1
|
Tanigawa K, Redmond WL. Current landscape and future prospects of interleukin-2 receptor (IL-2R) agonists in cancer immunotherapy. Oncoimmunology 2025; 14:2452654. [PMID: 39812092 PMCID: PMC11740684 DOI: 10.1080/2162402x.2025.2452654] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2024] [Revised: 01/07/2025] [Accepted: 01/08/2025] [Indexed: 01/16/2025] Open
Abstract
Immune checkpoint blockade (ICB) has significantly improved the survival for many patients with advanced malignancy. However, fewer than 50% of patients benefit from ICB, highlighting the need for more effective immunotherapy options. High-dose interleukin-2 (HD IL-2) immunotherapy, which is approved for patients with metastatic melanoma and renal cell carcinoma, stimulates CD8+ T cells and NK cells and can generate durable responses in a subset of patients. Moreover, HD IL-2 may have potential efficacy in patients whose disease has progressed following ICB and plays a vital role in expanding tumor-infiltrating lymphocyte (TIL) in TIL therapy. Despite its potential, the use of HD IL-2 is limited by severe toxicities such as hypotension and vascular leak syndrome. Additionally, only a few patients achieve a good outcome after HD IL-2 therapy. To address these challenges, numerous next-generation IL-2 receptor (IL-2 R) agonists have been developed to exhibit treatment effects while minimizing adverse events. This review will explore IL-2 biology, the clinical application of HD IL-2 therapy, and the development of novel IL-2 R agonists for cancer immunotherapy.
Collapse
Affiliation(s)
- Kengo Tanigawa
- Earle A. Chiles Research Institute, Providence Cancer Institute, Portland, OR, USA
- Department of Pulmonary Medicine, Graduate School of Medical and Dental Sciences, Kagoshima University, Kagoshima, Japan
| | - William L. Redmond
- Earle A. Chiles Research Institute, Providence Cancer Institute, Portland, OR, USA
| |
Collapse
|
2
|
Gu X, Gao C, Su X, Zhu Y, Fang Q, Yu J, Wang Z, Zhao D, Zhang W. Targeting BATF2-RGS2 axis reduces T-cell exhaustion and restores anti-tumor immunity. Mol Cancer 2025; 24:157. [PMID: 40442751 PMCID: PMC12123873 DOI: 10.1186/s12943-025-02351-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2024] [Accepted: 05/09/2025] [Indexed: 06/02/2025] Open
Abstract
OBJECTIVE This study aims to investigate the role of RGS2 in immune regulation in lung cancer (LC) and explore the regulatory relationship between RGS2 and BATF2 in modulating T cell exhaustion and tumor immune evasion. METHODS Single-cell transcriptome-based analysis was performed to identify CD8+ T-cell profiles and regulatory factors in six LC patients receiving neoadjuvant PD-1 blockade therapy. Mouse 3LL cells or murine tumor organoid models were transplanted into wild-type, RGS2 knock-out (RGS2-/-), or BATF2 knock-out (BATF2-/-) mice to analyze the effects of RGS2 and BATF2 on tumor growth, metastasis, and immune cell infiltration. CD8+ from these mice were isolated and co-cultured with cancer cells to analyze T cell cytotoxicity in vitro. The transcriptional regulation of RGS2 by BATF2 was analyzed using luciferase reporter assays. RESULTS RGS2 was highly expressed in CD8+ T-exhausted (Tex) cells and was associated with pro-inflammatory pathways. High RGS2 expression predicted poor clinical outcomes and limited response to PD-1/PD-L1 blockade therapy. In RGS2-/- mice, tumor metastasis and angiogenesis were suppressed, CD8+ effector T cells were enhanced, and T cell exhaustion markers were reduced. BATF2 was identified as a key transcriptional regulator of RGS2, promoting T cell exhaustion through inhibition of CXCL13 secretion. Knockdown of BATF2 or RGS2 impaired lung cancer cell proliferation and enhanced sensitivity to NK cell-mediated cytotoxicity in vitro. In BATF2-/- mice, the populations of immune active CD8+ T cells were increased, while exhausted T cells were reduced, leading to improved anti-tumor immune responses. CONCLUSIONS RGS2, regulated by BATF2, plays a critical role in driving T cell exhaustion and tumor immune evasion in LC. Targeting the BATF2-RGS2 axis may enhance the effectiveness of immunotherapy by reversing T cell exhaustion and improving anti-tumor immunity.
Collapse
Affiliation(s)
- Xuyu Gu
- Department of Oncology, School of Medicine, Shanghai Pulmonary Hospital, Tongji University, Shanghai, 200433, China
| | - Chanchan Gao
- Department of Oncology, School of Medicine, Zhongda Hospital, Southeast University, Nanjing, 210009, China
| | - Xiangyu Su
- Department of Oncology, School of Medicine, Zhongda Hospital, Southeast University, Nanjing, 210009, China
| | - Yaoyao Zhu
- Department of Radiation Oncology, School of Medicine, Shanghai Pulmonary Hospital, Tongji University, Shanghai, 200433, China
| | - Qiyu Fang
- Department of Oncology, School of Medicine, Shanghai Pulmonary Hospital, Tongji University, Shanghai, 200433, China
| | - Jia Yu
- Department of Oncology, School of Medicine, Shanghai Pulmonary Hospital, Tongji University, Shanghai, 200433, China
| | - Ziming Wang
- Department of Thoracic Surgery, School of Medicine, Shanghai Pulmonary Hospital, Tongji University, Shanghai, 200433, China
| | - Deping Zhao
- Department of Thoracic Surgery, School of Medicine, Shanghai Pulmonary Hospital, Tongji University, Shanghai, 200433, China.
