1
|
Sun L, Su T, Fisher AC, Shan J, Chen W, Zhang H, Wang X. Dynamic protonation of ligand sites in molecular catalysts enhances electrochemical CO 2 reduction. SCIENCE ADVANCES 2025; 11:eadu6915. [PMID: 40279429 PMCID: PMC12024685 DOI: 10.1126/sciadv.adu6915] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/19/2024] [Accepted: 03/24/2025] [Indexed: 04/27/2025]
Abstract
Molecular catalysts with functional group decorations are promising for electrocatalytic CO2 reduction to produce valuable chemicals and fuels. Using nickel phthalocyanine derivatives with cyano, methoxy, and dimethylamino groups, this study unveils why decorating molecular catalysts with either electron-donating or electron-withdrawing groups can enhance their activity. Notably, the dimethylamino group-decorated catalyst demonstrated stable and nearly 100% CO2-to-CO reduction selectivity over a wide potential range and high CO partial current densities up to 300 milliamperes per square centimeter. Theoretical and in situ spectroscopic analyses revealed the critical role of dynamic protonation of ligand sites in activating the metal center, which can be facilitated by the decoration of electron-withdrawing groups. Conversely, electron-donating groups, although requiring higher energy for protonation, enhance the synergy between metal centers and protonated sites, favoring the formation of key *COOH intermediates and improving CO selectivity at higher bias. This study underscores the importance of dynamic protonation of ligand sites in optimizing functionalized molecular catalysts for enhanced CO2RR activity.
Collapse
Affiliation(s)
- Libo Sun
- Department of Chemistry, City University of Hong Kong, Kowloon, 999077, Hong Kong SAR, P. R. China
| | - Tan Su
- Laboratory of Theoretical and Computational Chemistry, Institute of Theoretical Chemistry, Jilin University, Changchun, 130012, P. R. China
| | - Adrian C. Fisher
- Department of Chemical Engineering and Biotechnology, University of Cambridge, Cambridge CB2 3R, UK
| | - Jieqiong Shan
- Department of Chemistry, City University of Hong Kong, Kowloon, 999077, Hong Kong SAR, P. R. China
| | - Wei Chen
- Department of Chemistry, National University of Singapore, 117549 Singapore, Singapore
| | - Hua Zhang
- Department of Chemistry, City University of Hong Kong, Kowloon, 999077, Hong Kong SAR, P. R. China
- Hong Kong Branch of National Precious Metals Material Engineering Research Center, City University of Hong Kong, Kowloon, 999077, Hong Kong SAR, P. R. China
- Hong Kong Institute for Clean Energy, City University of Hong Kong, Kowloon, 999077, Hong Kong SAR, P. R. China
- Shenzhen Research Institute, City University of Hong Kong, Shenzhen, 518057, P. R. China
| | - Xin Wang
- Department of Chemistry, City University of Hong Kong, Kowloon, 999077, Hong Kong SAR, P. R. China
- Hong Kong Branch of National Precious Metals Material Engineering Research Center, City University of Hong Kong, Kowloon, 999077, Hong Kong SAR, P. R. China
- Hong Kong Institute for Clean Energy, City University of Hong Kong, Kowloon, 999077, Hong Kong SAR, P. R. China
| |
Collapse
|
2
|
Smith A, Gotico P, Guillot R, Le Gac S, Leibl W, Aukauloo A, Boitrel B, Sircoglou M, Halime Z. Hinged Carboxylate in the Artificial Distal Pocket of an Iron Porphyrin Enhances CO 2 Electroreduction at Low Overpotential. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2025; 12:e2500482. [PMID: 39840576 PMCID: PMC11923859 DOI: 10.1002/advs.202500482] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/08/2025] [Indexed: 01/23/2025]
Abstract
To efficiently capture, activate, and transform small molecules, metalloenzymes have evolved to integrate a well-organized pocket around the active metal center. Within this cavity, second coordination sphere functionalities are precisely positioned to optimize the rate, selectivity, and energy cost of catalytic reactions. Inspired by this strategy, an artificial distal pocket defined by a preorganized 3D strap is introduced on an iron-porphyrin catalyst (sc-Fe) for the CO2-to-CO electrocatalytic reduction. Combined electrochemical, kinetic, and computational studies demonstrate that the adequate positioning of a carboxylate/carboxylic group acting in synergy with a trapped water molecule within this distal pocket remarkably enhances the reaction turnover frequency (TOF) by four orders of magnitude compared to the perfluorinated iron-tetraphenylporphyrin catalyst (F20Fe) operating at a similar low overpotential. A proton-coupled electron transfer (PCET) is found to be the key process responsible for the unexpected protonation of the coordinating carboxylate, which, upon CO2 insertion, shifts from the first to the second coordination sphere to play a possible secondary role as a proton relay.
