1
|
Wen SH, Wang N, Yuan Z, Wu H, Yan G, Zhang H, Yu S, Ma J, Zhou Y. Detection of arsenate in colored grains using an interference-free dual-signal ratiometric HEC sensor. Food Chem 2025; 475:143290. [PMID: 39938269 DOI: 10.1016/j.foodchem.2025.143290] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2024] [Revised: 02/05/2025] [Accepted: 02/07/2025] [Indexed: 02/14/2025]
Abstract
The design of novel homogeneous electrochemical (HEC) sensors with dual-signal ratiometric response holds great potential for highly sensitive and reliable detection of arsenic in food matrices. Herein, COF-based hybrids were prepared by integrating methylene blue (MB) signals and MnO2 nanozyme coatings, possessing the advantages of high signal loading, oxidase-mimicking activity, and ascorbic acid (AA)-specific recognition to realize ratiometric HEC detection of arsenate. The hydrolysate AA, produced from ALP-catalyzed AAP hydrolysis, could decompose MnO2 coatings into Mn2+, and regulate MB release and o-phenylenediamine oxidation to 2,3-diaminophenazine (DAP). Furthermore, arsenate specifically inhibited ALP, subsequently restraining AA formation and MnO2 decomposition. Consequently, a decreased MB current and an increased DAP current with opposite responses were regulated by arsenate compared with those without arsenate. Thus, this dual-signal ratiometric HEC sensor achieved sensitive detection of arsenate, with a LOD of 0.509 ppb. It was successfully applied to reliable detection of arsenate in complex food matrices.
Collapse
Affiliation(s)
- Shao-Hua Wen
- School of Chemistry and Chemical Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China.
| | - Ning Wang
- School of Chemistry and Chemical Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China
| | - Ziqi Yuan
- School of Chemistry and Chemical Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China
| | - Hao Wu
- School of Chemistry and Chemical Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China
| | - Gege Yan
- School of Chemistry and Chemical Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China
| | - Hengyuan Zhang
- School of Chemistry and Chemical Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China
| | - Sha Yu
- School of Chemistry and Chemical Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China
| | - Junping Ma
- School of Chemistry and Chemical Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China
| | - Yuanzhen Zhou
- School of Chemistry and Chemical Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China; Engineering Research Center of Low-Carbon Energy Efficient Utilization, Universities of Shaanxi Province, Xi'an University of Architecture and Technology, Xi'an 710055, China.
| |
Collapse
|
2
|
Wu X, Geng C, Cheng W, Wang Z, Zhang Y, Wu D, Tang X. An ultrasensitive homogeneous electrochemical strategy for ochratoxin a sensing based on nanoscale PCN-224@MB@Apt. Talanta 2025; 287:127695. [PMID: 39923674 DOI: 10.1016/j.talanta.2025.127695] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2024] [Revised: 01/21/2025] [Accepted: 02/04/2025] [Indexed: 02/11/2025]
Abstract
In this reasearch, a homogeneous electrochemical sensor based on PCN-224@MB@Apt was fabricated for the ultrasensitive determination of ochratoxin A (OTA). Firstly, nanoscale PCN-224 were synthesized as the nanocarrier to embed the signal probe of methylene blue (MB). Then, the OTA aptamer (Apt) was added and connected to PCN-224@MB via the Zr-O-P bond between Zr metal sites of PCN-224 and phosphate group of Apt as the biogate. When OTA exists, the Apt would preferentially bind with OTA and fall off from PCN-224@MB, leading to the release of MB and generation of differential pulse voltammetry (DPV) response. The DPV response of MB was linearly correlated with the amount of OTA. The optimized PCN-224@MB@Apt sensor showed outstanding detection performance towards OTA with a low detection limit of 2.6 × 10-5 ng/mL (S/N = 3) and wide linear range (10-4-10 ng/mL). Meanwhile, the fabricated homogeneous electrochemical sensor exhibited splendid stability, reproducibility, and specificity. To assess the practical applicability, the PCN-224@MB@Apt sensor was applied to detect OTA in real corn samples and desirable recovery rates varying from 83.2 % to 109.6 % were obtained.
Collapse
Affiliation(s)
- Xi Wu
- College of Food Science and Engineering/Collaborative Innovation Center for Modern Grain Circulation and Safety/Key Laboratory of Grains and Oils Quality Control and Processing, Nanjing University of Finance and Economics, Nanjing 210023, China
| | - Chenggang Geng
- Changzhou Food and Drug Fiber Quality Supervision and Inspection Center, Changzhou 213000, China
| | - Weiwei Cheng
- College of Food Science and Engineering/Collaborative Innovation Center for Modern Grain Circulation and Safety/Key Laboratory of Grains and Oils Quality Control and Processing, Nanjing University of Finance and Economics, Nanjing 210023, China.
| | - Zhenjiong Wang
- College of Food Science and Engineering/Collaborative Innovation Center for Modern Grain Circulation and Safety/Key Laboratory of Grains and Oils Quality Control and Processing, Nanjing University of Finance and Economics, Nanjing 210023, China
| | - Yan Zhang
- Hebei Key Laboratory of Food Safety, Hebei Food Inspection and Research Institute, Shijiazhuang 050091, China
| | - Di Wu
- College of Food Science and Engineering/Collaborative Innovation Center for Modern Grain Circulation and Safety/Key Laboratory of Grains and Oils Quality Control and Processing, Nanjing University of Finance and Economics, Nanjing 210023, China
| | - Xiaozhi Tang
- College of Food Science and Engineering/Collaborative Innovation Center for Modern Grain Circulation and Safety/Key Laboratory of Grains and Oils Quality Control and Processing, Nanjing University of Finance and Economics, Nanjing 210023, China
| |
Collapse
|
3
|
Liu J, Liu K, Liu X, Zhu X, Liu X, Alwarappan S. Self-Powered Biosensor Driven by a Hybrid Biofuel Cell with CuCoP-Polyoxometallate Composite as Both Cathode Catalyst and Sensing Interface. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2025:e2500451. [PMID: 40318000 DOI: 10.1002/smll.202500451] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/11/2025] [Revised: 02/27/2025] [Indexed: 05/07/2025]
Abstract
Abnormal concentrations of hydrogen peroxide (H2O2) are toxic to living cells and may induce a number of diseases. Herein, a self-powered miniaturized biosensor (SPB) based on an enzyme biofuel cell is constructed to monitor H2O2. This SPB significantly minimized the use of bioenzymes that often experience instability and lead to the high cost of biosensors. More specifically, a composite of polydopamine (PDA)-gold nanoparticles (AuNPs) is prepared as an anodic catalyst scaffold to immobilize glucose oxidase to efficiently catalyze the oxidation of glucose (fuel) due to its excellent biocompatibility and electrical conductivity. Upon the incorporation of CuCoP with a polyoxometalate H3PW12O40 (PW12), a nanoenzyme of CuCoP-PW12 composite is realized as a non-biological cathodic catalyst to replace the conventional cathode enzymes for the reduction of H2O2. The abundant catalytic active sites on CuCoP-PW12 and high electron transfer rate of PW12 result in a high catalytic activity toward H2O2 reduction at the cathode. Owing to a good synergy between the bioanode and abiotic-cathode, the prepared SPB exhibits two linear ranges (2-20 and 20-50 µm) and a low detection limit (0.0589 µm) toward H2O2 detection. Upon the use of H2O2 as a model analyte, this work demonstrates that SPB can be effectively applied in biomedical sensing.
Collapse
Affiliation(s)
- Jiaojiao Liu
- Henan International Joint Laboratory of Medicinal Plants Utilization, College of Chemistry and Molecular Sciences, Henan University, Zhengzhou, 450046, China
| | - Karen Liu
- Sheldon College, Sheldon, Queensland, 4157, Australia
| | - Xiaoqiang Liu
- Henan International Joint Laboratory of Medicinal Plants Utilization, College of Chemistry and Molecular Sciences, Henan University, Zhengzhou, 450046, China
| | - Xinyao Zhu
- Henan International Joint Laboratory of Medicinal Plants Utilization, College of Chemistry and Molecular Sciences, Henan University, Zhengzhou, 450046, China
| | - Xiuhua Liu
- Henan International Joint Laboratory of Medicinal Plants Utilization, College of Chemistry and Molecular Sciences, Henan University, Zhengzhou, 450046, China
| | - Subbiah Alwarappan
- CSIR-Central Electrochemical Research Institute, Kandi, Karaikudi, Tamilnadu, 630003, India
| |
Collapse
|
4
|
Liberty JT, Bromage S, Peter E, Ihedioha OC, Alsalman FB, Odogwu TS. CRISPR revolution: Unleashing precision pathogen detection to safeguard public health and food safety. Methods 2025; 240:180-194. [PMID: 40311721 DOI: 10.1016/j.ymeth.2025.04.018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2025] [Revised: 04/25/2025] [Accepted: 04/27/2025] [Indexed: 05/03/2025] Open
Abstract
Foodborne pathogens represent a significant challenge to global food safety, causing widespread illnesses and economic losses. The growing complexity of food supply chains and the emergence of antimicrobial resistance necessitate rapid, sensitive, and portable diagnostic tools. CRISPR technology has emerged as a transformative solution, offering unparalleled precision and adaptability in pathogen detection. This review explores CRISPR's role in addressing critical gaps in traditional and modern diagnostic methods, emphasizing its advantages in sensitivity, specificity, and scalability. CRISPR-based diagnostics, such as Cas12 and Cas13 systems, enable rapid detection of bacterial and viral pathogens, as well as toxins and chemical hazards, directly in food matrices. Their integration with isothermal amplification techniques and portable biosensors enhances field applicability, making them ideal for decentralized and real-time testing. Additionally, CRISPR's potential extends beyond food safety, contributing to public health efforts by monitoring antimicrobial resistance and supporting One Health frameworks. Despite these advancements, challenges remain, including issues with performance in complex food matrices, scalability, and regulatory barriers. This review highlights future directions, including AI integration for assay optimization, the development of universal CRISPR platforms, and the adoption of sustainable diagnostic solutions. By tackling these challenges, CRISPR has the potential to redefine global food safety standards and create a more resilient food system. Collaborative research and innovation will be critical to fully unlocking its transformative potential in food safety and public health.
Collapse
Affiliation(s)
| | - Sabri Bromage
- Community Nutrition Unit, Institute of Nutrition, Mahidol University, 999 Phutthamonthon 4 Road, Salaya, Phutthamonthon, Nakhon Pathom 73170, Thailand; Department of Nutrition, Harvard T.H. Chan School of Public Health, 655 Huntington Avenue, Building 2, Boston, MA 02115, United States
| | - Endurance Peter
- Department of Public Health, Nazarbayev University, School of Medicine, Astana, Kazakhstan
| | - Olivia C Ihedioha
- Department of Pathology, Microbiology, and Immunology, University of Nebraska Medical Center, Omaha, Nebraska 68198-6842, United States
| | - Fatemah B Alsalman
- Food Security Program, Environment & Life Sciences Research Center, Kuwait Institute for Scientific Research, P.O. Box 24885, Safat 13109, Kuwait
| | - Tochukwu Samuel Odogwu
- Aston Medical School, College of Health & Life Sciences, Aston University, United Kingdom
| |
Collapse
|
5
|
Qu R, Zeng Z, Wang Y, Huang K, Wei Z, Li K, Gan W, Lin F, Chen P. Ag +-Mediated DNA Nanomachine Cascade Nanomaterial Amplification Enable One-Pot Electrochemical Analysis of Circulating Tumor DNA. Anal Chem 2025; 97:4625-4634. [PMID: 39964085 DOI: 10.1021/acs.analchem.4c06652] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/05/2025]
Abstract
Circular tumor DNA (ctDNA) is a trace nucleic acid that functions as an essential tumor marker. In this context, the present study proposes a one-pot electrochemical analysis of ctDNA EGFR L858R in lung cancer leveraging a Ag+-mediated DNA nanosphere (I amplification) and cation exchange reaction (II amplification), and Cu2+ acts as a signal molecule. Once the target L858R exists, it specifically destroys the structure of DNA nanosphere@Ag+, and large amounts of Ag+ are released. After the addition of copper sulfide nanoparticles, Cu2+ can be replaced by a cation exchange reaction. Eventually, the electrochemical signal of Cu2+ is elevated. The analytical performance of the method is satisfactory, L858R can be detected in the linear range of 1 aM-1 fM with a detection limit of 0.3 aM. Furthermore, the system exhibits notable selectivity in differentiating base mismatch targets and other ctDNA sequences. The recovery rate of blood samples is between 95.5 and 105%. The electrochemical results from the analysis of 42 clinical blood samples are consistent with those of the quantitative real-time polymerase chain reaction, computed tomography, and pathology results. In summary, this novel strategy utilizes preprepared functional nucleic acid nanomaterials and cascade amplification, which is expected to contribute to the sensitive and expeditious detection of trace nucleic acids.
Collapse
Affiliation(s)
- Runlian Qu
- Department of Laboratory Medicine, Department of Thoracic Surgery, Med+X Center for Manufacturing, Department of Otolaryngology-Head & Neck Surgery, National Clinical Research Center for Geriatrics, Core Facilities of West China Hospital, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, China
| | - Zhen Zeng
- Department of Laboratory Medicine, Department of Thoracic Surgery, Med+X Center for Manufacturing, Department of Otolaryngology-Head & Neck Surgery, National Clinical Research Center for Geriatrics, Core Facilities of West China Hospital, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, China
| | - Yue Wang
- Department of Laboratory Medicine, Department of Thoracic Surgery, Med+X Center for Manufacturing, Department of Otolaryngology-Head & Neck Surgery, National Clinical Research Center for Geriatrics, Core Facilities of West China Hospital, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, China
| | - Ke Huang
- College of Chemistry and Material Science, Sichuan Normal University, Chengdu, Sichuan 610068, China
| | - Zeliang Wei
- Department of Laboratory Medicine, Department of Thoracic Surgery, Med+X Center for Manufacturing, Department of Otolaryngology-Head & Neck Surgery, National Clinical Research Center for Geriatrics, Core Facilities of West China Hospital, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, China
| | - Kai Li
- Center for Archaeological Science, Sichuan University, Chengdu, Sichuan 610064, China
| | - Weigang Gan
- Department of Laboratory Medicine, Department of Thoracic Surgery, Med+X Center for Manufacturing, Department of Otolaryngology-Head & Neck Surgery, National Clinical Research Center for Geriatrics, Core Facilities of West China Hospital, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, China
| | - Feng Lin
- Department of Laboratory Medicine, Department of Thoracic Surgery, Med+X Center for Manufacturing, Department of Otolaryngology-Head & Neck Surgery, National Clinical Research Center for Geriatrics, Core Facilities of West China Hospital, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, China
| | - Piaopiao Chen
- Department of Laboratory Medicine, Department of Thoracic Surgery, Med+X Center for Manufacturing, Department of Otolaryngology-Head & Neck Surgery, National Clinical Research Center for Geriatrics, Core Facilities of West China Hospital, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, China
| |
Collapse
|
6
|
Wang X, Zhu J, Shu P, Wang J, Huang M, Chen H, Ma H. Integrating an entropy-driven DNA circuit with a tetrahedral scaffold as a generic in situ electrochemical biosensor for amplified detection of microRNAs. Analyst 2025; 150:982-988. [PMID: 39925032 DOI: 10.1039/d4an01528b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/11/2025]
Abstract
Detection of carcinogenesis-related miRNAs presents significant challenges due to their low abundance and high specificity, necessitating highly sensitive and reliable analytical methods. Herein, we propose a generic in situ electrochemical biosensor for the sensitive and effective detection of miRNAs by rationally integrating an entropy-driven DNA circuit (EDC) with a tetrahedral scaffold. The key advancement of this work is the implementation of tetrahedral DNA nanostructures (TDNs) as both a scaffold and substrate for the EDC directly on the electrode surface. TDNs, which are readily decorated with ordered orientation and well-controlled spacing, enhance hybridization efficiency and facilitate essential structural interactions within the EDC, achieving a performance comparable to that of homogeneous liquid-phase reactions. Identifying a target miRNA is achieved with complementary probes that trigger a cascade of structural rearrangements leading to the immobilization of numerous biotin-labeled signal strands on the electrode surface. This accumulation of biotinylated strands ensures that the initial interfacial hybridization event is subsequently amplified and translated into electrochemical signals via cascaded signal amplification. The resulting electrochemical signals are directly proportional to the concentration of the target miRNA, offering a highly sensitive detection platform with a detection limit as low as 74 aM and a dynamic range spanning from 100 aM to 100 pM. The biosensor's performance is validated using biological samples derived from B[a]PDE-exposed cells, where significantly elevated miR-96 levels are detected, consistent with qRT-PCR results. This demonstrates the potential of the proposed biosensor for early cancer diagnosis and monitoring of cancer-related miRNA biomarkers.
