1
|
Boccacci Y, Dumont N, Doyon Y, Laganière J. CRISPR-Cas9-driven antigen conversion of clinically relevant blood group systems. Hum Mol Genet 2025:ddaf040. [PMID: 40172074 DOI: 10.1093/hmg/ddaf040] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2024] [Revised: 03/18/2025] [Accepted: 03/19/2025] [Indexed: 04/04/2025] Open
Abstract
The common practice of blood transfusion entirely relies on blood donations from the population. Ensuring blood group compatibility between a donor and a recipient is paramount to prevent critical adverse reactions. Finding compatible blood can be challenging given the high diversity of blood group antigens, especially for chronically transfused patients at higher risk of alloimmunization owing to repeated exposures to foreign RBCs. In addition, due to the immunogenicity of the ABO blood group and the highly polymorphic nature of the Rhesus (Rh) system, they both remain of prime importance in transfusion medicine. Cultured red blood cells (cRBCs) may eventually provide an alternative for blood donations-at least in some circumstances. Combining cRBCs with blood group gene editing could broaden transfusion accessibility by making antigen expression compatible with rare phenotypes, thus meeting the needs of more patients. Starting from mobilized, erythroid-primed hematopoietic stem and progenitor cells (HSPCs), we used virus- and selection-free, CRISPR-Cas9-mediated knockouts to produce erythroid cells devoid of AB and Rh antigen. The approach yielded almost complete conversion to O- and RhNull phenotypes, as determined by standard hemagglutination and flow cytometry analyses. Combined with robust cRBC protocols, these clinically relevant phenotypic changes could eventually expand the accessibility of blood transfusion for specific and unmet clinical needs.
Collapse
Affiliation(s)
- Yelena Boccacci
- Centre Hospitalier Universitaire de Québec Research Center - Université Laval, 2705 boulevard Laurier, Québec, QC G1V 4G2, Canada
- Faculty of Medicine, Laval University, 1050 avenue de la Médecine, Québec, QC G1V 0A6, Canada
- Université Laval Cancer Research Centre, 1050 avenue de la Médecine, Québec, QC G1V 0A6, Canada
- Medical Affairs and Innovation, Héma-Québec, 1070 avenue des Sciences-de-la-Vie, Québec, QC G1V 5C3, Canada
| | - Nellie Dumont
- Medical Affairs and Innovation, Héma-Québec, 1070 avenue des Sciences-de-la-Vie, Québec, QC G1V 5C3, Canada
| | - Yannick Doyon
- Centre Hospitalier Universitaire de Québec Research Center - Université Laval, 2705 boulevard Laurier, Québec, QC G1V 4G2, Canada
- Faculty of Medicine, Laval University, 1050 avenue de la Médecine, Québec, QC G1V 0A6, Canada
- Université Laval Cancer Research Centre, 1050 avenue de la Médecine, Québec, QC G1V 0A6, Canada
| | - Josée Laganière
- Faculty of Medicine, Laval University, 1050 avenue de la Médecine, Québec, QC G1V 0A6, Canada
- Medical Affairs and Innovation, Héma-Québec, 1070 avenue des Sciences-de-la-Vie, Québec, QC G1V 5C3, Canada
| |
Collapse
|
2
|
Cui T, Wang X, Zang R, Zhao L, Yan H, Li X, Xu Z, Wang H, Zhou J, Liu Y, Yue W, Pei X, Xi J. 3' UTR-truncated HMGA2 promotes erythroblasts production from human embryonic stem cells. Stem Cells Transl Med 2025; 14:szaf001. [PMID: 39912395 PMCID: PMC11973423 DOI: 10.1093/stcltm/szaf001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2024] [Accepted: 01/09/2025] [Indexed: 02/07/2025] Open
Abstract
Cultured red blood cells represent an alternative resource for blood transfusions. However, important issues such as low yields and high costs remain. Recently, gene editing of hematopoietic stem cells has been conducted to induce erythroid differentiation in vitro for producing sufficient RBCs to meet the imbalance in blood supply and demand. The differentiation and expansion of hematopoietic stem and progenitor cells are regulated by transcription factors, such as high mobility group AT-hook 2 (HMGA2). In this study, we utilized CRISPR/Cas9 to establish a doxycycline-inducible HMGA2-expressing human embryonic stem cell (hESC) line. In a defined erythroid differentiation system, HMGA2 prolonged erythroid differentiation in vitro, enabling extensive expansion of human erythroblasts. The erythroblasts derived from the HMGA2-expressing hESC line are rich in polychromatic and orthochromatic erythroblasts expressing mostly α- and γ-globin and have the capacity to differentiate into RBCs. Our findings highlight the potential of combining hematopoietic transcription factors with genome editing techniques to enhance RBC production.
Collapse
Affiliation(s)
- Tiantian Cui
- Beijing Institute of Radiation Medicine, Beijing 100850, China
| | - Xiaoling Wang
- Beijing Institute of Radiation Medicine, Beijing 100850, China
| | - Ruge Zang
- Beijing Institute of Radiation Medicine, Beijing 100850, China
| | - Lingping Zhao
- Beijing Institute of Radiation Medicine, Beijing 100850, China
| | - Hao Yan
- Beijing Institute of Radiation Medicine, Beijing 100850, China
| | - Xuan Li
- Beijing Institute of Radiation Medicine, Beijing 100850, China
| | - Zhenzhao Xu
- Beijing Institute of Radiation Medicine, Beijing 100850, China
| | - Haiyang Wang
- Beijing Institute of Radiation Medicine, Beijing 100850, China
| | - Junnian Zhou
- Beijing Institute of Radiation Medicine, Beijing 100850, China
| | - Yiming Liu
- Beijing Institute of Radiation Medicine, Beijing 100850, China
| | - Wen Yue
- Beijing Institute of Radiation Medicine, Beijing 100850, China
| | - Xuetao Pei
- Beijing Institute of Radiation Medicine, Beijing 100850, China
| | - Jiafei Xi
- Beijing Institute of Radiation Medicine, Beijing 100850, China
| |
Collapse
|
3
|
Chukwuemeka CG, Ndubueze CW, Kolawole AV, Joseph JN, Oladipo IH, Ofoezie EF, Annor-Yeboah SA, Bello ARE, Ganiyu SO. In vitro erythropoiesis: the emerging potential of induced pluripotent stem cells (iPSCs). BLOOD SCIENCE 2025; 7:e00215. [PMID: 39726795 PMCID: PMC11671056 DOI: 10.1097/bs9.0000000000000215] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2024] [Accepted: 11/25/2024] [Indexed: 12/28/2024] Open
Abstract
Due to global blood shortages and restricted donor blood storage, the focus has switched to the in vitro synthesis of red blood cells (RBCs) from induced pluripotent stem cells (iPSCs) as a potential solution. Many processes are required to synthesize RBCs from iPSCs, including the production of iPSCs from human or animal cells, differentiation of iPSCs into hematopoietic stem cells, culturing, and maturation of the hematopoietic stem cells (HSC) to make functional erythrocytes. Previous investigations on the in vitro production of erythrocytes have shown conflicting results. Some studies have demonstrated substantial yields of functional erythrocytes, whereas others have observed low yields of enucleated cells. Before large-scale in vitro RBC production can be achieved, several challenges which have limited its application in the clinic must be overcome. These issues include optimizing differentiation techniques to manufacture vast amounts of functional RBCs, upscaling the manufacturing process, cost-effectiveness, and assuring the production of RBCs with good manufacturing practices (GMP) before they can be used for therapeutic purposes.