Collapse
Affiliation(s)
- Adrien Smith
- Université Paris-Saclay, CNRS, Institut de Chimie Moléculaire et des Matériaux d'Orsay, Orsay, 91400, France
| | - Philipp Gotico
- Institute for Integrative Biology of the Cell, CEA, CNRS, Université Paris-Saclay, Gif-sur-Yvette, 91191, France
| | - Régis Guillot
- Université Paris-Saclay, CNRS, Institut de Chimie Moléculaire et des Matériaux d'Orsay, Orsay, 91400, France
| | - Stéphane Le Gac
- Univ Rennes, CNRS, ISCR (Institut des Sciences Chimiques de Rennes)-UMR 6226, Rennes, 35000, France
| | - Winfried Leibl
- Institute for Integrative Biology of the Cell, CEA, CNRS, Université Paris-Saclay, Gif-sur-Yvette, 91191, France
| | - Ally Aukauloo
- Université Paris-Saclay, CNRS, Institut de Chimie Moléculaire et des Matériaux d'Orsay, Orsay, 91400, France
- Institute for Integrative Biology of the Cell, CEA, CNRS, Université Paris-Saclay, Gif-sur-Yvette, 91191, France
| | - Bernard Boitrel
- Univ Rennes, CNRS, ISCR (Institut des Sciences Chimiques de Rennes)-UMR 6226, Rennes, 35000, France
| | - Marie Sircoglou
- Université Paris-Saclay, CNRS, Institut de Chimie Moléculaire et des Matériaux d'Orsay, Orsay, 91400, France
| | - Zakaria Halime
- Université Paris-Saclay, CNRS, Institut de Chimie Moléculaire et des Matériaux d'Orsay, Orsay, 91400, France
| |
Collapse
|
3
|
Fernández S, Assaf EA, Ahmad S, Travis BD, Curley JB, Hazari N, Ertem MZ, Miller AJM. Room-Temperature Formate Ester Transfer Hydrogenation Enables an Electrochemical/Thermal Organometallic Cascade for Methanol Synthesis from CO 2. Angew Chem Int Ed Engl 2025; 64:e202416061. [PMID: 39571086 DOI: 10.1002/anie.202416061] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2024] [Indexed: 12/12/2024]
Abstract
The reduction of CO2 to synthetic fuels is a valuable strategy for energy storage. However, the formation of energy-dense liquid fuels such as methanol remains rare, particularly under low-temperature and low-pressure conditions that can be coupled to renewable electricity sources via electrochemistry. Here, a multicatalyst system pairing an electrocatalyst with a thermal organometallic catalyst is introduced, which enables the reduction of CO2 to methanol at ambient temperature and pressure. The cascade methanol synthesis proceeds via CO2 reduction to formate by electrocatalyst [Cp*Ir(bpy)Cl]+ (Cp*=pentamethylcyclopentadienyl, bpy=2,2'-bipyridine), Fischer esterification of formate to isopropyl formate catalyzed by trifluoromethanesulfonic acid (HOTf), and thermal transfer hydrogenation of isopropyl formate to methanol facilitated by the organometallic catalyst (H-PNP)Ir(H)3 (H-PNP=HN(C2H4PiPr2)2). The isopropanol solvent plays several crucial roles: activating formate ion as isopropyl formate, donating hydrogen for the reduction of formate ester to methanol via transfer hydrogenation, and lowering the barrier for transfer hydrogenation through hydrogen bonding interactions. In addition to reporting a method for room-temperature reduction of challenging ester substrates, this work provides a prototype for pairing electrochemical and thermal organometallic reactions that will guide the design and development of multicatalyst cascades.