Collapse
Affiliation(s)
- Xuyao Wang
- Precision Medicine Research Center, Beilun District People's Hospital, Zhejiang University School of Medicine First Affiliated Hospital Beilun Branch, Ningbo, 315800, PR China.
| | - Junlan Zhu
- Precision Medicine Research Center, Beilun District People's Hospital, Zhejiang University School of Medicine First Affiliated Hospital Beilun Branch, Ningbo, 315800, PR China.
| | - Peng Shu
- Precision Medicine Research Center, Beilun District People's Hospital, Zhejiang University School of Medicine First Affiliated Hospital Beilun Branch, Ningbo, 315800, PR China.
| | - Jiajing Wang
- Department of Clinical Laboratory, Beilun District People's Hospital, Zhejiang University School of Medicine First Affiliated Hospital Beilun Branch, Ningbo, 315800, PR China
| | - Maowen Huang
- Department of Clinical Laboratory, Beilun District People's Hospital, Zhejiang University School of Medicine First Affiliated Hospital Beilun Branch, Ningbo, 315800, PR China
| | - Hengchao Chen
- Department of Pathology, Beilun District People's Hospital, Zhejiang University School of Medicine First Affiliated Hospital Beilun Branch, Ningbo, 315800, PR China
| | - Haifen Ma
- Department of Pathology, Beilun District People's Hospital, Zhejiang University School of Medicine First Affiliated Hospital Beilun Branch, Ningbo, 315800, PR China
| |
Collapse
|
7
|
Yang L, Zhang J, Zhang J, Hou T, Gao Q, Liu X, Li F. CRISPR-Based Homogeneous Electrochemical Strategy for Near-Zero Background Detection of Breast Cancer Extracellular Vesicles via Fluidity-Enhanced Magnetic Capture Nanoprobe. Anal Chem 2025; 97:2176-2185. [PMID: 39829104 DOI: 10.1021/acs.analchem.4c05181] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2025]
Abstract
Precise identification and analysis of multiple protein biomarkers on the surface of breast cancer cell-derived extracellular vesicles (BC-EVs) are of great significance for noninvasive diagnosis of the breast cancer subtypes, but it remains a major challenge owing to their high heterogeneity and low abundance. Herein, we established a CRISPR-based homogeneous electrochemical strategy for near-zero background and ultrasensitive detection of BC-EVs. To realize the high-performance capture and isolation of BC-EVs, fluidity-enhanced magnetic nanoprobes were facilely prepared. After capturing BC-EVs, the AND logic gate-based catalytic hairpin assembly (CHA) and the trans-cleavage activity of CRISPR-Cas12a against the magnetic signal nanoprobes were triggered successively, generating a significant electrochemical signal. Notably, the as-developed metal-mediated magnetic signal nanoprobes could efficiently decrease the background signal by magnetic separation, endowing the method with a high signal-to-noise ratio. Consequently, by ingeniously integrating DNA logic gate-based CRISPR-CHA signal amplification with dual magnetic nanoprobes in a homogeneous electrochemical strategy, precise identification and ultrasensitive detection of BC-EVs was successfully achieved through simultaneous and specific recognition of dual protein markers on the BC-EVs surface. More importantly, this approach could effectively discriminate specific subgroups of BC-EVs in clinical serum samples, which may provide great opportunities for the accurate diagnosis and prognosis evaluation of breast cancer in a noninvasive manner.
Collapse
Affiliation(s)
- Limin Yang
- College of Chemistry and Pharmaceutical Sciences, Qingdao Agricultural University, Qingdao 266109, People's Republic of China
| | - Jingang Zhang
- College of Chemistry and Pharmaceutical Sciences, Qingdao Agricultural University, Qingdao 266109, People's Republic of China
| | - Jing Zhang
- Qingdao Hiser Hospital Affiliated of Qingdao University (Qingdao Traditional Chinese Medicine Hospital), Qingdao 266011, People's Republic of China
| | - Ting Hou
- College of Chemistry and Pharmaceutical Sciences, Qingdao Agricultural University, Qingdao 266109, People's Republic of China
| | - Qian Gao
- College of Chemistry and Pharmaceutical Sciences, Qingdao Agricultural University, Qingdao 266109, People's Republic of China
| | - Xiaojuan Liu
- College of Chemistry and Pharmaceutical Sciences, Qingdao Agricultural University, Qingdao 266109, People's Republic of China
| | - Feng Li
- College of Chemistry and Pharmaceutical Sciences, Qingdao Agricultural University, Qingdao 266109, People's Republic of China
| |
Collapse
|
8
|
Xie X, Tang S, Zhai C, Fu K, Li F, Cai K, Zhang J. Photoexcited Electro-Driven Reactive Oxygen Species Channeling for Precise Extraction of Biomarker Information from Tumor Interstitial Fluid. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2025; 21:e2410358. [PMID: 39763116 DOI: 10.1002/smll.202410358] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/05/2024] [Revised: 12/29/2024] [Indexed: 02/21/2025]
Abstract
Direct electrochemical detection of miRNA biomarkers in tumor tissue interstitial fluid (TIF) holds great promise for adjuvant therapy for tumors in the perioperative period, yet is limited by background interference and weak signal. Herein, a wash-free and separation-free miRNA biosensor based on photoexcited electro-driven reactive oxygen channeling analysis (LEOCA) is developed to solve the high-fidelity detection in physiological samples. In the presence of miRNA, nanoacceptors (ultrasmall-size polydopamine, uPDA) are responsively assembled on the surface of nanodonors (zirconium metal-organic framework, ZrMOF) to form core-satellite aggregates. The produced lifetime-constraint singlet oxygen upon light irradiation is captured by the catechol of constrained uPDA, and the oxidized quinone is immediately electro-reduced to the catechol at transient collision process on the electrode, resulting in a cascade electron transfer and amplified current. Thereby, the nanosensor exhibits a low detection limit (1.1 fM), and high reproducibility (relative standard deviation of 2.0%). Compared with quantitative real-time polymerase chain reaction (qRT-PCR), the clinical accuracy (area under the curve value) is significantly increased from 0.75 to 0.93 in distinguishing breast cancer patients from healthy donors. This study demonstrates an inspiration on the synergy of the reactive oxygen channeling between nanodonor/nanoacceptor and the synchronous electron transfer cascade on the electrode to solve the bottleneck problem of detecting unprocessed clinical samples in a sample-in-answer-out manner.
Collapse
Affiliation(s)
- Xiyue Xie
- Key Laboratory of Biorheological Science and Technology, Ministry of Education, College of Bioengineering, Chongqing University, No. 174 Shazheng Road, Chongqing, 400044, China
| | - Shuqi Tang
- Key Laboratory of Biorheological Science and Technology, Ministry of Education, College of Bioengineering, Chongqing University, No. 174 Shazheng Road, Chongqing, 400044, China
- State Key Laboratory of Digital Medical Engineering, Jiangsu Key Laboratory for Biomaterials and Devices, School of Biological Science and Medical Engineering, Southeast University, Nanjing, 210096, China
| | - Chunhui Zhai
- Key Laboratory of Biorheological Science and Technology, Ministry of Education, College of Bioengineering, Chongqing University, No. 174 Shazheng Road, Chongqing, 400044, China
| | - Kaixiu Fu
- Key Laboratory of Biorheological Science and Technology, Ministry of Education, College of Bioengineering, Chongqing University, No. 174 Shazheng Road, Chongqing, 400044, China
| | - Fan Li
- Department of Breast and Thyroid Surgery, The First Affiliated Hospital of Chongqing Medical University, No.1 Youyi Road, Yuzhong District, Chongqing, 400016, China
| | - Kaiyong Cai
- Key Laboratory of Biorheological Science and Technology, Ministry of Education, College of Bioengineering, Chongqing University, No. 174 Shazheng Road, Chongqing, 400044, China
| | - Jixi Zhang
- Key Laboratory of Biorheological Science and Technology, Ministry of Education, College of Bioengineering, Chongqing University, No. 174 Shazheng Road, Chongqing, 400044, China
| |
Collapse
|
9
|
Yang S, Huang Y, Yang T, Li J, Tian J, Liu L. Electrochemical detection of poly(ADP-ribose) polymerase-1 with silver nanoparticles as signal labels by integrating the advantages of homogeneous reaction with surface-tethered detection. Talanta 2025; 281:126796. [PMID: 39226698 DOI: 10.1016/j.talanta.2024.126796] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2024] [Revised: 08/28/2024] [Accepted: 08/30/2024] [Indexed: 09/05/2024]
Abstract
Poly(ADP-ribose)polymerase-1 (PARP1) could be activated by binding to nucleic acids with specific sequences, thus catalyzing the poly-ADP-ribosylation (PARylation) of target proteins including PARP1 itself. Most of the previously reported electrochemical methods for the determination of PARP1 were relied on the electrostatic interactions, which required the pre-immobilization of DNA on an electrode for the capture of PARP1. Herein, we reported an "immobilization-free" electrochemical strategy for the assays of PARP1 on the basic of avidin-biotin interaction. Once PARP1 was activated by binding with the specific double-stranded DNA (dsDNA) in a homogeneous solution, the biotinylated nicotinamide adenine dinucleotide (biotin-NAD+) was transferred onto PARP1, resulting in the formation of biotinylated PAR polymers. The resulting biotinylated PAR polymers were then captured by a neutravidin (NA)-modified electrode through avidin-biotin interactions. The rich biotin moieties in the PAR polymers allowed for the capture of NA-modified silver nanoparticles (NA-AgNPs) through the avidin-biotin interactions. The surface-tethered AgNPs produced a well-defined electrochemical signal due to the characteristic solid-state Ag/AgCl process. The "immobilization-free", electrostatic interaction-independent electrochemical biosensor exhibited low background current, high sensitivity, and good stability. It has achieved the determination of PARP1 with a detection limit down to 0.7 mU. The biosensor was further applied to determine the inhibition efficiency of potential inhibitors with a satisfactory result. This method shows promising potential applications in PARP1-related clinical diagnosis and drug discovery.
Collapse
Affiliation(s)
- Suling Yang
- Henan Province Key Laboratory of New Opto-electronic Functional Materials, College of Chemistry and Chemical Engineering, Anyang Normal University, Anyang, Henan, 455000, China
| | - Yaliang Huang
- Henan Province Key Laboratory of New Opto-electronic Functional Materials, College of Chemistry and Chemical Engineering, Anyang Normal University, Anyang, Henan, 455000, China; School of Pharmacy, Hunan University of Chinese Medicine, Changsha, Hunan, 410208, China.
| | - Tingting Yang
- Henan Province Key Laboratory of New Opto-electronic Functional Materials, College of Chemistry and Chemical Engineering, Anyang Normal University, Anyang, Henan, 455000, China
| | - Jingze Li
- College of Life Sciences, Shanghai Normal University, Shanghai, 200234, China
| | - Jiaxin Tian
- Henan Province Key Laboratory of New Opto-electronic Functional Materials, College of Chemistry and Chemical Engineering, Anyang Normal University, Anyang, Henan, 455000, China
| | - Lin Liu
- Henan Province Key Laboratory of New Opto-electronic Functional Materials, College of Chemistry and Chemical Engineering, Anyang Normal University, Anyang, Henan, 455000, China.
| |
Collapse
|
10
|
Wen SH, Zhang H, Yu S, Ma J, Zhu JJ, Zhou Y. Nanozyme coating-gated multifunctional COF composite based dual-ratio enhanced dual-mode sensor for highly sensitive and reliable detection of organophosphorus pesticides in real samples. JOURNAL OF HAZARDOUS MATERIALS 2024; 480:135791. [PMID: 39265396 DOI: 10.1016/j.jhazmat.2024.135791] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/23/2024] [Revised: 09/05/2024] [Accepted: 09/07/2024] [Indexed: 09/14/2024]
Abstract
The reliable detection of organophosphorus pesticides (OPs) in complex matrices remains an enormous challenge due to inevitable interference of sample matrices and testing factors. To address this issue, we designed a nanozyme-coated mesoporous COF with guest molecule loading, and successfully used it to construct a dual-ratio dual-mode sensor through target-regulated signal generation. The multifunctional COF-based composite (MB/COF@MnO2, MCM) featured high loading of methylene blue (MB), oxidase-like MnO2 coatings as gatekeepers, and specific recognition of thiocholine (TCh). TCh, a regulator produced from acetylcholinesterase (AChE)-catalyzed hydrolysis of acetylthiocholine, could decompose MnO2 coatings, triggering the release of abundant MB and oxidation of few o-phenylenediamine (OPD). OPs, strong inhibitors of AChE, could restrain TCh production and MnO2 decomposition, thereby controlling the release of less MB and oxidation of more OPD. This regulation boosted the dual-ratio dual-mode assay of OPs by using the released MB and oxidized OPD in the solution as testing signals, measured by both fluorescent and electrochemical methods. Experimental results demonstrated the sensitive detection of dichlorvos with LODs of 0.083 and 0.026 ng/mL via the fluorescent/electrochemical mode, respectively. This study represented a creative endeavor to develop dual-ratio dual-mode sensors for OPs detection in complex samples, offering high sensitivity, excellent selectivity, and good reliability.
