1
|
Hu Q, Shi Y, Wang H, Bing L, Xu Z. Post-translational modifications of immune checkpoints: unlocking new potentials in cancer immunotherapy. Exp Hematol Oncol 2025; 14:37. [PMID: 40087690 PMCID: PMC11907956 DOI: 10.1186/s40164-025-00627-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2024] [Accepted: 02/27/2025] [Indexed: 03/17/2025] Open
Abstract
Immunotherapy targeting immune checkpoints has gained traction across various cancer types in clinical settings due to its notable advantages. Despite this, the overall response rates among patients remain modest, alongside issues of drug resistance and adverse effects. Hence, there is a pressing need to enhance immune checkpoint blockade (ICB) therapies. Post-translational modifications (PTMs) are crucial for protein functionality. Recent research emphasizes their pivotal role in immune checkpoint regulation, directly impacting the expression and function of these key proteins. This review delves into the influence of significant PTMs-ubiquitination, phosphorylation, and glycosylation-on immune checkpoint signaling. By targeting these modifications, novel immunotherapeutic strategies have emerged, paving the way for advancements in optimizing immune checkpoint blockade therapies in the future.
Collapse
Affiliation(s)
- Qiongjie Hu
- Department of Respiratory and Critical Care Medicine, The Fourth Affiliated Hospital of Zhejiang University School of Medicine, Yiwu, 322000, Zhejiang Province, China
- The Third Affiliated Hospital of Zhejiang, Chinese Meical University, Hangzhou, 310013, China
| | - Yueli Shi
- Department of Respiratory and Critical Care Medicine, The Fourth Affiliated Hospital of Zhejiang University School of Medicine, Yiwu, 322000, Zhejiang Province, China
- Zhejiang Key Laboratory of Precision Diagnosis and Treatment for Lung Cancer, Yiwu, 322000, China
| | - Huang Wang
- Department of Respiratory & Critical Care Medicine, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Liuwen Bing
- The Third Affiliated Hospital of Zhejiang, Chinese Meical University, Hangzhou, 310013, China.
| | - Zhiyong Xu
- Department of Respiratory and Critical Care Medicine, The Fourth Affiliated Hospital of Zhejiang University School of Medicine, Yiwu, 322000, Zhejiang Province, China.
- Zhejiang Key Laboratory of Precision Diagnosis and Treatment for Lung Cancer, Yiwu, 322000, China.
| |
Collapse
|
2
|
Shi J, Zhang Z, Chen HY, Yao Y, Ke S, Yu K, Shi J, Xiao X, He C, Xiang B, Sun Y, Gao M, Xing X, Yu H, Wang X, Yuan WC, Budiarto BR, Chen SY, Zhang T, Lee YR, Zhu H, Zhang J. Targeting the TRIM21-PD-1 axis potentiates immune checkpoint blockade and CAR-T cell therapy. Mol Ther 2025; 33:1073-1090. [PMID: 39905727 PMCID: PMC11897759 DOI: 10.1016/j.ymthe.2025.01.047] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2024] [Revised: 12/19/2024] [Accepted: 01/30/2025] [Indexed: 02/06/2025] Open
Abstract
Dysregulation of T cells is a major limitation for the clinical success of T cell-based cancer immunotherapies, such as immune checkpoint blockade and chimeric antigen receptor (CAR)-T cell therapy. Understanding the underlying mechanisms for regulating T cell functions can facilitate designing therapeutic strategies to improve immunotherapies. Here, we report that TRIM21 impairs CD8+ T cell activation and anti-tumor immunity. Mechanistically, TRIM21 catalyzes the K63-linked ubiquitination on programmed cell death-1 (PD-1) at K233, leading to stabilization of PD-1 through antagonizing its K48-linked ubiquitination and degradation. Thus, Trim21 knockout (KO) significantly decreases PD-1 expression and enhances the activation of cytotoxic CD8+ T cells, which sensitizes tumors to anti-CTLA-4 immunotherapy. Notably, Trim21 KO anti-CD19 CAR-T cells exhibit improved anti-tumor efficacy. These results reveal the molecular mechanism by which TRIM21-mediated K63-linked ubiquitination on PD-1 restrains the activation of CD8+ T cells, highlighting that targeting the TRIM21-PD-1 axis as a potential therapeutic strategy to potentiate cancer immunotherapy.
Collapse
Affiliation(s)
- Jie Shi
- Department of Radiation and Medical Oncology, Medical Research Institute, Frontier Science Center for Immunology and Metabolism, Hubei Key Laboratory of Tumor Biological Behavior, Hubei Provincial Clinical Research Center for Cancer, Zhongnan Hospital of Wuhan University, Wuhan University, Wuhan 430071, China; Taikang Center for Life and Medical Sciences, Wuhan University, Wuhan 430071, China
| | - Zijian Zhang
- Institute of Biology and Medicine, College of Life Sciences and Health, Wuhan University of Science and Technology, Wuhan 430065, China; Key Laboratory of Tropical Biological Resources of Ministry of Education, School of Pharmaceutical Sciences, Hainan University, Haikou 570228, China
| | - Hsin-Yi Chen
- Institute of Biomedical Sciences, Academia Sinica, Taipei 115201, Taiwan
| | - Yingmeng Yao
- Department of Radiation and Medical Oncology, Medical Research Institute, Frontier Science Center for Immunology and Metabolism, Hubei Key Laboratory of Tumor Biological Behavior, Hubei Provincial Clinical Research Center for Cancer, Zhongnan Hospital of Wuhan University, Wuhan University, Wuhan 430071, China; Taikang Center for Life and Medical Sciences, Wuhan University, Wuhan 430071, China
| | - Shanwen Ke
- Department of Radiation and Medical Oncology, Medical Research Institute, Frontier Science Center for Immunology and Metabolism, Hubei Key Laboratory of Tumor Biological Behavior, Hubei Provincial Clinical Research Center for Cancer, Zhongnan Hospital of Wuhan University, Wuhan University, Wuhan 430071, China; Taikang Center for Life and Medical Sciences, Wuhan University, Wuhan 430071, China
| | - Kechun Yu
- Department of Radiation and Medical Oncology, Medical Research Institute, Frontier Science Center for Immunology and Metabolism, Hubei Key Laboratory of Tumor Biological Behavior, Hubei Provincial Clinical Research Center for Cancer, Zhongnan Hospital of Wuhan University, Wuhan University, Wuhan 430071, China; Taikang Center for Life and Medical Sciences, Wuhan University, Wuhan 430071, China
| | - Jiangzhou Shi
- Institute of Biology and Medicine, College of Life Sciences and Health, Wuhan University of Science and Technology, Wuhan 430065, China
| | - Xiangling Xiao
- Department of Radiation and Medical Oncology, Medical Research Institute, Frontier Science Center for Immunology and Metabolism, Hubei Key Laboratory of Tumor Biological Behavior, Hubei Provincial Clinical Research Center for Cancer, Zhongnan Hospital of Wuhan University, Wuhan University, Wuhan 430071, China; Taikang Center for Life and Medical Sciences, Wuhan University, Wuhan 430071, China
| | - Chuan He
- Department of Radiation and Medical Oncology, Medical Research Institute, Frontier Science Center for Immunology and Metabolism, Hubei Key Laboratory of Tumor Biological Behavior, Hubei Provincial Clinical Research Center for Cancer, Zhongnan Hospital of Wuhan University, Wuhan University, Wuhan 430071, China; Taikang Center for Life and Medical Sciences, Wuhan University, Wuhan 430071, China
| | - Bolin Xiang
- Department of Radiation and Medical Oncology, Medical Research Institute, Frontier Science Center for Immunology and Metabolism, Hubei Key Laboratory of Tumor Biological Behavior, Hubei Provincial Clinical Research Center for Cancer, Zhongnan Hospital of Wuhan University, Wuhan University, Wuhan 430071, China; Taikang Center for Life and Medical Sciences, Wuhan University, Wuhan 430071, China
| | - Yishuang Sun
- Department of Radiation and Medical Oncology, Medical Research Institute, Frontier Science Center for Immunology and Metabolism, Hubei Key Laboratory of Tumor Biological Behavior, Hubei Provincial Clinical Research Center for Cancer, Zhongnan Hospital of Wuhan University, Wuhan University, Wuhan 430071, China; Taikang Center for Life and Medical Sciences, Wuhan University, Wuhan 430071, China
| | - Minling Gao
- Department of Radiation and Medical Oncology, Medical Research Institute, Frontier Science Center for Immunology and Metabolism, Hubei Key Laboratory of Tumor Biological Behavior, Hubei Provincial Clinical Research Center for Cancer, Zhongnan Hospital of Wuhan University, Wuhan University, Wuhan 430071, China; Taikang Center for Life and Medical Sciences, Wuhan University, Wuhan 430071, China
| | - Xixin Xing
- Department of Radiation and Medical Oncology, Medical Research Institute, Frontier Science Center for Immunology and Metabolism, Hubei Key Laboratory of Tumor Biological Behavior, Hubei Provincial Clinical Research Center for Cancer, Zhongnan Hospital of Wuhan University, Wuhan University, Wuhan 430071, China; Taikang Center for Life and Medical Sciences, Wuhan University, Wuhan 430071, China
| | - Haisheng Yu
- Department of Radiation and Medical Oncology, Medical Research Institute, Frontier Science Center for Immunology and Metabolism, Hubei Key Laboratory of Tumor Biological Behavior, Hubei Provincial Clinical Research Center for Cancer, Zhongnan Hospital of Wuhan University, Wuhan University, Wuhan 430071, China; Taikang Center for Life and Medical Sciences, Wuhan University, Wuhan 430071, China
| | - Xiyong Wang
- Department of Radiation and Medical Oncology, Medical Research Institute, Frontier Science Center for Immunology and Metabolism, Hubei Key Laboratory of Tumor Biological Behavior, Hubei Provincial Clinical Research Center for Cancer, Zhongnan Hospital of Wuhan University, Wuhan University, Wuhan 430071, China; Taikang Center for Life and Medical Sciences, Wuhan University, Wuhan 430071, China
| | - Wei-Chien Yuan
- Department of Life Sciences and Institute of Genome Sciences, National Yang Ming Chiao Tung University, Taipei 112304, Taiwan; Cancer and Immunology Research Center, National Yang Ming Chiao Tung University, Taipei 112304, Taiwan
| | - Bugi Ratno Budiarto
- Institute of Biomedical Sciences, Academia Sinica, Taipei 115201, Taiwan; Taiwan International Graduate Program in Molecular Medicine, National Yang Ming Chiao Tung University and Academia Sinica, Taipei 112304, Taiwan
| | - Shih-Yu Chen
- Institute of Biomedical Sciences, Academia Sinica, Taipei 115201, Taiwan
| | - Tongcun Zhang
- Institute of Biology and Medicine, College of Life Sciences and Health, Wuhan University of Science and Technology, Wuhan 430065, China
| | - Yu-Ru Lee
- Institute of Biomedical Sciences, Academia Sinica, Taipei 115201, Taiwan.
| | - Haichuan Zhu
- Institute of Biology and Medicine, College of Life Sciences and Health, Wuhan University of Science and Technology, Wuhan 430065, China.
| | - Jinfang Zhang
- Department of Radiation and Medical Oncology, Medical Research Institute, Frontier Science Center for Immunology and Metabolism, Hubei Key Laboratory of Tumor Biological Behavior, Hubei Provincial Clinical Research Center for Cancer, Zhongnan Hospital of Wuhan University, Wuhan University, Wuhan 430071, China; Taikang Center for Life and Medical Sciences, Wuhan University, Wuhan 430071, China.
| |
Collapse
|
3
|
Pellarin I, Dall'Acqua A, Favero A, Segatto I, Rossi V, Crestan N, Karimbayli J, Belletti B, Baldassarre G. Cyclin-dependent protein kinases and cell cycle regulation in biology and disease. Signal Transduct Target Ther 2025; 10:11. [PMID: 39800748 PMCID: PMC11734941 DOI: 10.1038/s41392-024-02080-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2024] [Revised: 10/16/2024] [Accepted: 11/13/2024] [Indexed: 01/18/2025] Open
Abstract
Cyclin Dependent Kinases (CDKs) are closely connected to the regulation of cell cycle progression, having been first identified as the kinases able to drive cell division. In reality, the human genome contains 20 different CDKs, which can be divided in at least three different sub-family with different functions, mechanisms of regulation, expression patterns and subcellular localization. Most of these kinases play fundamental roles the normal physiology of eucaryotic cells; therefore, their deregulation is associated with the onset and/or progression of multiple human disease including but not limited to neoplastic and neurodegenerative conditions. Here, we describe the functions of CDKs, categorized into the three main functional groups in which they are classified, highlighting the most relevant pathways that drive their expression and functions. We then discuss the potential roles and deregulation of CDKs in human pathologies, with a particular focus on cancer, the human disease in which CDKs have been most extensively studied and explored as therapeutic targets. Finally, we discuss how CDKs inhibitors have become standard therapies in selected human cancers and propose novel ways of investigation to export their targeting from cancer to other relevant chronic diseases. We hope that the effort we made in collecting all available information on both the prominent and lesser-known CDK family members will help in identify and develop novel areas of research to improve the lives of patients affected by debilitating chronic diseases.