| | - Wentian Zhang
- Department of Thoracic Surgery, School of Medicine, Shanghai Pulmonary Hospital, Tongji University, Shanghai, 200433, China.
| |
Collapse
|
3
|
Berraondo P, Cuesta R, Aranda F, Martinez-Riaño A, Eguren-Santamaria I, Luri-Rey C, Risson A, Melero A, Gomis G, Melero I. Immunocytokines and cytokine neutralization for cancer immunotherapy. Trends Cancer 2025:S2405-8033(25)00110-4. [PMID: 40425444 DOI: 10.1016/j.trecan.2025.04.014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2025] [Revised: 04/09/2025] [Accepted: 04/22/2025] [Indexed: 05/29/2025]
Abstract
Despite deep and growing knowledge of cytokine functions, immunotherapies based on the control of these molecules have minimally impacted cancer patient management because of limited efficacy and narrow therapeutic windows. Opportunities to enhance efficacy and mitigate side effects arise from local delivery and targeting antitumor cytokines to tumor tissue via chimeric fusion with antibodies (immunocytokines). Conversely, neutralization of protumor cytokines using antibodies, cytokine traps, or receptor antagonists offer the opportunity to increase the efficacy of conventional immunotherapy with checkpoint inhibitors while reducing their side effects. Exploiting the immunobiology of interleukin (IL)-2, IL-12, IL-15, IL-18, and IL-21 in synergistic combinations with other treatments holds promise. The antagonistic neutralization of transforming growth factor-β, tumor necrosis factor, IL-1, IL-6, and CXCR1/2 chemokines and growth differentiation factor 15 also seems to be very convenient, again as part of combination strategies.
Collapse
Affiliation(s)
- Pedro Berraondo
- Program of Immunology and Immunotherapy, Cima Universidad de Navarra, Cancer Center Clínica Universidad de Navarra (CCUN), Pamplona, Spain; Navarra Institute for Health Research (IDISNA), Pamplona, Spain; Centro de Investigación Biomédica en Red de Cáncer (CIBERONC), Madrid, Spain
| | - Raquel Cuesta
- Program of Immunology and Immunotherapy, Cima Universidad de Navarra, Cancer Center Clínica Universidad de Navarra (CCUN), Pamplona, Spain; Navarra Institute for Health Research (IDISNA), Pamplona, Spain
| | - Fernando Aranda
- Program of Immunology and Immunotherapy, Cima Universidad de Navarra, Cancer Center Clínica Universidad de Navarra (CCUN), Pamplona, Spain; Navarra Institute for Health Research (IDISNA), Pamplona, Spain
| | - Ana Martinez-Riaño
- Program of Immunology and Immunotherapy, Cima Universidad de Navarra, Cancer Center Clínica Universidad de Navarra (CCUN), Pamplona, Spain; Navarra Institute for Health Research (IDISNA), Pamplona, Spain
| | - Iñaki Eguren-Santamaria
- Program of Immunology and Immunotherapy, Cima Universidad de Navarra, Cancer Center Clínica Universidad de Navarra (CCUN), Pamplona, Spain; Navarra Institute for Health Research (IDISNA), Pamplona, Spain; Department of Oncology, Clinica Universidad de Navarra, Cancer Center Clínica Universidad de Navarra (CCUN), Pamplona, Spain
| | - Carlos Luri-Rey
- Program of Immunology and Immunotherapy, Cima Universidad de Navarra, Cancer Center Clínica Universidad de Navarra (CCUN), Pamplona, Spain; Navarra Institute for Health Research (IDISNA), Pamplona, Spain
| | - Aline Risson
- Program of Immunology and Immunotherapy, Cima Universidad de Navarra, Cancer Center Clínica Universidad de Navarra (CCUN), Pamplona, Spain; Navarra Institute for Health Research (IDISNA), Pamplona, Spain
| | - Ana Melero
- Program of Immunology and Immunotherapy, Cima Universidad de Navarra, Cancer Center Clínica Universidad de Navarra (CCUN), Pamplona, Spain
| | - Gabriel Gomis
- Program of Immunology and Immunotherapy, Cima Universidad de Navarra, Cancer Center Clínica Universidad de Navarra (CCUN), Pamplona, Spain; Navarra Institute for Health Research (IDISNA), Pamplona, Spain
| | - Ignacio Melero
- Program of Immunology and Immunotherapy, Cima Universidad de Navarra, Cancer Center Clínica Universidad de Navarra (CCUN), Pamplona, Spain; Navarra Institute for Health Research (IDISNA), Pamplona, Spain; Centro de Investigación Biomédica en Red de Cáncer (CIBERONC), Madrid, Spain; Department of Oncology, Clinica Universidad de Navarra, Cancer Center Clínica Universidad de Navarra (CCUN), Pamplona, Spain; Nuffield Department of Medicine (NDM), University of Oxford, Oxford, UK.
