1
|
Lv F, He Y, Xu H, Li Y, Han L, Yan L, Lang H, Zhao Y, Zhao Z, Qi Y. CD36 aggravates podocyte injury by activating NLRP3 inflammasome and inhibiting autophagy in lupus nephritis. Cell Death Dis 2022; 13:729. [PMID: 35999224 PMCID: PMC9399182 DOI: 10.1038/s41419-022-05179-9] [Citation(s) in RCA: 36] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2022] [Revised: 08/04/2022] [Accepted: 08/10/2022] [Indexed: 01/21/2023]
Abstract
A major cause of proteinuria in lupus nephritis (LN) is podocyte injury, and determining potential therapeutic targets to prevent podocyte injury is important from a clinical perspective in the treatment of LN. CD36 is involved in podocyte injury in several glomerulopathies and was reported to be a vital candidate gene in LN. Here, we determined the role of CD36 in the podocyte injury of LN and the underlying mechanisms. We observed that CD36 and NLRP3 (NLR family pyrin domain containing 3) were upregulated in the podocytes of lupus nephritis patients and MRL/lpr mice with renal impairment. In vitro, CD36, NLRP3 inflammasome, and autophagy were elevated accompanied with increased podocyte injury stimulated by IgG extracted from lupus nephritis patients compared that from healthy donors. Knocking out CD36 with the CRISPR/cas9 system decreased the NLRP3 inflammasome levels, increased the autophagy levels and alleviated podocyte injury. By enhancing autophagy, NLRP3 inflammasome was decreased and podocyte injury was alleviated. These results demonstrated that, in lupus nephritis, CD36 promoted podocyte injury by activating NLRP3 inflammasome and inhibiting autophagy by enhancing which could decrease NLRP3 inflammasome and alleviate podocyte injury.
Collapse
Affiliation(s)
- Fu Lv
- grid.412633.10000 0004 1799 0733Nephrology Hospital, the First Affiliated Hospital of Zhengzhou University, Zhengzhou University, Henan 450052 China
| | - Yingxin He
- grid.207374.50000 0001 2189 3846School of Pharmaceutical Sciences, Zhengzhou University, 100 Ke xue Avenue, Zhengzhou, Henan 450001 China
| | - Hongde Xu
- grid.207374.50000 0001 2189 3846School of Pharmaceutical Sciences, Zhengzhou University, 100 Ke xue Avenue, Zhengzhou, Henan 450001 China
| | - Yongchun Li
- grid.207374.50000 0001 2189 3846School of Pharmaceutical Sciences, Zhengzhou University, 100 Ke xue Avenue, Zhengzhou, Henan 450001 China
| | - Lipei Han
- grid.412633.10000 0004 1799 0733Nephrology Hospital, the First Affiliated Hospital of Zhengzhou University, Zhengzhou University, Henan 450052 China
| | - Lijie Yan
- grid.207374.50000 0001 2189 3846School of Pharmaceutical Sciences, Zhengzhou University, 100 Ke xue Avenue, Zhengzhou, Henan 450001 China
| | - Hui Lang
- grid.207374.50000 0001 2189 3846School of Pharmaceutical Sciences, Zhengzhou University, 100 Ke xue Avenue, Zhengzhou, Henan 450001 China
| | - Yafei Zhao
- grid.412633.10000 0004 1799 0733Nephrology Hospital, the First Affiliated Hospital of Zhengzhou University, Zhengzhou University, Henan 450052 China
| | - Zhanzheng Zhao
- grid.412633.10000 0004 1799 0733Nephrology Hospital, the First Affiliated Hospital of Zhengzhou University, Zhengzhou University, Henan 450052 China
| | - Yuanyuan Qi
- grid.412633.10000 0004 1799 0733Nephrology Hospital, the First Affiliated Hospital of Zhengzhou University, Zhengzhou University, Henan 450052 China
| |
Collapse
|
2
|
Lee DY, Kim J, Park S, Park SY, Yu JH, Seo JA, Kim NH, Yoo HJ, Kim SG, Choi KM, Baik SH, Han K, Kim NH. Fasting Glucose Variability as a Risk Indicator for End-Stage Kidney Disease in Patients with Diabetes: A Nationwide Population-Based Study. J Clin Med 2021; 10:5948. [PMID: 34945244 PMCID: PMC8705330 DOI: 10.3390/jcm10245948] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2021] [Revised: 12/16/2021] [Accepted: 12/17/2021] [Indexed: 12/17/2022] Open
