1
|
Liu H, Chen W, Tian C, Deng Y, Xu L, Ouyang W, Qiu R, You Y, Jiang P, Zhou L, Cheng J, Kwan HY, Zhao X, Sun X. The mechanism of Shenbing Decoction II against IgA nephropathy renal fibrosis revealed by UPLC-MS/MS, network pharmacology and experimental verification. Heliyon 2023; 9:e21997. [PMID: 38027651 PMCID: PMC10654229 DOI: 10.1016/j.heliyon.2023.e21997] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2023] [Revised: 10/31/2023] [Accepted: 11/01/2023] [Indexed: 12/01/2023] Open
Abstract
Background IgA nephropathy (IgAN) is a major and growing public health problem. Renal fibrosis plays a vital role in the progression of IgAN. This study is to investigate the mechanisms of action underlying the therapeutic effects of Shenbing Decoction II (SBDII) in IgAN renal fibrosis treatment based on ultra-performance liquid chromatography-tandem mass spectrometry (UPLC-MS/MS), network pharmacology and experimental verification. Method We first used UPLC-MS/MS to explore the main compounds of SBDII, and then used network pharmacology to predict the targets and key pathways of SBDII in the treatment of IgAN renal fibrosis. Next, bovine serum albumin (BSA), lipopolysaccharide (LPS), and carbon tetrachloride (CCL4) were used to induce IgAN in rats, and then biochemical indicators, renal tissue pathology, and renal fibrosis-related indicators were examined. At the same time, part of the results predicted by network pharmacology were also verified. Result A total of 105 compounds were identified in SBDII by UPLC-MS/MS. Network pharmacology results showed that the active compounds such as acacetin, eupatilin, and galangin may mediate the therapeutic effects of SBDII in treating IgAN by targeting tumor protein p53 (TP53) and regulating phosphatidylinositol 3-kinase (PI3K)-Akt kinase (Akt) signaling pathway. Animal experiments showed that SBDII not only significantly improved renal function and fibrosis in IgAN rats, but also significantly downregulated the expressions of p53, p-PI3K and p-Akt. Conclusion This UPLC-MS/MS, network pharmacological and experimental study highlights that the TP53 as a target, and PI3K-Akt signaling pathway are the potential mechanism by which SBDII is involved in IgAN renal fibrosis treatment. Acacetin, eupatilin, and galangin are probable active compounds in SBDII, these results might provide valuable guidance for further studies of IgAN renal fibrosis treatment.
Collapse
Affiliation(s)
- Huaxi Liu
- Syndrome Laboratory of Integrated Chinese and Western Medicine, School of Chinese Medicine, Southern Medical University, Guangzhou, Guangdong, China
| | - Weijie Chen
- Syndrome Laboratory of Integrated Chinese and Western Medicine, School of Chinese Medicine, Southern Medical University, Guangzhou, Guangdong, China
| | - Chunyang Tian
- Syndrome Laboratory of Integrated Chinese and Western Medicine, School of Chinese Medicine, Southern Medical University, Guangzhou, Guangdong, China
| | - Yijian Deng
- Syndrome Laboratory of Integrated Chinese and Western Medicine, School of Chinese Medicine, Southern Medical University, Guangzhou, Guangdong, China
| | - Liangwo Xu
- Syndrome Laboratory of Integrated Chinese and Western Medicine, School of Chinese Medicine, Southern Medical University, Guangzhou, Guangdong, China
| | - Wenkun Ouyang
- Syndrome Laboratory of Integrated Chinese and Western Medicine, School of Chinese Medicine, Southern Medical University, Guangzhou, Guangdong, China
| | - Renjie Qiu