| |
Collapse
|
4
|
Ruan Z, Zeng L, Zhang J, Qin H, Huang Z, Yan H, Zhang G, Zhang Y. Intrathecal nivolumab and IL-2 for treatment of leptomeningeal metastases in EGFR-mutated lung adenocarcinoma. Lung Cancer 2025; 204:108586. [PMID: 40412102 DOI: 10.1016/j.lungcan.2025.108586] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2025] [Revised: 05/13/2025] [Accepted: 05/15/2025] [Indexed: 05/27/2025]
Abstract
OBJECTIVES Leptomeningeal metastasis (LM) is a serious complication of advanced non-small-cell lung cancer (NSCLC). Intrathecal administration of nivolumab or interleukin-2 (IL-2) has demonstrated efficacy in this setting. Preclinical and limited clinical evidence suggest that combining IL-2 with anti-PD1 therapy may synergistically enhance anti-tumor immunity. However, clinical data on the efficacy and safety of intrathecal co-administration of nivolumab and IL-2 are lacking. MATERIALS AND METHODS We describe a case of NSCLC with LM, refractory to multiple EGFR tyrosine kinase inhibitors and previous intrathecal therapies, treated with intrathecal nivolumab and IL-2. Single-cell RNA sequencing (scRNA-seq) was performed on cerebrospinal fluid (CSF) samples collected before and after treatment. RESULTS This is the first reported case of intrathecal nivolumab plus IL-2 in NSCLC with LM resistant to standard systemic and intrathecal therapies. The patient experienced marked clinical improvement, including substantial remission of intracranial metastases, neurological symptom relief, and a reduction in tumor marker levels, without notable treatment-related adverse events. scRNA-seq analysis of CSF revealed a post-treatment decrease in malignant cell populations and a concomitant increase in immune effector cells, particularly CD8+ T cells and NK cells. Malignant cells exhibited upregulated antigen presentation and apoptosis. Cell-cell interaction analysis indicated enhanced NK cell-mediated cytotoxicity via FASL-FAS signaling and reduced immunosuppressive interactions between regulatory CD4+ T cells and effector memory CD8+ T cells. CONCLUSIONS This case report provides preliminary evidence supporting the feasibility, safety, and potential efficacy of intrathecal nivolumab and IL-2 in treating NSCLC-associated LM. These findings warrant further investigation in prospective clinical studies.
Collapse
Affiliation(s)
- Zhaohui Ruan
- Early Clinical Trial Center, Hunan Cancer Hospital and The Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha 410013, China; Third Xiangya Hospital, Central South University, Changsha 410000, China
| | - Liang Zeng
- Early Clinical Trial Center, Hunan Cancer Hospital and The Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha 410013, China
| | - Jin Zhang
- Early Clinical Trial Center, Hunan Cancer Hospital and The Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha 410013, China
| | - Haoyue Qin
- Early Clinical Trial Center, Hunan Cancer Hospital and The Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha 410013, China
| | - Zhe Huang
- Early Clinical Trial Center, Hunan Cancer Hospital and The Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha 410013, China
| | - Huan Yan
- Early Clinical Trial Center, Hunan Cancer Hospital and The Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha 410013, China
| | - Gao Zhang
- Faculty of Dentistry, the University of Hong Kong, Hong Kong 999077 Hong Kong Special Administrative Region
| | - Yongchang Zhang
- Early Clinical Trial Center, Hunan Cancer Hospital and The Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha 410013, China.
| |
Collapse
|
5
|
Capello M, Sette A, Plantinga T, Thalhauser CJ, Spires VM, Nürmberger KB, Blum JM, Higgs BW, Garrido Castro P, Yu C, Costa Sa C, Fellermeier-Kopf S, Burm SM, Strumane K, Toker A, Imle A, de Andrade Pereira B, Muik A, Ahmadi T, Türeci Ö, Fereshteh M, Sahin U, Jure-Kunkel M, Pencheva N. Acasunlimab, an Fc-inert PD-L1×4-1BB bispecific antibody, combined with PD-1 blockade potentiates antitumor immunity via complementary immune modulatory effects. J Immunother Cancer 2025; 13:e011377. [PMID: 40216443 PMCID: PMC11987116 DOI: 10.1136/jitc-2024-011377] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2024] [Accepted: 03/24/2025] [Indexed: 04/14/2025] Open
Abstract
BACKGROUND Next-generation cancer immunotherapies aim to improve patient outcomes by combining inhibitory signal blockade with targeted T-cell costimulation in tumor and lymphoid tissues. Acasunlimab (DuoBody-PD-L1×4-1BB) is an investigational, bispecific antibody designed to elicit an antitumor immune response via conditional 4-1BB activation strictly dependent on simultaneous programmed death-ligand 1 (PD-L1) binding. Since 4-1BB is coexpressed with programmed cell death protein-1 (PD-1) on CD8+ T cells, PD-1 blockade and simultaneous costimulation through 4-1BB may synergistically enhance T-cell effector functions. We hypothesized that combining acasunlimab with PD-1 blockade to fully disrupt PD-1 interactions with both PD-L1 and PD-L2 would amplify the depth and duration of antitumor immunity. METHODS The effect of acasunlimab and pembrolizumab combination was analyzed in vitro using functional immune cell assays, including mixed-lymphocyte reactions and antigen-specific T-cell proliferation and cytotoxicity assays. The antitumor activity of the combination was tested in vivo in (1) MC38, MB49, Pan02, and B16F10 syngeneic tumor models using acasunlimab and anti-PD-1 mouse-surrogate antibodies; and (2) triple knock-in mice expressing the human targets using an acasunlimab chimeric antibody (chi-acasunlimab) and pembrolizumab. The mechanism of action of the combination was investigated in the MC38 syngeneic model through immunohistochemistry, flow cytometry, and bulk RNA sequencing. RESULTS The combination reinvigorated dysfunctional T cells in vitro, while also potentiating T-cell expansion, interleukin (IL)-2 and interferon gamma secretion and cytotoxic activity. In vivo, the combination of chi-acasunlimab and pembrolizumab or mouse-surrogate antibodies potentiated antitumor activity and survival in the humanized knock-in and multiple syngeneic mouse models, leading to durable complete tumor regressions in the MC38 model consistent with therapeutic synergy. Mechanistically, the combination enhanced clonal expansion of tumor-specific CD8+ T cells in tumor-draining lymph nodes and increased the density of proliferating and cytotoxic CD8+ T cells in the tumor microenvironment. It also potentiated the IL-2 signaling pathway, increasing the proportion of granzyme B (GZMB+) stem-like CD8+ T cells thought to have superior effector function. CONCLUSION These preclinical results demonstrate that conditional 4-1BB stimulation combined with complete PD-1 blockade enhances antitumor immunity through complementary mechanisms. The acasunlimab and pembrolizumab combination is being evaluated in Phase 2 (NCT05117242) and pivotal Phase 3 (NCT06635824) trials in patients with metastatic non-small cell lung cancer after checkpoint inhibitor therapy failure.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | | | | | | | | | | | - Aras Toker