Collapse
Affiliation(s)
- Ilenia Pellarin
- Division of Molecular Oncology, Centro di Riferimento Oncologico di Aviano (CRO) IRCCS, National Cancer Institute, Aviano, Italy
| | - Alessandra Dall'Acqua
- Division of Molecular Oncology, Centro di Riferimento Oncologico di Aviano (CRO) IRCCS, National Cancer Institute, Aviano, Italy
| | - Andrea Favero
- Division of Molecular Oncology, Centro di Riferimento Oncologico di Aviano (CRO) IRCCS, National Cancer Institute, Aviano, Italy
| | - Ilenia Segatto
- Division of Molecular Oncology, Centro di Riferimento Oncologico di Aviano (CRO) IRCCS, National Cancer Institute, Aviano, Italy
| | - Valentina Rossi
- Division of Molecular Oncology, Centro di Riferimento Oncologico di Aviano (CRO) IRCCS, National Cancer Institute, Aviano, Italy
| | - Nicole Crestan
- Division of Molecular Oncology, Centro di Riferimento Oncologico di Aviano (CRO) IRCCS, National Cancer Institute, Aviano, Italy
| | - Javad Karimbayli
- Division of Molecular Oncology, Centro di Riferimento Oncologico di Aviano (CRO) IRCCS, National Cancer Institute, Aviano, Italy
| | - Barbara Belletti
- Division of Molecular Oncology, Centro di Riferimento Oncologico di Aviano (CRO) IRCCS, National Cancer Institute, Aviano, Italy
| | - Gustavo Baldassarre
- Division of Molecular Oncology, Centro di Riferimento Oncologico di Aviano (CRO) IRCCS, National Cancer Institute, Aviano, Italy.
| |
Collapse
|
4
|
Qian X, Cai J, Zhang Y, Shen S, Wang M, Liu S, Meng X, Zhang J, Ye Z, Qiu S, Zhong X, Gao P. EPDR1 promotes PD-L1 expression and tumor immune evasion by inhibiting TRIM21-dependent ubiquitylation of IkappaB kinase-β. EMBO J 2024; 43:4248-4273. [PMID: 39152265 PMCID: PMC11445549 DOI: 10.1038/s44318-024-00201-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2023] [Revised: 06/30/2024] [Accepted: 07/22/2024] [Indexed: 08/19/2024] Open
Abstract
While immune checkpoint blockade (ICB) has shown promise for clinical cancer therapy, its efficacy has only been observed in a limited subset of patients and the underlying mechanisms regulating innate and acquired resistance to ICB of tumor cells remain poorly understood. Here, we identified ependymin-related protein 1 (EPDR1) as an important tumor-intrinsic regulator of PD-L1 expression and tumor immune evasion. Aberrant expression of EPDR1 in hepatocellular carcinoma is associated with immunosuppression. Mechanistically, EPDR1 binds to E3 ligase TRIM21 and disrupts its interaction with IkappaB kinase-b, suppressing its ubiquitylation and autophagosomal degradation and enhancing NF-κB-mediated transcriptional activation of PD-L1. Further, we validated through a mouse liver cancer model that EPDR1 mediates exhaustion of CD8+ T cells and promotes tumor progression. In addition, we observed a positive correlation between EPDR1 and PD-L1 expression in both human and mouse liver cancer samples. Collectively, our study reveals a previously unappreciated role of EPDR1 in orchestrating tumor immune evasion and cancer progression.
Collapse
Affiliation(s)
- Xiaoyu Qian
- School of Medicine, South China University of Technology, Guangzhou, China
| | - Jin Cai
- School of Medicine, South China University of Technology, Guangzhou, China
| | - Yi Zhang
- School of Medicine, South China University of Technology, Guangzhou, China
| | - Shengqi Shen
- Medical Research Institute, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Southern Medical University, Guangzhou, China
| | - Mingjie Wang
- School of Medicine, South China University of Technology, Guangzhou, China
| | - Shengzhi Liu
- School of Medicine, South China University of Technology, Guangzhou, China
| | - Xiang Meng
- School of Medicine, South China University of Technology, Guangzhou, China
| | - Junjiao Zhang
- School of Medicine, South China University of Technology, Guangzhou, China
| | - Zijian Ye
- School of Medicine, South China University of Technology, Guangzhou, China
| | - Shiqiao Qiu
- School of Medicine, South China University of Technology, Guangzhou, China
| | - Xiuying Zhong
- Medical Research Institute, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Southern Medical University, Guangzhou, China.
| | - Ping Gao
- School of Medicine, South China University of Technology, Guangzhou, China.
- Medical Research Institute, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Southern Medical University, Guangzhou, China.
| |
Collapse
|
5
|
Li Z, Yu X, Yuan Z, Li L, Yin P. New horizons in the mechanisms and therapeutic strategies for PD-L1 protein degradation in cancer. Biochim Biophys Acta Rev Cancer 2024; 1879:189152. [PMID: 38992509 DOI: 10.1016/j.bbcan.2024.189152] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2024] [Revised: 06/12/2024] [Accepted: 07/03/2024] [Indexed: 07/13/2024]
Abstract
Programmed death-ligand 1 (PD-L1) has become a crucial focus in cancer immunotherapy considering it is found in many different cells. Cancer cells enhance the suppressive impact of programmed death receptor 1 (PD-1) through elevating PD-L1 expression, which allows them to escape immune detection. Although there have been significant improvements, the effectiveness of anti-PD-1/PD-L1 treatment is still limited to a specific group of patients. An important advancement in cancer immunotherapy involves improving the PD-L1 protein degradation. This review thoroughly examined the processes by which PD-L1 breaks down, including the intracellular pathways of ubiquitination-proteasome and autophagy-lysosome. In addition, the analysis revealed changes that affect PD-L1 stability, such as phosphorylation and glycosylation. The significant consequences of these procedures on cancer immunotherapy and their potential role in innovative therapeutic approaches are emphasised. Our future efforts will focus on understanding new ways in which PD-L1 degradation is controlled and developing innovative treatments, such as proteolysis-targeting chimeras designed specifically to degrade PD-L1. It is crucial to have a thorough comprehension of these pathways in order to improve cancer immunotherapy strategies and hopefully improve therapeutic effectiveness.
Collapse
Affiliation(s)
- Zhi Li
- Interventional Cancer Institute of Chinese Integrative Medicine, Putuo Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai 200062, China; Department of General surgery, Hubei Provincial Clinical Research Center for Umbilical Cord Blood Hematopoietic Stem Cells, Taihe Hospital, Hubei University of Medicine, Shiyan 442000, China
| | - Xi Yu
- Interventional Cancer Institute of Chinese Integrative Medicine, Putuo Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai 200062, China
| | - Zeting Yuan
- Interventional Cancer Institute of Chinese Integrative Medicine, Putuo Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai 200062, China.
| | - Lei Li
- Shanghai Key Laboratory of Regulatory Biology, Institute of Biomedical Sciences, School of Life Sciences, East China Normal University, Shanghai 200241, China.
| | - Peihao Yin
- Interventional Cancer Institute of Chinese Integrative Medicine, Putuo Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai 200062, China.
| |
Collapse
|
6
|
Roozitalab G, Abedi B, Imani S, Farghadani R, Jabbarzadeh Kaboli P. Comprehensive assessment of TECENTRIQ® and OPDIVO®: analyzing immunotherapy indications withdrawn in triple-negative breast cancer and hepatocellular carcinoma. Cancer Metastasis Rev 2024; 43:889-918. [PMID: 38409546 DOI: 10.1007/s10555-024-10174-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/17/2023] [Accepted: 02/05/2024] [Indexed: 02/28/2024]
Abstract
Atezolizumab (TECENTRIQ®) and nivolumab (OPDIVO®) are both immunotherapeutic indications targeting programmed cell death 1 ligand 1 (PD-L1) and programmed cell death 1 (PD-1), respectively. These inhibitors hold promise as therapies for triple-negative breast cancer (TNBC) and hepatocellular carcinoma (HCC) and have demonstrated encouraging results in reducing the progression and spread of tumors. However, due to their adverse effects and low response rates, the US Food and Drug Administration (FDA) has withdrawn the approval of atezolizumab in TNBC and nivolumab in HCC treatment. The withdrawals of atezolizumab and nivolumab have raised concerns regarding their effectiveness and the ability to predict treatment responses. Therefore, the current study aims to investigate the immunotherapy withdrawal of PD-1/PD-L1 inhibitors, specifically atezolizumab for TNBC and nivolumab for HCC. This study will examine both the structural and clinical aspects. This review provides detailed insights into the structure of the PD-1 receptor and its ligands, the interactions between PD-1 and PD-L1, and their interactions with the withdrawn antibodies (atezolizumab and nivolumab) as well as PD-1 and PD-L1 modifications. In addition, this review further assesses these antibodies in the context of TNBC and HCC. It seeks to elucidate the factors that contribute to diverse responses to PD-1/PD-L1 therapy in different types of cancer and propose approaches for predicting responses, mitigating the potential risks linked to therapy withdrawals, and optimizing patient outcomes. By better understanding the mechanisms underlying responses to PD-1/PD-L1 therapy and developing strategies to predict these responses, it is possible to create more efficient treatments for TNBC and HCC.