- Syndrome Laboratory of Integrated Chinese and Western Medicine, School of Chinese Medicine, Southern Medical University, Guangzhou, Guangdong, China
| | - Yanting You
- Syndrome Laboratory of Integrated Chinese and Western Medicine, School of Chinese Medicine, Southern Medical University, Guangzhou, Guangdong, China
| | - Pingping Jiang
- Syndrome Laboratory of Integrated Chinese and Western Medicine, School of Chinese Medicine, Southern Medical University, Guangzhou, Guangdong, China
| | - Lin Zhou
- Endocrinology Department, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong, China
| | - Jingru Cheng
- Department of Nephrology, the First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
| | - Hiu Yee Kwan
- School of Chinese Medicine, Hong Kong Baptist University, Hong Kong, China
| | - Xiaoshan Zhao
- Syndrome Laboratory of Integrated Chinese and Western Medicine, School of Chinese Medicine, Southern Medical University, Guangzhou, Guangdong, China
| | - Xiaomin Sun
- Syndrome Laboratory of Integrated Chinese and Western Medicine, School of Chinese Medicine, Southern Medical University, Guangzhou, Guangdong, China
| |
Collapse
|
2
|
Kim K, Hong HL, Kim GM, Leem J, Kwon HH. Eupatilin Ameliorates Lipopolysaccharide-Induced Acute Kidney Injury by Inhibiting Inflammation, Oxidative Stress, and Apoptosis in Mice. Curr Issues Mol Biol 2023; 45:7027-7042. [PMID: 37754228 PMCID: PMC10530142 DOI: 10.3390/cimb45090444] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2023] [Revised: 08/18/2023] [Accepted: 08/22/2023] [Indexed: 09/28/2023] Open
Abstract
Acute kidney injury (AKI) is a common complication of sepsis. Eupatilin (EUP) is a natural flavone with multiple biological activities and has beneficial effects against various inflammatory disorders. However, whether EUP has a favorable effect on septic AKI remains unknown. Here, we examined the effect of EUP on lipopolysaccharide (LPS)-evoked AKI in mice. LPS-evoked renal dysfunction was attenuated by EUP, as reflected by reductions in serum creatinine and blood urea nitrogen levels. LPS injection also induced structural damage such as tubular cell detachment, tubular dilatation, brush border loss of proximal tubules, and upregulation of tubular injury markers. However, EUP significantly ameliorated this structural damage. EUP decreased serum and renal cytokine levels, prevented macrophage infiltration, and inhibited mitogen-activated protein kinase and NF-κB signaling cascades. Lipid peroxidation and DNA oxidation were increased after LPS treatment. However, EUP mitigated LPS-evoked oxidative stress through downregulation of NPDPH oxidase 4 and upregulation of antioxidant enzymes. EUP also inhibited p53-mediated apoptosis in LPS-treated mice. Therefore, these results suggest that EUP ameliorates LPS-evoked AKI through inhibiting inflammation, oxidative stress, and apoptosis.
Collapse
Affiliation(s)
- Kiryeong Kim
- Department of Internal Medicine, School of Medicine, Daegu Catholic University, Daegu 42472, Republic of Korea; (K.K.); (H.-L.H.)
| | - Hyo-Lim Hong
- Department of Internal Medicine, School of Medicine, Daegu Catholic University, Daegu 42472, Republic of Korea; (K.K.); (H.-L.H.)
| | - Gyun Moo Kim
- Department of Emergency Medicine, School of Medicine, Daegu Catholic University, Daegu 42472, Republic of Korea;
| | - Jaechan Leem
- Department of Immunology, School of Medicine, Daegu Catholic University, Daegu 42472, Republic of Korea
| | - Hyun Hee Kwon
- Department of Internal Medicine, School of Medicine, Daegu Catholic University, Daegu 42472, Republic of Korea; (K.K.); (H.-L.H.)