Collapse
Affiliation(s)
- Sergio Fernández
- Department of Chemistry, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599-3290, United States
| | - Eric A Assaf
- Department of Chemistry, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599-3290, United States
| | - Shahbaz Ahmad
- Chemistry Division, Energy & Photon Sciences, Brookhaven National Laboratory, Upton, New York 11973, United States
| | - Benjamin D Travis
- Department of Chemistry, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599-3290, United States
| | - Julia B Curley
- Department of Chemistry, Yale University, P.O. Box 208107, New Haven, Connecticut 06520, United States
| | - Nilay Hazari
- Department of Chemistry, Yale University, P.O. Box 208107, New Haven, Connecticut 06520, United States
| | - Mehmed Z Ertem
- Chemistry Division, Energy & Photon Sciences, Brookhaven National Laboratory, Upton, New York 11973, United States
| | - Alexander J M Miller
- Department of Chemistry, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599-3290, United States
| |
Collapse
|
4
|
Mari V, Karmodak N. Tuning the product selectivity of single-atom catalysts for CO 2 reduction beyond CO formation by orbital engineering. NANOSCALE 2024; 16:18859-18870. [PMID: 39188223 DOI: 10.1039/d4nr02650k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/28/2024]
Abstract
Electrochemical CO2 reduction (CO2R) is one of the promising strategies for developing sustainable energy resources. Single-atom catalysts (SACs) have emerged as efficient catalysts for CO2R. However, the efficiency of SACs for the formation of reduction products beyond two-step CO formation is low due to the lower binding strength of the CO intermediate. In this study, we present an orbital engineering strategy based on density functional theory calculations and the fragment molecular orbital approach to tune product selectivity for the CO2R reaction on macrocycle based molecular catalysts (porphyrin and phthalocyanine) and extended SACs (graphene and covalent organic frameworks) with Fe, Co, and Ni dopants. The introduction of neutral axial ligands such as imidazole, pyridine, and trimethyl phosphine to the metal dopants enhances the binding affinity of the CO intermediate. The stability of the catalysts is investigated through the thermodynamic binding energy of the axial ligands and ab initio molecular dynamics simulations (AIMD). The grand canonical potential method is used to determine the reaction free energy values. Using a unified activity volcano plot based on the reaction free energy values, we investigated the catalytic activity and product selectivity at an applied potential of -0.8 V vs. SHE and a pH of 6.8. We found that with the imidazole and pyridine axial ligands, the selectivity of Fe-doped SACs towards the formation of the methanol product is improved. The activity volcano plot for these SACs shows a similar activity to that of the Cu (211) surface. The catalytic activity is found to be directly proportional to the sigma-donating ability of the axial ligands.
Collapse
Affiliation(s)
- Vasanthapandiyan Mari
- Department of Chemistry, Shiv Nadar Institution of Eminence, Greater Noida, 201314, India.
| | - Naiwrit Karmodak
- Department of Chemistry, Shiv Nadar Institution of Eminence, Greater Noida, 201314, India.
| |
Collapse
|
5
|
McKee M, Kutter M, Wu Y, Williams H, Vaudreuil MA, Carta M, Yadav AK, Singh H, Masson JF, Lentz D, Kühnel MF, Kornienko N. Hydrophobic assembly of molecular catalysts at the gas-liquid-solid interface drives highly selective CO 2 electromethanation. Nat Chem 2024:10.1038/s41557-024-01650-6. [PMID: 39367063 DOI: 10.1038/s41557-024-01650-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2023] [Accepted: 09/04/2024] [Indexed: 10/06/2024]
Abstract
Molecular catalysts offer tunable active and peripheral sites, rendering them ideal model systems to explore fundamental concepts in catalysis. However, hydrophobic designs are often regarded as detrimental for dissolution in aqueous electrolytes. Here we show that established cobalt terpyridine catalysts modified with hydrophobic perfluorinated alkyl side chains can assemble at the gas-liquid-solid interfaces on a gas diffusion electrode. We find that the self-assembly of these perfluorinated units on the electrode surface results in a catalytic system selective for electrochemical CO2 reduction to CH4, whereas every other cobalt terpyridine catalyst reported previously was only selective for CO or formate. Mechanistic investigations suggest that the pyridine units function as proton shuttles that deliver protons to the dynamic hydrophobic pocket in which CO2 reduction takes place. Finally, integration with fluorinated carbon nanotubes as a hydrophobic conductive scaffold leads to a Faradaic efficiency for CH4 production above 80% at rates above 10 mA cm-2-impressive activities for a molecular electrocatalytic system.
Collapse
Affiliation(s)
- Morgan McKee
- Institute of Inorganic Chemistry, University of Bonn, Bonn, Germany
- Department of Chemistry, Université de Montréal, Montréal, Québec, Canada
| | - Maximilian Kutter
- Department of Chemistry, Swansea University, Swansea, UK
- Electrochemical Process Engineering, Universität Bayreuth, Bayreuth, Germany
| | - Yue Wu
- Department of Chemistry, Swansea University, Swansea, UK
| | - Hannah Williams
- Department of Chemistry, Université de Montréal, Montréal, Québec, Canada
| | | | | | | | - Harishchandra Singh
- Nano and Molecular Systems Research Unit, University of Oulu, Oulu, Finland
- Amity Institute of Applied Sciences, Amity University, Noida, Uttar Pradesh, India
- 2-Amity Institute of Applied Sciences, Amity University, Uttar Pradesh, India
| | - Jean-François Masson
- Department of Chemistry, Université de Montréal, Montréal, Québec, Canada
- Quebec Center for Advanced Materials, Regroupement Québécois sur les Matériaux de Pointe, Centre Interdisciplinaire de Recherche sur le Cerveau et l'Apprentissage, Université de Montréal, Montréal, Québec, Canada
| | - Dieter Lentz
- Freie Universität Berlin, Institut für Chemie und Biochemie - Anorganische Chemie, Berlin, Germany
| | - Moritz F Kühnel
- Department of Chemistry, Swansea University, Swansea, UK.
