1
|
Madhukar G, Haque MA, Khan S, Kim JJ, Danishuddin. E3 ubiquitin ligases and their therapeutic potential in disease Management. Biochem Pharmacol 2025; 236:116875. [PMID: 40120724 DOI: 10.1016/j.bcp.2025.116875] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2024] [Revised: 02/05/2025] [Accepted: 03/17/2025] [Indexed: 03/25/2025]
Abstract
Ubiquitination is a vital post-translational modification that regulates protein stability and various cellular processes through the addition of ubiquitin molecules. Central to this process are E3 ubiquitin ligases, which determine the specificity of ubiquitination by coordinating the attachment of ubiquitin to target proteins, influencing their degradation, localization, and activity. E3 ubiquitin ligases are involved in numerous cellular pathways, including DNA repair, cell proliferation, and immune responses. Dysregulation of E3 ubiquitin ligases is often associated with cancer, contributing to tumor progression and resistance to therapies. The development of targeted protein degraders, such as proteolysis-targeting chimeras (PROTACs), represents a significant advancement in drug discovery, leveraging the specificity of E3 ubiquitin ligases to selectively eliminate pathogenic proteins. However, challenges remain in translating this knowledge into effective therapies, including issues related to tissue-specific targeting and off-target effects. The limitations also include a limited understanding of ligase-substrate interactions that includes both the identification of novel E3 ligases and their substrates, as well as understanding the dynamic, context-dependent nature of these interactions, which can vary across tissue types or disease states This review emphasizes the therapeutic potential of E3 ubiquitin ligases, exploring their diverse roles in disease, their contribution to targeted degradation strategies while highlighting the need for further research to overcome current limitations and enhance therapeutic efficacy.
Collapse
Affiliation(s)
- Geet Madhukar
- Department of Molecular, Cellular and Biomedical Sciences, University of New Hampshire, Durham, NH 03824, USA
| | - Md Azizul Haque
- Department of Biotechnology, Yeungnam University, Gyeongsan 38541, Republic of Korea.
| | - Shawez Khan
- National Center for Cancer Immune Therapy (CCIT-DK), Department of Oncology, Copenhagen University Hospital, 2730 Herlev, Denmark
| | - Jong-Joo Kim
- Department of Biotechnology, Yeungnam University, Gyeongsan 38541, Republic of Korea.
| | - Danishuddin
- Department of Biotechnology, Yeungnam University, Gyeongsan 38541, Republic of Korea.
| |
Collapse
|
2
|
Kim MS, Kim MS. Deubiquitination of epidermal growth factor receptor by ubiquitin-specific peptidase 54 enhances drug sensitivity to gefitinib in gefitinib-resistant non-small cell lung cancer cells. PLoS One 2025; 20:e0320668. [PMID: 40168312 PMCID: PMC11960930 DOI: 10.1371/journal.pone.0320668] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2024] [Accepted: 02/23/2025] [Indexed: 04/03/2025] Open
Abstract
A precise balance between ubiquitination and deubiquitination is crucial for cellular regulation. Ubiquitin-specific peptidase 54 (USP54), an active deubiquitinase (DUB), modulates the ubiquitination of the epidermal growth factor receptor (EGFR). While the significance of USP54 in tumorigenesis is known, its specific function in cancer progression remains unclear. This study investigates the role of USP54 in gefitinib sensitivity in gefitinib-resistant non-small cell lung cancer (NSCLC) cells. Using western blotting and next-generation sequencing, we examined gene expression changes in ubiquitination pathways. USP54 deficiency and its impact on cell viability and gefitinib response were evaluated in 2D and 3D spheroid cancer models. Prolonged gefitinib exposure altered the expression of 20 deubiquitinase-regulating genes. Notably, ubiquitin C-terminal hydrolase L3, downregulated by gefitinib, was identified as a key regulator of EGFR ubiquitination in gefitinib-sensitive PC9 cells. Silencing USP54 in resistant NSCLC cells increased gefitinib-induced EGFR ubiquitination and G0/G1 cell cycle arrest, enhancing drug susceptibility in resistant spheroids. USP54 upregulation in gefitinib-treated cells was associated with reduced EGFR ubiquitination, stabilizing EGFR and promoting cell survival. These findings suggest USP54 as a critical modulator of EGFR stability and a potential therapeutic target to overcome gefitinib resistance in NSCLC.
Collapse
Affiliation(s)
- Mi Seong Kim
- Department of Oral Physiology, Institute of Biomaterial-Implant, School of Dentistry, Wonkwang University, Iksan, Jeonbuk, Republic of Korea
- Wonkwang Dental Research Institute, School of Dentistry, Wonkwang University, Iksan, Jeonbuk, Republic of Korea
| | - Min Seuk Kim
- Department of Oral Physiology, Institute of Biomaterial-Implant, School of Dentistry, Wonkwang University, Iksan, Jeonbuk, Republic of Korea
| |
Collapse
|
3
|
Haldar K, Bhattacharjee S. Vesicular mechanisms of drug resistance in apicomplexan parasites. Microbiol Mol Biol Rev 2025; 89:e0001024. [PMID: 39853128 PMCID: PMC11948495 DOI: 10.1128/mmbr.00010-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2025] Open
Abstract
SUMMARYVesicular mechanisms of drug resistance are known to exist across prokaryotes and eukaryotes. Vesicles are sacs that form when a lipid bilayer 'bends' to engulf and isolate contents from the cytoplasm or extracellular environment. They have a wide range of functions, including vehicles of communication within and across cells, trafficking of protein intermediates to their rightful organellar destinations, and carriers of substrates destined for autophagy. This review will provide an in-depth understanding of vesicular mechanisms of apicomplexan parasites, Plasmodium and Toxoplasma (that respectively cause malaria and toxoplasmosis). It will integrate mechanistic and evolutionarily insights gained from these and other pathogenic eukaryotes to develop a new model for plasmodial resistance to artemisinins, a class of drugs that have been the backbone of modern campaigns to eliminate malaria worldwide. We also discuss extracellular vesicles that present major vesicular mechanisms of drug resistance in parasite protozoa (that apicomplexans are part of). Finally, we provide a broader context of clinical drug resistance mechanisms of Plasmodium, Toxoplasma, as well as Cryptosporidium and Babesia, that are prominent members of the phyla, causative agents of cryptosporidiosis and babesiosis and significant for human and animal health.
Collapse
Affiliation(s)
- Kasturi Haldar
- Department of Biological Sciences, Boler-Parseghian Center for Rare and Neglected Diseases, Eck Institute of Global Health, University of Notre Dame, Notre Dame, Indiana, USA
| | - Souvik Bhattacharjee
- Special Centre for Molecular Medicine, Jawaharlal Nehru University, New Delhi, India
| |
Collapse
|
4
|
Capik O, Karatas OF. Pathways and outputs orchestrated in tumor microenvironment cells by hypoxia-induced tumor-derived exosomes in pan-cancer. Cell Oncol (Dordr) 2025:10.1007/s13402-025-01042-z. [PMID: 39928285 DOI: 10.1007/s13402-025-01042-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/30/2025] [Indexed: 02/11/2025] Open
Abstract
Hypoxia is a critical microenvironmental condition that plays a major role in driving tumorigenesis and cancer progression. Increasing evidence has revealed novel functions of hypoxia in intercellular communication. The hypoxia induced tumor derived exosomes (hiTDExs) released in high quantities by tumor cells under hypoxia are packed with unique cargoes that are essential for cancer cells' interactions within their microenvironment. These hiTDExs facilitate not only immune evasion but also promote cancer cell growth, survival, angiogenesis, EMT, resistance to therapy, and the metastatic spread of the disease. Nevertheless, direct interventions targeting hypoxia signaling in cancer therapy face challenges related to tumor progression and resistance, limiting their clinical effectiveness. Therefore, deepening our understanding of the molecular processes through which hiTDExs remodels tumors and their microenvironment, as well as how tumor cells adjust to hypoxic conditions, remains essential. This knowledge will pave the way for novel approaches in treating hypoxic tumors. In this review, we discuss recent work revealing the hiTDExs mediated interactions between tumor and its microenvironment. We have described key hiTDExs cargos (lncRNA, circRNAs, cytokines, etc.) and their targets in the receipt cells, responsible for various biological effects. Moreover, we emphasized the importance of hiTDExs as versatile elements of cell communication in the tumor microenvironment. Finally, we highlighted the effects of hiTDExs on the molecular changes in target cells by executing molecular cargo transfer between cells and altering signaling pathways. Currently, hiTDExs show promise in the treatment of diseases. Understanding the molecular processes through which hiTDExs influence tumor behavior and their microenvironment, along with how tumor cells adapt to and survive in low-oxygen conditions, remains a central focus in cancer research, paving the way for innovative strategies in treating hypoxic tumors and enhancing immunotherapy.
Collapse
Affiliation(s)
- Ozel Capik
- Department of Molecular Biology and Genetics, Erzurum Technical University, Omer Nasuhi Bilmen Mah. Havaalani Yolu Cad. No: 53 Yakutiye, Erzurum, Turkey.
- Cancer Therapeutics Laboratory, High Technology Application and Research Center, Erzurum Technical University, Erzurum, Turkey.
| | - Omer Faruk Karatas
- Department of Molecular Biology and Genetics, Erzurum Technical University, Omer Nasuhi Bilmen Mah. Havaalani Yolu Cad. No: 53 Yakutiye, Erzurum, Turkey
- Cancer Therapeutics Laboratory, High Technology Application and Research Center, Erzurum Technical University, Erzurum, Turkey
| |
Collapse
|
5
|
Xie Z, Lin H, Wu Y, Yu Y, Liu X, Zheng Y, Wang X, Wu J, Xu M, Han Y, Zhang Q, Deng Y, Lin L, Linzhu Y, Qingyun L, Lin X, Huang Y, Chi P. USP4-mediated CENPF deubiquitylation regulated tumor metastasis in colorectal cancer. Cell Death Dis 2025; 16:81. [PMID: 39922805 PMCID: PMC11807140 DOI: 10.1038/s41419-025-07424-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2024] [Revised: 01/14/2025] [Accepted: 02/03/2025] [Indexed: 02/10/2025]
Abstract
Metastasis is a major challenge for colorectal cancer (CRC) treatment. In this study, we identified autophagy activation as a prognostic indicator in CRC and observed that the expression of key autophagy proteins is elevated in metastatic and recurrent cases. Our subsequent goal was to identify potential genes associated with the autophagy panel and assess their prognostic significance, biological roles, and mechanisms in CRC metastasis. Among the candidates, CENPF emerged as the top gene in our screening process. We found that CENPF expression was preferentially elevated in CRC tissues compared to adjacent normal tissues, with significantly higher levels in CRC patients with tumor recurrence. Furthermore, a multicenter cohort study demonstrated that upregulated CENPF expression was strongly associated with poorer disease-free survival in CRC. Functional experiments showed that CENPF knockdown inhibited CRC cell invasion and metastasis both in vitro and in vivo. Intriguingly, we found CENPF undergoes degradation in CRC via the ubiquitination-proteasome pathway. Mechanistically, we observed that USP4 interacted with and stabilized CENPF via deubiquitination. Furthermore, USP4-mediated CENPF upregulation was critical regulators of metastasis of CRC. Examination of clinical samples confirmed that USP4 expression positively correlates with CENPF protein expression, but not mRNA transcript levels. Taken together, this study describes a novel USP4-CENPF signaling axis which is crucial for CRC metastasis, potentially serving as a therapeutic target and a promising prognostic biomarker for CRC.
Collapse
Affiliation(s)
- Zhongdong Xie
- Department of Colorectal Surgery, Union Hospital, Fujian Medical University, Fuzhou, China
- Department of Colorectal Surgery, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| | - Hanbin Lin
- Central Laboratory, Affiliated Hospital of Putian University, Putian, China
- Key Laboratory of Gastrointestinal Cancer (Fujian Medical University), Ministry of Education, Fuzhou, China
| | - Yuecheng Wu
- Key Laboratory of Gastrointestinal Cancer (Fujian Medical University), Ministry of Education, Fuzhou, China
| | - Yanan Yu
- Guilin Medical University, Guilin, China
| | - Xintong Liu
- Central Laboratory, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| | - Yating Zheng
- Department of Colorectal Surgery, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| | - Xiaojie Wang
- Department of Colorectal Surgery, Union Hospital, Fujian Medical University, Fuzhou, China
| | - Jiashu Wu
- Department of Science and Technology, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| | - Meifang Xu
- Department of Pathology, Union Hospital, Fujian Medical University, Fuzhou, China
| | - Yuting Han
- Key Laboratory of Gastrointestinal Cancer (Fujian Medical University), Ministry of Education, Fuzhou, China
| | - Qiongying Zhang
- Department of Pathology, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| | - Yu Deng
- Department of Colorectal Surgery, Union Hospital, Fujian Medical University, Fuzhou, China
| | - Lin Lin
- Department of Pathology, Union Hospital, Fujian Medical University, Fuzhou, China
| | - Yan Linzhu
- Department of Colorectal Surgery, Union Hospital, Fujian Medical University, Fuzhou, China
| | - Li Qingyun
- Department of Colorectal Surgery, Union Hospital, Fujian Medical University, Fuzhou, China
| | - Xinjian Lin
- Key Laboratory of Gastrointestinal Cancer (Fujian Medical University), Ministry of Education, Fuzhou, China.
| | - Ying Huang
- Department of Colorectal Surgery, Union Hospital, Fujian Medical University, Fuzhou, China.
| | - Pan Chi
- Department of Colorectal Surgery, Union Hospital, Fujian Medical University, Fuzhou, China.
| |
Collapse
|
6
|
Seymour L, Nuru N, Johnson KR, Gutierrez JMV, Njoku VT, Darie CC, Neagu AN. Roles of Post-Translational Modifications of Transcription Factors Involved in Breast Cancer Hypoxia. Molecules 2025; 30:645. [PMID: 39942749 PMCID: PMC11820228 DOI: 10.3390/molecules30030645] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2024] [Revised: 01/17/2025] [Accepted: 01/28/2025] [Indexed: 02/16/2025] Open
Abstract
BC is the most commonly diagnosed cancer and the second leading cause of cancer death among women worldwide. Cellular stress is a condition that leads to disrupted homeostasis by extrinsic and intrinsic factors. Among other stressors, hypoxia is a driving force for breast cancer (BC) progression and a general hallmark of solid tumors. Thus, intratumoral hypoxia is an important determinant of invasion, metastasis, treatment failure, prognosis, and patient mortality. Acquisition of the epithelial-mesenchymal transition (EMT) phenotype is also a consequence of tumor hypoxia. The cellular response to hypoxia is mainly regulated by the hypoxia signaling pathway, governed by hypoxia-inducible factors (HIFs), mainly HIF1α. HIFs are a family of transcription factors (TFs), which induce the expression of target genes involved in cell survival and proliferation, metabolic reprogramming, angiogenesis, resisting apoptosis, invasion, and metastasis. HIF1α cooperates with a large number of other TFs. In this review, we focused on the crosstalk and cooperation between HIF1α and other TFs involved in the cellular response to hypoxia in BC. We identified a cluster of TFs, proposed as the HIF1α-TF interactome, that orchestrates the transcription of target genes involved in hypoxia, due to their post-translational modifications (PTMs), including phosphorylation/dephosphorylation, ubiquitination/deubiquitination, SUMOylation, hydroxylation, acetylation, S-nitrosylation, and palmitoylation. PTMs of these HIF1α-related TFs drive their stability and activity, degradation and turnover, and the bidirectional translocation between the cytoplasm or plasma membrane and nucleus of BC cells, as well as the transcription/activation of proteins encoded by oncogenes or inactivation of tumor suppressor target genes. Consequently, PTMs of TFs in the HIF1α interactome are crucial regulatory mechanisms that drive the cellular response to oxygen deprivation in BC cells.
Collapse
Affiliation(s)
- Logan Seymour
- Biochemistry & Proteomics Laboratories, Department of Chemistry and Biomolecular Science, Clarkson University, Potsdam, NY 13699-5810, USA; (L.S.); (N.N.); (K.R.J.); (J.M.V.G.); (V.T.N.)
| | - Niyogushima Nuru
- Biochemistry & Proteomics Laboratories, Department of Chemistry and Biomolecular Science, Clarkson University, Potsdam, NY 13699-5810, USA; (L.S.); (N.N.); (K.R.J.); (J.M.V.G.); (V.T.N.)
| | - Kaya R. Johnson
- Biochemistry & Proteomics Laboratories, Department of Chemistry and Biomolecular Science, Clarkson University, Potsdam, NY 13699-5810, USA; (L.S.); (N.N.); (K.R.J.); (J.M.V.G.); (V.T.N.)
| | - Jennifer Michel Villalpando Gutierrez
- Biochemistry & Proteomics Laboratories, Department of Chemistry and Biomolecular Science, Clarkson University, Potsdam, NY 13699-5810, USA; (L.S.); (N.N.); (K.R.J.); (J.M.V.G.); (V.T.N.)
| | - Victor Tochukwu Njoku
- Biochemistry & Proteomics Laboratories, Department of Chemistry and Biomolecular Science, Clarkson University, Potsdam, NY 13699-5810, USA; (L.S.); (N.N.); (K.R.J.); (J.M.V.G.); (V.T.N.)
| | - Costel C. Darie
- Biochemistry & Proteomics Laboratories, Department of Chemistry and Biomolecular Science, Clarkson University, Potsdam, NY 13699-5810, USA; (L.S.); (N.N.); (K.R.J.); (J.M.V.G.); (V.T.N.)
| | - Anca-Narcisa Neagu
- Laboratory of Animal Histology, Faculty of Biology, “Alexandru Ioan Cuza” University of Iași, Carol I bvd. 20A, 700505 Iasi, Romania
| |
Collapse
|
7
|
Huang S, Qin X, Fu S, Hu J, Jiang Z, Hu M, Zhang B, Liu J, Chen Y, Wang M, Liu X, Chen Z, Wang L. STAMBPL1/TRIM21 Balances AXL Stability Impacting Mesenchymal Phenotype and Immune Response in KIRC. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2025; 12:e2405083. [PMID: 39527690 PMCID: PMC11714167 DOI: 10.1002/advs.202405083] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/10/2024] [Revised: 10/09/2024] [Indexed: 11/16/2024]
Abstract
Kidney renal clear cell carcinoma (KIRC) is recognized as an immunogenic tumor, and immunotherapy is incorporated into its treatment landscape for decades. The acquisition of a tumor mesenchymal phenotype through epithelial-to-mesenchymal transition (EMT) is associated with immune evasion and can contribute to immunotherapy resistance. Here, the involvement of STAM Binding Protein Like 1 (STAMBPL1) is reported in the development of mesenchymal and immune evasion phenotypes in KIRC cells. Mechanistically, STAMBPL1 elevated protein abundance and surface accumulation of TAM Receptor AXL through diminishing the TRIM21-mediated K63-linked ubiquitination and subsequent lysosomal degradation of AXL, thereby enhancing the expression of mesenchymal genes while suppressing chemokines CXCL9/10 and HLA/B/C. In addition, STAMBPL1 enhanced PD-L1 transcription via facilitating nuclear translocation of p65, and knockdown (KD) of STAMBPL1 augmented antitumor effects of PD-1 blockade. Furthermore, STAMBPL1 silencing and the tyrosine kinase inhibitor (TKI) sunitinib also exhibited a synergistic effect on the suppression of KIRC. Collectively, targeting the STAMBPL1/TRIM21/AXL axis can decrease mesenchymal phenotype and potentiate anti-tumor efficacy of cancer therapy.
