1
|
Esteso MC, Toledano-Díaz A, Castaño C, Higes M, Martín-Hernández R, López-Goya A, De la Rúa P, Martínez-Madrid B, Santiago-Moreno J. Storage Conditions of Sperm Samples and Gametic Characterization by Sperm Head Morphometry in Drones ( Apis mellifera). Animals (Basel) 2025; 15:672. [PMID: 40075955 PMCID: PMC11898524 DOI: 10.3390/ani15050672] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2025] [Revised: 02/17/2025] [Accepted: 02/21/2025] [Indexed: 03/14/2025] Open
Abstract
The present study aimed to evaluate an optimal method to transport and store drone sperm samples, as well as to characterize drone spermatozoa through sperm head morphometry. A total of 291 mature drones were used. We performed three experiments. In a first experiment, sperm variables were assessed under different incubation conditions (5 °C, 15 °C, and 37 °C with 5% CO2). Results showed that sperm viability was optimally maintained at 15 °C (p ˂ 0.05). In the second experiment, the supplementation of extender with catalase (200 UI) improved (p ˂ 0.05) the sperm viability and motility during liquid storage at different incubation times. Finally, a morphometric analysis of sperm head was made: length 5.13 µm, width 0.85 µm, area 3.78 µm2, perimeter 15.01 µm, acrosome length 3.50 µm. The variability in sperm head morphometry was calculated by coefficients of variation (CV) within- and between-drones. The CV within-drone was higher than the CV between-drones for all morphometric parameters regardless of hive origin, indicating a high degree of sperm pleomorphism.
Collapse
Affiliation(s)
- Milagros Cristina Esteso
- Departamento de Reproducción Animal, INIA-CSIC, 28040 Madrid, Spain; (M.C.E.); (C.C.); (J.S.-M.)
| | - Adolfo Toledano-Díaz
- Departamento de Reproducción Animal, INIA-CSIC, 28040 Madrid, Spain; (M.C.E.); (C.C.); (J.S.-M.)
| | - Cristina Castaño
- Departamento de Reproducción Animal, INIA-CSIC, 28040 Madrid, Spain; (M.C.E.); (C.C.); (J.S.-M.)
| | - Mariano Higes
- Laboratorio de Patología Apícola, Centro de Investigación Apícola y Agroambiental, CIAPA-IRIAF, Consejería de Agricultura de la Junta de Comunidades de Castilla-La Mancha, 19180 Marchamalo, Spain; (M.H.); (R.M.-H.)
| | - Raquel Martín-Hernández
- Laboratorio de Patología Apícola, Centro de Investigación Apícola y Agroambiental, CIAPA-IRIAF, Consejería de Agricultura de la Junta de Comunidades de Castilla-La Mancha, 19180 Marchamalo, Spain; (M.H.); (R.M.-H.)
| | | | - Pilar De la Rúa
- Área de Biología Animal, Departamento de Zoología y Antropología Física, Universidad de Murcia, 30100 Murcia, Spain;
| | - Belén Martínez-Madrid
- Departamento de Medicina y Cirugía Animal, Facultad de Veterinaria, Universidad Complutense de Madrid, 28040 Madrid, Spain;
| | - Julián Santiago-Moreno
- Departamento de Reproducción Animal, INIA-CSIC, 28040 Madrid, Spain; (M.C.E.); (C.C.); (J.S.-M.)
| |
Collapse
|
2
|
Crowder J, Rochlin I, Bibbs CS, Pennock E, Browning M, Lott C, Barth A, White GS, Faraji A. Managed honey bees, Apis mellifera (Hymenoptera: Apidae), face greater risk from parasites and pathogens than mosquito control insecticide applications. THE SCIENCE OF THE TOTAL ENVIRONMENT 2025; 964:178638. [PMID: 39864250 DOI: 10.1016/j.scitotenv.2025.178638] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/18/2024] [Revised: 01/21/2025] [Accepted: 01/22/2025] [Indexed: 01/28/2025]
Abstract
As the primary pollinator for many crops, honey bees (Apis mellifera) are critically important to food production and the agricultural economy. Adult mosquito control is often suspected by the public and commercial beekeepers to harm honey bees, creating conflicts between industries. To investigate this matter, a two-year field study was conducted on vegetated wetlands in Salt Lake City, Utah, U.S.A. where honey bee colonies were placed in areas subjected to aerial adult mosquito control applications using the organophosphate naled. Comparison colonies were placed in areas not exposed to insecticides. Colony conditions were documented over the two-year period to capture both immediate and cumulative season-long effects of naled to honey bee health. A Before-After-Control-Impact (BACI) analysis of mortality data from treated and non-treated colonies using mixed effects models revealed no statistically significant differences, indicating that aerial applications of naled for mosquito control did not adversely affect these honey bee colonies. A Random Forest machine-learning model identified that Nosema infection, maximum temperatures, and seasonal progression were more significant contributors to bee mortality during the study period, whereas cumulative naled applications were among the least significant predictors. Non-parametric statistical tests (NMDS and PERMANOVA) indicated no differences in colony resources (pollen/honey/nectar; open/capped brood) and parasite (Varroa mites; Vairimorpha microsporidians) loads between exposed colonies and non-treatment colonies. These findings were consistent across different seasons and varying environmental conditions. Our results suggest that naled, when used as intended for mosquito control, does not pose a significant risk to managed honey bee populations in rural settings.
Collapse
Affiliation(s)
- Jenna Crowder
- Salt Lake City Mosquito Abatement District, 2215 North 2200 West, Salt Lake City, UT 84116, United States
| | - Ilia Rochlin
- Salt Lake City Mosquito Abatement District, 2215 North 2200 West, Salt Lake City, UT 84116, United States
| | - Christopher S Bibbs
- Salt Lake City Mosquito Abatement District, 2215 North 2200 West, Salt Lake City, UT 84116, United States.
| | - Emily Pennock
- Salt Lake City Mosquito Abatement District, 2215 North 2200 West, Salt Lake City, UT 84116, United States
| | - Mike Browning
- Honey Bear Hives, 416 South 975 East, Layton, UT 84041, United States
| | - Cody Lott
- Honey Bear Hives, 416 South 975 East, Layton, UT 84041, United States
| | - Amanda Barth
- Salt Lake City Mosquito Abatement District, 2215 North 2200 West, Salt Lake City, UT 84116, United States; Rare Insect Conservation Program, Utah State University, 5200 Old Main Hill Rd, Logan, UT 84322, United States
| | - Gregory S White
- Salt Lake City Mosquito Abatement District, 2215 North 2200 West, Salt Lake City, UT 84116, United States
| | - Ary Faraji
- Salt Lake City Mosquito Abatement District, 2215 North 2200 West, Salt Lake City, UT 84116, United States
| |
Collapse
|
3
|
Rampazzo G, Nobile M, Carpino S, Chiesa L, Ghidini S, Gazzotti T, Panseri S. Detection of glyphosate, glufosinate, and their metabolites in multi-floral honey for food safety. Food Addit Contam Part A Chem Anal Control Expo Risk Assess 2025; 42:213-222. [PMID: 39792968 DOI: 10.1080/19440049.2024.2441752] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2024] [Revised: 12/05/2024] [Accepted: 12/10/2024] [Indexed: 01/12/2025]
Abstract
Beehives can accumulate environmental contaminants as bees gather pollen, propolis, and water from their surroundings, contaminating hive products like honey. Moreover, in multifloral environments, bees can interact with plants treated with different pesticides, often causing higher pesticides concentrations in multi-floral honey than in mono-floral varieties. Glyphosate and glufosinate are both widely used herbicides. Glyphosate accounted for one-third of herbicide sales in Europe in 2017 and continues to raise health concerns, including its potential carcinogenicity. While the European Commission extended glyphosate's authorisation for another 10 years in 2023, concerns remain about its impact on biodiversity and human health. This study aimed to monitor the presence of glyphosate, glufosinate, and their metabolites in 100 samples of multifloral honey representing Italian production by analysis using IC-HRMS. Results indicated that 12% of honey samples contained glyphosate residues ranging from > LOQ to 45 ng g-1, with the highest concentrations detected in the Puglia region. No sample exceeded the maximum residue levels set by EU regulations. Glufosinate and its metabolites were not detected in any samples. These findings underscore the need for continued monitoring of pesticide residues in honey, particularly given the potential 'cocktail effect' of multiple contaminants and their combined toxicity. This study highlights the importance of safeguarding consumer health, especially in vulnerable populations, by addressing gaps in data on pesticide residue levels.