| |
Collapse
|
3
|
Benmerah A, Briseño-Roa L, Annereau JP, Saunier S. Repurposing small molecules for Nephronophthisis and related renal ciliopathies. Kidney Int 2023:S0085-2538(23)00390-3. [PMID: 37244473 DOI: 10.1016/j.kint.2023.04.027] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2022] [Revised: 03/10/2023] [Accepted: 04/10/2023] [Indexed: 05/29/2023]
Abstract
Nephronophthisis is an autosomal recessive tubulo-interstitial nephropathy, belonging to the ciliopathy disorders, characterized by fibrosis and/or cysts. It is the most common genetic cause of renal failure in children and young adults. Clinically and genetically heterogeneous, it is caused by variants in ciliary genes resulting in either an isolated kidney disease or syndromic forms in association with other manifestations of ciliopathy disorders. No curative treatment is currently available. Over the past two decades, advances in understanding disease mechanisms have identified several dysregulated signaling pathways, some shared with other cystic kidney diseases. Notably, molecules previously developed to target these pathways have shown promising beneficial effects in orthologous mouse models. In addition to these knowledge-based repurposing approaches, unbiased "in cellulo" phenotypic screens of "repurposing" libraries identified small molecules able to rescue the ciliogenesis defects observed in nephronophthisis conditions. Those compounds appeared to act on relevant pathways and, when tested, showed beneficial nephronophthisis-associated kidney and/or extra-renal defects in mice. In this review, we have summarized those studies which highlight the drug repurposing strategies in the context of a rare disorders such as nephronophthisis-related ciliopathies, with broad genetic heterogeneity and systemic manifestations but with shared disease mechanisms.
Collapse
Affiliation(s)
- Alexandre Benmerah
- Laboratory of Hereditary Kidney Diseases, Imagine Institute, Université Paris Cité, INSERM UMR 1163, 75015 Paris, France
| | | | | | - Sophie Saunier
- Laboratory of Hereditary Kidney Diseases, Imagine Institute, Université Paris Cité, INSERM UMR 1163, 75015 Paris, France.
| |
Collapse
|
4
|
Novel Application of Eupatilin for Effectively Attenuating Cisplatin-Induced Auditory Hair Cell Death via Mitochondrial Apoptosis Pathway. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2022; 2022:1090034. [PMID: 35082962 PMCID: PMC8786471 DOI: 10.1155/2022/1090034] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/01/2021] [Revised: 11/05/2021] [Accepted: 11/11/2021] [Indexed: 12/12/2022]
Abstract
Eupatilin (5,7-dihydroxy-3′,4′,6-trimethoxyflavone) is a pharmacologically active flavone that has been isolated from a variety of medicinal plants and possesses a number of pharmacological properties. This study evaluates the antioxidant and antiapoptotic effects of eupatilin on cisplatin-induced ototoxicity using in vitro and in vivo models including HEI-OC1 cells, cochlear hair cells, and zebrafish. Employing a CCK8 assay and Annexin V-FITC/PI double staining, we found that eupatilin significantly alleviated cisplatin-induced apoptosis and increased hair cell viability. The level of reactive oxygen species (ROS) was evaluated by CellROX green and MitoSOX Red staining. The results showed that eupatilin possesses antioxidant activity. MitoTracker Red staining indicated that eupatilin remarkably decreased mitochondrial damage. Furthermore, we demonstrated that eupatilin protects hair cells from cisplatin-induced damage. Mechanistic studies in cisplatin-induced HEI-OC1 cells revealed that eupatilin promoted Bcl-2 expression, downregulated Bax expression, reversed the increase in caspase-3 and PARP activity, and reduced the expression of phosphorylated p38 and JNK. Our data suggest a novel role for eupatilin as a protective agent against ototoxic drug-induced hair cell apoptosis by inhibiting ROS generation and modulating mitochondrial-related apoptosis.
Collapse
|
5
|
Alam M, Ali S, Mohammad T, Hasan GM, Yadav DK, Hassan MI. B Cell Lymphoma 2: A Potential Therapeutic Target for Cancer Therapy. Int J Mol Sci 2021; 22:ijms221910442. [PMID: 34638779 PMCID: PMC8509036 DOI: 10.3390/ijms221910442] [Citation(s) in RCA: 49] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2021] [Revised: 09/15/2021] [Accepted: 09/23/2021] [Indexed: 12/13/2022] Open
Abstract
Defects in the apoptosis mechanism stimulate cancer cell growth and survival. B cell lymphoma 2 (Bcl-2) is an anti-apoptotic molecule that plays a central role in apoptosis. Bcl-2 is the founding constituent of the Bcl-2 protein family of apoptosis controllers, the primary apoptosis regulators linked with cancer. Bcl-2 has been identified as being over-expressed in several cancers. Bcl-2 is induced by protein kinases and several signaling molecules which stimulate cancer development. Identifying the important function played by Bcl-2 in cancer progression and development, and treatment made it a target related to therapy for multiple cancers. Among the various strategies that have been proposed to block Bcl-2, BH3-mimetics have appeared as a novel group of compounds thanks to their favorable effects on many cancers within several clinical settings. Because of the fundamental function of Bcl-2 in the regulation of apoptosis, the Bcl-2 protein is a potent target for the development of novel anti-tumor treatments. Bcl-2 inhibitors have been used against several cancers and provide a pre-clinical platform for testing novel therapeutic drugs. Clinical trials of multiple investigational agents targeting Bcl-2 are ongoing. This review discusses the role of Bcl-2 in cancer development; it could be exploited as a potential target for developing novel therapeutic strategies to combat various types of cancers. We further highlight the therapeutic activity of Bcl-2 inhibitors and their implications for the therapeutic management of cancer.