Collapse
Affiliation(s)
- Shiyu Huang
- Department of UrologyRenmin Hospital of Wuhan UniversityWuhanHubei430060China
- Institute of Urologic DiseaseRenmin Hospital of Wuhan UniversityWuhanHubei430060China
| | - Xuke Qin
- Department of UrologyRenmin Hospital of Wuhan UniversityWuhanHubei430060China
- Institute of Urologic DiseaseRenmin Hospital of Wuhan UniversityWuhanHubei430060China
| | - Shujie Fu
- Department of UrologyRenmin Hospital of Wuhan UniversityWuhanHubei430060China
- Institute of Urologic DiseaseRenmin Hospital of Wuhan UniversityWuhanHubei430060China
| | - Juncheng Hu
- Department of UrologyRenmin Hospital of Wuhan UniversityWuhanHubei430060China
- Institute of Urologic DiseaseRenmin Hospital of Wuhan UniversityWuhanHubei430060China
| | - Zhengyu Jiang
- Department of UrologyRenmin Hospital of Wuhan UniversityWuhanHubei430060China
- Institute of Urologic DiseaseRenmin Hospital of Wuhan UniversityWuhanHubei430060China
| | - Min Hu
- Department of CardiologyRenmin Hospital of Wuhan UniversityWuhanHubei430060China
| | - Banghua Zhang
- Department of UrologyRenmin Hospital of Wuhan UniversityWuhanHubei430060China
- Institute of Urologic DiseaseRenmin Hospital of Wuhan UniversityWuhanHubei430060China
- Hubei Key Laboratory of Digestive System DiseaseWuhan430060China
| | - Jiachen Liu
- Department of UrologyRenmin Hospital of Wuhan UniversityWuhanHubei430060China
- Institute of Urologic DiseaseRenmin Hospital of Wuhan UniversityWuhanHubei430060China
- Central LaboratoryRenmin Hospital of Wuhan UniversityWuhanHubei430060China
| | - Yujie Chen
- Department of UrologyRenmin Hospital of Wuhan UniversityWuhanHubei430060China
- Institute of Urologic DiseaseRenmin Hospital of Wuhan UniversityWuhanHubei430060China
| | - Minghui Wang
- Department of UrologyRenmin Hospital of Wuhan UniversityWuhanHubei430060China
- Institute of Urologic DiseaseRenmin Hospital of Wuhan UniversityWuhanHubei430060China
| | - Xiuheng Liu
- Department of UrologyRenmin Hospital of Wuhan UniversityWuhanHubei430060China
- Institute of Urologic DiseaseRenmin Hospital of Wuhan UniversityWuhanHubei430060China
| | - Zhiyuan Chen
- Department of UrologyRenmin Hospital of Wuhan UniversityWuhanHubei430060China
- Institute of Urologic DiseaseRenmin Hospital of Wuhan UniversityWuhanHubei430060China
| | - Lei Wang
- Department of UrologyRenmin Hospital of Wuhan UniversityWuhanHubei430060China
- Institute of Urologic DiseaseRenmin Hospital of Wuhan UniversityWuhanHubei430060China
| |
Collapse
|
8
|
Yan F, Teng Y, Li X, Zhong Y, Li C, Yan F, He X. Hypoxia promotes non-small cell lung cancer cell stemness, migration, and invasion via promoting glycolysis by lactylation of SOX9. Cancer Biol Ther 2024; 25:2304161. [PMID: 38226837 PMCID: PMC10793688 DOI: 10.1080/15384047.2024.2304161] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2023] [Accepted: 01/08/2024] [Indexed: 01/17/2024] Open
Abstract
BACKGROUND Lung cancer is the deadliest form of malignancy and the most common subtype is non-small cell lung cancer (NSCLC). Hypoxia is a typical feature of solid tumor microenvironment. In the current study, we clarified the effects of hypoxia on stemness and metastasis and the molecular mechanism. METHODS The biological functions were assessed using the sphere formation assay, Transwell assay, and XF96 extracellular flux analyzer. The protein levels were detected by western blot. The lactylation modification was assessed by western blot and immunoprecipitation. The role of SOX9 in vivo was explored using a xenografted tumor model. RESULTS We observed that hypoxia promoted sphere formation, migration, invasion, glucose consumption, lactate production, glycolysis, and global lactylation. Inhibition of glycolysis suppressed cell stemness, migration, invasion, and lactylation. Moreover, hypoxia increased the levels of SOX9 and lactylation of SOX9, whereas inhibition of glycolysis reversed the increase. Additionally, knockdown of SOX9 abrogated the promotion of cell stemness, migration, and invasion. In tumor-bearing mice, overexpression of SOX9 promoted tumor growth, and inhibition of glycolysis suppressed tumor growth. CONCLUSION Hypoxia induced the lactylation of SOX9 to promote stemness, migration, and invasion via promoting glycolysis. The findings suggested that targeting hypoxia may be an effective way for NSCLC treatment and reveal a new mechanism of hypoxia in NSCLC.
Collapse
Affiliation(s)
- Fei Yan
- Department of Medical Oncology, The Affiliated Cancer Hospital of Nanjing Medical University & Jiangsu Cancer Hospital & Jiangsu Institute of Cancer Research, Nanjing, Jiangsu, China
| | - Yue Teng
- Department of Medical Oncology, The Affiliated Cancer Hospital of Nanjing Medical University & Jiangsu Cancer Hospital & Jiangsu Institute of Cancer Research, Nanjing, Jiangsu, China
| | - Xiaoyou Li
- Department of Medical Oncology, The Affiliated Cancer Hospital of Nanjing Medical University & Jiangsu Cancer Hospital & Jiangsu Institute of Cancer Research, Nanjing, Jiangsu, China
| | - Yuejiao Zhong
- Department of Medical Oncology, The Affiliated Cancer Hospital of Nanjing Medical University & Jiangsu Cancer Hospital & Jiangsu Institute of Cancer Research, Nanjing, Jiangsu, China
| | - Chunyi Li
- Department of Medical Oncology, Nanjing Medical University, Nanjing, Jiangsu, China
| | - Feng Yan
- Department of Clinical Laboratory, The Affiliated Cancer Hospital of Nanjing Medical University & Jiangsu Cancer Hospital & Jiangsu Institute of Cancer Research, Nanjing, Jiangsu, China
| | - Xia He
- Department of Radiotherapy, The Affiliated Cancer Hospital of Nanjing Medical University & Jiangsu Cancer Hospital & Jiangsu Institute of Cancer Research, Nanjing, Jiangsu, China
| |
Collapse
|
9
|
Fan X, Li B, Chai S, Zhang R, Cai C, Ge R. Hypoxia Promotes Osteoclast Differentiation by Weakening USP18-Mediated Suppression on the NF-κB Signaling Pathway. Int J Mol Sci 2024; 26:10. [PMID: 39795869 PMCID: PMC11719700 DOI: 10.3390/ijms26010010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2024] [Revised: 12/17/2024] [Accepted: 12/19/2024] [Indexed: 01/13/2025] Open
Abstract
Osteoporosis, a prevalent metabolic bone disorder, is characterized by reduced bone density and increased fracture risk. The pathogenesis of osteoporosis is closely associated with an imbalance in bone remodeling, in which the resorption function of osteoclasts exceeds the formation function of osteoblasts. Hypoxia has been implicated in the promotion of osteoclast differentiation and the subsequent development of osteoporosis. The ubiquitin-proteasome system (UPS) and its regulatory enzymes, deubiquitinating enzymes (DUBs), play a significant role in bone homeostasis. In this study, we investigated the contribution and mechanism of Ubiquitin-specific protease 18 (USP18), a DUB, in osteoclast differentiation under hypoxic conditions. BMDMs and RAW264.7 cells were treated with RANKL to induce osteoclastogenesis and were subjected to overexpression or knockdown of USP18 under normoxic or hypoxia conditions. Osteoclast formation was assessed using TRAP staining, and the expression of osteoclast marker genes was determined using qRT-PCR. The activation of the NF-κB signaling pathway was evaluated using immunoblotting. We found that hypoxia significantly enhanced the differentiation of BMDMs and RAW264.7 cells into osteoclasts, accompanied by a notable downregulation of USP18 expression. The overexpression of USP18 inhibited RANKL-induced osteoclast differentiation, while the knockdown of USP18 promoted that process, unveiling the inhibitory effect of USP18 in osteoclastogenesis. Furthermore, the overexpression of USP18 rescued the hypoxia-induced increase in osteoclast differentiation. Mechanistic insights revealed that USP18 inhibits osteoclastogenesis by suppressing the NF-κB signaling pathway, with a potential target on TAK1 or its upstream molecules. This study indicates that hypoxia promotes osteoclast differentiation through the downregulation of USP18, which, in turn, relieves the suppression of the activation of the NF-κB signaling pathway. The USP18 emerges as a potential therapeutic target for osteoporosis treatment, highlighting the importance of the hypoxia-DUB axis in the pathogenesis of the disease.
Collapse
Affiliation(s)
- Xiaoxia Fan
- Research Center for High Altitude Medicine, Qinghai University, Xining 810001, China; (X.F.); (B.L.); (S.C.); (R.Z.)
- Key Laboratory of the Ministry of High Altitude Medicine, Qinghai University, Xining 810001, China
- Key Laboratory of Applied Fundamentals of High Altitude Medicine, Qinghai-Utah Joint Key Laboratory of Plateau Medicine, Qinghai University, Xining 810001, China
- Laboratory for High Altitude Medicine of Qinghai Province, Qinghai University, Xining 810001, China
| | - Botong Li
- Research Center for High Altitude Medicine, Qinghai University, Xining 810001, China; (X.F.); (B.L.); (S.C.); (R.Z.)
- Key Laboratory of the Ministry of High Altitude Medicine, Qinghai University, Xining 810001, China
- Key Laboratory of Applied Fundamentals of High Altitude Medicine, Qinghai-Utah Joint Key Laboratory of Plateau Medicine, Qinghai University, Xining 810001, China
- Laboratory for High Altitude Medicine of Qinghai Province, Qinghai University, Xining 810001, China
| | - Shengjun Chai
- Research Center for High Altitude Medicine, Qinghai University, Xining 810001, China; (X.F.); (B.L.); (S.C.); (R.Z.)
- Key Laboratory of the Ministry of High Altitude Medicine, Qinghai University, Xining 810001, China
- Key Laboratory of Applied Fundamentals of High Altitude Medicine, Qinghai-Utah Joint Key Laboratory of Plateau Medicine, Qinghai University, Xining 810001, China
- Laboratory for High Altitude Medicine of Qinghai Province, Qinghai University, Xining 810001, China
| | - Rong Zhang
- Research Center for High Altitude Medicine, Qinghai University, Xining 810001, China; (X.F.); (B.L.); (S.C.); (R.Z.)
- Key Laboratory of the Ministry of High Altitude Medicine, Qinghai University, Xining 810001, China
- Key Laboratory of Applied Fundamentals of High Altitude Medicine, Qinghai-Utah Joint Key Laboratory of Plateau Medicine, Qinghai University, Xining 810001, China
- Laboratory for High Altitude Medicine of Qinghai Province, Qinghai University, Xining 810001, China
| | - Chunmei Cai
- Research Center for High Altitude Medicine, Qinghai University, Xining 810001, China; (X.F.); (B.L.); (S.C.); (R.Z.)
- Key Laboratory of the Ministry of High Altitude Medicine, Qinghai University, Xining 810001, China
- Key Laboratory of Applied Fundamentals of High Altitude Medicine, Qinghai-Utah Joint Key Laboratory of Plateau Medicine, Qinghai University, Xining 810001, China
- Laboratory for High Altitude Medicine of Qinghai Province, Qinghai University, Xining 810001, China
| | - Rili Ge
- Research Center for High Altitude Medicine, Qinghai University, Xining 810001, China; (X.F.); (B.L.); (S.C.); (R.Z.)
- Key Laboratory of the Ministry of High Altitude Medicine, Qinghai University, Xining 810001, China
- Key Laboratory of Applied Fundamentals of High Altitude Medicine, Qinghai-Utah Joint Key Laboratory of Plateau Medicine, Qinghai University, Xining 810001, China
- Laboratory for High Altitude Medicine of Qinghai Province, Qinghai University, Xining 810001, China
| |
Collapse
|
10
|
Pauzaite T, Nathan JA. A closer look at the role of deubiquitinating enzymes in the Hypoxia Inducible Factor pathway. Biochem Soc Trans 2024; 52:2253-2265. [PMID: 39584532 DOI: 10.1042/bst20230861] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2024] [Revised: 10/31/2024] [Accepted: 11/01/2024] [Indexed: 11/26/2024]
Abstract
Hypoxia Inducible transcription Factors (HIFs) are central to the metazoan oxygen-sensing response. Under low oxygen conditions (hypoxia), HIFs are stabilised and govern an adaptive transcriptional programme to cope with prolonged oxygen starvation. However, when oxygen is present, HIFs are continuously degraded by the proteasome in a process involving prolyl hydroxylation and subsequent ubiquitination by the Von Hippel Lindau (VHL) E3 ligase. The essential nature of VHL in the HIF response is well established but the role of other enzymes involved in ubiquitination is less clear. Deubiquitinating enzymes (DUBs) counteract ubiquitination and provide an important regulatory aspect to many signalling pathways involving ubiquitination. In this review, we look at the complex network of ubiquitination and deubiquitination in controlling HIF signalling in normal and low oxygen tensions. We discuss the relative importance of DUBs in opposing VHL, and explore roles of DUBs more broadly in hypoxia, in both VHL and HIF independent contexts. We also consider the catalytic and non-catalytic roles of DUBs, and elaborate on the potential benefits and challenges of inhibiting these enzymes for therapeutic use.
Collapse
Affiliation(s)
- Tekle Pauzaite
- Cambridge Institute of Therapeutic Immunology & Infectious Disease (CITIID), Jeffrey Cheah, Biomedical Centre, Department of Medicine, University of Cambridge, Cambridge CB2 0AW, U.K
| | - James A Nathan
- Cambridge Institute of Therapeutic Immunology & Infectious Disease (CITIID), Jeffrey Cheah, Biomedical Centre, Department of Medicine, University of Cambridge, Cambridge CB2 0AW, U.K
| |
Collapse
|
11
|
Li Q, Li W, Wang J, Shi W, Wang T. Effect of ubiquitin-specific proteinase 43 on ovarian serous adenocarcinoma and its clinical significance. J OBSTET GYNAECOL 2024; 44:2361862. [PMID: 38916982 DOI: 10.1080/01443615.2024.2361862] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2023] [Accepted: 05/25/2024] [Indexed: 06/27/2024]
Abstract
BACKGROUND Ovarian cancer stands as a highly aggressive malignancy. The core aim of this investigation is to uncover genes pivotal to the progression and prognosis of ovarian cancer, while delving deep into the intricate mechanisms that govern their impact. METHODS The study entailed the retrieval of RNA-seq data and survival data from the XENA database. Outliers were meticulously excluded in accordance with TCGA guidelines and through principal components analysis. The R package 'deseq2' was harnessed to extract differentially expressed genes. WGCNA was employed to prioritise these genes, and Cox regression analysis and survival analysis based on disease-specific time were conducted to identify significant genes. Immunohistochemistry validation was undertaken to confirm the distinct expression of USP43. Furthermore, the influence of USP43 on the biological functions of ovarian cancer cells was explored using techniques such as RNA interference, western blotting, scratch assays, and matrigel invasion assays. The examination of immune infiltration was facilitated via CIBERSORT. RESULTS The study unearthed 5195 differentially expressed genes between ovarian cancer and normal tissue, comprising 3416 up-regulated and 1779 down-regulated genes. WGCNA pinpointed 204 genes most intimately tied to tumorigenesis. The previously undisclosed gene USP43 exhibited heightened expression in tumour tissues and exhibited associations with overall survival and disease-specific survival. USP43 emerged as a driver of cell migration (43.27 ± 3.91% vs 19.69 ± 1.94%) and invasion ability (314 ± 32 vs 131 ± 12) through the mechanism of epithelial mesenchymal transition, potentially mediated by the KRAS pathway. USP43 was also identified as a booster of CD4+ T memory resting cell infiltration, while concurrently reducing M1 macrophages within cancer, thereby fostering a milieu with relatively immune suppressive traits. Interestingly, USP43 demonstrated connections with epigenetically regulated-mRNAsi, although not with mRNAsi. CONCLUSION This study underscores the role of USP43 in facilitating tumour migration and invasion. It postulates USP43 as a novel therapeutic target for ovarian cancer treatment.
Collapse
Affiliation(s)
- Qin Li
- Department of Obstetrics and Gynecology, Lixin County People's Hospital, Bozhou, China
| | - Wenhao Li
- First school of Clinical Medical, Anhui Medical University, Hefei, China
| | - Jiahao Wang
- First school of Clinical Medical, Anhui Medical University, Hefei, China
| | - Wenjing Shi
- School of Basic Medical Sciences, Anhui Medical University, Hefei, China
| | - Taorong Wang
- Experimental Center of Morphology, Anhui Medical University, Hefei, China
| |
Collapse
|
12
|
Qiao Q, Wang J, Liu S, Chang J, Zhou T, Li C, Zhang Y, Jiang W, Chen Y, Xu X, Wu M, Li X. USP28 promotes tumor progression and glycolysis by stabilizing PKM2/Hif1-α in cholangiocarcinoma. Cell Oncol (Dordr) 2024; 47:2217-2231. [PMID: 39419941 DOI: 10.1007/s13402-024-01002-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/30/2024] [Indexed: 10/19/2024] Open
Abstract
BACKGROUND Ubiquitination is one of the important modification of proteins which can be reversed by deubiquitinating enzymes (DUBs). Ubiquitin specific protease 28 (USP28) belongs to the deubiquitinase family, which plays a cancer-promoting function in many types of cancers such as pancreatic cancer and breast cancer. So far, the molecular function and significance of USP 28 in cholangiocarcinoma remain unclear. METHODS In this study, we evaluated the expression of USP28 using tissue microarray (TMA), reverse transcription polymerase chain reaction (qRT-PCR), and online databases. We investigated the effect of USP28 on the progression of CCA through in vitro and in vivo functional experiments. In addition, we explored downstream molecular pathways using Western blotting (WB), immunofluorescence (IF), and mass spectrometry techniques. RESULTS Here, we found that cholangiocarcinoma tissue had higher USP 28 expression than normal bile duct tissue, and that high USP 28 levels were significantly associated with a malignant phenotype and poorer prognosis in cholangiocarcinoma patients. Both in vitro and in vivo, USP28 could mediate the deubiquitination of PKM2, thereby activating the downstream Hif1-α signaling pathway, promoting glycolysis and energy supply, and finally promoting tumor progression. CONCLUSION In summary, USP28 activated downstream Hif1-α by reducing the ubiquitination level of PKM2, furthermore, promoting the level of glycolysis in CCA cells for tumor progression.