Collapse
Affiliation(s)
- Shao-Hua Wen
- School of Chemistry and Chemical Engineering, Engineering Research Center of Low-Carbon Energy Efficient Utilization, Universities of Shaanxi Province, Xi'an University of Architecture and Technology, Xi'an 710055, China
| | - Hengyuan Zhang
- School of Chemistry and Chemical Engineering, Engineering Research Center of Low-Carbon Energy Efficient Utilization, Universities of Shaanxi Province, Xi'an University of Architecture and Technology, Xi'an 710055, China
| | - Sha Yu
- School of Chemistry and Chemical Engineering, Engineering Research Center of Low-Carbon Energy Efficient Utilization, Universities of Shaanxi Province, Xi'an University of Architecture and Technology, Xi'an 710055, China
| | - Junping Ma
- School of Chemistry and Chemical Engineering, Engineering Research Center of Low-Carbon Energy Efficient Utilization, Universities of Shaanxi Province, Xi'an University of Architecture and Technology, Xi'an 710055, China
| | - Jun-Jie Zhu
- School of Chemistry and Chemical Engineering, Engineering Research Center of Low-Carbon Energy Efficient Utilization, Universities of Shaanxi Province, Xi'an University of Architecture and Technology, Xi'an 710055, China; School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, China
| | - Yuanzhen Zhou
- School of Chemistry and Chemical Engineering, Engineering Research Center of Low-Carbon Energy Efficient Utilization, Universities of Shaanxi Province, Xi'an University of Architecture and Technology, Xi'an 710055, China.
| |
Collapse
|
11
|
Wang R, Wang Y, Han J, Wu S, Dong P, Raghavan V, Wang J. Employing conductive porous hydrogen-bonded organic framework for ultrasensitive detection of peanut allergen Ara h1. Food Chem 2024; 460:140777. [PMID: 39128370 DOI: 10.1016/j.foodchem.2024.140777] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2024] [Revised: 07/13/2024] [Accepted: 08/04/2024] [Indexed: 08/13/2024]
Abstract
Peanut allergy has garnered worldwide attention due to its high incidence rate and severe symptoms, stimulating the demand for the ultrasensitive detection method of peanut allergen. Herein, we successfully developed a novel electrochemical aptasensor for ultrasensitive detection Ara h1, a major allergenic protein present in peanuts. A conductive nickel atoms Anchored Hydrogen-Bonded Organic Frameworks (PFC-73-Ni) were utilized as excellent electrocatalysts toward hydroquinone (HQ) oxidation to generate a readable current signal. The developed electrochemical aptasensor offers wide linear range (1-120 nM) and low detection limit (0.26 nM) for Ara h1. This method demonstrated a recovery rate ranging from 95.00% to 107.42% in standard addition detection of non-peanut food samples. Additionally, the developed electrochemical method was validated with actual samples and demonstrated good consistency with the results obtained from a commercial ELISA kit. This indicates that the established Ara h1 detection method is a promising tool for peanut allergy prevention.
Collapse
Affiliation(s)
- Rui Wang
- Key Laboratory of Environmental Medicine and Engineering, Ministry of Education, and Department of Nutrition and Food Hygiene, School of Public Health, Southeast University, Nanjing 210009, China
| | - Youfa Wang
- Key Laboratory of Environmental Medicine and Engineering, Ministry of Education, and Department of Nutrition and Food Hygiene, School of Public Health, Southeast University, Nanjing 210009, China
| | - Jie Han
- Key Laboratory of Environmental Medicine and Engineering, Ministry of Education, and Department of Nutrition and Food Hygiene, School of Public Health, Southeast University, Nanjing 210009, China
| | - Shuang Wu
- Key Laboratory of Environmental Medicine and Engineering, Ministry of Education, and Department of Nutrition and Food Hygiene, School of Public Health, Southeast University, Nanjing 210009, China
| | - Pengfei Dong
- Key Laboratory of Environmental Medicine and Engineering, Ministry of Education, and Department of Nutrition and Food Hygiene, School of Public Health, Southeast University, Nanjing 210009, China.
| | - Vijaya Raghavan
- Department of Bioresource Engineering, Faculty of Agricultural and Environmental Sciences, McGill University, 21111 Lakeshore Rd, Sainte-Anne-de-Bellevue, H9X3V9, QC, Canada
| | - Jin Wang
- Key Laboratory of Environmental Medicine and Engineering, Ministry of Education, and Department of Nutrition and Food Hygiene, School of Public Health, Southeast University, Nanjing 210009, China.
| |
Collapse
|
12
|
Liu M, Wen Y. Point-of-care testing for early-stage liver cancer diagnosis and personalized medicine: Biomarkers, current technologies and perspectives. Heliyon 2024; 10:e38444. [PMID: 39397977 PMCID: PMC11470528 DOI: 10.1016/j.heliyon.2024.e38444] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2024] [Revised: 09/21/2024] [Accepted: 09/24/2024] [Indexed: 10/15/2024] Open
Abstract
Liver cancer is a highly prevalent and lethal form of cancer worldwide. In the absence of early diagnosis, treatment options for this disease are severely restricted. Recent advancements in genomics and bioinformatics have facilitated the discovery of a multitude of novel biomarkers that accurately depict an individual's disease diagnosis, progression, and treatment response. Leveraging these breakthroughs, personalized medicine employs an individual's biomarker profile to enable early detection of liver cancer and inform decisions regarding treatment selection, dosage determination, and prognosis assessment. The current lack of readily applicable, timely, and economically viable tools for biomarker analysis has hindered the incorporation of personalized medicine into regular clinical procedures. Over the past decade, significant advancements have been achieved in the field of molecular point-of-care testing (POCT) and amplification techniques, leading to substantial improvements in the diagnosis of liver cancer and the implementation of precision medicine. Instrument-free PCR technology or plasma PCR technology can shorten the complex procedure of in vitro detection of nucleic acid-based biomarkers. Also, compared to traditional ELISA, various nanomaterials modified with monoclonal antibodies to target proteins for recognition, capture, and detection have improved the efficiency of protein-based biomarker detection. These advances have reduced the time and cost of clinical detection of early-stage hepatocellular carcinoma and improved the efficiency of timely diagnosis and survival of suspected patients while reducing unnecessary testing costs and procedures. This review aims to provide a comprehensive overview of the current and emerging biomarkers employed in the early detection of liver cancer, as well as the advancements in point-of-care molecular testing technology and platforms. The primary objective is to assess their potential in facilitating the implementation of personalized medicine. This review ultimately revealed that the diagnosis of early-stage hepatocellular carcinoma not only requires sensitive biomarkers, but its various modifications and changes during the progression of cirrhosis to early-stage hepatocellular carcinoma will be a greater focus of our attention in the future. The rapid development of POCT has facilitated the opportunity to readily detect liver cancer in the general population in the future, and the integration of multi-pathway multiplexing and intelligent algorithms has improved the sensitivity and accuracy of early liver cancer biomarker detection. It is expected that the integration of point-of-care technology will be instrumental in the widespread adoption of personalized medicine in the foreseeable future.
Collapse
Affiliation(s)
- Mengxiang Liu
- State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing, 211198, China
| | - Yanrong Wen
- Department of Nuclear Medicine, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, Nanjing, 210008, China
| |
Collapse
|
13
|
Kumar N, Arora A, Krishnan A. A simulation-based analysis of optical read-out for electrochemical reactions using composite vortex beams. Sci Rep 2024; 14:22218. [PMID: 39333667 PMCID: PMC11437161 DOI: 10.1038/s41598-024-72701-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2024] [Accepted: 09/10/2024] [Indexed: 09/29/2024] Open
Abstract
We propose an optical read-out method for extracting faradaic current in electrochemical (EC) reactions and analyze its performance using opto-EC simulations. Our approach utilizes structured electrodes to generate composite optical vortex (COV) beams upon optical illumination. Through opto-EC simulations, we demonstrate that the EC reaction of 10 mM potassium ferricyanide induces a refractive index (RI) change, Δ RI, of approximately 10 - 4 RI units, leading to the rotation of the COV beam's intensity profile with a peak rotation of 40 ∘ . This rotation's magnitude is proportional to Δ RI, while the rate correlates with the faradaic current ( I f ) density responsible for Δ RI. As the opto-EC information is from bulk Δ RI, it remains unaffected by interfering non-faradaic components at the interface and is advantageous for studying intermediate species and bulk homogeneous reactions. Furthermore, as rotation depends on I f density rather than I f itself, this method proves beneficial in low I f scenarios, such as when employing micro-electrodes to decrease solution resistance or obtain localized EC data. Even in low I f density scenarios, like monitoring slow EC reactions, our method enables signal amplification by accumulating rotation over time. This interdisciplinary approach holds promise for advancing EC research and addressing critical challenges across various fields, including energy storage, corrosion protection, environmental remediation, and biomedical sciences.
Collapse
Affiliation(s)
- Nirjhar Kumar
- Centre for NEMS & Nanophotonics CNNP and Department of Electrical Engineering, Indian Institute of Technology Madras, Chennai, 600036, India.
| | - Ankit Arora
- Centre for NEMS & Nanophotonics CNNP and Department of Electrical Engineering, Indian Institute of Technology Madras, Chennai, 600036, India
| | - Ananth Krishnan
- Centre for NEMS & Nanophotonics CNNP and Department of Electrical Engineering, Indian Institute of Technology Madras, Chennai, 600036, India
| |
Collapse
|
14
|
Zhang Z, Wang Y, Chen Q, Tan X, Hu X, An Y, Liu M. Aptamer molecular gate functionalized mesoporous SiO 2@MB controlled-release system for pollutant detection using Ti(Ⅲ) self-doped TiO 2 NTs as active photoanode coupled with electrostatic modulation. Talanta 2024; 277:126409. [PMID: 38897014 DOI: 10.1016/j.talanta.2024.126409] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2024] [Revised: 05/15/2024] [Accepted: 06/10/2024] [Indexed: 06/21/2024]
Abstract
Atrazine (ATZ) is a widely used herbicide that can cause serious harm to organisms and ecosystems. An immobilization-free photoelectrochemical (PEC) aptasensor has been herein developed for ATZ based on aptamer molecular gate functionalized mesoporous SiO2@MB controlled release system. Compared with traditional immobilization-based sensors, immobilization-free sensors (IFSs) avoid the modification of the recognition element on the electrode surface. Mesoporous SiO2 with large surface area and good biocompatibility can be used as nanocontainers to stably encapsulate the signal shuttle molecule methylene blue (MB). The bifunctional aptamer (APT) is used not only as the recognition element for ATZ but also as the signal switch to block or release MB. In the presence of ATZ, the specific recognition between ATZ and APT will cause the detachment of APT from the surface of SiO2, thus the molecular gate will open and release MB. Due to pH modulation, the positively charged MB can reach the surface of the negatively charged Ti(III) self-doped TiO2 NTs (Ti(III)-TiO2 NTs) electrode to act as an electron donor, which increases the photocurrent. The immobilization-free aptasensor has shown ultrasensitive detection of ATZ with a wide linear range from 1.0 pM to 100.0 nM and a low detection limit of 0.1 pM. In addition, the sensor has excellent selectivity, stability and anti-interference ability, and has been used in real water sample analysis successfully. This strategy has provided a new idea for the design of advanced immobilization-free PEC sensors for environmental pollutant detection.
Collapse
Affiliation(s)
- Ziwei Zhang
- School of Chemical Science and Engineering, Shanghai Key Lab of Chemical Assessment and Sustainability, Tongji University, 1239 Siping Road, Shanghai, 200092, China
| | - Yanru Wang
- School of Chemical Science and Engineering, Shanghai Key Lab of Chemical Assessment and Sustainability, Tongji University, 1239 Siping Road, Shanghai, 200092, China; Institute of Bismuth and Rhenium, School of Materials and Chemistry, University of Shanghai for Science and Technology, Shanghai, 200093, China
| | - Qichen Chen
- School of Chemical Science and Engineering, Shanghai Key Lab of Chemical Assessment and Sustainability, Tongji University, 1239 Siping Road, Shanghai, 200092, China
| | - Xiaojiang Tan
- School of Chemical Science and Engineering, Shanghai Key Lab of Chemical Assessment and Sustainability, Tongji University, 1239 Siping Road, Shanghai, 200092, China
| | - Xialin Hu
- Key Laboratory of Yangtze River Water Environment, Ministry of Education, College of Environmental Science and Engineering, Tongji University, Shanghai, 200092, China
| | - Yarui An
- Institute of Bismuth and Rhenium, School of Materials and Chemistry, University of Shanghai for Science and Technology, Shanghai, 200093, China.
| | - Meichuan Liu
- School of Chemical Science and Engineering, Shanghai Key Lab of Chemical Assessment and Sustainability, Tongji University, 1239 Siping Road, Shanghai, 200092, China.
| |
Collapse
|
15
|
Zhang Y, Zheng ZN, Lin XH, Liu AL, Lei Y. A homogeneous electrochemiluminescence immunoassay platform based on carbon quantum dots and magnetic beads enrichment for detection of thyroglobulin in serum. Talanta 2024; 276:126205. [PMID: 38718649 DOI: 10.1016/j.talanta.2024.126205] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2024] [Revised: 04/30/2024] [Accepted: 05/03/2024] [Indexed: 06/14/2024]
Abstract
Considering the high probability of recurrence or metastasis after thyroidectomy, it is meaningful to develop a rapid, sensitive and specific method for monitoring thyrophyma-related biomarkers. In this study, a homogeneous electrochemiluminescence immunoassay (HO-ECLIA) coupled with magnetic beads (MBs)-based enrichment tactic was established for the determination of thyrophyma-related thyroglobulin (Tg). Importantly, owing to the abundant surface groups and good biocompatibility of carbon quantum dots (CQDs), the incorporation of CQDs onto the Tg antigen surface was achieved, resulting in the formation of Tg-encapsulated CQDs (CQDs-Tg), which served not only as an ECL probe but as a biorecognition element. Under optimal experimental conditions, the proposed platform demonstrated a wide linear range from 0.01 to 100 ng·mL-1 with a detection limit of 6.9 pg·mL-1 (S/N = 3), and performed well in real serum sample analysis against interference. Collectively, the proposed platform exhibited the rapid response, satisfactory sensitivity and specificity toward Tg in complex serum milieu, and held a considerable potential for clinical prognosis monitoring of thyrophyma.
Collapse
Affiliation(s)
- Yu Zhang
- Department of Pharmaceutical Analysis, Higher Educational Key Laboratory for Nano Biomedical Technology of Fujian Province, Faculty of Pharmacy, Fujian Medical University, Fuzhou, 350122, China
| | - Zhen-Ni Zheng
- Department of Pharmaceutical Analysis, Higher Educational Key Laboratory for Nano Biomedical Technology of Fujian Province, Faculty of Pharmacy, Fujian Medical University, Fuzhou, 350122, China
| | - Xin-Hua Lin
- Department of Pharmaceutical Analysis, Higher Educational Key Laboratory for Nano Biomedical Technology of Fujian Province, Faculty of Pharmacy, Fujian Medical University, Fuzhou, 350122, China.
| | - Ai-Lin Liu
- Department of Pharmaceutical Analysis, Higher Educational Key Laboratory for Nano Biomedical Technology of Fujian Province, Faculty of Pharmacy, Fujian Medical University, Fuzhou, 350122, China.
| | - Yun Lei
- Department of Pharmaceutical Analysis, Higher Educational Key Laboratory for Nano Biomedical Technology of Fujian Province, Faculty of Pharmacy, Fujian Medical University, Fuzhou, 350122, China.
| |
Collapse
|
16
|
Huang Y, Wang J, Xu Y, Zhang J, Xia N. Signal-On Detection of Caspase-3 with Methylene Blue-Loaded Metal-Organic Frameworks as Signal Reporters. Molecules 2024; 29:3700. [PMID: 39125104 PMCID: PMC11314406 DOI: 10.3390/molecules29153700] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2024] [Revised: 08/01/2024] [Accepted: 08/02/2024] [Indexed: 08/12/2024] Open
Abstract
In this work, we report on an electrochemical method for the signal-on detection of caspase-3 and the evaluation of apoptosis based on the biotinylation reaction and the signal amplification of methylene blue (MB)-loaded metal-organic frameworks (MOFs). Zr-based UiO-66-NH2 MOFs were used as the nanocarriers to load electroactive MB molecules. Recombinant hexahistidine (His6)-tagged streptavidin (rSA) was attached to the MOFs through the coordination interaction between the His6 tag in rSA and the metal ions on the surface of the MOFs. The acetylated peptide substrate Ac-GDEVDGGGPPPPC was immobilized on the gold electrode. In the presence of caspase-3, the peptide was specifically cleaved, leading to the release of the Ac-GDEVD sequence. A N-terminal amine group was generated and then biotinylated in the presence of biotin-NHS. Based on the strong interaction between rSA and biotin, rSA@MOF@MB was captured by the biotinylated peptide-modified electrode, producing a significantly amplified electrochemical signal. Caspase-3 was sensitively determined with a linear range from 0.1 to 25 pg/mL and a limit of detection down to 0.04 pg/mL. Further, the active caspase-3 in apoptosis inducer-treated HeLa cells was further quantified by this method. The proposed signal-on biosensor is compatible with the complex biological samples and shows great potential for apoptosis-related diagnosis and the screening of caspase-targeting drugs.
