1
|
Leng X, Chen H, Chen G. Construction and validation of a reliable disulfidptosis-related lncRNAs signature of the subtype, prognostic, and immune landscape in bladder cancer. Discov Oncol 2025; 16:418. [PMID: 40153109 PMCID: PMC11953504 DOI: 10.1007/s12672-025-02174-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/16/2024] [Accepted: 03/18/2025] [Indexed: 03/30/2025] Open
Abstract
BACKGROUND Bladder cancer (BLCA) is one of the most frequently-diagnosed tumors globally. Disulfidptosis represents a critical framework for cell death mechanism in cancer therapy. Our study constructed a predictive model utilizing disulfidptosis-related lncRNAs (DRLs) to provide value in evaluating diagnosis, drug sensibility, and prognosis of BLCA patients. METHODS The study data of BLCA patients retrieved from TCGA-BLCA database. Cox and LASSO regression analysis were used to identify DRLs. Kaplan-Meier survival analysis, ROC curve, and nomograms were constructed to assess and forecast survival events. GSEA were performed to illustrate relevant enrichments results. Tumor mutation burden (TMB), immune status, and drug sensitivity were assessed. Muscle invasive bladder cancer (MIBC) tumor and tumor-adjacent normal tissues samples were collected in our department to validate the DRLs expression levels by RT-PCR. RESULTS Overall, nine DRLs (AL590428.1, LSAMP-AS1, LINC01184, LINC-PINT, AC023825.2, AC010331.1, AC009716.1, AC104785.1, AC008764.6) were identified. These DRLs were used to calculate risk scores and create a prognostic model. ROC revealed higher diagnostic efficiency of the model than other clinical characteristics. Nomogram was constructed using the risk scores, age, and tumor stage, which showed excellent predictive power and was verified by calibration graph. BLCA patients were further classified into high-risk group and low-risk group using median risk score as the cut-off value. The high-risk group showed lesser TMB levels and developed worse prognosis. GSEA of the high-risk group identified pathways associated with BLCA progression such as WNT signaling pathway. Immune cells including CD4+ and CD8+ T cells, and immune-related function like T cell co-stimulation also showed remarkable differences between two risk groups. Furthermore, IC50 values of twelve drugs such as Sorafenib, Nilotinib, and Navitoclax were significantly higher in the high-risk group. RT-PCR results revealed that 9 DRLs expression levels were statistically significant between tumor tissues samples and tumor-adjacent normal tissues samples. The expression trends of these DRLs in clinical tissues samples were the same as the findings in TCGA dataset. CONCLUSION Based on this study, it would be advisable to identify the key DRLs with potential prognostic value in BLCA to enhance the evaluation of clinical outcomes in this context.
Collapse
Affiliation(s)
- Xiaoping Leng
- Department of Urology, The First Affiliated Hospital of Chongqing Medical University, No.1 Youyi Road, Yuzhong District, Chongqing, 400016, China
| | - Han Chen
- Department of Urological Oncology Surgery, Chongqing University Cancer Hospital (Chongqing Cancer Institute & Chongqing Cancer Hospital), Chongqing, China
| | - Gang Chen
- Department of Urology, The First Affiliated Hospital of Chongqing Medical University, No.1 Youyi Road, Yuzhong District, Chongqing, 400016, China.
| |
Collapse
|
2
|
Dai Q, Peng Y, He P, Wu X. Interactions and communications in the prostate tumour microenvironment: evolving towards effective cancer therapy. J Drug Target 2025; 33:295-315. [PMID: 39445641 DOI: 10.1080/1061186x.2024.2418344] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2024] [Revised: 10/02/2024] [Accepted: 10/14/2024] [Indexed: 10/25/2024]
Abstract
Prostate cancer is one of the most common malignancies in men. The tumour microenvironment (TME) has a critical role in the initiation, progression, and metastasis of prostate cancer. TME contains various cell types, including cancer-associated fibroblasts (CAFs), endothelial cells, immune cells such as macrophages, lymphocytes B and T, natural killer (NK) cells, and other proteins such as extracellular matrix (ECM) components. The interactions and communications between these cells within the TME are crucial for the growth and response of various solid tumours, such as prostate cancer to different anticancer modalities. In this review article, we exemplify the various mechanisms by which the TME influences prostate cancer progression. The roles of different cells, cytokines, chemokines, and growth factors in modulating the immune response and prostate tumour growth will be discussed. The impact of these cells and factors and other ECM components on tumour cell invasion and metastasis will also be discussed. We explain how these interactions in TME can affect the response of prostate cancer to therapy. We also highlight the importance of understanding these interactions to develop novel therapeutic approaches for prostate cancer.
Collapse
Affiliation(s)
- Qiang Dai
- Department of Urology, Southwest Hospital, Army Medical University (Third Military Medical University), Chongqing, China
| | - Yanling Peng
- Department of Urology, Southwest Hospital, Army Medical University (Third Military Medical University), Chongqing, China
| | - Peng He
- Department of Urology, Southwest Hospital, Army Medical University (Third Military Medical University), Chongqing, China
| | - Xiaojun Wu
- Department of Urology, Southwest Hospital, Army Medical University (Third Military Medical University), Chongqing, China
| |
Collapse
|
3
|
Lu B, Chai L, Zhang Z, Zhao G, Shao Y, Zheng Y, Jin X, Zheng J, Chai D, Ding J. Co-immunization with IFI35 enhances the therapeutic effect of an adenovirus vaccine against renal carcinoma. Int J Biol Macromol 2025; 286:138515. [PMID: 39647736 DOI: 10.1016/j.ijbiomac.2024.138515] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2024] [Revised: 12/04/2024] [Accepted: 12/05/2024] [Indexed: 12/10/2024]
Abstract
Interferon-induced protein 35 (IFI35), an immunomodulator, is highly expressed in tumor cells, yet its role in enhancing tumor vaccine efficacy remains unclear. In this study, an adenovirus (Ad) vaccine encoding dual targets, IFI35 and carbonic anhydrase IX (CAIX), was developed for renal carcinoma treatment. Co-immunization with Ad-IFI35/CAIX effectively inhibited tumor growth in a subcutaneous model and significantly increased the infiltration of CD8+ T cells and dendritic cells (DCs). Furthermore, Ad-IFI35/CAIX administration induced strong cytotoxic T lymphocyte (CTL) responses and expanded multifunctional CD8+ T cell populations. Depletion of CD8+ T cells abolished the vaccine's tumor regression effects, confirming that its therapeutic effect relies on CD8+ T cell-mediated immunity. In addition, Ad-IFI35/CAIX treatment enhanced the induction of memory CTL responses, effectively suppressing the growth of tumors implanted contralaterally. The Ad-IFI35/CAIX vaccine also elicited a strong CD8+ T cell-mediated immunity against tumor metastasis and growth in lung metastasis and orthotopic renal carcinoma models. These results indicate that the Ad vaccine dual targeting IFI35 and CAIX is a potential strategy for renal carcinoma treatment.
Collapse
Affiliation(s)
- Bowen Lu
- Cancer Institute, Xuzhou Medical University, Xuzhou, Jiangsu 221004, China
| | - Leizi Chai
- Department of Traumatic Orthopaedics, People's Hospital of Bozhou City, Bozhou Hospital of Anhui Medical University, Bozhou, Anhui 236000, China
| | - Zichun Zhang
- Department of Urology, The Yancheng Clinical College of Xuzhou Medical University, Yancheng City No. 1 People's Hospital, Yancheng, Jiangsu 224001, China
| | - Guangya Zhao
- Cancer Institute, Xuzhou Medical University, Xuzhou, Jiangsu 221004, China
| | - Yingxiang Shao
- Cancer Institute, Xuzhou Medical University, Xuzhou, Jiangsu 221004, China
| | - Yanyan Zheng
- Cancer Institute, Xuzhou Medical University, Xuzhou, Jiangsu 221004, China
| | - Xin Jin
- Department of Oncology, Xuzhou Central Hospital, Xuzhou Clinical School of Xuzhou Medical University, Xuzhou, Jiangsu 221009, China
| | - Junnian Zheng
- Cancer Institute, Xuzhou Medical University, Xuzhou, Jiangsu 221004, China; Center of Clinical Oncology, The Affiliated Hospital of Xuzhou Medical University, Xuzhou, Jiangsu 221002, China.
| | - Dafei Chai
- Cancer Institute, Xuzhou Medical University, Xuzhou, Jiangsu 221004, China; Center of Clinical Oncology, The Affiliated Hospital of Xuzhou Medical University, Xuzhou, Jiangsu 221002, China.
| | - Jiage Ding
- Department of Oncology, Xuzhou Central Hospital, Xuzhou Clinical School of Xuzhou Medical University, Xuzhou, Jiangsu 221009, China.
| |
Collapse
|
4
|
Cini JK, Kenney RT, Dexter S, McAndrew SJ, Eraslan RN, Brody R, Rezac DJ, Boohaker R, Lapi SE, Mohan P. SON-1010: an albumin-binding IL-12 fusion protein that improves cytokine half-life, targets tumors, and enhances therapeutic efficacy. Front Immunol 2024; 15:1493257. [PMID: 39697343 PMCID: PMC11652653 DOI: 10.3389/fimmu.2024.1493257] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2024] [Accepted: 11/11/2024] [Indexed: 12/20/2024] Open
Abstract
Background Cytokines have been promising cancer immunotherapeutics for decades, yet only two are licensed to date. Interleukin-12 (IL-12) is a potent regulator of cell-mediated immunity that activates NK cells and interferon-γ (IFNγ) production. It plays a central role in multiple pathways that can enhance cancer cell death and modify the tumor microenvironment (TME). Attempts to dose rIL-12 were initially successful but IFNγ toxicity in Phase 2 complicated further development in the late 1990s. Since then, better dosing strategies have been developed, but none have achieved the level of cancer control seen in preclinical models. We set out to develop a novel strategy to deliver fully functional IL-12 and other biologics to the TME by binding albumin, taking advantage of its ability to be concentrated and retained in the tumor. Methods Single-chain variable fragments (scFv) were identified from a human phage display library that bound human, mouse, and cynomolgus macaque serum albumin, both at physiologic and acidic conditions. These were taken through a series of steps to identify strongly binding molecules that don't interfere with the normal physiology of albumin to bind FcRn, giving it prolonged half-life in serum, along with SPARC/GP60, which allows albumin to target the TME. A final molecule was chosen and a single mutation was made that minimizes the potential for immunogenicity. This fully human albumin-binding (FHAB®) domain was characterized and manufacturing processes were developed to bring the first drug candidate into the clinic. Results Once identified, the murine form of mIL12-FHAB was studied preclinically to understand its mechanism of action and biodistribution. It was found to be much more efficient at blocking tumor growth compared to murine IL-12, while stimulating significant IFNγ production with minimal toxicity. SON-1010, which uses the human IL-12 sequence, passed through all of the characterization and required toxicology and is currently being studied in the clinic. Conclusions We identified and developed a platform technology with prolonged half-life that can target IL-12 and other immune modulators to the TME. Safety and efficacy are being studied using SON-1010 as monotherapy and in combination with checkpoint blockade strategies.