- Institute of Chemistry, University of Hohenheim, Stuttgart, Germany.
| | - Nikolay Kornienko
- Institute of Inorganic Chemistry, University of Bonn, Bonn, Germany.
- Department of Chemistry, Université de Montréal, Montréal, Québec, Canada.
| |
Collapse
|
6
|
Yang H, Guo N, Xi S, Wu Y, Yao B, He Q, Zhang C, Wang L. Potential-driven structural distortion in cobalt phthalocyanine for electrocatalytic CO 2/CO reduction towards methanol. Nat Commun 2024; 15:7703. [PMID: 39231997 PMCID: PMC11375126 DOI: 10.1038/s41467-024-52168-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2024] [Accepted: 08/28/2024] [Indexed: 09/06/2024] Open
Abstract
Cobalt phthalocyanine immobilized on carbon nanotube has demonstrated appreciable selectivity and activity for methanol synthesis in electrocatalytic CO2/CO reduction. However, discrepancies in methanol production selectivity and activity between CO2 and CO reduction have been observed, leading to inconclusive mechanisms for methanol production in this system. Here, we discover that the interaction between cobalt phthalocyanine molecules and defects on carbon nanotube substrate plays a key role in methanol production during CO2/CO electroreduction. Through detailed operando X-ray absorption and infrared spectroscopies, we find that upon application of cathodic potential, this interaction induces the transformation of the planar CoN4 center in cobalt phthalocyanine to an out-of-plane distorted configuration. Consequently, this potential induced structural change promotes the transformation of linearly bonded *CO at the CoN4 center to bridge *CO, thereby facilitating methanol production. Overall, these comprehensive mechanistic investigations and the outstanding performance (methanol partial current density over 150 mA cm-2) provide valuable insights in guiding the activity and selectivity of immobilized cobalt phthalocyanine for methanol production in CO2/CO reduction.
Collapse
Affiliation(s)
- Haozhou Yang
- Department of Chemical and Biomolecular Engineering, National University of Singapore, Singapore, Singapore
| | - Na Guo
- National University of Singapore (Chongqing) Research Institute, Building 4, Internet Industrial Park Phase 2, Chongqing Liang Jiang New Area, Chongqing, China
- Department of Physics, National University of Singapore, Singapore, Singapore
| | - Shibo Xi
- Institute of Sustainability for Chemical, Energy and Environment (ISCE2), Agency for Science, Technology and Research (A*STAR), Singapore, Singapore
| | - Yao Wu
- Department of Material Science Engineering, National University of Singapore, Singapore, Singapore
| | - Bingqing Yao
- Department of Material Science Engineering, National University of Singapore, Singapore, Singapore
| | - Qian He
- Department of Material Science Engineering, National University of Singapore, Singapore, Singapore
| | - Chun Zhang
- Department of Physics, National University of Singapore, Singapore, Singapore.
- Department of Chemistry, National University of Singapore, Singapore, Singapore.
| | - Lei Wang
- Department of Chemical and Biomolecular Engineering, National University of Singapore, Singapore, Singapore.
- Centre for Hydrogen Innovations, National University of Singapore, Singapore, Singapore.
| |
Collapse
|
7
|
Vieira F, Marcasuzaa P, Curet L, Billon L, Viterisi A, Palomares E. Selectivity of a Copper Oxide CO 2 Reduction Electrocatalyst Shifted by a Bioinspired pH-Sensitive Polymer. ACS APPLIED MATERIALS & INTERFACES 2024; 16:45038-45048. [PMID: 39162339 DOI: 10.1021/acsami.4c11927] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/21/2024]
Abstract
A bioinspired polymeric membrane capable of shifting the selectivity of a copper oxide electrocatalyst in the CO2 reduction reaction is described. The membrane is deposited on top of copper oxide thin films from wet deposition techniques under controlled conditions of humidity and self-assembles into an arranged network of micrometer-sized pores throughout the polymer cross-section. The membrane was composed of a block copolymer with a precisely controlled ratio of poly-4-vinylpyridine and poly(methyl methacrylate) blocks (PMMA-b-P4VP). The intrinsic hydrophobicity, together with the porous nature of the membrane's surface, induces a Cassie-Baxter wetting transition above neutral pH, resulting in water repulsion from the catalyst surface. As a consequence, the catalyst's surface is shielded from surrounding water molecules under CO2 electroreduction reaction conditions, and CO2 molecules are preferentially located in the vicinity of the catalytically active area. The CO2 reduction reaction is therefore kinetically favored over the hydrogen evolution reaction (HER).