Collapse
Affiliation(s)
| | - Chizaram W. Ndubueze
- Chester Medical School, University of Chester, Exton Park, Chester CH1 4BJ, England
| | - Adeola V. Kolawole
- Chester Medical School, University of Chester, Exton Park, Chester CH1 4BJ, England
| | - Joshua N. Joseph
- College of Science, University of Massey, Tennent Drive, Massey University, Palmerston North 4410, New Zealand
- Resilient Agriculture, AgResearch Limited, Grasslands Research Centre Tennent Drive, Fitzherbert Palmerston North 4410, New Zealand
| | - Ifeoluwa H. Oladipo
- Chester Medical School, University of Chester, Exton Park, Chester CH1 4BJ, England
| | - Ezichi F. Ofoezie
- Chester Medical School, University of Chester, Exton Park, Chester CH1 4BJ, England
| | | | - Abdur-Rahman Eneye Bello
- Chester Medical School, University of Chester, Exton Park, Chester CH1 4BJ, England
- Department of Biochemistry, Confluence University of Science and Technology, Osara, Kogi State, Nigeria
| | - Sodiq O. Ganiyu
- Chester Medical School, University of Chester, Exton Park, Chester CH1 4BJ, England
| |
Collapse
|
4
|
Kronstein-Wiedemann R, Thiel J, Sürün D, Teichert M, Künzel SR, Zimmermann S, Wagenführ L, Buchholz F, Tonn T. Characterization of immortalized bone marrow erythroid progenitor adult (imBMEP-A)-The first inducible immortalized red blood cell progenitor cell line derived from bone marrow CD71-positive cells. Cytotherapy 2024; 26:1362-1373. [PMID: 39001769 DOI: 10.1016/j.jcyt.2024.06.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2024] [Revised: 06/21/2024] [Accepted: 06/21/2024] [Indexed: 07/15/2024]
Abstract
BACKGROUND AIMS Ex vivo production of red blood cells (RBCs) represents a promising alternative for transfusion medicine. Several strategies have been described to generate erythroid cell lines from different sources, including embryonic, induced pluripotent, and hematopoietic stem cells. All these approaches have in common that they require elaborate differentiation cultures whereas the yield of enucleated RBCs is inefficient. METHODS We generated a human immortalized adult erythroid progenitor cell line derived from bone marrow CD71-positive erythroid progenitor cells (immortalized bone marrow erythroid progenitor adult, or imBMEP-A) by an inducible expression system, to shorten differentiation culture necessary for terminal erythroid differentiation. It is the first erythroid cell line that is generated from direct reticulocyte progenitors and demonstrates robust hemoglobin production in the immortalized state. RESULTS Morphologic analysis of the immortalized cells showed that the preferred cell type of the imBMEP-A line corresponds to hemoglobin-producing basophilic erythroblasts. In addition, we were able to generate a stable cell line from a single cell clone with the triple knockout of RhAG, RhDCE and KELL. After removal of doxycycline, part of the cells differentiated into normoblasts and reticulocytes within 5-7 days. CONCLUSIONS Our results demonstrate that the imBMEP-A cell line can serve as a stable and straightforward modifiable platform for RBC engineering in the future.
Collapse
Affiliation(s)
- Romy Kronstein-Wiedemann
- Laboratory for Experimental Transfusion Medicine, Transfusion Medicine, Medical Faculty Carl Gustav Carus, Technische Universität Dresden, Dresden, Germany; German Red Cross Blood Donation Service North-East, Institute for Transfusion Medicine, Dresden, Germany
| | - Jessica Thiel
- Laboratory for Experimental Transfusion Medicine, Transfusion Medicine, Medical Faculty Carl Gustav Carus, Technische Universität Dresden, Dresden, Germany; German Red Cross Blood Donation Service North-East, Institute for Transfusion Medicine, Dresden, Germany
| | - Duran Sürün
- UCC, Medical Systems Biology - Medical Faculty Carl Gustav Carus, Technische Universität Dresden, Dresden, Germany
| | - Madeleine Teichert
- German Red Cross Blood Donation Service North-East, Institute for Transfusion Medicine, Dresden, Germany
| | - Stephan R Künzel
- Laboratory for Experimental Transfusion Medicine, Transfusion Medicine, Medical Faculty Carl Gustav Carus, Technische Universität Dresden, Dresden, Germany; German Red Cross Blood Donation Service North-East, Institute for Transfusion Medicine, Dresden, Germany
| | - Stefan Zimmermann
- Laboratory for MEMS Applications, IMTEK - Department of Microsystems Engineering, University of Freiburg, Freiburg, Germany
| | - Lisa Wagenführ
- Medical Clinic and Polyclinic I, University Hospital Dresden, Technische Universität Dresden, Dresden, Germany
| | - Frank Buchholz
- UCC, Medical Systems Biology - Medical Faculty Carl Gustav Carus, Technische Universität Dresden, Dresden, Germany
| | - Torsten Tonn
- Laboratory for Experimental Transfusion Medicine, Transfusion Medicine, Medical Faculty Carl Gustav Carus, Technische Universität Dresden, Dresden, Germany; German Red Cross Blood Donation Service North-East, Institute for Transfusion Medicine, Dresden, Germany.
| |
Collapse
|
5
|
Liu Q, Lin Z, Yue M, Wu J, Li L, Huang D, Fang Y, Zhang X, Hao T. Identification and validation of ferroptosis related markers in erythrocyte differentiation of umbilical cord blood-derived CD34 + cell by bioinformatic analysis. Front Genet 2024; 15:1365232. [PMID: 39139819 PMCID: PMC11319168 DOI: 10.3389/fgene.2024.1365232] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2024] [Accepted: 07/09/2024] [Indexed: 08/15/2024] Open
Abstract
Ferroptosis has been observed to play an important role during erythrocyte differentiation (ED). However, the biological gene markers and ferroptosis mechanisms in ED remain unknown. We downloaded the datasets of ED in human umbilical cord blood-derived CD34+ cells from the Gene Expression Omnibus database. Using median differentiation time, the sample was categorized into long and short groups. The differentially expressed ferroptosis-related genes (DE-FRGs) were screened using differential expression analysis. The enrichment analyses and a protein-protein interaction (PPI) network were conducted. To predict the ED stage, a logistic regression model was constructed using the least absolute shrinkage and selection operator (LASSO). Overall, 22 DE-FRGs were identified. Ferroptosis-related pathways were enriched using Gene Ontology and the Kyoto Encyclopedia of Genes and Genomes. Gene Set Enrichment Analysis and Gene Set Variation Analysis revealed the primary involvement of DE-FRGs in JAK-STAT, MAPK, PI3K-AKT-mTORC1, WNT, and NOTCH signaling pathways. Ten-hub DE-FRGs were obtained using PPI analysis. Furthermore, we constructed mRNA-microRNA (miRNA) and mRNA-transcription factor networks. Immune cell infiltration levels differed significantly during ED. LASSO regression analysis established a signature using six DE-FRGs (ATF3, CDH2, CHAC1, DDR2, DPP4, and GDF15) related to the ED stage. Bioinformatic analyses identified ferroptosis-associated genes during ED, which were further validated. Overall, we identified ferroptosis-related genes to predict their correlations in ED. Exploring the underlying mechanisms of ferroptosis may help us better understand pathophysiological changes in ED and provide new evidence for clinical transformation.