Collapse
Affiliation(s)
- Ghazaal Roozitalab
- Noncommunicable Diseases Research Center, Fasa University of Medical Sciences, Fasa, Iran
| | - Behnaz Abedi
- Department of Basic Sciences, Faculty of Veterinary Medicine, University of Tabriz, Tabriz, Iran
| | - Saber Imani
- Shulan International Medical College, Zhejiang Shuren University, Hangzhou, Zhejiang, People's Republic of China
| | - Reyhaneh Farghadani
- Jeffrey Cheah School of Medicine and Health Sciences, Monash University Malaysia, Jalan Lagoon Selatan, Bandar Sunway, 47500, Subang Jaya, Selangor Darul Ehsan, Malaysia.
| | - Parham Jabbarzadeh Kaboli
- Graduate Institute of Biomedical Sciences, Institute of Biochemistry and Molecular Biology, Research Center for Cancer Biology, Cancer Biology and Precision Therapeutics Center, and Center for Molecular Medicine, China Medical University, Taichung, 406, Taiwan.
| |
Collapse
|
7
|
Hong Z, Liu F, Zhang Z. Ubiquitin modification in the regulation of tumor immunotherapy resistance mechanisms and potential therapeutic targets. Exp Hematol Oncol 2024; 13:91. [PMID: 39223632 PMCID: PMC11367865 DOI: 10.1186/s40164-024-00552-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2024] [Accepted: 08/05/2024] [Indexed: 09/04/2024] Open
Abstract
Although immune checkpoint-based cancer immunotherapy has shown significant efficacy in various cancers, resistance still limits its therapeutic effects. Ubiquitination modification is a mechanism that adds different types of ubiquitin chains to proteins, mediating protein degradation or altering their function, thereby affecting cellular signal transduction. Increasing evidence suggests that ubiquitination modification plays a crucial role in regulating the mechanisms of resistance to cancer immunotherapy. Drugs targeting ubiquitination modification pathways have been shown to inhibit tumor progression or enhance the efficacy of cancer immunotherapy. This review elaborates on the mechanisms by which tumor cells, immune cells, and the tumor microenvironment mediate resistance to cancer immunotherapy and the details of how ubiquitination modification regulates these mechanisms, providing a foundation for enhancing the efficacy of cancer immunotherapy by intervening in ubiquitination modification.
Collapse
Affiliation(s)
- Zihang Hong
- Hepatic Surgery Center, Tongji Hospital, Tongji Medical College, Hubei Province for the Clinical Medicine Research Center of Hepatic Surgery, Huazhong University of Science and Technology, 1095 Jiefang Avenue, Wuhan, 430030, Hubei, China
- Hubei Key Laboratory of Hepato-Pancreato-Biliary Diseases, Wuhan, 430030, Hubei, China
- Key Laboratory of Organ Transplantation, NHC Key Laboratory of Organ Transplantation, Key Laboratory of Organ Transplantation, Ministry of Education, Chinese Academy of Medical Sciences, Wuhan, China
| | - Furong Liu
- Hepatic Surgery Center, Tongji Hospital, Tongji Medical College, Hubei Province for the Clinical Medicine Research Center of Hepatic Surgery, Huazhong University of Science and Technology, 1095 Jiefang Avenue, Wuhan, 430030, Hubei, China.
- Hubei Key Laboratory of Hepato-Pancreato-Biliary Diseases, Wuhan, 430030, Hubei, China.
- Key Laboratory of Organ Transplantation, NHC Key Laboratory of Organ Transplantation, Key Laboratory of Organ Transplantation, Ministry of Education, Chinese Academy of Medical Sciences, Wuhan, China.
| | - Zhanguo Zhang
- Hepatic Surgery Center, Tongji Hospital, Tongji Medical College, Hubei Province for the Clinical Medicine Research Center of Hepatic Surgery, Huazhong University of Science and Technology, 1095 Jiefang Avenue, Wuhan, 430030, Hubei, China.
- Hubei Key Laboratory of Hepato-Pancreato-Biliary Diseases, Wuhan, 430030, Hubei, China.
- Key Laboratory of Organ Transplantation, NHC Key Laboratory of Organ Transplantation, Key Laboratory of Organ Transplantation, Ministry of Education, Chinese Academy of Medical Sciences, Wuhan, China.
| |
Collapse
|
8
|
Kara-Ali GH, Cano L, Dion S, Imerzoukene G, Hamon A, Simoes Eugénio M, Piquet-Pellorce C, Ghukasyan G, Samson M, Le Seyec J, Dimanche-Boitrel MT. Trim21 deficiency in mice increases HCC carcinogenesis in a NASH context and is associated with immune checkpoint upregulation. Int J Cancer 2024; 154:1999-2013. [PMID: 38308587 DOI: 10.1002/ijc.34869] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2023] [Revised: 12/04/2023] [Accepted: 01/11/2024] [Indexed: 02/05/2024]
Abstract
The global pandemic of metabolic diseases has increased the incidence of hepatocellular carcinoma (HCC) in the context of non-alcoholic steatohepatitis (NASH). The downregulation of the E3 ubiquitin ligase TRIM21 has been linked to poor prognosis in different cancers including HCC. In order to investigate the role of TRIM21 in liver cancer progression on NASH, Trim21+/+ and Trim21-/- male mice were injected with streptozotocin at the neonatal stage. The hypoinsulinemic mice were then fed with a high-fat high-cholesterol diet (HFHCD) for 4, 8 or 12 weeks. All mice developed NASH which systematically resulted in HCC progression. Interestingly, compared to the Trim21+/+ control mice, liver damage was worsened in Trim21-/- mice, with more HCC nodules found after 12 weeks on HFHCD. Immune population analysis in the spleen and liver revealed a higher proportion of CD4+PD-1+ and CD8+PD-1+ T cells in Trim21-/- mice. The liver and HCC tumors of Trim21-/- mice also exhibited an increase in the number of PD-L1+ and CD68+ PD-L1+ cells. Thus, TRIM21 limits the emergence of HCC nodules in mice with NASH by potentially restricting the expression of PD-1 in lymphocytes and PD-L1 in tumors.
Collapse
Affiliation(s)
- Ghania Hounana Kara-Ali
- EHESP, Irset (Institut de recherche en santé, environnement et travail)-UMR_S 1085, Univ. Rennes, Inserm, Rennes, France
| | - Luis Cano
- INRAE, CHU Pontchaillou, Inserm, UMR 1241 Numecan, Univ. Rennes, Rennes, France
| | - Sarah Dion
- EHESP, Irset (Institut de recherche en santé, environnement et travail)-UMR_S 1085, Univ. Rennes, Inserm, Rennes, France
| | - Ghiles Imerzoukene
- EHESP, Irset (Institut de recherche en santé, environnement et travail)-UMR_S 1085, Univ. Rennes, Inserm, Rennes, France
| | - Annaig Hamon
- EHESP, Irset (Institut de recherche en santé, environnement et travail)-UMR_S 1085, Univ. Rennes, Inserm, Rennes, France
| | - Mélanie Simoes Eugénio
- EHESP, Irset (Institut de recherche en santé, environnement et travail)-UMR_S 1085, Univ. Rennes, Inserm, Rennes, France
| | - Claire Piquet-Pellorce
- EHESP, Irset (Institut de recherche en santé, environnement et travail)-UMR_S 1085, Univ. Rennes, Inserm, Rennes, France
| | - Gevorg Ghukasyan
- Plateforme d'Histopathologie de Haute Précision (H2P2), Université de Rennes, Rennes, France
| | - Michel Samson
- EHESP, Irset (Institut de recherche en santé, environnement et travail)-UMR_S 1085, Univ. Rennes, Inserm, Rennes, France
| | - Jacques Le Seyec
- EHESP, Irset (Institut de recherche en santé, environnement et travail)-UMR_S 1085, Univ. Rennes, Inserm, Rennes, France
| | - Marie-Thérèse Dimanche-Boitrel
- EHESP, Irset (Institut de recherche en santé, environnement et travail)-UMR_S 1085, Univ. Rennes, Inserm, Rennes, France
| |
Collapse
|
9
|
Chen JL, Wu CY, Luo XY, Wang XY, Wang FM, Huang X, Yuan W, Guo Q. Down-regulation of KLRB1 is associated with increased cell growth, metastasis, poor prognosis, as well as a dysfunctional immune microenvironment in LUAD. Sci Rep 2024; 14:11782. [PMID: 38782996 PMCID: PMC11116539 DOI: 10.1038/s41598-024-60414-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2024] [Accepted: 04/23/2024] [Indexed: 05/25/2024] Open
Abstract
Killer cell lectin-like receptor B1 (KLRB1) is implicated in cancer progression and immunity. In this study, we aimed to evaluate the expression levels of KLRB1 in lung adenocarcinoma (LUAD) and analyze the relationship between KLRB1 expression levels, LUAD progression, and the tumor immune microenvironment. KLRB1 levels in LUAD were analyzed using data from the TCGA and XENA databases. Additionally, the diagnostic values of KLRB1 were analyzed in patients with LUAD. Survival and meta-analyses were employed to investigate the relationship between KLRB1 levels and other prognostic factors in patients with LUAD. Bioinformatics and cellular experiments were used to understand the functions and mechanisms of KLRB1. In addition, correlation analysis was used to investigate the relationship between KLRB1 levels and the immune microenvironment in LUAD. Reduced KLRB1 expression in LUAD was found to positively correlate with tumor size, distant metastasis, pathological stage, age, overall survival, diagnostic value, and disease-specific survival in patients with LUAD (P < 0.05). Conversely, increased KLRB1 expression was found to positively correlate with the overall survival and disease-specific survival in patients with LUAD (P < 0.05). We also found that the overexpression of KLRB1 can inhibit the proliferation, migration, and invasion of LUAD cells and promote apoptosis. KLRB1 was involved in immune cell differentiation, NF-kB, PD-L1, and PD-1 checkpoint pathways and others. Additionally, KLRB1 expression was linked to tumor purity, stromal, immune, and estimate scores, the levels of immune cells including B cells, CD8+ T cells, and CD4+ T cells, and immune cell markers in LUAD. Reduced KLRB1 expression has a significant positive correlation with diagnosis, poor prognosis, and immunity to cancer in patients with LUAD. KLRB1 inhibited cell proliferation and migration in patients with LUAD. These results suggest that KLRB1 may serve as a potential therapeutic target in patients with LUAD.
Collapse
Affiliation(s)
- Jiu-Ling Chen
- Department of Thoracic Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Chuang-Yan Wu
- Department of Thoracic Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Xiang-Yu Luo
- Department of Cardiothoracic Surgery, Taihe Hospital, Hubei University of Medicine, Shiyan, China
| | - Xue-Ying Wang
- Department of Basic Medicine, Hubei University of Medicine, Shiyan, China
| | - Fang-Ming Wang
- Department of Thoracic Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Xin Huang
- Department of Thoracic Surgery, People's Hospital of Dongxihu District, Wuhan, China.
| | - Wei Yuan
- Department of Basic Medicine, Hubei University of Medicine, Shiyan, China.
| | - Qiang Guo
- Department of Cardiothoracic Surgery, Taihe Hospital, Hubei University of Medicine, Shiyan, China.
| |
Collapse
|
10
|
Ren X, Wang L, Liu L, Liu J. PTMs of PD-1/PD-L1 and PROTACs application for improving cancer immunotherapy. Front Immunol 2024; 15:1392546. [PMID: 38638430 PMCID: PMC11024247 DOI: 10.3389/fimmu.2024.1392546] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2024] [Accepted: 03/22/2024] [Indexed: 04/20/2024] Open
Abstract
Immunotherapy has been developed, which harnesses and enhances the innate powers of the immune system to fight disease, particularly cancer. PD-1 (programmed death-1) and PD-L1 (programmed death ligand-1) are key components in the regulation of the immune system, particularly in the context of cancer immunotherapy. PD-1 and PD-L1 are regulated by PTMs, including phosphorylation, ubiquitination, deubiquitination, acetylation, palmitoylation and glycosylation. PROTACs (Proteolysis Targeting Chimeras) are a type of new drug design technology. They are specifically engineered molecules that target specific proteins within a cell for degradation. PROTACs have been designed and demonstrated their inhibitory activity against the PD-1/PD-L1 pathway, and showed their ability to degrade PD-1/PD-L1 proteins. In this review, we describe how PROTACs target PD-1 and PD-L1 proteins to improve the efficacy of immunotherapy. PROTACs could be a novel strategy to combine with radiotherapy, chemotherapy and immunotherapy for cancer patients.