Collapse
Affiliation(s)
- Giulia Rampazzo
- Department of Veterinary Medicine and Animal Science (DIVAS), University of Milan, Lodi, Italy
| | - Maria Nobile
- Department of Veterinary Medicine and Animal Science (DIVAS), University of Milan, Lodi, Italy
| | - Stefania Carpino
- Department of Central Inspectorate for Fraud Repression and Quality Protection of the Agri-Food Products and Foodstuffs-Ministry of Agriculture, Food Sovereignty and Forests, Rome, Italy
| | - Luca Chiesa
- Department of Veterinary Medicine and Animal Science (DIVAS), University of Milan, Lodi, Italy
| | - Sergio Ghidini
- Department of Veterinary Medicine and Animal Science (DIVAS), University of Milan, Lodi, Italy
| | - Teresa Gazzotti
- Department of Veterinary Medical Sciences (DIMEVET), University of Bologna, Ozzano dell'Emilia, Italy
| | - Sara Panseri
- Department of Veterinary Medicine and Animal Science (DIVAS), University of Milan, Lodi, Italy
| |
Collapse
|
4
|
Mu G, Yan S, Pan F, Xu H, Jing X, Xue X. Based on theoretical design simultaneous analysis of multiple neonicotinoid pesticides in beeswax by deep eutectic solvents extraction combined with UHPLC-MS/MS. Food Chem X 2025; 25:102073. [PMID: 39758060 PMCID: PMC11699110 DOI: 10.1016/j.fochx.2024.102073] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2024] [Revised: 12/04/2024] [Accepted: 12/06/2024] [Indexed: 01/07/2025] Open
Abstract
Beeswax, an FDA-approved component, has been extensively applied in feed, pharmaceutical, and food industries. The occurrence of neonicotinoid pesticides in beehive systems and their residues in beeswax have caused safety risks. Therefore, establishing a detection method for neonicotinoid pesticide residues in beeswax is crucial for ensuring its quality. The superhydrophobic property of beeswax makes it a challenge to develop suitable determination methods. In this work, we determined Proline and Oxalic acid as a suitable deep eutectic solvent (DES) to extract neonicotinoids from beeswax through theoretical design and verification tests. Systematic molecular dynamics simulations confirmed that hydrogen bonding and van der Waals forces facilitate the migration of neonicotinoid pesticides from beeswax into the DES. Performance analysis of the method revealed that the DES extraction combined with UHPLC-MS/MS approach exhibited excellent detection capabilities. It was applied to real beeswax sample analysis with the characteristics of simpleness, quickness, environmental friendliness, and high throughput.
Collapse
Affiliation(s)
- Guodong Mu
- State Key Laboratory of Resource Insects, Institute of Apiculture Research, Chinese Academy of Agricultural Sciences, Beijing 100093, China
| | - Sha Yan
- College of Food Science and Engineering, Shanxi Agricultural University, Taigu 030801, China
| | - Fei Pan
- State Key Laboratory of Resource Insects, Institute of Apiculture Research, Chinese Academy of Agricultural Sciences, Beijing 100093, China
| | - Haitao Xu
- State Key Laboratory of Resource Insects, Institute of Apiculture Research, Chinese Academy of Agricultural Sciences, Beijing 100093, China
| | - Xu Jing
- College of Food Science and Engineering, Shanxi Agricultural University, Taigu 030801, China
| | - Xiaofeng Xue
- State Key Laboratory of Resource Insects, Institute of Apiculture Research, Chinese Academy of Agricultural Sciences, Beijing 100093, China
| |
Collapse
|
5
|
Wueppenhorst K, Alkassab AT, Beims H, Bischoff G, Ernst U, Friedrich E, Illies I, Janke M, Kehmstedt J, Kirchner WH, Odemer R, Erler S. Nurse honey bees filter fungicide residues to maintain larval health. Curr Biol 2024; 34:5570-5577.e11. [PMID: 39476835 DOI: 10.1016/j.cub.2024.10.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2024] [Revised: 09/05/2024] [Accepted: 10/02/2024] [Indexed: 12/06/2024]
Abstract
Residues of plant protection products (PPPs) are frequently detected in bee matrices1,2,3,4,5,6 due to foraging bees collecting contaminated nectar and pollen, which they bring back to their hive. The collected material is further used by nurse bees to produce glandular secretions for feeding their larvae.7 Potential exposure to PPPs occurs through direct oral ingestion, contact during foraging, or interaction with contaminated hive material.8,9 Contaminants can pose health risks to adult worker bees,10,11 queens,12,13 drones (males),14 or larvae,15,16 potentially impacting colony health and productivity. However, residue concentrations can vary significantly between analyzed matrices, and potential accumulation or dilution steps have not been widely investigated. Although research has provided valuable insights into contamination risks, there remain gaps in our understanding of the entire pathway from field, via foragers, stored products, nurse bees, and finally to food jelly, i.e., royal, worker, and drone jelly, and the larvae, including all possible processing steps.17 We collected samples of bee-relevant matrices following the in-field spray application of the product Pictor Active, containing the fungicides boscalid and pyraclostrobin. The samples were analyzed for residues along this entire pathway. Fungicide residues were reduced by a factor of 8-80 from stored product to nurse bees' heads, suggesting a filtering function of nurse bees. Furthermore, detected residues in larval food jelly resulted from added pollen and not from nurse bee secretions. Calculated risk quotients were at least twice as low as the threshold values, suggesting a low risk to honey bee colonies from these fungicides at the tested application rate.
Collapse
Affiliation(s)
- Karoline Wueppenhorst
- Julius Kühn-Institute, Institute for Bee Protection, Messeweg 11-12, 38104 Braunschweig, Germany; Technische Universität Braunschweig, Zoological Institute, Mendelssohnstraße 4, 38106 Braunschweig, Germany.
| | - Abdulrahim T Alkassab
- Julius Kühn-Institute, Institute for Bee Protection, Messeweg 11-12, 38104 Braunschweig, Germany
| | - Hannes Beims
- Bezirk Oberbayern, Fachberatung für Imkerei, Prinzregentenstraße 14, 80538 München, Germany; Lower Saxony State Office for Consumer Protection and Food Safety, Institute for Apiculture, Herzogin-Eleonore-Allee 5, 29221 Celle, Germany
| | - Gabriela Bischoff
- Julius Kühn-Institute, Institute for Bee Protection, Königin-Luise-Straße 19, 14195 Berlin, Germany
| | - Ulrich Ernst
- University of Hohenheim, State Institute of Bee Research, Erna-Hruschka-Weg 6, 70599 Stuttgart, Germany; University of Hohenheim, KomBioTa - Center for Biodiversity and Integrative Taxonomy, 70599 Stuttgart, Germany
| | - Elsa Friedrich
- University of Hohenheim, State Institute of Bee Research, Erna-Hruschka-Weg 6, 70599 Stuttgart, Germany
| | - Ingrid Illies
- Bavarian State Institute for Viticulture and Horticulture, Institute for Bee Research and Beekeeping, An der Steige 15, 97209 Veitshöchheim, Germany
| | - Martina Janke
- Lower Saxony State Office for Consumer Protection and Food Safety, Institute for Apiculture, Herzogin-Eleonore-Allee 5, 29221 Celle, Germany
| | - Julia Kehmstedt
- Julius Kühn-Institute, Institute for Bee Protection, Königin-Luise-Straße 19, 14195 Berlin, Germany
| | - Wolfgang H Kirchner
- Ruhr-University-Bochum, Behavioral Biology and Biology Education, Universitätsstraße 150, 44780 Bochum, Germany
| | - Richard Odemer
- Julius Kühn-Institute, Institute for Bee Protection, Messeweg 11-12, 38104 Braunschweig, Germany
| | - Silvio Erler
- Julius Kühn-Institute, Institute for Bee Protection, Messeweg 11-12, 38104 Braunschweig, Germany; Technische Universität Braunschweig, Zoological Institute, Mendelssohnstraße 4, 38106 Braunschweig, Germany.
| |
Collapse
|
6
|
Végh R, Csóka M, Sörös C, Sipos L. Underexplored food safety hazards of beekeeping products: Key knowledge gaps and suggestions for future research. Compr Rev Food Sci Food Saf 2024; 23:e13404. [PMID: 39136999 DOI: 10.1111/1541-4337.13404] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2024] [Revised: 06/06/2024] [Accepted: 06/16/2024] [Indexed: 08/15/2024]
Abstract
These days, a growing consumer demand and scientific interest can be observed for nutraceuticals of natural origin, including apiculture products. Due to the growing emphasis on environmental protection, extensive research has been conducted on the pesticide and heavy metal contamination of bee products; however, less attention is devoted on other food safety aspects. In our review, scientific information on the less-researched food safety hazards of honey, bee bread, royal jelly, propolis, and beeswax are summarized. Bee products originating from certain plants may inherently contain phytotoxins, like pyrrolizidine alkaloids, tropane alkaloids, matrine alkaloids, grayanotoxins, gelsemium alkaloids, or tutin. Several case studies evidence that bee products can induce allergic responses to sensitive individuals, varying from mild to severe symptoms, including the potentially lethal anaphylaxis. Exposure to high temperature or long storage may lead to the formation of the potentially toxic 5-hydroxymethylfurfural. Persistent organic pollutants, radionuclides, and microplastics can potentially be transferred to bee products from contaminated environmental sources. And lastly, inappropriate beekeeping practices can lead to the contamination of beekeeping products with harmful microorganisms and mycotoxins. Our review demonstrates the necessity of applying good beekeeping practices in order to protect honeybees and consumers of their products. An important aim of our work is to identify key knowledge gaps regarding the food safety of apiculture products.