Collapse
Affiliation(s)
- Manzar Alam
- Centre for Interdisciplinary Research in Basic Sciences, Jamia Millia Islamia, Jamia Nagar, New Delhi 110025, India; (M.A.); (S.A.); (T.M.)
| | - Sabeeha Ali
- Centre for Interdisciplinary Research in Basic Sciences, Jamia Millia Islamia, Jamia Nagar, New Delhi 110025, India; (M.A.); (S.A.); (T.M.)
| | - Taj Mohammad
- Centre for Interdisciplinary Research in Basic Sciences, Jamia Millia Islamia, Jamia Nagar, New Delhi 110025, India; (M.A.); (S.A.); (T.M.)
| | - Gulam Mustafa Hasan
- Department of Biochemistry, College of Medicine, Prince Sattam Bin Abdulaziz University, Al-Kharj 11942, Saudi Arabia;
| | - Dharmendra Kumar Yadav
- Department of Pharmacy and Gachon Institute of Pharmaceutical Science, College of Pharmacy, Gachon University, Hambakmoeiro 191, Yeonsu-gu, Incheon 21924, Korea
- Correspondence: (D.K.Y.); (M.I.H.)
| | - Md. Imtaiyaz Hassan
- Centre for Interdisciplinary Research in Basic Sciences, Jamia Millia Islamia, Jamia Nagar, New Delhi 110025, India; (M.A.); (S.A.); (T.M.)
- Correspondence: (D.K.Y.); (M.I.H.)
| |
Collapse
|
6
|
Cinar AK, Ozal SA, Serttas R, Erdogan S. Eupatilin attenuates TGF-β2-induced proliferation and epithelial-mesenchymal transition of retinal pigment epithelial cells. Cutan Ocul Toxicol 2021; 40:103-114. [PMID: 33719768 DOI: 10.1080/15569527.2021.1902343] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
PURPOSE The main characteristic of proliferative vitreoretinopathy (PVR) is migration, adhesion, and epithelial-mesenchymal transition (EMT) of retinal pigment epithelial cells (RPE). Eupatilin is a naturally occurring flavone that has the potential to inhibit cell proliferation and EMT. However, its efficacy on the PVR model induced by transforming growth factor-2 (TGF-β2) is unknown. In this study, the potential effect of eupatilin on proliferation and EMT in the treatment of RPE was investigated. METHODS Serum starved human RPE cells (ARPE-19) were treated with 10 ng/ml TGF-β2 alone or co-treated with 25 μM eupatilin for 48 h. Quantitative real-time PCR and Western blot analysis were used to assess targets at the mRNA and protein expression level, respectively. Apoptosis and cell cycle progression was assessed by image-based cytometry. The effect of treatment on cell migration was evaluated by wound healing assay. RESULTS Eupatilin inhibited TGF-β2-induced RPE cell proliferation via regulating the cell cycle and inducing apoptosis. TGF-β2 upregulated mRNA expression of mesenchymal markers fibronectin and vimentin was significantly downregulated by the treatment, while the epithelial markers E-cadherin and occludin expression was upregulated. The therapy significantly suppressed TGF-β2 encouraged cell migration through downregulating the expression of transcription factors Twist, Snail, and ZEB1 induced by TGF-β2. Furthermore, eupatilin significantly inhibited the expression of MMP-1, -7, and -9, and suppressed NF-κB signalling. CONCLUSION These results suggest that eupatilin could inhibit the proliferation and transformation into fibroblast-like cells of RPE cells; thus the agent may be a potential therapeutic value in treating PVR.