Collapse
Affiliation(s)
- Qian Liu
- Department of Cardiology, Binzhou Medical University Hospital, Binzhou, Shandong, China
| | - Ze Lin
- Shantou University Medical College, Shantou, Guangdong, China
| | - Minghui Yue
- Shantou University Medical College, Shantou, Guangdong, China
| | - Jianbo Wu
- Department of Cardiology, Binzhou Medical University Hospital, Binzhou, Shandong, China
| | - Lei Li
- Department of Cardiology, Binzhou Medical University Hospital, Binzhou, Shandong, China
| | - Daqi Huang
- Department of Cardiology, Binzhou Medical University Hospital, Binzhou, Shandong, China
| | - Yipeng Fang
- Department of Critical Care Medicine, Tianjin Medical University General Hospital, Tianjin, China
| | - Xin Zhang
- Shantou University Medical College, Shantou, Guangdong, China
- Laboratory of Molecular Cardiology, The First Affiliated Hospital of Shantou University Medical College, Shantou, Guangdong, China
- Laboratory of Medical Molecular Imaging, The First Affiliated Hospital of Shantou University Medical College, Shantou, Guangdong, China
| | - Tao Hao
- Department of Colorectal Surgery, Binzhou Medical University Hospital, Binzhou, Shandong, China
| |
Collapse
|
6
|
Wang E, Liu S, Zhang X, Peng Q, Yu H, Gao L, Xie A, Ma D, Zhao G, Cheng L. An Optimized Human Erythroblast Differentiation System Reveals Cholesterol-Dependency of Robust Production of Cultured Red Blood Cells Ex Vivo. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2303471. [PMID: 38481061 PMCID: PMC11165465 DOI: 10.1002/advs.202303471] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/29/2023] [Revised: 11/01/2023] [Indexed: 06/12/2024]
Abstract
The generation of cultured red blood cells (cRBCs) ex vivo represents a potentially unlimited source for RBC transfusion and other cell therapies. Human cRBCs can be generated from the terminal differentiation of proliferating erythroblasts derived from hematopoietic stem/progenitor cells or erythroid precursors in peripheral blood mononuclear cells. Efficient differentiation and maturation into cRBCs highly depend on replenishing human plasma, which exhibits variable potency across donors or batches and complicates the consistent cRBC production required for clinical translation. Hence, the role of human plasma in erythroblast terminal maturation is investigated and uncovered that 1) a newly developed cell culture basal medium mimicking the metabolic profile of human plasma enhances cell growth and increases cRBC yield upon erythroblast terminal differentiation and 2) LDL-carried cholesterol, as a substitute for human plasma, is sufficient to support erythroid survival and terminal differentiation ex vivo. Consequently, a chemically-defined optimized medium (COM) is developed, enabling robust generation of cRBCs from erythroblasts of multiple origins, with improved enucleation efficiency and higher reticulocyte yield, without the need for supplementing human plasma or serum. In addition, the results reveal the crucial role of lipid metabolism during human terminal erythropoiesis.
Collapse
Affiliation(s)
- Enyu Wang
- Department of HematologyThe First Affiliated Hospital of USTCDivision of Life Sciences and MedicineUniversity of Science and Technology of ChinaHefeiAnhui230001China
- Blood and Cell Therapy InstituteAnhui Provincial Key Laboratory of Blood Research and ApplicationsUniversity of Science and Technology of ChinaHefeiAnhui230027China
- Department of Electronic Engineering and Information ScienceUniversity of Science and Technology of ChinaHefeiAnhui230027China
| | - Senquan Liu
- Department of HematologyThe First Affiliated Hospital of USTCDivision of Life Sciences and MedicineUniversity of Science and Technology of ChinaHefeiAnhui230001China
- Blood and Cell Therapy InstituteAnhui Provincial Key Laboratory of Blood Research and ApplicationsUniversity of Science and Technology of ChinaHefeiAnhui230027China
- School of Basic Medical SciencesDivision of Life Sciences and MedicineUniversity of Science and Technology of ChinaHefeiAnhui230027China
| | - Xinye Zhang
- School of Basic Medical SciencesDivision of Life Sciences and MedicineUniversity of Science and Technology of ChinaHefeiAnhui230027China
| | - Qingyou Peng
- School of Basic Medical SciencesDivision of Life Sciences and MedicineUniversity of Science and Technology of ChinaHefeiAnhui230027China
| | - Huijuan Yu
- School of Basic Medical SciencesDivision of Life Sciences and MedicineUniversity of Science and Technology of ChinaHefeiAnhui230027China
| | - Lei Gao
- Blood and Cell Therapy InstituteAnhui Provincial Key Laboratory of Blood Research and ApplicationsUniversity of Science and Technology of ChinaHefeiAnhui230027China
- School of Basic Medical SciencesDivision of Life Sciences and MedicineUniversity of Science and Technology of ChinaHefeiAnhui230027China
| | - An Xie
- Blood and Cell Therapy InstituteAnhui Provincial Key Laboratory of Blood Research and ApplicationsUniversity of Science and Technology of ChinaHefeiAnhui230027China
| | - Ding Ma
- Department of HematologyThe First Affiliated Hospital of USTCDivision of Life Sciences and MedicineUniversity of Science and Technology of ChinaHefeiAnhui230001China
- Blood and Cell Therapy InstituteAnhui Provincial Key Laboratory of Blood Research and ApplicationsUniversity of Science and Technology of ChinaHefeiAnhui230027China
| | - Gang Zhao
- Blood and Cell Therapy InstituteAnhui Provincial Key Laboratory of Blood Research and ApplicationsUniversity of Science and Technology of ChinaHefeiAnhui230027China
- Department of Electronic Engineering and Information ScienceUniversity of Science and Technology of ChinaHefeiAnhui230027China
| | - Linzhao Cheng
- Department of HematologyThe First Affiliated Hospital of USTCDivision of Life Sciences and MedicineUniversity of Science and Technology of ChinaHefeiAnhui230001China
- Blood and Cell Therapy InstituteAnhui Provincial Key Laboratory of Blood Research and ApplicationsUniversity of Science and Technology of ChinaHefeiAnhui230027China
- School of Basic Medical SciencesDivision of Life Sciences and MedicineUniversity of Science and Technology of ChinaHefeiAnhui230027China
- Division of HematologyJohns Hopkins University School of MedicineBaltimoreMD21205USA
| |
Collapse
|
7
|
Boccacci Y, Dumont N, Doyon Y, Laganière J. Accessory-cell-free differentiation of hematopoietic stem and progenitor cells into mature red blood cells. Cytotherapy 2023; 25:1242-1248. [PMID: 37598334 DOI: 10.1016/j.jcyt.2023.07.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2023] [Revised: 07/14/2023] [Accepted: 07/25/2023] [Indexed: 08/21/2023]
Abstract
BACKGROUND AIMS The culture and ex vivo engineering of red blood cells (RBCs) can help characterize genetic variants, model diseases, and may eventually spur the development of applications in transfusion medicine. In the last decade, improvements to the in vitro production of RBCs have enabled efficient erythroid progenitor proliferation and high enucleation levels from several sources of hematopoietic stem and progenitor cells (HSPCs). Despite these advances, there remains a need for refining the terminal step of in vitro human erythropoiesis, i.e., the terminal maturation of reticulocytes into erythrocytes, so that it can occur without feeder or accessory cells and animal-derived components. METHODS Here, we describe the near-complete erythroid differentiation of cultured RBCs (cRBCs) from adult HSPCs in accessory-cell-free and xeno-free conditions. RESULTS The approach improves post-enucleation cell integrity and cell survival, and it enables subsequent storage of cRBCs for up to 42 days in classical additive solution conditions without any specialized equipment. CONCLUSIONS We foresee that these improvements will facilitate the characterization of RBCs derived from gene-edited HSPCs.