Collapse
Affiliation(s)
- Yaliang Huang
- School of Pharmacy, Hunan University of Chinese Medicine, Changsha 410208, China
- College of Chemistry and Chemical Engineering, Anyang Normal University, Anyang 455000, China (J.Z.)
- College of Chemistry and Chemical Engineering, Central South University, Changsha 410083, China
| | - Jiaqiang Wang
- College of Chemistry and Chemical Engineering, Anyang Normal University, Anyang 455000, China (J.Z.)
| | - Yirui Xu
- School of Pharmacy, Hunan University of Chinese Medicine, Changsha 410208, China
| | - Jiwen Zhang
- College of Chemistry and Chemical Engineering, Anyang Normal University, Anyang 455000, China (J.Z.)
| | - Ning Xia
- College of Chemistry and Chemical Engineering, Anyang Normal University, Anyang 455000, China (J.Z.)
| |
Collapse
|
17
|
Upadhyay S, Kumar A, Srivastava M, Srivastava A, Dwivedi A, Singh RK, Srivastava SK. Recent advancements of smartphone-based sensing technology for diagnosis, food safety analysis, and environmental monitoring. Talanta 2024; 275:126080. [PMID: 38615454 DOI: 10.1016/j.talanta.2024.126080] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2024] [Revised: 04/04/2024] [Accepted: 04/07/2024] [Indexed: 04/16/2024]
Abstract
The emergence of computationally powerful smartphones, relatively affordable high-resolution camera, drones, and robotic sensors have ushered in a new age of advanced sensible monitoring tools. The present review article investigates the burgeoning smartphone-based sensing paradigms, including surface plasmon resonance (SPR) biosensors, electrochemical biosensors, colorimetric biosensors, and other innovations for modern healthcare. Despite the significant advancements, there are still scarcity of commercially available smart biosensors and hence need to accelerate the rates of technology transfer, application, and user acceptability. The application/necessity of smartphone-based biosensors for Point of Care (POC) testing, such as prognosis, self-diagnosis, monitoring, and treatment selection, have brought remarkable innovations which eventually eliminate sample transportation, sample processing time, and result in rapid findings. Additionally, it articulates recent advances in various smartphone-based multiplexed bio sensors as affordable and portable sensing platforms for point-of-care devices, together with statistics for point-of-care health monitoring and their prospective commercial viability.
Collapse
Affiliation(s)
- Satyam Upadhyay
- Department of Physics, Institute of Science, Banaras Hindu University, Varanasi, 221005, India
| | - Anil Kumar
- Department of Physics, Institute of Science, Banaras Hindu University, Varanasi, 221005, India
| | - Monika Srivastava
- School of Materials Science and Technology, Indian Institute of Technology (Banaras Hindu University), Varanasi, India
| | - Amit Srivastava
- Department of Physics TDPG College, VBS Purvanchal University, Jaunpur, 222001, India
| | - Arpita Dwivedi
- Department of Physics, Institute of Science, Banaras Hindu University, Varanasi, 221005, India
| | - Rajesh Kumar Singh
- School of Physical and Material Sciences, Central University of Himachal Pradesh, Dharamshala, Kangra, 176215, India
| | - S K Srivastava
- Department of Physics, Institute of Science, Banaras Hindu University, Varanasi, 221005, India.
| |
Collapse
|
18
|
Xie X, Jin K, Wang Z, Wang S, Zhu J, Huang J, Tang S, Cai K, Zhang J. Constraint Coupling of Redox Cascade and Electron Transfer Synchronization on Electrode-Nanosensor Interface for Repeatable Detection of Tumor Biomarkers. SMALL METHODS 2024; 8:e2301330. [PMID: 38044264 DOI: 10.1002/smtd.202301330] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/29/2023] [Revised: 11/15/2023] [Indexed: 12/05/2023]
Abstract
Quantitative analysis of up-regulated biomarkers in pathological tissues is helpful to tumor surgery yet the loss of biomarker extraction and time-consuming operation limited the accurate and quick judgement in preoperative or intraoperative diagnosis. Herein, an immobilization-free electrochemical sensing platform is developed by constraint coupling of electron transfer cascade on electrode-nanosensor interface. Specifically, electrochemical indicator (Ri)-labeled single-stranded DNA on electroactive nanodonor (polydopamine, PDA) can be responsively detached by formation of DNA complex through the recognition and binding with targets. By applying the oxidation potential of Ri, nanosensor collisions on electrode surface trigger a cascade redox cycling of PDA and Ri through synchronous electron transfer, which boost the amplification of current signal output. The developed nanosensor exhibit excellent linear response toward up-regulated biomarkers (miRNA-21, ATP, and VEGF) with low detection limits (32 fM, 386 pM, and 2.8 pM). Moreover, background influence from physiological interferent is greatly reduced by restricted electron transfer coupling on electrode. The practical applicability is illustrated in sensitive and highly repeatable profiling of miRNA-21 in lysate of tumor cells and tumor tissue, beneficial for more reliable diagnosis. This electrochemical platform by employing electron transfer cascades at heterogeneous interfaces offers a route to anti-interference detection of biomarkers in tumor tissues.
Collapse
Affiliation(s)
- Xiyue Xie
- Key Laboratory of Biorheological Science and Technology, Ministry of Education, College of Bioengineering, Chongqing University, No. 174 Shazheng Road, Chongqing, 400044, China
| | - Kaifei Jin
- Key Laboratory of Biorheological Science and Technology, Ministry of Education, College of Bioengineering, Chongqing University, No. 174 Shazheng Road, Chongqing, 400044, China
| | - Zhenqiang Wang
- Key Laboratory of Biorheological Science and Technology, Ministry of Education, College of Bioengineering, Chongqing University, No. 174 Shazheng Road, Chongqing, 400044, China
| | - Shuai Wang
- Key Laboratory of Biorheological Science and Technology, Ministry of Education, College of Bioengineering, Chongqing University, No. 174 Shazheng Road, Chongqing, 400044, China
| | - Jing Zhu
- Key Laboratory of Biorheological Science and Technology, Ministry of Education, College of Bioengineering, Chongqing University, No. 174 Shazheng Road, Chongqing, 400044, China
| | - Jixi Huang
- Key Laboratory of Biorheological Science and Technology, Ministry of Education, College of Bioengineering, Chongqing University, No. 174 Shazheng Road, Chongqing, 400044, China
| | - Shuqi Tang
- Key Laboratory of Biorheological Science and Technology, Ministry of Education, College of Bioengineering, Chongqing University, No. 174 Shazheng Road, Chongqing, 400044, China
| | - Kaiyong Cai
- Key Laboratory of Biorheological Science and Technology, Ministry of Education, College of Bioengineering, Chongqing University, No. 174 Shazheng Road, Chongqing, 400044, China
| | - Jixi Zhang
- Key Laboratory of Biorheological Science and Technology, Ministry of Education, College of Bioengineering, Chongqing University, No. 174 Shazheng Road, Chongqing, 400044, China
| |
Collapse
|
19
|
Yang F, Zhang X, Li S, Yu X, Liu S. Immobilization-free and label-free electrochemical DNA biosensing based on target-stimulated release of redox reporter and its catalytic redox recycling. Bioelectrochemistry 2024; 158:108727. [PMID: 38728815 DOI: 10.1016/j.bioelechem.2024.108727] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2024] [Revised: 05/05/2024] [Accepted: 05/06/2024] [Indexed: 05/12/2024]
Abstract
Herein, we demonstrate a simple, homogenous and label-free electrochemical biosensing system for sensitive nucleic acid detection based on target-responsive porous materials and nuclease-triggered target recycling amplification. The Fe(CN)63- reporter was firstly sealed into the pores of Fe3O4 nanoparticles by probe DNA. Target DNA recognition triggered the controllable release of Fe(CN)63- for the redox reaction with the electron mediator of methylene blue enriched in the dodecanethiol assembled electrode and thereby generating electrochemical signal. The exonuclease III (Exo III)-assisted target recycling and the catalytic redox recycling between Fe(CN)63- and methylene blue contributed for the enhanced signal response toward target recognition. The low detection limit toward target was obtained as 478 fM and 1.6 pM, respectively, by square wave voltammetry and cyclic voltammetry methods. It also possessed a well-discrimination ability toward mismatched strands and high tolerance to complex sample matrix. The coupling of bio-gated porous nanoparticles, nuclease-assisted target amplification and catalytic redox recycling afforded the sensing system with well-controllable signal responses, sensitive and selective DNA detection, and good stability, reusability and reproducibility. It thus opens a new avenue toward the development of simple but sensitive electrochemical biosensing platform.
Collapse
Affiliation(s)
- Fangfang Yang
- College of Chemistry and Chemical Engineering, Yantai University, 30 Qingquan Road, Yantai 264005, China
| | - Xiaolin Zhang
- College of Chemistry and Chemical Engineering, Yantai University, 30 Qingquan Road, Yantai 264005, China
| | - Shuang Li
- College of Chemistry and Chemical Engineering, Yantai University, 30 Qingquan Road, Yantai 264005, China
| | - Xiaoxiao Yu
- Shandong Marine Resource and Environment Research Institute, 216 Changjiang Road, Yantai 264006, China.
| | - Shufeng Liu
- College of Chemistry and Chemical Engineering, Yantai University, 30 Qingquan Road, Yantai 264005, China.
| |
Collapse
|
20
|
Yao H, Du S, Yang L, Ding Y, Shen H, Qiu Y, Dai G, Mo F. A magnetic graphene oxide and UiO-66 based homogeneous dual recognition electrochemical aptasensor for accurate and sensitive detection of aflatoxin B1. Talanta 2024; 273:125915. [PMID: 38522188 DOI: 10.1016/j.talanta.2024.125915] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2023] [Revised: 01/27/2024] [Accepted: 03/11/2024] [Indexed: 03/26/2024]
Abstract
Aflatoxin (AFs) contamination is one of the serious food safety issues. Aflatoxin B1 (AFB1) is the most common and toxic aflatoxin, which has been classified as a class 1 carcinogen by the International Agency for Research on Cancer (IARC). It is extremely destructive to liver tissue. Developing a convenient and sensitive detection technique is essential. In this paper, we developed a homogeneous dual recognition strategy based electrochemical aptasensor for accurate and sensitive detection of aflatoxin B1 (AFB1) based on the magnetic graphene oxide (MGO) and UiO-66. The MGO was synthesized for the recognition and magnetic separation of AFB1 from complex samples. UiO-66/ferrocenecarboxylic acid (Fc)/aptamer composites were constructed as both recognition and signal probes. The probes would specifically capture AFB1 enriched by MGO, which enables dual recognition in homogeneous solution, thus further improving the accuracy of AFB1 detection. The electrochemical aptasensor for AFB1 had a linear range from 0.005 to 500 ng mL-1. Additionally, the limit of detection was 1 pg mL-1. It shows a favorable potential for both sensitive and accurate detection of AFB1 in real samples.
Collapse
Affiliation(s)
- Handong Yao
- Department of Naval Nutrition and Food Hygiene, Faculty of Naval Medicine, Naval Medical University, 800 Xiangyin Road, Shanghai, 200433, China; School of Engineering, Huzhou University, Huzhou, 313000, China
| | - Shuxin Du
- School of Engineering, Huzhou University, Huzhou, 313000, China
| | - Liuhong Yang
- Department of Naval Nutrition and Food Hygiene, Faculty of Naval Medicine, Naval Medical University, 800 Xiangyin Road, Shanghai, 200433, China; School of Health Science and Engineering, University of Shanghai for Science and Technology, 516 Jungong Road, Shanghai, 200093, China; Key Laboratory of Biosafety Defense (Naval Medical University), Ministry of Education, 800 Xiangyin Road, Shanghai, 200433, China
| | - Yifeng Ding
- Department of Naval Nutrition and Food Hygiene, Faculty of Naval Medicine, Naval Medical University, 800 Xiangyin Road, Shanghai, 200433, China; School of Health Science and Engineering, University of Shanghai for Science and Technology, 516 Jungong Road, Shanghai, 200093, China; Key Laboratory of Biosafety Defense (Naval Medical University), Ministry of Education, 800 Xiangyin Road, Shanghai, 200433, China
| | - Hui Shen
- Department of Naval Nutrition and Food Hygiene, Faculty of Naval Medicine, Naval Medical University, 800 Xiangyin Road, Shanghai, 200433, China; Key Laboratory of Biosafety Defense (Naval Medical University), Ministry of Education, 800 Xiangyin Road, Shanghai, 200433, China
| | - Yi Qiu
- School of Engineering, Huzhou University, Huzhou, 313000, China
| | - Ge Dai
- Department of Naval Nutrition and Food Hygiene, Faculty of Naval Medicine, Naval Medical University, 800 Xiangyin Road, Shanghai, 200433, China; Key Laboratory of Biosafety Defense (Naval Medical University), Ministry of Education, 800 Xiangyin Road, Shanghai, 200433, China.
| | - Fengfeng Mo
- Department of Naval Nutrition and Food Hygiene, Faculty of Naval Medicine, Naval Medical University, 800 Xiangyin Road, Shanghai, 200433, China; Key Laboratory of Biosafety Defense (Naval Medical University), Ministry of Education, 800 Xiangyin Road, Shanghai, 200433, China.
| |
Collapse
|
21
|
Gorgani L, Mohammadi M, Najafpour Darzi G, Raoof JB. Metal-organic framework (MOF)-based biosensors for miRNA detection. Talanta 2024; 273:125854. [PMID: 38447342 DOI: 10.1016/j.talanta.2024.125854] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2023] [Revised: 12/31/2023] [Accepted: 02/28/2024] [Indexed: 03/08/2024]
Abstract
MicroRNAs (miRNAs) play several crucial roles in the physiological and pathological processes of the human body. They are considered as important biomarkers for the diagnosis of various disorders. Thus, rapid, sensitive, selective, and affordable detection of miRNAs is of great importance. However, the small size, low abundance, and highly similar sequences of miRNAs impose major challenges to their accurate detection in biological samples. In recent years, metal-organic frameworks (MOFs) have been applied as promising sensing materials for the fabrication of different biosensors due to their distinctive characteristics, such as high porosity and surface area, tunable pores, outstanding adsorption affinities, and ease of functionalization. In this review, the applications of MOFs and MOF-derived materials in the fabrication of fluorescence, electrochemical, chemiluminescence, electrochemiluminescent, and photoelectrochemical biosensors for the detection of miRNAs and their detection principle and analytical performance are discussed. This paper attempts to provide readers with a comprehensive knowledge of the fabrication and sensing mechanisms of miRNA detection platforms.