Collapse
Affiliation(s)
- Qian Qiao
- Department of Hepatobiliary Surgery, The Affiliated Wuxi People's Hospital of Nanjing Medical University, Wuxi People's Hospital, Wuxi Medical Center, Nanjing Medical University, Wuxi, Jiangsu Province, China
- Hepatobiliary Center, Key Laboratory of Liver Transplantation, The First Affiliated Hospital of Nanjing Medical University, Chinese Academy of Medical Sciences, NHC Key Laboratory of Living Donor Liver Transplantation, Nanjing Medical University, Nanjing, Jiangsu Province, China
| | - Jifei Wang
- Hepatobiliary Center, Key Laboratory of Liver Transplantation, The First Affiliated Hospital of Nanjing Medical University, Chinese Academy of Medical Sciences, NHC Key Laboratory of Living Donor Liver Transplantation, Nanjing Medical University, Nanjing, Jiangsu Province, China
| | - Shuochen Liu
- Hepatobiliary Center, Key Laboratory of Liver Transplantation, The First Affiliated Hospital of Nanjing Medical University, Chinese Academy of Medical Sciences, NHC Key Laboratory of Living Donor Liver Transplantation, Nanjing Medical University, Nanjing, Jiangsu Province, China
| | - Jiang Chang
- Hepatobiliary Center, Key Laboratory of Liver Transplantation, The First Affiliated Hospital of Nanjing Medical University, Chinese Academy of Medical Sciences, NHC Key Laboratory of Living Donor Liver Transplantation, Nanjing Medical University, Nanjing, Jiangsu Province, China
| | - Tao Zhou
- Hepatobiliary Center, Key Laboratory of Liver Transplantation, The First Affiliated Hospital of Nanjing Medical University, Chinese Academy of Medical Sciences, NHC Key Laboratory of Living Donor Liver Transplantation, Nanjing Medical University, Nanjing, Jiangsu Province, China
| | - Changxian Li
- Hepatobiliary Center, Key Laboratory of Liver Transplantation, The First Affiliated Hospital of Nanjing Medical University, Chinese Academy of Medical Sciences, NHC Key Laboratory of Living Donor Liver Transplantation, Nanjing Medical University, Nanjing, Jiangsu Province, China
| | - Yaodong Zhang
- Hepatobiliary Center, Key Laboratory of Liver Transplantation, The First Affiliated Hospital of Nanjing Medical University, Chinese Academy of Medical Sciences, NHC Key Laboratory of Living Donor Liver Transplantation, Nanjing Medical University, Nanjing, Jiangsu Province, China
| | - Wangjie Jiang
- Hepatobiliary Center, Key Laboratory of Liver Transplantation, The First Affiliated Hospital of Nanjing Medical University, Chinese Academy of Medical Sciences, NHC Key Laboratory of Living Donor Liver Transplantation, Nanjing Medical University, Nanjing, Jiangsu Province, China
| | - Yananlan Chen
- Hepatobiliary Center, Key Laboratory of Liver Transplantation, The First Affiliated Hospital of Nanjing Medical University, Chinese Academy of Medical Sciences, NHC Key Laboratory of Living Donor Liver Transplantation, Nanjing Medical University, Nanjing, Jiangsu Province, China
| | - Xiao Xu
- Hepatobiliary Center, Key Laboratory of Liver Transplantation, The First Affiliated Hospital of Nanjing Medical University, Chinese Academy of Medical Sciences, NHC Key Laboratory of Living Donor Liver Transplantation, Nanjing Medical University, Nanjing, Jiangsu Province, China
| | - Mingyu Wu
- Department of Hepatobiliary Surgery, The Affiliated Wuxi People's Hospital of Nanjing Medical University, Wuxi People's Hospital, Wuxi Medical Center, Nanjing Medical University, Wuxi, Jiangsu Province, China.
| | - Xiangcheng Li
- Department of Hepatobiliary Surgery, The Affiliated Wuxi People's Hospital of Nanjing Medical University, Wuxi People's Hospital, Wuxi Medical Center, Nanjing Medical University, Wuxi, Jiangsu Province, China.
- Hepatobiliary Center, Key Laboratory of Liver Transplantation, The First Affiliated Hospital of Nanjing Medical University, Chinese Academy of Medical Sciences, NHC Key Laboratory of Living Donor Liver Transplantation, Nanjing Medical University, Nanjing, Jiangsu Province, China.
| |
Collapse
|
13
|
Chen S, Hu X, Yi X, Deng X, Xiong T, Ou Y, Liu S, Li C, Yan X, Hao L. USP22 Promotes Osteosarcoma Progression by Stabilising β-Catenin and Upregulating HK2 and Glycolysis. J Cell Mol Med 2024; 28:e70239. [PMID: 39661501 PMCID: PMC11633763 DOI: 10.1111/jcmm.70239] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2024] [Revised: 10/26/2024] [Accepted: 11/14/2024] [Indexed: 12/13/2024] Open
Abstract
Osteosarcoma is a primary malignancy that is difficult to treat and is prone to developing resistance to chemotherapy. As such, it is necessary to continuously explore novel therapeutic targets. Ubiquitin-specific protease 22 (USP22) is an ubiquitin-specific protease that has been demonstrated to have potent carcinogenic effects on a variety of cancers and is involved in several biological processes. Studies have demonstrated that reprogramming of glucose metabolism is a major factor in the development and progression of osteosarcoma, and that USP22 is strongly associated with the metabolism of glucose in osteosarcoma. However, it is still unknown how precisely USP22 works in osteosarcoma. To further elucidate the expression and specific molecular mechanisms of USP22 in osteosarcoma. The results of Western blot analysis and quantitative reverse transcription polymerase chain reaction (qRT-PCR) showed that the expression of USP22 in osteosarcoma tissues was significantly higher than that in adjacent healthy tissues. In addition, the expression of USP22 promotes the proliferation of osteosarcoma cells in a glycolytic dependent manner both in vitro and in vivo, while the knockout of USP22 is the opposite. In addition, USP22 knockout reduced the protein expression of β-catenin and hexokinase 2 (HK2) in osteosarcoma cells. In addition, the regulation of HK2 expression induced by USP22 depends on β-catenin. Mechanistically, USP22 regulates HK2 by deubiquitination and stabilising the expression of β-catenin, thereby controlling glycolysis in osteosarcoma cells.
Collapse
Affiliation(s)
- Shenliang Chen
- Department of Orthopedics, the 2nd Affiliated Hospital, Jiangxi Medical CollegeNanchang UniversityNanchangChina
- University of NanchangNanchangChina
| | - Xin Hu
- Jiangxi Pingxiang People's HospitalPingxiangChina
| | - Xuan Yi
- Department of Orthopedics, the 2nd Affiliated Hospital, Jiangxi Medical CollegeNanchang UniversityNanchangChina
| | - Xueqiang Deng
- Department of Orthopedics, the 2nd Affiliated Hospital, Jiangxi Medical CollegeNanchang UniversityNanchangChina
| | - Ting Xiong
- Department of Orthopedics, the 2nd Affiliated Hospital, Jiangxi Medical CollegeNanchang UniversityNanchangChina
- University of NanchangNanchangChina
| | - Yanghuan Ou
- Department of Orthopedics, the 2nd Affiliated Hospital, Jiangxi Medical CollegeNanchang UniversityNanchangChina
- University of NanchangNanchangChina
| | - Shuaigang Liu
- Department of Orthopedics, the 2nd Affiliated Hospital, Jiangxi Medical CollegeNanchang UniversityNanchangChina
| | - Chen Li
- Department of Orthopedics, the 2nd Affiliated Hospital, Jiangxi Medical CollegeNanchang UniversityNanchangChina
| | - Xiaohua Yan
- University of NanchangNanchangChina
- Department of Biochemistry and Molecular Biology, School of Basic Medical SciencesNanchang University Jiangxi Medical CollegeNanchangChina
| | - Liang Hao
- Department of Orthopedics, the 2nd Affiliated Hospital, Jiangxi Medical CollegeNanchang UniversityNanchangChina
| |
Collapse
|
14
|
Xian Y, Ye J, Tang Y, Zhang N, Peng C, Huang W, He G. Deubiquitinases as novel therapeutic targets for diseases. MedComm (Beijing) 2024; 5:e70036. [PMID: 39678489 PMCID: PMC11645450 DOI: 10.1002/mco2.70036] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2024] [Revised: 11/24/2024] [Accepted: 11/26/2024] [Indexed: 12/17/2024] Open
Abstract
Deubiquitinating enzymes (DUBs) regulate substrate ubiquitination by removing ubiquitin or cleaving within ubiquitin chains, thereby maintaining cellular homeostasis. Approximately 100 DUBs in humans counteract E3 ubiquitin ligases, finely balancing ubiquitination and deubiquitination processes to maintain cellular proteostasis and respond to various stimuli and stresses. Given their role in modulating ubiquitination levels of various substrates, DUBs are increasingly linked to human health and disease. Here, we review the DUB family, highlighting their distinctive structural characteristics and chain-type specificities. We show that DUB family members regulate key signaling pathways, such as NF-κB, PI3K/Akt/mTOR, and MAPK, and play crucial roles in tumorigenesis and other diseases (neurodegenerative disorders, cardiovascular diseases, inflammatory disorders, and developmental diseases), making them promising therapeutic targets Our review also discusses the challenges in developing DUB inhibitors and underscores the critical role of the DUBs in cellular signaling and cancer. This comprehensive analysis enhances our understanding of the complex biological functions of the DUBs and underscores their therapeutic potential.
Collapse
Affiliation(s)
- Yali Xian
- Department of Dermatology & VenerologyState Key Laboratory of BiotherapyWest China HospitalSichuan UniversityChengduChina
| | - Jing Ye
- Department of Dermatology & VenerologyState Key Laboratory of BiotherapyWest China HospitalSichuan UniversityChengduChina
| | - Yu Tang
- Department of Dermatology & VenerologyState Key Laboratory of BiotherapyWest China HospitalSichuan UniversityChengduChina
| | - Nan Zhang
- State Key Laboratory of Southwestern Chinese Medicine ResourcesSchool of PharmacyChengdu University of Traditional Chinese MedicineChengduChina
| | - Cheng Peng
- State Key Laboratory of Southwestern Chinese Medicine ResourcesSchool of PharmacyChengdu University of Traditional Chinese MedicineChengduChina
| | - Wei Huang
- State Key Laboratory of Southwestern Chinese Medicine ResourcesSchool of PharmacyChengdu University of Traditional Chinese MedicineChengduChina
| | - Gu He
- Department of Dermatology & VenerologyState Key Laboratory of BiotherapyWest China HospitalSichuan UniversityChengduChina
| |
Collapse
|
15
|
Mo HY, Wang RB, Ma MY, Zhang Y, Li XY, Wen WR, Han Y, Tian T. MTHFD2-mediated redox homeostasis promotes gastric cancer progression under hypoxic conditions. Redox Rep 2024; 29:2345455. [PMID: 38723197 PMCID: PMC11086033 DOI: 10.1080/13510002.2024.2345455] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/12/2024] Open
Abstract
OBJECTIVES Cancer cells undergo metabolic reprogramming to adapt to high oxidative stress, but little is known about how metabolic remodeling enables gastric cancer cells to survive stress associated with aberrant reactive oxygen species (ROS) production. Here, we aimed to identify the key metabolic enzymes that protect gastric cancer (GC) cells from oxidative stress. METHODS ROS level was detected by DCFH-DA probes. Multiple cell biological studies were performed to identify the underlying mechanisms. Furthermore, cell-based xenograft and patient-derived xenograft (PDX) model were performed to evaluate the role of MTHFD2 in vivo. RESULTS We found that overexpression of MTHFD2, but not MTHFD1, is associated with reduced overall and disease-free survival in gastric cancer. In addition, MTHFD2 knockdown reduces the cellular NADPH/NADP+ ratio, colony formation and mitochondrial function, increases cellular ROS and cleaved PARP levels and induces in cell death under hypoxia, a hallmark of solid cancers and a common inducer of oxidative stress. Moreover, genetic or pharmacological inhibition of MTHFD2 reduces tumor burden in both tumor cell lines and patient-derived xenograft-based models. DISCUSSION our study highlights the crucial role of MTHFD2 in redox regulation and tumor progression, demonstrating the therapeutic potential of targeting MTHFD2.
Collapse
Affiliation(s)
- Hai-Yu Mo
- Department of Medical Biochemistry and Molecular Biology, School of Medicine, Jinan University, Guangzhou, People’s Republic of China
- Clinical Laboratory, The Affiliated Shunde Hospital of Jinan University, Foshan, People’s Republic of China
| | - Ruo-Bing Wang
- Department of Medical Biochemistry and Molecular Biology, School of Medicine, Jinan University, Guangzhou, People’s Republic of China
| | - Meng-Yao Ma
- Department of Medical Biochemistry and Molecular Biology, School of Medicine, Jinan University, Guangzhou, People’s Republic of China
| | - Yi Zhang
- State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-sen University, Guangzhou, People’s Republic of China
| | - Xin-Yu Li
- Department of Medical Biochemistry and Molecular Biology, School of Medicine, Jinan University, Guangzhou, People’s Republic of China
| | - Wang-Rong Wen
- Clinical Laboratory, The Affiliated Shunde Hospital of Jinan University, Foshan, People’s Republic of China
| | - Yi Han
- State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-sen University, Guangzhou, People’s Republic of China
| | - Tian Tian
- Department of Medical Biochemistry and Molecular Biology, School of Medicine, Jinan University, Guangzhou, People’s Republic of China
| |
Collapse
|
16
|
Zhu Q, Zhou H, Xie F. Regulation of ovarian cancer by protein post-translational modifications. Front Oncol 2024; 14:1437953. [PMID: 39678497 PMCID: PMC11638062 DOI: 10.3389/fonc.2024.1437953] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2024] [Accepted: 11/12/2024] [Indexed: 12/17/2024] Open
Abstract
Ovarian cancer is one of the predominant gynecologic malignancies worldwide, ranking as the fifth leading cause of cancer-induced mortality among women globally. Post-translational modifications (PTMs) refer to the enzyme-catalyzed attachment of functional groups to proteins, thereby inducing structural and functional alterations. Recent evidence suggests that PTMs play multifaceted roles in the pathogenesis of ovarian cancer, influencing processes such as cell cycle, metabolism reprogramming, chemoresistance, and immune responses against cancer. Accordingly, a comprehensive understanding of the diverse PTMs in ovarian cancer is imperative for decoding the complex molecular mechanisms that drive cancer progression. This review discusses the latest developments in the study of protein PTMs in ovarian cancer and introduces pharmacological approaches that target these modifications as therapeutic strategies.
Collapse
Affiliation(s)
- Qiugang Zhu
- Department of Laboratory Medicine, Shangyu People’s Hospital of Shaoxing, Shaoxing University, Shaoxing, China
| | - Huimin Zhou
- Department of Laboratory Medicine, Wuxi Ninth People’s Hospital Affiliated to Soochow University, Wuxi, China
| | - Feiting Xie
- Zhejiang Key Laboratory of Precision Diagnosis and Therapy for Major Gynecological Diseases, Women’s Hospital, Zhejiang University School of Medicine, Hangzhou, China
| |
Collapse
|
17
|
Chen Y, Shen YQ. Role of reactive oxygen species in regulating epigenetic modifications. Cell Signal 2024; 125:111502. [PMID: 39521028 DOI: 10.1016/j.cellsig.2024.111502] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2024] [Revised: 10/24/2024] [Accepted: 10/31/2024] [Indexed: 11/16/2024]
Abstract
Reactive oxygen species (ROS) originate from diverse sources and regulate multiple signaling pathways within the cellular environment. Their generation is intricately controlled, and disruptions in their signaling or atypical levels can precipitate pathological conditions. Epigenetics, the examination of heritable alterations in gene expression independent of changes in the genetic code, has been implicated in the pathogenesis of various diseases through aberrant epigenetic modifications. The significant contribution of epigenetic modifications to disease progression underscores their potential as crucial therapeutic targets for a wide array of medical conditions. This study begins by providing an overview of ROS and epigenetics, followed by a discussion on the mechanisms of epigenetic modifications such as DNA methylation, histone modification, and RNA modification-mediated regulation. Subsequently, a detailed examination of the interaction between ROS and epigenetic modifications is presented, offering new perspectives and avenues for exploring the mechanisms underlying specific epigenetic diseases and the development of novel therapeutics.
Collapse
Affiliation(s)
- Yutong Chen
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, Research Unit of Oral Carcinogenesis and Management, Chinese Academy of Medical Sciences, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan 610041, PR China
| | - Ying-Qiang Shen
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, Research Unit of Oral Carcinogenesis and Management, Chinese Academy of Medical Sciences, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan 610041, PR China.
| |
Collapse
|
18
|
Luo C, Lu Y, Fang Q, Lu J, Zhan P, Xi W, Wang J, Chen X, Yao Q, Wang F, Yin Z, Xie C. TRIM55 restricts the progression of hepatocellular carcinoma through ubiquitin-proteasome-mediated degradation of NF90. Cell Death Discov 2024; 10:441. [PMID: 39420007 PMCID: PMC11487063 DOI: 10.1038/s41420-024-02212-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2024] [Revised: 10/05/2024] [Accepted: 10/10/2024] [Indexed: 10/19/2024] Open
Abstract
Hepatocellular carcinoma (HCC) is a prevalent malignant tumor worldwide. Tripartite motif containing 55 (TRIM55), also known as muscle-specific ring finger 2 (Murf2), belongs to the TRIM protein family and serves as an E3 ligase. Recently, the function and mechanism of TRIM55 in the advancement of solid tumors have been elucidated. However, the role of TRIM55 and its corresponding protein substrates in HCC remains incompletely explored. In this study, we observed a significant reduction in TRIM55 expression in HCC tissues. The downregulation of TRIM55 expression correlated with larger tumor size and elevated serum alpha-fetoprotein (AFP), and predicted unfavorable overall and tumor-free survival. Functional experiments demonstrated that TRIM55 suppressed the proliferation, migration, and invasion of HCC cells in vitro, as well as hindered HCC growth and metastasis in vivo. Additionally, TRIM55 exhibited a suppressive effect on HCC angiogenesis. Mechanistically, TRIM55 interacted with nuclear factor 90 (NF90), a double-stranded RNA-binding protein responsible for regulating mRNA stability and gene transcription, thereby facilitating its degradation via the ubiquitin-proteasome pathway. Furthermore, TRIM55 attenuated the association between NF90 and the mRNA of HIF1α and TGF-β2, consequently reducing their stability and inactivating the HIF1α/VEGF and TGFβ/Smad signaling pathways. In conclusion, our findings unveil the important roles of TRIM55 in suppressing the progression of HCC partly by promoting the degradation of NF90 and subsequently modulating its downstream pathways, including HIF1α/VEGF and TGFβ/Smad signaling.
Collapse
Affiliation(s)
- Changhong Luo
- Fujian Provincial Key Laboratory of Chronic Liver Disease and Hepatocellular Carcinoma, Xiamen Translational Medical Key Laboratory of Digestive System Tumor, Zhongshan Hospital of Xiamen University, Xiamen, Fujian Province, China
| | - Yuyan Lu
- Fujian Provincial Key Laboratory of Chronic Liver Disease and Hepatocellular Carcinoma, Xiamen Translational Medical Key Laboratory of Digestive System Tumor, Zhongshan Hospital of Xiamen University, Xiamen, Fujian Province, China
| | - Qinliang Fang
- Fujian Provincial Key Laboratory of Chronic Liver Disease and Hepatocellular Carcinoma, Xiamen Translational Medical Key Laboratory of Digestive System Tumor, Zhongshan Hospital of Xiamen University, Xiamen, Fujian Province, China
| | - Jing Lu
- Fujian Provincial Key Laboratory of Chronic Liver Disease and Hepatocellular Carcinoma, Xiamen Translational Medical Key Laboratory of Digestive System Tumor, Zhongshan Hospital of Xiamen University, Xiamen, Fujian Province, China
| | - Ping Zhan
- Fujian Provincial Key Laboratory of Chronic Liver Disease and Hepatocellular Carcinoma, Xiamen Translational Medical Key Laboratory of Digestive System Tumor, Zhongshan Hospital of Xiamen University, Xiamen, Fujian Province, China
| | - Wenqing Xi
- Department of Hepatobiliary Surgery, Xiamen Key Laboratory of Liver Diseases, Xiamen Hospital of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Xiamen, Fujian Province, China
| | - Jinzhu Wang
- Department of Hepatobiliary Surgery, Xiamen Key Laboratory of Liver Diseases, Xiamen Hospital of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Xiamen, Fujian Province, China
- College of Integrative Medicine, Fujian University of Traditional Chinese Medicine, Fuzhou, Fujian Province, China
| | - Xijun Chen
- Department of Hepatobiliary Surgery, Xiamen Key Laboratory of Liver Diseases, Xiamen Hospital of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Xiamen, Fujian Province, China
| | - Qin Yao
- Central Laboratory, Zhongshan Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen, Fujian Province, China
| | - Fuqiang Wang
- Department of Hepatobiliary Surgery, Xiamen Key Laboratory of Liver Diseases, Xiamen Hospital of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Xiamen, Fujian Province, China.
| | - Zhenyu Yin
- Department of Hepatobiliary Surgery, Xiamen Key Laboratory of Liver Diseases, Xiamen Hospital of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Xiamen, Fujian Province, China.
| | - Chengrong Xie
- Fujian Provincial Key Laboratory of Chronic Liver Disease and Hepatocellular Carcinoma, Xiamen Translational Medical Key Laboratory of Digestive System Tumor, Zhongshan Hospital of Xiamen University, Xiamen, Fujian Province, China.
| |
Collapse
|
19
|
Xie Z, Lin H, Huang Y, Wang X, Lin H, Xu M, Wu J, Wu Y, Shen H, Zhang Q, Chen J, Deng Y, Xu Z, Chen Z, Lin Y, Han Y, Lin L, Yan L, Li Q, Lin X, Chi P. BAP1-mediated MAFF deubiquitylation regulates tumor growth and is associated with adverse outcomes in colorectal cancer. Eur J Cancer 2024; 210:114278. [PMID: 39151323 DOI: 10.1016/j.ejca.2024.114278] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2024] [Revised: 07/14/2024] [Accepted: 08/07/2024] [Indexed: 08/19/2024]
Abstract
BACKGROUND Despite improvements in colorectal cancer (CRC) treatment, the prognosis for advanced CRC patients remains poor. Disruption of protein stability is one of the important factors in cancer development and progression. In this study, we aim to identify and analyze novel dysregulated proteins in CRC, assessing their significance and the mechanisms. METHODS Using quantitative proteomics, expression pattern analysis, and gain-of-function/loss-of-function experiments, we identify novel functional protein dysregulated by ubiquitin-proteasome axis in CRC. Prognostic significance was evaluated in a training cohort of 546 patients and externally validated in 794 patients. Mechanistic insights are gained through molecular biology experiments, deubiquitinating enzymes (DUBs) expression library screening, and RNA sequencing. RESULTS MAFF protein emerged as the top novel candidate substrate regulated by ubiquitin-proteasome in CRC. MAFF protein was preferentially downregulated in CRC compared to adjacent normal tissues. More importantly, multicenter cohort study identified reduced MAFF protein expression as an independent predictor of overall and disease-free survival in CRC patients. The in vitro and vivo assays showed that MAFF overexpression inhibited CRC growth, while its knockdown had the opposite effect. Intriguingly, we found the abnormal expression of MAFF protein was predominantly regulated via ubiquitination of MAFF, with K48-ubiquitin being dominant. BAP1 as a nuclear deubiquitinating enzyme (DUB), bound to and deubiquitinated MAFF, thereby stabilizing it. Such stabilization upregulated DUSP5 expression, resulting in the inhibition of ERK phosphorylation. CONCLUSIONS This study describes a novel BAP1-MAFF signaling axis which is crucial for CRC growth, potentially serving as a therapeutic target and a promising prognostic biomarker for CRC.
