1614cm-1 show a linear relationship with the concentration of 0.033-1 nmol L-1 Co2+ and with a limit of detection (LOD) of 0.02 nmol L-1. The two methods have been applied to the determination of Co2+ in industrial wastewater, tap water and river water, and the results are satisfactory.
Collapse
Affiliation(s)
- Guiqing Wen
- Key Laboratory of Ecology of Rare and Endangered Species and Environmental Protection (Guangxi Normal University), Ministry of Education Guangxi China
- Key Laboratory of Environmental Pollution Control Theory and Technology Guilin 541004 China
| | - Yang Xiao
- Key Laboratory of Ecology of Rare and Endangered Species and Environmental Protection (Guangxi Normal University), Ministry of Education Guangxi China
- Key Laboratory of Environmental Pollution Control Theory and Technology Guilin 541004 China
| | - Shuxin Chen
- Key Laboratory of Ecology of Rare and Endangered Species and Environmental Protection (Guangxi Normal University), Ministry of Education Guangxi China
- Key Laboratory of Environmental Pollution Control Theory and Technology Guilin 541004 China
| | - Xinghui Zhang
- Key Laboratory of Ecology of Rare and Endangered Species and Environmental Protection (Guangxi Normal University), Ministry of Education Guangxi China
- Key Laboratory of Environmental Pollution Control Theory and Technology Guilin 541004 China
| | - Zhiliang Jiang
- Key Laboratory of Ecology of Rare and Endangered Species and Environmental Protection (Guangxi Normal University), Ministry of Education Guangxi China
- Key Laboratory of Environmental Pollution Control Theory and Technology Guilin 541004 China
| |
Collapse
|
45
|
Song C, Shao Y, Yue Z, Hu Q, Zheng J, Yuan H, Yu A, Zhang W, Zhang S, Ouyang G. Sheathed in-situ room-temperature growth covalent organic framework solid-phase microextraction fiber for detecting ultratrace polybrominated diphenyl ethers from environmental samples. Anal Chim Acta 2021; 1176:338772. [PMID: 34399894 DOI: 10.1016/j.aca.2021.338772] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2021] [Revised: 06/14/2021] [Accepted: 06/15/2021] [Indexed: 01/08/2023]
Abstract
The extraction performance of solid-phase microextraction (SPME) fiber is significantly influenced by coating materials and fabricating process. It is urgently needed for fabricating robust SPME fiber with facile preparation methods. Herein, a novel polyimide (PI) @ covalent organic framework (COF) synthesized by 1,3,5-Tris (4-aminophenyl) benzene (TPB) and 2,5-dimethoxyterephthalaldehyde (DMTP) fiber, named PI@TPB-DMTP fiber, was successfully fabricated with facile method at room temperature. Firstly, a COF crystals TPB-DMTP was in situ grown on stainless steel fiber, where the COF crystals was synthesized by the Schiff-base reaction between TPB and DMTP. Subsequently, the COF coating was covered with an ultrathin layer of PI through a simple dip-coating method to improve the fiber stability. By coupled PI@TPB-DMTP SPME fiber with gas chromatography-negative chemical ion-mass spectrometry (GC-NCI-MS), a sensitive analytical method was established for the determination of ultratrace polybrominated diphenyl ethers (PBDEs) in water sample. To achieve the best efficiency and sensitivity for the analysis of PBDEs, six potential influencing factors in extraction step and desorption step were optimized. Under optimized conditions, the established method showed high enhancement factors of 1470-3555, wide linear range of 0.05-100 ng L-1, low detection limits of 0.0083-0.0190 ng L-1, good repeatability for intra-day in the range of 3.71%-7.62% and inter-day in the range of 5.12%-8.81%, good reproducibility in the range of 6.83%-9.21%. The satisfactory recovery was ranged from 79.2% to 117.3% in determining real water samples. The excellent experimental performance was mainly attributed to the large specific surface area of TPB-DMTP, as well as the high permeability of porous PI film. The results demonstrated that the COF-based fiber showed great potential for analysis of PBDEs in complex environmental samples.