Collapse
Affiliation(s)
- Leila Gorgani
- Biotechnology Research Laboratory, Faculty of Chemical Engineering, Babol Noshirvani University of Technology, Babol, 47148-71167, Iran
| | - Maedeh Mohammadi
- Biotechnology Research Laboratory, Faculty of Chemical Engineering, Babol Noshirvani University of Technology, Babol, 47148-71167, Iran; School of Chemical Engineering, Universiti Sains Malaysia, 14300, Nibong Tebal, Pulau Pinang, Malaysia.
| | - Ghasem Najafpour Darzi
- Biotechnology Research Laboratory, Faculty of Chemical Engineering, Babol Noshirvani University of Technology, Babol, 47148-71167, Iran
| | - Jahan Bakhsh Raoof
- Electroanalytical Chemistry Research Laboratory, Department of Analytical Chemistry, Faculty of Chemistry, University of Mazandaran, Babolsar, Iran
| |
Collapse
|
22
|
Mishra S, Budania Y, Tyagi A, Pratap Singh S, Kumar P, Singh S. Copper Oxide Anchored Carbon Nanofibers: A Versatile Platform for Multiplex Detection of Antibiotics, Heavy Metals and Pesticides. Chem Asian J 2024; 19:e202400241. [PMID: 38441388 DOI: 10.1002/asia.202400241] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2024] [Indexed: 05/18/2024]
Abstract
Electrochemical sensors offer promising prospects for real-time pollutant monitoring. In this study, copper oxide-dispersed graphitic carbon nanofibers (CuO-CNFs) grown via chemical vapour deposition were employed as a robust platform for detecting a variety of environmental pollutants. This array-based sensor adeptly identifies three different classes of analytes, i. e., antibiotics (chloramphenicol (CP) and tylosin tartrate (TT)), heavy metals (cadmium (Cd) and lead (Pb)), and pesticides (quinalphos (QP) and imidacloprid (IP)). Electron collection is facilitated by a glassy carbon electrode, while various physico-electrochemical methods delve into the properties of CuO-CNFs. The CuO-CNF-modified GCE array rapidly discerns (<15 sec) a broad linear range: 1-20 ppm for CP, 1-13.33 ppm for TT, 0.66-11.66 ppm for Cd, 20-33.33 ppm for Pb, 1.6-11.6 ppm for QP, and 5-25 ppm for IP, boasting quantification limits of 1.0, 1.0, 0.66, 20.0, 1.6, and 5.0 ppm for CP, TT, Cd, Pb, QP, and IP, respectively. Notably, this sensor achieves simultaneous identification of mixed analytes, including CP and TT, Cd and Pb, and QP and IP, within real tap water. Furthermore, the electrochemical sensor exhibits robustness; heightened sensitivity, selectivity, and stability; a swift response; and impressive reproducibility in detecting CP, TT, Cd, Pb, QP, and IP within aqueous samples. Consequently, this array-based electrochemical sensor has emerged as a rapid and simultaneous detection tool for diverse pollutant residues in surface and groundwater samples.
Collapse
Affiliation(s)
- Smriti Mishra
- Industrial waste utilization, nano- and biomaterial division, CSIR- Advanced Materials and Processes Research Institute (CSIR-AMPRI), Hoshangabad Road, Bhopal, Madhya Pradesh, 462026, India
| | - Yashmeen Budania
- Industrial waste utilization, nano- and biomaterial division, CSIR- Advanced Materials and Processes Research Institute (CSIR-AMPRI), Hoshangabad Road, Bhopal, Madhya Pradesh, 462026, India
| | - Ankit Tyagi
- Department of Chemical Engineering, Indian Institute of Technology, Jammu, Jagti, Nagrota, Jammu & Kashmir, 181221, India
| | - Sheelendra Pratap Singh
- Pesticide toxicology laboratory & regulatory toxicology group, CSIR-Indian Institute of Toxicology Research (CSIR-IITR), Vishvigyan Bhawan, 31 Mahatma Gandhi Marg, Lucknow, 226001, Uttar Pradesh, India
- Analytical Chemistry Laboratory, CSIR-Indian Institute of Toxicology Research (CSIR-IITR), Vishvigyan Bhawan, 31 Mahatma Gandhi Marg, Lucknow, 226001, Uttar Pradesh, India
| | - Pradip Kumar
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India
- Green engineered materials and additive manufacturing, Council of Scientific and Industrial Research- Advanced Materials and Processes Research Institute, Bhopal, 462026, India
| | - Shiv Singh
- Industrial waste utilization, nano- and biomaterial division, CSIR- Advanced Materials and Processes Research Institute (CSIR-AMPRI), Hoshangabad Road, Bhopal, Madhya Pradesh, 462026, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India
| |
Collapse
|
23
|
Hu X, Qiu D, Jiang Q, Xu Q, Li J. Cu 2+-doped zeolitic imidazolate frameworks and gold nanoparticle (AuNPs@ZIF-8/Cu) nanocomposites enable label-free and highly sensitive electrochemical detection of oral cancer-related biomarkers. ANALYTICAL METHODS : ADVANCING METHODS AND APPLICATIONS 2024; 16:615-623. [PMID: 38197313 DOI: 10.1039/d3ay01918g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/11/2024]
Abstract
It is of great significance to accurately and sensitively detect oral cancer-related biomarkers (ORAOV 1) for the early diagnosis of oral cancer. Present here is a novel electrochemical biosensor based on Cu2+-doped zeolitic imidazolate frameworks and gold nanoparticle (AuNPs@ZIF-8/Cu) nanocomposites and a one-step strand displacement reaction for label-free, simple and sensitive detection of ORAOV 1 in saliva. It is worth noting that AuNPs@ZIF-8/Cu nanocomposites show large electrochemically effective surface area, good electrical conductivity and electrocatalytic activity due to the synergistic effect of metal nanoparticles (MNPs) and ZIF-8. Consequently, the newly developed electrochemical sensor displays a wide linear range of 0.1-104 pM and a low limit of detection (LOD) of 63 fM. Meanwhile, the electrochemical biosensor can distinguish single base mismatch. The relative standard deviation (RSD) of intra-assays and inter-assays is 1.46% and 1.76%, respectively, and the peak current values decline by 9.20% with a RSD value of 1.35% after being stored at 4 °C for 7 days, suggesting that the newly designed electrochemical sensor exhibits good selectivity, reproducibility and stability to detect ORAOV 1. More importantly, this novel electrochemical sensor is found to be applicable for detecting ORAOV 1 in human saliva samples with a satisfactory result. The RSD values range from 1.15% to 1.77%, and the recoveries range from 95.46% to 112.98%.
Collapse
Affiliation(s)
- Xueting Hu
- School of Chemistry and Chemical Engineering, Yangzhou University, Yangzhou, P. R. China.
| | - Dengxue Qiu
- School of Chemistry and Chemical Engineering, Yangzhou University, Yangzhou, P. R. China.
| | - Qi Jiang
- School of Chemistry and Chemical Engineering, Yangzhou University, Yangzhou, P. R. China.
| | - Qin Xu
- School of Chemistry and Chemical Engineering, Yangzhou University, Yangzhou, P. R. China.
| | - Jing Li
- School of Chemistry and Chemical Engineering, Yangzhou University, Yangzhou, P. R. China.
| |
Collapse
|
24
|
Xing J, Han Q, Liu J, Yan Z. Electrochemical aptasensor fabricated by anchoring recognition aptamers and immobilizing redox probes on bipolar silica nanochannel array for reagentless detection of carbohydrate antigen 15-3. Front Chem 2023; 11:1324469. [PMID: 38192499 PMCID: PMC10773802 DOI: 10.3389/fchem.2023.1324469] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2023] [Accepted: 11/23/2023] [Indexed: 01/10/2024] Open
Abstract
Timely, convenient, and efficient detection of carbohydrate antigen 15-3 (CA15-3) levels in serum holds significant importance in early screening, diagnostic assistance and prognosis prediction of breast cancer. The development of efficient and convenient electrochemical aptasensors with immobilized redox probes for label-free detection of CA15-3 is highly desirable. In this work, a bipolar silica nanochannel array film (bp-SNA) with two distinct functional domains including nanochannels and an outer surface was employed for the immobilization of recognition ligands and electrochemical redox probes, enabling the construction of a probe-integrated aptasensor for reagentless electrochemical detection of CA15-3. Cost-effective and readily available indium tin oxide (ITO) was used as the supporting electrode for sequential growth of a negatively charged inner layer (n-SNA) followed by a positively charged outer layer (p-SNA). The preparation process of bp-SNA is convenient. Functionalization of amino groups on the outer surface of bp-SNA was modified by aldehyde groups for covalent immobilization of recognition aptamers, further establishing the recognition interface. Within the nanochannels of bp-SNA, the electrochemical redox probe, tri (2,2'-dipyridyl) cobalt (II) (Co(bpy)3 2+) was immobilized, which experienced a dual effect of electrostatic attraction from n-SNA and electrostatic repulsion from p-SNA, resulting in high stability of the immobilized probes. The constructed aptasensor allowed for reagentless electrochemical detection of CA15-3 ranged from 0.001 U/mL to 500 U/mL with a low detection limit (DL), 0.13 mU/mL). The application of the constructed aptasensor for CA15-3 detection in fetal bovine serum was also validated. This sensor offers advantages of a simple and readily obtainable supporting electrode, easy bp-SNA fabrication, high probe stability and good stability.
Collapse
Affiliation(s)
- Jun Xing
- Department of Breast Surgery, Shanxi Bethune Hospital, Shanxi Academy of Medical Sciences, Tongji Shanxi Hospital, Third Hospital of Shanxi Medical University, Taiyuan, China
| | - Qianqian Han
- School of Chemistry and Chemical Engineering, Zhejiang Sci-Tech University, Hangzhou, China
| | - Jiyang Liu
- School of Chemistry and Chemical Engineering, Zhejiang Sci-Tech University, Hangzhou, China
| | - Zhengzheng Yan
- General Surgery Department, Shanxi Bethune Hospital, Shanxi Academy of Medical Sciences, Tongii Shanxi Hospital, Third Hospital of Shanxi Medical University, Taiyuan, China
| |
Collapse
|
25
|
Xiao X, Li L, Deng H, Zhong Y, Deng W, Xu Y, Chen Z, Zhang J, Hu X, Wang Y. Biomass-derived 2D carbon materials: structure, fabrication, and application in electrochemical sensors. J Mater Chem B 2023; 11:10793-10821. [PMID: 37910389 DOI: 10.1039/d3tb01910a] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2023]
Abstract
Biomass, a renewable hydrocarbon, is one of the favorable sources of advanced carbon materials owing to its abundant resources and diverse molecular structures. Biomass-based two-dimensional carbon nanomaterials (2D-BC) have attracted extensive attention due to their tunable structures and properties, and have been widely used in the design and fabrication of electrochemical sensing platforms. This review embarks on the thermal conversion process of biomass from different sources and the synthesis strategy of 2D-BC materials. The affinity between 2D-BC structure and properties is emphasized. The recent progress in 2D-BC-based electrochemical sensors for health and environmental monitoring is also presented. Finally, the challenges and future development directions related to such materials are proposed in order to promote their further application in the field of electrochemical sensing.
Collapse
Affiliation(s)
- Xuanyu Xiao
- National Engineering Research Center for Biomaterials & College of Biomedical Engineering, Sichuan University, 29 Wangjiang Road, Chengdu, Sichuan, 610065, China.
| | - Lei Li
- National Engineering Research Center for Biomaterials & College of Biomedical Engineering, Sichuan University, 29 Wangjiang Road, Chengdu, Sichuan, 610065, China.
| | - Hui Deng
- Rotex Co., Ltd., Chengdu, Sichuan 610043, China
| | - Yuting Zhong
- National Engineering Research Center for Biomaterials & College of Biomedical Engineering, Sichuan University, 29 Wangjiang Road, Chengdu, Sichuan, 610065, China.
| | - Wei Deng
- Department of Orthopedics Pidu District People's Hospital, The Third Affiliated Hospital of Chengdu Medical College Chengdu, Sichuan, 611730, China
| | - Yuanyuan Xu
- National Engineering Research Center for Biomaterials & College of Biomedical Engineering, Sichuan University, 29 Wangjiang Road, Chengdu, Sichuan, 610065, China.
| | - Zhiyu Chen
- National Engineering Research Center for Biomaterials & College of Biomedical Engineering, Sichuan University, 29 Wangjiang Road, Chengdu, Sichuan, 610065, China.
| | - Jieyu Zhang
- National Engineering Research Center for Biomaterials & College of Biomedical Engineering, Sichuan University, 29 Wangjiang Road, Chengdu, Sichuan, 610065, China.
| | - Xuefeng Hu
- West China School of Basic Medical Sciences & Forensic Medicine Sichuan University, Chengdu, 610044, China
| | - Yunbing Wang
- National Engineering Research Center for Biomaterials & College of Biomedical Engineering, Sichuan University, 29 Wangjiang Road, Chengdu, Sichuan, 610065, China.
| |
Collapse
|
26
|
Wen SH, Zhang H, Yu S, Ma J, Zhu JJ, Zhou Y. Complementary Homogeneous Electrochemical and Photothermal Dual-Modal Sensor for Highly Sensitive Detection of Organophosphorus Pesticides via Stimuli-Responsive COF/Methylene Blue@MnO 2 Composite. Anal Chem 2023; 95:14914-14924. [PMID: 37769195 DOI: 10.1021/acs.analchem.3c02171] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/30/2023]
Abstract
Credible and on-site detection of organophosphorus pesticides (OPs) in complex matrixes is significant for food security and environmental monitoring. Herein, a novel COF/methylene blue@MnO2 (COF/MB@MnO2) composite featured abundant signal loading, a specific recognition unit, and robust oxidase-like activity was successfully prepared through facile assembly processes. The multifunctional composite acted as a homogeneous electrochemical and photothermal dual-mode sensing platform for OPs detection through stimuli-responsive regulation. Without the presence of OPs, the surface MnO2 coating could recognize thiocholine (TCh), originating from acetylcholinesterase (AChE)-catalyzed hydrolysis of acetylthiocholine (ATCh), and exhibited a distinctly amplified diffusion current due to the release of plentiful MB; while the residual MnO2 nanosheets could only catalyze less TMB into oxidized TMB (oxTMB) with a typical near-infrared (NIR) absorption, enabling NIR-driven photothermal assay with a low temperature using a portable thermometer. Based on the inhibitory effect of OPs on AChE activity and OP-regulated generation of TCh, chlorpyrifos as a model target can be accurately detected with a low limit of detection of 0.0632 and 0.108 ng/mL by complementary electrochemical and photothermal measurements, respectively. The present dual-mode sensor was demonstrated to be excellent for application to the reliable detection of OPs in complex environmental and food samples. This work can not only provide a complementary dual-mode method for convenient and on-site detection of OPs in different scenarios but also expand the application scope of the COF-based multifunctional composite in multimodal sensors.