Collapse
Affiliation(s)
- Zhongdong Xie
- Department of Colorectal Surgery, Union Hospital, Fujian Medical University, Fuzhou, China
| | - Hanbin Lin
- Key Laboratory of Gastrointestinal Cancer (Fujian Medical University), Ministry of Education, Fuzhou, China
| | - Ying Huang
- Department of Colorectal Surgery, Union Hospital, Fujian Medical University, Fuzhou, China
| | - Xiaojie Wang
- Department of Colorectal Surgery, Union Hospital, Fujian Medical University, Fuzhou, China
| | - Hongyue Lin
- Department of General Surgery, Affiliated Quanzhou First Hospital of Fujian Medical University, Quanzhou, China
| | - Meifang Xu
- Department of Pathology, Union Hospital, Fujian Medical University, Fuzhou, China
| | - Jiashu Wu
- Department of Science and Technology, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| | - Yuecheng Wu
- Key Laboratory of Gastrointestinal Cancer (Fujian Medical University), Ministry of Education, Fuzhou, China
| | - Hao Shen
- Department of Navy Environmental and Occupational Health, Naval Medical University, Shanghai, China
| | - Qiongying Zhang
- Department of Pathology, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| | - Jinhua Chen
- Follow up Center, Union Hospital, Fujian Medical University, Fuzhou, China
| | - Yu Deng
- Department of Colorectal Surgery, Union Hospital, Fujian Medical University, Fuzhou, China
| | - Zongbin Xu
- Department of Colorectal Surgery, Union Hospital, Fujian Medical University, Fuzhou, China
| | - Zhiping Chen
- Department of Colorectal Surgery, Union Hospital, Fujian Medical University, Fuzhou, China
| | - Yu Lin
- Department of Colorectal Surgery, Union Hospital, Fujian Medical University, Fuzhou, China
| | - Yuting Han
- Key Laboratory of Gastrointestinal Cancer (Fujian Medical University), Ministry of Education, Fuzhou, China
| | - Lin Lin
- Department of Pathology, Union Hospital, Fujian Medical University, Fuzhou, China
| | - Linzhu Yan
- Department of Colorectal Surgery, Union Hospital, Fujian Medical University, Fuzhou, China
| | - Qingyun Li
- Department of Colorectal Surgery, Union Hospital, Fujian Medical University, Fuzhou, China
| | - Xinjian Lin
- Key Laboratory of Gastrointestinal Cancer (Fujian Medical University), Ministry of Education, Fuzhou, China.
| | - Pan Chi
- Department of Colorectal Surgery, Union Hospital, Fujian Medical University, Fuzhou, China.
| |
Collapse
|
20
|
Zhang T, Zheng B, Xia C, Wu P, Zheng B, Jiang L, Li J, Lv G, Zhou H, Huang W, Zou M. Hypoxic Upregulation of IER2 Increases Paracrine GMFG Signaling of Endoplasmic Reticulum Stress-CAF to Promote Chordoma Progression via Targeting ITGB1. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2405421. [PMID: 39207055 PMCID: PMC11515918 DOI: 10.1002/advs.202405421] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/17/2024] [Revised: 07/27/2024] [Indexed: 09/04/2024]
Abstract
Currently, the oncogenic mechanism of endoplasmic reticulum stress-CAF (ERS-CAF) subpopulation in chordoma remains unknown. Here, single-cell RNA sequencing, spatial transcriptomics, GeoMx Digital Spatial Profiler, data-independent acquisition proteomics, bulk RNA-seq, and multiplexed quantitative immunofluorescence are used to unveil the precise molecular mechanism of how ERS-CAF affected chordoma progression. Results show that hypoxic microenvironment reprograms CAFs into ERS-CAF subtype. Mechanistically, this occurrs via hypoxia-mediated transcriptional upregulation of IER2. Overexpression of IER2 in CAFs promotes chordoma progression, which can be impeded by IER2 knockdown or use of ERS inhibitors. IER2 also induces expression of ERS-CAF marker genes and results in production of a pro-tumorigenic paracrine GMFG signaling, which exert its biological function via directly binding to ITGB1 on tumor cells. ITGB1 inhibition attenuates tumor malignant progression, which can be partially reversed by exogenous GMFG intervention. Further analyses reveal a positive correlation between ITGB1high tumor cell counts and SPP1+ macrophage density, as well as the spatial proximity of these two cell types. Clinically, a significant correlation of high IER2/ITGB1 expression with tumor aggressive phenotype and poor patient survival is observed. Collectively, the findings suggest that ERS-CAF regulates SPP1+ macrophage to aggravate chordoma progression via the IER2/GMFG/ITGB1 axis, which may be targeted therapeutically in future.
Collapse
Affiliation(s)
- Tao‐Lan Zhang
- Department of PharmacyThe First Affiliated HospitalHengyang Medical SchoolUniversity of South ChinaHengyang421001China
| | - Bo‐Wen Zheng
- Department of PharmacyThe First Affiliated HospitalHengyang Medical SchoolUniversity of South ChinaHengyang421001China
- Musculoskeletal Tumor CenterPeking University People's HospitalPeking UniversityBeijing100044China
| | - Chao Xia
- Department of Spine SurgeryThe First Affiliated HospitalHengyang Medical SchoolUniversity of South ChinaHengyang421001China
| | - Peng‐Fei Wu
- Department of Genetics and EndocrinologyNational Children's Medical Center for South Central RegionGuangzhou Women and Children's Medical CenterGuangzhou Medical UniversityGuangzhouGuangdong510623China
| | - Bo‐Yv Zheng
- Department of Orthopedics SurgeryGeneral Hospital of the Central Theater CommandWuhan430061China
| | - Ling‐Xiang Jiang
- Department of Radiation OncologyMelvin and Bren Simon Comprehensive Cancer CenterIndiana University School of MedicineIndianapolisIN46202USA
| | - Jing Li
- Department of Spine SurgeryThe Second Xiangya HospitalCentral South UniversityChangsha410011China
| | - Guo‐Hua Lv
- Department of Spine SurgeryThe Second Xiangya HospitalCentral South UniversityChangsha410011China
| | - Hong Zhou
- Department of RadiologyThe First Affiliated HospitalHengyang Medical SchoolUniversity of South ChinaHengyang421001China
| | - Wei Huang
- The First Affiliated HospitalHealth Management CenterHengyang Medical SchoolUniversity of South ChinaHengyang421001China
| | - Ming‐Xiang Zou
- Department of Spine SurgeryThe First Affiliated HospitalHengyang Medical SchoolUniversity of South ChinaHengyang421001China
| |
Collapse
|
21
|
Hu Q, Chen Y, Zhou Q, Deng S, Hou W, Yi Y, Li C, Tang J. ADAR promotes USP38 auto-deubiquitylation and stabilization in an RNA editing-independent manner in esophageal squamous cell carcinoma. J Biol Chem 2024; 300:107789. [PMID: 39303916 PMCID: PMC11525134 DOI: 10.1016/j.jbc.2024.107789] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2024] [Revised: 08/31/2024] [Accepted: 09/05/2024] [Indexed: 09/22/2024] Open
Abstract
Esophageal cancer is mainly divided into esophageal adenocarcinoma and esophageal squamous cell carcinoma (ESCC). China is one of the high-incidence areas of esophageal cancer, of which about 90% are ESCC. The deubiquitinase USP38 has been reported to play significant roles in several biological processes, including inflammatory responses, antiviral infection, cell proliferation, migration, invasion, DNA damage repair, and chemotherapy resistance. However, the role and mechanisms of USP38 in ESCC development remain still unclear. Furthermore, although many substrates of USP38 have been identified, few upstream regulatory factors of USP38 have been identified. In this study, we found that USP38 was significantly upregulated in esophageal cancer tissues. Knockdown of USP38 inhibited ESCC growth. USP38 stabilized itself through auto-deubiquitylation. In addition, we demonstrate that adenosine deaminase acting on RNA (ADAR) could enhance the stability of USP38 protein and facilitate USP38 auto-deubiquitylation by interacting with USP38 in an RNA editing-independent manner. ADAR inhibition of ESCC cell proliferation depended on USP38. In summary, these results highlight that the potential of targeting the ADAR-USP38 axis for ESCC treatment.
Collapse
Affiliation(s)
- Qingyong Hu
- Institute of Basic Medicine and Forensic Medicine, North Sichuan Medical College, Nanchong, Sichuan, China.
| | - Yahui Chen
- Institute of Basic Medicine and Forensic Medicine, North Sichuan Medical College, Nanchong, Sichuan, China
| | - Qianru Zhou
- Institute of Basic Medicine and Forensic Medicine, North Sichuan Medical College, Nanchong, Sichuan, China
| | - Shanshan Deng
- Institute of Basic Medicine and Forensic Medicine, North Sichuan Medical College, Nanchong, Sichuan, China
| | - Wei Hou
- Institute of Basic Medicine and Forensic Medicine, North Sichuan Medical College, Nanchong, Sichuan, China; Department of Pathology, Affiliated Hospital of North Sichuan Medical College, Nanchong, China
| | - Yong Yi
- Center of Growth, Metabolism and Aging, Key Laboratory of Biological Resources and Ecological Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu, China
| | - Chenghua Li
- Center of Growth, Metabolism and Aging, Key Laboratory of Biological Resources and Ecological Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu, China
| | - Jiancai Tang
- Institute of Basic Medicine and Forensic Medicine, North Sichuan Medical College, Nanchong, Sichuan, China.
| |
Collapse
|
22
|
Pauzaite T, Wit N, Seear RV, Nathan JA. Deubiquitinating enzyme mutagenesis screens identify a USP43-dependent HIF-1 transcriptional response. EMBO J 2024; 43:3677-3709. [PMID: 39009674 PMCID: PMC11377827 DOI: 10.1038/s44318-024-00166-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2024] [Revised: 05/13/2024] [Accepted: 06/24/2024] [Indexed: 07/17/2024] Open
Abstract
The ubiquitination and proteasome-mediated degradation of Hypoxia Inducible Factors (HIFs) is central to metazoan oxygen-sensing, but the involvement of deubiquitinating enzymes (DUBs) in HIF signalling is less clear. Here, using a bespoke DUBs sgRNA library we conduct CRISPR/Cas9 mutagenesis screens to determine how DUBs are involved in HIF signalling. Alongside defining DUBs involved in HIF activation or suppression, we identify USP43 as a DUB required for efficient activation of a HIF response. USP43 is hypoxia regulated and selectively associates with the HIF-1α isoform, and while USP43 does not alter HIF-1α stability, it facilitates HIF-1 nuclear accumulation and binding to its target genes. Mechanistically, USP43 associates with 14-3-3 proteins in a hypoxia and phosphorylation dependent manner to increase the nuclear pool of HIF-1. Together, our results highlight the multifunctionality of DUBs, illustrating that they can provide important signalling functions alongside their catalytic roles.
Collapse
Affiliation(s)
- Tekle Pauzaite
- Cambridge Institute of Therapeutic Immunology & Infectious Disease (CITIID), Jeffrey Cheah Biomedical Centre, Department of Medicine, University of Cambridge, Cambridge, CB2 0AW, United Kingdom
| | - Niek Wit
- Cambridge Institute of Therapeutic Immunology & Infectious Disease (CITIID), Jeffrey Cheah Biomedical Centre, Department of Medicine, University of Cambridge, Cambridge, CB2 0AW, United Kingdom
| | - Rachel V Seear
- Cambridge Institute of Therapeutic Immunology & Infectious Disease (CITIID), Jeffrey Cheah Biomedical Centre, Department of Medicine, University of Cambridge, Cambridge, CB2 0AW, United Kingdom
| | - James A Nathan
- Cambridge Institute of Therapeutic Immunology & Infectious Disease (CITIID), Jeffrey Cheah Biomedical Centre, Department of Medicine, University of Cambridge, Cambridge, CB2 0AW, United Kingdom.
| |
Collapse
|
23
|
Zhao B, Luo J, Wang H, Li Y, Li D, Bi X. In vivo RNAi screening identifies multiple deubiquitinases required for the maintenance of intestinal homeostasis in Drosophila. INSECT BIOCHEMISTRY AND MOLECULAR BIOLOGY 2024; 172:104162. [PMID: 39067716 DOI: 10.1016/j.ibmb.2024.104162] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/19/2024] [Revised: 07/14/2024] [Accepted: 07/25/2024] [Indexed: 07/30/2024]
Abstract
Deubiquitinases (DUBs) are essential for the maintenance of protein homeostasis and assembly of proteins into functional complexes. Despite growing interest in DUBs biological functions, the roles of DUBs in regulating intestinal stem cells (ISCs) and gut homeostasis remain largely unknown. Here, we perform an in vivo RNAi screen through induced knock-down of DUBs expression in adult midgut ISCs and enteroblasts (EBs) to identify DUB regulators of intestinal homeostasis in Drosophila. We screen 43 DUBs and identify 8 DUBs that are required for ISCs homeostasis. Knocking-down of usp1, CG7857, usp5, rpn8, usp10 and csn5 decreases the number of ISCs/EBs, while knocking-down of CG4968 and usp8 increases the number of ISCs/EBs. Moreover, knock-down of usp1, CG4968, CG7857, or rpn8 in ISCs/EBs disrupts the intestinal barrier integrity and shortens the lifespan, indicating the requirement of these DUBs for the maintenance of gut homeostasis. Furthermore, we provide evidences that USP1 mediates ISC lineage differentiation via modulating the Notch signaling activity. Our study identifies, for the first time, the deubiquitinases required for the maintenance of intestinal homeostasis in Drosophila, and provide new insights into the functional links between the DUBs and intestinal homeostasis.
Collapse
Affiliation(s)
- Boyu Zhao
- School of Medicine, Nantong University, Nantong, 226001, China
| | - Jing Luo
- School of Medicine, Nantong University, Nantong, 226001, China
| | - Hui Wang
- College of Basic Medical Medicine, Dalian Medical University, Dalian, 116044, China
| | - Yuanxin Li
- College of Basic Medical Medicine, Dalian Medical University, Dalian, 116044, China
| | - Dong Li
- School of Medicine, Nantong University, Nantong, 226001, China.
| | - Xiaolin Bi
- School of Medicine, Nantong University, Nantong, 226001, China.
| |
Collapse
|
24
|
Zhang Y, Wu B, Liu D, Chen Y, Xu Y, Fu L, Lin Z, Wu G, Huang F. Targeting HIF-1α with Specific DNA Yokes for Effective Anticancer Therapy. Adv Healthc Mater 2024; 13:e2401087. [PMID: 38696899 DOI: 10.1002/adhm.202401087] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2024] [Indexed: 05/04/2024]
Abstract
Hypoxia, a ubiquitous hallmark in cancer, underscores the significance of targeting HIF-1α, the principal transcriptional factor of hypoxic responses, for effective cancer therapy. Herein, DNA yokes, a novel class of DNA nanomaterials harboring specific HIF-1α binding sequences (hypoxia response elements, HREs), are introduced as nanopharmaceuticals for cancer treatment. Comprising a basal tetrahedral DNA nanostructure and four HRE-bearing overhanging chains, DNA yokes exhibit exceptional stability and prolonged intracellular retention. The investigation reveals their capacity to bind HIF-1α, thereby disrupting its interaction with the downstream genomic DNAs and impeding transcriptional activity. Moreover, DNA yokes facilitate HIF-1α degradation via the ubiquitination pathway, thereby sequestering it from downstream targets and ultimately promoting its degradation. In addition, DNA yokes attenuate cancer cell proliferation, migration, and invasion under hypoxic conditions, while also displaying preferential accumulation within tumors, thereby inhibiting tumor growth and metastasis in vivo. This study pioneers a novel approach to cancer therapy through the development of DNA-based drugs characterized by high stability and low toxicity to normal cells, positioning DNA yokes as promising candidates for cancer treatment.