Collapse
Affiliation(s)
- Ayca Kupeli Cinar
- Department of Ophthalmology, School of Medicine, Trakya University - Balkan Campus, Edirne, Turkey
| | - S Altan Ozal
- Department of Ophthalmology, School of Medicine, Trakya University - Balkan Campus, Edirne, Turkey
| | - Riza Serttas
- Department of Medical Biology, School of Medicine, Trakya University - Balkan Campus, Edirne, Turkey
| | - Suat Erdogan
- Department of Medical Biology, School of Medicine, Trakya University - Balkan Campus, Edirne, Turkey
| |
Collapse
|
7
|
Nageen B, Sarfraz I, Rasul A, Hussain G, Rukhsar F, Irshad S, Riaz A, Selamoglu Z, Ali M. Eupatilin: a natural pharmacologically active flavone compound with its wide range applications. JOURNAL OF ASIAN NATURAL PRODUCTS RESEARCH 2020; 22:1-16. [PMID: 29973097 DOI: 10.1080/10286020.2018.1492565] [Citation(s) in RCA: 41] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/23/2018] [Accepted: 06/20/2018] [Indexed: 06/08/2023]
Abstract
Eupatilin (5,7-dihydroxy-3',4',6-trimethoxyflavone) is a pharmacologically active flavone which has been isolated from a variety of medicinal plants. Eupatilin is known to possess various pharmacological properties such as anti-cancer, anti-oxidant, and anti-inflammatory. It is speculated that eupatilin could be subjected to structural optimization for the synthesis of derivative analogs to reinforce its efficacy, to minimize toxicity, and to optimize absorption profiles, which will ultimately lead towards potent drug candidates. Although, reported data acclaim multiple pharmacological activities of eupatilin but further experimentations on its molecular mechanism of action are yet mandatory to elucidate full spectrum of its pharmacological activities.
Collapse
Affiliation(s)
- Bushra Nageen
- Faculty of Life Sciences, Department of Zoology, Government College University Faisalabad, Faisalabad 38000, Pakistan
| | - Iqra Sarfraz
- Faculty of Life Sciences, Department of Zoology, Government College University Faisalabad, Faisalabad 38000, Pakistan
| | - Azhar Rasul
- Faculty of Life Sciences, Department of Zoology, Government College University Faisalabad, Faisalabad 38000, Pakistan
| | - Ghulam Hussain
- Faculty of Life Sciences, Department of Physiology, Government College University Faisalabad, Faisalabad 38000, Pakistan
| | - Fariha Rukhsar
- Faculty of Life Sciences, Department of Zoology, Government College University Faisalabad, Faisalabad 38000, Pakistan
| | - Somia Irshad
- Faculty of Life Sciences, Department of Zoology, Government College University Faisalabad (Sub-campus Layyah), Layyah 31200, Pakistan
| | - Ammara Riaz
- Faculty of Life Sciences, Department of Zoology, Government College University Faisalabad, Faisalabad 38000, Pakistan
| | - Zeliha Selamoglu
- Faculty of Medicine, Department of Medical Biology, Nigde Ömer Halisdemir University, Nigde, Campus 51240, Turkey
| | - Muhammad Ali
- Faculty of Life Sciences, Department of Zoology, Government College University Faisalabad, Faisalabad 38000, Pakistan
| |
Collapse
|
8
|
Geng P, Luo X, Peng X, Lin Z, Chen W, Zhang J, Wen C, Hu L, Hu S. Development and validation of UPLC–MS/MS method for determination of eupatilin in rat plasma and its application in a pharmacokinetics study. ACTA CHROMATOGR 2018. [DOI: 10.1556/1326.2017.00320] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Affiliation(s)
- Peiwu Geng
- The Laboratory of Clinical Pharmacy, The People's Hospital of Lishui, Lishui 323000, China
| | - Xinhua Luo
- Department of Clinical Lab Medicine, Taizhou Municipal Hospital affiliated with Taizhou University, Taizhou 318000, China
| | - Xiufa Peng
- Laboratory Animal Centre, Wenzhou Medical University, Wenzhou 325035, China