Collapse
Affiliation(s)
- Xiaohui Ren
- Department of Respiratory Medicine, Shanxi Province Cancer Hospital/Shanxi Hospital Affiliated to Cancer Hospital, Chinese Academy of Medical Sciences/Cancer Hospital Affiliated to Shanxi Medical University, Taiyuan, Shanxi, China
| | - Lijuan Wang
- Department of Hospice Care, Shanxi Province Cancer Hospital/Shanxi Hospital Affiliated to Cancer Hospital, Chinese Academy of Medical Sciences/Cancer Hospital Affiliated to Shanxi Medical University, Taiyuan, Shanxi, China
| | - Likun Liu
- Shanxi Province Cancer Hospital/Shanxi Hospital Affiliated to Cancer Hospital, Chinese Academy of Medical Sciences/Cancer Hospital Affiliated to Shanxi Medical University, Taiyuan, Shanxi, China
| | - Juan Liu
- Department of Special Needs Medicine, Shanxi Province Cancer Hospital/Shanxi Hospital Affiliated to Cancer Hospital, Chinese Academy of Medical Sciences/Cancer Hospital Affiliated to Shanxi Medical University, Taiyuan, Shanxi, China
| |
Collapse
|
11
|
Zhang F, Jiang R, Sun S, Wu C, Yu Q, Awadasseid A, Wang J, Zhang W. Recent advances and mechanisms of action of PD-L1 degraders as potential therapeutic agents. Eur J Med Chem 2024; 268:116267. [PMID: 38422701 DOI: 10.1016/j.ejmech.2024.116267] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2023] [Revised: 02/01/2024] [Accepted: 02/18/2024] [Indexed: 03/02/2024]
Abstract
PD-L1 is an important immune checkpoint protein that can bind to T cells' PD-1 receptor, thereby promoting immune escape from tumors. In recent years, many researchers have developed strategies to degrade PD-L1 to improve the effect of immunotherapy. The study of degrading PD-L1 provides new opportunities for immunotherapy. Here, we mainly summarize and review the current active molecules and mechanisms that mediate the degradation of immature and mature PD-L1 during the post-translational modification stages, involving PD-L1 phosphorylation, glycosylation, palmitoylation, ubiquitination, and the autophagy-lysosomal process. This review expects that by degrading PD-L1 protein, we will not only gain a better understanding of oncogenic mechanisms involving tumor PD-L1 protein but also provide a new way to improve immunotherapy.
Collapse
Affiliation(s)
- Feng Zhang
- College of Pharmaceutical Science, Zhejiang University of Technology, Hangzhou, 310014, China; Institute of Drug Development & Chemical Biology, Zhejiang University of Technology, Hangzhou, 310014, China
| | - Ruiya Jiang
- College of Pharmaceutical Science, Zhejiang University of Technology, Hangzhou, 310014, China; Institute of Drug Development & Chemical Biology, Zhejiang University of Technology, Hangzhou, 310014, China
| | - Shishi Sun
- College of Pharmaceutical Science, Zhejiang University of Technology, Hangzhou, 310014, China; Institute of Drug Development & Chemical Biology, Zhejiang University of Technology, Hangzhou, 310014, China
| | - Caiyun Wu
- College of Pharmaceutical Science, Zhejiang University of Technology, Hangzhou, 310014, China; Institute of Drug Development & Chemical Biology, Zhejiang University of Technology, Hangzhou, 310014, China
| | - Qimeng Yu
- College of Pharmaceutical Science, Zhejiang University of Technology, Hangzhou, 310014, China; Institute of Drug Development & Chemical Biology, Zhejiang University of Technology, Hangzhou, 310014, China
| | - Annoor Awadasseid
- College of Pharmaceutical Science, Zhejiang University of Technology, Hangzhou, 310014, China; Institute of Drug Development & Chemical Biology, Zhejiang University of Technology, Hangzhou, 310014, China; Moganshan Institute, Zhejiang University of Technology, Deqing, China
| | - Jianwei Wang
- College of Pharmaceutical Science, Zhejiang University of Technology, Hangzhou, 310014, China; Institute of Drug Development & Chemical Biology, Zhejiang University of Technology, Hangzhou, 310014, China.
| | - Wen Zhang
- College of Pharmaceutical Science, Zhejiang University of Technology, Hangzhou, 310014, China; Institute of Drug Development & Chemical Biology, Zhejiang University of Technology, Hangzhou, 310014, China.
| |
Collapse
|
12
|
Kim SB, Hwang S, Cha JY, Lee HJ. Programmed Death Ligand 1 Regulatory Crosstalk with Ubiquitination and Deubiquitination: Implications in Cancer Immunotherapy. Int J Mol Sci 2024; 25:2939. [PMID: 38474186 DOI: 10.3390/ijms25052939] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2024] [Revised: 02/27/2024] [Accepted: 02/28/2024] [Indexed: 03/14/2024] Open
Abstract
Programmed death ligand 1 (PD-L1) plays a pivotal role in cancer immune evasion and is a critical target for cancer immunotherapy. This review focuses on the regulation of PD-L1 through the dynamic processes of ubiquitination and deubiquitination, which are crucial for its stability and function. Here, we explored the intricate mechanisms involving various E3 ubiquitin ligases and deubiquitinating enzymes (DUBs) that modulate PD-L1 expression in cancer cells. Specific ligases are discussed in detail, highlighting their roles in tagging PD-L1 for degradation. Furthermore, we discuss the actions of DUBs that stabilize PD-L1 by removing ubiquitin chains. The interplay of these enzymes not only dictates PD-L1 levels but also influences cancer progression and patient response to immunotherapies. Furthermore, we discuss the therapeutic implications of targeting these regulatory pathways and propose novel strategies to enhance the efficacy of PD-L1/PD-1-based therapies. Our review underscores the complexity of PD-L1 regulation and its significant impact on the tumor microenvironment and immunotherapy outcomes.
Collapse
Affiliation(s)
- Soon-Bin Kim
- Department of Health Sciences and Technology, GAIHST, Gachon University, Incheon 21999, Republic of Korea
| | - Soonjae Hwang
- Department of Biochemistry, Lee Gil Ya Cancer and Diabetes Institute, College of Medicine, Gachon University, Incheon 21999, Republic of Korea
| | - Ji-Young Cha
- Department of Health Sciences and Technology, GAIHST, Gachon University, Incheon 21999, Republic of Korea
- Department of Biochemistry, Lee Gil Ya Cancer and Diabetes Institute, College of Medicine, Gachon University, Incheon 21999, Republic of Korea
| | - Ho-Jae Lee
- Department of Health Sciences and Technology, GAIHST, Gachon University, Incheon 21999, Republic of Korea
- Department of Biochemistry, Lee Gil Ya Cancer and Diabetes Institute, College of Medicine, Gachon University, Incheon 21999, Republic of Korea
| |
Collapse
|
13
|
Tan J, Chen F, Wang J, Li J, Ouyang B, Li X, Li Y, Zhang W, Jiang Y. ALKBH5 promotes the development of lung adenocarcinoma by regulating the polarization of M2 macrophages through CDCA4. Gene 2024; 895:147975. [PMID: 37949419 DOI: 10.1016/j.gene.2023.147975] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2023] [Revised: 11/01/2023] [Accepted: 11/06/2023] [Indexed: 11/12/2023]
Abstract
OBJECTIVE Lung adenocarcinoma (LUAD) is the most common subtype of lung cancer, with high morbidity and mortality. N6-methyladenosine (m6A) is an important regulator of LUAD progression. Here, we investigated the potential biological functions of ALKBH5 (a m6A demethylated enzyme) and cell division cycle associated protein 4 (CDCA4) in the progression of LUAD. METHODS The expressions of CDCA4, METTL3, ALKBH5, FTO, YTHDC2 and YTHDC1 mRNA and proteins in LUAD and adjacent tissues, as well as NCI-H1299 and NCI-H157 cells were detected by RT-qPCR and western blot. Meanwhile, the role of ALKBH5 and CDCA4 in macrophage polarization was explored through tumor formation in Lewis lung carcinoma (LLC) mice and the co-culture system of NCI-H1299 and NCI-H157/THP-1 cells. Cell characterization was further analyzed. The expression of Ki-67 in tumor tissue was tested by immunohistochemistry. The scale of M1 and M2 macrophages was determined by flow cytometry. RESULTS CDCA4 was significantly overexpressed in NCI-H1299 and NCI-H157 cell lines compared with BEAS-2B cells. The fold enrichment of CDCA4 m6A level in the overexpression (oe)-METTL3 or short hairpin (sh)-ALKBH5 cells was enhanced. Overexpression of CDCA4 promoted the cell viability, proliferation and migration, and inhibited apoptosis, which was reversed by sh-ALKBH5 intervention. Overexpression of YTHDC2 (not YTHDC1) inhibited the effect of CDCA4 on sh-ALKBH5 cells. sh-CDCA4 inhibited tumor growth and weight of LLC cells in mice, and promoted M1/M2 ratio in LLC mice and NCI-H1299/THP-1 and NCI-H157/THP-1 co-culture systems. Oe-CDCA4 promoted the volume and weight of tumor and inhibited the M1/M2 ratio of tumor tissue in LLC mice, but was reversed by sh-ALKBH5 intervention. CONCLUSION m6A demethylase ALKBH5 promotes the development of LUAD through CDCA4 regulation of malignant characterization and M1/M2 macrophage polarization.
Collapse
Affiliation(s)
- Jianlong Tan
- Department of Respiratory Medicine, Hunan Provincial People's Hospital, The First Affiliated Hospital of Hunan Normal University, Changsha, China
| | - Fengyu Chen
- Department of Respiratory Medicine, Hunan Provincial People's Hospital, The First Affiliated Hospital of Hunan Normal University, Changsha, China
| | - Jufen Wang
- Department of Respiratory Medicine,The Affiliated Changsha Central Hospital, Hengyang Medical School, University of South China, Changsha, China
| | - Jianmin Li
- Department of Respiratory Medicine, Hunan Provincial People's Hospital, The First Affiliated Hospital of Hunan Normal University, Changsha, China
| | - Bin Ouyang
- Department of Respiratory Medicine, Hunan Provincial People's Hospital, The First Affiliated Hospital of Hunan Normal University, Changsha, China
| | - Xiuying Li
- Department of Respiratory Medicine, Hunan Provincial People's Hospital, The First Affiliated Hospital of Hunan Normal University, Changsha, China
| | - Yun Li
- Department of Respiratory Medicine, Hunan Provincial People's Hospital, The First Affiliated Hospital of Hunan Normal University, Changsha, China
| | - Weidong Zhang
- Department of Respiratory Medicine, Hunan Provincial People's Hospital, The First Affiliated Hospital of Hunan Normal University, Changsha, China.
| | - Yongliang Jiang
- Department of Respiratory Medicine, Hunan Provincial People's Hospital, The First Affiliated Hospital of Hunan Normal University, Changsha, China.