Collapse
Affiliation(s)
- Fábio Vieira
- Universite de Pau et Pays de l'Adour, E2S UPPA, CNRS, IPREM UMR 5254, Technopole Hélioparc, 2 Avenue du Président Pierre Angot, 64053 PAU CEDEX 09, France
- Bio-inspired Materials Group: Functionalities & Self-Assembly, E2S UPPA, IPREM, Hélioparc, 2 Avenue du Président Pierre Angot, 64053 PAU CEDEX 09, France
- Institute of Chemical Research of Catalonia (ICIQ), Avenida Països Catalans, 16, 43007 Tarragona, Spain
| | - Pierre Marcasuzaa
- Universite de Pau et Pays de l'Adour, E2S UPPA, CNRS, IPREM UMR 5254, Technopole Hélioparc, 2 Avenue du Président Pierre Angot, 64053 PAU CEDEX 09, France
- Bio-inspired Materials Group: Functionalities & Self-Assembly, E2S UPPA, IPREM, Hélioparc, 2 Avenue du Président Pierre Angot, 64053 PAU CEDEX 09, France
| | - Leonard Curet
- Universite de Pau et Pays de l'Adour, E2S UPPA, CNRS, IPREM UMR 5254, Technopole Hélioparc, 2 Avenue du Président Pierre Angot, 64053 PAU CEDEX 09, France
- Bio-inspired Materials Group: Functionalities & Self-Assembly, E2S UPPA, IPREM, Hélioparc, 2 Avenue du Président Pierre Angot, 64053 PAU CEDEX 09, France
| | - Laurent Billon
- Universite de Pau et Pays de l'Adour, E2S UPPA, CNRS, IPREM UMR 5254, Technopole Hélioparc, 2 Avenue du Président Pierre Angot, 64053 PAU CEDEX 09, France
- Bio-inspired Materials Group: Functionalities & Self-Assembly, E2S UPPA, IPREM, Hélioparc, 2 Avenue du Président Pierre Angot, 64053 PAU CEDEX 09, France
| | - Aurélien Viterisi
- Universite de Pau et Pays de l'Adour, E2S UPPA, CNRS, IPREM UMR 5254, Technopole Hélioparc, 2 Avenue du Président Pierre Angot, 64053 PAU CEDEX 09, France
- Bio-inspired Materials Group: Functionalities & Self-Assembly, E2S UPPA, IPREM, Hélioparc, 2 Avenue du Président Pierre Angot, 64053 PAU CEDEX 09, France
| | - Emilio Palomares
- Universite de Pau et Pays de l'Adour, E2S UPPA, CNRS, IPREM UMR 5254, Technopole Hélioparc, 2 Avenue du Président Pierre Angot, 64053 PAU CEDEX 09, France
- Institute of Chemical Research of Catalonia (ICIQ), Avenida Països Catalans, 16, 43007 Tarragona, Spain
| |
Collapse
|
8
|
Singh A, Zamader A, Khakpour R, Laasonen K, Busch M, Robert M. Molecular Electrochemical Catalysis of CO-to-Formaldehyde Conversion with a Cobalt Complex. J Am Chem Soc 2024; 146:22129-22133. [PMID: 39083037 DOI: 10.1021/jacs.4c06878] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/15/2024]
Abstract
Formox, a highly energy-intensive process, currently serves as the primary source of formaldehyde (HCHO), for which there is a crucial and steadily growing chemical demand. The alternative electrochemical production of HCHO from C1 carbon sources such as CO2 and CO is still in its early stages, with even the few identified cases lacking mechanistic rationalization. In this study, we demonstrate that cobalt phthalocyanine (CoPc) immobilized on multiwalled carbon nanotubes (MW-CNTs) constitutes an excellent electrocatalytic system for producing HCHO with productivity through the direct reduction of CO, the two-electron reduction product of CO2. By carefully adjusting both the pH and the applied potential, we identified conditions that enable the production of HCHO with a partial current density of 0.64 mA cm-2 (17.5% Faradaic efficiency, FE) and a total FE of 61.2% for the liquid products (formaldehyde and methanol). A reduction mechanism is proposed.