Abstract
Given the fact that diabetes remains a leading cause of end-stage kidney disease (ESKD), multi-aspect approaches anticipating the risk for ESKD and timely correction are crucial. We investigated whether fasting glucose variability (FGV) could anticipate the development of ESKD and identify the population prone to the harmful effects of GV. We included 777,192 Koreans with diabetes who had undergone health examinations more than three times in 2005-2010. We evaluated the risk of the first diagnosis of ESKD until 2017, according to the quartile of variability independent of the mean (VIM) of FG using multivariate-adjusted Cox proportional hazards analyses. During the 8-year follow-up, a total of 7290 incidents of ESKD were found. Subjects in the FG VIM quartile 4 had a 27% higher risk for ESKD compared to quartile 1, with adjustment for cardiovascular risk factors and the characteristics of diabetes. This effect was more distinct in patients aged < 65 years; those with a long duration of diabetes; the presence of hypertension or dyslipidemia; and prescribed angiotensin-converting enzyme inhibitors, metformin, sulfonylurea, α-glucosidase inhibitors, and insulin. In contrast, the relationship between baseline FG status and ESKD risk showed a U-shaped association. FGV is an independent risk factor for kidney failure regardless of FG.
Collapse
Affiliation(s)
- Da Young Lee
- Division of Endocrinology and Metabolism, Department of Internal Medicine, Korea University College of Medicine, Seoul 02841, Korea; (D.Y.L.); (S.Y.P.); (J.H.Y.); (J.A.S.); (N.H.K.); (H.J.Y.); (S.G.K.); (K.M.C.); (S.H.B.)
| | - Jaeyoung Kim
- Research Institute for Skin Image, Korea University College of Medicine, Seoul 08308, Korea;
- Core Research & Development Center, Korea University Ansan Hospital, Ansan 15355, Korea
| | - Sanghyun Park
- Division of Endocrinology and Metabolism, Department of Internal Medicine, Seoul St. Mary’s Hospital, College of Medicine, The Catholic University of Korea, Seoul 06591, Korea;
| | - So Young Park
- Division of Endocrinology and Metabolism, Department of Internal Medicine, Korea University College of Medicine, Seoul 02841, Korea; (D.Y.L.); (S.Y.P.); (J.H.Y.); (J.A.S.); (N.H.K.); (H.J.Y.); (S.G.K.); (K.M.C.); (S.H.B.)
| | - Ji Hee Yu
- Division of Endocrinology and Metabolism, Department of Internal Medicine, Korea University College of Medicine, Seoul 02841, Korea; (D.Y.L.); (S.Y.P.); (J.H.Y.); (J.A.S.); (N.H.K.); (H.J.Y.); (S.G.K.); (K.M.C.); (S.H.B.)
| | - Ji A. Seo
- Division of Endocrinology and Metabolism, Department of Internal Medicine, Korea University College of Medicine, Seoul 02841, Korea; (D.Y.L.); (S.Y.P.); (J.H.Y.); (J.A.S.); (N.H.K.); (H.J.Y.); (S.G.K.); (K.M.C.); (S.H.B.)
| | - Nam Hoon Kim
- Division of Endocrinology and Metabolism, Department of Internal Medicine, Korea University College of Medicine, Seoul 02841, Korea; (D.Y.L.); (S.Y.P.); (J.H.Y.); (J.A.S.); (N.H.K.); (H.J.Y.); (S.G.K.); (K.M.C.); (S.H.B.)
| | - Hye Jin Yoo
- Division of Endocrinology and Metabolism, Department of Internal Medicine, Korea University College of Medicine, Seoul 02841, Korea; (D.Y.L.); (S.Y.P.); (J.H.Y.); (J.A.S.); (N.H.K.); (H.J.Y.); (S.G.K.); (K.M.C.); (S.H.B.)
| | - Sin Gon Kim
- Division of Endocrinology and Metabolism, Department of Internal Medicine, Korea University College of Medicine, Seoul 02841, Korea; (D.Y.L.); (S.Y.P.); (J.H.Y.); (J.A.S.); (N.H.K.); (H.J.Y.); (S.G.K.); (K.M.C.); (S.H.B.)