- BioNTech SE, Mainz, Rheinland-Pfalz, Germany
| | - Andrea Imle
- BioNTech SE, Mainz, Rheinland-Pfalz, Germany
| | | | | | | | | | | | - Ugur Sahin
- BioNTech SE, Mainz, Rheinland-Pfalz, Germany
| | | | | |
Collapse
|
6
|
Peng K, Fu YX, Liang Y. Engineering cytokines for tumor-targeting and selective T cell activation. Trends Mol Med 2025; 31:373-387. [PMID: 39955218 DOI: 10.1016/j.molmed.2025.01.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2024] [Revised: 01/17/2025] [Accepted: 01/17/2025] [Indexed: 02/17/2025]
Abstract
Cytokines are promising therapeutic agents for cancer due to their immune-stimulating properties. However, their clinical application is limited by a narrow therapeutic window and dose-limiting on-target, off-tumor toxicity. Advances in protein engineering enable the selective delivery of cytokines to the tumor microenvironment (TME) and antigen-specific T cells, enhancing antitumor efficacy while reducing systemic side effects. This review focuses on selected cytokines and outlines their developmental trajectory for treating solid tumors. We highlight strategies for constructing cis-signaling immunocytokines and procytokines for precise delivery to tumor sites and discuss the biological mechanisms through which these cytokines reactivate antitumor immunity. We also discuss the challenges and future directions for creating more effective cytokine-based therapeutics.
Collapse
Affiliation(s)
- Kun Peng
- Center for Cancer Biology, School of Basic Medical Sciences, Tsinghua University, Beijing, China; Changping Laboratory, Beijing, China
| | - Yang-Xin Fu
- Center for Cancer Biology, School of Basic Medical Sciences, Tsinghua University, Beijing, China; Changping Laboratory, Beijing, China; State Key Laboratory of Molecular Oncology, Tsinghua University, Beijing, China.
| | - Yong Liang
- Center for Cancer Biology, School of Basic Medical Sciences, Tsinghua University, Beijing, China; State Key Laboratory of Molecular Oncology, Tsinghua University, Beijing, China.
| |
Collapse
|
7
|
Rausch L, Kallies A. Molecular Mechanisms Governing CD8 T Cell Differentiation and Checkpoint Inhibitor Response in Cancer. Annu Rev Immunol 2025; 43:515-543. [PMID: 40279308 DOI: 10.1146/annurev-immunol-082223-044122] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/27/2025]
Abstract
CD8 T cells play a critical role in antitumor immunity. However, over time, they often become dysfunctional or exhausted and ultimately fail to control tumor growth. To effectively harness CD8 T cells for cancer immunotherapy, a detailed understanding of the mechanisms that govern their differentiation and function is crucial. This review summarizes our current knowledge of the molecular pathways that regulate CD8 T cell heterogeneity and function in chronic infection and cancer and outlines how T cells respond to therapeutic checkpoint blockade. We explore how T cell-intrinsic and -extrinsic factors influence CD8 T cell differentiation, fate choices, and functional states and ultimately dictate their response to therapy. Identifying cells that orchestrate long-term antitumor immunity and understanding the mechanisms that govern their development and persistence are critical steps toward improving cancer immunotherapy.
Collapse
Affiliation(s)
- Lisa Rausch
- Department of Microbiology and Immunology, Peter Doherty Institute for Infection and Immunity, University of Melbourne, Melbourne, Victoria, Australia;
| | - Axel Kallies
- Department of Microbiology and Immunology, Peter Doherty Institute for Infection and Immunity, University of Melbourne, Melbourne, Victoria, Australia;
| |
Collapse
|
8
|
Yang L, Tan W, Wang M, Wei Y, Xie Z, Wang Q, Zhang Z, Zhuang H, Ma X, Wang B, Jiang J, Chen Y, Shang C. circCCNY enhances lenvatinib sensitivity and suppresses immune evasion in hepatocellular carcinoma by serving as a scaffold for SMURF1 mediated HSP60 degradation. Cancer Lett 2025; 612:217470. [PMID: 39826668 DOI: 10.1016/j.canlet.2025.217470] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2024] [Revised: 01/11/2025] [Accepted: 01/16/2025] [Indexed: 01/22/2025]
Abstract
Lenvatinib is the standard first-line therapy for advanced hepatocellular carcinoma (HCC), but drug resistance significantly hampers its efficacy. Increasing evidence has shown that circular RNAs (circRNAs) play critical roles in HCC pathogenesis. However, the underlying mechanisms of lenvatinib sensitivity regulated by circRNAs remain largely unclear. The present study aims to identify circRNAs involved in lenvatinib resistance, as well as to elucidate the underlying mechanisms. High-throughput sequencing revealed that hsa_circ_0000235 (circCCNY) was downregulated in matched HCC tumor tissues and lenvatinib-resistant cells. Both in vitro and in vivo experiments revealed that downregulation of circCCNY could induce lenvatinib resistance in HCC cells. Subsequently, RNA pull-down, mass spectrometry, and RNA immunoprecipitation techniques were employed to investigate the interactions between circCCNY, HSP60, and the E3 ubiquitin ligase SMURF1. Briefly, circCCNY bounds to HSP60, subsequently leading to HSP60 ubiquitination and degradation through its interaction with the E3 ubiquitin ligase SMURF1. As a result, HSP60 degradation released Raf kinase inhibitor protein (RKIP), leading to the inactivation of the MAPK signaling pathway, and subsequently enhanced the anti-tumor effect of lenvatinib against HCC. Moreover, we also demonstrated that circCCNY could enhance CD8+ T-cell infiltration and suppress immune evasion through inhibiting the MAPK/c-Myc/PD-L1 signaling pathway. Our findings revealed that circCCNY enhances HCC sensitivity to lenvatinib and suppresses immune evasion by inhibiting the MAPK signaling pathway in HCC. This suggests that circCCNY could serve as a promising therapeutic target in HCC treatment and a potential biomarker for predicting HCC sensitivity to lenvatinib.