Collapse
Affiliation(s)
- Ajeet Singh
- Université Paris Cité, CNRS, Laboratoire d'Electrochimie Moléculaire (LEM), F-75013 Paris, France
| | - Afridi Zamader
- Université Paris Cité, CNRS, Laboratoire d'Electrochimie Moléculaire (LEM), F-75013 Paris, France
| | - Reza Khakpour
- Department of Chemistry and Material Science, School of Chemical Engineering, Aalto University, 02150 Espoo, Finland
| | - Kari Laasonen
- Department of Chemistry and Material Science, School of Chemical Engineering, Aalto University, 02150 Espoo, Finland
| | - Michael Busch
- Division of Materials Science, Department of Engineering Sciences and Mathematics, Luleå University of Technology, 971 87 Luleå, Sweden
- Wallenberg Initiative Materials Science for Sustainability (WISE), Luleå University of Technology, 971 87 Luleå, Sweden
| | - Marc Robert
- Université Paris Cité, CNRS, Laboratoire d'Electrochimie Moléculaire (LEM), F-75013 Paris, France
- Institut Universitaire de France (IUF), F-75005 Paris, France
| |
Collapse
|
9
|
Cruz Neto DH, Pugliese E, Gotico P, Quaranta A, Leibl W, Steenkeste K, Peláez D, Pino T, Halime Z, Ha-Thi MH. Time-Resolved Mechanistic Depiction of Photoinduced CO 2 Reduction Catalysis on a Urea-Modified Iron Porphyrin. Angew Chem Int Ed Engl 2024; 63:e202407723. [PMID: 38781123 DOI: 10.1002/anie.202407723] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2024] [Revised: 05/22/2024] [Accepted: 05/23/2024] [Indexed: 05/25/2024]
Abstract
The development of functional artificial photosynthetic devices relies on the understanding of mechanistic aspects involved in specialized photocatalysts. Modified iron porphyrins have long been explored as efficient catalysts for the light-induced reduction of carbon dioxide (CO2) towards solar fuels. In spite of the advancements in homogeneous catalysis, the development of the next generation of catalysts requires a complete understanding of the fundamental photoinduced processes taking place prior to and after activation of the substrate by the catalyst. In this work, we employ a state-of-the-art nanosecond optical transient absorption spectroscopic setup with a double excitation capability to induce charge accumulation and trigger the reduction of CO2 to carbon monoxide (CO). Our biomimetic system is composed of a urea-modified iron(III) tetraphenylporphyrin (UrFeIII) catalyst, the prototypical [Ru(bpy)3]2+ (bpy=2,2'-bipyridine) used as a photosensitizer, and sodium ascorbate as an electron donor. Under inert atmosphere, we show that two electrons can be successively accumulated on the catalyst as the fates of the photogenerated UrFeII and UrFeI reduced species are tracked. In the presence of CO2, the catalytic cycle is kick-started providing further evidence on CO2 activation by the UrFe catalyst in its formal FeI oxidation state.
Collapse
Affiliation(s)
- Daniel H Cruz Neto
- Institut des Sciences Moléculaires d'Orsay (ISMO), Université Paris-Saclay, CNRS, 91405, Orsay, France
| | - Eva Pugliese
- Institut de Chimie Moléculaire et des Matériaux d'Orsay (ICMMO), Université Paris-Saclay, CNRS, 91400, Orsay, France
| | - Philipp Gotico
- Institute for Integrative Biology of the Cell (I2BC), Université Paris-Saclay, CEA, CNRS, 91198, Gif-sur-Yvette, France
| | - Annamaria Quaranta
- Institute for Integrative Biology of the Cell (I2BC), Université Paris-Saclay, CEA, CNRS, 91198, Gif-sur-Yvette, France
| | - Winfried Leibl
- Institute for Integrative Biology of the Cell (I2BC), Université Paris-Saclay, CEA, CNRS, 91198, Gif-sur-Yvette, France
| | - Karine Steenkeste
- Institut des Sciences Moléculaires d'Orsay (ISMO), Université Paris-Saclay, CNRS, 91405, Orsay, France
| | - Daniel Peláez
- Institut des Sciences Moléculaires d'Orsay (ISMO), Université Paris-Saclay, CNRS, 91405, Orsay, France
| | - Thomas Pino
- Institut des Sciences Moléculaires d'Orsay (ISMO), Université Paris-Saclay, CNRS, 91405, Orsay, France
| | - Zakaria Halime
- Institut de Chimie Moléculaire et des Matériaux d'Orsay (ICMMO), Université Paris-Saclay, CNRS, 91400, Orsay, France
| | - Minh-Huong Ha-Thi
- Institut des Sciences Moléculaires d'Orsay (ISMO), Université Paris-Saclay, CNRS, 91405, Orsay, France
| |
Collapse
|
10
|
Desmons S, Bonin J, Robert M, Bontemps S. Four-electron reduction of CO 2: from formaldehyde and acetal synthesis to complex transformations. Chem Sci 2024:d4sc02888k. [PMID: 39246334 PMCID: PMC11376136 DOI: 10.1039/d4sc02888k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2024] [Accepted: 08/02/2024] [Indexed: 09/10/2024] Open
Abstract
The expansive and dynamic field of the CO2 Reduction Reaction (CO2RR) seeks to harness CO2 as a sustainable carbon source or energy carrier. While significant progress has been made in two, six, and eight-electron reductions of CO2, the four-electron reduction remains understudied. This review fills this gap, comprehensively exploring CO2 reduction into formaldehyde (HCHO) or acetal-type compounds (EOCH2OE, with E = [Si], [B], [Zr], [U], [Y], [Nb], [Ta] or -R) using various CO2RR systems. These encompass (photo)electro-, bio-, and thermal reduction processes with diverse reductants. Formaldehyde, a versatile C1 product, is challenging to synthesize and isolate from the CO2RR. The review also discusses acetal compounds, emphasizing their significance as pathways to formaldehyde with distinct reactivity. Providing an overview of the state of four-electron CO2 reduction, this review highlights achievements, challenges, and the potential of the produced compounds - formaldehyde and acetals - as sustainable sources for valuable product synthesis, including chiral compounds.