Collapse
Affiliation(s)
- Rita Végh
- Department of Nutrition Science, Institute of Food Science and Technology, Hungarian University of Agriculture and Life Sciences, Budapest, Hungary
| | - Mariann Csóka
- Department of Nutrition Science, Institute of Food Science and Technology, Hungarian University of Agriculture and Life Sciences, Budapest, Hungary
| | - Csilla Sörös
- Department of Food Chemistry and Analysis Institute of Food Science and Technology, Hungarian University of Agriculture and Life Sciences, Budapest, Hungary
| | - László Sipos
- Department of Postharvest, Institute of Food Science and Technology, Commercial and Sensory Science, Hungarian University of Agriculture and Life Sciences, Budapest, Hungary
- Institute of Economics, Centre of Economic and Regional Studies, Hungarian Research Network (HUN-REN), Budapest, Hungary
| |
Collapse
|
7
|
Murcia-Morales M, Díaz-Galiano FJ, Valderrama-Conca C, Van der Steen JJM, Fernández-Alba AR. One sampler to see it all: The use of APIStrips for beehive characterization and pesticide residue evaluation based on mass spectrometry. CHEMOSPHERE 2024; 364:143151. [PMID: 39178964 DOI: 10.1016/j.chemosphere.2024.143151] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/20/2024] [Revised: 08/09/2024] [Accepted: 08/19/2024] [Indexed: 08/26/2024]
Abstract
Environmental monitoring is crucial for assessing the overall state of the ecosystems in terms of contaminant impact and chemical landscape. The use of honey bee (Apis mellifera) colonies considerably eases the sampling activities, as honey bees are exposed to a wide range of substances that are transported and accumulated within the beehives. In this work, combining low-resolution and high-resolution mass spectrometry, the APIStrip passive sampler has been employed to evaluate the presence of pesticide residues and the overall characterization of beehive environments. A total of 180 APIStrips have been deployed in 10 Danish apiaries, located in different landscapes, during a five-month sampling period. The targeted methodology for pesticide analysis was based on gas and liquid chromatography coupled with triple quadrupole mass spectrometry, covering 430 pesticide residues. A total of 29 pesticide residues were identified (fluopyram and azoxystrobin being the most frequently detected), with remarkable differences in the pesticide load between apiaries. For its part, the use of non-targeted approaches through liquid chromatography coupled with an Orbitrap mass spectrometer allowed the detection of unknown compounds that were specific of certain environments. Natural products such as eupatilin and gnaphaliin, which are derived from plant sources, were present exclusively in one of the apiaries. Additionally, the detection of drimane sesquiterpenoids, including compounds potentially originating from the Aspergillus genus, suggests the capability of APIStrips to early detect fungal contamination within beehives. This dual approach of low- and high-resolution mass spectrometry maximizes the analytical potential of APIStrips as a tool capable of detecting a wide range of substances with implications for both agricultural practices and ecological health.
Collapse
Affiliation(s)
- María Murcia-Morales
- University of Almería, Department of Chemistry and Physics, Agrifood Campus of International Excellence (ceiA3), Ctra. Sacramento s/n, La Cañada de San Urbano, 04120, Almería, Spain
| | - Francisco José Díaz-Galiano
- University of Almería, Department of Chemistry and Physics, Agrifood Campus of International Excellence (ceiA3), Ctra. Sacramento s/n, La Cañada de San Urbano, 04120, Almería, Spain.
| | - Cristian Valderrama-Conca
- University of Almería, Department of Chemistry and Physics, Agrifood Campus of International Excellence (ceiA3), Ctra. Sacramento s/n, La Cañada de San Urbano, 04120, Almería, Spain
| | | | - Amadeo R Fernández-Alba
- University of Almería, Department of Chemistry and Physics, Agrifood Campus of International Excellence (ceiA3), Ctra. Sacramento s/n, La Cañada de San Urbano, 04120, Almería, Spain
| |
Collapse
|
8
|
Wojtacka J. The Chemical Residues in Secondary Beekeeping Products of Environmental Origin. Molecules 2024; 29:3968. [PMID: 39203046 PMCID: PMC11357314 DOI: 10.3390/molecules29163968] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2024] [Revised: 08/16/2024] [Accepted: 08/20/2024] [Indexed: 09/03/2024] Open
Abstract
Natural products of bee origin, despite their complex composition and difficulties in standardization, have been of high interest among scientists representing various disciplines from basic sciences to industrial and practical implementation. As long as their use is monitored and they do not impact human health, they can be considered valuable sources of many chemical compounds and are potentially useful in medicine, food processing, nutrition, etc. However, apart from honey, the general turnover of bee products lacks precise and detailed legal requirements ensuring their quality. The different residues in these products constitute a problem, which has been reported in numerous studies. All products derived from beekeeping are made by bees, but they are also influenced by the environment. Such a dual pathway requires detailed surveillance of hazards stemming from outside and inside the apiary. This should be ensured via harmonized requirements arising from the binding legal acts, especially in international and intercontinental trade zones.
Collapse
Affiliation(s)
- Joanna Wojtacka
- Department of Veterinary Public Health, Faculty of Veterinary Medicine, University of Warmia and Mazury in Olsztyn, 10-718 Olsztyn, Poland
| |
Collapse
|
9
|
Antonietta Carrera M, Martinez Martinez JA, Hernando MD, Fernández-Alba AR. Simultaneous analysis of pesticides and mycotoxins in primary processed foods: The case of bee pollen. Heliyon 2024; 10:e33512. [PMID: 39040399 PMCID: PMC11260969 DOI: 10.1016/j.heliyon.2024.e33512] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2024] [Revised: 06/21/2024] [Accepted: 06/21/2024] [Indexed: 07/24/2024] Open
Abstract
Primary Processed Foods are a class of food items that are ready for consumption after minimal processing in the supply chain. These products are ubiquitous in our daily diet, but so far a limited number of studies dealt with the optimization of quality control methods to check their content of contaminants. Among primary processed foods, bee pollen is a nutritionally acclaimed food supplement, whose contamination with pesticides and mycotoxins has been largely proven. For this reason, the present study aimed at optimizing for the first time a comprehensive LC-MS/MS method capable of analyzing 282 pesticides and 8 mycotoxins in bee pollen. To obtain a suitable method, two extraction procedures (QuEChERS and Accelerated Solvent Extraction), as well as different chromatographic gradients and columns, were tested. The optimized methodology, comprehending an extraction based on semi-automated QuEChERS, and an analytical method including inert LC column technology, was validated and applied to a sample set of 34 bee pollens. The analyzed samples collectively showed the presence of 41 pesticides and 1 mycotoxin.
Collapse
Affiliation(s)
- Maria Antonietta Carrera
- Department of Desertification and Geo-ecology, Experimental Station of Arid Zones, CSIC, Ctra. Sacramento s/n, La Cañada de San Urbano, 04120, Almería, Spain
| | - José Antonio Martinez Martinez
- European Union Reference Laboratory for Pesticide Residues in Fruit & Vegetables Agrifood Campus of International Excellence (ceiA3), Department of Chemistry and Physics, University of Almeria, Ctra. Sacramento s/n, La Cañada de San Urbano, 04120, Almería, Spain
| | - María Dolores Hernando
- Department of Desertification and Geo-ecology, Experimental Station of Arid Zones, CSIC, Ctra. Sacramento s/n, La Cañada de San Urbano, 04120, Almería, Spain
| | - Amadeo R. Fernández-Alba
- European Union Reference Laboratory for Pesticide Residues in Fruit & Vegetables Agrifood Campus of International Excellence (ceiA3), Department of Chemistry and Physics, University of Almeria, Ctra. Sacramento s/n, La Cañada de San Urbano, 04120, Almería, Spain
| |
Collapse
|
10
|
Rodríguez-Aguilar BA, Peregrina-Lucano AA, Ceballos-Magaña SG, Rodríguez-García A, Calderon R, Palma P, Muñiz-Valencia R. Spatiotemporal variability of pesticides concentration in honeybees (Apis mellifera) and their honey from western Mexico. Risk assessment for honey consumption. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 947:174702. [PMID: 39002602 DOI: 10.1016/j.scitotenv.2024.174702] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/22/2024] [Revised: 07/07/2024] [Accepted: 07/09/2024] [Indexed: 07/15/2024]
Abstract
The study conducted in the state of Colima, western Mexico, aimed to assess the 1) occurrence, 2) temporal variability, 3) spatial variability, and 4) potential risk for honeybees and human consumption of pesticide-contaminated honey. For that purpose, 48 pesticides were determined in bees and their honey during both dry and wet seasons. The research considered two variables: land use categorization (irrigated agriculture, rainfed agriculture, grassland, and forest area) and location (coastal, valley, and mountain). Bee and honey samples were collected, pre-treated using solid-phase extraction (SPE), and analyzed using LC-MS/MS and GC-MS techniques. Occurrence: of the total number of pesticides, 17 were detected in the bee samples and 12 in the honey samples. The pesticides with the highest concentrations in the bee samples were glufosinate ammonium, picloram, and permethrin, while in the honey samples, picloram, permethrin, and atrazine were the most prevalent. Temporal variability: analyses revealed significant differences between dry and wet seasons for glufosinate ammonium and DEET in bee samples and only for glufosinate ammonium in honey samples. Spatial variability: analyses showed a trend in the number of detected pesticides, with irrigated agriculture areas having the highest detection and grassland areas having the least. The human potential risk assessment of contaminated honey consumption indicated no risk. The bee's potential risk for consumption of pesticides contaminated honey revealed chronic effects due to permethrin in a general scenario, and carbofuran, diazinon and permethrin in the worst scenario, and potential risk of acute effects by permethrin. The findings of this study contribute to understanding the contamination levels of pesticides in bees and their honey, emphasizing the importance of monitoring and mitigating the adverse effects of pesticide exposure on bee populations and environmental health.