Collapse
Affiliation(s)
- John K. Cini
- Sonnet BioTherapeutics, Inc., Princeton, NJ, United States
| | | | - Susan Dexter
- Sonnet BioTherapeutics, Inc., Princeton, NJ, United States
| | | | | | - Rich Brody
- InfinixBio, Inc., Athens, OH, United States
| | | | | | - Suzanne E. Lapi
- Radiology, Chemistry, and Biomedical Engineering, University of Alabama, Birmingham, AL, United States
| | - Pankaj Mohan
- Sonnet BioTherapeutics, Inc., Princeton, NJ, United States
| |
Collapse
|
5
|
Fan J, Tang S, Kong X, Cun Y. Integrating multi-omics data reveals neuroblastoma subtypes in the tumor microenvironment. Life Sci 2024; 359:123236. [PMID: 39532261 DOI: 10.1016/j.lfs.2024.123236] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2024] [Revised: 11/04/2024] [Accepted: 11/08/2024] [Indexed: 11/16/2024]
Abstract
Neuroblastoma (NB) is a severe pediatric tumor originating from the developing sympathetic nervous system, characterized by diverse clinical outcomes, including spontaneous regression and aggressive metastasis. This variability suggests the existence of different NB subtypes, necessitating accurate classification for effective targeted treatment. In this study, we employed the similarity network fusion (SNF) algorithm and identified three NB subtypes, including mesenchymal-like (MES), MYCN-like (MYCN), and neurogenic-like (Neurogenic). The MES subtype exhibited the highest activation of immune-related pathways. The MYCN subtype demonstrated the worst prognosis, with enrichment in cell growth and proliferation pathways. Conversely, the Neurogenic subtype showed the best prognosis, with enrichment in sympathetic nervous system development processes. Through single-cell RNA sequencing (scRNA-seq) analysis, we examined the tumor microenvironments of these distinct NB subtypes, revealing divergent differentiation trajectories for adrenergic cells within the MYCN and Neurogenic subtypes. We also identified a significant presence of naïve T cells in the MES subtype, as well as mesenchymal cell subtypes associated with the unique plasticity observed in both the MES and MYCN subtypes. Drug sensitivity prediction analysis suggested that the MES subtype may respond favorably to MEK inhibitors, while the MYCN subtype may be susceptible to Bcl-2 inhibitors. Our integrative multi-omics approach enabled precise stratification of NB into biologically distinct subtypes, potentially facilitating the development of subtype-specific therapeutic strategies for improved patient management and survival outcomes.
Collapse
Affiliation(s)
- Jinhua Fan
- Pediatric Research Institute, Chongqing Key Laboratory of Child Neurodevelopment and Cognitive Disorders, Ministry of Education Key Laboratory of Child Development and Disorders, National Clinical Research Center for Child Health and Disorders, Children's Hospital of Chongqing Medical University, Chongqing 400014, China
| | - Shuxin Tang
- Pediatric Research Institute, Chongqing Key Laboratory of Child Neurodevelopment and Cognitive Disorders, Ministry of Education Key Laboratory of Child Development and Disorders, National Clinical Research Center for Child Health and Disorders, Children's Hospital of Chongqing Medical University, Chongqing 400014, China
| | - Xiangru Kong
- Departments of Oncological Surgery, Children's Hospital of Chongqing Medical University, Chongqing 400014, China
| | - Yupeng Cun
- Pediatric Research Institute, Chongqing Key Laboratory of Child Neurodevelopment and Cognitive Disorders, Ministry of Education Key Laboratory of Child Development and Disorders, National Clinical Research Center for Child Health and Disorders, Children's Hospital of Chongqing Medical University, Chongqing 400014, China.
| |
Collapse
|
6
|
Feng B, Bai Z, Zhou X, Zhao Y, Xie YQ, Huang X, Liu Y, Enbar T, Li R, Wang Y, Gao M, Bonati L, Peng MW, Li W, Tao B, Charmoy M, Held W, Melenhorst JJ, Fan R, Guo Y, Tang L. The type 2 cytokine Fc-IL-4 revitalizes exhausted CD8 + T cells against cancer. Nature 2024; 634:712-720. [PMID: 39322665 PMCID: PMC11485240 DOI: 10.1038/s41586-024-07962-4] [Citation(s) in RCA: 28] [Impact Index Per Article: 28.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2023] [Accepted: 08/20/2024] [Indexed: 09/27/2024]
Abstract
Current cancer immunotherapy predominately focuses on eliciting type 1 immune responses fighting cancer; however, long-term complete remission remains uncommon1,2. A pivotal question arises as to whether type 2 immunity can be orchestrated alongside type 1-centric immunotherapy to achieve enduring response against cancer3,4. Here we show that an interleukin-4 fusion protein (Fc-IL-4), a typical type 2 cytokine, directly acts on CD8+ T cells and enriches functional terminally exhausted CD8+ T (CD8+ TTE) cells in the tumour. Consequently, Fc-IL-4 enhances antitumour efficacy of type 1 immunity-centric adoptive T cell transfer or immune checkpoint blockade therapies and induces durable remission across several syngeneic and xenograft tumour models. Mechanistically, we discovered that Fc-IL-4 signals through both signal transducer and activator of transcription 6 (STAT6) and mammalian target of rapamycin (mTOR) pathways, augmenting the glycolytic metabolism and the nicotinamide adenine dinucleotide (NAD) concentration of CD8+ TTE cells in a lactate dehydrogenase A-dependent manner. The metabolic modulation mediated by Fc-IL-4 is indispensable for reinvigorating intratumoural CD8+ TTE cells. These findings underscore Fc-IL-4 as a potent type 2 cytokine-based immunotherapy that synergizes effectively with type 1 immunity to elicit long-lasting responses against cancer. Our study not only sheds light on the synergy between these two types of immune responses, but also unveils an innovative strategy for advancing next-generation cancer immunotherapy by integrating type 2 immune factors.
Collapse
Affiliation(s)
- Bing Feng
- Institute of Bioengineering, École Polytechnique Fédérale de Lausanne (EPFL), Lausanne, Switzerland
- Institute of Materials Science and Engineering, EPFL, Lausanne, Switzerland
| | - Zhiliang Bai
- Department of Biomedical Engineering, Yale University, New Haven, CT, USA
| | - Xiaolei Zhou
- Institute of Bioengineering, École Polytechnique Fédérale de Lausanne (EPFL), Lausanne, Switzerland
- Institute of Materials Science and Engineering, EPFL, Lausanne, Switzerland
| | - Yang Zhao
- Institute of Bioengineering, École Polytechnique Fédérale de Lausanne (EPFL), Lausanne, Switzerland
| | - Yu-Qing Xie
- Institute of Bioengineering, École Polytechnique Fédérale de Lausanne (EPFL), Lausanne, Switzerland
| | - Xinyi Huang
- Institute of Chemical Sciences and Engineering, EPFL, Lausanne, Switzerland
| | - Yang Liu
- Institute of Bioengineering, École Polytechnique Fédérale de Lausanne (EPFL), Lausanne, Switzerland
| | - Tom Enbar
- Institute of Bioengineering, École Polytechnique Fédérale de Lausanne (EPFL), Lausanne, Switzerland
| | - Rongrong Li
- Institute of Bioengineering, École Polytechnique Fédérale de Lausanne (EPFL), Lausanne, Switzerland
| | - Yi Wang
- Institute of Bioengineering, École Polytechnique Fédérale de Lausanne (EPFL), Lausanne, Switzerland
- Institute of Materials Science and Engineering, EPFL, Lausanne, Switzerland
| | - Min Gao
- Institute of Bioengineering, École Polytechnique Fédérale de Lausanne (EPFL), Lausanne, Switzerland
| | - Lucia Bonati
- Institute of Bioengineering, École Polytechnique Fédérale de Lausanne (EPFL), Lausanne, Switzerland
| | - Mei-Wen Peng
- Institute of Bioengineering, École Polytechnique Fédérale de Lausanne (EPFL), Lausanne, Switzerland
| | - Weilin Li
- Institute of Bioengineering, École Polytechnique Fédérale de Lausanne (EPFL), Lausanne, Switzerland
| | - Bo Tao
- Department of Pathology, Yale University School of Medicine, New Haven, CT, USA
| | - Mélanie Charmoy
- Department of Oncology, University of Lausanne, Epalinges, Switzerland
| | - Werner Held
- Department of Oncology, University of Lausanne, Epalinges, Switzerland
| | | | - Rong Fan
- Department of Biomedical Engineering, Yale University, New Haven, CT, USA.
- Department of Pathology, Yale University School of Medicine, New Haven, CT, USA.
| | - Yugang Guo
- Institute of Bioengineering, École Polytechnique Fédérale de Lausanne (EPFL), Lausanne, Switzerland.
- Institute of Materials Science and Engineering, EPFL, Lausanne, Switzerland.
- State Key Laboratory of Advanced Drug Delivery and Release Systems, Zhejiang University, Hangzhou, China.
- Jinhua Institute of Zhejiang University, Jinhua, China.
- Institute of Drug Metabolism and Pharmaceutical Analysis, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, China.
| | - Li Tang
- Institute of Bioengineering, École Polytechnique Fédérale de Lausanne (EPFL), Lausanne, Switzerland.