Collapse
Affiliation(s)
- Shao-Hua Wen
- School of Chemistry and Chemical Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China
| | - Hengyuan Zhang
- School of Chemistry and Chemical Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China
| | - Sha Yu
- School of Chemistry and Chemical Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China
| | - Junping Ma
- School of Chemistry and Chemical Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China
| | - Jun-Jie Zhu
- School of Chemistry and Chemical Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, China
| | - Yuanzhen Zhou
- School of Chemistry and Chemical Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China
| |
Collapse
|
27
|
Zeng H, Chen H, Yang B, Zeng J, Meng L, Shi D, Chen L, Huang Y. Highly-oxidizing Au@MnO 2-X nanozymes mediated homogeneous electrochemical detection of organophosphorus independent of dissolved oxygen. JOURNAL OF HAZARDOUS MATERIALS 2023; 459:132116. [PMID: 37487330 DOI: 10.1016/j.jhazmat.2023.132116] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/18/2023] [Revised: 07/17/2023] [Accepted: 07/20/2023] [Indexed: 07/26/2023]
Abstract
Traditional oxidase-like (OXD) nanozymes rely primarily on O2-mediated superoxide anion (O2·-) process for catalytic oxidation and organophosphorus (Ops) detection. While during the actual detection process, the concentration of O2 is inconstant that can be easily changed with the external environment, distorting detection results. Herein, highly-oxidizing Au@MnO2-X nanozymes with core-shell nanostructure are designed which trigger substantial electron transfer from inner Au core to outer ultrathin MnO2-X layer. According to experimental and theoretical calculations, the core-shell nanostructure and ultrathin MnO2-X of Au@MnO2-X result in the large surface defects, high oxygen vacancies and MnIII ratios. The specially structured Au@MnO2-X nanozymes are therefore highly-oxidizing and the catalytic oxidation can be completed merely through electrons transferring instead of the O2-mediated O2·- process. Based on this, an oxygen independent and ultrasensitive nanozyme-based sensor is established using homogeneous electrochemistry (HEC), its Ops is detected at a LOD of 0.039 ng mL-1. Combined with the UV-vis spectrum of 3,3',5,5'-tetramethylbenzidine (TMB), the linear discriminant analysis of five Ops i.e., Ethion, Omethoate, Diazinon, Chlorpyrifos methyl and Dipterex has achieved superior discrimination results. Therefore, HEC based on strong oxidizing nanozymes provide a new avenue for the development of high-performance electrochemical sensors and demonstrate potential applicability to pesticide residue determination in real samples.
Collapse
Affiliation(s)
- Huiling Zeng
- College of Animal Science and Technology, The Key Laboratory of Ministry of Education, Guangxi University, Nanning 530000, Guangxi, People's Republic of China; College of Material, Chemistry and Chemical Engineering, Key Laboratory of Organosilicon Chemistry and Material Technology, Ministry of Education, Hangzhou Normal University, Hangzhou 311121, Zhejiang, People's Republic of China
| | - Hailan Chen
- College of Animal Science and Technology, The Key Laboratory of Ministry of Education, Guangxi University, Nanning 530000, Guangxi, People's Republic of China; Guangxi Key Laboratory of Animal Reproduction, Breeding and Disease Control, Nanning 530004, People's Republic of China.
| | - Bing Yang
- College of Material, Chemistry and Chemical Engineering, Key Laboratory of Organosilicon Chemistry and Material Technology, Ministry of Education, Hangzhou Normal University, Hangzhou 311121, Zhejiang, People's Republic of China
| | - Junyi Zeng
- College of Material, Chemistry and Chemical Engineering, Key Laboratory of Organosilicon Chemistry and Material Technology, Ministry of Education, Hangzhou Normal University, Hangzhou 311121, Zhejiang, People's Republic of China
| | - Lin Meng
- College of Material, Chemistry and Chemical Engineering, Key Laboratory of Organosilicon Chemistry and Material Technology, Ministry of Education, Hangzhou Normal University, Hangzhou 311121, Zhejiang, People's Republic of China
| | - Donglin Shi
- College of Material, Chemistry and Chemical Engineering, Key Laboratory of Organosilicon Chemistry and Material Technology, Ministry of Education, Hangzhou Normal University, Hangzhou 311121, Zhejiang, People's Republic of China
| | - Liang Chen
- College of Material, Chemistry and Chemical Engineering, Key Laboratory of Organosilicon Chemistry and Material Technology, Ministry of Education, Hangzhou Normal University, Hangzhou 311121, Zhejiang, People's Republic of China.
| | - Youju Huang
- College of Material, Chemistry and Chemical Engineering, Key Laboratory of Organosilicon Chemistry and Material Technology, Ministry of Education, Hangzhou Normal University, Hangzhou 311121, Zhejiang, People's Republic of China.
| |
Collapse
|
28
|
Abate C, Neri G, Scala A, Mineo PG, Fazio E, Mazzaglia A, Fragoso A, Giuffrè O, Foti C, Piperno A. Screen-Printed Carbon Electrodes with Cationic Cyclodextrin Carbon Nanotubes and Ferrocenyl-Carnosine for Electrochemical Sensing of Hg(II). ACS APPLIED NANO MATERIALS 2023; 6:17187-17195. [PMID: 37767207 PMCID: PMC10520977 DOI: 10.1021/acsanm.3c03480] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/27/2023] [Accepted: 08/28/2023] [Indexed: 09/29/2023]
Abstract
The study reports the use of nanoassembly based on cationic cyclodextrin carbon nanotubes (CNT-CDs) and ferrocenylcarnosine (FcCAR) for electrochemical sensing of Hg(II) in aqueous solution. β-cyclodextrins (CDs) were grafted onto CNTs by a click chemistry reaction between heptakis-(6-azido-6-deoxy)-β-cyclodextrin and alkyne-terminated CNTs. The cationic amine groups on the CD units were produced by the subsequent reduction of the residual nitrogen groups. The chemical composition and morphology of CNT-CDs were analyzed by X-ray photoelectron spectroscopy, scanning electron microscopy, and thermogravimetric analysis. A N,N-dimethylformamide dispersion of CNT-CDs was cast on the surface of screen-printed carbon electrodes (SPCEs), and the electrochemical response was evaluated by cyclic voltammetry (CV) using [Fe(CN)6]3- as the redox probe. The ability of SPCE/CNT-CD to significantly enhance the electroactive properties of the redox probe was combined with a suitable recognition element (FcCAR) for Hg(II). The electrochemical response of the CNT-CD/FcCAR nanoassembly was evaluated by CV and electrochemical impedance spectroscopy. The analytical performance of the Hg(II) sensor was evaluated by differential pulsed voltammetry and chronoamperometry. The oxidative peak current showed a linear concentration dependence in the range of 1-100 nM, with a sensitivity of 0.12 μA/nM, a limit of detection of 0.50 nM, and a limit of quantification of 1 nM.
Collapse
Affiliation(s)
- Chiara Abate
- Department
of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, Viale F. Stagno d’Alcontres 31, Messina 98166, Italy
| | - Giulia Neri
- Department
of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, Viale F. Stagno d’Alcontres 31, Messina 98166, Italy
| | - Angela Scala
- Department
of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, Viale F. Stagno d’Alcontres 31, Messina 98166, Italy
| | - Placido Giuseppe Mineo
- Department
of Chemical Sciences, University of Catania, Viale A. Doria 6, Catania 95125, Italy
| | - Enza Fazio
- Department
of Mathematical and Computational Sciences, Physical Sciences and
Earth Sciences, University of Messina, Viale F. Stagno d’Alcontres
31, Messina 98166, Italy
| | - Antonino Mazzaglia
- National
Council of Research, Institute for the Study of Nanostructured Materials
(CNR-ISMN), URT of Messina c/o Department of Chemical, Biological,
Pharmaceutical and Environmental Sciences, University of Messina, Viale F. Stagno d’Alcontres 31, Messina 98166, Italy
| | - Alex Fragoso
- Inferfibio
Research Group, Departament d’Enginyeria Qúmica, Universitat Rovira i Virgili, Avinguda Päsos Catalans 26, Tarragona 43007, Spain
| | - Ottavia Giuffrè
- Department
of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, Viale F. Stagno d’Alcontres 31, Messina 98166, Italy
| | - Claudia Foti
- Department
of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, Viale F. Stagno d’Alcontres 31, Messina 98166, Italy
| | - Anna Piperno
- Department
of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, Viale F. Stagno d’Alcontres 31, Messina 98166, Italy
| |
Collapse
|
29
|
Zhang Y, Li H, Guo Z, Wang X, Zhou N. Immobilization-free electrochemical homogeneous aptasensor for highly sensitive detection of carcinoembryonic antigen by dual amplification strategy. Anal Chim Acta 2023; 1274:341586. [PMID: 37455072 DOI: 10.1016/j.aca.2023.341586] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2023] [Revised: 06/13/2023] [Accepted: 07/03/2023] [Indexed: 07/18/2023]
Abstract
Electrochemical aptasensor has been widely studied, while its practical application is limited by the unavoidable variations of aptamer loading densities and low signal amplification efficiency. To overcome these restrictions, an immobilization-free and label-free electrochemical homogeneous aptasensor was constructed for carcinoembryonic antigen (CEA) assay by combining RecJf exonuclease-mediated target cycling strategy and rolling circle amplification technology. In this system, the pre-immobilization of aptamers or other relevant signal elements on the electrode substrate is no longer necessary, thus the electrochemical homogeneous aptasensor shows good versatility on different transducers. Moreover, the whole recognition and signal amplification process are activated instantaneously by a non-professional operation of the solution mixture. This strategy can not only increase the stability (95.1% after 30 days of storage) and reproducibility (2.12% among five independent electrodes), but also further improve the sensitivity (detection limit of fg mL-1 level) due to the free target recognition and dual signal amplification in the homogeneous solution phase. The proposed immobilization-free electrochemical homogeneous aptasensors on different electrode substrates both achieve satisfactory results in actual sample tests, which has the potential for commercial applications and the establishment of other target platforms in the future.
Collapse
Affiliation(s)
- Yuting Zhang
- The Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi, 214122, China
| | - Hui Li
- The Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi, 214122, China
| | - Zongkang Guo
- The Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi, 214122, China
| | - Xiaoli Wang
- The Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi, 214122, China
| | - Nandi Zhou
- The Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi, 214122, China.
| |
Collapse
|
30
|
Qi H, Wang Z, Li H, Li F. Directionally In Situ Self-Assembled Iridium(III)-Polyimine Complex-Encapsulated Metal-Organic Framework Two-Dimensional Nanosheet Electrode To Boost Electrochemiluminescence Sensing. Anal Chem 2023; 95:12024-12031. [PMID: 37526583 DOI: 10.1021/acs.analchem.3c01882] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/02/2023]
Abstract
Manufacturing electrochemiluminescence (ECL) electrodes to detect analytes with high performance in the aqueous phase for water-insoluble metal complexes is a great challenge. Here, a directional self-assembling avenue for in situ fabricating iridium(III)-polyimine complex-encapsulated metal-organic framework (MOF) two-dimensional electrode Hf-MOF/Ir2PD/APS/ITO is developed. The electrode displayed bright red ECL emission with high stability in the aqueous phase and specific adsorption toward ssDNA against dsDNA and mNs. That is to say, a "high-performance and multifunctional ECL electrode" is presented and explored for sensitive detection of acetamiprid (Ace) with a limit of detection of 0.0025 nM, where Ace-aptamer recognition-switched Exonuclease III-mediated digestion to make large numbers of Fc-labeled ssDNA transform into Fc-mNs. Furthermore, the proposed method was triumphantly employed to monitor the change in the residual concentration of Ace in pakchoi. This work breaks through the bottleneck of metal complex-based ECL emission in organic solvents and provides a novel strategy to develop high-performance ECL sensors.
Collapse
Affiliation(s)
- Hongjie Qi
- College of Chemistry and Pharmaceutical Sciences, Qingdao Agricultural University, Qingdao 266109, PR China
- College of Chemistry and Molecular Engineering, Qingdao University of Science and Technology, Qingdao 266042, PR China
| | - Zhixin Wang
- College of Chemistry and Pharmaceutical Sciences, Qingdao Agricultural University, Qingdao 266109, PR China
| | - Haiyin Li
- College of Chemistry and Pharmaceutical Sciences, Qingdao Agricultural University, Qingdao 266109, PR China
- Key Laboratory of Medicinal Chemistry and Molecular Diagnosis of the Ministry of Education, Key Laboratory of Analytical Science and Technology of Hebei Province, College of Chemistry and Materials Science, Hebei University, Baoding 071002 Hebei, PR China
| | - Feng Li
- College of Chemistry and Pharmaceutical Sciences, Qingdao Agricultural University, Qingdao 266109, PR China
| |
Collapse
|
31
|
Deng D, Chang Y, Liu W, Ren M, Xia N, Hao Y. Advancements in Biosensors Based on the Assembles of Small Organic Molecules and Peptides. BIOSENSORS 2023; 13:773. [PMID: 37622859 PMCID: PMC10452798 DOI: 10.3390/bios13080773] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/28/2023] [Revised: 07/21/2023] [Accepted: 07/27/2023] [Indexed: 08/26/2023]
Abstract
Over the past few decades, molecular self-assembly has witnessed tremendous progress in a variety of biosensing and biomedical applications. In particular, self-assembled nanostructures of small organic molecules and peptides with intriguing characteristics (e.g., structure tailoring, facile processability, and excellent biocompatibility) have shown outstanding potential in the development of various biosensors. In this review, we introduced the unique properties of self-assembled nanostructures with small organic molecules and peptides for biosensing applications. We first discussed the applications of such nanostructures in electrochemical biosensors as electrode supports for enzymes and cells and as signal labels with a large number of electroactive units for signal amplification. Secondly, the utilization of fluorescent nanomaterials by self-assembled dyes or peptides was introduced. Thereinto, typical examples based on target-responsive aggregation-induced emission and decomposition-induced fluorescent enhancement were discussed. Finally, the applications of self-assembled nanomaterials in the colorimetric assays were summarized. We also briefly addressed the challenges and future prospects of biosensors based on self-assembled nanostructures.
Collapse
Affiliation(s)
- Dehua Deng
- College of Chemistry and Chemical Engineering, Anyang Normal University, Anyang 455000, China
| | - Yong Chang
- College of Chemistry and Chemical Engineering, Anyang Normal University, Anyang 455000, China
| | - Wenjing Liu
- College of Chemistry and Chemical Engineering, Anyang Normal University, Anyang 455000, China
| | - Mingwei Ren
- College of Chemistry and Chemical Engineering, Anyang Normal University, Anyang 455000, China
| | - Ning Xia
- College of Chemistry and Chemical Engineering, Anyang Normal University, Anyang 455000, China
| | - Yuanqiang Hao
- School of Chemistry and Chemical Engineering, Hunan University of Science and Technology, Xiangtan 411201, China
| |
Collapse
|
32
|
Cui J, Sun R, Zhao X, Zhao M, Zhang X, Li Y, Wang L, Shi C, Ma C. A homogeneous hybridization magnetic biosensor based on electric field assistance for ultrafast nucleic acid detection. ANALYTICAL METHODS : ADVANCING METHODS AND APPLICATIONS 2023. [PMID: 37379082 DOI: 10.1039/d3ay00548h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/29/2023]
Abstract
Electrochemical biosensing is a sensitive strategy widely used in the field of nucleic acid detection. However, electrochemical biosensors generally involve time-consuming and labor-intensive probe immobilization processes. In this study, an electrochemical DNA biosensor based on homogeneous hybridization in solution was designed for nucleic acid detection without probe immobilization, which is different from most biosensors. The capture probe, detection probe, and target DNA were hybridized rapidly under an electric field to form a "sandwich" structure within 90 s, and the "sandwich" hybrid could be specifically coupled to streptavidin-modified magnetic beads within 5 min. Finally, the magnetic beads were enriched by using polypyrrole (PPy)/carbon nanotube (CNT)-modified magnetic electrodes and the signal was detected by differential pulse voltammetry (DPV). The magnetic biosensor constructed in this study could detect targets over a good linear dynamic range spanning 100 pM to 100 nM in 400 s, while those involving conventional hybridization methods always take 2 h or more. Because of the specific binding of streptavidin and biotin, this strategy showed high specificity. Taken together, the homogenous hybridization magnetic biosensor constructed with electric field assistance presents a potential diagnostic method for rapid DNA detection and provides a new idea for rapid nucleic acid detection in clinical practice.