Collapse
Affiliation(s)
| | - Alejandro A Peregrina-Lucano
- Departamento de Farmacobiología, Centro Universitario de Ciencias Exactas e Ingeniería, Universidad de Guadalajara, Guadalajara 44430, Jalisco, Mexico
| | | | | | - Raul Calderon
- Centro de Investigación en Recursos Naturales y Sustentabilidad, Universidad Bernardo O'Higgins, Fabrica 1990, Segundo Piso, Santiago, Chile; Núcleo de Investigación en Sustentabilidad Agroambiental, Facultad de Medicina Veterinaria y Agronomía, Universidad de Las Américas, Santiago, Chile
| | - Paulina Palma
- Laboratorio de Salud Pública, Ambiental y Laboral, Secretaria Regional Ministerial, Ministerio de Salud, Región Metropolitana, Santiago, Chile
| | - Roberto Muñiz-Valencia
- Facultad de Ciencias Químicas, Universidad de Colima, Coquimatlán 28400, Colima, Mexico; Centro de Investigación en Recursos Naturales y Sustentabilidad, Universidad Bernardo O'Higgins, Fabrica 1990, Segundo Piso, Santiago, Chile.
| |
Collapse
|
11
|
Derrar S, Lo Turco V, Albergamo A, Sgrò B, Ayad MA, Litrenta F, Saim MS, Potortì AG, Aggad H, Rando R, Di Bella G. Study of Physicochemical Quality and Organic Contamination in Algerian Honey. Foods 2024; 13:1413. [PMID: 38731784 PMCID: PMC11083514 DOI: 10.3390/foods13091413] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2024] [Revised: 04/29/2024] [Accepted: 04/30/2024] [Indexed: 05/13/2024] Open
Abstract
Honey is a natural product extensively consumed in the world for its nutritional and healthy properties. However, residues of pesticides and environmental contaminants can compromise its quality. For this reason, the physicochemical parameters, and the organic contamination of monofloral and multifloral honey from three regions of Algeria (Tiaret, Laghouat, and Tindouf) were monitored to evaluate the quality of the honey and its safety for consumers. In general, the results obtained from the physicochemical analyses were in line with the EU standards. In terms of contamination, pesticides authorised and used in Algerian agriculture (metalaxyl-M and cyromazine), as well as a banned pesticide (carbaryl), were found in almost all the samples. However, only the concentration of cyromazine was higher than the relative EU maximum residue levels. PCB 180, PCB 189, anthracene, fluorene, and phenanthrene were mainly detected. All the honey shows traces of DiBP, DBP, DEHP, and DEHT, but no traces of bisphenols were found. Moreover, according to the dietary exposure assessment, a small amount of Algerian honey can be safely consumed. Overall, the data from this study should motivate the Algerian government to enhance their monitoring activities in beekeeping and to find solutions for implementing more sustainable agricultural practices harmonising with international legislation.
Collapse
Affiliation(s)
- Sofiane Derrar
- Laboratoire d’Hygiène et Pathologie Animale, Institut des Sciences Vétérinaires, Université de Tiaret, Tiaret 14000, Algeria; (S.D.); (M.A.A.); (M.S.S.); (H.A.)
| | - Vincenzo Lo Turco
- Department of Biomedical, Dental, Morphological and Functional Images Sciences (BIOMORF), University of Messina, Viale Annunziata, 98122 Messina, Italy; (V.L.T.); (F.L.); (A.G.P.); (R.R.); (G.D.B.)
| | - Ambrogina Albergamo
- Department of Biomedical, Dental, Morphological and Functional Images Sciences (BIOMORF), University of Messina, Viale Annunziata, 98122 Messina, Italy; (V.L.T.); (F.L.); (A.G.P.); (R.R.); (G.D.B.)
| | - Benedetta Sgrò
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, Viale F. Stagno d’Alcontres 31, 98166 Messina, Italy
| | - Mohamed Amine Ayad
- Laboratoire d’Hygiène et Pathologie Animale, Institut des Sciences Vétérinaires, Université de Tiaret, Tiaret 14000, Algeria; (S.D.); (M.A.A.); (M.S.S.); (H.A.)
| | - Federica Litrenta
- Department of Biomedical, Dental, Morphological and Functional Images Sciences (BIOMORF), University of Messina, Viale Annunziata, 98122 Messina, Italy; (V.L.T.); (F.L.); (A.G.P.); (R.R.); (G.D.B.)
| | - Mohamed Said Saim
- Laboratoire d’Hygiène et Pathologie Animale, Institut des Sciences Vétérinaires, Université de Tiaret, Tiaret 14000, Algeria; (S.D.); (M.A.A.); (M.S.S.); (H.A.)
| | - Angela Giorgia Potortì
- Department of Biomedical, Dental, Morphological and Functional Images Sciences (BIOMORF), University of Messina, Viale Annunziata, 98122 Messina, Italy; (V.L.T.); (F.L.); (A.G.P.); (R.R.); (G.D.B.)
| | - Hebib Aggad
- Laboratoire d’Hygiène et Pathologie Animale, Institut des Sciences Vétérinaires, Université de Tiaret, Tiaret 14000, Algeria; (S.D.); (M.A.A.); (M.S.S.); (H.A.)
| | - Rossana Rando
- Department of Biomedical, Dental, Morphological and Functional Images Sciences (BIOMORF), University of Messina, Viale Annunziata, 98122 Messina, Italy; (V.L.T.); (F.L.); (A.G.P.); (R.R.); (G.D.B.)
| | - Giuseppa Di Bella
- Department of Biomedical, Dental, Morphological and Functional Images Sciences (BIOMORF), University of Messina, Viale Annunziata, 98122 Messina, Italy; (V.L.T.); (F.L.); (A.G.P.); (R.R.); (G.D.B.)
| |
Collapse
|
12
|
Fuente-Ballesteros A, Jano A, Bernal J, Ares AM. Development and validation of an analytical methodology based on solvent extraction and gas chromatography for determining pesticides in royal jelly and propolis. Food Chem 2024; 437:137911. [PMID: 37948804 DOI: 10.1016/j.foodchem.2023.137911] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2023] [Revised: 10/12/2023] [Accepted: 10/29/2023] [Indexed: 11/12/2023]
Abstract
We propose a new analytical methodology to determine seven pesticides (atrazine, chlorpyrifos, chlorfenvinphos, α-endosulfan, bromopropylate, coumaphos, and τ-fluvalinate) in royal jelly and propolis products using gas chromatography-mass spectrometry. Sample treatment, with minor modifications for propolis, consisted of a solvent extraction with a hexane and isopropanol mixture, and a further clean-up step. Meanwhile, chromatographic analysis (<25 min) was performed in a DB-5MS column under programmed temperature conditions. In all cases we validated the method in terms of selectivity, limits of detection (0.1-2.8 μg kg-1) and quantification (0.3-9.2 μg kg-1), linearity, matrix effect (<±20 %), trueness (recoveries between 93 % and 118 %), and precision (relative standard deviation < 11 %). All royal jelly liquid dietary supplements were positive for chlorfenvinphos and, in the case of one of them, for α-endosulfan; chlorfenvinphos was determined in some fresh royal jelly samples, and no pesticide residues were detected in the propolis samples analysed.