Collapse
Affiliation(s)
- Ying Zhang
- Central Laboratory, Fujian Key Laboratory of Precision Medicine for Cancer, Key Laboratory of Radiation Biology of Fujian Higher Education Institutions, The First Affiliated Hospital, Fujian Medical University, Fuzhou, Fujian, 350005, China
- Central Laboratory, National Regional Medical Center, Binhai Campus of the First Affiliated Hospital, Fujian Medical University, Fuzhou, Fujian, 350212, China
| | - Bing Wu
- Central Laboratory, Fujian Key Laboratory of Precision Medicine for Cancer, Key Laboratory of Radiation Biology of Fujian Higher Education Institutions, The First Affiliated Hospital, Fujian Medical University, Fuzhou, Fujian, 350005, China
- Central Laboratory, National Regional Medical Center, Binhai Campus of the First Affiliated Hospital, Fujian Medical University, Fuzhou, Fujian, 350212, China
| | - Danqing Liu
- Central Laboratory, Fujian Key Laboratory of Precision Medicine for Cancer, Key Laboratory of Radiation Biology of Fujian Higher Education Institutions, The First Affiliated Hospital, Fujian Medical University, Fuzhou, Fujian, 350005, China
- Central Laboratory, National Regional Medical Center, Binhai Campus of the First Affiliated Hospital, Fujian Medical University, Fuzhou, Fujian, 350212, China
| | - Yue Chen
- Central Laboratory, Fujian Key Laboratory of Precision Medicine for Cancer, Key Laboratory of Radiation Biology of Fujian Higher Education Institutions, The First Affiliated Hospital, Fujian Medical University, Fuzhou, Fujian, 350005, China
- Central Laboratory, National Regional Medical Center, Binhai Campus of the First Affiliated Hospital, Fujian Medical University, Fuzhou, Fujian, 350212, China
| | - Yanfang Xu
- Central Laboratory, Fujian Key Laboratory of Precision Medicine for Cancer, Key Laboratory of Radiation Biology of Fujian Higher Education Institutions, The First Affiliated Hospital, Fujian Medical University, Fuzhou, Fujian, 350005, China
- Central Laboratory, National Regional Medical Center, Binhai Campus of the First Affiliated Hospital, Fujian Medical University, Fuzhou, Fujian, 350212, China
| | - Lengxi Fu
- Central Laboratory, Fujian Key Laboratory of Precision Medicine for Cancer, Key Laboratory of Radiation Biology of Fujian Higher Education Institutions, The First Affiliated Hospital, Fujian Medical University, Fuzhou, Fujian, 350005, China
- Central Laboratory, National Regional Medical Center, Binhai Campus of the First Affiliated Hospital, Fujian Medical University, Fuzhou, Fujian, 350212, China
| | - Zhenyu Lin
- Ministry of Education Key Laboratory for Analytical Science of Food Safety and Biology, Fujian Provincial Key Laboratory of Analysis and Detection for Food Safety, College of Chemistry, Fuzhou University, Fuzhou, Fujian, 350116, China
| | - Gui Wu
- Department of Orthopaedics, The First Affiliated Hospital, Fujian Medical University, Fuzhou, Fujian, 350005, China
- Department of Orthopaedics, National Regional Medical Center, Binhai Campus of the First Affiliated Hospital, Fujian Medical University, Fuzhou, Fujian, 350212, China
| | - Fei Huang
- Central Laboratory, Fujian Key Laboratory of Precision Medicine for Cancer, Key Laboratory of Radiation Biology of Fujian Higher Education Institutions, The First Affiliated Hospital, Fujian Medical University, Fuzhou, Fujian, 350005, China
- Central Laboratory, National Regional Medical Center, Binhai Campus of the First Affiliated Hospital, Fujian Medical University, Fuzhou, Fujian, 350212, China
| |
Collapse
|
25
|
Zhu W, Wu C, Liu Z, Zhao S, Huang J. OTU deubiquitinase, ubiquitin aldehyde binding 2 (OTUB2) modulates the stemness feature, chemoresistance, and epithelial-mesenchymal transition of colon cancer via regulating GINS complex subunit 1 (GINS1) expression. Cell Commun Signal 2024; 22:420. [PMID: 39210373 PMCID: PMC11361113 DOI: 10.1186/s12964-024-01789-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2024] [Accepted: 08/12/2024] [Indexed: 09/04/2024] Open
Abstract
BACKGROUND Colon cancer is one of the most prevalent tumors in the digestive tract, and its stemness feature significantly contribute to chemoresistance, promote the epithelial-mesenchymal transition (EMT) process, and ultimately lead to tumor metastasis. Therefore, it is imperative for researchers to elucidate the molecular mechanisms underlying the enhancement of stemness feature, chemoresistance, and EMT in colon cancer. METHODS Sphere-formation and western blotting assays were conducted to assess the stemness feature. Edu, flow cytometry, and cell viability assays were employed to evaluate the chemoresistance. Immunofluorescence and western blotting assays were utilized to detect EMT. Immunoprecipitation, ubiquitination, agarose gel electrophoresis, chromatin immunoprecipitation followed by quantitative PCR (chip-qPCR), and dual luciferase reporter gene assays were employed for mechanistic investigations. RESULTS We demonstrated a markedly higher expression level of OTUB2 in colon cancer tissues compared to adjacent tissues. Furthermore, elevated OTUB2 expression was closely associated with poor prognosis and distant tumor metastasis. Functional experiments revealed that knockdown of OTUB2 attenuated stemness feature of colon cancer, enhanced its sensitivity to oxaliplatin, inhibited its EMT process, ultimately reduced the ability of tumor metastasis. Conversely, overexpression of OTUB2 exerted opposite effects. Mechanistically, we identified OTUB2 as a deubiquitinase for SP1 protein which bound specifically to SP1 protein, thereby inhibiting K48 ubiquitination of SP1 protein. The SP1 protein functioned as a transcription factor for the GINS1, exerting its regulatory effect by binding to the 1822-1830 region of the GINS1 promoter and enhancing its transcriptional activity. Ultimately, alterations in GINS1 expression directly regulated stemness feature, chemosensitivity, and EMT progression in colon cancer. CONCLUSION Collectively, the OTUB2/SP1/GINS1 axis played a pivotal role in driving stemness feature, chemoresistance, and EMT in colon cancer. These results shed new light on understanding chemoresistance and metastasis mechanisms involved in colon cancer.
Collapse
Affiliation(s)
- Wenjie Zhu
- Department of Gastrointestinal Surgery, The Second Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, Jiangxi Province, China
- Jiangxi Province Key Laboratory of Molecular Medicine, The Second Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, Jiangxi Province, China
| | - Changlei Wu
- Department of Gastrointestinal Surgery, The Second Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, Jiangxi Province, China
- Jiangxi Province Key Laboratory of Molecular Medicine, The Second Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, Jiangxi Province, China
| | - Zitao Liu
- Department of Gastrointestinal Surgery, The Second Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, Jiangxi Province, China
- Jiangxi Province Key Laboratory of Molecular Medicine, The Second Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, Jiangxi Province, China
| | - ShiMin Zhao
- Department of Gastrointestinal Surgery, The Second Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, Jiangxi Province, China
- Jiangxi Province Key Laboratory of Molecular Medicine, The Second Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, Jiangxi Province, China
| | - Jun Huang
- Department of Gastrointestinal Surgery, The Second Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, Jiangxi Province, China.
| |
Collapse
|
26
|
Lin WT, Jiang YC, Mei YL, Chen YH, Zheng ZZ, Han X, Wu GJ, Huang WJ, Ye BZ, Liang G. Endothelial deubiquinatase YOD1 mediates Ang II-induced vascular endothelial-mesenchymal transition and remodeling by regulating β-catenin. Acta Pharmacol Sin 2024; 45:1618-1631. [PMID: 38641745 PMCID: PMC11272938 DOI: 10.1038/s41401-024-01278-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/13/2023] [Accepted: 03/25/2024] [Indexed: 04/21/2024]
Abstract
Hypertension is a prominent contributor to vascular injury. Deubiquinatase has been implicated in the regulation of hypertension-induced vascular injury. In the present study we investigated the specific role of deubiquinatase YOD1 in hypertension-induced vascular injury. Vascular endothelial endothelial-mesenchymal transition (EndMT) was induced in male WT and YOD1-/- mice by administration of Ang II (1 μg/kg per minute) via osmotic pump for four weeks. We showed a significantly increased expression of YOD1 in mouse vascular endothelial cells upon Ang II stimulation. Knockout of YOD1 resulted in a notable reduction in EndMT in vascular endothelial cells of Ang II-treated mouse; a similar result was observed in Ang II-treated human umbilical vein endothelial cells (HUVECs). We then conducted LC-MS/MS and co-immunoprecipitation (Co-IP) analyses to verify the binding between YOD1 and EndMT-related proteins, and found that YOD1 directly bound to β-catenin in HUVECs via its ovarian tumor-associated protease (OTU) domain, and histidine at 262 performing deubiquitination to maintain β-catenin protein stability by removing the K48 ubiquitin chain from β-catenin and preventing its proteasome degradation, thereby promoting EndMT of vascular endothelial cells. Oral administration of β-catenin inhibitor MSAB (20 mg/kg, every other day for four weeks) eliminated the protective effect of YOD1 deletion on vascular endothelial injury. In conclusion, we demonstrate a new YOD1-β-catenin axis in regulating Ang II-induced vascular endothelial injury and reveal YOD1 as a deubiquitinating enzyme for β-catenin, suggesting that targeting YOD1 holds promise as a potential therapeutic strategy for treating β-catenin-mediated vascular diseases.
Collapse
Affiliation(s)
- Wan-Te Lin
- Department of Cardiology and the Key Laboratory of Cardiovascular Disease of Wenzhou, the First Affiliated Hospital, Wenzhou Medical University, Wenzhou, 325035, China
- Chemical Biology Research Center, School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, 325035, China
| | - Yu-Cheng Jiang
- Chemical Biology Research Center, School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, 325035, China
| | - Yi-Lin Mei
- Chemical Biology Research Center, School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, 325035, China
| | - Yang-Hao Chen
- Department of Cardiology and the Key Laboratory of Cardiovascular Disease of Wenzhou, the First Affiliated Hospital, Wenzhou Medical University, Wenzhou, 325035, China
- Chemical Biology Research Center, School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, 325035, China
| | - Zhao-Zheng Zheng
- Chemical Biology Research Center, School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, 325035, China
| | - Xue Han
- Chemical Biology Research Center, School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, 325035, China
| | - Gao-Jun Wu
- Department of Cardiology and the Key Laboratory of Cardiovascular Disease of Wenzhou, the First Affiliated Hospital, Wenzhou Medical University, Wenzhou, 325035, China
| | - Wei-Jian Huang
- Department of Cardiology and the Key Laboratory of Cardiovascular Disease of Wenzhou, the First Affiliated Hospital, Wenzhou Medical University, Wenzhou, 325035, China.
| | - Bo-Zhi Ye
- Department of Cardiology and the Key Laboratory of Cardiovascular Disease of Wenzhou, the First Affiliated Hospital, Wenzhou Medical University, Wenzhou, 325035, China.
- School of Pharmaceutical Sciences, Hangzhou Medical College, Hangzhou, 325035, China.
| | - Guang Liang
- Department of Cardiology and the Key Laboratory of Cardiovascular Disease of Wenzhou, the First Affiliated Hospital, Wenzhou Medical University, Wenzhou, 325035, China.
- Chemical Biology Research Center, School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, 325035, China.
- School of Pharmaceutical Sciences, Hangzhou Medical College, Hangzhou, 325035, China.
| |
Collapse
|
27
|
Xue Y, Xue C, Song W. Emerging roles of deubiquitinating enzymes in actin cytoskeleton and tumor metastasis. Cell Oncol (Dordr) 2024; 47:1071-1089. [PMID: 38324230 DOI: 10.1007/s13402-024-00923-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/25/2024] [Indexed: 02/08/2024] Open
Abstract
BACKGROUND Metastasis accounts for the majority of cancer-related deaths. Actin dynamics and actin-based cell migration and invasion are important factors in cancer metastasis. Metastasis is characterized by actin polymerization and depolymerization, which are precisely regulated by molecular changes involving a plethora of actin regulators, including actin-binding proteins (ABPs) and signalling pathways, that enable cancer cell dissemination from the primary tumour. Research on deubiquitinating enzymes (DUBs) has revealed their vital roles in actin dynamics and actin-based migration and invasion during cancer metastasis. CONCLUSION Here, we review how DUBs drive tumour metastasis by participating in actin rearrangement and actin-based migration and invasion. We summarize the well-characterized and essential actin cytoskeleton signalling molecules related to DUBs, including Rho GTPases, Src kinases, and ABPs such as cofilin and cortactin. Other DUBs that modulate actin-based migration signalling pathways are also discussed. Finally, we discuss and address therapeutic opportunities and ongoing challenges related to DUBs with respect to actin dynamics.
Collapse
Affiliation(s)
- Ying Xue
- Department of Oncology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong, 250021, PR China.
| | - Cong Xue
- School of Stomatology, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, Shandong, 250117, PR China
| | - Wei Song
- Department of Oncology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong, 250021, PR China.
| |
Collapse
|
28
|
Chauhan AS, Jhujh SS, Stewart GS. E3 ligases: a ubiquitous link between DNA repair, DNA replication and human disease. Biochem J 2024; 481:923-944. [PMID: 38985307 PMCID: PMC11346458 DOI: 10.1042/bcj20240124] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2024] [Revised: 05/20/2024] [Accepted: 05/24/2024] [Indexed: 07/11/2024]
Abstract
Maintenance of genome stability is of paramount importance for the survival of an organism. However, genomic integrity is constantly being challenged by various endogenous and exogenous processes that damage DNA. Therefore, cells are heavily reliant on DNA repair pathways that have evolved to deal with every type of genotoxic insult that threatens to compromise genome stability. Notably, inherited mutations in genes encoding proteins involved in these protective pathways trigger the onset of disease that is driven by chromosome instability e.g. neurodevelopmental abnormalities, neurodegeneration, premature ageing, immunodeficiency and cancer development. The ability of cells to regulate the recruitment of specific DNA repair proteins to sites of DNA damage is extremely complex but is primarily mediated by protein post-translational modifications (PTMs). Ubiquitylation is one such PTM, which controls genome stability by regulating protein localisation, protein turnover, protein-protein interactions and intra-cellular signalling. Over the past two decades, numerous ubiquitin (Ub) E3 ligases have been identified to play a crucial role not only in the initiation of DNA replication and DNA damage repair but also in the efficient termination of these processes. In this review, we discuss our current understanding of how different Ub E3 ligases (RNF168, TRAIP, HUWE1, TRIP12, FANCL, BRCA1, RFWD3) function to regulate DNA repair and replication and the pathological consequences arising from inheriting deleterious mutations that compromise the Ub-dependent DNA damage response.
Collapse
Affiliation(s)
- Anoop S. Chauhan
- Institute of Cancer and Genomic Sciences, College of Medical and Dental Sciences, University of Birmingham, Birmingham, U.K
| | - Satpal S. Jhujh
- Institute of Cancer and Genomic Sciences, College of Medical and Dental Sciences, University of Birmingham, Birmingham, U.K
| | - Grant S. Stewart
- Institute of Cancer and Genomic Sciences, College of Medical and Dental Sciences, University of Birmingham, Birmingham, U.K
| |
Collapse
|
29
|
Alhasan BA, Morozov AV, Guzhova IV, Margulis BA. The ubiquitin-proteasome system in the regulation of tumor dormancy and recurrence. Biochim Biophys Acta Rev Cancer 2024; 1879:189119. [PMID: 38761982 DOI: 10.1016/j.bbcan.2024.189119] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2024] [Revised: 05/12/2024] [Accepted: 05/15/2024] [Indexed: 05/20/2024]
Abstract
Tumor recurrence is a mechanism triggered in sparse populations of cancer cells that usually remain in a quiescent state after strict stress and/or therapeutic factors, which is affected by a variety of autocrine and microenvironmental cues. Despite thorough investigations, the biology of dormant and/or cancer stem cells is still not fully elucidated, as for the mechanisms of their reawakening, while only the major molecular patterns driving the relapse process have been identified to date. These molecular patterns profoundly interfere with the elements of cellular proteostasis systems that support the efficiency of the recurrence process. As a major proteostasis machinery, we review the role of the ubiquitin-proteasome system (UPS) in tumor cell dormancy and reawakening, devoting particular attention to the functions of its components, E3 ligases, deubiquitinating enzymes and proteasomes in cancer recurrence. We demonstrate how UPS components functionally or mechanistically interact with the pivotal proteins implicated in the recurrence program and reveal that modulators of the UPS hold promise to become an efficient adjuvant therapy for eradicating refractory tumor cells to impede tumor relapse.
Collapse
Affiliation(s)
- Bashar A Alhasan
- Institute of Cytology, Russian Academy of Sciences, Tikhoretsky Ave. 4, 194064 St. Petersburg, Russia.
| | - Alexey V Morozov
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, Vavilov Street 32, 119991 Moscow, Russia.
| | - Irina V Guzhova
- Institute of Cytology, Russian Academy of Sciences, Tikhoretsky Ave. 4, 194064 St. Petersburg, Russia.
| | - Boris A Margulis
- Institute of Cytology, Russian Academy of Sciences, Tikhoretsky Ave. 4, 194064 St. Petersburg, Russia.
| |
Collapse
|
30
|
Jiang X, You H, Niu Y, Ding Y, Chen Z, Wang H, Xu Y, Zhou P, Wei L, Deng D, Xue L, Peng Y, Yang Y, Fan L, Shao N. E2F1-regulated USP5 contributes to the tumorigenic capacity of glioma stem cells through the maintenance of OCT4 stability. Cancer Lett 2024; 593:216875. [PMID: 38643837 DOI: 10.1016/j.canlet.2024.216875] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2023] [Revised: 03/27/2024] [Accepted: 04/07/2024] [Indexed: 04/23/2024]
Abstract
Mesenchymal glioma stem cells (MES GSCs) are a subpopulation of cells in glioblastoma (GBM) that contribute to a worse prognosis owing to their highly aggressive nature and resistance to radiation therapy. Here, OCT4 is characterized as a critical factor in sustaining the stemness phenotype of MES GSC. We find that OCT4 is expressed intensively in MES GSC and is intimately associated with poor prognosis, moreover, OCT4 depletion leads to diminished invasive capacity and impairment of the stem phenotype in MES GSC. Subsequently, we demonstrated that USP5 is a deubiquitinating enzyme which directly interacts with OCT4 and preserves OCT4 stability through its deubiquitination. USP5 was additionally proven to be aberrantly over-expressed in MES GSCs, and its depletion resulted in a noticeable diminution of OCT4 and consequently a reduced self-renewal and tumorigenic capacity of MES GSCs, which can be substantially restored by ectopic expression of OCT4. In addition, we detected the dominant molecule that regulates USP5 transcription, E2F1, with dual luciferase reporter gene analysis. In combination, targeting the E2F1-USP5-OCT4 axis is a potentially emerging strategy for the therapy of GBM.
Collapse
Affiliation(s)
- Xiao Jiang
- Department of Neurosurgery, the Third Affiliated Hospital of Soochow University, Changzhou, 213003, Jiangsu Province, China.
| | - Hongtao You
- Department of Neurosurgery, the Third Affiliated Hospital of Soochow University, Changzhou, 213003, Jiangsu Province, China.
| | - Yixuan Niu
- Department of Neurosurgery, the Third Affiliated Hospital of Soochow University, Changzhou, 213003, Jiangsu Province, China.
| | - Yudan Ding
- Translational Medicine Research Center, Zhujiang Hospital of Southern Medical University, 510280, Guangdong Province, China.
| | - Zhengxin Chen
- Department of Neurosurgery, First Affiliated Hospital of Nanjing Medical University, Nanjing, 210029, Jiangsu Province, China.
| | - Huibo Wang
- Department of Neurosurgery, First Affiliated Hospital of Nanjing Medical University, Nanjing, 210029, Jiangsu Province, China.
| | - Yuan Xu
- Department of Neurosurgery, the Third Affiliated Hospital of Soochow University, Changzhou, 213003, Jiangsu Province, China; Clinical Medical Research Center, The Third Affiliated Hospital of Soochow University, Changzhou, 213003, Jiangsu Province, China.
| | - Peng Zhou
- Department of Neurosurgery, the Third Affiliated Hospital of Soochow University, Changzhou, 213003, Jiangsu Province, China.
| | - Li Wei
- Department of Blood Transfusion, the Third Affiliated Hospital of Soochow University, Changzhou, 213003, Jiangsu Province, China.
| | - Danni Deng
- Department of Neurosurgery, the Third Affiliated Hospital of Soochow University, Changzhou, 213003, Jiangsu Province, China; Clinical Medical Research Center, The Third Affiliated Hospital of Soochow University, Changzhou, 213003, Jiangsu Province, China.
| | - Lian Xue
- Department of Neurosurgery, the Third Affiliated Hospital of Soochow University, Changzhou, 213003, Jiangsu Province, China; Clinical Medical Research Center, The Third Affiliated Hospital of Soochow University, Changzhou, 213003, Jiangsu Province, China.
| | - Ya Peng
- Department of Neurosurgery, the Third Affiliated Hospital of Soochow University, Changzhou, 213003, Jiangsu Province, China; Clinical Medical Research Center, The Third Affiliated Hospital of Soochow University, Changzhou, 213003, Jiangsu Province, China.
| | - Yilin Yang
- Department of Neurosurgery, the Third Affiliated Hospital of Soochow University, Changzhou, 213003, Jiangsu Province, China.
| | - Ligang Fan
- Department of Neurosurgery, the Third Affiliated Hospital of Soochow University, Changzhou, 213003, Jiangsu Province, China.
| | - Naiyuan Shao
- Department of Neurosurgery, the Third Affiliated Hospital of Soochow University, Changzhou, 213003, Jiangsu Province, China.
| |
Collapse
|
31
|
Yang M, Mu Y, Yu X, Gao D, Zhang W, Li Y, Liu J, Sun C, Zhuang J. Survival strategies: How tumor hypoxia microenvironment orchestrates angiogenesis. Biomed Pharmacother 2024; 176:116783. [PMID: 38796970 DOI: 10.1016/j.biopha.2024.116783] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2024] [Revised: 05/07/2024] [Accepted: 05/17/2024] [Indexed: 05/29/2024] Open
Abstract
During tumor development, the tumor itself must continuously generate new blood vessels to meet their growth needs while also allowing for tumor invasion and metastasis. One of the most common features of tumors is hypoxia, which drives the process of tumor angiogenesis by regulating the tumor microenvironment, thus adversely affecting the prognosis of patients. In addition, to overcome unsuitable environments for growth, such as hypoxia, nutrient deficiency, hyperacidity, and immunosuppression, the tumor microenvironment (TME) coordinates angiogenesis in several ways to restore the supply of oxygen and nutrients and to remove metabolic wastes. A growing body of research suggests that tumor angiogenesis and hypoxia interact through a complex interplay of crosstalk, which is inextricably linked to the TME. Here, we review the TME's positive contribution to angiogenesis from an angiogenesis-centric perspective while considering the objective impact of hypoxic phenotypes and the status and limitations of current angiogenic therapies.