| | - Kyung Mook Choi
- Division of Endocrinology and Metabolism, Department of Internal Medicine, Korea University College of Medicine, Seoul 02841, Korea; (D.Y.L.); (S.Y.P.); (J.H.Y.); (J.A.S.); (N.H.K.); (H.J.Y.); (S.G.K.); (K.M.C.); (S.H.B.)
| | - Sei Hyun Baik
- Division of Endocrinology and Metabolism, Department of Internal Medicine, Korea University College of Medicine, Seoul 02841, Korea; (D.Y.L.); (S.Y.P.); (J.H.Y.); (J.A.S.); (N.H.K.); (H.J.Y.); (S.G.K.); (K.M.C.); (S.H.B.)
| | - Kyungdo Han
- Department of Statistics and Actuarial Science, Soongsil University, Seoul 06978, Korea
| | - Nan Hee Kim
- Division of Endocrinology and Metabolism, Department of Internal Medicine, Korea University College of Medicine, Seoul 02841, Korea; (D.Y.L.); (S.Y.P.); (J.H.Y.); (J.A.S.); (N.H.K.); (H.J.Y.); (S.G.K.); (K.M.C.); (S.H.B.)
- BK21 FOUR R&E Center for Learning Health Systems, Korea University, Seoul 02841, Korea
| |
Collapse
|
3
|
Wu YR, Shi XY, Ma CY, Zhang Y, Xu RX, Li JJ. Liraglutide improves lipid metabolism by enhancing cholesterol efflux associated with ABCA1 and ERK1/2 pathway. Cardiovasc Diabetol 2019; 18:146. [PMID: 31706303 PMCID: PMC6842145 DOI: 10.1186/s12933-019-0954-6] [Citation(s) in RCA: 48] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/02/2019] [Accepted: 10/28/2019] [Indexed: 01/08/2023] Open
Abstract
BACKGROUND Reverse cholesterol transport (RCT) is an important cardioprotective mechanism and the decrease in cholesterol efflux can result in the dyslipidemia. Although liraglutide, a glucagon like peptide-1 analogue, has mainly impacted blood glucose, recent data has also suggested a beneficial effect on blood lipid. However, the exact mechanism by which liraglutide modulates lipid metabolism, especially its effect on RCT, remain undetermined. Hence, the aim of the present study was to investigate the potential impacts and potential underlying mechanisms of liraglutide on the cholesterol efflux in both db/db mice and HepG2 cells. METHODS Six-week old db/db mice with high fat diet (HFD) and wild type mice were administered either liraglutide (200 μg/kg) or equivoluminal saline subcutaneously, twice daily for 8 weeks and body weight was measured every week. After the 8-week treatment, the blood was collected for lipid evaluation and liver was obtained from the mice for hematoxylin-eosin (HE) staining, red O staining and Western blotting. Cholesterol efflux was assessed by measuring the radioactivity in the plasma and feces after intraperitoneal injection of 3H-labeled cholesterol. HepG2 Cells were treated with different concentrations of glucose (0, 5, 25, and 50 mmol/L) with or without liraglutide (1000 nmol/L) for 24 h. The intracellular cholesterol efflux was detected by BODIPY-cholesterol fluorescence labeling. Real-time PCR or Western blotting was used to examine the expression levels of ABCA1, ABCG1 and SR-B1. RESULTS Liraglutide significantly decreased blood glucose, serum total cholesterol (TC), triglyceride (TG) and low-density lipoprotein cholesterol (LDL-C). It also reduced liver lipid deposition in db/db mice fed with HFD. Moreover, the movement of 3H-cholesterol from macrophages to plasma and feces was significantly enhanced in db/db mice fed with HFD after liraglutide adminstration. In vitro study, liraglutide could promote the cholesterol efflux of HepG2 cells under high glucose, and also increase the expression of ABCA1 by activating the ERK1/2 pathway. CONCLUSIONS Liraglutide could improve lipid metabolism and hepatic lipid accumulation in db/db mice fed with HFD by promoting reversal of cholesterol transport, which was associated with the up-regulation of ABCA1 mediated by the ERK1/2 phosphorylation.