Collapse
Affiliation(s)
- Adrián Fuente-Ballesteros
- Analytical Chemistry Group (TESEA), I. U. CINQUIMA, Faculty of Sciences, University of Valladolid, 47011 Valladolid, Spain
| | - Ana Jano
- Analytical Chemistry Group (TESEA), I. U. CINQUIMA, Faculty of Sciences, University of Valladolid, 47011 Valladolid, Spain
| | - José Bernal
- Analytical Chemistry Group (TESEA), I. U. CINQUIMA, Faculty of Sciences, University of Valladolid, 47011 Valladolid, Spain
| | - Ana M Ares
- Analytical Chemistry Group (TESEA), I. U. CINQUIMA, Faculty of Sciences, University of Valladolid, 47011 Valladolid, Spain.
| |
Collapse
|
13
|
Ilie CI, Spoiala A, Geana EI, Chircov C, Ficai A, Ditu LM, Oprea E. Bee Bread: A Promising Source of Bioactive Compounds with Antioxidant Properties-First Report on Some Antimicrobial Features. Antioxidants (Basel) 2024; 13:353. [PMID: 38539885 PMCID: PMC10968473 DOI: 10.3390/antiox13030353] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2024] [Revised: 03/07/2024] [Accepted: 03/07/2024] [Indexed: 11/11/2024] Open
Abstract
Bee bread has received attention due to its high nutritional value, especially its phenolic composition, which enhances life quality. The present study aimed to evaluate the chemical and antimicrobial properties of bee bread (BB) samples from Romania. Initially, the bee bread alcoholic extracts (BBEs) were obtained from BB collected and prepared by Apis mellifera carpatica bees. The chemical composition of the BBE was characterized by Fourier Transform Infrared Spectroscopy (FTIR) and the total phenols and flavonoid contents were determined. Also, a UHPLC-DAD-ESI/MS analysis of phenolic compounds (PCs) and antioxidant activity were evaluated. Furthermore, the antimicrobial activity of BBEs was evaluated by qualitative and quantitative assessments. The BBs studied in this paper are provided from 31 families of plant species, with the total phenols content and total flavonoid content varying between 7.10 and 18.30 mg gallic acid equivalents/g BB and between 0.45 and 1.86 mg quercetin equivalents/g BB, respectively. Chromatographic analysis revealed these samples had a significant content of phenolic compounds, with flavonoids in much higher quantities than phenolic acids. All the BBEs presented antimicrobial activity against all clinical and standard pathogenic strains tested. Salmonella typhi, Candida glabrata, Candida albicans, and Candida kefyr strains were the most sensitive, while BBEs' antifungal activity on C. krusei and C. kefyr was not investigated in any prior research. In addition, this study reports the BBEs' inhibitory activity on microbial (bacterial and fungi) adhesion capacity to the inert substratum for the first time.
Collapse
Affiliation(s)
- Cornelia-Ioana Ilie
- Department of Science and Engineering of Oxide Materials and Nanomaterials, National Centre for Micro and Nanomaterials and National Centre for Food Safety, Faculty of Chemical Engineering and Biotechnologies, National University of Science and Technology Politehnica Bucharest, 060042 Bucharest, Romania (C.C.)
| | - Angela Spoiala
- Department of Science and Engineering of Oxide Materials and Nanomaterials, National Centre for Micro and Nanomaterials and National Centre for Food Safety, Faculty of Chemical Engineering and Biotechnologies, National University of Science and Technology Politehnica Bucharest, 060042 Bucharest, Romania (C.C.)
| | - Elisabeta-Irina Geana
- National R&D Institute for Cryogenics and Isotopic Technologies (ICIT), 240050 Râmnicu Vâlcea, Romania;
| | - Cristina Chircov
- Department of Science and Engineering of Oxide Materials and Nanomaterials, National Centre for Micro and Nanomaterials and National Centre for Food Safety, Faculty of Chemical Engineering and Biotechnologies, National University of Science and Technology Politehnica Bucharest, 060042 Bucharest, Romania (C.C.)
| | - Anton Ficai
- Department of Science and Engineering of Oxide Materials and Nanomaterials, National Centre for Micro and Nanomaterials and National Centre for Food Safety, Faculty of Chemical Engineering and Biotechnologies, National University of Science and Technology Politehnica Bucharest, 060042 Bucharest, Romania (C.C.)
- Academy of Romanian Scientists, 010719 Bucharest, Romania
| | - Lia-Mara Ditu
- Department of Botany and Microbiology, Faculty of Biology, Research Institute, University of Bucharest, 060101 Bucharest, Romania; (L.-M.D.)
| | - Eliza Oprea
- Department of Botany and Microbiology, Faculty of Biology, Research Institute, University of Bucharest, 060101 Bucharest, Romania; (L.-M.D.)
| |
Collapse
|
14
|
Murcia-Morales M, Tzanetou EN, García-Gallego G, Kasiotis KM, Vejsnaes F, Brodschneider R, Hatjina F, Machera K, Van der Steen JJ. Environmental assessment of PAHs through honey bee colonies - A matrix selection study. Heliyon 2024; 10:e23564. [PMID: 38187233 PMCID: PMC10770451 DOI: 10.1016/j.heliyon.2023.e23564] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2023] [Revised: 11/12/2023] [Accepted: 12/06/2023] [Indexed: 01/09/2024] Open
Abstract
The steady conditions of temperature, humidity and air flux within beehives make them a valuable location for conducting environmental monitoring of pollutants such as PAHs. In this context, the selection of an appropriate apicultural matrix plays a key role in these monitoring studies, as it maximizes the information that will be obtained in the analyses while minimizing the inaccurate results. In the present study, three apicultural matrices (honey bees, pollen and propolis) and two passive samplers (APIStrips and silicone wristbands) are compared in terms of the number and total load of PAHs detected in them. Samplings took place in a total of 11 apiaries scattered in Austria, Denmark, and Greece, with analyses performed by GC-MS/MS. Up to 14 different PAHs were identified in silicone wristbands and pollen, whereas the remaining matrices contained a maximum of five contaminants. Naphthalene, 1-methylnaphthalene, 2-methylnaphthalene, and pyrene were found to be the most prevalent substances in the environment. Recovery studies were also performed; these suggested that the chemical structure of APIStrips is likely to produce very strong interactions with PAHs, thus hindering the adequate desorption of these substances from their surface. Overall, silicone wristbands placed inside the beehives proved the most suitable matrix for PAH monitoring through honey bee colonies.
Collapse
Affiliation(s)
- María Murcia-Morales
- Chemistry and Physics Department, University of Almeria, Agrifood Campus of International Excellence (ceiA3), 04120 Almería, Spain
| | - Evangelia N. Tzanetou
- Laboratory of Chemical Control of Pesticides, Department of Pesticides Control and Phytopharmacy, Benaki Phytopathological Institute, 145 61 Kifissia, Greece
| | - Guillermo García-Gallego
- Chemistry and Physics Department, University of Almeria, Agrifood Campus of International Excellence (ceiA3), 04120 Almería, Spain
| | - Konstantinos M. Kasiotis
- Laboratory of Pesticides' Toxicology, Department of Pesticides Control and Phytopharmacy, Benaki Phytopathological Institute, 145 61 Kifissia, Greece
| | | | - Robert Brodschneider
- Institute of Biology, University of Graz, Universitätsplatz 2, 8010 Graz, Austria
| | - Fani Hatjina
- Department of Apiculture, Institute of Animal Science, Ellinikos Georgikos Organismos ‘DIMITRA’, Nea Moudania GR-63200, Greece
| | - Kyriaki Machera
- Laboratory of Pesticides' Toxicology, Department of Pesticides Control and Phytopharmacy, Benaki Phytopathological Institute, 145 61 Kifissia, Greece
| | | |
Collapse
|
15
|
Jesús F, Rosa García A, Stecconi T, Cutillas V, Rodríguez Fernández-Alba A. Determination of highly polar anionic pesticides in beehive products by hydrophilic interaction liquid chromatography coupled to mass spectrometry. Anal Bioanal Chem 2024; 416:675-688. [PMID: 37749278 DOI: 10.1007/s00216-023-04946-7] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2023] [Revised: 09/06/2023] [Accepted: 09/11/2023] [Indexed: 09/27/2023]
Abstract
The analysis of highly polar pesticides is challenging due to their unique physicochemical properties, requiring specialized chromatographic techniques for their accurate and sensitive detection. Furthermore, the high level of co-extracted polar matrix components that can co-elute with the analytes can interfere with the analysis. Consequently, there is lack of pesticide monitoring data, as the European Food Safety Authority has pointed out. This article explores the overcoming of such difficulties in the analysis of these compounds. Analytical methodologies for the extraction, clean-up, and direct determination of 11 highly polar anionic pesticides, including glyphosate, glufosinate, ethephon, fosetyl-aluminium, and their related metabolites in complex food matrices such as honey and pollen by hydrophilic interaction liquid chromatography coupled to tandem mass spectrometry were successfully developed and validated. Solid-phase extraction and micro-solid-phase extraction employing strong anion exchange (SAX) cartridges were implemented for clean-up. The automation and miniaturization of SAX clean-up for these compounds were achieved for the first time. For method validation, SANTE/11312/2021 guideline was followed. Recoveries were between 70 and 120%, with RSDs below 20%. Limits of quantitation ranged from 0.005 to 0.020 mg kg-1. Linearity was evaluated from 0.002 to 0.200 mg kg-1. Matrix effects were assessed, showing medium to low signal suppression for most compounds. AMPA and glufosinate presented the highest signal suppression, but it was reduced after SAX clean-up. Analysis of real honey and pollen samples revealed the occurrence of the studied compounds in beehive products and showed the applicability of the validated methodologies for routine control of these complex samples.