| | - Zixia Lin
- Laboratory Animal Centre, Wenzhou Medical University, Wenzhou 325035, China
| | - Wenhao Chen
- Laboratory Animal Centre, Wenzhou Medical University, Wenzhou 325035, China
| | - Jin Zhang
- The Laboratory of Clinical Pharmacy, The People's Hospital of Lishui, Lishui 323000, China
| | - Congcong Wen
- Laboratory Animal Centre, Wenzhou Medical University, Wenzhou 325035, China
| | - Lufeng Hu
- The First Affiliated Hospital of Wenzhou Medical University, Wenzhou 325000, China
| | - Siyi Hu
- The First Affiliated Hospital of Wenzhou Medical University, Wenzhou 325000, China
| |
Collapse
|
9
|
Lee D, Kim CE, Park SY, Kim KO, Hiep NT, Lee D, Jang HJ, Lee JW, Kang KS. Protective Effect of Artemisia argyi and Its Flavonoid Constituents against Contrast-Induced Cytotoxicity by Iodixanol in LLC-PK1 Cells. Int J Mol Sci 2018; 19:ijms19051387. [PMID: 29735908 PMCID: PMC5983776 DOI: 10.3390/ijms19051387] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2018] [Revised: 05/04/2018] [Accepted: 05/04/2018] [Indexed: 12/20/2022] Open
Abstract
Preventive effects and corresponding molecular mechanisms of mugwort (Artemisia argyi) extract and its flavonoid constituents on contrast-induced nephrotoxicity were explored in the present study. We treated cultured LLC-PK1 cells with iodixanol to induce contrast-induced nephrotoxicity, and found that A. argyi extracts ameliorated the reduction in cellular viability following iodixanol treatment. The anti-apoptotic effect of A. argyi extracts on contrast-induced nephrotoxicity was mediated by the inhibition of mitogen-activated protein kinase (MAPK) phosphorylation and the activation of caspases. The flavonoid compounds isolated from A. argyi improved the viability of iodixanol-treated cells against contrast-induced nephrotoxicity. Seven compounds (1, 2, 3, 15, 16, 18, and 19) from 19 flavonoids exerted a significant protective effect. Based on the in silico oral-bioavailability and drug-likeness assessment, which evaluate the drug potential of these compounds, compound 2 (artemetin) showed the highest oral bioavailability (49.55%) and drug-likeness (0.48) values. We further investigated the compound–target–disease network of compound 2, and proliferator-activated receptor gamma (PPAR-γ) emerged as a predicted key marker for the treatment of contrast-induced nephrotoxicity. Consequently, compound 2 was the preferred candidate, and its protective effect was mediated by inhibiting the contrast-induced inflammatory response through activation of PPAR-γ and inhibition of MAPK phosphorylation and activation of caspases.
Collapse
Affiliation(s)
- Dahae Lee
- School of Pharmacy, Sungkyunkwan University, Suwon 440-746, Korea.
| | - Chang-Eop Kim
- College of Korean Medicine, Gachon University, Seongnam 13120, Korea.
| | - Sa-Yoon Park
- College of Korean Medicine, Gachon University, Seongnam 13120, Korea.
| | - Kem Ok Kim
- Department of Biosystems and Biotechnology, College of Life Science and Biotechnology, Korea University, Seoul 02841, Korea.
| | - Nguyen Tuan Hiep
- Department of Biosystems and Biotechnology, College of Life Science and Biotechnology, Korea University, Seoul 02841, Korea.
| | - Dongho Lee
- Department of Biosystems and Biotechnology, College of Life Science and Biotechnology, Korea University, Seoul 02841, Korea.
| | - Hyuk-Jai Jang
- Department of Surgery, University of Ulsan College of Medicine, Seoul 05505, Korea.
| | - Jae Wook Lee
- Natural Constituent Research Center, Korea Institute of Science and Technology, Gangnung 210-340, Korea.
| | - Ki Sung Kang
- College of Korean Medicine, Gachon University, Seongnam 13120, Korea.