Collapse
Affiliation(s)
- Sarah Desmons
- LCC-CNRS, Université de Toulouse, CNRS 205 route de Narbonne 31077 Toulouse Cedex 04 France
| | - Julien Bonin
- Laboratoire d'Electrochimie Moléculaire, Université Paris Cité, CNRS F-75013 Paris France
- Institut Parisien de Chimie Moléculaire, Sorbonne Université, CNRS F-75005 Paris France
| | - Marc Robert
- Laboratoire d'Electrochimie Moléculaire, Université Paris Cité, CNRS F-75013 Paris France
- Institut Parisien de Chimie Moléculaire, Sorbonne Université, CNRS F-75005 Paris France
- Institut Universitaire de France (IUF) F-75005 Paris France
| | - Sébastien Bontemps
- LCC-CNRS, Université de Toulouse, CNRS 205 route de Narbonne 31077 Toulouse Cedex 04 France
| |
Collapse
|
11
|
Arjunan S, Sims JM, Duboc C, Maldivi P, Milet A. Investigating the interplay between charge transfer and CO 2 insertion in the adsorption of a NiFe catalyst for CO 2 electroreduction on a graphite support through DFT computational approaches. J Comput Chem 2024; 45:1690-1696. [PMID: 38563509 DOI: 10.1002/jcc.27355] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2023] [Revised: 02/23/2024] [Accepted: 03/14/2024] [Indexed: 04/04/2024]
Abstract
This article describes a density functional theory (DFT) study to explore a bio-inspired NiFe complex known for its experimental activity in electro-reducing CO2 to CH4 when adsorbed on graphite. The coordination properties of the complex are investigated in isolated form and when physisorbed on a graphene surface. A comparative analysis of DFT approaches for surface modeling is conducted, utilizing either a finite graphene flake or a periodic carbon surface. Results reveal that the finite model effectively preserves all crucial properties. By examining predicted structures arising from CO2 insertion within the mono-reduced NiFe species, whether isolated or adsorbed on the graphene flake, a potential species for subsequent electro-reduction steps is proposed. Notably, the DFT study highlights two positive effects of complex adsorption: facile electron transfers between graphene and the complex, finely regulated by the complex state, and a lowering of the thermodynamic demand for CO2 insertion.
Collapse
Affiliation(s)
- Subash Arjunan
- Université Grenoble Alpes, DCM, CNRS, Grenoble, France
- Université Grenoble Alpes, CEA, CNRS, Grenoble INP, IRIG, SyMMES, Grenoble, France
| | - Joshua M Sims
- Université Grenoble Alpes, DCM, CNRS, Grenoble, France
- ENSL, CNRS, Lab Chim, UMR 5182, Lyon, France
| | - Carole Duboc
- Université Grenoble Alpes, DCM, CNRS, Grenoble, France
| | - Pascale Maldivi
- Université Grenoble Alpes, CEA, CNRS, Grenoble INP, IRIG, SyMMES, Grenoble, France
| | - Anne Milet
- Université Grenoble Alpes, DCM, CNRS, Grenoble, France
| |
Collapse
|
12
|
Ma F, Luo ZM, Wang JW, Ouyang G. Highly Efficient, Noble-Metal-Free, Fully Aqueous CO 2 Photoreduction Sensitized by a Robust Organic Dye. J Am Chem Soc 2024; 146:17773-17783. [PMID: 38888951 DOI: 10.1021/jacs.4c03128] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/20/2024]
Abstract
The development of efficient, selective, and durable CO2 photoreduction systems presents a long-standing challenge in full aqueous solutions owing to the presence of scarce CO2 and the fierce competition against H2 evolution, which is even more challenging when noble metals are not utilized. Herein, we present the facile decorations of four phosphonic acid groups on a donor-acceptor-type organic dye to obtain a water-soluble photosensitizer (4P-DPAIPN), which succeeds the excellent photophysical and photoredox properties of its prototype, exhibiting long-lived delayed fluorescence (>10 μs) in aqueous solutions. Combining 4P-DPAIPN with a cationic cobalt porphyrin catalyst has accomplished record-high apparent quantum yields of 9.4-17.4% at 450 nm for CO2-to-CO photoconversion among the precedented systems (maximum 13%) in fully aqueous solutions. Remarkable selectivity of 82-93% and turnover number of 2700 for CO production can also be achieved with this noble-metal-free system, outperforming a benchmarking ruthenium photosensitizer and a commercial organic dye under parallel conditions. Such high performances of 4P-DPAIPN can be well maintained under real sunlight. More impressively, no significant decomposition of 4P-DPAIPN was detected during the long-term photocatalysis. Eventually, the photoinduced electron transfer pathways were proposed.