Collapse
Affiliation(s)
- Ya-Ru Wu
- Division of Dyslipidemia, State Key Laboratory of Cardiovascular Disease, National Center for Cardiovascular Disease, Fu Wai Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100037, China
| | - Xiao-Yun Shi
- Division of Endocrinology, Beijing Chaoyang Integrative Medicine Emergency Medical Center, Beijing, 100022, China
| | - Chun-Yan Ma
- Division of Dyslipidemia, State Key Laboratory of Cardiovascular Disease, National Center for Cardiovascular Disease, Fu Wai Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100037, China
| | - Yue Zhang
- Division of Dyslipidemia, State Key Laboratory of Cardiovascular Disease, National Center for Cardiovascular Disease, Fu Wai Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100037, China
| | - Rui-Xia Xu
- Division of Dyslipidemia, State Key Laboratory of Cardiovascular Disease, National Center for Cardiovascular Disease, Fu Wai Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100037, China.
| | - Jian-Jun Li
- Division of Dyslipidemia, State Key Laboratory of Cardiovascular Disease, National Center for Cardiovascular Disease, Fu Wai Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100037, China.
| |
Collapse
|
4
|
Astragaloside IV inhibits palmitate-mediated oxidative stress and fibrosis in human glomerular mesangial cells via downregulation of CD36 expression. Pharmacol Rep 2018; 71:319-329. [PMID: 30826573 DOI: 10.1016/j.pharep.2018.12.008] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2018] [Revised: 12/11/2018] [Accepted: 12/19/2018] [Indexed: 12/14/2022]
Abstract
BACKGROUND The increased influx of free fatty acids (FFAs) into the kidney is a risk factor for diabetes nephropathy (DN). In the present study we investigated the effects of astragaloside IV (AS-IV) on FFA-induced lipid accumulation, oxidative stress, and activation of TGF-β1 signaling in human glomerular mesangial cells (HMCs). METHODS A DN model was induced in Sprague Dawley rats by the administration of a high-fat diet and streptozocin, and HMCs were stimulated with palmitate. Lipid accumulation and FFA uptake were detected using Oil Red O and BODIPY™ FL C16 staining, respectively. The expression levels of TGF-β1, p-Smad2/3, FN, Col4 A1, NOX4, p22phox, and CD36 were evaluated by western blotting or immunofluorescence/immunohistochemistry. The level of reactive oxygen species (ROS) was detected using 2',7'-dichlorofluorescein diacetate and dihydroethidium. RESULTS Exposure to palmitate induced marked lipid accumulation in HMCs, whereas co-treatment with AS-IV significantly attenuated this phenomenon. Moreover, AS-IV suppressed palmitate-induced expression of TGF-β1, p-Smad2/3, FN, Col4 A1, NOX4, and p22phox, in addition to ROS production. Notably, AS-IV reduced the palmitate-induced expression of CD36 in HMCs and DN rats. Treatment of HMCs with the CD36 inhibitor, sulfo-N-succinimidyl oleate (SSO), significantly attenuated FFA uptake, oxidative stress, and fibrosis. Nevertheless, the combined use of SSO and AS-IV did not enhance the efficacy. CONCLUSION AS-IV inhibited palmitate-induced HMCs oxidative stress and fibrosis via the downregulation of CD36 expression, mediating FFA uptake and lipid accumulation.
Collapse
|
5
|
Lee MY, Huang JC, Chen SC, Chiou HYC, Wu PY. Association of HbA 1C Variability and Renal Progression in Patients with Type 2 Diabetes with Chronic Kidney Disease Stages 3⁻4. Int J Mol Sci 2018; 19:ijms19124116. [PMID: 30567403 PMCID: PMC6321040 DOI: 10.3390/ijms19124116] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2018] [Revised: 12/15/2018] [Accepted: 12/16/2018] [Indexed: 12/31/2022] Open
Abstract
Little is known about the predictive value of glycosylated hemoglobin (HbA1C) variability in patients with advanced chronic kidney disease (CKD). The aim of this study was to investigate whether HbA1C variability is associated with progression to end-stage renal disease in diabetic patients with stages 3–5 CKD, and whether different stages of CKD affect these associations. Three hundred and eighty-eight patients with diabetes and stages 3–5 CKD were enrolled in this longitudinal study. Intra-individual HbA1C variability was defined as the standard deviation (SD) of HbA1C, and the renal endpoint was defined as commencing dialysis. The results indicated that, during a median follow-up period of 3.5 years, 108 patients started dialysis. Adjusted Cox analysis showed an association between the highest tertile of HbA1C SD (tertile 3 vs. tertile 1) and a lower risk of the renal endpoint (hazard ratio = 0.175; 95% confidence interval = 0.059–0.518; p = 0.002) in the patients with an HbA1C level ≥ 7% and stages 3–4 CKD, but not in stage 5 CKD. Further subgroup analysis showed that the highest two tertiles of HbA1C SD were associated with a lower risk of the renal endpoint in the group with a decreasing trend of HbA1C. Our results demonstrated that greater HbA1C variability and a decreasing trend of HbA1C, which may be related to intensive diabetes control, was associated with a lower risk of progression to dialysis in the patients with stages 3–4 CKD and poor glycemic control (HbA1c ≥ 7%).