- Institute of Materials Science and Engineering, EPFL, Lausanne, Switzerland.
| |
Collapse
|
7
|
Wang QL, Lu SY, Xu DD, Ma JX, Guo R, Zhang L, Tang LY, Shen Y, Shen CL, Wang JJ, Wu YL, Lu LM, Wang ZG, Zhang HX. USP47 deficiency in mice modulates tumor infiltrating immune cells and enhances antitumor immune responses in prostate cancer. Cancer Immunol Immunother 2024; 73:143. [PMID: 38832955 PMCID: PMC11150355 DOI: 10.1007/s00262-024-03730-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2024] [Accepted: 05/13/2024] [Indexed: 06/06/2024]
Abstract
This study investigates the role of USP47, a deubiquitinating enzyme, in the tumor microenvironment and its impact on antitumor immune responses. Analysis of TCGA database revealed distinct expression patterns of USP47 in various tumor tissues and normal tissues. Prostate adenocarcinoma showed significant downregulation of USP47 compared to normal tissue. Correlation analysis demonstrated a positive association between USP47 expression levels and infiltrating CD8+ T cells, neutrophils, and macrophages, while showing a negative correlation with NKT cells. Furthermore, using Usp47 knockout mice, we observed a slower tumor growth rate and reduced tumor burden. The absence of USP47 led to increased infiltration of immune cells, including neutrophils, macrophages, NK cells, NKT cells, and T cells. Additionally, USP47 deficiency resulted in enhanced activation of cytotoxic T lymphocytes (CTLs) and altered T cell subsets within the tumor microenvironment. These findings suggest that USP47 plays a critical role in modulating the tumor microenvironment and promoting antitumor immune responses, highlighting its potential as a therapeutic target in prostate cancer.
Collapse
Affiliation(s)
- Qian-Lan Wang
- Research Center for Experimental Medicine, State Key Laboratory of Medical Genomics, Shanghai Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China
| | - Shun-Yuan Lu
- Research Center for Experimental Medicine, State Key Laboratory of Medical Genomics, Shanghai Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China
| | - Dan-Dan Xu
- Research Center for Experimental Medicine, State Key Laboratory of Medical Genomics, Shanghai Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China
| | - Jin-Xia Ma
- Research Center for Experimental Medicine, State Key Laboratory of Medical Genomics, Shanghai Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China
| | - Rui Guo
- Research Center for Experimental Medicine, State Key Laboratory of Medical Genomics, Shanghai Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China
| | - Lu Zhang
- Research Center for Experimental Medicine, State Key Laboratory of Medical Genomics, Shanghai Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China
| | - Ling-Yun Tang
- Research Center for Experimental Medicine, State Key Laboratory of Medical Genomics, Shanghai Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China
| | - Yan Shen
- Research Center for Experimental Medicine, State Key Laboratory of Medical Genomics, Shanghai Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China
| | - Chun-Ling Shen
- Research Center for Experimental Medicine, State Key Laboratory of Medical Genomics, Shanghai Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China
| | - Jin-Jin Wang
- Shanghai Model Organisms Center, Shanghai, 201321, China
| | - Ying-Li Wu
- Hongqiao International Institute of Medicine, Shanghai Tongren Hospital/Faculty of Basic Medicine, Department of Pathophysiology, Key Laboratory of Cell Differentiation and Apoptosis of the Chinese Ministry of Education, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China
| | - Li-Ming Lu
- Shanghai Institute of Immunology, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China.
| | - Zhu-Gang Wang
- Research Center for Experimental Medicine, State Key Laboratory of Medical Genomics, Shanghai Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China.
| | - Hong-Xin Zhang
- Research Center for Experimental Medicine, State Key Laboratory of Medical Genomics, Shanghai Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China.
| |
Collapse
|
8
|
Zhang J, Li AM, Kansler ER, Li MO. Cancer immunity by tissue-resident type 1 innate lymphoid cells and killer innate-like T cells. Immunol Rev 2024; 323:150-163. [PMID: 38506480 PMCID: PMC11102320 DOI: 10.1111/imr.13319] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/21/2024]
Abstract
Cancer progression can be restrained by tumor-infiltrating lymphocytes in a process termed cancer immunosurveillance. Based on how lymphocytes are activated and recruited to the tumor tissue, cancer immunity is either pre-wired, in which innate lymphocytes and innate-like T cells are directly recruited to and activated in tumors following their differentiation in primary lymphoid organs; or priming-dependent, in which conventional adaptive T cells are first primed by cognate antigens in secondary lymphoid organs before homing to and reactivated in tumors. While priming-dependent cancer immunity has been a focus of cancer immunology research for decades, in part due to historical preconception of cancer theory and tumor model choice as well as clinical success of conventional adaptive T cell-directed therapeutic programs, recent studies have revealed that pre-wired cancer immunity mediated by tissue-resident type 1 innate lymphoid cells (ILC1s) and killer innate-like T cells (ILTCKs) is an integral component of the cancer immunosurveillance process. Herein we review the distinct ontogenies and cancer-sensing mechanisms of ILC1s and ILTCKs in murine genetic cancer models as well as the conspicuously conserved responses in human malignancies. How ILC1s and ILTCKs may be targeted to broaden the scope of cancer immunotherapy beyond conventional adaptive T cells is also discussed.
Collapse
Affiliation(s)
- Jing Zhang
- Immunology Program, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Albert M. Li
- Immunology Program, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Emily R. Kansler
- Immunology Program, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Ming O. Li
- Immunology Program, Memorial Sloan Kettering Cancer Center, New York, NY, USA
- Louis V. Gerstner Jr. Graduate School of Biomedical Sciences, Memorial Sloan Kettering Cancer Center, New York, NY, USA
- Immunology and Microbial Pathogenesis Graduate Program, Weill Cornell Graduate School of Biomedical Sciences, Cornell University, New York, NY, USA
| |
Collapse
|
9
|
He X, Fan K, Gong H, Huang M, Zeng Q, Huang J, Peng X, Lai P, Lu Y, Wang H. Mechanism study of cross presentation of exogenous antigen induced by cholera toxin-like chimeric protein. Vaccine 2024; 42:1549-1560. [PMID: 38320931 DOI: 10.1016/j.vaccine.2024.01.075] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2023] [Revised: 12/09/2023] [Accepted: 01/23/2024] [Indexed: 02/08/2024]
Abstract
Tumor subunit vaccines have great potential in personalized cancer immunotherapy. They are usually administered with adjuvant owing to their low immunogenicity. Cholera toxin (CT) is a biological adjuvant with diverse biological functions and a long history of use. Our earlier study revealed that a CT-like chimeric protein co-delivered with murine granulocyte-macrophage colony stimulating factor (mGM-CSF) and prostate cancer antigen epitope could co-stimulate dendritic cells (DCs) and enhance cross presentation of tumor epitope. To further study the molecular mechanism of CT-like chimeric protein in cross presentation, major histocompatibility complex class I (MHC I)-restricted epitope 257-264 of ovalbumin (OVAT) was used as a model antigen peptide in this study. Recombinant A subunit and pentameric B subunit of CT protein were respectively genetically constructed and purified. Then both assembled into AB5 chimeric protein in vitro. Three different chimeric biomacromolecules containing mGM-CSF and OVAT were constructed according to the different fusion sites and whether the endoplasmic reticulum (ER) retention sequence was included. It was found that A2 domain and B subunit of CT were both available for loading epitopes and retaining GM1 affinity. The binding activity of GM1 was positively correlated with antigen endocytosis. Once internalized, DCs became mature and cross-presented antigen. KDEL helped the whole molecule to be retained in the ER, and this improved the cross presentation of antigen on MHC I molecules. In conclusion, hexameric CT-like chimeric protein with dual effects of GM1 affinity and ER retention sequence were potential in improvement of cross presentation. The results laid a foundation for designing personalized tumor vaccine based on CT-like chimeric protein molecular structure.
Collapse
Affiliation(s)
- Xianying He
- School of Biomedical and Pharmaceutical Sciences, Guangdong University of Technology, Guangzhou 510006, CN, China
| | - Kaixiang Fan
- School of Biomedical and Pharmaceutical Sciences, Guangdong University of Technology, Guangzhou 510006, CN, China
| | - Haiyan Gong
- School of Biomedical and Pharmaceutical Sciences, Guangdong University of Technology, Guangzhou 510006, CN, China
| | - Mingqin Huang
- School of Biomedical and Pharmaceutical Sciences, Guangdong University of Technology, Guangzhou 510006, CN, China
| | - Qingsong Zeng
- School of Biomedical and Pharmaceutical Sciences, Guangdong University of Technology, Guangzhou 510006, CN, China
| | - Junjie Huang
- School of Biomedical and Pharmaceutical Sciences, Guangdong University of Technology, Guangzhou 510006, CN, China
| | - Ximing Peng
- School of Biomedical and Pharmaceutical Sciences, Guangdong University of Technology, Guangzhou 510006, CN, China
| | - Peifang Lai
- School of Biomedical and Pharmaceutical Sciences, Guangdong University of Technology, Guangzhou 510006, CN, China
| | - Yujing Lu
- School of Biomedical and Pharmaceutical Sciences, Guangdong University of Technology, Guangzhou 510006, CN, China
| | - Huaqian Wang
- School of Biomedical and Pharmaceutical Sciences, Guangdong University of Technology, Guangzhou 510006, CN, China.