Collapse
Affiliation(s)
- Chenchen Song
- College of Chemistry, Zhengzhou University, Kexue Avenue 100, Zhengzhou, Henan, 450001, PR China
| | - Yuanyuan Shao
- College of Chemistry, Zhengzhou University, Kexue Avenue 100, Zhengzhou, Henan, 450001, PR China
| | - Zeyi Yue
- College of Chemistry, Zhengzhou University, Kexue Avenue 100, Zhengzhou, Henan, 450001, PR China
| | - Qingkun Hu
- KLGHEI of Environment and Energy Chemistry, School of Chemistry, Sun Yat- Sen University, Guangzhou, Guangdong, 510275, PR China
| | - Jiating Zheng
- KLGHEI of Environment and Energy Chemistry, School of Chemistry, Sun Yat- Sen University, Guangzhou, Guangdong, 510275, PR China
| | - Hang Yuan
- Center of Advanced Analysis and Gene Sequencing, Zhengzhou University, Kexue Avenue 100, Zhengzhou, Henan, 450001, PR China
| | - Ajuan Yu
- College of Chemistry, Zhengzhou University, Kexue Avenue 100, Zhengzhou, Henan, 450001, PR China
| | - Wenfen Zhang
- Center of Advanced Analysis and Gene Sequencing, Zhengzhou University, Kexue Avenue 100, Zhengzhou, Henan, 450001, PR China
| | - Shusheng Zhang
- Center of Advanced Analysis and Gene Sequencing, Zhengzhou University, Kexue Avenue 100, Zhengzhou, Henan, 450001, PR China
| | - Gangfeng Ouyang
- Center of Advanced Analysis and Gene Sequencing, Zhengzhou University, Kexue Avenue 100, Zhengzhou, Henan, 450001, PR China; KLGHEI of Environment and Energy Chemistry, School of Chemistry, Sun Yat- Sen University, Guangzhou, Guangdong, 510275, PR China.
| |
Collapse
|
46
|
Salve S, Bahiram Y, Jadhav A, Rathod R, Tekade RK. Nanoplatform-Integrated Miniaturized Solid-Phase Extraction Techniques: A Critical Review. Crit Rev Anal Chem 2021; 53:46-68. [PMID: 34096402 DOI: 10.1080/10408347.2021.1934651] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
Preparation of the biological samples is one of the most critical steps in sample analysis. In past decades, the liquid-liquid extraction technique has been used to extract the desired analytes from complex biological matrices. However, solid-phase extraction (SPE) gained popularity due to versatility, simplicity, selectivity, reproducibility, high sample recovery %, solvent economy, and time-saving nature. The superior extraction efficiency of SPE can be attributed to the development of advanced techniques, including the nanosorbents technology. The nanosorbent technology significantly simplified the sample preparation, improved the selectivity, diversified the application, and accelerated the sample analysis. This review critically expands on the to-date advancements reported in SPE with particular regards to the nanosorbent technology.
Collapse
Affiliation(s)
- Sushmita Salve
- National Institute of Pharmaceutical Education and Research-Ahmedabad (NIPER-A), An Institute of National Importance, Government of India, Department of Pharmaceuticals, Ministry of Chemicals and Fertilizers, Gandhinagar, Gujarat, India
| | - Yogita Bahiram
- National Institute of Pharmaceutical Education and Research-Ahmedabad (NIPER-A), An Institute of National Importance, Government of India, Department of Pharmaceuticals, Ministry of Chemicals and Fertilizers, Gandhinagar, Gujarat, India
| | - Amol Jadhav
- National Institute of Pharmaceutical Education and Research-Ahmedabad (NIPER-A), An Institute of National Importance, Government of India, Department of Pharmaceuticals, Ministry of Chemicals and Fertilizers, Gandhinagar, Gujarat, India
| | - Rajeshwari Rathod
- National Institute of Pharmaceutical Education and Research-Ahmedabad (NIPER-A), An Institute of National Importance, Government of India, Department of Pharmaceuticals, Ministry of Chemicals and Fertilizers, Gandhinagar, Gujarat, India
| | - Rakesh Kumar Tekade
- National Institute of Pharmaceutical Education and Research-Ahmedabad (NIPER-A), An Institute of National Importance, Government of India, Department of Pharmaceuticals, Ministry of Chemicals and Fertilizers, Gandhinagar, Gujarat, India
| |
Collapse
|
47
|
Yang L, Gong R, Waterhouse GIN, Dong J, Xu J. A novel covalent triazine framework developed for efficient determination of 1-naphthol in water. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2021; 28:31185-31194. [PMID: 33598837 DOI: 10.1007/s11356-021-12869-y] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/24/2020] [Accepted: 02/05/2021] [Indexed: 06/12/2023]
Abstract
Covalent triazine frameworks (CTFs) are an exciting new class of porous organic materials with excellent chemical stability and easy functionalization. In recent years, CTFs have gained increasing attention in electrochemical detection of environmental contaminants. Herein, a novel CTF material was successfully synthesized by the solvothermal condensation of 1,3,5-tris-(4-aminophenyl)triazine (TAPT) and 2,3,6,7-tetrabromonapthalene dianhydride (TBNDA) for determination of 1-naphthol in water. The obtained CTF, denoted here as TATB, comprised uniformly sized spherical particles (diameter 0.5-2 μm) with a highly conjugated structure that benefited electron transfer processes when applied to a glassy carbon electrode (GCE). A TATB/GCE working electrode showed excellent catalytic activity for the oxidation of 1-naphthol, with the oxidation peak current being directly proportional to the 1-naphthol concentration in the range of 0.01-10.0 μM, with a detection limit of 5.0 nM (S/N = 3). In addition, the TATB/GCE sensor possesses excellent reproducibility, sensitivity, and selectivity for 1-naphthol determination in aqueous solution. This work highlights the potential of CTFs in electrochemical sensing, whilst also demonstrating a sensitive and stable sensor platform for 1-naphthol detection in water.