Collapse
Affiliation(s)
- Jinling Cui
- Shandong Provincial Key Laboratory of Biochemical Engineering, Qingdao Nucleic Acid Rapid Detection Engineering Research Center, College of Marine Science and Biological Engineering, Qingdao University of Science and Technology, Qingdao, 266042, PR China.
- College of Chemistry and Molecular Engineering, State Key Laboratory Base of Eco-Chemical Engineering, International Science and Technology Cooperation Base of Eco-chemical Engineering and Green Manufacturing, Qingdao University of Science and Technology, Qingdao 266042, China
| | - Ritong Sun
- Shandong Provincial Key Laboratory of Biochemical Engineering, Qingdao Nucleic Acid Rapid Detection Engineering Research Center, College of Marine Science and Biological Engineering, Qingdao University of Science and Technology, Qingdao, 266042, PR China.
| | - Xiaoli Zhao
- Shandong Provincial Key Laboratory of Biochemical Engineering, Qingdao Nucleic Acid Rapid Detection Engineering Research Center, College of Marine Science and Biological Engineering, Qingdao University of Science and Technology, Qingdao, 266042, PR China.
| | - Mingyuan Zhao
- Shandong Provincial Key Laboratory of Biochemical Engineering, Qingdao Nucleic Acid Rapid Detection Engineering Research Center, College of Marine Science and Biological Engineering, Qingdao University of Science and Technology, Qingdao, 266042, PR China.
| | - Xiaojun Zhang
- Shandong Provincial Key Laboratory of Biochemical Engineering, Qingdao Nucleic Acid Rapid Detection Engineering Research Center, College of Marine Science and Biological Engineering, Qingdao University of Science and Technology, Qingdao, 266042, PR China.
| | - Yong Li
- Shandong Provincial Key Laboratory of Biochemical Engineering, Qingdao Nucleic Acid Rapid Detection Engineering Research Center, College of Marine Science and Biological Engineering, Qingdao University of Science and Technology, Qingdao, 266042, PR China.
| | - Lei Wang
- College of Chemistry and Molecular Engineering, State Key Laboratory Base of Eco-Chemical Engineering, International Science and Technology Cooperation Base of Eco-chemical Engineering and Green Manufacturing, Qingdao University of Science and Technology, Qingdao 266042, China
| | - Chao Shi
- Qingdao Nucleic Acid Rapid Testing International Science and Technology Cooperation Base, College of Life Sciences, Department of Pathogenic Biology, School of Basic Medicine, The Clinical Laboratory Department of the Affiliated Hospital of Qingdao University, Qingdao University, Qingdao, 266071, PR China
| | - Cuiping Ma
- Shandong Provincial Key Laboratory of Biochemical Engineering, Qingdao Nucleic Acid Rapid Detection Engineering Research Center, College of Marine Science and Biological Engineering, Qingdao University of Science and Technology, Qingdao, 266042, PR China.
| |
Collapse
|
33
|
Rahn KL, Peramune U, Zhang T, Anand RK. Label-Free Electrochemical Methods for Disease Detection. ANNUAL REVIEW OF ANALYTICAL CHEMISTRY (PALO ALTO, CALIF.) 2023; 16:49-69. [PMID: 36854209 DOI: 10.1146/annurev-anchem-091622-085754] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Label-free electrochemical biosensing leverages the advantages of label-free techniques, low cost, and fewer user steps, with the sensitivity and portability of electrochemical analysis. In this review, we identify four label-free electrochemical biosensing mechanisms: (a) blocking the electrode surface, (b) allowing greater access to the electrode surface, (c) changing the intercalation or electrostatic affinity of a redox probe to a biorecognition unit, and (d) modulating ion or electron transport properties due to conformational and surface charge changes. Each mechanism is described, recent advancements are summarized, and relative advantages and disadvantages of the techniques are discussed. Furthermore, two avenues for gaining further diagnostic information from label-free electrochemical biosensors, through multiplex analysis and incorporating machine learning, are examined.
Collapse
Affiliation(s)
- Kira L Rahn
- Department of Chemistry, Colorado State University, Fort Collins, Colorado, USA
- Department of Chemistry, Iowa State University, Ames, Iowa, USA;
| | - Umesha Peramune
- Department of Chemistry, Iowa State University, Ames, Iowa, USA;
| | - Tianyi Zhang
- Department of Chemistry, Iowa State University, Ames, Iowa, USA;
| | - Robbyn K Anand
- Department of Chemistry, Iowa State University, Ames, Iowa, USA;
| |
Collapse
|
34
|
Xia N, Cheng J, Tian L, Zhang S, Wang Y, Li G. Hybridization Chain Reaction-Based Electrochemical Biosensors by Integrating the Advantages of Homogeneous Reaction and Heterogeneous Detection. BIOSENSORS 2023; 13:543. [PMID: 37232904 PMCID: PMC10216504 DOI: 10.3390/bios13050543] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/02/2023] [Revised: 04/27/2023] [Accepted: 05/10/2023] [Indexed: 05/27/2023]
Abstract
The conventional hybridization chain reaction (HCR)-based electrochemical biosensors usually require the immobilization of probes on the electrode surface. This will limit the applications of biosensors due to the shortcomings of complex immobilization processes and low HCR efficiency. In this work, we proposed astrategy for the design of HCR-based electrochemical biosensors by integrating the advantages of homogeneous reaction and heterogeneous detection. Specifically, the targets triggered the autonomous cross-opening and hybridization oftwobiotin-labeled hairpin probes to form long-nicked dsDNA polymers. The HCR products with many biotin tags were then captured by a streptavidin-covered electrode, thus allowing for the attachment of streptavidin-conjugated signal reporters through streptavidin-biotin interactions. By employing DNA and microRNA-21 as the model targets and glucose oxidase as the signal reporter, the analytical performances of the HCR-based electrochemical biosensors were investigated. The detection limits of this method were found to be 0.6 fM and 1 fM for DNA and microRNA-21, respectively. The proposed strategy exhibited good reliability for target analysis in serum and cellular lysates. The strategy can be used to develop various HCR-based biosensors for a wide range of applications because sequence-specific oligonucleotides exhibit high binding affinity to a series of targets. In light of the high stability and commercial availability of streptavidin-modified materials, the strategy can be used for the design of different biosensors by changing the signal reporter and/or the sequence of hairpin probes.
Collapse
Affiliation(s)
- Ning Xia
- College of Chemistry and Chemical Engineering, Anyang Normal University, Anyang 455000, China
| | | | | | | | | | | |
Collapse
|
35
|
A novel detection of MicroRNA based on homogeneous electrochemical sensor with enzyme-assisted signal amplification. Talanta 2023; 256:124263. [PMID: 36681037 DOI: 10.1016/j.talanta.2023.124263] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2022] [Revised: 01/06/2023] [Accepted: 01/09/2023] [Indexed: 01/13/2023]
Abstract
Rapid and sensitive detection of microRNAs is of great importance in biological researches and cancer diagnosis. Herein, we proposed a novel homogeneous electrochemical sensor to detect microRNA-21 (miRNA-21) using functionalized magnetic nanoparticles combined with enzyme-assisted signal amplification. The biotinylated capture probe (CP) labeled magnetic nanoparticles can capture miRNA-21 and introduce streptavidin-conjugated hydroxyapatite (HAP) nanoparticles. In the presence of miRNA-21, hybridization between RNA and DNA results in the formation of RNA/DNA duplexes, and then duplex-specific nuclease (DSN) cleave the duplexes to digest the capture chain and release the miRNA-21 in a loop. Meanwhile, the HAP nanoparticles strip from the magnetic nanoparticles and electrochemical signal by the reaction of HAP with molybdate is changed. The current variation before and after incubation with miRNA-21 is linearly correlated with the miRNA-21 concentration between 1 aM and 1 pM with a low detection limit (LOD) of 0.27 aM. Remarkably, the expression of miRNA-21 in human serum and different cell lysate was successfully performed, which fully demonstrates the great practical potentials in biomedical diagnostics and clinical therapeutics.
Collapse
|
36
|
Pan HJ, Gong YC, Cao WQ, Zhang ZH, Jia LP, Zhang W, Shang L, Li XJ, Xue QW, Wang HS, Ma RN. Fascinating Immobilization-Free Electrochemical Immunosensing Strategy Based on the Cooperation of Buoyancy and Magnetism. Anal Chem 2023; 95:7336-7343. [PMID: 37129510 DOI: 10.1021/acs.analchem.3c00485] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/03/2023]
Abstract
Rapid and accurate detection of biomolecules is of vital importance for the diagnosis of disease and for performing timely treatments. The point-of-care analysis of cancer biomarkers in the blood with low cost and easy processing is still challenging. Herein, an advanced and robust strategy, which integrates the buoyant recognition probe with the magnetic reporter probe in one solution, was first proposed for immobilization-free electrochemical immunosensing. The tumor marker of alpha fetoprotein (AFP) can be captured immune-buoyantly, and then a multifunctional magnetic reporter probe in pseudo-homogeneous solution was further captured to fulfill a sandwich-type immunoreaction. The residual magnetic reporter probe can be firmly and efficiently attracted on a magnetic glassy carbon electrode to fulfill the conversion of the target AFP amount into the residual magnetic electrochemical signal indicator. As a result, the electrochemical signal of methylene blue can accurately reflect the original level of target antigen AFP concentration. By integrating buoyancy-driven quasi-homogenous biorecognition with magnetism-mediated amplification and signal output, the proposed immobilization-free electrochemical immunosensing strategy displayed a wide range of linear response (100 fg mL-1 to 10 ng mL-1), low detection limit (14.52 fg mL-1), and good reproducibility, selectivity, and stability. The designed strategy manifests remarkable advantages including assay simplicity, rapidness, and high sensitivity owing to the in-solution instead of on-electrode biorecognition that could accelerate and improve the biorecognition efficiency. To the best of our knowledge, this is the first cooperation of buoyancy-driven biorecognition with magnetism-mediated signal output in bioanalysis, which would be attractive for rapid clinic biomedical application. Thus, this work provides a fresh perspective for convenient and favorable immobilization-free electrochemical biosensing of universal biomolecules.
Collapse
Affiliation(s)
- Hui-Jing Pan
- School of Chemistry and Chemical Engineering, Shandong Provincial Key Laboratory/Collaborative Innovation Center of Chemical Energy Storage, Liaocheng University, Liaocheng, Shandong 252059, P.R. China
| | - Ying-Chao Gong
- School of Chemistry and Chemical Engineering, Shandong Provincial Key Laboratory/Collaborative Innovation Center of Chemical Energy Storage, Liaocheng University, Liaocheng, Shandong 252059, P.R. China
| | - Wen-Qi Cao
- School of Chemistry and Chemical Engineering, Shandong Provincial Key Laboratory/Collaborative Innovation Center of Chemical Energy Storage, Liaocheng University, Liaocheng, Shandong 252059, P.R. China
| | - Zhi-Heng Zhang
- Oncology Department, Hospital of Traditional Chinese Medicine of Liaocheng City, Liaocheng, Shandong 252000, P.R. China
| | - Li-Ping Jia
- School of Chemistry and Chemical Engineering, Shandong Provincial Key Laboratory/Collaborative Innovation Center of Chemical Energy Storage, Liaocheng University, Liaocheng, Shandong 252059, P.R. China
| | - Wei Zhang
- School of Chemistry and Chemical Engineering, Shandong Provincial Key Laboratory/Collaborative Innovation Center of Chemical Energy Storage, Liaocheng University, Liaocheng, Shandong 252059, P.R. China
| | - Lei Shang
- School of Chemistry and Chemical Engineering, Shandong Provincial Key Laboratory/Collaborative Innovation Center of Chemical Energy Storage, Liaocheng University, Liaocheng, Shandong 252059, P.R. China
| | - Xiao-Jian Li
- School of Chemistry and Chemical Engineering, Shandong Provincial Key Laboratory/Collaborative Innovation Center of Chemical Energy Storage, Liaocheng University, Liaocheng, Shandong 252059, P.R. China
| | - Qing-Wang Xue
- School of Chemistry and Chemical Engineering, Shandong Provincial Key Laboratory/Collaborative Innovation Center of Chemical Energy Storage, Liaocheng University, Liaocheng, Shandong 252059, P.R. China
| | - Huai-Sheng Wang
- School of Chemistry and Chemical Engineering, Shandong Provincial Key Laboratory/Collaborative Innovation Center of Chemical Energy Storage, Liaocheng University, Liaocheng, Shandong 252059, P.R. China
| | - Rong-Na Ma
- School of Chemistry and Chemical Engineering, Shandong Provincial Key Laboratory/Collaborative Innovation Center of Chemical Energy Storage, Liaocheng University, Liaocheng, Shandong 252059, P.R. China
| |
Collapse
|
37
|
Theyagarajan K, Kim YJ. Recent Developments in the Design and Fabrication of Electrochemical Biosensors Using Functional Materials and Molecules. BIOSENSORS 2023; 13:bios13040424. [PMID: 37185499 PMCID: PMC10135976 DOI: 10.3390/bios13040424] [Citation(s) in RCA: 26] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/21/2023] [Revised: 03/21/2023] [Accepted: 03/24/2023] [Indexed: 05/17/2023]
Abstract
Electrochemical biosensors are superior technologies that are used to detect or sense biologically and environmentally significant analytes in a laboratory environment, or even in the form of portable handheld or wearable electronics. Recently, imprinted and implantable biosensors are emerging as point-of-care devices, which monitor the target analytes in a continuous environment and alert the intended users to anomalies. The stability and performance of the developed biosensor depend on the nature and properties of the electrode material or the platform on which the biosensor is constructed. Therefore, the biosensor platform plays an integral role in the effectiveness of the developed biosensor. Enormous effort has been dedicated to the rational design of the electrode material and to fabrication strategies for improving the performance of developed biosensors. Every year, in the search for multifarious electrode materials, thousands of new biosensor platforms are reported. Moreover, in order to construct an effectual biosensor, the researcher should familiarize themself with the sensible strategies behind electrode fabrication. Thus, we intend to shed light on various strategies and methodologies utilized in the design and fabrication of electrochemical biosensors that facilitate sensitive and selective detection of significant analytes. Furthermore, this review highlights the advantages of various electrode materials and the correlation between immobilized biomolecules and modified surfaces.