Collapse
MESH Headings
- Humans
- Carcinoma, Hepatocellular/drug therapy
- Carcinoma, Hepatocellular/genetics
- Carcinoma, Hepatocellular/immunology
- Carcinoma, Hepatocellular/pathology
- Carcinoma, Hepatocellular/metabolism
- Liver Neoplasms/drug therapy
- Liver Neoplasms/genetics
- Liver Neoplasms/immunology
- Liver Neoplasms/pathology
- Liver Neoplasms/metabolism
- Phenylurea Compounds/pharmacology
- Phenylurea Compounds/therapeutic use
- Quinolines/pharmacology
- Quinolines/therapeutic use
- Ubiquitin-Protein Ligases/metabolism
- Ubiquitin-Protein Ligases/genetics
- RNA, Circular/genetics
- RNA, Circular/metabolism
- Animals
- Drug Resistance, Neoplasm/genetics
- Mice
- Cell Line, Tumor
- Tumor Escape/drug effects
- Gene Expression Regulation, Neoplastic
- Xenograft Model Antitumor Assays
- Male
- Mice, Nude
- Female
- Ubiquitination
Collapse
Affiliation(s)
- Lei Yang
- Department of General Surgery, The Second Affiliated Hospital of Anhui Medical University, Hefei, 230000, Anhui, China
| | - Wenliang Tan
- Center of Hepatobiliary and Pancreatic Surgery, Zhuzhou Hospital Affiliated to Xiangya School of Medicine, Central South University, Zhuzhou, 412000, Hunan, China
| | - Min Wang
- Department of Pharmacy, Hainan General Hospital, Hainan Medical University, Haikou, 570311, Hai Nan, China
| | - Yingcheng Wei
- Department of Hepatopancreatobiliary Surgery, Shenshan Medical Center, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Shanwei, 516621, Guangdong, China
| | - Zhiqin Xie
- Center of Hepatobiliary and Pancreatic Surgery, Zhuzhou Hospital Affiliated to Xiangya School of Medicine, Central South University, Zhuzhou, 412000, Hunan, China
| | - Qingbin Wang
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, 510120, Guangdong, China; Department of Hepatobiliary Surgery, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, 510120, Guangdong, China
| | - Ziyu Zhang
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, 510120, Guangdong, China; Department of Hepatobiliary Surgery, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, 510120, Guangdong, China
| | - Hongkai Zhuang
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, 510120, Guangdong, China; Department of Hepatobiliary Surgery, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, 510120, Guangdong, China
| | - Xiaowu Ma
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, 510120, Guangdong, China; Department of Hepatobiliary Surgery, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, 510120, Guangdong, China
| | - Bingkun Wang
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, 510120, Guangdong, China; Department of Hepatobiliary Surgery, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, 510120, Guangdong, China
| | - Jiahao Jiang
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, 510120, Guangdong, China; Department of Hepatobiliary Surgery, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, 510120, Guangdong, China
| | - Yajin Chen
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, 510120, Guangdong, China; Department of Hepatobiliary Surgery, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, 510120, Guangdong, China.
| | - Changzhen Shang
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, 510120, Guangdong, China; Department of Hepatobiliary Surgery, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, 510120, Guangdong, China.
| |
Collapse
|
9
|
Piao M, Zhang N, Li J, Li C, Xun Z, Zhang L, Wang S, Sun B, Li S, Yang X, Yang X, Wang H, Zhao H. Peripheral blood PD-1 + T lymphocytes as biomarkers in liquid biopsies for solid tumors: Clinical significance and prognostic applications. Int Immunopharmacol 2025; 147:114052. [PMID: 39799737 DOI: 10.1016/j.intimp.2025.114052] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2024] [Revised: 01/06/2025] [Accepted: 01/06/2025] [Indexed: 01/15/2025]
Abstract
A shift toward a T cell exhaustion phenotype is associated with the upregulation of expression of programmed cell death protein 1 (PD-1) on T lymphocytes in patients with malignant solid tumors. The interaction between PD-1 and programmed death-ligand 1 (PD-L1) inhibits PD-1+ T lymphocyte function, impacting their anti-tumor immune activity. Immune checkpoint inhibitors targeting PD-1/PD-L1 have revolutionized the treatment of various solid malignancies, improving therapeutic efficacy and survival outcomes. Peripheral blood analysis of liquid biopsies is being increasingly used to identify populations most likely to benefit from various treatment modalities. PD-1+ T lymphocytes represent the primary cell population responsive to immunotherapeutic interventions for patients with solid malignancies, as evidenced by the altered PD-1 expression levels and proportion of cells comprising the overall population of immunocytes. PD-1+ T cells in peripheral blood exert an associative and reciprocal predictive effect on homologous intratumoral cells. Distinct subpopulations of PD-1+ T cells exhibit differential ability to proliferate in the periphery and can be characterized by tumor antigen-specific and exhaustion phenotypes. These characteristics have prognostic implications, aiding in the prediction of the efficacy of antitumor therapy and predicting survival outcomes. We highlight distinct subpopulations of PD-1+ T cells, their exhaustion and antigen-specific phenotypes, and their dynamic changes over treatment, providing insights into their utility for tailoring personalized therapies. For the first time, this review discusses the role of peripheral PD-1+ T lymphocytes as prognostic biomarkers in liquid biopsies, focusing on their clinical significance, predictive value during therapy, and future research directions.