Collapse
Affiliation(s)
- Florencia Jesús
- Department of Chemistry and Physics, Agrifood Campus of International Excellence (ceiA3), University of Almeria, Ctra. Sacramento s/n, La Cañada de San Urbano, 04120, Almeria, Spain
| | - Adrián Rosa García
- Department of Chemistry and Physics, Agrifood Campus of International Excellence (ceiA3), University of Almeria, Ctra. Sacramento s/n, La Cañada de San Urbano, 04120, Almeria, Spain
| | - Tommaso Stecconi
- Chemistry Interdisciplinary Project (ChIP), School of Pharmacy, University of Camerino, Via Madonna delle Carceri, 62032, Camerino, Italy
| | - Víctor Cutillas
- Department of Chemistry and Physics, Agrifood Campus of International Excellence (ceiA3), University of Almeria, Ctra. Sacramento s/n, La Cañada de San Urbano, 04120, Almeria, Spain
| | - Amadeo Rodríguez Fernández-Alba
- Department of Chemistry and Physics, Agrifood Campus of International Excellence (ceiA3), University of Almeria, Ctra. Sacramento s/n, La Cañada de San Urbano, 04120, Almeria, Spain.
| |
Collapse
|
16
|
Benito-Murcia M, Botías C, Martín-Hernández R, Higes M, Soler F, Pérez-López M, Míguez-Santiyán MP, Martínez-Morcillo S. Biomarker responses and lethal dietary doses of tau-fluvalinate and coumaphos in honey bees: Implications for chronic acaricide toxicity. ENVIRONMENTAL TOXICOLOGY AND PHARMACOLOGY 2024; 105:104330. [PMID: 38042261 DOI: 10.1016/j.etap.2023.104330] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/03/2023] [Accepted: 11/28/2023] [Indexed: 12/04/2023]
Abstract
Evidence suggests that acaricide residues, such as tau-fluvalinate and coumaphos, are very prevalent in honey bee colonies worldwide. However, the endpoints and effects of chronic oral exposure to these compounds remain poorly understood. In this study, we calculated LC50 and LDD50 endpoints for coumaphos and tau-fluvalinate, and then evaluated in vivo and in vitro effects on honey bees using different biomarkers. The LDD50 values for coumaphos were 0.539, and for tau-fluvalinate, they were 12.742 in the spring trial and 8.844 in the autumn trial. Chronic exposure to tau-fluvalinate and coumaphos resulted in significant changes in key biomarkers, indicating potential neurotoxicity, xenobiotic biotransformation, and oxidative stress. The Integrated Biomarker Response was stronger for coumaphos than for tau-fluvalinate, supporting their relative lethality. This study highlights the chronic toxicity of these acaricides and presents the first LDD50 values for tau-fluvalinate and coumaphos in honey bees, providing insights into the risks faced by colonies.
Collapse
Affiliation(s)
- María Benito-Murcia
- Neobeitar, Avenida de Alemania, 6 - 1º B, 10001 Cáceres, Spain; Centro de Investigación Apícola y Agroambiental (CIAPA), Laboratorio de Patología Apícola, Instituto Regional de Investigación y Desarrollo Agroalimentario y Forestal (IRIAF), 19180 Marchamalo, Spain
| | - Cristina Botías
- Department of Life Sciences, University of Alcalá de Henares, 28801, Alcalá de Henares, Spain
| | - Raquel Martín-Hernández
- Centro de Investigación Apícola y Agroambiental (CIAPA), Laboratorio de Patología Apícola, Instituto Regional de Investigación y Desarrollo Agroalimentario y Forestal (IRIAF), 19180 Marchamalo, Spain; Instituto de Recursos Humanos para la Ciencia y la Tecnología (INCRECYT-FEDER), Fundación Parque Científico y Tecnológico de Castilla-La Mancha, 02008 Albacete, Spain
| | - Mariano Higes
- Centro de Investigación Apícola y Agroambiental (CIAPA), Laboratorio de Patología Apícola, Instituto Regional de Investigación y Desarrollo Agroalimentario y Forestal (IRIAF), 19180 Marchamalo, Spain
| | - Francisco Soler
- Toxicology Unit, Veterinary School, University of Extremadura, 10003 Cáceres, Spain
| | - Marcos Pérez-López
- Toxicology Unit, Veterinary School, University of Extremadura, 10003 Cáceres, Spain
| | | | | |
Collapse
|
17
|
Zioga E, White B, Stout JC. Honey bees and bumble bees may be exposed to pesticides differently when foraging on agricultural areas. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 896:166214. [PMID: 37567302 DOI: 10.1016/j.scitotenv.2023.166214] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/17/2023] [Revised: 07/23/2023] [Accepted: 08/08/2023] [Indexed: 08/13/2023]
Abstract
In an agricultural environment, where crops are treated with pesticides, bees are likely to be exposed to a range of chemical compounds in a variety of ways. The extent to which different bee species are affected by these chemicals, largely depends on the concentrations and type of exposure. We quantified the presence of selected pesticide compounds in the pollen of two different entomophilous crops; oilseed rape (Brassica napus) and broad bean (Vicia faba). Sampling was performed in 12 sites in Ireland and our results were compared with the pollen loads of honey bees and bumble bees actively foraging on those crops in those same sites. Detections were compound specific, and the timing of pesticide application in relation to sampling likely influenced the final residue contamination levels. Most detections originated from compounds that were not recently applied on the fields, and samples from B. napus fields were more contaminated compared to those from V. faba fields. Crop pollen was contaminated only with fungicides, honey bee pollen loads contained mainly fungicides, while more insecticides were detected in bumble bee pollen loads. The highest number of compounds and most detections were observed in bumble bee pollen loads, where notably, all five neonicotinoids assessed (acetamiprid, clothianidin, imidacloprid, thiacloprid, and thiamethoxam) were detected despite the no recent application of these compounds on the fields where samples were collected. The concentrations of neonicotinoid insecticides were positively correlated with the number of wild plant species present in the bumble bee-collected pollen samples, but this relationship could not be verified for honey bees. The compounds azoxystrobin, boscalid and thiamethoxam formed the most common pesticide combination in pollen. Our results raise concerns about potential long-term bee exposure to multiple residues and question whether honey bees are suitable surrogates for pesticide risk assessments for all bee species.
Collapse
Affiliation(s)
- Elena Zioga
- Botany, School of Natural Sciences, Trinity College Dublin, Dublin 2, Ireland.
| | - Blánaid White
- School of Chemical Sciences, DCU Water Institute, Dublin City University, Dublin 9, Ireland
| | - Jane C Stout
- Botany, School of Natural Sciences, Trinity College Dublin, Dublin 2, Ireland
| |
Collapse
|
18
|
Fuente-Ballesteros A, Brugnerotto P, Nguyen VD, Costa ACO, Bernal J, Ares AM. Contamination of Honeybee ( Apis mellifera L.) Royal Jelly by Pesticides and Sample Preparation Methods for Its Determination: A Critical Appraisal. Foods 2023; 12:3612. [PMID: 37835264 PMCID: PMC10572548 DOI: 10.3390/foods12193612] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2023] [Revised: 09/25/2023] [Accepted: 09/26/2023] [Indexed: 10/15/2023] Open
Abstract
Pesticides can easily enter the food chain, harming bee populations and ecosystems. Exposure of beehive products to various contaminants has been identified as one of the factors contributing to the decline in bee populations, and multiple food alerts have been reported. Despite this fact, royal jelly, a valuable bee product with nutritional and functional properties, has received less attention in this context. Pesticide residues of different chemical class can contaminate royal jelly when foraging bees collect pollen or nectar from pesticide-treated flowers, or in some cases, due to its frequent and inappropriate use in the treatment of mites in beehives. To monitor this issue and also make it more reliable, it is crucial to develop effective sample preparation methods for extracting pesticides from royal jelly for subsequent analysis. In this context, this review provides information about sample preparation methods (solid-phase extraction, solvent extraction, and QuEChERS-quick, easy, cheap, effective, rugged and safe) and analytical methods that have been validated or improved to extract and analyze pesticides, respectively, in royal jelly samples of different origins. Finally, future perspectives are discussed. With this background, we aim to provide data that can guide future research related to this topic.