Collapse
Affiliation(s)
- K Theyagarajan
- Department of Electronic Engineering, Gachon University, Seongnam 13120, Republic of Korea
| | - Young-Joon Kim
- Department of Electronic Engineering, Gachon University, Seongnam 13120, Republic of Korea
| |
Collapse
|
38
|
Chen Y, Li G, Mu W, Wan X, Lu D, Gao J, Wen D. Nonenzymatic Sweat Wearable Uric Acid Sensor Based on N-Doped Reduced Graphene Oxide/Au Dual Aerogels. Anal Chem 2023; 95:3864-3872. [PMID: 36745592 DOI: 10.1021/acs.analchem.2c05613] [Citation(s) in RCA: 25] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Sweat wearable sensors enable noninvasive and real-time metabolite monitoring in human health management but lack accuracy and wearable applicability. The rational design of sensing electrode materials will be critical yet challenging. Herein, we report a dual aerogel-based nonenzymatic wearable sensor for the sensitive and selective detection of uric acid (UA) in human sweat. The three-dimensional porous dual-structural aerogels composed of Au nanowires and N-doped graphene nanosheets (noted as N-rGO/Au DAs) provide a large active surface, abundant access to the target, rapid electron transfer pathways, and a high intrinsic activity. Thus, a direct UA electro-oxidation is demonstrated at the N-rGO/Au DAs with a much higher activity than those at the individual gels (i.e., Au and N-rGO). Moreover, the resulting sensing chip displays high performance with a good anti-interfering ability, long-term stability, and excellent flexibility toward the UA detection. With the assistance of a wireless circuit, a wearable sensor is successfully applied in the real-time UA monitoring on human skin. The obtained result is comparable to that evaluated by high-performance liquid chromatography. This dual aerogel-based nonenzymatic biosensing platform not only holds considerable promise for the reliable sweat metabolite monitoring but also opens an avenue for metal-based aerogels as flexible electrodes in wearable sensing.
Collapse
Affiliation(s)
- Yao Chen
- State Key Laboratory of Solidification Processing, School of Materials Science and Engineering, Northwestern Polytechnical University and Shaanxi Joint Laboratory of Graphene, Xi'an710072, P. R. China
| | - Guanglei Li
- State Key Laboratory of Solidification Processing, School of Materials Science and Engineering, Northwestern Polytechnical University and Shaanxi Joint Laboratory of Graphene, Xi'an710072, P. R. China
| | - Wenjing Mu
- State Key Laboratory of Solidification Processing, School of Materials Science and Engineering, Northwestern Polytechnical University and Shaanxi Joint Laboratory of Graphene, Xi'an710072, P. R. China
| | - Xinhao Wan
- State Key Laboratory of Solidification Processing, School of Materials Science and Engineering, Northwestern Polytechnical University and Shaanxi Joint Laboratory of Graphene, Xi'an710072, P. R. China
| | - Danfeng Lu
- Faculty of Printing, Packaging Engineering, and Digital Media Technology, Xi'an University of Technology, Xi'an710048, P. R. China
| | - Jie Gao
- School of Life Sciences, Northwestern Polytechnical University, Xi'an710072, P. R. China
| | - Dan Wen
- State Key Laboratory of Solidification Processing, School of Materials Science and Engineering, Northwestern Polytechnical University and Shaanxi Joint Laboratory of Graphene, Xi'an710072, P. R. China
| |
Collapse
|
39
|
Zhang M, Liu H, Wang X. Cholesterol oxidase-immobilized MXene/sodium alginate/silica@ n-docosane hierarchical microcapsules for ultrasensitive electrochemical biosensing detection of cholesterol. J Mater Chem B 2023; 11:1506-1522. [PMID: 36655921 DOI: 10.1039/d2tb02367a] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Electrochemical biosensors usually suffer from the deterioration of detection sensitivity and determination accuracy in a high-temperature environment due to protein denaturation and inactivation of their biological recognition elements such as enzymes. Focusing on an effective solution to this crucial issue, we have developed cholesterol oxidase-immobilized MXene/sodium alginate/silica@n-docosane hierarchical microcapsules as a thermoregulatory electrode material for electrochemical biosensors to meet the requirement of ultrasensitive detection of cholesterol at high temperature. The microcapsules were first fabricated by microencapsulating n-docosane as a phase change material (PCM) in a silica shell, followed by depositing a biocompatible sodium alginate layer, wrapping with electroactive MXene nanosheets and then immobilizing cholesterol oxidase as a biological recognition element for electrochemical biosensing. The fabricated composites not only exhibited a layer-by-layer hierarchical microstructure with the desired chemical and biological components, but also obtained a high latent-heat capacity of over 133 J g-1 for thermal management through reversible phase transitions of its PCM core. A bare glassy carbon electrode was modified with the developed composites to serve for the cholesterol biosensor. This enables the modified electrode to obtain an in situ thermoregulatory ability to regulate the microenvironmental temperature surrounding the electrode, effectively preventing the protein denaturation of cholesterol oxidase and minimizing heat impact on biosensing performance. Compared to conventional cholesterol biosensors without a PCM, the developed biosensor achieved a higher sensitivity of 4.63 μA μM-1 cm-2 and a lower limit of detection of 0.081 μM at high temperature, providing highly accurate and reliable detection of cholesterol for real biological samples over a wide temperature range.
Collapse
Affiliation(s)
- Meng Zhang
- State Key Laboratory of Organic-Inorganic Composites, Beijing University of Chemical Technology, Beijing 100029, P. R. China.
| | - Huan Liu
- State Key Laboratory of Organic-Inorganic Composites, Beijing University of Chemical Technology, Beijing 100029, P. R. China.
| | - Xiaodong Wang
- State Key Laboratory of Organic-Inorganic Composites, Beijing University of Chemical Technology, Beijing 100029, P. R. China.
| |
Collapse
|
40
|
Zhao Y, Liu Q, Qin Y, Cao Y, Zhao J, Zhang K, Cao Y. Ordered Labeling-Facilitated Electrochemical Assay of Alpha-Fetoprotein-L3 Ratio for Diagnosing Hepatocellular Carcinoma. ACS APPLIED MATERIALS & INTERFACES 2023; 15:6411-6419. [PMID: 36693188 DOI: 10.1021/acsami.2c19231] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/17/2023]
Abstract
Serum alpha fetoprotein (AFP) is a "gold-standard" biomarker for the diagnosis of hepatocellular carcinoma (HCC). Available pieces of evidence suggest that the ratio of AFP-L3 isoform in the total AFP may provide more accurate prediction for the incidence of HCC. In this work, we design an electrochemical aptasensor for high-accuracy assay of AFP-L3 ratio based on differentiated labeling of AFP isoforms in an orderly fashion. Specifically, total AFP is first captured by an AFP aptamer-functionalized electrode and labeled with quantum dots-functionalized DNA probes via mild reduction. Then, AFP-L3 isoform that strongly binds to Lens culinaris agglutinin is labeled with silver nanoparticles after the exonuclease-catalyzed removal of DNA probes. By tracing the electrochemical responses of quantum dots and silver nanoparticles, respectively, the amounts of total AFP and AFP-L3 isoforms are determined and the AFP-L3 ratio is accordingly calculated to favor the accurate HCC diagnosis. Experimental results prove the high-accuracy assay of AFP-L3 ratio based on the AFP quantitation in a linear range of 0.0008-40 ng mL-1 and AFP-L3 quantitation in a linear range of 0.004-40 ng mL-1. The aptasensor also displays satisfactory specificity and good recoveries even in the complex serum samples. Therefore, the aptasensor may provide a valuable tool for the assay of the AFP-L3 ratio and have a great potential use in early warning of HCC for clinical application.
Collapse
Affiliation(s)
- Yingyan Zhao
- Center for Molecular Recognition and Biosensing, Shanghai Engineering Research Center of Organ Repair, School of Life Sciences, Shanghai University, Shanghai 200444, China
| | - Qi Liu
- Center for Molecular Recognition and Biosensing, Shanghai Engineering Research Center of Organ Repair, School of Life Sciences, Shanghai University, Shanghai 200444, China
- Department of Geriatric Gastroenterology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan 250021, China
| | - Yujia Qin
- Center for Molecular Recognition and Biosensing, Shanghai Engineering Research Center of Organ Repair, School of Life Sciences, Shanghai University, Shanghai 200444, China
| | - Yue Cao
- Center for Molecular Recognition and Biosensing, Shanghai Engineering Research Center of Organ Repair, School of Life Sciences, Shanghai University, Shanghai 200444, China
| | - Jing Zhao
- Center for Molecular Recognition and Biosensing, Shanghai Engineering Research Center of Organ Repair, School of Life Sciences, Shanghai University, Shanghai 200444, China
| | - Kai Zhang
- Department of Geriatric Gastroenterology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan 250021, China
- Department of Gastroenterology, Dongying People's Hospital, Dongying 257091, China
| | - Ya Cao
- Center for Molecular Recognition and Biosensing, Shanghai Engineering Research Center of Organ Repair, School of Life Sciences, Shanghai University, Shanghai 200444, China
| |
Collapse
|
41
|
Li M, Cheng J, Zheng H, Shi J, Shen Q. Label-free homogeneous electrochemical sensing strategy for microRNA detection. Microchem J 2022. [DOI: 10.1016/j.microc.2022.108097] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
|
42
|
Research progress on ratiometric electrochemical sensing of mycotoxins. J Electroanal Chem (Lausanne) 2022. [DOI: 10.1016/j.jelechem.2022.117115] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
|
43
|
Recent advances in the use of graphitic carbon nitride-based composites for the electrochemical detection of hazardous contaminants. Coord Chem Rev 2022. [DOI: 10.1016/j.ccr.2022.214708] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
|
44
|
Chang Y, Wang Y, Zhang J, Xing Y, Li G, Deng D, Liu L. Overview on the Design of Magnetically Assisted Electrochemical Biosensors. BIOSENSORS 2022; 12:bios12110954. [PMID: 36354462 PMCID: PMC9687741 DOI: 10.3390/bios12110954] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/02/2022] [Revised: 10/27/2022] [Accepted: 10/29/2022] [Indexed: 06/12/2023]
Abstract
Electrochemical biosensors generally require the immobilization of recognition elements or capture probes on the electrode surface. This may limit their practical applications due to the complex operation procedure and low repeatability and stability. Magnetically assisted biosensors show remarkable advantages in separation and pre-concentration of targets from complex biological samples. More importantly, magnetically assisted sensing systems show high throughput since the magnetic materials can be produced and preserved on a large scale. In this work, we summarized the design of electrochemical biosensors involving magnetic materials as the platforms for recognition reaction and target conversion. The recognition reactions usually include antigen-antibody, DNA hybridization, and aptamer-target interactions. By conjugating an electroactive probe to biomolecules attached to magnetic materials, the complexes can be accumulated near to an electrode surface with the aid of external magnet field, producing an easily measurable redox current. The redox current can be further enhanced by enzymes, nanomaterials, DNA assemblies, and thermal-cycle or isothermal amplification. In magnetically assisted assays, the magnetic substrates are removed by a magnet after the target conversion, and the signal can be monitored through stimuli-response release of signal reporters, enzymatic production of electroactive species, or target-induced generation of messenger DNA.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Lin Liu
- Correspondence: (D.D.); (L.L.)
| |
Collapse
|
45
|
Chang Y, Lou J, Yang L, Liu M, Xia N, Liu L. Design and Application of Electrochemical Sensors with Metal-Organic Frameworks as the Electrode Materials or Signal Tags. NANOMATERIALS (BASEL, SWITZERLAND) 2022; 12:nano12183248. [PMID: 36145036 PMCID: PMC9506444 DOI: 10.3390/nano12183248] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/01/2022] [Revised: 09/13/2022] [Accepted: 09/15/2022] [Indexed: 06/01/2023]
Abstract
Metal-organic frameworks (MOFs) with fascinating chemical and physical properties have attracted immense interest from researchers regarding the construction of electrochemical sensors. In this work, we review the most recent advancements of MOF-based electrochemical sensors for the detection of electroactive small molecules and biological macromolecules (e.g., DNA, proteins, and enzymes). The types and functions of MOF-based nanomaterials in terms of the design of electrochemical sensors are also discussed. Furthermore, the limitations and challenges of MOF-based electrochemical sensing devices are explored. This work should be invaluable for the development of MOF-based advanced sensing platforms.
Collapse
Affiliation(s)
- Yong Chang
- College of Chemistry and Chemical Engineering, Anyang Normal University, Anyang 455000, China
- School of Chemistry and Materials Engineering, Jiangnan University, Wuxi 214122, China
| | - Jiaxin Lou
- College of Chemistry and Chemical Engineering, Anyang Normal University, Anyang 455000, China
| | - Luyao Yang
- College of Chemistry and Chemical Engineering, Anyang Normal University, Anyang 455000, China
| | - Miaomiao Liu
- College of Chemistry and Chemical Engineering, Anyang Normal University, Anyang 455000, China
| | - Ning Xia
- College of Chemistry and Chemical Engineering, Anyang Normal University, Anyang 455000, China
| | - Lin Liu
- College of Chemistry and Chemical Engineering, Anyang Normal University, Anyang 455000, China
| |
Collapse
|
46
|
Homogeneous photoelectrochemical biosensor for sensitive detection of omethoate via ALP-mediated pesticide assay and Bi 2S 3@Bi 2Sn 2O 7 heterojunction as photoactive material. Anal Bioanal Chem 2022; 414:7277-7289. [PMID: 35984445 DOI: 10.1007/s00216-022-04279-x] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2022] [Revised: 08/01/2022] [Accepted: 08/09/2022] [Indexed: 11/01/2022]
Abstract
A simple homogeneous photoelectrochemical (PEC) sensing platform based on an alkaline phosphatase (ALP)-mediated pesticide assay was established for the sensitive detection of omethoate (OM). The Bi2S3@Bi2Sn2O7 heterojunction was used as a photoactive material to provide stable background photocurrent signals. The inhibition of OM on ALP and PEC determination was carried out in the homogeneous system. In the absence of OM, dephosphorylation of L-ascorbic acid 2-phosphate trisodium salt (AAP) was catalyzed by ALP to produce the enzyme-catalyzed product (L-ascorbic acid, AA). AA, as an electron donor, could capture photogenerated holes on the Bi2S3@Bi2Sn2O7 heterojunction, thus inhibiting the recombination of electron holes to achieve an increase of the photocurrent signal. When the OM was introduced, the enzyme activity of ALP was reduced due to the organophosphorus pesticides (OPs)-based enzyme inhibition, and the AA produced by catalytic hydrolysis was also reduced, thus reducing the photocurrent signal. Compared with the traditional PEC sensor for OPs, this homogeneous PEC sensor avoided immobilization procedures, covalent labeling, separation, and the steric hindrance effect caused by immobilized biomolecules, which achieved high recognition efficiency and caused a reduction in analysis time. Additionally, an ALP-mediated pesticide assay for the determination of OPs with a simplified experimental process further improved the stability and reproducibility of the PEC sensor. The PEC sensor showed high sensitivity to the target OM within a dynamic range of 0.05 ~ 500 ng mL-1, and the detection limit was 0.0146 ng mL-1. Additionally, the PEC biosensing system showed good selectivity and anti-interference ability, and exhibited a satisfactory result in spinach and mustard samples. A homogeneous PEC biosensor based on ALP inhibition strategy was constructed for OM detection in vegetable samples via Bi2S3@Bi2Sn2O7 heterojunction as the photoactive substrate material.
Collapse
|