Collapse
Affiliation(s)
- Yelena Boccacci
- Medical Affairs and Innovation, Héma-Qubec, Québec, Quebec, Canada; Centre Hospitalier Universitaire de Québec Research Center, Université Laval, Québec, Quebec, Canada
| | - Nellie Dumont
- Medical Affairs and Innovation, Héma-Qubec, Québec, Quebec, Canada
| | - Yannick Doyon
- Centre Hospitalier Universitaire de Québec Research Center, Université Laval, Québec, Quebec, Canada
| | - Josée Laganière
- Medical Affairs and Innovation, Héma-Qubec, Québec, Quebec, Canada.
| |
Collapse
|
8
|
Cervellera CF, Mazziotta C, Di Mauro G, Iaquinta MR, Mazzoni E, Torreggiani E, Tognon M, Martini F, Rotondo JC. Immortalized erythroid cells as a novel frontier for in vitro blood production: current approaches and potential clinical application. Stem Cell Res Ther 2023; 14:139. [PMID: 37226267 PMCID: PMC10210309 DOI: 10.1186/s13287-023-03367-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2023] [Accepted: 05/05/2023] [Indexed: 05/26/2023] Open
Abstract
BACKGROUND Blood transfusions represent common medical procedures, which provide essential supportive therapy. However, these procedures are notoriously expensive for healthcare services and not without risk. The potential threat of transfusion-related complications, such as the development of pathogenic infections and the occurring of alloimmunization events, alongside the donor's dependence, strongly limits the availability of transfusion units and represents significant concerns in transfusion medicine. Moreover, a further increase in the demand for donated blood and blood transfusion, combined with a reduction in blood donors, is expected as a consequence of the decrease in birth rates and increase in life expectancy in industrialized countries. MAIN BODY An emerging and alternative strategy preferred over blood transfusion is the in vitro production of blood cells from immortalized erythroid cells. The high survival capacity alongside the stable and longest proliferation time of immortalized erythroid cells could allow the generation of a large number of cells over time, which are able to differentiate into blood cells. However, a large-scale, cost-effective production of blood cells is not yet a routine clinical procedure, as being dependent on the optimization of culture conditions of immortalized erythroid cells. CONCLUSION In our review, we provide an overview of the most recent erythroid cell immortalization approaches, while also describing and discussing related advancements of establishing immortalized erythroid cell lines.
Collapse
Affiliation(s)
- Christian Felice Cervellera
- Department of Medical Sciences, University of Ferrara, 64/b, Fossato di Mortara Street, 44121, Ferrara, Italy
| | - Chiara Mazziotta
- Department of Medical Sciences, University of Ferrara, 64/b, Fossato di Mortara Street, 44121, Ferrara, Italy
- Department of Medical Sciences, Center for Studies on Gender Medicine, University of Ferrara, 64/b, Fossato di Mortara Street, 44121, Ferrara, Italy
| | - Giulia Di Mauro
- Department of Medical Sciences, University of Ferrara, 64/b, Fossato di Mortara Street, 44121, Ferrara, Italy
| | - Maria Rosa Iaquinta
- Department of Medical Sciences, University of Ferrara, 64/b, Fossato di Mortara Street, 44121, Ferrara, Italy
- Department of Medical Sciences, Center for Studies on Gender Medicine, University of Ferrara, 64/b, Fossato di Mortara Street, 44121, Ferrara, Italy
| | - Elisa Mazzoni
- Department of Chemical, Pharmaceutical and Agricultural Sciences-DOCPAS, University of Ferrara, 44121, Ferrara, Italy
| | - Elena Torreggiani
- Department of Chemical, Pharmaceutical and Agricultural Sciences-DOCPAS, University of Ferrara, 44121, Ferrara, Italy
| | - Mauro Tognon
- Department of Medical Sciences, University of Ferrara, 64/b, Fossato di Mortara Street, 44121, Ferrara, Italy
| | - Fernanda Martini
- Department of Medical Sciences, University of Ferrara, 64/b, Fossato di Mortara Street, 44121, Ferrara, Italy.
- Department of Medical Sciences, Center for Studies on Gender Medicine, University of Ferrara, 64/b, Fossato di Mortara Street, 44121, Ferrara, Italy.
- Laboratory for Technologies of Advanced Therapies (LTTA), University of Ferrara, 44121, Ferrara, Italy.
| | - John Charles Rotondo
- Department of Medical Sciences, University of Ferrara, 64/b, Fossato di Mortara Street, 44121, Ferrara, Italy.
- Department of Medical Sciences, Center for Studies on Gender Medicine, University of Ferrara, 64/b, Fossato di Mortara Street, 44121, Ferrara, Italy.
| |
Collapse
|
9
|
Han H, Rim YA, Ju JH. Recent updates of stem cell-based erythropoiesis. Hum Cell 2023; 36:894-907. [PMID: 36754940 PMCID: PMC9908308 DOI: 10.1007/s13577-023-00872-z] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2022] [Accepted: 01/28/2023] [Indexed: 02/10/2023]
Abstract
Blood transfusions are now an essential part of modern medicine. Transfusable red blood cells (RBCs) are employed in various therapeutic strategies; however, the processes of blood donation, collection, and administration still involve many limitations. Notably, a lack of donors, the risk of transfusion-transmitted disease, and recent pandemics such as COVID-19 have prompted us to search for alternative therapeutics to replace this resource. Originally, RBC production was attempted via the ex vivo differentiation of stem cells. However, a more approachable and effective cell source is now required for broader applications. As a viable alternative, pluripotent stem cells have been actively used in recent research. In this review, we discuss the basic concepts related to erythropoiesis, as well as early research using hematopoietic stem cells ex vivo, and discuss the current trend of in vitro erythropoiesis using human-induced pluripotent stem cells.
Collapse
Affiliation(s)
- Heeju Han
- Department of Biomedicine and Health Sciences, College of Medicine, The Catholic University of Korea, , Seoul, Republic of Korea ,Catholic iPSC Research Center, College of Medicine, The Catholic University of Korea, Seoul, Republic of Korea
| | - Yeri Alice Rim
- Catholic iPSC Research Center, College of Medicine, The Catholic University of Korea, Seoul, Republic of Korea.
| | - Ji Hyeon Ju
- Catholic iPSC Research Center, College of Medicine, The Catholic University of Korea, Seoul, Republic of Korea. .,Division of Rheumatology, Department of Internal Medicine, Institute of Medical Science, College of Medicine, Seoul St. Mary's Hospital, The Catholic University of Korea, Seoul, Republic of Korea.
| |
Collapse
|
10
|
Petazzi P, Miquel‐Serra L, Huertas S, González C, Boto N, Muñiz‐Diaz E, Menéndez P, Sevilla A, Nogués N. ABO gene editing for the conversion of blood type A to universal type O in Rh null donor-derived human-induced pluripotent stem cells. Clin Transl Med 2022; 12:e1063. [PMID: 36281739 PMCID: PMC9593258 DOI: 10.1002/ctm2.1063] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2022] [Revised: 08/13/2022] [Accepted: 09/06/2022] [Indexed: 01/28/2023] Open
Abstract
The limited availability of red cells with extremely rare blood group phenotypes is one of the global challenges in transfusion medicine that has prompted the search for alternative self-renewable pluripotent cell sources for the in vitro generation of red cells with rare blood group types. One such phenotype is the Rhnull , which lacks all the Rh antigens on the red cell membrane and represents one of the rarest blood types in the world with only a few active blood donors available worldwide. Rhnull red cells are critical for the transfusion of immunized patients carrying the same phenotype, besides its utility in the diagnosis of Rh alloimmunization when a high-prevalence Rh specificity is suspected in a patient or a pregnant woman. In both scenarios, the potential use of human-induced pluripotent stem cell (hiPSC)-derived Rhnull red cells is also dependent on ABO compatibility. Here, we present a CRISPR/Cas9-mediated ABO gene edition strategy for the conversion of blood type A to universal type O, which we have applied to an Rhnull donor-derived hiPSC line, originally carrying blood group A. This work provides a paradigmatic example of an approach potentially applicable to other hiPSC lines derived from rare blood donors not carrying blood type O.