| |
Collapse
|
14
|
Dasgupta D, Mahadev Bhat S, Creighton C, Cortes C, Delmotte P, Sieck GC. Molecular mechanisms underlying TNFα-induced mitochondrial fragmentation in human airway smooth muscle cells. Am J Physiol Lung Cell Mol Physiol 2024; 326:L190-L205. [PMID: 38084427 PMCID: PMC11280718 DOI: 10.1152/ajplung.00198.2023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2023] [Revised: 12/05/2023] [Accepted: 12/05/2023] [Indexed: 01/06/2024] Open
Abstract
Tumor necrosis factor α (TNFα), a proinflammatory cytokine, plays a significant role in mediating the effects of acute inflammation in response to allergens, pollutants, and respiratory infections. Previously, we showed that acute exposure to TNFα induces mitochondrial fragmentation in human airway smooth muscle (hASM) cells, which is associated with increased expression of dynamin-related protein 1 (DRP1). Phosphorylation of DRP1 at serine 616 (pDRP1S616) promotes its translocation and binding to the outer mitochondrial membrane (OMM) and mediates mitochondrial fragmentation. Previously, we reported that TNFα exposure triggers protein unfolding and triggers an endoplasmic reticulum (ER) stress response involving phosphorylation of inositol-requiring enzyme 1α (pIRE1α) at serine 724 (pIRE1αS724) and subsequent splicing of X-box binding protein 1 (XBP1s) in hASM cells. We hypothesize that TNFα-mediated activation of the pIRE1αS724/XBP1s ER stress pathway in hASM cells transcriptionally activates genes that encode kinases responsible for pDRP1S616 phosphorylation. Using 3-D confocal imaging of MitoTracker green-labeled mitochondria, we found that TNFα treatment for 6 h induces mitochondrial fragmentation in hASM cells. We also confirmed that 6 h TNFα treatment activates the pIRE1α/XBP1s ER stress pathway. Using in silico analysis and ChIP assay, we showed that CDK1 and CDK5, kinases involved in the phosphorylation of pDRP1S616, are transcriptionally targeted by XBP1s. TNFα treatment increased the binding affinity of XBP1s on the promoter regions of CDK1 and CDK5, and this was associated with an increase in pDRP1S616 and mitochondria fragmentation. This study reveals a new underlying molecular mechanism for TNFα-induced mitochondrial fragmentation in hASM cells.NEW & NOTEWORTHY Airway inflammation is increasing worldwide. Proinflammatory cytokines mediate an adaptive mechanism to overcome inflammation-induced cellular stress. Previously, we reported that TNFα mediates hASM cellular responses, leading to increased force and ATP consumption associated with increased O2 consumption, and oxidative stress. This study indicates that TNFα induces ER stress, which induces mitochondrial fragmentation via pIRE1αS724/XBP1s mediated CDK1/5 upregulation and pDRP1S616 phosphorylation. Mitochondrial fragmentation may promote hASM mitochondrial biogenesis to maintain healthy mitochondrial pool.
Collapse
Affiliation(s)
- Debanjali Dasgupta
- Department of Physiology and Biomedical Engineering, Mayo Clinic, Rochester, Minnesota, United States
| | - Sanjana Mahadev Bhat
- Department of Physiology and Biomedical Engineering, Mayo Clinic, Rochester, Minnesota, United States
| | - Claire Creighton
- Department of Physiology and Biomedical Engineering, Mayo Clinic, Rochester, Minnesota, United States
| | - Catherin Cortes
- Department of Physiology and Biomedical Engineering, Mayo Clinic, Rochester, Minnesota, United States
| | - Philippe Delmotte
- Department of Physiology and Biomedical Engineering, Mayo Clinic, Rochester, Minnesota, United States
| | - Gary C Sieck
- Department of Physiology and Biomedical Engineering, Mayo Clinic, Rochester, Minnesota, United States
| |
Collapse
|
15
|
Huang Y, Gao X, He QY, Liu W. A Interacting Model: How TRIM21 Orchestrates with Proteins in Intracellular Immunity. SMALL METHODS 2024; 8:e2301142. [PMID: 37922533 DOI: 10.1002/smtd.202301142] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/28/2023] [Revised: 10/12/2023] [Indexed: 11/07/2023]
Abstract
Tripartite motif-containing protein 21 (TRIM21), identified as both a cytosolic E3 ubiquitin ligase and FcR (Fragment crystallizable receptor), primarily interacts with proteins via its PRY/SPRY domains and promotes their proteasomal degradation to regulate intracellular immunity. But how TRIM21 involves in intracellular immunity still lacks systematical understanding. Herein, it is probed into the TRIM21-related literature and raises an interacting model about how TRIM21 orchestrates proteins in cytosol. In this novel model, TRIM21 generally interacts with miscellaneous protein in intracellular immunity in two ways: For one, TRIM21 solely plays as an E3, ubiquitylating a glut of proteins that contain specific interferon-regulatory factor, nuclear transcription factor kappaB, virus sensors and others, and involving inflammatory responses. For another, TRIM21 serves as both E3 and specific FcR that detects antibody-complexes and facilitates antibody destroying target proteins. Correspondingly delineated as Fc-independent signaling and Fc-dependent signaling in this review, how TRIM21's interactions contribute to intracellular immunity, expecting to provide a systematical understanding of this important protein and invest enlightenment for further research on the pathogenesis of related diseases and its prospective application is elaborated.
Collapse
Affiliation(s)
- Yisha Huang
- MOE Key Laboratory of Tumor Molecular Biology and Key Laboratory of Functional Protein Research of Guangdong Higher Education Institutes, Institute of Life and Health Engineering, College of Life Science and Technology, Jinan University, Guangzhou, 510632, China
| | - Xuejuan Gao
- MOE Key Laboratory of Tumor Molecular Biology and Key Laboratory of Functional Protein Research of Guangdong Higher Education Institutes, Institute of Life and Health Engineering, College of Life Science and Technology, Jinan University, Guangzhou, 510632, China
| | - Qing-Yu He
- MOE Key Laboratory of Tumor Molecular Biology and Key Laboratory of Functional Protein Research of Guangdong Higher Education Institutes, Institute of Life and Health Engineering, College of Life Science and Technology, Jinan University, Guangzhou, 510632, China
| | - Wanting Liu
- MOE Key Laboratory of Tumor Molecular Biology and Key Laboratory of Functional Protein Research of Guangdong Higher Education Institutes, Institute of Life and Health Engineering, College of Life Science and Technology, Jinan University, Guangzhou, 510632, China
| |
Collapse
|
16
|
Sun Z, Mai H, Xue C, Fan Z, Li J, Chen H, Huo N, Kang X, Tang C, Fang L, Zhao H, Han Y, Sun C, Peng H, Du Y, Yang J, Du N, Xu X. Hsa-LINC02418/mmu-4930573I07Rik regulated by METTL3 dictates anti-PD-L1 immunotherapeutic efficacy via enhancement of Trim21-mediated PD-L1 ubiquitination. J Immunother Cancer 2023; 11:e007415. [PMID: 38040417 PMCID: PMC10693898 DOI: 10.1136/jitc-2023-007415] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/10/2023] [Indexed: 12/03/2023] Open
Abstract
BACKGROUND Limited response to programmed death ligand-1 (PD-L1)/programmed death 1 (PD-1) immunotherapy is a major hindrance of checkpoint immunotherapy in non-small cell lung cancer (NSCLC). The abundance of PD-L1 on the tumor cell surface is crucial for the responsiveness of PD-1/PD-L1 immunotherapy. However, the negative control of PD-L1 expression and the physiological significance of the PD-L1 inhibition in NSCLC immunotherapy remain obscure. METHODS Bioinformatics analysis was performed to profile and investigate the long non-coding RNAs that negatively correlated with PD-L1 expression and positively correlated with CD8+T cell infiltration in NSCLC. Immunofluorescence, in vitro PD-1 binding assay, T cell-induced apoptosis assays and in vivo syngeneic mouse models were used to investigate the functional roles of LINC02418 and mmu-4930573I07Rik in regulating anti-PD-L1 therapeutic efficacy in NSCLC. The molecular mechanism of LINC02418-enhanced PD-L1 downregulation was explored by immunoprecipitation, RNA immunoprecipitation (RIP), and ubiquitination assays. RIP, luciferase reporter, and messenger RNA degradation assays were used to investigate the m6A modification of LINC02418 or mmu-4930573I07Rik expression. Bioinformatics analysis and immunohistochemistry (IHC) verification were performed to determine the significance of LINC02418, PD-L1 expression and CD8+T cell infiltration. RESULTS LINC02418 is a negative regulator of PD-L1 expression that positively correlated with CD8+T cell infiltration, predicting favorable clinical outcomes for patients with NSCLC. LINC02418 downregulates PD-L1 expression by enhancing PD-L1 ubiquitination mediated by E3 ligase Trim21. Both hsa-LINC02418 and mmu-4930573I07Rik (its homologous RNA in mice) regulate PD-L1 therapeutic efficacy in NSCLC via Trim21, inducing T cell-induced apoptosis in vitro and in vivo. Furthermore, METTL3 inhibition via N6-methyladenosine (m6A) modification mediated by YTHDF2 reader upregulates hsa-LINC02418 and mmu-4930573I07Rik. In patients with NSCLC, LINC02418 expression is inversely correlated with PD-L1 expression and positively correlated with CD8+T infiltration. CONCLUSION LINC02418 functions as a negative regulator of PD-L1 expression in NSCLC cells by promoting the degradation of PD-L1 through the ubiquitin-proteasome pathway. The expression of LINC02418 is regulated by METTL3/YTHDF2-mediated m6A modification. This study illuminates the underlying mechanisms of PD-L1 negative regulation and presents a promising target for improving the effectiveness of anti-PD-L1 therapy in NSCLC.
Collapse
Affiliation(s)
- Zhijia Sun
- Department of Genetic Engineering, Beijing Institute of Biotechnology, Beijing, China
- Department of Radiation Oncology, Air Force Medical Center PLA, Air Force Medical University, Beijing, China
| | - Haixing Mai
- Department of Urology, the Third Medical Center of PLA General Hospital, Beijing, China
| | - Chunyuan Xue
- Department of Genetic Engineering, Beijing Institute of Biotechnology, Beijing, China
| | - Zhongyi Fan
- Department of Biotherapy Center, Third People's Hospital, Second Hospital Affiliated to Southern University of Science and Technology, Shenzhen, Guangdong, China
| | - Jiangbo Li
- Bioinformatics Center of Academy of Military Medical Sciences, Beijing, China
| | - Hairui Chen
- Department of Urology, the Third Medical Center of PLA General Hospital, Beijing, China
| | - Nan Huo
- Department of Genetic Engineering, Beijing Institute of Biotechnology, Beijing, China
| | - Xiaofeng Kang
- Department of Genetic Engineering, Beijing Institute of Biotechnology, Beijing, China
| | - Chuanhao Tang
- Department of Genetic Engineering, Beijing Institute of Biotechnology, Beijing, China
| | - Liaoxin Fang
- Department of Genetic Engineering, Beijing Institute of Biotechnology, Beijing, China
| | - Hui Zhao
- Department of Oncology, Chinese PLA General Hospital Fifth Medical Center, Beijing, China
| | - Yuchen Han
- Department of Genetic Engineering, Beijing Institute of Biotechnology, Beijing, China
| | - Chao Sun
- Department of Genetic Engineering, Beijing Institute of Biotechnology, Beijing, China
| | - Huanyan Peng
- Department of Genetic Engineering, Beijing Institute of Biotechnology, Beijing, China
| | - Yimeng Du
- Department of Genetic Engineering, Beijing Institute of Biotechnology, Beijing, China
| | - Jing Yang
- Department of Oncology, Chinese PLA General Hospital Second Medical Center, Beijing, China
| | - Nan Du
- Department of Oncology, Chinese PLA General Hospital Fifth Medical Center, Beijing, China
| | - Xiaojie Xu
- Department of Genetic Engineering, Beijing Institute of Biotechnology, Beijing, China
| |
Collapse
|
17
|
Gu J, Chen J, Xiang S, Zhou X, Li J. Intricate confrontation: Research progress and application potential of TRIM family proteins in tumor immune escape. J Adv Res 2023; 54:147-179. [PMID: 36736694 DOI: 10.1016/j.jare.2023.01.011] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2022] [Revised: 01/06/2023] [Accepted: 01/12/2023] [Indexed: 02/05/2023] Open
Abstract
BACKGROUND Tripartite motif (TRIM) family proteins have more than 80 members and are widely found in various eukaryotic cells. Most TRIM family proteins participate in the ubiquitin-proteasome degradation system as E3-ubiquitin ligases; therefore, they play pivotal regulatory roles in the occurrence and development of tumors, including tumor immune escape. Due to the diversity of functional domains of TRIM family proteins, they can extensively participate in multiple signaling pathways of tumor immune escape through different substrates. In current research and clinical contexts, immune escape has become an urgent problem. The extensive participation of TRIM family proteins in curing tumors or preventing postoperative recurrence and metastasis makes them promising targets. AIM OF REVIEW The aim of the review is to make up for the gap in the current research on TRIM family proteins and tumor immune escape and propose future development directions according to the current progress and problems. KEY SCIENTIFIC CONCEPTS OF REVIEW This up-to-date review summarizes the characteristics and biological functions of TRIM family proteins, discusses the mechanisms of TRIM family proteins involved in tumor immune escape, and highlights the specific mechanism from the level of structure-function-molecule-pathway-phenotype, including mechanisms at the level of protein domains and functions, at the level of molecules and signaling pathways, and at the level of cells and microenvironments. We also discuss the application potential of TRIM family proteins in tumor immunotherapy, such as possible treatment strategies for combination targeting TRIM family protein drugs and checkpoint inhibitors for improving cancer treatment.