Collapse
Affiliation(s)
- Mingjian Piao
- Department of Liver Surgery, State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences &Peking Union Medical College, Beijing, China
| | - Nan Zhang
- Department of Liver Surgery, State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences &Peking Union Medical College, Beijing, China
| | - Jiongyuan Li
- Department of Liver Surgery, State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences &Peking Union Medical College, Beijing, China
| | - Chengjie Li
- Department of Liver Surgery, State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences &Peking Union Medical College, Beijing, China
| | - Ziyu Xun
- Department of Liver Surgery, State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences &Peking Union Medical College, Beijing, China
| | - Longhao Zhang
- Department of Liver Surgery, State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences &Peking Union Medical College, Beijing, China
| | - Shanshan Wang
- Department of Liver Surgery, State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences &Peking Union Medical College, Beijing, China
| | - Boyu Sun
- Department of Liver Surgery, State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences &Peking Union Medical College, Beijing, China
| | - Shuofeng Li
- Department of Liver Surgery, State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences &Peking Union Medical College, Beijing, China
| | - Xu Yang
- Department of Breast Surgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences &Peking Union Medical College, Beijing, China
| | - Xiaobo Yang
- Department of Liver Surgery, State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences &Peking Union Medical College, Beijing, China.
| | - Hanping Wang
- Division of Pulmonary and Critical Care Medicine, State Key Laboratory of Severe and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences &Peking Union Medical College, Beijing, China.
| | - Haitao Zhao
- Department of Liver Surgery, State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences &Peking Union Medical College, Beijing, China.
| |
Collapse
|
10
|
Balkhi S, Bilato G, De Lerma Barbaro A, Orecchia P, Poggi A, Mortara L. Efficacy of Anti-Cancer Immune Responses Elicited Using Tumor-Targeted IL-2 Cytokine and Its Derivatives in Combined Preclinical Therapies. Vaccines (Basel) 2025; 13:69. [PMID: 39852848 PMCID: PMC11768832 DOI: 10.3390/vaccines13010069] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2024] [Revised: 01/10/2025] [Accepted: 01/10/2025] [Indexed: 01/26/2025] Open
Abstract
Effective cancer therapies must address the tumor microenvironment (TME), a complex network of tumor cells and stromal components, including endothelial, immune, and mesenchymal cells. Durable outcomes require targeting both tumor cells and the TME while minimizing systemic toxicity. Interleukin-2 (IL-2)-based therapies have shown efficacy in cancers such as metastatic melanoma and renal cell carcinoma but are limited by severe side effects. Innovative IL-2-based immunotherapeutic approaches include immunotoxins, such as antibody-drug conjugates, immunocytokines, and antibody-cytokine fusion proteins that enhance tumor-specific delivery. These strategies activate cytotoxic CD8+ T lymphocytes and natural killer (NK) cells, eliciting a potent Th1-mediated anti-tumor response. Modified IL-2 variants with reduced Treg cell activity further improve specificity and reduce immunosuppression. Additionally, IL-2 conjugates with peptides or anti-angiogenic agents offer improved therapeutic profiles. Combining IL-2-based therapies with immune checkpoint inhibitors (ICIs), anti-angiogenic agents, or radiotherapy has demonstrated synergistic potential. Preclinical and clinical studies highlight reduced toxicity and enhanced anti-tumor efficacy, overcoming TME-driven immune suppression. These approaches mitigate the limitations of high-dose soluble IL-2 therapy, promoting immune activation and minimizing adverse effects. This review critically explores advances in IL-2-based therapies, focusing on immunotoxins, immunocytokines, and IL-2 derivatives. Emphasis is placed on their role in combination strategies, showcasing their potential to target the TME and improve clinical outcomes effectively. Also, the use of IL-2 immunocytokines in "in situ" vaccination to relieve the immunosuppression of the TME is discussed.
Collapse
Affiliation(s)
- Sahar Balkhi
- Laboratory of Immunology and General Pathology, Department of Biotechnology and Life Sciences, University of Insubria, 21100 Varese, Italy; (S.B.); (G.B.); (L.M.)
| | - Giorgia Bilato
- Laboratory of Immunology and General Pathology, Department of Biotechnology and Life Sciences, University of Insubria, 21100 Varese, Italy; (S.B.); (G.B.); (L.M.)
- Unit of Molecular Pathology, Biochemistry and Immunology, IRCCS MultiMedica, 20123 Milan, Italy
| | - Andrea De Lerma Barbaro
- Laboratory of Comparative Physiopathology, Department of Biotechnology and Life Sciences, University of Insubria, 20145 Varese, Italy;
| | - Paola Orecchia
- Pathology and Experimental Immunology Operative Unit, IRCCS Ospedale Policlinico San Martino, 16132 Genova, Italy;
| | - Alessandro Poggi
- SSD Oncologia Molecolare e Angiogenesi, IRCCS Ospedale Policlinico San Martino, 16132 Genova, Italy
| | - Lorenzo Mortara
- Laboratory of Immunology and General Pathology, Department of Biotechnology and Life Sciences, University of Insubria, 21100 Varese, Italy; (S.B.); (G.B.); (L.M.)