Collapse
Affiliation(s)
- Liuliu Yang
- College of Chemistry and Material Science, Shandong Agricultural University, Tai'an, Shandong, 271018, People's Republic of China
| | - Ruizhi Gong
- College of Chemistry and Material Science, Shandong Agricultural University, Tai'an, Shandong, 271018, People's Republic of China
| | - Geoffrey I N Waterhouse
- College of Chemistry and Material Science, Shandong Agricultural University, Tai'an, Shandong, 271018, People's Republic of China
- School of Chemical Sciences, The University of Auckland, Auckland, New Zealand
| | - Jing Dong
- College of Chemistry and Material Science, Shandong Agricultural University, Tai'an, Shandong, 271018, People's Republic of China.
| | - Jing Xu
- College of Chemistry and Material Science, Shandong Agricultural University, Tai'an, Shandong, 271018, People's Republic of China.
| |
Collapse
|
48
|
Ke CB, Yan RY, Chen JL, Lu TL. Diltiazem-imprinted porphyrinic covalent organic frameworks as solid-phase extractants and fluorescent sensors. Anal Chim Acta 2021; 1168:338608. [PMID: 34051994 DOI: 10.1016/j.aca.2021.338608] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2021] [Revised: 04/29/2021] [Accepted: 05/01/2021] [Indexed: 11/16/2022]
Abstract
Diltiazem, which is a calcium channel blocker, is involved in the formation of covalent organic frameworks (COFs) through the Schiff base reaction of tetrakis (4-aminophenyl)-porphine (TAPP) and dihydroxynaphthalene-dicarbaldehyde (DHNDC) and the next enol-to-keto tautomerization. The diltiazem-imprinted COFs (DICOFs) were optimally formed using Sc(OTf)3 as the catalyst, TAPP/DHNDC/diltiazem in a molar ratio of 2/3/4, N-methylpyrrolidone/mesitylene (v/v = 3/5) as the porogen, and a 1-h reaction with a high imprinting factor of 10.5 compared to the nonimprinted counterparts (NICOFs). The optimized DICOF exhibited a more amorphous XRD pattern, a larger surface area (1650 vs. 930 m2/g), a larger pore volume (1.33 vs. 0.75 cm3/g), and a finer porous SEM feature than NICOF. The selectivity of NICOF toward diltiazem and diazepam at 250 nM (α = 1.03, RSD = 1.3%) was smaller than the selectivity of DICOF (α = 2.94, RSD = 1.6%). The diltiazem samples (5.0-300 ng mL-1) dynamically quenched the fluorescence of 15 μg/mL DICOF in 50 mM phosphate buffer at pH 6.5 at 8.0 min equilibrium; thus, Stern-Volmer plots were linearly constructed for sensing diltiazem with an LOD of 3.4 ng mL-1 and an LOQ of 10.2 ng mL-1. According to the plots, 30 ng mL-1 diltiazem solutions that were diluted from 30 mg-specified tablets had an average measured concentration of 29.5 ng mL-1 (σ = 1.3% and n = 5). In addition to application as fluorescent sensors, DICOFs (30 mg) could be used as dispersive extractants to recover 95.2% of 0.6 ng mL-1 diltiazem from 25 mL phosphate buffer with quadruplicate uses of 0.5 mL methanol/acetic acid (v/v = 9/1) as the eluent. Langmuir and pseudo-second-order models were fitted to the isothermal and kinetic sorption mechanisms, respectively. The maximum sorption capacity of DICOF was ten times larger than that of NICOF (156 vs. 15.2 mg/g). The interday recoveries of 0.6 ng mL-1 spiked in 20-fold diluted human urine, and 60-fold diluted human serum were 93.2% and 90.6%, respectively.