| |
Collapse
|
10
|
Abstract
The clinical category of acute kidney injury includes a wide range of completely different disorders, many with their own pathomechanisms and treatment targets. In this review we focus on the role of inflammation in the pathogenesis of acute tubular necrosis (ATN). We approach this topic by first discussing the role of the immune system in the different phases of ATN (ie, early and late injury phase, recovery phase, and the long-term outcome phase of an ATN episode). A more detailed discussion focuses on putative therapeutic targets among the following mechanisms and mediators: oxidative stress and reactive oxygen species-related necroinflammation, regulated cell death-related necroinflammation, immunoregulatory lipid mediators, cytokines and cytokine signaling, chemokines and chemokine signaling, neutrophils and neutrophils extracellular traps (NETs) associated neutrophil cell death, called NETosis, extracellular histones, proinflammatory mononuclear phagocytes, humoral mediators such as complement, pentraxins, and natural antibodies. Any prioritization of these targets has to take into account the intrinsic differences between rodent models and human ATN, the current acute kidney injury definitions, and the timing of clinical decision making. Several conceptual problems need to be solved before anti-inflammatory drugs that are efficacious in rodent ATN may become useful therapeutics for human ATN.
Collapse
Affiliation(s)
- Shrikant R Mulay
- Nephrologisches Zentrum, Medizinische Klinik und Poliklinik IV, Klinikum der Universität München, Munich, Germany
| | - Alexander Holderied
- Nephrologisches Zentrum, Medizinische Klinik und Poliklinik IV, Klinikum der Universität München, Munich, Germany
| | - Santhosh V Kumar
- Nephrologisches Zentrum, Medizinische Klinik und Poliklinik IV, Klinikum der Universität München, Munich, Germany
| | - Hans-Joachim Anders
- Nephrologisches Zentrum, Medizinische Klinik und Poliklinik IV, Klinikum der Universität München, Munich, Germany.
| |
Collapse
|
11
|
Lee HM, Jang HJ, Kim SS, Kim HJ, Lee SY, Oh MY, Kwan HC, Jang DS, Eom DW. Protective Effect of Eupatilin Pretreatment Against Hepatic Ischemia-Reperfusion Injury in Mice. Transplant Proc 2016; 48:1226-33. [PMID: 27320593 DOI: 10.1016/j.transproceed.2016.01.024] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2015] [Accepted: 01/14/2016] [Indexed: 12/21/2022]
Abstract
BACKGROUND Eupatilin, a pharmacologically active flavone derived from Artemisia species, is known to have antioxidant and antiinflammatory activities. Ischemia-reperfusion injury (IRI) is a major critical event that commonly occurs after liver transplantation and resection. Furthermore, inflammatory responses to IRI exacerbate the resultant hepatic injury. In this study, we investigated whether eupatilin protects against IR-induced acute liver injury in mice. MATERIALS AND METHODS Partial (70%) hepatic IRI was induced in male C57BL/6 mice by portal triad pedicle occlusion for 90 minutes followed by reperfusion for 6 hours. Eupatilin (10 mg/kg body weight, oral) was administered 4 days before the IRI. RESULTS Treatment with eupatilin significantly decreased serum alanine aminotransferase and serum aspartate aminotransferase as well as liver histologic changes. Eupatilin also prevented hepatic glutathione depletion and increased malondialdehyde levels induced by IRI. Western blotting indicated that eupatilin significantly increased the levels of heat shock protein and B-cell lymphoma 2 protein, attenuated inducible nitric oxide synthase, and cleaved caspase-3 levels 6 hours after IRI. The expression of the Toll-like receptor 2/4, and phosphorylated nuclear factor of kappa light polypeptide gene enhancer in B-cells inhibitor was significantly decreased in the eupatilin pretreatment group. CONCLUSIONS Eupatilin improved the acute hepatic IRI by reducing inflammation and apoptosis. These findings suggest that eupatilin is a promising therapeutic agent against acute IR-induced hepatic damage.