| |
Collapse
|
10
|
Wu K, Sun Q, Liu D, Lu J, Wen D, Zang X, Gao L. Genetically predicted circulating levels of cytokines and the risk of oral cavity and pharyngeal cancer: a bidirectional mendelian-randomization study. Front Genet 2024; 14:1321484. [PMID: 38274108 PMCID: PMC10808506 DOI: 10.3389/fgene.2023.1321484] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2023] [Accepted: 12/26/2023] [Indexed: 01/27/2024] Open
Abstract
Background: Epidemiological research has established associations between various inflammatory cytokines and the occurrence of oral cancer and oropharyngeal cancer (OCPC). We performed a Mendelian randomization (MR) analysis to systematically investigate the causal relationship between inflammatory cytokines and OCPC. Methods: We performed a bidirectional two-sample MR analysis using OCPC from 12 studies (6,034 cases and 6,585 controls) and genome-wide association study (GWAS) results for 41 serum cytokines from 8,293 Finns, respectively. Inverse variance weighting was used as the primary MR method and four additional MR methods (MR Egger, Weighted median, Simple mode, Weighted mode) were used to examine genetic associations between inflammatory traits and OCPC, and Cochran's Q test, MR-Egger intercept, leave-one-out analysis, funnel plot, and multivariate MR (MVMR) analysis were used to assess the MR results. Results: The results suggested a potential association between high gene expression of Macrophage inflammatory protein-1α (MIP1α/CCL3) and an increased risk of OCPC (Odds Ratio (OR): 1.71, 95% Confidence Interval (CI): 1.09-2.68, p = 0.019). Increasing the expression levels of the interleukin-7 (IL-7) gene by 1 standard deviation reduced the risk of OCPC (OR: 0.64, 95%CI: 0.48-0.86, p = 0.003). In addition, multivariate Mendelian randomization analysis also showed the same results (MIP1α/CCL3, OR: 1.002, 95% CI: 0.919-1.092, p = 0.044; IL-7, OR: 0.997, 95% CI: 0.994-0.999, p = 0.011). Conversely, there was a positive correlation between genetic susceptibility to OCPC and an increase in Interleukin-4 (IL-4) (OR: 1.04, 95%CI: 1.00-1.08, p = 0.027). Conclusion: Our study systematically assessed the association between inflammatory cytokines and the risk of OCPC. We identified two upstream regulatory factors (IL-7 and CCL3) and one downstream effector factor (IL-4) that were associated with OCPC, offering potential avenues for the development of novel treatments.
Collapse
Affiliation(s)
- Kehan Wu
- Department of Oral and Maxillofacial Surgery, The Second Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang, China
| | - Qianhui Sun
- Department of Cardiology, The Second Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang, China
| | - Dongxu Liu
- Department of Oral and Maxillofacial Surgery, The Second Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang, China
| | - Jiayi Lu
- Department of Oral and Maxillofacial Surgery, The Second Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang, China
| | - Deyu Wen
- Department of Oral and Maxillofacial Surgery, The Second Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang, China
| | - Xiyan Zang
- Department of Oral and Maxillofacial Surgery, The Second Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang, China
| | - Li Gao
- Department of Oral and Maxillofacial Surgery, The Second Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang, China
| |
Collapse
|
11
|
Lu M, Yu X, Hu J, Wang J, Wang T. Cytotoxic T-lymphocytes in acute myeloid leukemia: Monitoring prognosis and guiding treatment choice. J Gene Med 2024; 26:e3587. [PMID: 37697474 DOI: 10.1002/jgm.3587] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2023] [Revised: 08/01/2023] [Accepted: 08/14/2023] [Indexed: 09/13/2023] Open
Abstract
BACKGROUND Cytotoxic T-lymphocyte (CTL)-mediated therapy has become the central theme of cancer immunotherapy. The present study emphasized the role of CTLs in acute myeloid leukemia (AML) and aimed to understand the role of CTLs cytogenetic markers in monitoring AML prognostic outcomes and clinical treatment responses. METHODS Seurat was employed to analyze single-cell RNA sequencing data in GSE116256. CellChat was used to detect cell-cell interactions to determine the central role of CTLs. The marker genes of CTLs were extracted and randomForestSRC was employed to construct a random forest model. The prognosis, immune checkpoint expression, immune cell infiltration, immunotherapy response and drug sensitivity of AML patients were evaluated according to the model. RESULTS Seven types of cellular components of AML were identified in GSE116256, and CTLs radiated the most interactions with other cell types. Random forest analysis screened out six marker genes for construction of the model. The risk score calculated according to the model was positively correlated with immune score, immune cell infiltration, expression of multiple immune checkpoints and immune effect pathway. The response rate of immunotherapy was significantly higher and more sensitive to 14 drugs in high-risk samples than in low-risk samples, whereas low-risk patients showed a higher sensitivity to six drugs. CONCLUSIONS The present study emphasized the central role of CTLs in cell communication and established a random forest regression model based on its cytogenetic markers, which helps to stratify the prognosis of AML, promotes the understanding of the phenotype of AML and may also guide the treatment choice of AML patients, which contributed to stratification of AML prognosis, promoted understanding of the phenotype of AML and may guide treatment selection in patients with AML.
Collapse
Affiliation(s)
- Mengjiao Lu
- Department of Clinical Laboratory, Beilun People's Hospital, Beilun Branch of the First Affiliated Hospital, School of Medicine, Zhejiang University, Ningbo, China
| | - Xialei Yu
- Department of Obstetrics, Beilun People's Hospital, Beilun Branch of the First Affiliated Hospital, School of Medicine, Zhejiang University, Ningbo, China
| | - Jingyan Hu
- Department of Clinical Laboratory, Beilun People's Hospital, Beilun Branch of the First Affiliated Hospital, School of Medicine, Zhejiang University, Ningbo, China
| | - Jiajing Wang
- Department of Clinical Laboratory, Beilun People's Hospital, Beilun Branch of the First Affiliated Hospital, School of Medicine, Zhejiang University, Ningbo, China
| | - Taozuo Wang
- Department of Clinical Laboratory, Beilun People's Hospital, Beilun Branch of the First Affiliated Hospital, School of Medicine, Zhejiang University, Ningbo, China
| |
Collapse
|
12
|
Cini JK, Dexter S, Rezac DJ, McAndrew SJ, Hedou G, Brody R, Eraslan RN, Kenney RT, Mohan P. SON-1210 - a novel bifunctional IL-12 / IL-15 fusion protein that improves cytokine half-life, targets tumors, and enhances therapeutic efficacy. Front Immunol 2023; 14:1326927. [PMID: 38250068 PMCID: PMC10798159 DOI: 10.3389/fimmu.2023.1326927] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2023] [Accepted: 12/05/2023] [Indexed: 01/23/2024] Open
Abstract
Background The potential synergy between interleukin-12 (IL-12) and IL-15 holds promise for more effective solid tumor immunotherapy. Nevertheless, previous clinical trials involving therapeutic cytokines have encountered obstacles such as short pharmacokinetics, limited tumor microenvironment (TME) targeting, and substantial systemic toxicity. Methods To address these challenges, we fused single-chain human IL-12 and native human IL-15 in cis onto a fully human albumin binding (FHAB) domain single-chain antibody fragment (scFv). This novel fusion protein, IL12-FHAB-IL15 (SON-1210), is anticipated to amplify the therapeutic impact of interleukins and combination immunotherapies in human TME. The molecule was studied in vitro and in animal models to assess its pharmacokinetics, potency, functional characteristics, safety, immune response, and efficacy. Results SON-1210 demonstrated robust binding affinity to albumin and exhibited the anticipated in vitro activity and tumor model efficacy that might be expected based on decades of research on native IL-12 and IL-15. Notably, in the B16F10 melanoma model (a non-immunogenic, relatively "cold" tumor), the murine counterpart of the construct, which had mouse (m) and human (h) cytokine sequences for the respective payloads (mIL12-FHAB-hIL15), outperformed equimolar doses of the co-administered native cytokines in a dose-dependent manner. A single dose caused a marked reduction in tumor growth that was concomitant with increased IFNγ levels; increased Th1, CTL, and activated NK cells; a shift in macrophages from the M2 to M1 phenotype; and a reduction in Treg cells. In addition, a repeat-dose non-human primate (NHP) toxicology study displayed excellent tolerability up to 62.5 µg/kg of SON-1210 administered three times, which was accompanied by the anticipated increases in IFNγ levels. Toxicokinetic analyses showed sustained serum levels of SON-1210, using a sandwich ELISA with anti-IL-15 for capture and biotinylated anti-IL-12 for detection, along with sustained IFNγ levels, indicating prolonged kinetics and biological activity. Conclusion Collectively, these findings support the suitability of SON-1210 for patient trials in terms of activity, efficacy, and safety, offering a promising opportunity for solid tumor immunotherapy. Linking cytokine payloads to a fully human albumin binding domain provides an indirect opportunity to target the TME using potent cytokines in cis that can redirect the immune response and control tumor growth.
Collapse
Affiliation(s)
- John K. Cini
- Sonnet BioTherapeutics, Inc., Princeton, NJ, United States
| | - Susan Dexter
- Sonnet BioTherapeutics, Inc., Princeton, NJ, United States
| | | | | | - Gael Hedou
- Sonnet BioTherapeutics, CH S.A., Geneva, GE, Switzerland
| | - Rich Brody
- InfinixBio, Inc., Athens, OH, United States
| | | | | | - Pankaj Mohan
- Sonnet BioTherapeutics, Inc., Princeton, NJ, United States
| |
Collapse
|
13
|
Zhao J, Quan J, Chen W, Xie X. Grid2 interacting protein is a potential biomarker related to immune infiltration in colorectal cancer. Eur J Med Res 2023; 28:511. [PMID: 37964339 PMCID: PMC10644545 DOI: 10.1186/s40001-023-01468-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2023] [Accepted: 10/23/2023] [Indexed: 11/16/2023] Open
Abstract
BACKGROUND Colorectal cancer (CRC) is one of the three deadliest malignant tumors in the world, posing a severe hazard to human health. Nonetheless, the 5-year survival rate for advanced CRC remains unsatisfactory. Grid2 interacting protein (GRID2IP) is a Purkinje fiber postsynaptic scaffold protein implicated in a number of signal transduction pathways in the nervous system. Previous studies have shown that Grid2 is closely related to the occurrence and prognosis of gastric cancer and many other diseases. Therefore, we aim to identify the relationship between GRID2IP and the occurrence and prognosis of CRC. METHODS Transcriptome data were retrieved from The Cancer Genome Atlas (TCGA) database to analyze the differential expression of GRID2IP in a variety of malignant tumors and then validate it by quantitative real time polymerase chain reaction(Q-PCR) and Western Blot in HT29 and SW480 cells. "DESeq2" package was used to analyze the differentially expressed genes (DEGs) between the high- and low-GRID2IP subgroups. In relation to DEGs, Gene Ontology (GO) enrichment and Kyoto Encyclopedia of Genes and Genomes (KEGG) analysis were performed. In addition, gene set enrichment analysis (GSEA) and single-sample gene set enrichment analysis (ssGSEA) were employed to examine DEGs-associated signaling pathways and GRID2IP-associated immune cell infiltration levels. Besides, overall survival (OS), disease-specific survival (DSS), and progression-free interval (PFI) were compared between the two subgroups using a Kaplan-Meier analysis. In addition, a prognostic model for GRID2IP and clinical characteristics was developed using the univariate Cox regression method. The "pRRophetic" package was applied to predict the drug sensitivity of different subgroups. Moreover, we also performed single-cell analysis of GRID2IP using the TISCH database. RESULTS GRID2IP is upregulated in CRC patients. The rise of GRID2IP inhibits the invasion of tumor-associated immune cells resulting in a lower immune score. In addition, high GRID2IP expression was associated with poor prognosis in different clinical subgroups. Analysis of single cells revealed that GRID2IP was predominantly expressed in immune cells, myofibroblasts, and cancerous cells. In terms of chemotherapy drug sensitivity, the subgroup with high GRID2IP expression was less sensitive to gemcitabine. CONCLUSIONS Our results suggest that rising GRID2IP promotes tumor-associated immune cell infiltration and suggests adverse outcomes in CRC patients, which may be a useful biomarker for determining the prognosis of CRC and a potential target molecule for CRC therapy.