- Unit of Molecular Pathology, Biochemistry and Immunology, IRCCS MultiMedica, 20123 Milan, Italy
| |
Collapse
|
11
|
Gao Z, Liu X, Lei Y, Shao J, Zhang G, Hou Z, Zhou G, Wu J, Guo H, Chang H, Liu W. Dendritic cell-based biomimetic nanoparticles for foot-and-mouth disease induce robust cellular immunity. Antiviral Res 2024; 231:106011. [PMID: 39332536 DOI: 10.1016/j.antiviral.2024.106011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2024] [Revised: 09/23/2024] [Accepted: 09/23/2024] [Indexed: 09/29/2024]
Abstract
Foot-and-mouth disease (FMD) is a highly contagious and economically devastating viral disease of ruminants and swine, badly affecting the livestock industry worldwide. In clinical practice, vaccination is a frequently employed strategy to prevent foot-and-mouth disease (FMDV). However, commercial inactivated vaccines for FMD mainly rely on humoral immunity, exhibiting poor cellular immune responses and causing adverse reactions. Here, we use the double emulsion method to prepare poly (lactic-co-glycolic acid) nanoparticles (PLGA-NP) encapsulated with IL-2 cytokines, wrap the dendritic cell (DC) membrane carrying FMDV antigen information on the surface of the nanoparticles, obtaining a biomimetic nanoparticle vaccine Biom@DC with uniform size. This vaccine can effortlessly move through lymph nodes due to its nanoscale size advantage. It also possesses DC ability to present antigens, and antigen presentation can be made more effective with high biocompatibility. The sustained release of IL-2 encapsulated in the core of PLGA-NP in vivo can effectively promote the body's cellular immune response. Immune tests on mice have shown that Biom@DC may greatly increase T cell activation and proliferation both in vivo and in vitro, while also significantly reducing the fraction of inhibitory Treg cells. Furthermore, in the micro serum neutralization assay for FMDV, it has been demonstrated that the group vaccinated with Biom@DC exhibits a clear neutralizing effect. Given its strong immunogenicity, Biom@DC has the potential to develop into a novel, potent anti-FMDV vaccination.
Collapse
Affiliation(s)
- Zhan Gao
- State Key Laboratory for Animal Disease Control and Prevention, Gansu Province Research Center for Basic Disciplines of Pathogen Biology, OIE/China National Foot-and-Mouth Disease Reference Laboratory, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, Gansu Province, China; School of Materials Science and Engineering, Key Laboratory for Polymer Composite and Functional Materials of Ministry of Education, GD Research Center for Functional Biomaterials Engineering and Technology, Sun Yat-sen University, Guangzhou, 510275, China
| | - Xiaoqing Liu
- State Key Laboratory for Animal Disease Control and Prevention, Gansu Province Research Center for Basic Disciplines of Pathogen Biology, OIE/China National Foot-and-Mouth Disease Reference Laboratory, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, Gansu Province, China
| | - Yao Lei
- State Key Laboratory for Animal Disease Control and Prevention, Gansu Province Research Center for Basic Disciplines of Pathogen Biology, OIE/China National Foot-and-Mouth Disease Reference Laboratory, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, Gansu Province, China
| | - Junjun Shao
- State Key Laboratory for Animal Disease Control and Prevention, Gansu Province Research Center for Basic Disciplines of Pathogen Biology, OIE/China National Foot-and-Mouth Disease Reference Laboratory, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, Gansu Province, China.
| | - Guanglei Zhang
- State Key Laboratory for Animal Disease Control and Prevention, Gansu Province Research Center for Basic Disciplines of Pathogen Biology, OIE/China National Foot-and-Mouth Disease Reference Laboratory, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, Gansu Province, China
| | - Zhuo Hou
- State Key Laboratory for Animal Disease Control and Prevention, Gansu Province Research Center for Basic Disciplines of Pathogen Biology, OIE/China National Foot-and-Mouth Disease Reference Laboratory, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, Gansu Province, China
| | - Guangqing Zhou
- State Key Laboratory for Animal Disease Control and Prevention, Gansu Province Research Center for Basic Disciplines of Pathogen Biology, OIE/China National Foot-and-Mouth Disease Reference Laboratory, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, Gansu Province, China
| | - Jin'en Wu
- State Key Laboratory for Animal Disease Control and Prevention, Gansu Province Research Center for Basic Disciplines of Pathogen Biology, OIE/China National Foot-and-Mouth Disease Reference Laboratory, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, Gansu Province, China
| | - Huichen Guo
- State Key Laboratory for Animal Disease Control and Prevention, Gansu Province Research Center for Basic Disciplines of Pathogen Biology, OIE/China National Foot-and-Mouth Disease Reference Laboratory, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, Gansu Province, China
| | - Huiyun Chang
- State Key Laboratory for Animal Disease Control and Prevention, Gansu Province Research Center for Basic Disciplines of Pathogen Biology, OIE/China National Foot-and-Mouth Disease Reference Laboratory, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, Gansu Province, China
| | - Wei Liu
- State Key Laboratory for Animal Disease Control and Prevention, Gansu Province Research Center for Basic Disciplines of Pathogen Biology, OIE/China National Foot-and-Mouth Disease Reference Laboratory, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, Gansu Province, China.