Collapse
Affiliation(s)
- Mei-Yueh Lee
- Division of Endocrinology and Metabolism, Department of Internal Medicine, Kaohsiung Medical University Hospital, Kaohsiung Medical University, Kaohsiung 807, Taiwan.
- Graduate Institute of Clinical Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung 807, Taiwan.
- Faculty of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung 807, Taiwan.
| | - Jiun-Chi Huang
- Graduate Institute of Clinical Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung 807, Taiwan.
- Division of Nephrology, Department of Internal Medicine, Kaohsiung Medical University Hospital, Kaohsiung Medical University, Kaohsiung 807, Taiwan.
- Department of Internal Medicine, Kaohsiung Municipal Hsiao-Kang Hospital, Kaohsiung Medical University, Kaohsiung 812, Taiwan.
| | - Szu-Chia Chen
- Graduate Institute of Clinical Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung 807, Taiwan.
- Faculty of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung 807, Taiwan.
- Division of Nephrology, Department of Internal Medicine, Kaohsiung Medical University Hospital, Kaohsiung Medical University, Kaohsiung 807, Taiwan.
- Department of Internal Medicine, Kaohsiung Municipal Hsiao-Kang Hospital, Kaohsiung Medical University, Kaohsiung 812, Taiwan.
| | - Hsin-Ying Clair Chiou
- Division of Endocrinology and Metabolism, Department of Internal Medicine, Kaohsiung Medical University Hospital, Kaohsiung Medical University, Kaohsiung 807, Taiwan.
| | - Pei-Yu Wu
- Graduate Institute of Clinical Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung 807, Taiwan.
- Division of Nephrology, Department of Internal Medicine, Kaohsiung Medical University Hospital, Kaohsiung Medical University, Kaohsiung 807, Taiwan.
- Department of Internal Medicine, Kaohsiung Municipal Hsiao-Kang Hospital, Kaohsiung Medical University, Kaohsiung 812, Taiwan.
| |
Collapse
|
6
|
Chang CH, Liao HXQ, Hsu FL, Ho CT, Liao VHC. N-ϒ-(l-Glutamyl)-l-Selenomethionine Inhibits Fat Storage via the Stearoyl-CoA Desaturases FAT-6 and FAT-7 and the Selenoprotein TRXR-1 in Caenorhabditis elegans. Mol Nutr Food Res 2018; 63:e1800784. [PMID: 30467983 DOI: 10.1002/mnfr.201800784] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2018] [Revised: 10/28/2018] [Indexed: 12/20/2022]
Abstract
SCOPE Selenium is an important nutrient for human health. The influence of dietary selenium on lipid metabolism remains largely unknown. N-γ-(l-glutamyl)-l-selenomethionine (Glu-SeMet) on inhibition of fat accumulation and its underlying mechanisms in the nematode Caenorhabditis elegans are investigated. METHODS AND RESULTS Triacylglyceride quantification and post-fixed Nile red staining methods are conducted to evaluate fat accumulation in wild-type N2 worms in normal or high-glucose diet. Glu-SeMet (0.01 µm) treatment effectively reduces fat storage in wild-type N2 C. elegans in both a normal and high-glucose diet. Further evidence shows that Glu-SeMet (0.01 µm) decreases the ratio of oleic acid/stearic acid (C18:1Δ9/C18:0) using gas chromatography-mass spectrometry analysis. The mRNA levels of fatty acid stearoyl-CoA desaturases, FAT-6 and FAT-7, and the mediator-15 (MDT-15) are downregulated while the wild-type N2 worms are co-treated with high glucose and Glu-SeMet (0.01 µm). The effect of reduced fat accumulation is absent in fat-6, fat-7, and trxr-1 mutant worms under high glucose and Glu-SeMet (0.01 µm) co-treatment. CONCLUSIONS This study demonstrates that Glu-SeMet inhibiting fat accumulation may be associated with FAT-6 and FAT-7 and the selenoprotein TRXR-1 in C. elegans. This study implies a potential for Glu-SeMet as a new treatment for obesity or its complications.