Collapse
Affiliation(s)
- Jiajing Zhao
- Department of General Surgery, the First Affiliated Hospital of Shantou University Medical College, Shantou, 515000, China
| | - Jiazheng Quan
- Marshall Laboratory of Biomedical Engineering, Institute of Biological Therapy, Shenzhen University Medical School, Shenzhen University, Shenzhen, 518055, China
| | - Weilin Chen
- Marshall Laboratory of Biomedical Engineering, Institute of Biological Therapy, Shenzhen University Medical School, Shenzhen University, Shenzhen, 518055, China.
| | - Xiaojun Xie
- Department of General Surgery, the First Affiliated Hospital of Shantou University Medical College, Shantou, 515000, China.
| |
Collapse
|
14
|
Li L, Wang C, Li Q, Guan Y, Zhang X, Kong F, Feng Z, Lu Y, Wang D, Wang N. Exosomes as a modulator of immune resistance in human cancers. Cytokine Growth Factor Rev 2023; 73:135-149. [PMID: 37543438 DOI: 10.1016/j.cytogfr.2023.07.007] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2023] [Accepted: 07/31/2023] [Indexed: 08/07/2023]
Abstract
In the tumor microenvironment (TME), exosomes secreted by cells form interactive networks between the tumor cells and immune cells, thereby regulating immune signaling cascades in the TME. As key messengers of cell-to-cell communication in the TME, exosomes not only take charge of tumor cell antigen presentation to the immune cells, but also regulate the activities of immune cells, inhibit immune function, and, especially, promote immune resistance, all of which affects the therapeutic outcomes of tumors. Exosomes, which are small-sized vesicles, possess some remarkable advantages, including strong biological activity, a lack of immunogenicity and toxicity, and a strong targeting ability. Based on these characteristics, research on exosomes as biomarkers or carriers of tumor therapeutic drugs has become a research hotspot in related fields. This review describes the role of exosomes in cell communications in the TME, summarizes the effectiveness of exosome-based immunotherapy in overcoming immune resistance in cancer treatment, and systematically summarizes and discusses the characteristics of exosomes from different cell sources. Furthermore, the prospects and challenges of exosome-related therapies are discussed.
Collapse
Affiliation(s)
- Lanzhou Li
- Engineering Research Center of Chinese Ministry of Education for Edible and Medicinal Fungi, Jilin Agricultural University, Changchun 130118, PR China
| | - Chunyue Wang
- Engineering Research Center of Chinese Ministry of Education for Edible and Medicinal Fungi, Jilin Agricultural University, Changchun 130118, PR China
| | - Qiucheng Li
- School of Chinese Medicine, The University of Hong Kong, Pokfulam 999077, Hong Kong Special Administrative Region of China
| | - Yue Guan
- Engineering Research Center of Chinese Ministry of Education for Edible and Medicinal Fungi, Jilin Agricultural University, Changchun 130118, PR China
| | - Xin Zhang
- Engineering Research Center of Chinese Ministry of Education for Edible and Medicinal Fungi, Jilin Agricultural University, Changchun 130118, PR China
| | - Fange Kong
- Engineering Research Center of Chinese Ministry of Education for Edible and Medicinal Fungi, Jilin Agricultural University, Changchun 130118, PR China
| | - Zixin Feng
- School of Chinese Medicine, The University of Hong Kong, Pokfulam 999077, Hong Kong Special Administrative Region of China
| | - Yuanjun Lu
- School of Chinese Medicine, The University of Hong Kong, Pokfulam 999077, Hong Kong Special Administrative Region of China
| | - Di Wang
- Engineering Research Center of Chinese Ministry of Education for Edible and Medicinal Fungi, Jilin Agricultural University, Changchun 130118, PR China.
| | - Ning Wang
- School of Chinese Medicine, The University of Hong Kong, Pokfulam 999077, Hong Kong Special Administrative Region of China.
| |
Collapse
|
15
|
Zhang W, Li S, Zhang C, Mu Z, Chen K, Xu Z. Tumor-infiltrating lymphocytes predict efficacy of immunotherapy in advanced non-small cell lung cancer: a single-center retrospective cohort study. Acta Oncol 2023; 62:853-860. [PMID: 37377003 DOI: 10.1080/0284186x.2023.2228991] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2023] [Accepted: 06/19/2023] [Indexed: 06/29/2023]
Abstract
BACKGROUND/PURPOSE The current study aimed to investigate the correlation between tumor-infiltrating lymphocytes (TILs) and immunotherapy efficacy in patients with advanced non-small cell lung cancer (NSCLC). MATERIALS AND METHODS Eighty-nine patients with advanced NSCLC who received immune checkpoint inhibitors (ICIs) monotherapy were retrospectively enrolled in this study. The density of TILs in paraffin-embedded pathological tissues taken before receiving ICIs was quantitatively analyzed by immunohistochemical staining. The density of TILs was treated as a dichotomous variable using the median as the cutoff value. The Kaplan-Meier analysis was used to assess survival differences between groups. Univariate and multivariate Cox analyses were applied to screen out independent prognostic factors and further construct a nomogram prediction model to predict survival. RESULTS Survival analysis showed that CD8+ TILs, CD4+ TILs, and IFN-γ+ Th1 were significant positive indicators for predicting progression-free survival (PFS) and overall survival (OS) (p < 0.05), whereas Foxp3+ Treg were a significant negative predictor (p < 0.05). The predictive role of IL-4+ Th2 was not apparent in this study and requires further investigation and exploration (p > 0.05). The nomogram prediction model exhibited good discriminative ability, with C-index values of 0.723 (95% CI 0.682-0.764) and 0.793 (95% CI, 0.738-0.848) in the training cohort and validation cohort, respectively. The AUC values indicated that the nomogram prediction model had high predictive value and the calibration curve presented good prediction accuracy. CONCLUSIONS TILs could predict the efficacy of immunotherapy and may become a promising predictor.
Collapse
Affiliation(s)
- Wenjie Zhang
- Fujian Medical University Union Hospital, Fujian Medical University, Fuzhou, China
| | - Sumei Li
- College of Chinese Traditional Medicine, Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Chufeng Zhang
- Shandong Cancer Hospital and Institute, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, China
| | - Zhengshuai Mu
- Shandong Cancer Hospital and Institute, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, China
| | - Kaili Chen
- Fujian Medical University Union Hospital, Fujian Medical University, Fuzhou, China
| | - Zhenshu Xu
- Fujian Medical University Union Hospital, Fujian Medical University, Fuzhou, China
| |
Collapse
|
16
|
Stražar M, Park J, Abelin JG, Taylor HB, Pedersen TK, Plichta DR, Brown EM, Eraslan B, Hung YM, Ortiz K, Clauser KR, Carr SA, Xavier RJ, Graham DB. HLA-II immunopeptidome profiling and deep learning reveal features of antigenicity to inform antigen discovery. Immunity 2023; 56:1681-1698.e13. [PMID: 37301199 PMCID: PMC10519123 DOI: 10.1016/j.immuni.2023.05.009] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2022] [Revised: 02/08/2023] [Accepted: 05/11/2023] [Indexed: 06/12/2023]
Abstract
CD4+ T cell responses are exquisitely antigen specific and directed toward peptide epitopes displayed by human leukocyte antigen class II (HLA-II) on antigen-presenting cells. Underrepresentation of diverse alleles in ligand databases and an incomplete understanding of factors affecting antigen presentation in vivo have limited progress in defining principles of peptide immunogenicity. Here, we employed monoallelic immunopeptidomics to identify 358,024 HLA-II binders, with a particular focus on HLA-DQ and HLA-DP. We uncovered peptide-binding patterns across a spectrum of binding affinities and enrichment of structural antigen features. These aspects underpinned the development of context-aware predictor of T cell antigens (CAPTAn), a deep learning model that predicts peptide antigens based on their affinity to HLA-II and full sequence of their source proteins. CAPTAn was instrumental in discovering prevalent T cell epitopes from bacteria in the human microbiome and a pan-variant epitope from SARS-CoV-2. Together CAPTAn and associated datasets present a resource for antigen discovery and the unraveling genetic associations of HLA alleles with immunopathologies.