Collapse
Affiliation(s)
- Junjie Gu
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, Chinese Academy of Medical Sciences Research Unit of Oral Carcinogenesis and Management, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan 610041, China
| | - Jingyi Chen
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, Chinese Academy of Medical Sciences Research Unit of Oral Carcinogenesis and Management, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan 610041, China
| | - Shuaixi Xiang
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, Chinese Academy of Medical Sciences Research Unit of Oral Carcinogenesis and Management, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan 610041, China
| | - Xikun Zhou
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University and Collaborative Innovation Center for Biotherapy, Chengdu 610041, China.
| | - Jing Li
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, Chinese Academy of Medical Sciences Research Unit of Oral Carcinogenesis and Management, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan 610041, China.
| |
Collapse
|
18
|
Nikhil K, Shah K. CDK5: an oncogene or an anti-oncogene: location location location. Mol Cancer 2023; 22:186. [PMID: 37993880 PMCID: PMC10666462 DOI: 10.1186/s12943-023-01895-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2023] [Accepted: 11/03/2023] [Indexed: 11/24/2023] Open
Abstract
Recent studies have uncovered various physiological functions of CDK5 in many nonneuronal tissues. Upregulation of CDK5 and/or its activator p35 in neurons promotes healthy neuronal functions, but their overexpression in nonneuronal tissues is causally linked to cancer of many origins. This review focuses on the molecular mechanisms by which CDK5 recruits diverse tissue-specific substrates to elicit distinct phenotypes in sixteen different human cancers. The emerging theme suggests that CDK5's role as an oncogene or anti-oncogene depends upon its subcellular localization. CDK5 mostly acts as an oncogene, but in gastric cancer, it is a tumor suppressor due to its unique nuclear localization. This indicates that CDK5's access to certain nuclear substrates converts it into an anti-oncogenic kinase. While acting as a bonafide oncogene, CDK5 also activates a few cancer-suppressive pathways in some cancers, presumably due to the mislocalization of nuclear substrates in the cytoplasm. Therefore, directing CDK5 to the nucleus or exporting tumor-suppressive nuclear substrates to the cytoplasm may be promising approaches to combat CDK5-induced oncogenicity, analogous to neurotoxicity triggered by nuclear CDK5. Furthermore, while p35 overexpression is oncogenic, hyperactivation of CDK5 by inducing p25 formation results in apoptosis, which could be exploited to selectively kill cancer cells by dialing up CDK5 activity, instead of inhibiting it. CDK5 thus acts as a molecular rheostat, with different activity levels eliciting distinct functional outcomes. Finally, as CDK5's role is defined by its substrates, targeting them individually or in conjunction with CDK5 should create potentially valuable new clinical opportunities.
Collapse
Affiliation(s)
- Kumar Nikhil
- Department of Chemistry, Purdue University Center for Cancer Research, 560 Oval Drive, West Lafayette, IN, 47907, USA
- School of Biotechnology, Kalinga Institute of Industrial Technology, Bhubaneswar, 751024, India
| | - Kavita Shah
- Department of Chemistry, Purdue University Center for Cancer Research, 560 Oval Drive, West Lafayette, IN, 47907, USA.
| |
Collapse
|
19
|
Xu X, Wang Y, Chen Z, Zhu Y, Wang J, Guo J. Favorable Immunotherapy Plus Tyrosine Kinase Inhibition Outcome of Renal Cell Carcinoma Patients with Low CDK5 Expression. Cancer Res Treat 2023; 55:1321-1336. [PMID: 37024096 PMCID: PMC10582544 DOI: 10.4143/crt.2022.1532] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2022] [Accepted: 03/31/2023] [Indexed: 04/05/2023] Open
Abstract
PURPOSE Immunotherapy (IO) plus tyrosine kinase inhibitor (TKI) has become the first-line treatment for advanced renal cell carcinoma, despite the lack of prognostic biomarkers. Cyclin-dependent kinase 5 (CDK5) affects the tumor microenvironment, which may influence the efficacy of TKI+IO. MATERIALS AND METHODS Two cohorts from our center (Zhongshan Metastatic Renal Cell Carcinoma [ZS-MRCC] cohort, Zhongshan High-risk Localized Renal Cell Carcinoma [ZS-HRRCC] cohort) and one cohort from a clinical trial (JAVELIN-101) were enrolled. The expression of CDK5 of each sample was determined by RNA sequencing. Immune infiltration and T cell function were evaluated by flow cytometry and immunohistochemistry. Response and progression-free survival (PFS) were set as primary endpoints. RESULTS Patients of low CDK5 expression showed higher objective response rate (60.0% vs. 23.3%) and longer PFS in both cohorts (ZS-MRCC cohort, p=0.014; JAVELIN-101 cohort, p=0.040). CDK5 expression was enhanced in non-responders (p < 0.05). In the ZS-HRRCC cohort, CDK5 was associated with decreased tumor-infiltrating CD8+ T cells, which was proved by immunohistochemistry (p < 0.05) and flow cytometry (Spearman's ρ=-0.49, p < 0.001). In the high CDK5 subgroup, CD8+ T cells revealed a dysfunction phenotype with decreased granzyme B, and more regulatory T cells were identified. A predictive score was further constructed by random forest, involving CDK5 and T cell exhaustion features. The RFscore was also validated in both cohorts. By utilizing the model, more patients might be distinguished from the overall cohort. Additionally, only in the low RFscore did TKI+IO outperform TKI monotherapy. CONCLUSION High-CDK5 expression was associated with immunosuppression and TKI+IO resistance. RFscore based on CDK5 may be utilized as a biomarker to determine the optimal treatment strategy.
Collapse
Affiliation(s)
- Xianglai Xu
- Department of Urology, Zhongshan Hospital, Fudan University, Shanghai,
China
| | - Ying Wang
- Department of Critical Care Medicine, Zhongshan Hospital, Fudan University, Shanghai,
China
| | - Zhaoyi Chen
- Department of Urology, Zhongshan Hospital, Fudan University, Shanghai,
China
- School of Life Sciences, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei,
China
| | - Yanjun Zhu
- Department of Urology, Zhongshan Hospital, Fudan University, Shanghai,
China
| | - Jiajun Wang
- Department of Urology, Zhongshan Hospital, Fudan University, Shanghai,
China
| | - Jianming Guo
- Department of Urology, Zhongshan Hospital, Fudan University, Shanghai,
China
| |
Collapse
|
20
|
Ye Z, Yang J, Jiang H, Zhan X. The roles of protein ubiquitination in tumorigenesis and targeted drug discovery in lung cancer. Front Endocrinol (Lausanne) 2023; 14:1220108. [PMID: 37795365 PMCID: PMC10546409 DOI: 10.3389/fendo.2023.1220108] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/10/2023] [Accepted: 08/31/2023] [Indexed: 10/06/2023] Open
Abstract
The malignant lung cancer has a high morbidity rate and very poor 5-year survival rate. About 80% - 90% of protein degradation in human cells is occurred through the ubiquitination enzyme pathway. Ubiquitin ligase (E3) with high specificity plays a crucial role in the ubiquitination process of the target protein, which usually occurs at a lysine residue in a substrate protein. Different ubiquitination forms have different effects on the target proteins. Multiple short chains of ubiquitination residues modify substrate proteins, which are favorable signals for protein degradation. The dynamic balance adapted to physiological needs between ubiquitination and deubiquitination of intracellular proteins is beneficial to the health of the organism. Ubiquitination of proteins has an impact on many biological pathways, and imbalances in these pathways lead to diseases including lung cancer. Ubiquitination of tumor suppressor protein factors or deubiquitination of tumor carcinogen protein factors often lead to the progression of lung cancer. Ubiquitin proteasome system (UPS) is a treasure house for research and development of new cancer drugs for lung cancer, especially targeting proteasome and E3s. The ubiquitination and degradation of oncogene proteins with precise targeting may provide a bright prospect for drug development in lung cancer; Especially proteolytic targeted chimerism (PROTAC)-induced protein degradation technology will offer a new strategy in the discovery and development of new drugs for lung cancer.
Collapse
Affiliation(s)
- Zhen Ye
- Medical Science and Technology Innovation Center, Shandong Key Laboratory of Radiation Oncology, Shandong Cancer Hospital and Institute, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan, Shandong, China
- School of Clinical and Basic Medicine, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan, Shandong, China
| | - Jingru Yang
- Medical Science and Technology Innovation Center, Shandong Key Laboratory of Radiation Oncology, Shandong Cancer Hospital and Institute, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan, Shandong, China
| | - Hanming Jiang
- School of Clinical and Basic Medicine, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan, Shandong, China
| | - Xianquan Zhan
- Medical Science and Technology Innovation Center, Shandong Key Laboratory of Radiation Oncology, Shandong Cancer Hospital and Institute, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan, Shandong, China
| |
Collapse
|
21
|
Yu X, Li W, Liu H, Wang X, Coarfa C, Cheng C, Yu X, Zeng Z, Cao Y, Young KH, Li Y. PD-L1 translocation to the plasma membrane enables tumor immune evasion through MIB2 ubiquitination. J Clin Invest 2023; 133:e160456. [PMID: 36719382 PMCID: PMC9888393 DOI: 10.1172/jci160456] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2022] [Accepted: 11/30/2022] [Indexed: 02/01/2023] Open
Abstract
Programmed death-ligand 1 (PD-L1), a critical immune checkpoint ligand, is a transmembrane protein synthesized in the endoplasmic reticulum of tumor cells and transported to the plasma membrane to interact with programmed death 1 (PD-1) expressed on T cell surface. This interaction delivers coinhibitory signals to T cells, thereby suppressing their function and allowing evasion of antitumor immunity. Most companion or complementary diagnostic devices for assessing PD-L1 expression levels in tumor cells used in the clinic or in clinical trials require membranous staining. However, the mechanism driving PD-L1 translocation to the plasma membrane after de novo synthesis is poorly understood. Herein, we showed that mind bomb homolog 2 (MIB2) is required for PD-L1 transportation from the trans-Golgi network (TGN) to the plasma membrane of cancer cells. MIB2 deficiency led to fewer PD-L1 proteins on the tumor cell surface and promoted antitumor immunity in mice. Mechanistically, MIB2 catalyzed nonproteolytic K63-linked ubiquitination of PD-L1, facilitating PD-L1 trafficking through Ras-associated binding 8-mediated (RAB8-mediated) exocytosis from the TGN to the plasma membrane, where it bound PD-1 extrinsically to prevent tumor cell killing by T cells. Our findings demonstrate that nonproteolytic ubiquitination of PD-L1 by MIB2 is required for its transportation to the plasma membrane and tumor cell immune evasion.