Collapse
Affiliation(s)
- H M Lee
- Department of Anesthesia and Pain Medicine, Ulsan University, College of Medicine, Gangneung Asan Hospital, Gangneung, South Korea
| | - H J Jang
- Department of Surgery, Ulsan University, College of Medicine, Gangneung Asan Hospital, Gangneung, South Korea.
| | - S S Kim
- Department of Anesthesia and Pain Medicine, Ulsan University, College of Medicine, Gangneung Asan Hospital, Gangneung, South Korea
| | - H J Kim
- Department of Surgery, Ulsan University, College of Medicine, Gangneung Asan Hospital, Gangneung, South Korea
| | - S Y Lee
- Department of Surgery, Ulsan University, College of Medicine, Gangneung Asan Hospital, Gangneung, South Korea
| | - M Y Oh
- Department of Surgery, Ulsan University, College of Medicine, Gangneung Asan Hospital, Gangneung, South Korea
| | - H C Kwan
- Natural Medicine Center, Korea Institute of Science and Technology (KIST), Gangneung, South Korea
| | - D S Jang
- Department of Pharmaceutical Science, College of Pharmacy, Kyung Hee University, Seoul, South Korea
| | - D W Eom
- Department of Pathology, Ulsan University, College of Medicine, Gangneung Asan Hospital, Gangneung, South Korea
| |
Collapse
|
12
|
Zhou JQ, Qiu T, Zhang L, Chen ZB, Wang ZS, Ma XX, Li D. Allopurinol preconditioning attenuates renal ischemia/reperfusion injury by inhibiting HMGB1 expression in a rat model. Acta Cir Bras 2016; 31:176-82. [PMID: 27050788 DOI: 10.1590/s0102-865020160030000005] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2015] [Accepted: 02/15/2016] [Indexed: 01/15/2023] Open
Abstract
PURPOSE To investigate the potential effects of pretreatment with allopurinol on renal ischemia/reperfusion injury (IRI) in a rat model. METHODS Twenty four rats were subjected to right kidney uninephrectomy were randomly distributed into the following three groups (n=8): Group A (sham-operated group); Group B (ischemic group) with 30 min of renal ischemia after surgery; and Group C (allopurinol + ischemia group) pretreated with allopurinol at 50 mg/kg for 14 days. At 72 h after renal reperfusion, the kidney was harvested to assess inflammation and apoptosis. RESULTS Pretreatment with allopurinol significantly improved renal functional and histological grade scores following I/R injury (p<0.05). Compared with Group B, the expression levels of caspase-3 and Bax were markedly reduced in Group C, meanwhile, whereas expression of bcl-2 was clearly increased (p<0.05). A newly described marker of inflammation, High Mobility Group Box 1(HMGB1), showed reduced expression in Group C (p<0.05). CONCLUSION Pretreatment with allopurinol had a protective effect on kidney ischemia/reperfusion injury, which might be related to the inhibition of HMGB1 expression.
Collapse
Affiliation(s)
- Jiang-qiao Zhou
- Department of Organ Transplantation, Renmin Hospital, Wuhan University, Wuhan, Hubei, China
| | - Tao Qiu
- Department of Organ Transplantation, Renmin Hospital, Wuhan University, Wuhan, Hubei, China
| | - Lu Zhang
- Department of Urology, Renmin Hospital, Wuhan University, Wuhan, Hubei, China
| | - Zhong-bao Chen
- Department of Organ Transplantation, Renmin Hospital, Wuhan University, Wuhan, Hubei, China
| | - Zhi-shun Wang
- Department of Urology, Renmin Hospital, Wuhan University, Wuhan, Hubei, China
| | - Xiao-xiong Ma
- Department of Organ Transplantation, Renmin Hospital, Wuhan University, Wuhan, Hubei, China
| | - Dongyu Li
- Intensive Care Unit, PuAi Hospital, Anlu, Hubei, China
| |
Collapse
|
13
|
Eupatilin inhibits the apoptosis in H9c2 cardiomyocytes via the Akt/GSK-3β pathway following hypoxia/reoxygenation injury. Biomed Pharmacother 2016; 82:373-8. [DOI: 10.1016/j.biopha.2016.05.026] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2016] [Revised: 05/17/2016] [Accepted: 05/17/2016] [Indexed: 11/20/2022] Open
|