Collapse
Affiliation(s)
- Martin Stražar
- Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
| | - Jihye Park
- Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
| | | | - Hannah B Taylor
- Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
| | - Thomas K Pedersen
- Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA; Technical University of Denmark, Kongens Lyngby, Denmark
| | | | - Eric M Brown
- Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA; Center for Computational and Integrative Biology, Department of Molecular Biology, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02114, USA
| | - Basak Eraslan
- Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
| | - Yuan-Mao Hung
- Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA; Center for Computational and Integrative Biology, Department of Molecular Biology, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02114, USA
| | - Kayla Ortiz
- Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
| | - Karl R Clauser
- Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
| | - Steven A Carr
- Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
| | - Ramnik J Xavier
- Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA; Center for Computational and Integrative Biology, Department of Molecular Biology, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02114, USA; Center for Microbiome Informatics and Therapeutics, Massachusetts Institute of Technology, Cambridge, MA 02139, USA.
| | - Daniel B Graham
- Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA; Center for Computational and Integrative Biology, Department of Molecular Biology, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02114, USA; Center for Microbiome Informatics and Therapeutics, Massachusetts Institute of Technology, Cambridge, MA 02139, USA.
| |
Collapse
|
17
|
Nixon BG, Gao S, Wang X, Li MO. TGFβ control of immune responses in cancer: a holistic immuno-oncology perspective. Nat Rev Immunol 2023; 23:346-362. [PMID: 36380023 PMCID: PMC10634249 DOI: 10.1038/s41577-022-00796-z] [Citation(s) in RCA: 52] [Impact Index Per Article: 26.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/10/2022] [Indexed: 11/16/2022]
Abstract
The immune system responds to cancer in two main ways. First, there are prewired responses involving myeloid cells, innate lymphocytes and innate-like adaptive lymphocytes that either reside in premalignant tissues or migrate directly to tumours, and second, there are antigen priming-dependent responses, in which adaptive lymphocytes are primed in secondary lymphoid organs before homing to tumours. Transforming growth factor-β (TGFβ) - one of the most potent and pleiotropic regulatory cytokines - controls almost every stage of the tumour-elicited immune response, from leukocyte development in primary lymphoid organs to their priming in secondary lymphoid organs and their effector functions in the tumour itself. The complexity of TGFβ-regulated immune cell circuitries, as well as the contextual roles of TGFβ signalling in cancer cells and tumour stromal cells, necessitates the use of rigorous experimental systems that closely recapitulate human cancer, such as autochthonous tumour models, to uncover the underlying immunobiology. The diverse functions of TGFβ in healthy tissues further complicate the search for effective and safe cancer therapeutics targeting the TGFβ pathway. Here we discuss the contextual complexity of TGFβ signalling in tumour-elicited immune responses and explain how understanding this may guide the development of mechanism-based cancer immunotherapy.
Collapse
Affiliation(s)
- Briana G Nixon
- Immunology Program, Memorial Sloan Kettering Cancer Center, New York, NY, USA
- Immunology and Microbial Pathogenesis Graduate Program, Weill Cornell Graduate School of Biomedical Sciences, Cornell University, New York, NY, USA
| | - Shengyu Gao
- Immunology Program, Memorial Sloan Kettering Cancer Center, New York, NY, USA
- Louis V. Gerstner, Jr. Graduate School of Biomedical Sciences, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Xinxin Wang
- Immunology Program, Memorial Sloan Kettering Cancer Center, New York, NY, USA
- Immunology and Microbial Pathogenesis Graduate Program, Weill Cornell Graduate School of Biomedical Sciences, Cornell University, New York, NY, USA
| | - Ming O Li
- Immunology Program, Memorial Sloan Kettering Cancer Center, New York, NY, USA.
- Immunology and Microbial Pathogenesis Graduate Program, Weill Cornell Graduate School of Biomedical Sciences, Cornell University, New York, NY, USA.
- Louis V. Gerstner, Jr. Graduate School of Biomedical Sciences, Memorial Sloan Kettering Cancer Center, New York, NY, USA.
| |
Collapse
|
18
|
Zhao W, Jia Y, Sun G, Yang H, Liu L, Qu X, Ding J, Yu H, Xu B, Zhao S, Xing L, Chai J. Single-cell analysis of gastric signet ring cell carcinoma reveals cytological and immune microenvironment features. Nat Commun 2023; 14:2985. [PMID: 37225691 DOI: 10.1038/s41467-023-38426-4] [Citation(s) in RCA: 24] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2022] [Accepted: 05/03/2023] [Indexed: 05/26/2023] Open
Abstract
Gastric signet ring cell carcinoma (GSRC) is a special subtype of gastric cancer (GC) associated with poor prognosis, but an in-depth and systematic study of GSRC is lacking. Here, we perform single-cell RNA sequencing to assess GC samples. We identify signet ring cell carcinoma (SRCC) cells. Microseminoprotein-beta (MSMB) can be used as a marker gene to guide the identification of moderately/poorly differentiated adenocarcinoma and signet ring cell carcinoma (SRCC). The upregulated differentially expressed genes in SRCC cells are mainly enriched in abnormally activated cancer-related signalling pathways and immune response signalling pathways. SRCC cells are also significantly enriched in mitogen-activated protein kinase and oestrogen signalling pathways, which can interact and promote each other in a positive feedback loop. SRCC cells are shown to have lower cell adhesion and higher immune evasion capabilities as well as an immunosuppressive microenvironment, which may be closely associated with the relatively poor prognosis of GSRC. In summary, GSRC exhibits unique cytological characteristics and a unique immune microenvironment, which may be advantageous for accurate diagnosis and treatment.
Collapse
Affiliation(s)
- Weizhu Zhao
- Department of Radiation Oncology, Shandong University Cancer Center, Jinan, Shandong, China
- Department of Radialogy Oncology, Shandong Cancer Hospital and Institute, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, Shandong, China
- Department of Oncology, Binzhou People's Hospital Affiliated to Shandong First Medical University, Binzhou, Shandong, China
| | - Yanfei Jia
- Research Center of Basic Medicine, Jinan Central Hospital, Shandong First Medical University, Jinan, Shandong, China
| | - Guangyu Sun
- Department of Oncology, Binzhou People's Hospital Affiliated to Shandong First Medical University, Binzhou, Shandong, China
| | - Haiying Yang
- Department of Cardiology, Binzhou People's Hospital Affiliated to Shandong First Medical University, Binzhou, Shandong, China
| | - Luguang Liu
- Department of Gastroenterological Surgery, Shandong Cancer Hospital and Institute, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, Shandong, China
| | - Xianlin Qu
- Department of Gastroenterological Surgery, Shandong Cancer Hospital and Institute, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, Shandong, China
| | - Jishuang Ding
- Department of Gastroenterological Surgery, Shandong Cancer Hospital and Institute, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, Shandong, China
| | - Hang Yu
- Department of Gastroenterological Surgery, Shandong Cancer Hospital and Institute, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, Shandong, China
| | - Botao Xu
- Department of Gastroenterological Surgery, Shandong Cancer Hospital and Institute, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, Shandong, China
| | - Siwei Zhao
- Department of Gastroenterological Surgery, Shandong Cancer Hospital and Institute, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, Shandong, China
| | - Ligang Xing
- Department of Radiation Oncology, Shandong University Cancer Center, Jinan, Shandong, China.
- Department of Radialogy Oncology, Shandong Cancer Hospital and Institute, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, Shandong, China.
| | - Jie Chai
- Department of Gastroenterological Surgery, Shandong Cancer Hospital and Institute, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, Shandong, China.
| |
Collapse
|
19
|
Kumar A, Ramani V, Bharti V, de Lima Bellan D, Saleh N, Uzhachenko R, Shen C, Arteaga C, Richmond A, Reddy SM, Vilgelm A. Dendritic cell therapy augments antitumor immunity triggered by CDK4/6 inhibition and immune checkpoint blockade by unleashing systemic CD4 T-cell responses. J Immunother Cancer 2023; 11:e006019. [PMID: 37230537 PMCID: PMC10231009 DOI: 10.1136/jitc-2022-006019] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/17/2023] [Indexed: 05/27/2023] Open
Abstract
BACKGROUND Cyclin-dependent kinase 4/6 inhibitors (CDK4/6i) combined with endocrine therapy are a mainstay treatment for hormone receptor-positive breast cancer. While their principal mechanism is inhibition of cancer cell proliferation, preclinical and clinical evidence suggests that CDK4/6i can also promote antitumor T-cell responses. However, this pro-immunogenic property is yet to be successfully harnessed in the clinic, as combining CDK4/6i with immune checkpoint blockade (ICB) has not shown a definitive benefit in patients. METHOD We performed an in-depth analysis of the changes in the tumor immune microenvironment and systemic immune modulation associated with CDK4/6i treatment in muring breast cancer models and in patients with breast cancer using high dimensional flow cytometry and RNA sequencing. Gain and loss of function in vivo experiments employing cell transfer and depletion antibody were performed to uncover immune cell populations critical for CDK4/6i-mediated stimulation of antitumor immunity. RESULTS We found that loss of dendritic cells (DCs) within the tumor microenvironment resulting from CDK4/6 inhibition in bone marrow progenitors is a major factor limiting antitumor immunity after CDK4/6i and ICB. Consequently, restoration of DC compartment by adoptively transferring ex vivo differentiated DCs to mice treated with CDK4/6i and ICB therapy enabled robust tumor inhibition. Mechanistically, the addition of DCs promoted the induction of tumor-localized and systemic CD4 T-cell responses in mice receiving CDK4/6i-ICB-DC combination therapy, as characterized by enrichment of programmed cell death protein-1-negative T helper (Th)1 and Th2 cells with an activated phenotype. CD4 T-cell depletion abrogated the antitumor benefit of CDK4/6i-ICB-DC combination, with outgrowing tumors displaying an increased proportion of terminally exhausted CD8 T cells. CONCLUSIONS Our findings suggest that CDK4/6i-mediated DC suppression limits CD4 T-cell responses essential for the sustained activity of CD8 T cells and tumor inhibition. Furthermore, they imply that restoring DC-CD4 T-cell crosstalk via DC transfer enables effective breast cancer immunity in response to CDK4/6i and ICB treatment.