Collapse
Affiliation(s)
- Mengrui Yang
- College of Traditional Chinese Medicine, Shandong Second Medical University, Weifang 261053, China
| | - Yufeng Mu
- First School of Clinical Medicine, Shandong University of Traditional Chinese Medicine, Jinan 250014, China
| | - Xiaoyun Yu
- College of Traditional Chinese Medicine, Shandong Second Medical University, Weifang 261053, China
| | - Dandan Gao
- College of Traditional Chinese Medicine, Shandong Second Medical University, Weifang 261053, China
| | - Wenfeng Zhang
- College of Traditional Chinese Medicine, Shandong Second Medical University, Weifang 261053, China
| | - Ye Li
- Faculty of Chinese Medicine and State Key Laboratory of Quality Research in Chinese Medicines, Macau University of Science and Technology, 999078, Macao Special Administrative Region of China
| | - Jingyang Liu
- Faculty of Chinese Medicine and State Key Laboratory of Quality Research in Chinese Medicines, Macau University of Science and Technology, 999078, Macao Special Administrative Region of China
| | - Changgang Sun
- College of Traditional Chinese Medicine, Shandong Second Medical University, Weifang 261053, China; Department of Oncology, Weifang Traditional Chinese Hospital, Weifang 261000, China.
| | - Jing Zhuang
- Department of Oncology, Weifang Traditional Chinese Hospital, Weifang 261000, China.
| |
Collapse
|
32
|
Zhang D, Tian X, Wang Y, Liu F, Zhang J, Wang H, Zhang N, Yan T, Lin C, Shi Z, Liu R, Jiang S. Polyphyllin I ameliorates gefitinib resistance and inhibits the VEGF/VEGFR2/p38 pathway by targeting HIF-1a in lung adenocarcinoma. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2024; 129:155690. [PMID: 38761523 DOI: 10.1016/j.phymed.2024.155690] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/04/2023] [Revised: 02/14/2024] [Accepted: 04/26/2024] [Indexed: 05/20/2024]
Abstract
BACKGROUND Lung adenocarcinoma (LUAD) is the most common pathological type of lung cancer. Epidermal growth factor receptor tyrosine kinase inhibitors (EGFR-TKIs) have been administered as the first-line therapy for patients with EGFR mutations in LUAD, but it is almost inevitable that resistance to EGFR-TKIs therapy eventually arises. Polyphyllin I (PPI), derived from Paris polyphylla rhizomes, has been shown to have potent anti-cancer properties in a range of human cancer types including LUAD. However, the role of PPI in gefitinib resistance and the underlying mechanism remain elusive. PURPOSE To evaluate the antitumor impacts of PPI on gefitinib resistance cells and investigate its molecular mechanism. METHODS CCK-8, wound healing, transwell assay, and xenograft model were performed to determine the anti-cancer effects of PPI as well as its ability to overcome gefitinib resistance. Immunoblotting, co-immunoprecipitation, phospho-RTK antibody array, qRT-PCR, and immunofluorescence were utilized to explore the mechanism by which PPI overrides gefitinib resistance. RESULTS PPI inhibited cell survival, growth, and migration/invasion in both gefitinib-sensitive (PC9) and -resistant (PC9/GR) LUAD cells (IC50 at 2.0 μM). Significantly, treatment with PPI at 1.0 μM resensitized the resistant cells to gefitinib. Moreover, cell-derived xenograft experiments revealed that the combination of PPI and gefitinib overcame gefitinib resistance. The phospho-RTK array and immunoblotting analyses showed PPI significant inhibition of the VEGFR2/p38 pathway. In addition, molecular docking suggested the interaction between PPI and HIF-1α. Mechanistically, PPI reduced the protein expression of HIF-1α in both normoxia and hypoxia conditions by triggering HIF-1α degradation. Moreover, HIF-1α protein but not mRNA level was elevated in gefitinib-resistant LUAD. We further demonstrated that PPI considerably facilitated the binding of HIF-1α to VHL. CONCLUSIONS We present a novel discovery demonstrating that PPI effectively counteracts gefitinib resistance in LUAD by modulating the VEGF/VEGFR2/p38 pathway. Mechanistic investigations unveil that PPI facilitates the formation of the HIF-1α /VHL complex, leading to the degradation of HIF-1α and subsequent inhibition of angiogenesis. These findings uncover a previously unidentified mechanism governing HIF-1α expression in reaction to PPI, providing a promising method for therapeutic interventions targeting EGFR-TKI resistance in LUAD.
Collapse
Affiliation(s)
- Dengtian Zhang
- Clinical Medical Laboratory Center, Jining No.1 People's Hospital, Shandong First Medical University, Jining, 272000, China
| | - Xinchen Tian
- Clinical Medical Laboratory Center, Jining No.1 People's Hospital, Shandong First Medical University, Jining, 272000, China
| | - Youzhi Wang
- The Affiliated Hospital of Qingdao University, Qingdao, 266003, China
| | - Fen Liu
- Clinical Medical Laboratory Center, Jining No.1 People's Hospital, Shandong First Medical University, Jining, 272000, China
| | - Jiaqi Zhang
- Clinical Medical Laboratory Center, Jining No.1 People's Hospital, Shandong First Medical University, Jining, 272000, China
| | - Haochen Wang
- Clinical Medical Laboratory Center, Jining No.1 People's Hospital, Shandong First Medical University, Jining, 272000, China
| | - Ni Zhang
- Clinical Medical Laboratory Center, Jining No.1 People's Hospital, Shandong First Medical University, Jining, 272000, China
| | - Tinghao Yan
- Clinical Medical Laboratory Center, Jining No.1 People's Hospital, Shandong First Medical University, Jining, 272000, China
| | - Cong Lin
- Clinical Medical Laboratory Center, Jining No.1 People's Hospital, Shandong First Medical University, Jining, 272000, China
| | - Zhan Shi
- Institute of Basic Research in Clinical Medicine, China Academy of Chinese Medical Sciences, No. 16 Nanxiaojie, Dongzhimennei, Beijing, 100700, China.
| | - Rui Liu
- Department of Oncology, Guang'anmen Hospital, China Academy of Chinese Medical Sciences, No. 5 Beixiange Street, Xicheng District, Beijing, 100053, China.
| | - Shulong Jiang
- Clinical Medical Laboratory Center, Jining No.1 People's Hospital, Shandong First Medical University, Jining, 272000, China.
| |
Collapse
|
33
|
Kim YJ, Lee HJ, Kim KH, Cho SP, Jung JY. OTUD7B knockdown inhibits proliferation and autophagy through AKT/mTOR signaling pathway in human prostate cancer cell. Discov Oncol 2024; 15:247. [PMID: 38935308 PMCID: PMC11211289 DOI: 10.1007/s12672-024-01073-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/07/2024] [Accepted: 05/30/2024] [Indexed: 06/28/2024] Open
Abstract
Prostate cancer (PCa) is the second leading disease of cancer-related death in men around the world, and it is almost impossible to treat advanced PCa. OTUD7B is a member of the deubiquitinase family that undergoes a post-translational transformation process, which is essential for cell stability and signaling and is known to play a critical role in cancer. However, its role in PCa has not been discovered. The aim of the study was to investigate the expression and mechanism of OTUD7B in PCa cells. According to the database, high OTUD7B expression showed a poor prognosis. Therefore, we downregulated OTUD7B using siRNA and confirmed the role of OTUD7B in PC3 prostate cancer cells. OTUD7B knockdown effectively induced apoptosis and inhibited the proliferation in PC3 cells. OTUD7B knockdown inhibited autophagy through AKT/mTOR signaling. We also confirmed the relationship between AKT/mTOR signaling and autophagy through rapamycin, an mTOR inhibitor. Taken together, OTUD7B promotes the proliferation, and autophagy, and inhibits apoptosis of prostate cancer cells via the AKT/mTOR signaling pathway.
Collapse
Affiliation(s)
- Yae Ji Kim
- Department of Veterinary Medicine, Institute of Veterinary Science, College of Veterinary Medicine, Chungnam National University, 220 Gung-Dong, Yusung-Gu, Daejeon, 34134, Republic of Korea
| | - Hui Ju Lee
- Department of Veterinary Medicine, Institute of Veterinary Science, College of Veterinary Medicine, Chungnam National University, 220 Gung-Dong, Yusung-Gu, Daejeon, 34134, Republic of Korea
| | - Kyung Hyun Kim
- Department of Veterinary Medicine, Institute of Veterinary Science, College of Veterinary Medicine, Chungnam National University, 220 Gung-Dong, Yusung-Gu, Daejeon, 34134, Republic of Korea
| | - Sung Pil Cho
- Department of Veterinary Medicine, Institute of Veterinary Science, College of Veterinary Medicine, Chungnam National University, 220 Gung-Dong, Yusung-Gu, Daejeon, 34134, Republic of Korea
| | - Ju Young Jung
- Department of Veterinary Medicine, Institute of Veterinary Science, College of Veterinary Medicine, Chungnam National University, 220 Gung-Dong, Yusung-Gu, Daejeon, 34134, Republic of Korea.
| |
Collapse
|
34
|
Song J, Zhang J, Shi Y, Gao Q, Chen H, Ding X, Zhao M, Zhu C, Liang L, Sun X, Zhu Y, Wang W, Li Q, Di X. Hypoxia inhibits ferritinophagy-mediated ferroptosis in esophageal squamous cell carcinoma via the USP2-NCOA4 axis. Oncogene 2024; 43:2000-2014. [PMID: 38744953 DOI: 10.1038/s41388-024-03050-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2024] [Revised: 04/22/2024] [Accepted: 04/23/2024] [Indexed: 05/16/2024]
Abstract
Esophageal squamous cell carcinoma (ESCC) is a prevalent malignancy of the digestive system. Hypoxia is a crucial player in tumor ferroptosis resistance. However, the molecular mechanism of hypoxia-mediated ferroptosis resistance in ESCC remains unclear. Here, USP2 expression was decreased in ESCC cell lines subjected to hypoxia treatment and was lowly expressed in clinical ESCC specimens. Ubiquitin-specific protease 2 (USP2) depletion facilitated cell growth, which was blocked in USP2-overexpressing cells. Moreover, USP2 silencing enhanced the iron ion concentration and lipid peroxidation accumulation as well as suppressed ferroptosis, while upregulating USP2 promoted ferroptotic cell death in ESCC cells. Furthermore, knockout of USP2 in ESCC models discloses the essential role of USP2 in promoting ESCC tumorigenesis and inhibiting ferroptosis. In contrast, overexpression of USP2 contributes to antitumor effect and ferroptosis events in vivo. Specifically, USP2 stably bound to and suppressed the degradation of nuclear receptor coactivator 4 (NCOA4) by eliminating the Lys48-linked chain, which in turn triggered ferritinophagy and ferroptosis in ESCC cells. Our findings suggest that USP2 plays a crucial role in iron metabolism and ferroptosis and that the USP2/NCOA4 axis is a promising therapeutic target for the management of ESCC.
Collapse
Affiliation(s)
- Jiahang Song
- Department of Radiation Oncology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, 210029, China
| | - Junfeng Zhang
- Department of Radiology, General Hospital of Western Theater Command, Chengdu, 600083, China
| | - Yujing Shi
- Department of Oncology, Jurong People's Hospital Affiliated to Jiangsu University, Huayang Town, Jurong, 212400, China
| | - Qing Gao
- Department of Radiation Oncology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, 210029, China
| | - Hui Chen
- Department of Radiation Oncology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, 210029, China
| | - Xiaofeng Ding
- Department of Radiation Oncology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, 210029, China
| | - Minghui Zhao
- Department of Radiation Oncology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, 210029, China
| | - Caiqiang Zhu
- Department of Oncology, Jurong People's Hospital Affiliated to Jiangsu University, Huayang Town, Jurong, 212400, China
| | - Liang Liang
- Department of Oncology, Jurong People's Hospital Affiliated to Jiangsu University, Huayang Town, Jurong, 212400, China
| | - Xinchen Sun
- Department of Radiation Oncology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, 210029, China
| | - Yingyin Zhu
- Department of Radiology, Suzhou 100 Hospital, Suzhou, 215000, China
| | - Wei Wang
- Chongqing Municipal Health and Health Committee, Chongqing, 400042, China.
| | - Qing Li
- Cancer Center, Army Medical Center, Chongqing, 400042, China.
| | - Xiaoke Di
- Department of Radiation Oncology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, 210029, China.
| |
Collapse
|
35
|
Li SH, Li Y, Zhang MJ, An Q, Tao JN, Wang XH. Interaction Between Hypoxia-Inducible Factor 1-alpha Gene Polymorphism and Helicobacter pylori Infection on Gastric Cancer in a Chinese Tibetan Population. Biochem Genet 2024:10.1007/s10528-024-10776-8. [PMID: 38767822 DOI: 10.1007/s10528-024-10776-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2023] [Accepted: 03/07/2024] [Indexed: 05/22/2024]
Abstract
To investigate the impact of four single nucleotide polymorphisms (SNPs) of the HIF1α gene and its interaction with Helicobacter pylori (H. pylori) infection on susceptibility to gastric cancer (GC).Logistic regression was used to test the relationship between four SNPs of HIF1α gene and the susceptibility of GC. A generalized multifactor dimensionality reduction (GMDR) model was used to assess the HIF1α gene-H. pylori infection interaction.Logistic regression analysis indicated that both the rs11549465-CT genotype and the T allele were associated with an increased risk of GC, adjusted OR (95% CI) were 1.63 (1.09-2.20) (CT vs. CC) and 1.70 (1.13-2.36) (T vs. C), respectively. We also found that both the rs11549467-A allele and rs11549467-GA genotype were associated with an increased risk of GC, and adjusted OR (95% CI) were 2.21 (1.61-2.86) (GA vs. GG), 2.13 (1.65-2.65) (A vs. G), respectively. However, no statistically significant impact of rs2057482 or rs1957757 on risk of GC was found. The GMDR model indicated a statistically significant two-dimensional model combination (including rs11549467 and H. pylori infection). The selected model had testing balanced accuracy of 0.60 and the best cross-validation consistencies of 10/10 (p = 0.0107). Compared with H. pylori infection negative participants with rs11549467-GG genotype, H. pylori positive participants with the rs11549467-GA genotype had the highest GC risk, the OR (95% CI) was 3.04 (1.98-4.12).The rs11549467-A allele and rs11549467-GA genotype was associated with increased GC risk. Additionally, the gene-environment interaction between HIF-1α-rs11549467 and H. pylori infection was also correlated with an increased risk of GC.
Collapse
Affiliation(s)
- Su-Hua Li
- Department of Gastroenterology, The Affiliated Hospital of Qinghai University, 29 Tongren Road, Xining, 810001, Qinghai, China.
| | - Yan Li
- Department of Gastroenterology, The Affiliated Hospital of Qinghai University, 29 Tongren Road, Xining, 810001, Qinghai, China
| | - Meng-Jun Zhang
- Department of Gastroenterology, The Affiliated Hospital of Qinghai University, 29 Tongren Road, Xining, 810001, Qinghai, China
| | - Qi An
- Department of Gastroenterology, The Affiliated Hospital of Qinghai University, 29 Tongren Road, Xining, 810001, Qinghai, China
| | - Jia-Nan Tao
- Department of Gastroenterology, The Affiliated Hospital of Qinghai University, 29 Tongren Road, Xining, 810001, Qinghai, China
| | - Xue-Hong Wang
- Department of Gastroenterology, The Affiliated Hospital of Qinghai University, 29 Tongren Road, Xining, 810001, Qinghai, China
| |
Collapse
|
36
|
Gao H, Xi Z, Dai J, Xue J, Guan X, Zhao L, Chen Z, Xing F. Drug resistance mechanisms and treatment strategies mediated by Ubiquitin-Specific Proteases (USPs) in cancers: new directions and therapeutic options. Mol Cancer 2024; 23:88. [PMID: 38702734 PMCID: PMC11067278 DOI: 10.1186/s12943-024-02005-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2024] [Accepted: 04/16/2024] [Indexed: 05/06/2024] Open
Abstract
Drug resistance represents a significant obstacle in cancer treatment, underscoring the need for the discovery of novel therapeutic targets. Ubiquitin-specific proteases (USPs), a subclass of deubiquitinating enzymes, play a pivotal role in protein deubiquitination. As scientific research advances, USPs have been recognized as key regulators of drug resistance across a spectrum of treatment modalities, including chemotherapy, targeted therapy, immunotherapy, and radiotherapy. This comprehensive review examines the complex relationship between USPs and drug resistance mechanisms, focusing on specific treatment strategies and highlighting the influence of USPs on DNA damage repair, apoptosis, characteristics of cancer stem cells, immune evasion, and other crucial biological functions. Additionally, the review highlights the potential clinical significance of USP inhibitors as a means to counter drug resistance in cancer treatment. By inhibiting particular USP, cancer cells can become more susceptible to a variety of anti-cancer drugs. The integration of USP inhibitors with current anti-cancer therapies offers a promising strategy to circumvent drug resistance. Therefore, this review emphasizes the importance of USPs as viable therapeutic targets and offers insight into fruitful directions for future research and drug development. Targeting USPs presents an effective method to combat drug resistance across various cancer types, leading to enhanced treatment strategies and better patient outcomes.
Collapse
Affiliation(s)
- Hongli Gao
- Department of Oncology, Shengjing Hospital of China Medical University, Shenyang, 110004, China
| | - Zhuo Xi
- Department of Neurosurgery, Shengjing Hospital of China Medical University, Shenyang, 110004, China
| | - Jingwei Dai
- Department of Neurosurgery, Shengjing Hospital of China Medical University, Shenyang, 110004, China
| | - Jinqi Xue
- Department of Oncology, Shengjing Hospital of China Medical University, Shenyang, 110004, China
| | - Xin Guan
- Department of Gastroenterology, Shengjing Hospital of China Medical University, Shenyang, 110004, China
| | - Liang Zhao
- Department of General Surgery, Shengjing Hospital of China Medical University, Shenyang, 110004, China.
| | - Zhiguang Chen
- Department of Emergency Medicine, Shengjing Hospital of China Medical University, Shenyang, 110004, China.
| | - Fei Xing
- Department of Oncology, Shengjing Hospital of China Medical University, Shenyang, 110004, China.
| |
Collapse
|
37
|
Lyu Y, Yang Y, Talwar V, Lu H, Chen C, Salman S, Wicks EE, Huang TYT, Drehmer D, Wang Y, Zuo Q, Datan E, Jackson W, Dordai D, Wang R, Semenza GL. Hypoxia-inducible factor 1 recruits FACT and RNF20/40 to mediate histone ubiquitination and transcriptional activation of target genes. Cell Rep 2024; 43:113972. [PMID: 38517892 DOI: 10.1016/j.celrep.2024.113972] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2023] [Revised: 02/01/2024] [Accepted: 03/01/2024] [Indexed: 03/24/2024] Open
Abstract
Hypoxia-inducible factor 1 (HIF-1) is a transcriptional activator that mediates cellular adaptation to decreased oxygen availability. HIF-1 recruits chromatin-modifying enzymes leading to changes in histone acetylation, citrullination, and methylation at target genes. Here, we demonstrate that hypoxia-inducible gene expression in estrogen receptor (ER)-positive MCF7 and ER-negative SUM159 human breast cancer cells requires the histone H2A/H2B chaperone facilitates chromatin transcription (FACT) and the H2B ubiquitin ligase RING finger protein 20/40 (RNF20/40). Knockdown of FACT or RNF20/40 expression leads to decreased transcription initiation and elongation at HIF-1 target genes. Mechanistically, FACT and RNF20/40 are recruited to hypoxia response elements (HREs) by HIF-1 and stabilize binding of HIF-1 (and each other) at HREs. Hypoxia induces the monoubiquitination of histone H2B at lysine 120 at HIF-1 target genes in an HIF-1-dependent manner. Together, these findings delineate a cooperative molecular mechanism by which FACT and RNF20/40 stabilize multiprotein complex formation at HREs and mediate histone ubiquitination to facilitate HIF-1 transcriptional activity.