Collapse
Affiliation(s)
- Xinfang Yu
- Department of Medicine, Dan L Duncan Comprehensive Cancer Center, Baylor College of Medicine, Houston, Texas, USA
| | - Wei Li
- Department of Medicine, Dan L Duncan Comprehensive Cancer Center, Baylor College of Medicine, Houston, Texas, USA
- Department of Radiology, The Third Xiangya Hospital of Central South University, Changsha, Hunan, China
| | - Haidan Liu
- Department of Cardiovascular Surgery, The Second Xiangya Hospital of Central South University, Changsha, Hunan, China
- Clinical Center for Gene Diagnosis and Therapy, The Second Xiangya Hospital of Central South University, Changsha, Hunan, China
| | - Xu Wang
- Department of Medicine, Dan L Duncan Comprehensive Cancer Center, Baylor College of Medicine, Houston, Texas, USA
| | - Cristian Coarfa
- Department of Molecular Cell Biology, Dan L Duncan Comprehensive Cancer Center, Baylor College of Medicine, Houston, Texas, USA
| | - Chao Cheng
- Department of Medicine, Dan L Duncan Comprehensive Cancer Center, Baylor College of Medicine, Houston, Texas, USA
| | - Xinlian Yu
- School of Transportation, Southeast University, Nanjing, Jiangsu, China
| | - Zhaoyang Zeng
- Key Laboratory of Carcinogenesis and Invasion, Chinese Ministry of Education, Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Ya Cao
- Key Laboratory of Carcinogenesis and Invasion, Chinese Ministry of Education, Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Ken H. Young
- Department of Pathology, Division of Hematopathology, Duke University Medical Center, Durham, North Carolina, USA
| | - Yong Li
- Department of Medicine, Dan L Duncan Comprehensive Cancer Center, Baylor College of Medicine, Houston, Texas, USA
| |
Collapse
|
22
|
Gao Z, Ling X, Shi C, Wang Y, Lin A. Tumor immune checkpoints and their associated inhibitors. J Zhejiang Univ Sci B 2022; 23:823-843. [PMID: 36226537 PMCID: PMC9561405 DOI: 10.1631/jzus.b2200195] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2022] [Accepted: 07/13/2022] [Indexed: 11/05/2022]
Abstract
Immunological evasion is one of the defining characteristics of cancers, as the immune modification of an immune checkpoint (IC) confers immune evasion capabilities to tumor cells. Multiple ICs, such as programmed cell death protein-1 (PD-1) and cytotoxic T-lymphocyte-associated antigen-4 (CTLA-4), can bind to their respective receptors and reduce tumor immunity in a variety of ways, including blocking immune cell activation signals. IC blockade (ICB) therapies targeting these checkpoint molecules have demonstrated significant clinical benefits. This is because antibody-based IC inhibitors and a variety of specific small molecule inhibitors can inhibit key oncogenic signaling pathways and induce durable tumor remission in patients with a variety of cancers. Deciphering the roles and regulatory mechanisms of these IC molecules will provide crucial theoretical guidance for clinical treatment. In this review, we summarize the current knowledge on the functional and regulatory mechanisms of these IC molecules at multiple levels, including epigenetic regulation, transcriptional regulation, and post-translational modifications. In addition, we provide a summary of the medications targeting various nodes in the regulatory pathway, and highlight the potential of newly identified IC molecules, focusing on their potential implications for cancer diagnostics and immunotherapy.
Collapse
Affiliation(s)
- Zerui Gao
- MOE Laboratory of Biosystem Homeostasis and Protection, College of Life Sciences, Zhejiang University, Hangzhou 310058, China
- Cancer Center, Zhejiang University, Hangzhou 310058, China
- Key Laboratory for Cell and Gene Engineering of Zhejiang Province, Hangzhou 310058, China
- Chu Kochen Honors College of Zhejiang University, Hangzhou 310058, China
| | - Xingyi Ling
- MOE Laboratory of Biosystem Homeostasis and Protection, College of Life Sciences, Zhejiang University, Hangzhou 310058, China
- Cancer Center, Zhejiang University, Hangzhou 310058, China
- Key Laboratory for Cell and Gene Engineering of Zhejiang Province, Hangzhou 310058, China
| | - Chengyu Shi
- MOE Laboratory of Biosystem Homeostasis and Protection, College of Life Sciences, Zhejiang University, Hangzhou 310058, China
- Cancer Center, Zhejiang University, Hangzhou 310058, China
- Key Laboratory for Cell and Gene Engineering of Zhejiang Province, Hangzhou 310058, China
| | - Ying Wang
- MOE Laboratory of Biosystem Homeostasis and Protection, College of Life Sciences, Zhejiang University, Hangzhou 310058, China
- Cancer Center, Zhejiang University, Hangzhou 310058, China
- Key Laboratory for Cell and Gene Engineering of Zhejiang Province, Hangzhou 310058, China
| | - Aifu Lin
- MOE Laboratory of Biosystem Homeostasis and Protection, College of Life Sciences, Zhejiang University, Hangzhou 310058, China.
- Cancer Center, Zhejiang University, Hangzhou 310058, China.
- Key Laboratory for Cell and Gene Engineering of Zhejiang Province, Hangzhou 310058, China.
- Breast Center of the First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou 310003, China.
- International School of Medicine, International Institutes of Medicine, the Fourth Affiliated Hospital of Zhejiang University School of Medicine, Yiwu 322000, China.
- ZJU-QILU Joint Research Institute, Hangzhou 310058, China.
| |
Collapse
|
23
|
Shen DD, Bi YP, Pang JR, Zhao LJ, Zhao LF, Gao Y, Wang B, Liu HM, Liu Y, Wang N, Zheng YC, Liu HM. Generation, secretion and degradation of cancer immunotherapy target PD-L1. Cell Mol Life Sci 2022; 79:413. [PMID: 35819633 PMCID: PMC11073444 DOI: 10.1007/s00018-022-04431-x] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2021] [Revised: 06/06/2022] [Accepted: 06/14/2022] [Indexed: 02/06/2023]
Abstract
Cancer immunotherapy is a rapidly developing and effective method for the treatment of a variety of malignancies in recent years. As a significant immune checkpoint, programmed cell death 1 ligand 1 (PD-L1) and its receptor programmed cell death protein 1 (PD-1) play the most significant role in cancer immune escape and cancer immunotherapy. Though PD-L1 have become an important target for drug development and there have been various approved drugs and clinic trials targeting it, and various clinical response rate and adverse reactions prevent many patients from benefiting from it. In recent years, combination trials have become the main direction of PD-1/PD-L1 antibodies development. Here, we summarized PD-L1 biofunctions and key roles in various cancers along with the development of PD-L1 inhibitors. The regulators that are involved in controlling PD-L1 expression including post-translational modification, mRNA level regulation as well as degradation and exosome secretory pathway of PD-L1 were focused. This systematic summary may provide comprehensive understanding of different regulations on PD-L1 as well as a broad prospect for the search of the important regulator of PD-L1. The regulatory factors of PD-L1 can be potential targets for immunotherapy and increase strategies of immunotherapy in combination.
Collapse
Affiliation(s)
- Dan-Dan Shen
- Department of Obstetrics and Gynecology, The Third Affiliated Hospital of Zhengzhou University, Zhengzhou Key Laboratory of Endometrial Disease Prevention and Treatment Zhengzhou China, The Third Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, Henan, China
- Key Laboratory of Advanced Drug Preparation Technologies, Ministry of Education of China; Key Laboratory of Henan Province for Drug Quality and Evaluation; Institute of Drug Discovery and Development; School of Pharmaceutical Sciences, Zhengzhou University, 100 Kexue Avenue, Zhengzhou, 450052, Henan, China
| | - Ya-Ping Bi
- Key Laboratory of Advanced Drug Preparation Technologies, Ministry of Education of China; Key Laboratory of Henan Province for Drug Quality and Evaluation; Institute of Drug Discovery and Development; School of Pharmaceutical Sciences, Zhengzhou University, 100 Kexue Avenue, Zhengzhou, 450052, Henan, China
| | - Jing-Ru Pang
- Key Laboratory of Advanced Drug Preparation Technologies, Ministry of Education of China; Key Laboratory of Henan Province for Drug Quality and Evaluation; Institute of Drug Discovery and Development; School of Pharmaceutical Sciences, Zhengzhou University, 100 Kexue Avenue, Zhengzhou, 450052, Henan, China
| | - Li-Juan Zhao
- Key Laboratory of Advanced Drug Preparation Technologies, Ministry of Education of China; Key Laboratory of Henan Province for Drug Quality and Evaluation; Institute of Drug Discovery and Development; School of Pharmaceutical Sciences, Zhengzhou University, 100 Kexue Avenue, Zhengzhou, 450052, Henan, China
- State Key Laboratory of Esophageal Cancer Prevention & Treatment; Academy of Medical Sciences, Zhengzhou University, 100 Kexue Avenue, Zhengzhou, 450052, Henan, China
| | - Long-Fei Zhao
- Key Laboratory of Advanced Drug Preparation Technologies, Ministry of Education of China; Key Laboratory of Henan Province for Drug Quality and Evaluation; Institute of Drug Discovery and Development; School of Pharmaceutical Sciences, Zhengzhou University, 100 Kexue Avenue, Zhengzhou, 450052, Henan, China
| | - Ya Gao
- Key Laboratory of Advanced Drug Preparation Technologies, Ministry of Education of China; Key Laboratory of Henan Province for Drug Quality and Evaluation; Institute of Drug Discovery and Development; School of Pharmaceutical Sciences, Zhengzhou University, 100 Kexue Avenue, Zhengzhou, 450052, Henan, China
| | - Bo Wang
- Key Laboratory of Advanced Drug Preparation Technologies, Ministry of Education of China; Key Laboratory of Henan Province for Drug Quality and Evaluation; Institute of Drug Discovery and Development; School of Pharmaceutical Sciences, Zhengzhou University, 100 Kexue Avenue, Zhengzhou, 450052, Henan, China
| | - Hui-Min Liu
- Key Laboratory of Advanced Drug Preparation Technologies, Ministry of Education of China; Key Laboratory of Henan Province for Drug Quality and Evaluation; Institute of Drug Discovery and Development; School of Pharmaceutical Sciences, Zhengzhou University, 100 Kexue Avenue, Zhengzhou, 450052, Henan, China
| | - Ying Liu
- The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, China
| | - Ning Wang
- The School of Chinese Medicine, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong, China
| | - Yi-Chao Zheng
- Department of Obstetrics and Gynecology, The Third Affiliated Hospital of Zhengzhou University, Zhengzhou Key Laboratory of Endometrial Disease Prevention and Treatment Zhengzhou China, The Third Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, Henan, China.
- Key Laboratory of Advanced Drug Preparation Technologies, Ministry of Education of China; Key Laboratory of Henan Province for Drug Quality and Evaluation; Institute of Drug Discovery and Development; School of Pharmaceutical Sciences, Zhengzhou University, 100 Kexue Avenue, Zhengzhou, 450052, Henan, China.
- State Key Laboratory of Esophageal Cancer Prevention & Treatment; Academy of Medical Sciences, Zhengzhou University, 100 Kexue Avenue, Zhengzhou, 450052, Henan, China.
| | - Hong-Min Liu
- Key Laboratory of Advanced Drug Preparation Technologies, Ministry of Education of China; Key Laboratory of Henan Province for Drug Quality and Evaluation; Institute of Drug Discovery and Development; School of Pharmaceutical Sciences, Zhengzhou University, 100 Kexue Avenue, Zhengzhou, 450052, Henan, China.