| |
Collapse
|
12
|
Wu B, Zhang B, Li B, Wu H, Jiang M. Cold and hot tumors: from molecular mechanisms to targeted therapy. Signal Transduct Target Ther 2024; 9:274. [PMID: 39420203 PMCID: PMC11491057 DOI: 10.1038/s41392-024-01979-x] [Citation(s) in RCA: 60] [Impact Index Per Article: 60.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2024] [Revised: 08/20/2024] [Accepted: 09/12/2024] [Indexed: 10/19/2024] Open
Abstract
Immunotherapy has made significant strides in cancer treatment, particularly through immune checkpoint blockade (ICB), which has shown notable clinical benefits across various tumor types. Despite the transformative impact of ICB treatment in cancer therapy, only a minority of patients exhibit a positive response to it. In patients with solid tumors, those who respond well to ICB treatment typically demonstrate an active immune profile referred to as the "hot" (immune-inflamed) phenotype. On the other hand, non-responsive patients may exhibit a distinct "cold" (immune-desert) phenotype, differing from the features of "hot" tumors. Additionally, there is a more nuanced "excluded" immune phenotype, positioned between the "cold" and "hot" categories, known as the immune "excluded" type. Effective differentiation between "cold" and "hot" tumors, and understanding tumor intrinsic factors, immune characteristics, TME, and external factors are critical for predicting tumor response and treatment results. It is widely accepted that ICB therapy exerts a more profound effect on "hot" tumors, with limited efficacy against "cold" or "altered" tumors, necessitating combinations with other therapeutic modalities to enhance immune cell infiltration into tumor tissue and convert "cold" or "altered" tumors into "hot" ones. Therefore, aligning with the traits of "cold" and "hot" tumors, this review systematically delineates the respective immune characteristics, influencing factors, and extensively discusses varied treatment approaches and drug targets based on "cold" and "hot" tumors to assess clinical efficacy.
Collapse
Affiliation(s)
- Bo Wu
- Department of Neurology, The Fourth Affiliated Hospital, China Medical University, Shenyang, China
| | - Bo Zhang
- Department of Youth League Committee, The Fourth Affiliated Hospital, China Medical University, Shenyang, China
| | - Bowen Li
- Department of Pancreatic and Gastrointestinal Surgery, Ningbo No. 2 Hospital, Ningbo, China
| | - Haoqi Wu
- Department of Gynaecology and Obstetrics, The Second Hospital of Dalian Medical University, Dalian, China
| | - Meixi Jiang
- Department of Neurology, The Fourth Affiliated Hospital, China Medical University, Shenyang, China.
| |
Collapse
|
13
|
Liu Q, Guan Y, Li S. Programmed death receptor (PD-)1/PD-ligand (L)1 in urological cancers : the "all-around warrior" in immunotherapy. Mol Cancer 2024; 23:183. [PMID: 39223527 PMCID: PMC11367915 DOI: 10.1186/s12943-024-02095-8] [Citation(s) in RCA: 16] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2024] [Accepted: 08/18/2024] [Indexed: 09/04/2024] Open
Abstract
Programmed death receptor-1 (PD-1) and its ligand, programmed death ligand-1 (PD-L1) are essential molecules that are key in modulating immune responses. PD-L1 is constitutively expressed on various immune cells, epithelial cells, and cancer cells, where it functions as a co-stimulatory molecule capable of impairing T-cell mediated immune responses. Upon binding to PD-1 on activated T-cells, the PD-1/PD-L1 interaction triggers signaling pathways that can induce T-cell apoptosis or anergy, thereby facilitating the immune escape of tumors. In urological cancers, including bladder cancer (BCa), renal cell carcinoma (RCC), and prostate cancer (PCa), the upregulation of PD-L1 has been demonstrated. It is linked to poor prognosis and enhanced tumor immune evasion. Recent studies have highlighted the significant role of the PD-1/PD-L1 axis in the immune escape mechanisms of urological cancers. The interaction between PD-L1 and PD-1 on T-cells further contributes to immunosuppression by inhibiting T-cell activation and proliferation. Clinical applications of PD-1/PD-L1 checkpoint inhibitors have shown promising efficacy in treating advanced urological cancers, significantly improving patient outcomes. However, resistance to these therapies, either intrinsic or acquired, remains a significant challenge. This review aims to provide a comprehensive overview of the role of the PD-1/PD-L1 signaling pathway in urological cancers. We summarize the regulatory mechanism underlying PD-1 and PD-L1 expression and activity, including genetic, epigenetic, post-transcriptional, and post-translational modifications. Additionally, we discuss current clinical research on PD-1/PD-L1 inhibitors, their therapeutic potential, and the challenges associated with resistance. Understanding these mechanisms is crucial for developing new strategies to overcome therapeutic limitations and enhance the efficacy of cancer immunotherapy.
Collapse
Affiliation(s)
- Qiang Liu
- Department of Urology, Cancer Hospital of Dalian University of Technology, Cancer Hospital of China Medical University, Liaoning Cancer Hospital & Institute, Shenyang, Liaoning, 110042, China
| | - Yujing Guan
- Second Ward of Bone and Soft Tissue Tumor Surgery, Cancer Hospital of Dalian University of Technology, Cancer Hospital of China Medical University, Liaoning Cancer Hospital & Institute, Shenyang, Liaoning, 110042, China
- The Liaoning Provincial Key Laboratory of Interdisciplinary Research on Gastrointestinal Tumor Combining Medicine with Engineering, Shenyang, Liaoning, 110042, China
- Institute of Cancer Medicine, Faculty of Medicine, Dalian University of Technology, No.2 Linggong Road, Ganjingzi District, Dalian, Liaoning Province, 116024, China
| | - Shenglong Li
- Second Ward of Bone and Soft Tissue Tumor Surgery, Cancer Hospital of Dalian University of Technology, Cancer Hospital of China Medical University, Liaoning Cancer Hospital & Institute, Shenyang, Liaoning, 110042, China.
- The Liaoning Provincial Key Laboratory of Interdisciplinary Research on Gastrointestinal Tumor Combining Medicine with Engineering, Shenyang, Liaoning, 110042, China.
- Institute of Cancer Medicine, Faculty of Medicine, Dalian University of Technology, No.2 Linggong Road, Ganjingzi District, Dalian, Liaoning Province, 116024, China.
| |
Collapse
|