Collapse
Affiliation(s)
- Yajing Lyu
- Armstrong Oxygen Biology Research Center and Vascular Program, Institute for Cell Engineering, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA; Department of Genetic Medicine, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Yongkang Yang
- Armstrong Oxygen Biology Research Center and Vascular Program, Institute for Cell Engineering, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA; Sidney Kimmel Comprehensive Cancer Center at Johns Hopkins, Baltimore, MD 21205, USA
| | - Varen Talwar
- Johns Hopkins University, Baltimore, MD 21218, USA
| | - Haiquan Lu
- Armstrong Oxygen Biology Research Center and Vascular Program, Institute for Cell Engineering, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA; Sidney Kimmel Comprehensive Cancer Center at Johns Hopkins, Baltimore, MD 21205, USA
| | - Chelsey Chen
- Armstrong Oxygen Biology Research Center and Vascular Program, Institute for Cell Engineering, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA; Department of Genetic Medicine, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Shaima Salman
- Armstrong Oxygen Biology Research Center and Vascular Program, Institute for Cell Engineering, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA; Department of Genetic Medicine, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Elizabeth E Wicks
- Armstrong Oxygen Biology Research Center and Vascular Program, Institute for Cell Engineering, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA; Department of Genetic Medicine, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Tina Yi-Ting Huang
- Armstrong Oxygen Biology Research Center and Vascular Program, Institute for Cell Engineering, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA; Department of Genetic Medicine, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Daiana Drehmer
- Armstrong Oxygen Biology Research Center and Vascular Program, Institute for Cell Engineering, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA; Department of Genetic Medicine, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Yufeng Wang
- Armstrong Oxygen Biology Research Center and Vascular Program, Institute for Cell Engineering, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA; Department of Genetic Medicine, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Qiaozhu Zuo
- Armstrong Oxygen Biology Research Center and Vascular Program, Institute for Cell Engineering, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA; Department of Genetic Medicine, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Emmanuel Datan
- Armstrong Oxygen Biology Research Center and Vascular Program, Institute for Cell Engineering, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA; Department of Genetic Medicine, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Walter Jackson
- Armstrong Oxygen Biology Research Center and Vascular Program, Institute for Cell Engineering, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA; Department of Genetic Medicine, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Dominic Dordai
- Armstrong Oxygen Biology Research Center and Vascular Program, Institute for Cell Engineering, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA; Department of Genetic Medicine, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Ru Wang
- Armstrong Oxygen Biology Research Center and Vascular Program, Institute for Cell Engineering, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA; Department of Genetic Medicine, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Gregg L Semenza
- Armstrong Oxygen Biology Research Center and Vascular Program, Institute for Cell Engineering, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA; Department of Genetic Medicine, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA; Sidney Kimmel Comprehensive Cancer Center at Johns Hopkins, Baltimore, MD 21205, USA.
| |
Collapse
|
38
|
Wang R, He S, Long J, Wang Y, Jiang X, Chen M, Wang J. Emerging therapeutic frontiers in cancer: insights into posttranslational modifications of PD-1/PD-L1 and regulatory pathways. Exp Hematol Oncol 2024; 13:46. [PMID: 38654302 DOI: 10.1186/s40164-024-00515-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2024] [Accepted: 04/16/2024] [Indexed: 04/25/2024] Open
Abstract
The interaction between programmed cell death ligand 1 (PD-L1), which is expressed on the surface of tumor cells, and programmed cell death 1 (PD-1), which is expressed on T cells, impedes the effective activation of tumor antigen-specific T cells, resulting in the evasion of tumor cells from immune-mediated killing. Blocking the PD-1/PD-L1 signaling pathway has been shown to be effective in preventing tumor immune evasion. PD-1/PD-L1 blocking antibodies have garnered significant attention in recent years within the field of tumor treatments, given the aforementioned mechanism. Furthermore, clinical research has substantiated the efficacy and safety of this immunotherapy across various tumors, offering renewed optimism for patients. However, challenges persist in anti-PD-1/PD-L1 therapies, marked by limited indications and the emergence of drug resistance. Consequently, identifying additional regulatory pathways and molecules associated with PD-1/PD-L1 and implementing judicious combined treatments are imperative for addressing the intricacies of tumor immune mechanisms. This review briefly outlines the structure of the PD-1/PD-L1 molecule, emphasizing the posttranslational modification regulatory mechanisms and related targets. Additionally, a comprehensive overview on the clinical research landscape concerning PD-1/PD-L1 post-translational modifications combined with PD-1/PD-L1 blocking antibodies to enhance outcomes for a broader spectrum of patients is presented based on foundational research.
Collapse
Affiliation(s)
- Rong Wang
- Department of Pathology, Institute of Oncology, The School of Basic Medical Sciences & Diagnostic Pathology Center, Fujian Medical University, Fuzhou, Fujian, China
| | - Shiwei He
- School of Basic Medical Sciences, Hebei Medical University, Shijiazhuang, Hebei, China
| | - Jun Long
- Shenzhen Geim Graphene Center, Tsinghua-Berkeley Shenzhen Institute & Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen, Guangdong, China.
| | - Yian Wang
- The Key Laboratory of Model Animals and Stem Cell Biology in Hunan Province, School of Medicine, The Engineering Research Center of Reproduction and Translational Medicine of Hunan Province, Hunan Normal University, Changsha, Hunan, China
| | - Xianjie Jiang
- Hunan Key Laboratory of Cancer Metabolism, Hunan Cancer Hospital and the Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, Hunan, China
| | - Mingfen Chen
- Department of Radiation Oncology, The Second Affiliated Hospital of Fujian Medical University, Fujian Medical University, Quanzhou, Fujian, China
| | - Jie Wang
- Department of Pathology, Institute of Oncology, The School of Basic Medical Sciences & Diagnostic Pathology Center, Fujian Medical University, Fuzhou, Fujian, China.
| |
Collapse
|
39
|
Zhao Z, Liu M, Lin Z, Zhu M, Lv L, Zhu X, Fan R, Al-Danakh A, He H, Tan G. The mechanism of USP43 in the development of tumor: a literature review. Aging (Albany NY) 2024; 16:6613-6626. [PMID: 38613804 PMCID: PMC11042928 DOI: 10.18632/aging.205731] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2023] [Accepted: 03/13/2024] [Indexed: 04/15/2024]
Abstract
Ubiquitination of the proteins is crucial for governing protein degradation and regulating fundamental cellular processes. Deubiquitinases (DUBs) have emerged as significant regulators of multiple pathways associated with cancer and other diseases, owing to their capacity to remove ubiquitin from target substrates and modulate signaling. Consequently, they represent potential therapeutic targets for cancer and other life-threatening conditions. USP43 belongs to the DUBs family involved in cancer development and progression. This review aims to provide a comprehensive overview of the existing scientific evidence implicating USP43 in cancer development. Additionally, it will investigate potential small-molecule inhibitors that target DUBs that may have the capability to function as anti-cancer medicines.
Collapse
Affiliation(s)
- Ziqi Zhao
- Department of General Surgery, The First Affiliated Hospital of Dalian Medical University, Dalian Medical University, Dalian 116011, China
| | - Meichen Liu
- Department of Neurology, The First Affiliated Hospital of Dalian Medical University, Dalian Medical University, Dalian 116011, China
| | - Zhikun Lin
- Department of General Surgery, The First Affiliated Hospital of Dalian Medical University, Dalian Medical University, Dalian 116011, China
- Liaoning Key Laboratory of Molecular Targeted Drugs in Hepatobiliary and Pancreatic Cancer, Dalian 116000, China
| | - Mengru Zhu
- Department of Plastic Surgery, The First Affiliated Hospital of Dalian Medical University, Dalian Medical University, Dalian 116011, China
| | - Linlin Lv
- Department of Pharmacy, The First Affiliated Hospital of Dalian Medical University, Dalian Medical University, Dalian 116011, China
| | - Xinqing Zhu
- Department of Urology, The First Affiliated Hospital of Dalian Medical University, Dalian Medical University, Dalian 116011, China
| | - Rui Fan
- Institute of Cardiovascular Sciences and Key Laboratory of Molecular Cardiovascular Sciences, National, School of Basic Medical Sciences, Peking University, Beijing 100191, China
| | - Abdullah Al-Danakh
- Department of Urology, The First Affiliated Hospital of Dalian Medical University, Dalian Medical University, Dalian 116011, China
| | - Hui He
- Department of General Surgery, The First Affiliated Hospital of Dalian Medical University, Dalian Medical University, Dalian 116011, China
| | - Guang Tan
- Department of General Surgery, The First Affiliated Hospital of Dalian Medical University, Dalian Medical University, Dalian 116011, China
- Liaoning Key Laboratory of Molecular Targeted Drugs in Hepatobiliary and Pancreatic Cancer, Dalian 116000, China
| |
Collapse
|
40
|
Qiu C, Wang W, Xu S, Li Y, Zhu J, Zhang Y, Lei C, Li W, Li H, Li X. Construction and validation of a hypoxia-related gene signature to predict the prognosis of breast cancer. BMC Cancer 2024; 24:402. [PMID: 38561760 PMCID: PMC10986118 DOI: 10.1186/s12885-024-12182-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2023] [Accepted: 03/26/2024] [Indexed: 04/04/2024] Open
Abstract
BACKGROUND Among the most common forms of cancer worldwide, breast cancer posed a serious threat to women. Recent research revealed a lack of oxygen, known as hypoxia, was crucial in forming breast cancer. This research aimed to create a robust signature with hypoxia-related genes to predict the prognosis of breast cancer patients. The function of hypoxia genes was further studied through cell line experiments. MATERIALS AND METHODS In the bioinformatic part, transcriptome and clinical information of breast cancer were obtained from The Cancer Genome Atlas(TCGA). Hypoxia-related genes were downloaded from the Genecards Platform. Differentially expressed hypoxia-related genes (DEHRGs) were identified. The TCGA filtered data was evenly split, ensuring a 1:1 distribution between the training and testing sets. Prognostic-related DEHRGs were identified through Cox regression. The signature was established through the training set. Then, it was validated using the test set and external validation set GSE131769 from Gene Expression Omnibus (GEO). The nomogram was created by incorporating the signature and clinicopathological characteristics. The predictive value of the nomogram was evaluated by C-index and receiver operating characteristiccurve. Immune microenvironment and mutation burden were also examined. In the experiment part, the function of the two most significant hypoxia-related genes were further explored by cell-line experiments. RESULTS In the bioinformatic part, 141 up-regulated and 157 down-regulated DEHRGs were screened out. A prognostic signature was constructed containing nine hypoxia genes (ALOX15B, CA9, CD24, CHEK1, FOXM1, HOTAIR, KCNJ11, NEDD9, PSME2) in the training set. Low-risk patients exhibited a much more favorable prognosis than higher-risk ones (P < 0.001). The signature was double-validated in the test set and GSE131769 (P = 0.006 and P = 0.001). The nomogram showed excellent predictive value with 1-year OS AUC: 0.788, 3-year OS AUC: 0.783, and 5-year OS AUC: 0.817. Patients in the high-risk group had a higher tumor mutation burden when compared to the low-risk group. In the experiment part, the down-regulation of PSME2 inhibited cell growth ability and clone formation capability of breast cancer cells, while the down-regulation of KCNJ11 did not have any functions. CONCLUSION Based on 9 DEHRGs, a reliable signature was established through the bioinformatic method. It could accurately predict the prognosis of breast cancer patients. Cell line experiment indicated that PSME2 played a protective role. Summarily, we provided a new insight to predict the prognosis of breast cancer by hypoxia-related genes.
Collapse
Affiliation(s)
- Chaoran Qiu
- Department of Breast, Jiangmen Central Hospital, Jiangmen, Guangdong, China
| | - Wenjun Wang
- The Sixth Affiliated Hospital of Jinan University(Dongguan Eastern Central Hospital), Dongguan, China
| | - Shengshan Xu
- Department of Thoracic Surgery, Jiangmen Central Hospital, Jiangmen, China
| | - Yong Li
- Department of Breast, Jiangmen Central Hospital, Jiangmen, Guangdong, China
| | - Jingtao Zhu
- Department of Breast Surgery, Foshan Fosun Chancheng Hospital, Foshan, China
| | - Yiwen Zhang
- Department of Breast, Jiangmen Central Hospital, Jiangmen, Guangdong, China
| | - Chuqian Lei
- Department of Breast, Jiangmen Central Hospital, Jiangmen, Guangdong, China
| | - Weiwen Li
- Department of Breast, Jiangmen Central Hospital, Jiangmen, Guangdong, China
| | - Hongsheng Li
- Department of Breast Surgery, Guangzhou Medical University Affiliated Cancer Hospital, Guangzhou, China.
| | - Xiaoping Li
- Department of Breast, Jiangmen Central Hospital, Jiangmen, Guangdong, China.
| |
Collapse
|
41
|
Cao X, Yan Z, Chen Z, Ge Y, Hu X, Peng F, Huang W, Zhang P, Sun R, Chen J, Ding M, Zong D, He X. The Emerging Role of Deubiquitinases in Radiosensitivity. Int J Radiat Oncol Biol Phys 2024; 118:1347-1370. [PMID: 38092257 DOI: 10.1016/j.ijrobp.2023.12.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2023] [Revised: 11/03/2023] [Accepted: 12/03/2023] [Indexed: 02/05/2024]
Abstract
Radiation therapy is a primary treatment for cancer, but radioresistance remains a significant challenge in improving efficacy and reducing toxicity. Accumulating evidence suggests that deubiquitinases (DUBs) play a crucial role in regulating cell sensitivity to ionizing radiation. Traditional small-molecule DUB inhibitors have demonstrated radiosensitization effects, and novel deubiquitinase-targeting chimeras (DUBTACs) provide a promising strategy for radiosensitizer development by harnessing the ubiquitin-proteasome system. This review highlights the mechanisms by which DUBs regulate radiosensitivity, including DNA damage repair, the cell cycle, cell death, and hypoxia. Progress on DUB inhibitors and DUBTACs is summarized, and their potential radiosensitization effects are discussed. Developing drugs targeting DUBs appears to be a promising alternative approach to overcoming radioresistance, warranting further research into their mechanisms.
Collapse
Affiliation(s)
- Xiang Cao
- Affiliated Cancer Hospital of Nanjing Medical University, Jiangsu Cancer Hospital, and Jiangsu Institute of Cancer Research, Nanjing, Jiangsu, China
| | - Zhenyu Yan
- Affiliated Cancer Hospital of Nanjing Medical University, Jiangsu Cancer Hospital, and Jiangsu Institute of Cancer Research, Nanjing, Jiangsu, China
| | - Zihan Chen
- Xuzhou Medical University, Xuzhou, Jiangsu, China
| | - Yizhi Ge
- Affiliated Cancer Hospital of Nanjing Medical University, Jiangsu Cancer Hospital, and Jiangsu Institute of Cancer Research, Nanjing, Jiangsu, China
| | - Xinyu Hu
- Affiliated Cancer Hospital of Nanjing Medical University, Jiangsu Cancer Hospital, and Jiangsu Institute of Cancer Research, Nanjing, Jiangsu, China
| | - Fanyu Peng
- Affiliated Cancer Hospital of Nanjing Medical University, Jiangsu Cancer Hospital, and Jiangsu Institute of Cancer Research, Nanjing, Jiangsu, China
| | - Wenxuan Huang
- Affiliated Cancer Hospital of Nanjing Medical University, Jiangsu Cancer Hospital, and Jiangsu Institute of Cancer Research, Nanjing, Jiangsu, China
| | - Pingchuan Zhang
- Affiliated Cancer Hospital of Nanjing Medical University, Jiangsu Cancer Hospital, and Jiangsu Institute of Cancer Research, Nanjing, Jiangsu, China
| | - Ruozhou Sun
- Affiliated Cancer Hospital of Nanjing Medical University, Jiangsu Cancer Hospital, and Jiangsu Institute of Cancer Research, Nanjing, Jiangsu, China
| | - Jiazhen Chen
- Affiliated Cancer Hospital of Nanjing Medical University, Jiangsu Cancer Hospital, and Jiangsu Institute of Cancer Research, Nanjing, Jiangsu, China
| | - Mingjun Ding
- Affiliated Cancer Hospital of Nanjing Medical University, Jiangsu Cancer Hospital, and Jiangsu Institute of Cancer Research, Nanjing, Jiangsu, China
| | - Dan Zong
- Affiliated Cancer Hospital of Nanjing Medical University, Jiangsu Cancer Hospital, and Jiangsu Institute of Cancer Research, Nanjing, Jiangsu, China.
| | - Xia He
- Affiliated Cancer Hospital of Nanjing Medical University, Jiangsu Cancer Hospital, and Jiangsu Institute of Cancer Research, Nanjing, Jiangsu, China; Xuzhou Medical University, Xuzhou, Jiangsu, China; Department of Environmental Genomics, Jiangsu Key Laboratory of Cancer Biomarkers, Prevention and Treatment, Collaborative Innovation Center for Cancer Personalized Medicine, Nanjing Medical University, Nanjing, China.
| |
Collapse
|
42
|
Luo C, Yu Y, Zhu J, Chen L, Li D, Peng X, Liu Z, Li Q, Cao Q, Huang K, Yuan R. Deubiquitinase PSMD7 facilitates pancreatic cancer progression through activating Nocth1 pathway via modifying SOX2 degradation. Cell Biosci 2024; 14:35. [PMID: 38494478 PMCID: PMC10944620 DOI: 10.1186/s13578-024-01213-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2023] [Accepted: 02/27/2024] [Indexed: 03/19/2024] Open
Abstract
BACKGROUND Ubiquitination is a critical post-translational modification which can be reversed with an enzyme family known as deubiquitinating enzymes (DUBs). It has been reported that dysregulation of deubiquitination leads to carcinogenesis. As a member of the DUBs family, proteasome 26 S subunit non-ATPase 7 (PSMD7) serves as an underlying tumour-promoting factor in multiple cancers. However, the clinical significance and biological functions of PSMD7 in pancreatic cancer (PC) remain unclear. RESULTS In this study, we first reported frequent overexpression of PSMD7 in PC tissues, and high levels of PSMD7 were markedly linked to shorter survival and a malignant phenotype in PC patients. An array of in vitro and in vivo gain/loss-of-function tests revealed that PSMD7 facilitates the progression of PC cells. Additionally, we found that PSMD7 promotes PC cell progression by activating the Notch homolog 1 (Notch1) signalling. Interestingly, in PC cells, the inhibitory effect of PSMD7 knockdown on cellular processes was comparable to that observed upon Notch1 knockdown. Mechanistically, PSMD7 deubiquitinated and stabilised sex determining region Y (SRY)-box 2 (SOX2), a key mediator of Notch1 signalling. The stabilisation of SOX2, mediated by PSMD7, dramatically increased SOX2 protein levels, subsequently activating the Notch1 pathway. Finally, restoration of SOX2 expression abrogated the PSMD7-silenced antitumour effect. CONCLUSIONS Taken together, our work identifies and validates PSMD7 as a promoter of PC progression through augmentation of the Notch1 signalling pathway mediated by SOX2. This finding suggests that PSMD7 holds promise as a potential therapeutic target for the management of this refractory disease.