Collapse
Affiliation(s)
- Chun-Han Chang
- Department of Bioenvironmental Systems Engineering, National Taiwan University, No. 1 Roosevelt Road, Sec. 4, Taipei, 106, Taiwan
| | - Harrison Xian-Qi Liao
- Department of Bioenvironmental Systems Engineering, National Taiwan University, No. 1 Roosevelt Road, Sec. 4, Taipei, 106, Taiwan
| | - Fu-Lan Hsu
- Forest Chemistry Division, Taiwan Forestry Research Institute, 53 Nanhai Rd., Taipei, 100, Taiwan
| | - Chi-Tang Ho
- Department of Food Science, School of Environmental and Biological Sciences, Rutgers, the State University of New Jersey, 65 Dudley Rd., New Brunswick, NJ, 08901-8520, USA
| | - Vivian Hsiu-Chuan Liao
- Department of Bioenvironmental Systems Engineering, National Taiwan University, No. 1 Roosevelt Road, Sec. 4, Taipei, 106, Taiwan
| |
Collapse
|
7
|
|
8
|
Zhang Y, Ma KL, Ruan XZ, Liu BC. Dysregulation of the Low-Density Lipoprotein Receptor Pathway Is Involved in Lipid Disorder-Mediated Organ Injury. Int J Biol Sci 2016; 12:569-79. [PMID: 27019638 PMCID: PMC4807419 DOI: 10.7150/ijbs.14027] [Citation(s) in RCA: 95] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2015] [Accepted: 02/26/2016] [Indexed: 12/12/2022] Open
Abstract
The low-density lipoprotein receptor (LDLR) pathway is a negative feedback system that plays important roles in the regulation of plasma and intracellular cholesterol homeostasis. To maintain a cholesterol homeostasis, LDLR expression is tightly regulated by sterol regulatory element-binding protein-2 (SREBP-2) and SREBP cleavage-activating protein (SCAP) in transcriptional level and by proprotein convertase subtilisin/kexin type 9 (PCSK9) in posttranscriptional level. The dysregulation of LDLR expression results in abnormal lipid accumulation in cells and tissues, such as vascular smooth muscle cells, hepatic cells, renal mesangial cells, renal tubular cells and podocytes. It has been demonstrated that inflammation, renin-angiotensin system (RAS) activation, and hyperglycemia induce the disruption of LDLR pathway, which might contribute to lipid disorder-mediated organ injury (atherosclerosis, non-alcoholic fatty liver disease, kidney fibrosis, etc). The mammalian target of rapamycin (mTOR) pathway is a critical mediator in the disruption of LDLR pathway caused by pathogenic factors. The mTOR complex1 activation upregulates LDLR expression at the transcriptional and posttranscriptional levels, consequently resulting in lipid deposition. This paper mainly reviews the mechanisms for the dysregulation of LDLR pathway and its roles in lipid disorder-mediated organ injury under various pathogenic conditions. Understanding these mechanisms leading to the abnormality of LDLR expression contributes to find potential new drug targets in lipid disorder-mediated diseases.