Collapse
Affiliation(s)
- Paolo Petazzi
- Josep Carreras Leukemia Research InstituteBarcelonaSpain
| | - Laia Miquel‐Serra
- Immunohematology LaboratoryBarcelonaSpain
- Transfusional medicine. Vall d'Hebron Research Institute (VHIR)BarcelonaSpain
| | - Sergio Huertas
- Immunohematology LaboratoryBarcelonaSpain
- Transfusional medicine. Vall d'Hebron Research Institute (VHIR)BarcelonaSpain
| | - Cecilia González
- Immunohematology LaboratoryBarcelonaSpain
- Transfusional medicine. Vall d'Hebron Research Institute (VHIR)BarcelonaSpain
| | - Neus Boto
- Immunohematology LaboratoryBarcelonaSpain
| | - Eduardo Muñiz‐Diaz
- Immunohematology LaboratoryBarcelonaSpain
- Transfusional medicine. Vall d'Hebron Research Institute (VHIR)BarcelonaSpain
- Department of MedicineUniversitat Autònoma de Barcelona (UAB)BarcelonaSpain
| | - Pablo Menéndez
- Josep Carreras Leukemia Research InstituteBarcelonaSpain
- Department of Biomedicine, School of MedicineUniversity of BarcelonaBarcelonaSpain
- Centro de Investigación Biomédica en Red de Cáncer‐CIBER‐ONCInstituto de Salud Carlos IIIBarcelonaSpain
- Red Española de Terapias Avanzadas (TERAV)Instituto de Salud Carlos III (RICORS, RD21/0017/0029)
- Institució Catalana de Recerca i Estudis Avançats (ICREA)BarcelonaSpain
| | - Ana Sevilla
- Department of Cell BiologyPhysiology and Immunology, Faculty of Biology, University of BarcelonaBarcelonaSpain
- Institute of Biomedicine of the University of Barcelona (IBUB)BarcelonaSpain
| | - Núria Nogués
- Immunohematology LaboratoryBarcelonaSpain
- Transfusional medicine. Vall d'Hebron Research Institute (VHIR)BarcelonaSpain
- Department of MedicineUniversitat Autònoma de Barcelona (UAB)BarcelonaSpain
| |
Collapse
|
11
|
Ferenz K, Karaman O, Shah SB. Artificial red blood cells. NANOTECHNOLOGY FOR HEMATOLOGY, BLOOD TRANSFUSION, AND ARTIFICIAL BLOOD 2022:397-427. [DOI: 10.1016/b978-0-12-823971-1.00018-0] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/03/2025]
|
12
|
Kronstein-Wiedemann R, Thiel J, Tonn T. Blood Pharming – eine realistische Option? TRANSFUSIONSMEDIZIN 2021. [DOI: 10.1055/a-1342-0820] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Abstract
ZusammenfassungDie Bluttransfusion ist ein wesentlicher und unersetzlicher Teil der modernen Medizin. Jedoch stellt vor allem bei Patienten mit sehr seltenen Blutgruppenkonstellationen der Mangel an Blutprodukten auch heute noch ein wichtiges Gesundheitsproblem weltweit dar. Um diesem Problem entgegenzutreten, versucht man seit einiger Zeit künstlich rote Blutzellen zu generieren. Diese haben potenzielle Vorteile gegenüber Spenderblut, wie z. B. ein verringertes Risiko für die Übertragung von Infektionskrankheiten. Diese Übersicht fasst die aktuellen Entwicklungen über den Prozess der Erythropoese, die Expansionsstrategien der erythrozytären Zellen, der verschiedenen Quellen für ex vivo expandierte Erythrozyten, die Hürden für die klinische Anwendung und die zukünftigen Möglichkeiten der Anwendung zusammen.
Collapse
Affiliation(s)
- Romy Kronstein-Wiedemann
- DRK-Blutspendedienst Nord-Ost gGmbH/Institut Dresden
- Experimentelle Transfusionsmedizin, Medizinische Fakultät Universitätsklinikum Carl Gustav Carus
| | - Jessica Thiel
- DRK-Blutspendedienst Nord-Ost gGmbH/Institut Dresden
- Experimentelle Transfusionsmedizin, Medizinische Fakultät Universitätsklinikum Carl Gustav Carus
| | - Torsten Tonn
- DRK-Blutspendedienst Nord-Ost gGmbH/Institut Dresden
- Experimentelle Transfusionsmedizin, Medizinische Fakultät Universitätsklinikum Carl Gustav Carus
| |
Collapse
|
13
|
Xin Z, Zhang W, Gong S, Zhu J, Li Y, Zhang Z, Fang X. Mapping Human Pluripotent Stem Cell-derived Erythroid Differentiation by Single-cell Transcriptome Analysis. GENOMICS PROTEOMICS & BIOINFORMATICS 2021; 19:358-376. [PMID: 34284135 PMCID: PMC8864192 DOI: 10.1016/j.gpb.2021.03.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/22/2021] [Revised: 01/22/2021] [Accepted: 03/06/2021] [Indexed: 10/28/2022]
Abstract
There is an imbalance between the supply and demand of functional red blood cells (RBCs) in clinical applications. This imbalance can be addressed by regenerating RBCs using several in vitro methods. Induced pluripotent stem cells (iPSCs) can handle the low supply of cord blood and the ethical issues in embryonic stem cell research and provide a promising strategy to eliminate immune rejection. However, no complete single-cell level differentiation pathway exists for the iPSC-derived RBC differentiation system. In this study, we used iPSC line BC1 to establish a RBCs regeneration system. The 10× genomics single-cell transcriptome platform was used to map the cell lineage and differentiation trajectories on day 14 of the regeneration system. We observed that iPSCs differentiation was not synchronized during embryoid body (EB) culture. The cells (day 14) mainly consisted of mesodermal and various blood cells, similar to the yolk sac hematopoiesis. We identified six cell classifications and characterized the regulatory transcription factors (TFs) networks and cell-cell contacts underlying the system. iPSCs undergo two transformations during the differentiation trajectory, accompanied by the dynamic expression of cell adhesion molecules and estrogen-responsive genes. We identified different stages of erythroid cells, such as burst-forming unit erythroid (BFU-E) and orthochromatic erythroblasts (ortho-E), and found that the regulation of TFs (e.g., TFDP1 and FOXO3) is erythroid-stage specific. Immune erythroid cells were identified in our system. This study provides systematic theoretical guidance for optimizing the iPSCs-derived RBCs differentiation system, and this system is a useful model for simulating in vivo hematopoietic development and differentiation.