Collapse
Affiliation(s)
- Adrián Fuente-Ballesteros
- Analytical Chemistry Group (TESEA), I.U. CINQUIMA, Faculty of Sciences, University of Valladolid, 47011 Valladolid, Spain; (A.F.-B.); (J.B.)
| | - Patricia Brugnerotto
- Laboratory of Food Chemistry, Department of Food Science and Technology, Federal University of Santa Catarina, Florianópolis 88034-001, SC, Brazil; (P.B.); (A.C.O.C.)
| | - Vinh Dinh Nguyen
- Faculty of Chemistry, TNU-University of Sciences, Tan Thinh Ward, Thai Nguyen City 25000, Vietnam;
| | - Ana C. O. Costa
- Laboratory of Food Chemistry, Department of Food Science and Technology, Federal University of Santa Catarina, Florianópolis 88034-001, SC, Brazil; (P.B.); (A.C.O.C.)
| | - José Bernal
- Analytical Chemistry Group (TESEA), I.U. CINQUIMA, Faculty of Sciences, University of Valladolid, 47011 Valladolid, Spain; (A.F.-B.); (J.B.)
| | - Ana M. Ares
- Analytical Chemistry Group (TESEA), I.U. CINQUIMA, Faculty of Sciences, University of Valladolid, 47011 Valladolid, Spain; (A.F.-B.); (J.B.)
| |
Collapse
|
19
|
Yousefi R, Asgari S, Banitalebi Dehkordi A, Mohammadi Ziarani G, Badiei A, Mohajer F, Varma RS, Iravani S. MOF-based composites as photoluminescence sensing platforms for pesticides: Applications and mechanisms. ENVIRONMENTAL RESEARCH 2023; 226:115664. [PMID: 36913998 DOI: 10.1016/j.envres.2023.115664] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/23/2023] [Revised: 03/06/2023] [Accepted: 03/08/2023] [Indexed: 06/17/2023]
Abstract
Metal-organic frameworks (MOFs) have recently garnered considerable attention among reticular compounds due to their unique physicochemical properties and applications in sensing toxic compounds. On the other hand, fluorometric sensing has been widely studied for food safety and environmental protection among the various sensing methods. Thus, designing MOF-based fluorescence sensors for specific detection of hazardous compounds, especially pesticides, are incessantly needed to keep up with the continuous demands for monitoring these environmental pollution. Herein, recent MOF-based platforms for pesticide fluorescence detection are deliberated owing to sensors' emission origins and in terms of their structural properties. The influences of different guest incorporation in MOFs on pesticide fluorescence detection are summarized, and the future developments of novel MOF composites such as polyoxometalate@MOFs (POMOF), carbon quantum dots@MOFs (CDs@MOF), and organic dye@MOF are prospected for fluorescence sensing of assorted pesticides with a focus on mechanistic insights of specific detection techniques in food safety and environmental protection.
Collapse
Affiliation(s)
- Romina Yousefi
- School of Chemistry, College of Science, University of Tehran, Tehran, Iran
| | - Shadi Asgari
- School of Chemistry, College of Science, University of Tehran, Tehran, Iran; Department of Organic Chemistry, Faculty of Chemistry, Alzahra University, Tehran, Iran
| | - Ali Banitalebi Dehkordi
- School of Chemistry, College of Science, University of Tehran, Tehran, Iran; Department of Organic Chemistry, Faculty of Chemistry, Alzahra University, Tehran, Iran
| | | | - Alireza Badiei
- School of Chemistry, College of Science, University of Tehran, Tehran, Iran.
| | - Fatemeh Mohajer
- Department of Organic Chemistry, Faculty of Chemistry, Alzahra University, Tehran, Iran
| | - Rajender S Varma
- Institute for Nanomaterials, Advanced Technologies and Innovation (CxI), Technical University of Liberec (TUL), Studentská 1402/2, Liberec 1 461 17, Czech Republic
| | - Siavash Iravani
- Faculty of Pharmacy and Pharmaceutical Sciences, Isfahan University of Medical Sciences, 81746-73461, Isfahan, Iran.
| |
Collapse
|
20
|
Murcia-Morales M, Vejsnæs F, Brodschneider R, Hatjina F, Van der Steen JJM, Oller-Serrano JL, Fernández-Alba AR. Enhancing the environmental monitoring of pesticide residues through Apis mellifera colonies: Honey bees versus passive sampling. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 884:163847. [PMID: 37127158 DOI: 10.1016/j.scitotenv.2023.163847] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/20/2023] [Revised: 04/26/2023] [Accepted: 04/26/2023] [Indexed: 05/03/2023]
Abstract
The use of apicultural matrices for the environmental monitoring of pesticides is a widely employed approach that facilitates to a great extent the sampling procedures. Honey bees are one of the most commonly employed matrices in these studies due to their abundance in the colonies and their direct contact with the beehive and the environment. However, the analysis of this matrix is associated to a lack of representativity of the contaminants accumulated within the beehive, due mainly to the limited number of honey bees that are sampled and analyzed compared to the population in a hive. This small proportion of organisms which are sampled from the colony may lead to underestimations or overestimations of the total pesticide load, depending on the specific individuals that are included in the analysis. In the present work, the passive, non-invasive APIStrip-based sampling approach is compared to active bee sampling with a total of 240 samples taken from 15 apiaries from Austria, Denmark and Greece over a two-month period in 2022. The APIStrips have been found to provide a more comprehensive image of the pesticide residues accumulated in the beehive in terms of number of identified residues and robustness of the results. A total of 74 different pesticide residues were detected: the use of APIStrips allowed to detect 66 pesticides in the three countries, compared to 38 residues in honey bees. The use of APIStrips also resulted in a higher percentage of positive samples (containing at least one pesticide residue). The results provided by the passive sampling approach were also more consistent among the replicates and over time, which reveals an increased sampling robustness.
Collapse
Affiliation(s)
- María Murcia-Morales
- Chemistry and Physics Department, University of Almeria, Agrifood Campus of International Excellence (ceiA3), 04120 Almería, Spain
| | | | - Robert Brodschneider
- Institute of Biology, University of Graz, Universitätsplatz 2, Graz 8010, Austria
| | - Fani Hatjina
- Department of Apiculture, Institute of Animal Science, Ellinikos Georgikos Organismos 'DIMITRA', Nea Moudania GR-63200, Greece
| | | | - José Luis Oller-Serrano
- Chemistry and Physics Department, University of Almeria, Agrifood Campus of International Excellence (ceiA3), 04120 Almería, Spain
| | - Amadeo R Fernández-Alba
- Chemistry and Physics Department, University of Almeria, Agrifood Campus of International Excellence (ceiA3), 04120 Almería, Spain.
| |
Collapse
|
21
|
Schaad E, Fracheboud M, Droz B, Kast C. Quantitation of pesticides in bee bread collected from honey bee colonies in an agricultural environment in Switzerland. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:56353-56367. [PMID: 36917390 PMCID: PMC10121494 DOI: 10.1007/s11356-023-26268-y] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/05/2022] [Accepted: 02/28/2023] [Indexed: 06/18/2023]
Abstract
Pesticide contamination of bee products is a widespread phenomenon. Due to its composition, bee bread is affected by both lipophilic and hydrophilic substances. As proof of concept of a monitoring campaign and to better understand the extent of contamination, we developed an analytical method based on a modified QuEChERS extraction, with subsequent separation by liquid chromatography and detection by mass spectrometry. This allowed for the quantitation of 51 agricultural- or beekeeping-associated pesticides in bee bread. The workflow was applied to 60 samples taken biweekly throughout spring to autumn 2022 from five colonies at a Swiss apiary in an agricultural area. In total, 30 pesticides were identified (> LOD), among which 26 pesticides were quantitated. The total number of pesticides detected per colony ranged from 11 to 19. The most prevalent substances (> LOQ) were two neonicotinoid insecticides, acetamiprid and thiacloprid (max. 16 μg/kg and 37 μg/kg, respectively); seven fungicides, azoxystrobin (max. 72 μg/kg), boscalid (max. 50 μg/kg), cyprodinil (max. 1965 μg/kg), difenoconazole (max. 73 μg/kg), mandipropamid (max. 33 μg/kg), pyraclostrobin (max. 8 μg/kg) and trifloxystrobin (max. 38 μg/kg); and two herbicides, prosulfocarb (max. 38 μg/kg) and terbuthylazine (max. 26 μg/kg). The study revealed strong variability in pesticide occurrence and concentrations among colonies sampled at the same site and date. The applied biweekly sampling of bee bread from March to August was shown to be reliable in capturing peak contaminations and revealing the onset of certain pesticides in bee bread. The study provides an adequate practical approach for pesticide monitoring campaigns.