Collapse
|
9
|
Yang YF, Li TC, Li CI, Liu CS, Lin WY, Yang SY, Chiang JH, Huang CC, Sung FC, Lin CC. Visit-to-Visit Glucose Variability Predicts the Development of End-Stage Renal Disease in Type 2 Diabetes: 10-Year Follow-Up of Taiwan Diabetes Study. Medicine (Baltimore) 2015; 94:e1804. [PMID: 26554779 PMCID: PMC4915880 DOI: 10.1097/md.0000000000001804] [Citation(s) in RCA: 45] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/04/2023] Open
Abstract
The purpose of this study was to examine the association of glucose variability using coefficient of variation of fasting plasma glucose (FPG-CV) and coefficient of variation of glycated hemoglobin (HbA1c-CV) to end-stage renal disease (ESRD) in 31,841 Chinese patients with type 2 diabetes.Patients with type 2 diabetes enrolled in National Diabetes Care Management Program, aged ≧30 years, and free of ESRD (n = 31,841) in January 1, 2002 to December 31, 2004 were included. Extended Cox proportional hazards regression models with competing risk of all-cause mortality were used to evaluate risk factors on ESRD incidence. Patients were followed till 2012.After a median follow-up period of 8.23 years, 1642 patients developed ESRD, giving a crude incidence rate of 6.27/1000 person-years (6.36 for men, 6.19 for women). After the multivariate adjustment, both FPG-CV and HbA1c-CV were independent predictors of ESRD with corresponding hazard ratios of 1.20 (95% confidence interval [CI] 1.01, 1.41), 1.24 (95% CI 1.05, 1.46) in HbA1c-CV from fourth to fifth quintile and 1.23 (95% CI 1.03, 1.47) in FPG-CV from fifth quintile.One-year visit-to-visit glucose variability expressed by FPG-CV and HbA1c-CV predicted development of ESRD in patients with type 2 diabetes, suggesting therapeutic strategies toward a goal to minimize glucose fluctuation.
Collapse
Affiliation(s)
- Ya-Fei Yang
- From the Division of Nephrology (Y-FY, C-CH), China Medical University Hospital; School of Medicine (Y-FY, C-IL, C-SL, W-YL, C-CH, C-CL), College of Medicine, China Medical University; Department of Public Health (Y-FY, F-CS), China Medical University; Institute of Biostatistics (T-CL, S-YY), College of Public Health, China Medical University; Department of Healthcare Administration (T-CL), College of Medical and Health Science, Asia University; Department of Medical Research (C-IL, C-SL, C-CL), China Medical University Hospital; Department of Family Medicine (C-SL, W-YL, C-CL), China Medical University Hospital; Management Office for Health Data (J-HC, F-CS), China Medical University Hospital; and Research Center for Chinese Medicine & Accupuncture (J-HC), China Medical University, Taichung, Taiwan
| | | | | | | | | | | | | | | | | | | |
Collapse
|
10
|
Zhang Y, Ma KL, Liu J, Wu Y, Hu ZB, Liu L, Liu BC. Dysregulation of low-density lipoprotein receptor contributes to podocyte injuries in diabetic nephropathy. Am J Physiol Endocrinol Metab 2015; 308:E1140-8. [PMID: 25921580 DOI: 10.1152/ajpendo.00591.2014] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/16/2014] [Accepted: 04/25/2015] [Indexed: 01/10/2023]
Abstract
Dyslipidemia plays crucial roles in the progression of diabetic nephropathy (DN). This study investigated the effects of high glucose on lipid accumulation in podocytes and explored its underlying mechanisms. Male db/m and db/db mice were fed a normal chow diet for 8 wk. Immortalised mouse podocytes were treated with or without high glucose for 24 h. The changes to the morphology and ultramicrostructures of the kidneys in mice were examined using pathological staining and electron microscopy. Intracellular lipid accumulation was evaluated by Oil Red O staining and a free cholesterol quantitative assay. The expressions of the molecules involved in low-density lipoprotein receptor (LDLr) pathway and podocyte injury were examined using immunofluorescent staining, real-time PCR, and Western blot. There were increased levels of plasma lipid, serum creatinine, and proteinuria in db/db mice compared with db/m mice. Moreover, there was significant mesangial matrix expansion, basement membrane thickening, podocyte foot process effacement, and phenotypic alteration in the db/db group. Additionally, lipid accumulation in the kidneys of db/db mice was increased due to increased protein expressions of LDLr, sterol regulatory element-binding protein (SREBP) cleavage-activating protein, and SREBP-2. These effects were further confirmed by in vitro studies. Interestingly, the treatment with LDLr siRNA inhibited lipid accumulation in podocytes and decreased the protein expression of molecules associated with phenotypic alteration in podocytes. High glucose disrupted LDLr feedback regulation in podocytes, which may cause intracellular lipid accumulation and alteration of podocyte phenotype, thereby accelerating DN progression.