Collapse
Affiliation(s)
- Zijuan Xin
- CAS Key Laboratory of Genome Science and Information, Beijing Institute of Genomics, Chinese Academy of Sciences/China National Center of Bioinformation, Beijing 100101, China; College of Life Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Wei Zhang
- CAS Key Laboratory of Genome Science and Information, Beijing Institute of Genomics, Chinese Academy of Sciences/China National Center of Bioinformation, Beijing 100101, China; College of Life Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Shangjin Gong
- CAS Key Laboratory of Genome Science and Information, Beijing Institute of Genomics, Chinese Academy of Sciences/China National Center of Bioinformation, Beijing 100101, China; College of Life Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Junwei Zhu
- CAS Key Laboratory of Genome Science and Information, Beijing Institute of Genomics, Chinese Academy of Sciences/China National Center of Bioinformation, Beijing 100101, China; Beijing Key Laboratory of Genome and Precision Medicine Technologies, Beijing, 100101, China
| | - Yanming Li
- CAS Key Laboratory of Genome Science and Information, Beijing Institute of Genomics, Chinese Academy of Sciences/China National Center of Bioinformation, Beijing 100101, China
| | - Zhaojun Zhang
- CAS Key Laboratory of Genome Science and Information, Beijing Institute of Genomics, Chinese Academy of Sciences/China National Center of Bioinformation, Beijing 100101, China; Sino-Danish College, University of Chinese Academy of Sciences, Beijing 100190, China; Institute for Stem Cell and Regeneration, Chinese Academy of Sciences, Beijing 100101, China; Beijing Key Laboratory of Genome and Precision Medicine Technologies, Beijing, 100101, China.
| | - Xiangdong Fang
- CAS Key Laboratory of Genome Science and Information, Beijing Institute of Genomics, Chinese Academy of Sciences/China National Center of Bioinformation, Beijing 100101, China; College of Life Sciences, University of Chinese Academy of Sciences, Beijing 100049, China; Sino-Danish College, University of Chinese Academy of Sciences, Beijing 100190, China; Institute for Stem Cell and Regeneration, Chinese Academy of Sciences, Beijing 100101, China; Beijing Key Laboratory of Genome and Precision Medicine Technologies, Beijing, 100101, China.
| |
Collapse
|
14
|
Abstract
Fluids are a vital tool in the armament of acute care clinicians in both civilian and military resuscitation. We now better understand complications from inappropriate resuscitation with currently available fluids; however, fluid resuscitation undeniably remains a life-saving intervention. Military research has driven the most significant advances in the field of fluid resuscitation and is currently leading the search for the fluids of the future. The veterinary community, much like our civilian human counterparts, should expect the fluid of the future to be the fruit of military research. The fluids of the future not only are expected to improve patient outcomes but also be field expedient. Those fluids should be compatible with military environments or natural disaster environments. For decades, military personnel and disaster responders have faced the peculiar demands of austere environments, prolonged field care, and delayed evacuation. Large scale natural disasters present field limitations often similar to those encountered in the battlefield. The fluids of the future should, therefore, have a long shelf-life, a small footprint, and be resistant to large temperature swings, for instance. Traumatic brain injury and hemorrhagic shock are the leading causes of preventable death for military casualties and a significant burden in civilian populations. The military and civilian health systems are focusing efforts on field-expedient fluids that will be specifically relevant for the management of those conditions. Fluids are expected to be compatible with blood products, increase oxygen-carrying capabilities, promote hemostasis, and be easy to administer in the prehospital setting, to match the broad spectrum of current acute care challenges, such as sepsis and severe systemic inflammation. This article will review historical military and civilian contributions to current resuscitation strategies, describe the expectations for the fluids of the future, and describe select ongoing research efforts with a review of current animal data.
Collapse
Affiliation(s)
- Thomas H. Edwards
- US Army Institute of Surgical Research, San Antonio, TX, United States
| | - Guillaume L. Hoareau
- Emergency Medicine, School of Medicine, University of Utah, Salt Lake City, UT, United States
| |
Collapse
|
15
|
Srivastava K, Albasri J, Alsuhaibani OM, Aljasem HA, Bueno MU, Antonacci T, Branch DR, Denomme GA, Flegel WA. SCAR: The high-prevalence antigen 013.008 in the Scianna blood group system. Transfusion 2021; 61:246-254. [PMID: 33098316 PMCID: PMC9067365 DOI: 10.1111/trf.16152] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2020] [Revised: 08/31/2020] [Accepted: 09/24/2020] [Indexed: 12/16/2022]
Abstract
BACKGROUND The Scianna (SC) blood group system comprises seven antigens. They reside on the erythroblast membrane-associated glycoprotein (ERMAP). The ERMAP and RHCE genes are juxtaposed to each other on chromosome 1. We report a novel SC antigen. STUDY DESIGN AND METHODS Blood samples came from a patient and his two sisters in Saudi Arabia. To investigate the antibody specificity we used the column agglutination technique and soluble recombinant ERMAP protein. The significance of anti-SCAR was evaluated by the transfusion history and a monocyte monolayer assay. We determined the genomic sequence of ERMAP and RHCE genes. RESULTS The patient's serum showed an antibody of titer 8 against a high-prevalence antigen. The soluble recombinant ERMAP protein inhibited the antibody. The propositus genotyped homozygous for an ERMAP:c.424C>G variant, for which his sisters were heterozygous. The c.424C>G variant occurred in the SC*01 allele in one haplotype with the RHCE*03 (RHCE*cE) allele. No signs of hemolysis occurred following an incompatible blood transfusion. The monocyte monolayer assay was negative. CONCLUSIONS We characterized a high-prevalence antigen, with the proposed name "SCAR," which is the eighth antigen of the Scianna blood group system (proposed designation 013.008). Individuals homozygous for ERMAP:p.(Gln142Glu) protein variant can produce anti-SCAR. Although we did not observe any sign of hemolysis at this time, the anti-SCAR prompted a change of the treatment regimen. A review of the known reports indicated that all SC alloantibodies of sufficient titer should be considered capable of causing hemolysis.
Collapse
Affiliation(s)
- Kshitij Srivastava
- Department of Transfusion Medicine, NIH Clinical Center, National Institutes of Health, Bethesda, Maryland
| | - Jasem Albasri
- Blood Bank Laboratory, Prince Sultan Military Medical City, Riyadh, Saudi Arabia
| | - Omar M. Alsuhaibani
- Blood Bank Laboratory, Prince Sultan Military Medical City, Riyadh, Saudi Arabia
| | - Hassan A. Aljasem
- Blood Bank Laboratory, Prince Sultan Military Medical City, Riyadh, Saudi Arabia
| | - Marina U. Bueno
- Department of Transfusion Medicine, NIH Clinical Center, National Institutes of Health, Bethesda, Maryland
| | - Tania Antonacci
- Versiti Blood Research Institute and Diagnostic Laboratories, Versiti, Milwaukee, Wisconsin
| | - Donald R. Branch
- Department of Medicine, University of Toronto, and Centre for Innovation, Canadian Blood Services, Toronto, Ontario, Canada
| | - Gregory A. Denomme
- Versiti Blood Research Institute and Diagnostic Laboratories, Versiti, Milwaukee, Wisconsin
| | - Willy A. Flegel
- Department of Transfusion Medicine, NIH Clinical Center, National Institutes of Health, Bethesda, Maryland
| |
Collapse
|
16
|
Sivalingam J, SuE Y, Lim ZR, Lam ATL, Lee AP, Lim HL, Chen HY, Tan HK, Warrier T, Hang JW, Nazir NB, Tan AHM, Renia L, Loh YH, Reuveny S, Malleret B, Oh SKW. A Scalable Suspension Platform for Generating High-Density Cultures of Universal Red Blood Cells from Human Induced Pluripotent Stem Cells. Stem Cell Reports 2020; 16:182-197. [PMID: 33306988 PMCID: PMC7897557 DOI: 10.1016/j.stemcr.2020.11.008] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2020] [Revised: 11/12/2020] [Accepted: 11/12/2020] [Indexed: 12/21/2022] Open
Abstract