Collapse
Affiliation(s)
- Emmanuel Schaad
- Swiss Bee Research Centre, Agroscope, Schwarzenburgstrasse 161, 3003, Bern, Switzerland
| | - Marion Fracheboud
- Swiss Bee Research Centre, Agroscope, Schwarzenburgstrasse 161, 3003, Bern, Switzerland
| | - Benoît Droz
- Swiss Bee Research Centre, Agroscope, Schwarzenburgstrasse 161, 3003, Bern, Switzerland
| | - Christina Kast
- Swiss Bee Research Centre, Agroscope, Schwarzenburgstrasse 161, 3003, Bern, Switzerland.
| |
Collapse
|
22
|
Sawicki T, Surma M, Sadowska-Rociek A. Characteristics of contaminants in the polish-origin bee products and cancer risk assessment. Food Chem Toxicol 2023; 175:113693. [PMID: 36849088 DOI: 10.1016/j.fct.2023.113693] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2022] [Revised: 02/14/2023] [Accepted: 02/23/2023] [Indexed: 02/27/2023]
Abstract
The aim of this study was to evaluate the concentration of 5-hydroxymethylfurfural (HMF), furfural, polycyclic aromatic hydrocarbons (PAHs), and pesticide residues, as well as assessment of cancer risk of the Polish-origin bee products. The bee product samples were prepared using a modified QuEChERS method, then PAHs and pesticides were analysed by gas chromatography-mass spectrometry (GC-MS), neonicotinoids by high-performance liquid chromatography with a diode array detector (HPLC-DAD), and HMF and furfural by spectrophotometry (HPLC-UV/Vis). The results showed that the highest furfural content was found in bee bread from the northeast part of Poland; moreover, samples obtained from the same region were also characterized with a higher level of HMF. The total sum of PAHs ranged from 324.0 to 866.4 μg/kg; the highest content of PAH4 (the sum of benzo[a]anthracene, chrysene, benzo[b]fluoranthene and benzo[a]pyrene) was 21.0 μg/kg, but only benzo[a]anthracene and chrysene were detected in the samples. Imidacloprid and acetamiprid were found only in bee bread from the northeast part of Poland, while clothianidin was detected in honey samples. The acceptable cancer risk has been calculated for PAHs due to ingestion of honey, while increasing the risk of cancer was calculated for bee bread and bee pollen. Due to the high concentration of PAHs and excessively high recommended consumption dose, regular consumption of bee bread and pollen may pose a severe threat to human health and should be strictly limited.
Collapse
Affiliation(s)
- Tomasz Sawicki
- Department of Human Nutrition, Faculty of Food Sciences, University of Warmia and Mazury in Olsztyn, Ul. Słoneczna 45F, 10-719, Olsztyn, Poland.
| | - Magdalena Surma
- Department of Plant Products Technology and Nutrition Hygiene, Faculty of Food Technology, University of Agriculture in Krakow, Ul. Balicka 122, 30-149, Krakow, Poland
| | - Anna Sadowska-Rociek
- Department of Plant Products Technology and Nutrition Hygiene, Faculty of Food Technology, University of Agriculture in Krakow, Ul. Balicka 122, 30-149, Krakow, Poland
| |
Collapse
|
23
|
Kasiotis KM, Zafeiraki E, Manea-Karga E, Anastasiadou P, Machera K. Pesticide Residues and Metabolites in Greek Honey and Pollen: Bees and Human Health Risk Assessment. Foods 2023; 12:706. [PMID: 36832781 PMCID: PMC9955768 DOI: 10.3390/foods12040706] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2022] [Revised: 01/23/2023] [Accepted: 01/31/2023] [Indexed: 02/10/2023] Open
Abstract
BACKGROUND Bees encounter a plethora of environmental contaminants during nectar and pollen collection from plants. Consequently, after their entrance into the beehives, the transfer of numerous pollutants to apicultural products is inevitable. METHODS In this context, during the period of 2015-2020, 109 samples of honey, pollen, and beebread were sampled and analyzed for the determination of pesticides and their metabolites. More than 130 analytes were investigated in each sample by applying two validated multiresidue methods (HPLC-ESI-MS/MS and GC-MS/MS). RESULTS Until the end of 2020, 40 determinations were reported in honey, resulting in a 26% positive to at least one active substance. The concentrations of pesticides ranged from 1.3 ng/g to 785 ng/g honey. For seven active substances in honey and pollen, maximum residue limits (MRLs) exceedances were observed. Coumaphos, imidacloprid, acetamiprid, amitraz metabolites (DMF and DMPF), and tau-fluvalinate were the predominant compounds detected in honey, while several pyrethroids such as λ-cyhalothrin, cypermethrin, and cyfluthrin were also found. Pollen and beebread, as expected, accumulated a higher number of active substances and metabolites (32 in total), exhibiting almost double the number of detections. CONCLUSIONS Although the above findings verify the occurrence of numerous pesticide and metabolite residues in both honey and pollen, the human risk assessment in the majority of the cases does not raise any concerns, and the same applies to bee risk assessment.
Collapse
Affiliation(s)
- Konstantinos M. Kasiotis
- Laboratory of Pesticides’ Toxicology, Department of Pesticides Control and Phytopharmacy, Benaki Phytopathological Institute, 145 61 Kifissia, Greece
| | | | | | | | | |
Collapse
|
24
|
Jaramillo-Zárate MJ, Londoño-Giraldo LM. Pesticides in honey: bibliographic and bibliometric analysis towards matrix quality for consumption. BRAZILIAN JOURNAL OF FOOD TECHNOLOGY 2023. [DOI: 10.1590/1981-6723.11222] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/08/2023]
Abstract
Abstract Honey is a matrix noted for its wide consumption as a sweetener and its anti-inflammatory, antioxidant, and antimicrobial properties; however, its physicochemical quality can be compromised by the presence of toxicants such as pesticides. This review aims to gather recent information on pesticides in honey from the approach to their detection, understanding, and adverse effects on human health. A bibliographic and bibliometric analysis was carried out in academic databases limited to the last five and thirty years, respectively, comprising the keywords “honey”, “pesticides” and their types of pesticides or the agrochemical compound directly. It was found that there are about 30 pesticides detected in honey, in which organochlorine, organophosphate, and neonicotinoid compounds stood out for their concentrations concerning Maximum Residue Levels (MRL). Their physicochemical alteration was not well explored beyond slight variations in brightness and manganese concentration, and its consumption may have repercussions on human reproductive health. It was also determined that there was limited development on the scientific subject seeing that it is important to explore and investigate more on the issue due to the great impact of honey as a product of high consumption at a global level.
Collapse
|
25
|
Zhang L, Sun Y, Zhang Z, Shen Y, Li Y, Ma T, Zhang Q, Ying Y, Fu Y. Portable and durable sensor based on porous MOFs hybrid sponge for fluorescent-visual detection of organophosphorus pesticide. Biosens Bioelectron 2022; 216:114659. [DOI: 10.1016/j.bios.2022.114659] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2022] [Revised: 08/21/2022] [Accepted: 08/23/2022] [Indexed: 11/24/2022]
|
26
|
Comparison of Presowing Wheat Treatments by Low-Temperature Plasma, Electric Field, Cold Hardening, and Action of Tebuconazole-Based Disinfectant. APPLIED SCIENCES-BASEL 2022. [DOI: 10.3390/app12136447] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
This work compares the presowing treatment of winter wheat seeds with a low-temperature plasma, a constant high-voltage electric field, a plant protection disinfectant, and cold hardening on the resistance of seedlings to freezing and their morphophysiological characteristics at the initial stage of germination. Various treatment combinations were considered, including the effect of the disinfectant jointly with low-temperature plasma treatment. The greatest stimulating effect from the point of view of seedlings’ morphophysiological characteristics was achieved when seeds were cold-hardened. The action of low-temperature plasma is noticeable up to the third day of germination. The treatment with the low-temperature plasma of seeds pretreated and not-pretreated with the disinfectant had a similar effect on the morphophysiological characteristics of seedlings. The plasma treatment and the electric field were combined with each other, i.e., the plasma treatment effects were added to the electric field effects. Resistance to low temperatures was increased with the hardening of seeds treated with the electric field and the disinfectant. Resistance to low temperatures was reduced when treated with the electric field and/or low-temperature plasma after being treated with the disinfectant.
Collapse
|
27
|
Abstract
The extensive use of pesticides represents a risk to human health. Consequently, legal frameworks have been established to ensure food safety, including control programs for pesticide residues. In this context, the performance of analytical methods acquires special relevance. Such methods are expected to be able to determine the largest number of compounds at trace concentration levels in complex food matrices, which represents a great analytical challenge. Technical advances in mass spectrometry (MS) have led to the development of more efficient analytical methods for the determination of pesticides. This review provides an overview of current analytical strategies applied in pesticide analysis, with a special focus on MS methods. Current targeted MS methods allow the simultaneous determination of hundreds of pesticides, whereas non-targeted MS methods are now applicable to the identification of pesticide metabolites and transformation products. New trends in pesticide analysis are also presented, including approaches for the simultaneous determination of pesticide residues and other food contaminants (i.e., mega-methods), or the recent application of techniques such as ion mobility–mass spectrometry (IM–MS) for this purpose.
Collapse
|