Collapse
Affiliation(s)
- Yang Zhang
- Institute of Nephrology, Zhong Da Hospital, Southeast University School of Medicine, Nanjing City, Jiangsu Province, China
| | - Kun Ling Ma
- Institute of Nephrology, Zhong Da Hospital, Southeast University School of Medicine, Nanjing City, Jiangsu Province, China
| | - Jing Liu
- Institute of Nephrology, Zhong Da Hospital, Southeast University School of Medicine, Nanjing City, Jiangsu Province, China
| | - Yu Wu
- Institute of Nephrology, Zhong Da Hospital, Southeast University School of Medicine, Nanjing City, Jiangsu Province, China
| | - Ze Bo Hu
- Institute of Nephrology, Zhong Da Hospital, Southeast University School of Medicine, Nanjing City, Jiangsu Province, China
| | - Liang Liu
- Institute of Nephrology, Zhong Da Hospital, Southeast University School of Medicine, Nanjing City, Jiangsu Province, China
| | - Bi Cheng Liu
- Institute of Nephrology, Zhong Da Hospital, Southeast University School of Medicine, Nanjing City, Jiangsu Province, China
| |
Collapse
|
11
|
Tsun JGS, Yung S, Chau MKM, Shiu SWM, Chan TM, Tan KCB. Cellular cholesterol transport proteins in diabetic nephropathy. PLoS One 2014; 9:e105787. [PMID: 25181357 PMCID: PMC4152117 DOI: 10.1371/journal.pone.0105787] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2014] [Accepted: 07/25/2014] [Indexed: 12/25/2022] Open
Abstract
Background Lipid accumulation has been shown to accelerate renal injury, and the intracellular accumulation of lipids may be caused by alterations in synthesis as well as lipid uptake and efflux. We have investigated the role of cellular cholesterol transport proteins including adenosine triphosphate binding cassette transporter A1 (ABCA1), G1 (ABCG1) and scavenger receptor class B type I (SR-BI) in diabetic nephropathy. Methods Protein expression and the ability to mediate cholesterol efflux of ABCA1, ABCG1 and SR-BI was determined in human renal mesangial cells and proximal tubular epithelial cells cultured under normal or high glucose conditions. Renal expression of these cholesterol transporters was examined in a murine model of streptozotocin-induced type 1 diabetes. Results ABCA1, ABCG1 and SR-BI were expressed in both human renal mesangial cells and proximal tubular epithelial cells, and mediated cholesterol efflux to apolipoprotein AI and HDL. In vitro, hyperglycemia reduced the expression and the ability to mediate cholesterol efflux of all three cholesterol transporters (p<0.05). In vivo studies showed that intra-renal accumulation of lipids was increased in diabetic mice, particularly in mice with nephropathy. This was associated with a significant reduction in the expression of ABCA1, ABCG1 and SR-BI in the kidneys. These changes were already seen in diabetic mice without nephropathy and preceded the development of nephropathy. Diabetic mice with nephropathy had the lowest level of these cholesterol transporters. Conclusion Inducing diabetes with streptozotocin significantly reduced renal expression of ABCA1, ABCG1 and SR-BI. Defects in cholesterol export pathway in renal cells could therefore promote cholesterol accumulation and might contribute to the development of diabetic nephropathy.
Collapse
Affiliation(s)
- Joseph G. S. Tsun
- Department of Medicine, University of Hong Kong, Hong Kong, Hong Kong
| | - Susan Yung
- Department of Medicine, University of Hong Kong, Hong Kong, Hong Kong
| | - Mel K. M. Chau
- Department of Medicine, University of Hong Kong, Hong Kong, Hong Kong
| | - Sammy W. M. Shiu
- Department of Medicine, University of Hong Kong, Hong Kong, Hong Kong
| | - Tak Mao Chan
- Department of Medicine, University of Hong Kong, Hong Kong, Hong Kong
| | - Kathryn C. B. Tan
- Department of Medicine, University of Hong Kong, Hong Kong, Hong Kong
- * E-mail:
| |
Collapse
|
12
|
Chang YC, Sheu WHH, Chien YS, Tseng PC, Lee WJ, Chiang AN. Hyperglycemia accelerates ATP-binding cassette transporter A1 degradation via an ERK-dependent pathway in macrophages. J Cell Biochem 2013; 114:1364-73. [DOI: 10.1002/jcb.24478] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2012] [Accepted: 12/05/2012] [Indexed: 11/11/2022]
|