Universal red blood cells (RBCs) differentiated from O-negative human induced pluripotent stem cells (hiPSCs) could find applications in transfusion medicine. Given that each transfusion unit of blood requires 2 trillion RBCs, efficient bioprocesses need to be developed for large-scale in vitro generation of RBCs. We have developed a scalable suspension agitation culture platform for differentiating hiPSC-microcarrier aggregates into functional RBCs and have demonstrated scalability of the process starting with 6 well plates and finally demonstrating in 500 mL spinner flasks. Differentiation of the best-performing hiPSCs generated 0.85 billion erythroblasts in 50 mL cultures with cell densities approaching 1.7 × 107 cells/mL. Functional (oxygen binding, hemoglobin characterization, membrane integrity, and fluctuations) and transcriptomics evaluations showed minimal differences between hiPSC-derived and adult-derived RBCs. The scalable agitation suspension culture differentiation process we describe here could find applications in future large-scale production of RBCs in controlled bioreactors. Scalable process for differentiating hiPSC-microcarrier aggregates into RBCs Erythroid differentiation potential of multiple hiPSC lines was evaluated hiPSC RBCs and adult RBCs revealed minor differences functionally and transcriptionally Co-culture of hiPSC RBCs with OP9 cells (2D and 3D) promoted improved enucleation
Collapse
Affiliation(s)
- Jaichandran Sivalingam
- Stem Cell Bioprocessing Group, Bioprocessing Technology Institute, Agency for Science, Technology and Research, 20 Biopolis Way, Centros 06-01, Singapore 138668, Singapore
| | - Yu SuE
- Stem Cell Bioprocessing Group, Bioprocessing Technology Institute, Agency for Science, Technology and Research, 20 Biopolis Way, Centros 06-01, Singapore 138668, Singapore
| | - Zhong Ri Lim
- Stem Cell Bioprocessing Group, Bioprocessing Technology Institute, Agency for Science, Technology and Research, 20 Biopolis Way, Centros 06-01, Singapore 138668, Singapore
| | - Alan T L Lam
- Stem Cell Bioprocessing Group, Bioprocessing Technology Institute, Agency for Science, Technology and Research, 20 Biopolis Way, Centros 06-01, Singapore 138668, Singapore
| | - Alison P Lee
- Transcriptomics Group, Bioprocessing Technology Institute, Agency for Science, Technology and Research, Singapore 138668, Singapore
| | - Hsueh Lee Lim
- Transcriptomics Group, Bioprocessing Technology Institute, Agency for Science, Technology and Research, Singapore 138668, Singapore
| | - Hong Yu Chen
- Institute of Molecular and Cellular Biology, Agency for Science, Technology and Research, Singapore 138668, Singapore
| | - Hong Kee Tan
- Institute of Molecular and Cellular Biology, Agency for Science, Technology and Research, Singapore 138668, Singapore
| | - Tushar Warrier
- Institute of Molecular and Cellular Biology, Agency for Science, Technology and Research, Singapore 138668, Singapore
| | - Jing Wen Hang
- Department of Microbiology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117543, Singapore
| | - Nazmi B Nazir
- Department of Microbiology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117543, Singapore
| | - Andy H M Tan
- Transcriptomics Group, Bioprocessing Technology Institute, Agency for Science, Technology and Research, Singapore 138668, Singapore; Immunology Group, Bioprocessing Technology Institute, Agency for Science, Technology and Research, Singapore 138668, Singapore
| | - Laurent Renia
- Singapore Immunology Network, Agency for Science, Technology and Research, Singapore 138668, Singapore
| | - Yuin Han Loh
- Institute of Molecular and Cellular Biology, Agency for Science, Technology and Research, Singapore 138668, Singapore; Department of Biological Sciences, National University of Singapore, Singapore 117543, Singapore
| | - Shaul Reuveny
- Stem Cell Bioprocessing Group, Bioprocessing Technology Institute, Agency for Science, Technology and Research, 20 Biopolis Way, Centros 06-01, Singapore 138668, Singapore
| | - Benoit Malleret
- Department of Microbiology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117543, Singapore; Singapore Immunology Network, Agency for Science, Technology and Research, Singapore 138668, Singapore
| | - Steve K W Oh
- Stem Cell Bioprocessing Group, Bioprocessing Technology Institute, Agency for Science, Technology and Research, 20 Biopolis Way, Centros 06-01, Singapore 138668, Singapore.
| |
Collapse
|
17
|
Ebrahimi M, Forouzesh M, Raoufi S, Ramazii M, Ghaedrahmati F, Farzaneh M. Differentiation of human induced pluripotent stem cells into erythroid cells. Stem Cell Res Ther 2020; 11:483. [PMID: 33198819 PMCID: PMC7667818 DOI: 10.1186/s13287-020-01998-9] [Citation(s) in RCA: 36] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2020] [Accepted: 10/25/2020] [Indexed: 02/07/2023] Open
Abstract
During the last years, several strategies have been made to obtain mature erythrocytes or red blood cells (RBC) from the bone marrow or umbilical cord blood (UCB). However, UCB-derived hematopoietic stem cells (HSC) are a limited source and in vitro large-scale expansion of RBC from HSC remains problematic. One promising alternative can be human pluripotent stem cells (PSCs) that provide an unlimited source of cells. Human PSCs, including embryonic stem cells (ESCs) and induced pluripotent stem cells (iPSCs), are self-renewing progenitors that can be differentiated to lineages of ectoderm, mesoderm, and endoderm. Several previous studies have revealed that human ESCs can differentiate into functional oxygen-carrying erythrocytes; however, the ex vivo expansion of human ESC-derived RBC is subjected to ethical concerns. Human iPSCs can be a suitable therapeutic choice for the in vitro/ex vivo manufacture of RBCs. Reprogramming of human somatic cells through the ectopic expression of the transcription factors (OCT4, SOX2, KLF4, c-MYC, LIN28, and NANOG) has provided a new avenue for disease modeling and regenerative medicine. Various techniques have been developed to generate enucleated RBCs from human iPSCs. The in vitro production of human iPSC-derived RBCs can be an alternative treatment option for patients with blood disorders. In this review, we focused on the generation of human iPSC-derived erythrocytes to present an overview of the current status and applications of this field.
Collapse
Affiliation(s)
- Mohsen Ebrahimi
- Neonatal and Children's Health Research Center, Golestan University of Medical Sciences, Gorgan, Iran
| | - Mehdi Forouzesh
- Legal Medicine Organization of Iran, Legal Medicine Research Center, Legal Medicine organization, Tehran, Iran
| | - Setareh Raoufi
- Faculty of Medical Sciences and Technologies, Science and Research Branch, Islamic Azad University, Tehran, Iran
| | - Mohammad Ramazii
- Kerman University of Medical Sciences, University of Kerman, Kerman, Iran
| | - Farhoodeh Ghaedrahmati
- Department of Immunology, School of Medicine, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Maryam Farzaneh
- Physiology Research Center, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran.
| |
Collapse
|
18
|
Seghatchian J, Amiral J. Spotlight on the current perspectives on applications of human blood cell culture and organoids: Introductory remarks. Transfus Apher Sci 2020; 59:102861. [PMID: 32636115 DOI: 10.1016/j.transci.2020.102861] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Culture of blood cells, mainly erythrocytes, at industrial levels complying with cGMP regulations, aim to make them available, at large scale, any time and everywhere, when needed for transfusion, or laboratory applications. Understanding how blood cells differentiate and develop in-vivo, and mechanisms of differentiation and growth factors, has opened newer strategies for in-vitro culture from multipotent stem cells or immortalized lines. This offers interesting perspectives for obtaining such cultured bioproduct cells for medical applications. In addition, many attempts for preparing platelets in-vitro from megakaryocyte culture have been reported. Nevertheless, the quantities of functional viable platelets obtained are still not sufficient to envisage transfusion applications. Other strategic approaches concern culture of organoids, which can synthesize functional blood proteins, but still significant scale-up of yield needs to be addressed. Finally, considerable advances have been made in culturing specific lymphocytes for personalized immunotherapy of some cancer patients with highly promising results in certain applications. This concise mini report focuses on the progress made in these directions, and attempts are made to describe some newer perspectives.