Collapse
Affiliation(s)
- Ching-Bin Ke
- Department of Beauty and Health Care, Min-Hwei Junior College of Health Care Management, No. 1116, Sec 2, Zhongshan E. Rd., Tainan, 73658, Taiwan
| | - Ru-Yu Yan
- School of Pharmacy, China Medical University, No. 91 Hsueh-Shih Road, Taichung, 40402, Taiwan
| | - Jian-Lian Chen
- School of Pharmacy, China Medical University, No. 91 Hsueh-Shih Road, Taichung, 40402, Taiwan.
| | - Te-Ling Lu
- School of Pharmacy, China Medical University, No. 91 Hsueh-Shih Road, Taichung, 40402, Taiwan
| |
Collapse
|
49
|
Abstract
The quantitative determination of xenobiotic compounds, as well as biotics in biological matrices, is generally described with the term bioanalysis. Due to the complexity of biofluids, in combination with the low concentration of the small molecules, their determination in biological matrices is a challenging procedure. Apart from the conventional solid-phase extraction, liquid-liquid extraction, protein precipitation, and direct injection approaches, nowadays, a plethora of microextraction and miniaturized extraction techniques have been reported. Furthermore, the development and evaluation of novel extraction adsorbents for sample preparation has become a popular research field. Metal-organic frameworks (MOFs) are novel materials composed of metal ions or clusters in coordination with organic linkers. Unequivocally, MOFs are gaining more and more attention in analytical chemistry due to their superior properties, including high surface area and tunability of pore size and functionality. This review discusses the utilization of MOFs in the sample preparation of biological samples for the green extraction of small organic molecules. Their common preparation and characterization strategies are discussed, while emphasis is given to their applications for green sample preparation.
Collapse
|
50
|
Bagheri AR, Aramesh N, Sher F, Bilal M. Covalent organic frameworks as robust materials for mitigation of environmental pollutants. CHEMOSPHERE 2021; 270:129523. [PMID: 33422996 DOI: 10.1016/j.chemosphere.2020.129523] [Citation(s) in RCA: 54] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/21/2020] [Revised: 12/19/2020] [Accepted: 12/28/2020] [Indexed: 06/12/2023]
Abstract
Today, one of the main leading global problems is the presence of different pollutants in the environment. These pollutants not only affect human health but also overshadow the life of other creatures. Thus, pollutant treatment has become a challenging issue among the researchers and the scientific community. Different adsorbents and catalysts have been applied to the removal of pollutants. However, the associated limitations like poor chemical and physical stability, low surface area and low binding capacity revived researchers' attention to exploring alternative materials. Covalent organic frameworks (COFs) are versatile materials created based on the strong covalent interactions between blocked monomers. Unique features, including high specific surface area, high chemical-physical stability and crystallinity render COFs an intriguing sorbent and catalyst in treating pollutants. This review spotlights the applications of COFs as distinguished adsorbents to remove hazardous pollutants from the environment. At first, COFs and their properties as alternative materials were introduced. Then, different synthesis approaches of COFs and their advantages and disadvantages were discussed. Furthermore, the applications of COFs outlined to remove a wide variety of pollutants based on adsorption and degradation. Finally, the prospects of COFs for the treatment of pollutants were evaluated.
Collapse
Affiliation(s)
| | - Nahal Aramesh
- Chemistry Department, Yasouj University, Yasouj, 75918-74831, Iran
| | - Farooq Sher
- School of Mechanical, Aerospace and Automotive Engineering, Faculty of Engineering, Environmental and Computing, Coventry University, Coventry, CV1 5FB, UK
| | - Muhammad Bilal
- School of Life Science and Food Engineering, Huaiyin Institute of Technology, Huaian, 223003, China.
| |
Collapse
|