Collapse
Affiliation(s)
- Amrendra Kumar
- Department of Pathology, The Ohio State University, Columbus, Ohio, USA
| | - Vijay Ramani
- Department of Internal Medicine, University of Texas Southwestern Medical Center, Dallas, Texas, USA
- Simmons Comprehensive Cancer Center, University of Texas Southwestern Medical Center, Dallas, Texas, USA
| | - Vijaya Bharti
- Department of Pathology, The Ohio State University, Columbus, Ohio, USA
| | | | - Nabil Saleh
- Department of Pharmacology, Vanderbilt University School of Medicine, Nashville, Tennessee, USA
| | - Roman Uzhachenko
- Department of Pathology, The Ohio State University, Columbus, Ohio, USA
| | - Chengli Shen
- Department of Surgery, University of Virginia, Charlottesville, VA, USA
| | - Carlos Arteaga
- Department of Internal Medicine, University of Texas Southwestern Medical Center, Dallas, Texas, USA
- Simmons Comprehensive Cancer Center, University of Texas Southwestern Medical Center, Dallas, Texas, USA
| | - Ann Richmond
- Department of Pharmacology, Vanderbilt University School of Medicine, Nashville, Tennessee, USA
- Department of Veterans Affairs, Tennessee Valley Healthcare System, Nashville, TN, USA
| | - Sangeetha M Reddy
- Department of Internal Medicine, University of Texas Southwestern Medical Center, Dallas, Texas, USA
- Simmons Comprehensive Cancer Center, University of Texas Southwestern Medical Center, Dallas, Texas, USA
| | - Anna Vilgelm
- Department of Pathology, The Ohio State University, Columbus, Ohio, USA
- Pelotonia Institute for Immuno-Oncology, OSUCCC-James, Columbus, OH, USA
| |
Collapse
|
20
|
Li C, Wang S, Ma X, Wang T, Lu R, Jia X, Leng Z, Kong X, Zhang J, Li L. Ranitidine as an adjuvant regulates macrophage polarization and activates CTLs through the PI3K-Akt2 signaling pathway. Int Immunopharmacol 2023; 116:109729. [PMID: 37800555 DOI: 10.1016/j.intimp.2023.109729] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2022] [Revised: 12/30/2022] [Accepted: 01/09/2023] [Indexed: 02/19/2023]
Abstract
Adjuvants are an indispensable component of vaccines, but there are few adjuvants for human vaccines. H2 receptor blockers, inhibiting gastric acid secretion, have immune enhancement effects. Ranitidine (RAN) is a water-soluble H2 receptor blocker, and whether it has an immune-enhancing effect is still unknown. In this study, flow cytometry, western blotting, and immunofluorescence methods were used to analyze whether RAN could activate macrophage polarization to the M1 phenotype in vivo and in vitro. Here, we found that the M1 inflammatory cytokine levels and surface markers in RAW264.7 cells were upregulated by NF-κB activation, possibly through the PI3K-Akt2 signaling pathway, after RAN treatment. Endocytic function was also enhanced by feedback regulation of Akt2/GSK3β/Dynmin1 signaling. Furthermore, to evaluate the adjuvant function of RAN, we used OVA plus RAN as a vaccine to inhibit the growth of B16-OVA tumors in mice. We also found that in the RAN adjuvant group, macrophage polarization to M1, Th1 cell differentiation, and cytotoxic T lymphocyte (CTL) activation were significantly upregulated. The tumor growth of mice was inhibited, and the survival rate of mice was significantly improved. This study provides new evidence for the mechanism by which RAN activates the immune response and is expected to provide a new strategy for the research and development of tumor vaccine adjuvants.
Collapse
Affiliation(s)
- Chenglin Li
- Department of Human Anatomy, Histology and Embryology, School of Basic Medicine, Qingdao University, Qingdao 266071, Shandong, China
| | - Shuang Wang
- School of Basic Medicine, Qingdao University, Qingdao 266071, Shandong, China.
| | - Xiaoran Ma
- School of Basic Medicine, Qingdao University, Qingdao 266071, Shandong, China
| | - Tiantian Wang
- Department of Human Anatomy, Histology and Embryology, School of Basic Medicine, Qingdao University, Qingdao 266071, Shandong, China
| | - Ran Lu
- School of Basic Medicine, Qingdao University, Qingdao 266071, Shandong, China
| | - Xihui Jia
- School of Basic Medicine, Qingdao University, Qingdao 266071, Shandong, China
| | - Zhe Leng
- Department of Gynecology, Qingdao Women and Children's Hospital, Qingdao 266000, China
| | - Xiaowen Kong
- School of Stomatology, Qingdao University, Qingdao 266071, China
| | - Jinyu Zhang
- School of Basic Medicine, Qingdao University, Qingdao 266071, Shandong, China
| | - Ling Li
- Department of Human Anatomy, Histology and Embryology, School of Basic Medicine, Qingdao University, Qingdao 266071, Shandong, China.
| |
Collapse
|
21
|
Wang L, Sun L, Sun H, Xing Y, Zhou S, An G, Li J, Ren K, Sun J. GPR65 as a potential immune checkpoint regulates the immune microenvironment according to pan-cancer analysis. Heliyon 2023; 9:e13617. [PMID: 36852075 PMCID: PMC9957717 DOI: 10.1016/j.heliyon.2023.e13617] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2022] [Revised: 02/01/2023] [Accepted: 02/06/2023] [Indexed: 02/12/2023] Open
Abstract
It has been reported that inhibition of GPR65 may be effective for the treatment of certain cancers. Nevertheless, the role of GPR65 in various cancers remains unknown. We conducted an exhaustive pan-cancer analysis of GPR65 using multiple databases, including TCGA, GTEx, BioGPS, HPA, cBioPortal, and GeneCards. GPR65 was found to be differentially expressed in various cancers and linked to tumor mutational burden (TMB), microsatellite instability (MSI), and Ploidy, playing a key function in the tumor microenvironment (TME). It is closely linked to the development of Th17 cells as well as Th1 and Th2 cells in certain cancers. Our findings indicate that the expression of GPR65 is highly linked with clinical prognosis, mutations, and immune cell infiltration. It was revealed as an indicator of patient prognosis as well as a possible immunomodulatory role. As a possible new immunological checkpoint, GPR65 could be a target for tumor immunotherapy.
Collapse
Affiliation(s)
- Liangliang Wang
- Department of Forensic Medicine, Shanxi Medical University, Jinzhong, China
| | - Lele Sun
- Department of Forensic Medicine, Shanxi Medical University, Jinzhong, China
| | - Hao Sun
- Department of Forensic Medicine, Shanxi Medical University, Jinzhong, China
| | - Yunhong Xing
- Department of Forensic Medicine, Shanxi Medical University, Jinzhong, China
| | - Shidong Zhou
- Department of Forensic Medicine, Shanxi Medical University, Jinzhong, China
| | - Guoshuai An
- Department of Forensic Medicine, Shanxi Medical University, Jinzhong, China
| | - Jian Li
- Department of Forensic Medicine, Shanxi Medical University, Jinzhong, China
| | - Kang Ren
- Department of Forensic Medicine, Shanxi Medical University, Jinzhong, China
| | - Junhong Sun
- Department of Forensic Medicine, Shanxi Medical University, Jinzhong, China
| |
Collapse
|
22
|
Niu ZS, Wang WH, Niu XJ. Recent progress in molecular mechanisms of postoperative recurrence and metastasis of hepatocellular carcinoma. World J Gastroenterol 2022; 28:6433-6477. [PMID: 36569275 PMCID: PMC9782839 DOI: 10.3748/wjg.v28.i46.6433] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/13/2022] [Revised: 10/31/2022] [Accepted: 11/21/2022] [Indexed: 12/08/2022] Open
Abstract
Hepatectomy is currently considered the most effective option for treating patients with early and intermediate hepatocellular carcinoma (HCC). Unfortunately, the postoperative prognosis of patients with HCC remains unsatisfactory, predominantly because of high postoperative metastasis and recurrence rates. Therefore, research on the molecular mechanisms of postoperative HCC metastasis and recurrence will help develop effective intervention measures to prevent or delay HCC metastasis and recurrence and to improve the long-term survival of HCC patients. Herein, we review the latest research progress on the molecular mechanisms underlying postoperative HCC metastasis and recurrence to lay a foundation for improving the understanding of HCC metastasis and recurrence and for developing more precise prevention and intervention strategies.
Collapse
Affiliation(s)
- Zhao-Shan Niu
- Laboratory of Micromorphology, School of Basic Medicine, Qingdao University, Qingdao 266071, Shandong Province, China
| | - Wen-Hong Wang
- Department of Pathology, School of Basic Medicine, Qingdao University, Qingdao 266071, Shandong Province, China
| | - Xiao-Jun Niu
- Department of Internal Medicine, Qingdao Shibei District People's Hospital, Qingdao 266033, Shandong Province, China
| |
Collapse
|
23
|
Setd2 supports GATA3 +ST2 + thymic-derived Treg cells and suppresses intestinal inflammation. Nat Commun 2022; 13:7468. [PMID: 36463230 PMCID: PMC9719510 DOI: 10.1038/s41467-022-35250-0] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2021] [Accepted: 11/24/2022] [Indexed: 12/05/2022] Open
Abstract
Treg cells acquire distinct transcriptional properties to suppress specific inflammatory responses. Transcription characteristics of Treg cells are regulated by epigenetic modifications, the mechanism of which remains obscure. Here, we report that Setd2, a histone H3K36 methyltransferase, is important for the survival and suppressive function of Treg cells, especially those from the intestine. Setd2 supports GATA3+ST2+ intestinal thymic-derived Treg (tTreg) cells by facilitating the expression and reciprocal relationship of GATA3 and ST2 in tTreg cells. IL-33 preferentially boosts Th2 cells rather than GATA3+ Treg cells in Foxp3Cre-YFPSetd2 flox/flox mice, corroborating the constraint of Th2 responses by Setd2 expression in Treg cells. SETD2 sustains GATA3 expression in human Treg cells, and SETD2 expression is increased in Treg cells from human colorectal cancer tissues. Epigenetically, Setd2 regulates the transcription of target genes (including Il1rl1) by modulating the activity of promoters and intragenic enhancers where H3K36me3 is typically deposited. Our findings provide mechanistic insights into the regulation of Treg cells and intestinal immunity by Setd2.