Collapse
Affiliation(s)
- Jerard Seghatchian
- International Consultancy in Strategic Advices on Safety Improvements of Blood-Derived Bioproducts and Suppliers Quality Audit / Inspection, London, UK.
| | - Jean Amiral
- SH/Scientific-Hemostasis, Scientific Director and Consultant in Hemostasis and Thrombosis Diagnostics, Franconville, France.
| |
Collapse
|
19
|
Smit Sibinga CT, Seghatchian J. Cell culture - Fact and fiction. Transfus Apher Sci 2020; 59:102860. [PMID: 32636117 PMCID: PMC7323688 DOI: 10.1016/j.transci.2020.102860] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/28/2022]
Affiliation(s)
| | - Jerard Seghatchian
- International Consultancy in Strategic Advices on Safety Improvements of Blood-Derived Bioproducts and Suppliers Quality Audit/Inspection, London, UK.
| |
Collapse
|
20
|
Seghatchian J. The secrets of human stem cell-derived transfusable RBC for targeted large-scale production and clinical applications: A fresh look into what we need most and lessons to be learned. Transfus Apher Sci 2020; 59:102862. [PMID: 32620410 PMCID: PMC7320703 DOI: 10.1016/j.transci.2020.102862] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Blood transfusion, using the safest conventional blood bioproducts, is an irreplaceable part of substitution therapy. It is considered the most essential supportive clinical intervention aimed to restore the health of patients in need. Nevertheless, numerous unresolved problems are still associated with current blood substitution therapy. To alleviate our dependency on blood donors, many investigators have been focusing on the quest for stem cell-derived blood cells in line with major developments in the field of regenerative medicine. The main objective is to provide a safe and highly standardized universal cultured red cell concentrate [CRBC] for all clinical applications, regardless of blood groups. Currently, we are close to overcoming some of the main obstacles in culturing cells. This concise report is a prelude to the immortalized cell lines that are ready for in vivo clinical trials. It is only through the sharing of experimental ideas and knowledge-based strategies that we will be able to achieve such an enormous task and better understand ‘’the one for all concept’’ of CRBCs and their universal usage in all clinical settings.
Collapse
Affiliation(s)
- Jerard Seghatchian
- International Consultancy in Strategic Advices on Safety Improvements of Blood-Derived Bioproducts and Suppliers Quality Audit / Inspection, London, UK.
| |
Collapse
|
21
|
Park YJ, Jeon SH, Kim HK, Suh EJ, Choi SJ, Kim S, Kim HO. Human induced pluripotent stem cell line banking for the production of rare blood type erythrocytes. J Transl Med 2020; 18:236. [PMID: 32532292 PMCID: PMC7291485 DOI: 10.1186/s12967-020-02403-y] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2020] [Accepted: 06/04/2020] [Indexed: 02/07/2023] Open
Abstract
Background The in vitro production of mature human red blood cells (RBCs) from induced pluripotent stem cells (iPSCs) has been the focus of research to meet the high demand for blood transfusions. However, limitations like high costs and technological requirements restrict the use of RBCs produced by iPSC differentiation to specific circumstances, such as for patients with rare blood types or alloimmunized patients. In this study, we developed a detailed protocol for the generation of iPSC lines derived from peripheral blood of donors with O D-positive blood and rare blood types (D–and Jr(a-)) and subsequent erythroid differentiation. Methods Mononuclear cells separated from the peripheral blood of O D-positive and rare blood type donors were cultured to produce and expand erythroid progenitors and reprogrammed into iPSCs. A 31-day serum-free, xeno-free erythroid differentiation protocol was used to generate reticulocytes. The stability of iPSC lines was confirmed with chromosomal analysis and RT-PCR. Morphology and cell counts were determined by microscopy observations and flow cytometry. Results Cells from all donors were successfully used to generate iPSC lines, which were differentiated into erythroid precursors without any apparent chromosomal mutations. This differentiation protocol resulted in moderate erythrocyte yield per iPSC. Conclusions It has previously only been hypothesized that erythroid differentiation from iPSCs could be used to produce RBCs for transfusion to patients with rare blood types or who have been alloimmunized. Our results demonstrate the feasibility of producing autologous iPSC-differentiated RBCs for clinical transfusions in patients without alternative options.
Collapse
Affiliation(s)
- Yu Jin Park
- Department of Laboratory Medicine, Yonsei University College of Medicine, 50-1 Yonsei-ro, Seodaemun-gu, Seoul, 03722, Republic of Korea.,Department of Laboratory Medicine, Armed Forces Yangju Hospital, Yangju-si, Gyeonggi-do, Korea
| | - Su-Hee Jeon
- Department of Laboratory Medicine, Yonsei University College of Medicine, 50-1 Yonsei-ro, Seodaemun-gu, Seoul, 03722, Republic of Korea
| | - Hyun-Kyung Kim
- Department of Laboratory Medicine, Yonsei University College of Medicine, 50-1 Yonsei-ro, Seodaemun-gu, Seoul, 03722, Republic of Korea
| | - Eun Jung Suh
- Department of Laboratory Medicine, Yonsei University College of Medicine, 50-1 Yonsei-ro, Seodaemun-gu, Seoul, 03722, Republic of Korea
| | - Seung Jun Choi
- Department of Laboratory Medicine, Yonsei University College of Medicine, 50-1 Yonsei-ro, Seodaemun-gu, Seoul, 03722, Republic of Korea
| | - Sinyoung Kim
- Department of Laboratory Medicine, Yonsei University College of Medicine, 50-1 Yonsei-ro, Seodaemun-gu, Seoul, 03722, Republic of Korea
| | - Hyun Ok Kim
- Department of Laboratory Medicine, Yonsei University College of Medicine, 50-1 Yonsei-ro, Seodaemun-gu, Seoul, 03722, Republic of Korea.
| |
Collapse
|
22
|
Valid Presumption of Shiga Toxin-Mediated Damage of Developing Erythrocytes in EHEC-Associated Hemolytic Uremic Syndrome. Toxins (Basel) 2020; 12:toxins12060373. [PMID: 32512916 PMCID: PMC7354503 DOI: 10.3390/toxins12060373] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2020] [Revised: 06/02/2020] [Accepted: 06/03/2020] [Indexed: 02/06/2023] Open
Abstract
The global emergence of clinical diseases caused by enterohemorrhagic Escherichia coli (EHEC) is an issue of great concern. EHEC release Shiga toxins (Stxs) as their key virulence factors, and investigations on the cell-damaging mechanisms toward target cells are inevitable for the development of novel mitigation strategies. Stx-mediated hemolytic uremic syndrome (HUS), characterized by the triad of microangiopathic hemolytic anemia, thrombocytopenia, and acute renal injury, is the most severe outcome of an EHEC infection. Hemolytic anemia during HUS is defined as the loss of erythrocytes by mechanical disruption when passing through narrowed microvessels. The formation of thrombi in the microvasculature is considered an indirect effect of Stx-mediated injury mainly of the renal microvascular endothelial cells, resulting in obstructions of vessels. In this review, we summarize and discuss recent data providing evidence that HUS-associated hemolytic anemia may arise not only from intravascular rupture of erythrocytes, but also from the extravascular impairment of erythropoiesis, the development of red blood cells in the bone marrow, via direct Stx-mediated damage of maturing erythrocytes, leading to “non-hemolytic” anemia.
Collapse
|
23
|
Seghatchian J. Reflections on current status of blood transfusion transplant viral safety in UK/Europe and on novel strategies for enhancing donors/recipients healthcare in promising era of advanced cell therapy/regenerative medicine. Transfus Apher Sci 2019; 58:532-537. [DOI: 10.1016/j.transci.2019.06.007] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
|