Collapse
Affiliation(s)
- Chen Luo
- Department of General Surgery, The Second Affiliated Hospital of Nanchang University, Nanchang, Jiangxi Province, 330006, China
- Department of General Surgery, The First Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, Jiangxi Province, 330006, China
| | - Yi Yu
- Department of General Surgery, The Second Affiliated Hospital of Nanchang University, Nanchang, Jiangxi Province, 330006, China
- Department of Urology Surgery, The Second Affiliated Hospital of Nanchang University, Nanchang, Jiangxi Province, 330006, China
| | - Jinfeng Zhu
- Department of General Surgery, The Second Affiliated Hospital of Nanchang University, Nanchang, Jiangxi Province, 330006, China
- Hunan Provincial Key Laboratory of the Research and Development of Novel Pharmaceutical Preparations, Changsha Medical University, Changsha, Hunan Province, 410219, China
| | - Leifeng Chen
- Department of General Surgery, The Second Affiliated Hospital of Nanchang University, Nanchang, Jiangxi Province, 330006, China
| | - Dan Li
- Department of Gastroenterology, The Second Affiliated Hospital of Nanchang University, Nanchang, Jiangxi Province, 330006, China
| | - Xingyu Peng
- Department of General Surgery, The Second Affiliated Hospital of Nanchang University, Nanchang, Jiangxi Province, 330006, China
| | - Zitao Liu
- Department of General Surgery, The Second Affiliated Hospital of Nanchang University, Nanchang, Jiangxi Province, 330006, China
| | - Qing Li
- Department of Pathology, The Second Affiliated Hospital of Nanchang University, Nanchang, Jiangxi Province, 330006, China
| | - Qing Cao
- Department of Gynecology and Obstetrics, The Second Affiliated Hospital of Nanchang University, Nanchang, Jiangxi Province, 330006, China
| | - Kai Huang
- Department of General Surgery, Jiangxi Provincial Cancer Hospital, Nanchang, Jiangxi Province, 330029, China
| | - Rongfa Yuan
- Department of General Surgery, The Second Affiliated Hospital of Nanchang University, Nanchang, Jiangxi Province, 330006, China.
- Jiangxi Provincial Clinical Research Center for General Surgery Disease, Nanchang, Jiangxi Province, 330006, China.
| |
Collapse
|
43
|
Xiang T, Wei Z, Ye C, Liu G. Prognostic impact and immunotherapeutic implications of NETosis-related gene signature in gastric cancer patients. J Cell Mol Med 2024; 28:e18087. [PMID: 38146607 PMCID: PMC10902305 DOI: 10.1111/jcmm.18087] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2023] [Revised: 12/01/2023] [Accepted: 12/11/2023] [Indexed: 12/27/2023] Open
Abstract
The role of NETosis and its related molecules remains unclear in gastric cancer. The data used in this study was directly downloaded from the Cancer Genome Atlas (TCGA) database. All analysis and plots are completed in R software using diverse R packages. In our study, we collected the list of NETosis-related genes from previous publications. Based on the list and expression profile of gastric cancer patients from the TCGA database, we identified the NETosis-related genes significantly correlated with patients survival. Then, CLEC6A, BST1 and TLR7 were identified through LASSO regression and multivariate Cox regression analysis for prognosis model construction. This prognosis model showed great predictive efficiency in both training and validation cohorts. We noticed that the high-risk patients might have a worse survival performance. Next, we explored the biological enrichment difference between high- and low-risk patients and found that many carcinogenic pathways were upregulated in the high-risk patients. Meanwhile, we investigated the genomic instability, mutation burden and immune microenvironment difference between high- and low-risk patients. Moreover, we noticed that low-risk patients were more sensitive to immunotherapy (85.95% vs. 56.22%). High-risk patients were more sensitive to some small molecules compounds like camptothecin_1003, cisplatin_1005, cytarabine_1006, nutlin-3a (-)_1047, gemcitabine_1190, WZ4003_1614, selumetinib_1736 and mitoxantrone_1810. In summary, our study comprehensively explored the role of NETosis-related genes in gastric cancer, which can provide direction for relevant studies.
Collapse
Affiliation(s)
- Tian Xiang
- Department of Clinical Laboratory CenterCentral Hospital of Enshi Tujia and Miao Autonomous PrefectureEnshiChina
| | | | - Chen Ye
- Hubei University of MedicineShiyanChina
| | - Gao Liu
- Department of Gastrointestinal SurgeryCentral Hospital of Enshi Tujia and Miao Autonomous PrefectureEnshiChina
| |
Collapse
|
44
|
Xu Y, Shao B, Zhang Y. The significance of targeting lysosomes in cancer immunotherapy. Front Immunol 2024; 15:1308070. [PMID: 38370407 PMCID: PMC10869645 DOI: 10.3389/fimmu.2024.1308070] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2023] [Accepted: 01/22/2024] [Indexed: 02/20/2024] Open
Abstract
Lysosomes are intracellular digestive organelles that participate in various physiological and pathological processes, including the regulation of immune checkpoint molecules, immune cell function in the tumor microenvironment, antigen presentation, metabolism, and autophagy. Abnormalities or dysfunction of lysosomes are associated with the occurrence, development, and drug resistance of tumors. Lysosomes play a crucial role and have potential applications in tumor immunotherapy. Targeting lysosomes or harnessing their properties is an effective strategy for tumor immunotherapy. However, the mechanisms and approaches related to lysosomes in tumor immunotherapy are not fully understood at present, and further basic and clinical research is needed to provide better treatment options for cancer patients. This review focuses on the research progress related to lysosomes and tumor immunotherapy in these.
Collapse
Affiliation(s)
- Yanxin Xu
- Department of Colorectal Surgery, The First Affiliated Hospital of Zhengzhou University, Henan, Zhengzhou, China
| | - Bo Shao
- Department of Colorectal Surgery, The First Affiliated Hospital of Zhengzhou University, Henan, Zhengzhou, China
| | - Yafeng Zhang
- Department of Colorectal Surgery, The First Affiliated Hospital of Zhengzhou University, Henan, Zhengzhou, China
- Institute for Hospital Management of Henan Province, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| |
Collapse
|
45
|
Chen Z, Wang Z, Zhu C, Deng H, Chen X. Inhibiting neddylation with MLN4924 potentiates hypoxia-induced apoptosis of mouse type B spermatogonia GC-2 cells. Gene 2024; 893:147935. [PMID: 38381506 DOI: 10.1016/j.gene.2023.147935] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2023] [Revised: 10/23/2023] [Accepted: 10/26/2023] [Indexed: 02/22/2024]
Abstract
Hypoxia, an inadequate supply of tissue oxygen tension, has been reported to induce apoptosis of spermatogenic cells and is associated with male infertility. Neddylation, a post-translational modification similar to ubiquitination, has been shown to be involved in the hypoxia stress response. However, the functions of neddylation in hypoxia-induced apoptosis of spermatogenic cells and its association with male infertility remain largely unexplored. In this study, aiming to explore the role of neddylation in male infertility, we used the specific neddylation inhibitor MLN4924 for treatment in mouse type B spermatogonia GC-2 cells. Our results showed that MLN4924 had no apparent effect on GC-2 cell apoptosis under normoxia, but significantly increased apoptotic cells under hypoxia. Transcriptomic analysis and qPCR assay confirmed that MLN4924 could suppress the expression of hypoxia target genes in GC-2 cells under hypoxia. In addition, MLN4924 could enhance the induction of intracellular and mitochondrial reactive oxygen species (ROS) under hypoxia. These results indicate that the neddylation inhibitor MLN4924 potentiates hypoxia-induced apoptosis of mouse type B spermatogonia GC-2 cells, and neddylation may play an important role in promoting spermatogenic cells to adapt to hypoxia stress.
Collapse
Affiliation(s)
- Zhu Chen
- Department of Reproduction, Maternal and Child Health Hospital of Hubei Province, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430070, PR China.
| | - Zixuan Wang
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, PR China; University of Chinese Academy of Sciences, Beijing 100049, PR China
| | - Chunchun Zhu
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, PR China
| | - Hongyan Deng
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, PR China; College of Life Science, Wuhan University, Wuhan 430072, PR China
| | - Xiaoyun Chen
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, PR China; University of Chinese Academy of Sciences, Beijing 100049, PR China
| |
Collapse
|
46
|
Yan H, Bu P. TAMC-derived creatine sustains glioblastoma growth. Cell Metab 2024; 36:1-3. [PMID: 38171329 DOI: 10.1016/j.cmet.2023.12.012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/05/2023] [Revised: 12/08/2023] [Accepted: 12/08/2023] [Indexed: 01/05/2024]
Abstract
Tumor-associated myeloid cells (TAMCs) are the predominant immune population in glioblastoma (GBM), but the definite role of TAMCs in GBM tumorigenicity remains uncertain. In this issue of Cell Metabolism, Rashidi et al. identify a specific population of TAMCs surrounding hypoxic regions of GBM. These TAMCs provide creatine to nearby tumor cells to promote GBM progression.
Collapse
Affiliation(s)
- Huiwen Yan
- Key Laboratory of Epigenetic Regulation and Intervention, Chinese Academy of Sciences, Beijing 100101, China; Key Laboratory of RNA Biology, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China; College of Life Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Pengcheng Bu
- Key Laboratory of Epigenetic Regulation and Intervention, Chinese Academy of Sciences, Beijing 100101, China; Key Laboratory of RNA Biology, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China; College of Life Sciences, University of Chinese Academy of Sciences, Beijing 100049, China.
| |
Collapse
|
47
|
Engin AB, Engin A. Next-Cell Hypothesis: Mechanism of Obesity-Associated Carcinogenesis. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2024; 1460:727-766. [PMID: 39287871 DOI: 10.1007/978-3-031-63657-8_25] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/19/2024]
Abstract
Higher body fat content is related to a higher risk of mortality, and obesity-related cancer represents approximately 40% of all cancer patients diagnosed each year. Furthermore, epigenetic mechanisms are involved in cellular metabolic memory and can determine one's predisposition to being overweight. Low-grade chronic inflammation, a well-established characteristic of obesity, is a central component of tumor development and progression. Cancer-associated adipocytes (CAA), which enhance inflammation- and metastasis-related gene sets within the cancer microenvironment, have pro-tumoral effects. Adipose tissue is a major source of the exosomal micro ribonucleic acids (miRNAs), which modulate pathways involved in the development of obesity and obesity-related comorbidities. Owing to their composition of cargo, exosomes can activate receptors at the target cell or transfer molecules to the target cells and thereby change the phenotype of these cells. Exosomes that are released into the extracellular environment are internalized with their cargo by neighboring cells. The tumor-secreted exosomes promote organ-specific metastasis of tumor cells that normally lack the capacity to metastasize to a specific organ. Therefore, the communication between neighboring cells via exosomes is defined as the "next-cell hypothesis." The reciprocal interaction between the adipocyte and tumor cell is realized through the adipocyte-derived exosomal miRNAs and tumor cell-derived oncogenic miRNAs. The cargo molecules of adipocyte-derived exosomes are important messengers for intercellular communication involved in metabolic responses and have very specific signatures that direct the metabolic activity of target cells. RNA-induced silencing regulates gene expression through various mechanisms. Destabilization of DICER enzyme, which catalyzes the conversion of primary miRNA (pri-miRNA) to precursor miRNA (pre-miRNA), is an important checkpoint in cancer development and progression. Interestingly, adipose tissue in obesity and tumors share similar pathogenic features, and the local hypoxia progress in both. While hypoxia in obesity leads to the adipocyte dysfunction and metabolic abnormalities, in obesity-related cancer cases, it is associated with worsened prognosis, increased metastatic potential, and resistance to chemotherapy. Notch-interleukin-1 (IL-1)-Leptin crosstalk outcome is referred to as "NILCO effect." In this chapter, obesity-related cancer development is discussed in the context of "next-cell hypothesis," miRNA biogenesis, and "NILCO effect."
Collapse
Affiliation(s)
- Ayse Basak Engin
- Faculty of Pharmacy, Department of Toxicology, Gazi University, Hipodrom, Ankara, Turkey.
| | - Atilla Engin
- Faculty of Medicine, Department of General Surgery, Gazi University, Besevler, Ankara, Turkey
- Mustafa Kemal Mah. 2137. Sok. 8/14, 06520, Cankaya, Ankara, Turkey
| |
Collapse
|
48
|
Xia G, Guo Y, Zhang J, Han M, Meng X, Lv J. An Overview of the Deubiquitinase USP53: A Promising Diagnostic Marker and Therapeutic Target. Curr Protein Pept Sci 2024; 25:708-718. [PMID: 39300775 DOI: 10.2174/0113892037292440240518194922] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2023] [Revised: 04/08/2024] [Accepted: 04/18/2024] [Indexed: 09/22/2024]
Abstract
Ubiquitination and deubiquitination are important mechanisms to maintain normal physiological activities, and their disorders or imbalances can lead to various diseases. As a subgroup of deubiquitinases (DUBs), the ubiquitin-specific peptidase (USP) family is closely related to many biological processes. USP53, one of the family members, is widely expressed in human tissues and participates in a variety of life activities, such as cell apoptosis, nerve transmission, and bone remodeling. Mutations in the USP53 gene can cause cholestasis and deafness and may also be a potential cause of schizophrenia. Knockout of USP53 can alleviate neuropathic pain induced by chronic constriction injury. Loss of USP53 up-regulates RANKL expression, promotes the cytogenesis and functional activity of osteoclasts, and triggers osteodestructive diseases. USP53 plays a tumor-suppressive role in lung cancer, renal clear cell carcinoma, colorectal cancer, liver cancer, and esophageal cancer but reduces the radiosensitivity of cervical cancer and esophageal cancer to induce radioresistance. Through the in-depth combination of literature and bioinformatics, this review suggested that USP53 may be a good potential biomarker or therapeutic target for diseases.
Collapse
Affiliation(s)
- Guangce Xia
- First College of Clinical Medicine, Hebei North University, Zhangjiakou 075000, China
- First Hospital of Qinhuangdao Affiliated to Hebei North University, Qinhuangdao 066000, P.R. China
| | - Yulin Guo
- First College of Clinical Medicine, Hebei North University, Zhangjiakou 075000, China
- First Hospital of Qinhuangdao Affiliated to Hebei North University, Qinhuangdao 066000, P.R. China
| | - Jiajia Zhang
- First College of Clinical Medicine, Hebei North University, Zhangjiakou 075000, China
| | - Meng Han
- Breast Disease Diagnosis and Treatment Center, First Hospital of Qinhuangdao, Qinhuangdao, Hebei Province 066000, P.R. China
| | - Xiangchao Meng
- Breast Disease Diagnosis and Treatment Center, First Hospital of Qinhuangdao, Qinhuangdao, Hebei Province 066000, P.R. China
| | - Ji Lv
- Breast Disease Diagnosis and Treatment Center, First Hospital of Qinhuangdao, Qinhuangdao, Hebei Province 066000, P.R. China
| |
Collapse
|
49
|
Qiao L, Hu W, Li L, Chen X, Liu L, Wang J. USP11 promotes glycolysis by regulating HIF-1α stability in hepatocellular carcinoma. J Cell Mol Med 2024; 28:e18017. [PMID: 38229475 PMCID: PMC10826445 DOI: 10.1111/jcmm.18017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2023] [Revised: 10/12/2023] [Accepted: 10/18/2023] [Indexed: 01/18/2024] Open
Abstract
Understanding the mechanisms underlying metastasis in hepatocellular carcinoma (HCC) is crucial for developing new therapies against this fatal disease. Deubiquitinase ubiquitin-specific protease 11 (USP11) belongs to the deubiquitinating family and has previously been reported to play a critical role in cancer pathogenesis. Although it has been established that USP11 can facilitate the metastasis and proliferation ability of HCC, the underlying regulatory mechanisms are poorly understood. The primary objective of this research was to reveal hitherto undocumented functions of USP11 during HCC progression, especially those related to metabolism. Under hypoxic conditions, USP11 was found to significantly impact the glycolysis of HCC cells, as demonstrated through various techniques, including RNA-Seq, migration and colony formation assays, EdU and co-immunoprecipitation. Interestingly, we found that USP11 interacted with the HIF-1α complex and maintained HIF-1α protein stability by removing ubiquitin. Moreover, USP11/HIF-1α could promote glycolysis through the PDK1 and LDHA pathways. In general, our results demonstrate that USP11 promotes HCC proliferation and metastasis through HIF-1α/LDHA-induced glycolysis, providing new insights and the experimental basis for developing new treatments for this patient population.
Collapse
Affiliation(s)
- Lijun Qiao
- College of Pharmacy, Shenzhen Technology UniversityShenzhenGuangdongChina
- Department of Hepatobiliary and Pancreas SurgeryThe Second Clinical Medical College, Jinan University (Shenzhen People's Hospital)ShenzhenGuangdongChina
- Department of Hepatobiliary and Pancreas Surgery, The First Affiliated HospitalSouthern University of Science and TechnologyShenzhenGuangdongChina
| | - Weibin Hu
- Institute for Brain Research and Rehabilitation, South China Normal UniversityGuangzhouGuangdongChina
| | - Linzhi Li
- Laboratory of Molecular Immunology, State Key Laboratory of Genetic Engineering, School of Life SciencesFudan UniversityShanghaiChina
| | - Xin Chen
- College of Pharmacy, Shenzhen Technology UniversityShenzhenGuangdongChina
| | - Liping Liu
- Department of Hepatobiliary and Pancreas SurgeryThe Second Clinical Medical College, Jinan University (Shenzhen People's Hospital)ShenzhenGuangdongChina
- Department of Hepatobiliary and Pancreas Surgery, The First Affiliated HospitalSouthern University of Science and TechnologyShenzhenGuangdongChina
| | - Jingbo Wang
- College of Pharmacy, Shenzhen Technology UniversityShenzhenGuangdongChina
| |
Collapse
|
50
|
Ray SK, Mukherjee S. Role of Protein Ubiquitination and HIF Signaling in the Evolution of Hypoxic Breast Cancer. Curr Pharm Biotechnol 2024; 25:2183-2185. [PMID: 38409721 DOI: 10.2174/0113892010292219240212065544] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2023] [Revised: 01/06/2024] [Accepted: 01/22/2024] [Indexed: 02/28/2024]
Abstract
Alternations in protein ubiquitination along with hypoxia-inducible factor (HIF) signaling contribute to tumorigenesis and breast tumor advancement. Ubiquitination is an impulsive process, which is coordinately governed by E3 ligases and deubiquitinases (DUBs), that have come out as charismatic therapeutic targets. HIF expression, as well as the transcriptional process in malignancies, are frequently elevated, resulting in pitiable clinical outcomes. According to increasing research, multiple E3 ligases, in addition to UBDs work together to modulate HIF expression and activity, permitting breast cancer cells to make out a hypoxic milieu. On the other hand, hypoxia and HIF signaling regulate numerous E3 ligases as well as DUBs. Interpreting involved networks connecting E3 ligase, DUBS, and HIF will reveal profound mechanisms of physiological response to hypoxia and aid in the discovery of new molecular references for cancer management. The present state of knowledge about the entire kinship among E3 ligase, DUBs, and HIF signaling is reviewed here, emphasizing using E3 ligase or DUB inhibitors in breast cancer.
Collapse
Affiliation(s)
- Suman Kumar Ray
- Independent Researcher, Bhopal, Madhya Pradesh, 462020, India
| | - Sukhes Mukherjee
- Department of Biochemistry, All India Institute of Medical Sciences, Bhopal, Madhya Pradesh, 462020, India
| |
Collapse
|