- State Key Laboratory of Esophageal Cancer Prevention & Treatment; Academy of Medical Sciences, Zhengzhou University, 100 Kexue Avenue, Zhengzhou, 450052, Henan, China.
| |
Collapse
|
24
|
Zhang X, Meng T, Cui S, Liu D, Pang Q, Wang P. Roles of ubiquitination in the crosstalk between tumors and the tumor microenvironment (Review). Int J Oncol 2022; 61:84. [PMID: 35616129 PMCID: PMC9170352 DOI: 10.3892/ijo.2022.5374] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2022] [Accepted: 04/27/2022] [Indexed: 11/06/2022] Open
Abstract
The interaction between a tumor and the tumor microenvironment (TME) plays a key role in tumorigenesis and tumor progression. Ubiquitination, a crucial post-translational modification for regulating protein degradation and turnover, plays a role in regulating the crosstalk between a tumor and the TME. Thus, identifying the roles of ubiquitination in the process may assist researchers to investigate the mechanisms underlying tumorigenesis and tumor progression. In the present review article, new insights into the substrates for ubiquitination that are involved in the regulation of hypoxic environments, angiogenesis, chronic inflammation-mediated tumor formation, and the function of cancer-associated fibroblasts and infiltrating immune cells (tumor-associated macrophages, T-cells, myeloid-derived suppressor cells, dendritic cells, and natural killer cells) are summarized. In addition, the potential targets of the ubiquitination proteasome system within the TME for cancer therapy and their therapeutic effects are reviewed and discussed.
Collapse
Affiliation(s)
- Xiuzhen Zhang
- Anti‑aging and Regenerative Medicine Research Institution, School of Life Sciences and Medicine, Shandong University of Technology, Zibo, Shandong 255000, P.R. China
| | - Tong Meng
- Tongji University Cancer Center, Shanghai Tenth People's Hospital of Tongji University, School of Medicine, Tongji University, Shanghai 200092, P.R. China
| | - Shuaishuai Cui
- School of Life Sciences and Medicine, Shandong University of Technology, Zibo, Shandong 255000, P.R. China
| | - Dongwu Liu
- Anti‑aging and Regenerative Medicine Research Institution, School of Life Sciences and Medicine, Shandong University of Technology, Zibo, Shandong 255000, P.R. China
| | - Qiuxiang Pang
- Anti‑aging and Regenerative Medicine Research Institution, School of Life Sciences and Medicine, Shandong University of Technology, Zibo, Shandong 255000, P.R. China
| | - Ping Wang
- Tongji University Cancer Center, Shanghai Tenth People's Hospital of Tongji University, School of Medicine, Tongji University, Shanghai 200092, P.R. China
| |
Collapse
|
25
|
Gong J, Ji Y, Liu X, Zheng Y, Zhen Y. Mithramycin suppresses tumor growth by regulating CD47 and PD-L1 expression. Biochem Pharmacol 2022; 197:114894. [PMID: 34968486 DOI: 10.1016/j.bcp.2021.114894] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2021] [Revised: 12/10/2021] [Accepted: 12/13/2021] [Indexed: 01/20/2023]
Abstract
Mithramycin A (MIT) has reacquired extensive research attention due to its anti-solid tumor activity and improved pharmacological production. Mechanismly, MIT was broadly used as a c-Myc inhibitor, and c-Myc regulated CD47 and PD-L1 expression which has been demonstrated. However, how MIT affects immune check-point molecules remains unknown. In this study, we found CD47 expression was higher in melanoma of pan-tissue array. MIT inhibited CD47 expression both in mRNA and protein level in melanoma cells (SK-MEL-28 and B16). MIT inhibited c-Myc, Sp-1 and CD47 expression in a concentration-dependent way. MIT inhibited the surface CD47 expression and promoted the phagocytosis of SK-MEL-28 cells by THP-1 cells. We found MIT inhibited tumor growth in melanoma allograft mice and CD47 expression in tumor mass. We also found MIT upregulated PD-L1 expression in cancer cells possibly via inhibiting PD-L1 ubiquitination, increasing ROS and IFN-γ. Combination of MIT and anti-PD-1 antibody showed enhanced antitumor activity compared to MIT and anti-PD-1 antibody alone in MC38 allograft mice. Using immune checkpoint array we found MIT inhibited expression of FasL and Galectin3. These results suggest that MIT inhibits CD47 expression, while improves PD-L1 expression. Furthermore, the combination of MIT and anti-PD-1 antibody exerts potent antitumor effect.
Collapse
Affiliation(s)
- Jianhua Gong
- Department of Oncology, Institute of Medicinal Biotechnology Chinese Academy of Medical Sciences & Peking Union Medical College, 1# Tiantan Xili, Beijing 100050, China; College of Life Sciences, North China University of Science and Technology, 21 Bohai Road, Caofeidian Xincheng, Tangshan 063210, Hebei, China.
| | - Yuying Ji
- Department of Oncology, Institute of Medicinal Biotechnology Chinese Academy of Medical Sciences & Peking Union Medical College, 1# Tiantan Xili, Beijing 100050, China; College of Life Sciences, North China University of Science and Technology, 21 Bohai Road, Caofeidian Xincheng, Tangshan 063210, Hebei, China
| | - Xiujun Liu
- Department of Oncology, Institute of Medicinal Biotechnology Chinese Academy of Medical Sciences & Peking Union Medical College, 1# Tiantan Xili, Beijing 100050, China; College of Life Sciences, North China University of Science and Technology, 21 Bohai Road, Caofeidian Xincheng, Tangshan 063210, Hebei, China
| | - Yanbo Zheng
- Department of Oncology, Institute of Medicinal Biotechnology Chinese Academy of Medical Sciences & Peking Union Medical College, 1# Tiantan Xili, Beijing 100050, China; College of Life Sciences, North China University of Science and Technology, 21 Bohai Road, Caofeidian Xincheng, Tangshan 063210, Hebei, China.
| | - Yongsu Zhen
- Department of Oncology, Institute of Medicinal Biotechnology Chinese Academy of Medical Sciences & Peking Union Medical College, 1# Tiantan Xili, Beijing 100050, China; College of Life Sciences, North China University of Science and Technology, 21 Bohai Road, Caofeidian Xincheng, Tangshan 063210, Hebei, China
| |
Collapse
|
26
|
Daniels MH, Malojcic G, Clugston SL, Williams B, Coeffet-Le Gal M, Pan-Zhou XR, Venkatachalan S, Harmange JC, Ledeboer M. Discovery and Optimization of Highly Selective Inhibitors of CDK5. J Med Chem 2022; 65:3575-3596. [PMID: 35143203 DOI: 10.1021/acs.jmedchem.1c02069] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
Autosomal dominant polycystic kidney disease (ADPKD) is the most prevalent monogenic human disease, but to date, only one therapy (tolvaptan) is approved to treat kidney cysts in ADPKD patients. Cyclin-dependent kinase 5 (CDK5), an atypical member of the cyclin-dependent kinase family, has been implicated as a target for treating ADPKD. However, no compounds have been disclosed to date that selectively inhibit CDK5 while sparing the broader CDK family members. Herein, we report the discovery of CDK5 inhibitors, including GFB-12811, that are highly selective over the other tested kinases. In cellular assays, our compounds demonstrate CDK5 target engagement while avoiding anti-proliferative effects associated with inhibiting other CDKs. In addition, we show that the compounds in this series exhibit promising in vivo PK profiles, enabling their use as tool compounds for interrogating the role of CDK5 in ADPKD and other diseases.
Collapse
Affiliation(s)
- Matthew H Daniels
- Goldfinch Bio, 215 First Street, Cambridge, Massachusetts 02142, United States
| | - Goran Malojcic
- Goldfinch Bio, 215 First Street, Cambridge, Massachusetts 02142, United States
| | - Susan L Clugston
- Goldfinch Bio, 215 First Street, Cambridge, Massachusetts 02142, United States
| | - Brett Williams
- Goldfinch Bio, 215 First Street, Cambridge, Massachusetts 02142, United States
| | | | - Xin-Ru Pan-Zhou
- Goldfinch Bio, 215 First Street, Cambridge, Massachusetts 02142, United States
| | | | | | - Mark Ledeboer
- Goldfinch Bio, 215 First Street, Cambridge, Massachusetts 02142, United States
| |
Collapse
|
27
|
The ubiquitin E3 ligase FBXO22 degrades PD-L1 and sensitizes cancer cells to DNA damage. Proc Natl Acad Sci U S A 2021; 118:2112674118. [PMID: 34795058 DOI: 10.1073/pnas.2112674118] [Citation(s) in RCA: 50] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/15/2021] [Indexed: 01/12/2023] Open
Abstract
High expression of programmed death-ligand 1 (PD-L1) in cancer cells drives immune-independent, cell-intrinsic functions, leading to resistance to DNA-damaging therapies. We find that high expression of the ubiquitin E3 ligase FBXO22 sensitizes nonsmall cell lung cancer (NSCLC) cells to ionizing radiation (IR) and cisplatin, and that activation of FBXO22 by phosphorylation is necessary for this function. Importantly, FBXO22 activates PD-L1 ubiquitination and degradation, which in turn increases the sensitivity of NSCLC cells to DNA damage. Cyclin-dependent kinase 5 (CDK5), aberrantly active in cancer cells, plays a crucial role in increasing the expression of PD-L1 in medulloblastoma [R. D. Dorand et al, Science 353, 399-403 (2016)]. We show in NSCLC cells that inhibiting CDK5 or reducing its expression increases the level of FBXO22, decreases that of PD-L1, and increases the sensitivity of the cells to DNA damage. We conclude that FBXO22 is a substrate of CDK5, and that inhibiting CDK5 reduces PD-L1 indirectly by increasing FBXO22. Pairing inhibitors of CDK5 with immune checkpoint inhibitors may increase the efficacy of immune checkpoint blockade alone or in combination with DNA-damaging therapies.
Collapse
|
28
|
Gavali S, Liu J, Li X, Paolino M. Ubiquitination in T-Cell Activation and Checkpoint Inhibition: New Avenues for Targeted Cancer Immunotherapy. Int J Mol Sci 2021; 22:10800. [PMID: 34639141 PMCID: PMC8509743 DOI: 10.3390/ijms221910800] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2021] [Revised: 09/27/2021] [Accepted: 09/28/2021] [Indexed: 12/15/2022] Open
Abstract
The advent of T-cell-based immunotherapy has remarkably transformed cancer patient treatment. Despite their success, the currently approved immunotherapeutic protocols still encounter limitations, cause toxicity, and give disparate patient outcomes. Thus, a deeper understanding of the molecular mechanisms of T-cell activation and inhibition is much needed to rationally expand targets and possibilities to improve immunotherapies. Protein ubiquitination downstream of immune signaling pathways is essential to fine-tune virtually all immune responses, in particular, the positive and negative regulation of T-cell activation. Numerous studies have demonstrated that deregulation of ubiquitin-dependent pathways can significantly alter T-cell activation and enhance antitumor responses. Consequently, researchers in academia and industry are actively developing technologies to selectively exploit ubiquitin-related enzymes for cancer therapeutics. In this review, we discuss the molecular and functional roles of ubiquitination in key T-cell activation and checkpoint inhibitory pathways to highlight the vast possibilities that targeting ubiquitination offers for advancing T-cell-based immunotherapies.
Collapse
Affiliation(s)
| | | | | | - Magdalena Paolino
- Center for Molecular Medicine, Department of Medicine Solna, Karolinska Institutet, Karolinska University Hospital Solna, 17176 Solna, Sweden; (S.G.); (J.L.); (X.L.)
| |
Collapse
|