Collapse
|
24
|
Rao Z, Li H, Yao W, Wang Q, Ma B, Xue D, Meng X. A novel HCC prognosis predictor PDSS1 affects the cell cycle through the STAT3 signaling pathway in HCC. Front Oncol 2022; 12:927468. [PMID: 35965499 PMCID: PMC9368321 DOI: 10.3389/fonc.2022.927468] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2022] [Accepted: 07/04/2022] [Indexed: 12/24/2022] Open
Abstract
Decaprenyl diphosphate synthase subunit 1 (PDSS1) is closely related to a variety of human diseases, but its expression pattern and biological function in HCC have not been studied to date.MethodsThe expression level of PDSS1 was analyzed using the TCGA and GEO databases. The relationships between PDSS1 and patient clinicopathological characteristics were verified based on TCGA clinical data. Additionally, the co-expressed genes of PDSS1were investigated and Gene Set Enrichment Analysis (GSEA) was conducted using LinkedOmics. Next, the association between PDSS1 and immune infiltration was determined using version 1.34.0 of the GSVA package. EdU assay, colony-formation assay, transwell assay, wound-healing assay, and flow cytometry analysis were used to assess the effect of PDSS1 on the cell phenotype.ResultsPDSS1 was upregulated in HCC compared with adjacent tissues. High PDSS1 in HCC was associated with poor overall survival, disease-specific survival, and progress-free interval. Results suggested that PDSS1 may activate multiple oncogenic pathways in HCC, especially those involved in the cell cycle. The expression of PDSS1 was significantly related to Th2 cells, TFH, T helper cells, NK CD56bright cells, cytotoxic cells, DC, CD8 T cells, and neutrophils. PDSS1 knockdown inhibited cell proliferation, cell cycle, migration and invasion. Furthermore, PDSS1 acted as an oncogene through the STAT3 signaling pathway.ConclusionOur study reveals that a high level of PDSS1 is significantly correlated with poor patient prognosis and immune cell infiltration in HCC. PDSS1 may be a novel biomarker and potential therapeutic target for HCC.
Collapse
Affiliation(s)
- Zuqin Rao
- Department of General Surgery, The First Affiliated Hospital of Harbin Medical University, Harbin, China
- Key Laboratory of Hepatosplenic Surgery, Ministry of Education, The First Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Heng Li
- Department of Comprehensive Surgery, The First Affiliated Hospital of University of Science and Technology of China (USTC) West District/Anhui Provincial Cancer Hospital, Hefei, China
| | - Wenchao Yao
- Department of General Surgery, The First Affiliated Hospital of Harbin Medical University, Harbin, China
- Key Laboratory of Hepatosplenic Surgery, Ministry of Education, The First Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Qiang Wang
- Department of General Surgery, The First Affiliated Hospital of Harbin Medical University, Harbin, China
- Key Laboratory of Hepatosplenic Surgery, Ministry of Education, The First Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Biao Ma
- Department of General Surgery, The First Affiliated Hospital of Harbin Medical University, Harbin, China
- Key Laboratory of Hepatosplenic Surgery, Ministry of Education, The First Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Dongbo Xue
- Department of General Surgery, The First Affiliated Hospital of Harbin Medical University, Harbin, China
- Key Laboratory of Hepatosplenic Surgery, Ministry of Education, The First Affiliated Hospital of Harbin Medical University, Harbin, China
- *Correspondence: Xianzhi Meng, ; Dongbo Xue,
| | - Xianzhi Meng
- Department of General Surgery, The First Affiliated Hospital of Harbin Medical University, Harbin, China
- Key Laboratory of Hepatosplenic Surgery, Ministry of Education, The First Affiliated Hospital of Harbin Medical University, Harbin, China
- *Correspondence: Xianzhi Meng, ; Dongbo Xue,
| |
Collapse
|
25
|
Jia W, Zhang T, Yao Q, Li J, Nie Y, Lei X, Mao Z, Wang Y, Shi W, Song W. Tertiary Lymphatic Structures in Primary Hepatic Carcinoma: Controversy Cannot Overshadow Hope. Front Immunol 2022; 13:870458. [PMID: 35844587 PMCID: PMC9278517 DOI: 10.3389/fimmu.2022.870458] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2022] [Accepted: 05/30/2022] [Indexed: 11/13/2022] Open
Abstract
Tertiary lymphoid structures (TLSs) are organized aggregates of immune cells found in the tumor microenvironment. TLS can influence primary hepatic carcinoma (PHC) occurrence and have an active role in cancer. TLS can promote or inhibit the growth of PHC depending on their location, and although available findings are controversial, they suggest that TLS have a protective role in PHC tissues and a non-protective role in paracancerous tissues. In addition, the cellular composition of TLS can also influence the outcome of PHC. As an immunity marker, TLS can act as a marker of immunotherapy to predict its effect and help to identify patients who will respond well to immunotherapy. Modulation of TLS formation through the use of chemokines/cytokines, immunotherapy, or induction of high endothelial vein to interfere with tumor growth has been studied extensively in PHC and other cancers. In addition, new tools such as genetic interventions, cellular crosstalk, preoperative radiotherapy, and advances in materials science have been shown to influence the prognosis of malignant tumors by modulating TLS production. These can also be used to develop PHC treatment.
Collapse
Affiliation(s)
- Weili Jia
- Xi’an Medical University, Xi’an, China
- Department of Hepatobiliary Surgery, Xijing Hospital, Fourth Military Medical University, Xi’an, China
| | - Tianchen Zhang
- Xi’an Medical University, Xi’an, China
- Department of Hepatobiliary Surgery, Xijing Hospital, Fourth Military Medical University, Xi’an, China
| | - Qianyun Yao
- Department of Hepatobiliary Surgery, Xijing Hospital, Fourth Military Medical University, Xi’an, China
| | - Jianhui Li
- Xi’an Medical University, Xi’an, China
- Department of Hepatobiliary Surgery, Xijing Hospital, Fourth Military Medical University, Xi’an, China
| | - Ye Nie
- Xi’an Medical University, Xi’an, China
- Department of Hepatobiliary Surgery, Xijing Hospital, Fourth Military Medical University, Xi’an, China
| | - Xinjun Lei
- Xi’an Medical University, Xi’an, China
- Department of Hepatobiliary Surgery, Xijing Hospital, Fourth Military Medical University, Xi’an, China
| | - Zhenzhen Mao
- Xi’an Medical University, Xi’an, China
- Department of Hepatobiliary Surgery, Xijing Hospital, Fourth Military Medical University, Xi’an, China
| | - Yanfang Wang
- Xi’an Medical University, Xi’an, China
- Department of Hepatobiliary Surgery, Xijing Hospital, Fourth Military Medical University, Xi’an, China
| | - Wen Shi
- Xi’an Medical University, Xi’an, China
- Department of Hepatobiliary Surgery, Xijing Hospital, Fourth Military Medical University, Xi’an, China
| | - Wenjie Song
- Department of Hepatobiliary Surgery, Xijing Hospital, Fourth Military Medical University, Xi’an, China
- *Correspondence: Wenjie Song,
| |
Collapse
|
26
|
Chen H, Li G, Liu Y, Lang Y, Yang W, Zhang W, Liang X. Jiegeng Decoction Potentiates the Anticancer Efficacy of Paclitaxel in vivo and in vitro. Front Pharmacol 2022; 13:827520. [PMID: 35281908 PMCID: PMC8914467 DOI: 10.3389/fphar.2022.827520] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2021] [Accepted: 01/31/2022] [Indexed: 11/30/2022] Open
Abstract
Paclitaxel (PTX) has been the first-line treatment for lung cancer; however, its clinical use is limited due to multidrug resistance (MDR) and adverse effects. Thus, there is an urgent need to explore agents that can enhance the anticancer efficacy of PTX by reducing drug resistance and adverse reactions. Jiegeng decoction (JG) was used as the meridian guide drug and adjuvant drug in treatment of lung cancer. However, the mechanism of adjuvant effect was unclear. The aim of this study was to determine whether JG could potentiate the anticancer effect of PTX. Tissue distribution of PTX was detected using HPLC-MS/MS. The anti-lung cancer effect of the combination of PTX and JG in Lewis lung cancer C57BL/6J mice was evaluated based on the body weight and tumor-inhibition rate. PTX concentration in tumors was determined using HPLC-MS and in vivo imaging. Biochemical indices were detected using biochemical analyzer and ELISA. The anticancer mechanism of the PTX-JG combination in A549/PTX cells was elucidated based on cell proliferation, annexin V-FITC apoptosis assay, and western blotting. Tissue distribution analysis showed that the distribution of PTX increased in the lungs, liver, and heart upon administering the combination of PTX and JG. JG remarkably enhanced the anticancer effect of PTX by increasing the red blood cell and platelet counts; increasing hemoglobin, interleukin (IL)-2, and tumor necrosis factor-α levels; increasing CD4+T cells and the CD4+/CD8+ ratio; and decreasing IL-10 levels. JG administration led to the increased distribution of PTX at the tumor lesion sites and also potentiated the anticancer effect of PTX by inhibiting tumor cell proliferation and promoting apoptosis. Moreover, JG reversed PTX resistance by inhibiting the expression of lung resistance-related proteins, multiresistance protein 1, P-glycoprotein, and breast cancer-resistant protein. Furthermore, the combination of JG and PTX decreased alanine aminotransferase and aspartate aminotransferase levels and did not affect creatine kinase-MB levels. Therefore, our discovery suggests that JG increased the anticancer effect of PTX by downregulating the MDR-related protein and demonstrated a synergistic enhancement of immunity. Thus, the combination of PTX with JG shows potential in the management of lung cancer owing to its synergistic and detoxifying effects.
Collapse
Affiliation(s)
- Haifang Chen
- Jiangxi University of Chinese Medicine, Nanchang, China
- Key Laboratory of Modern Preparation of Traditional Chinese Medicine, Ministry of Education, Jiangxi University of Chinese Medicine, Nanchang, China
| | - Guofeng Li
- Jiangxi University of Chinese Medicine, Nanchang, China
| | - Ye Liu
- Jiangxi University of Chinese Medicine, Nanchang, China
| | - Yifan Lang
- Jiangxi University of Chinese Medicine, Nanchang, China
| | - Wuliang Yang
- Jiangxi University of Chinese Medicine, Nanchang, China
- Key Laboratory of Modern Preparation of Traditional Chinese Medicine, Ministry of Education, Jiangxi University of Chinese Medicine, Nanchang, China
| | - Wugang Zhang
- Jiangxi University of Chinese Medicine, Nanchang, China
| | - Xinli Liang
- Jiangxi University of Chinese Medicine, Nanchang, China
- Key Laboratory of Modern Preparation of Traditional Chinese Medicine, Ministry of Education, Jiangxi University of Chinese Medicine, Nanchang, China
| |
Collapse
|