Collapse
Affiliation(s)
- Fan Ma
- School of Chemical Engineering and Technology, Sun Yat-sen University, Zhuhai 519082, China
| | - Zhi-Mei Luo
- School of Chemical Engineering and Technology, Sun Yat-sen University, Zhuhai 519082, China
| | - Jia-Wei Wang
- School of Chemical Engineering and Technology, Sun Yat-sen University, Zhuhai 519082, China
| | - Gangfeng Ouyang
- School of Chemical Engineering and Technology, Sun Yat-sen University, Zhuhai 519082, China
- Chemistry College, Center of Advanced Analysis and Gene Sequencing, Zhengzhou University, Zhengzhou 450001, China
- Guangdong Provincial Key Laboratory of Emergency Test for Dangerous Chemicals, Guangdong Institute of Analysis (China National Analytical Center Guangzhou), Guangzhou 510070, China
| |
Collapse
|
13
|
Sun L, Dai C, Wang T, Jin X, Xu ZJ, Wang X. Modulating the Electronic Structure of Cobalt in Molecular Catalysts via Coordination Environment Regulation for Highly Efficient Heterogeneous Nitrate Reduction. Angew Chem Int Ed Engl 2024; 63:e202320027. [PMID: 38317616 DOI: 10.1002/anie.202320027] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2023] [Revised: 02/05/2024] [Accepted: 02/05/2024] [Indexed: 02/07/2024]
Abstract
Ammonia (NH3) is pivotal in modern industry and represents a promising next-generation carbon-free energy carrier. Electrocatalytic nitrate reduction reaction (eNO3RR) presents viable solutions for NH3 production and removal of ambient nitrate pollutants. However, the development of eNO3RR is hindered by lacking the efficient electrocatalysts. To address this challenge, we synthesized a series of macrocyclic molecular catalysts for the heterogeneous eNO3RR. These materials possess different coordination environments around metal centers by surrounding subunits. Consequently, electronic structures of the active centers can be altered, enabling tunable activity towards eNO3RR. Our investigation reveals that metal center with an N2(pyrrole)-N2(pyridine) configuration demonstrates superior activity over the others and achieves a high NH3 Faradaic efficiency (FE) of over 90 % within the tested range, where the highest FE of approximately 94 % is obtained. Furthermore, it achieves a production rate of 11.28 mg mgcat -1 h-1, and a turnover frequency of up to 3.28 s-1. Further tests disclose that these molecular catalysts with diverse coordination environments showed different magnetic moments. Theoretical calculation results indicate that variated coordination environments can result in a d-band center variation which eventually affects rate-determining step energy and calculated magnetic moments, thus establishing a correlation between electronic structure, experimental activity, and computational parameters.
Collapse
Affiliation(s)
- Libo Sun
- Department of Chemistry, City University of Hong Kong, Kowloon, 999077, Hong Kong SAR, P. R. China
- Cambridge Centre for Advanced Research and Education in Singapore Ltd (Cambridge CARES), CREATE Tower, Singapore, 138602, Singapore
| | - Chencheng Dai
- Cambridge Centre for Advanced Research and Education in Singapore Ltd (Cambridge CARES), CREATE Tower, Singapore, 138602, Singapore
- School of Material Science and Engineering, Nanyang Technological University, 50 Nanyang Avenue, Singapore, 639798, Singapore
| | - Tianjiao Wang
- Cambridge Centre for Advanced Research and Education in Singapore Ltd (Cambridge CARES), CREATE Tower, Singapore, 138602, Singapore
| | - Xindie Jin
- Cambridge Centre for Advanced Research and Education in Singapore Ltd (Cambridge CARES), CREATE Tower, Singapore, 138602, Singapore
| | - Zhichuan J Xu
- Cambridge Centre for Advanced Research and Education in Singapore Ltd (Cambridge CARES), CREATE Tower, Singapore, 138602, Singapore
- School of Material Science and Engineering, Nanyang Technological University, 50 Nanyang Avenue, Singapore, 639798, Singapore
| | - Xin Wang
- Department of Chemistry, City University of Hong Kong, Kowloon, 999077, Hong Kong SAR, P. R. China
- Hong Kong Branch of National Precious Metals Material Engineering Research Center, City University of Hong Kong, Kowloon, 999077, Hong Kong SAR, P. R. China
| |
Collapse
|
14
|
Gotico P, Halime Z, Leibl W, Aukauloo A. Bimetallic Molecular Catalyst Design for Carbon Dioxide Reduction. Chempluschem 2023; 88:e202300222. [PMID: 37466131 DOI: 10.1002/cplu.202300222] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2023] [Revised: 07/18/2023] [Accepted: 07/19/2023] [Indexed: 07/20/2023]
Abstract
The core challenge in developing cost-efficient catalysts for carbon dioxide (CO2 ) conversion mainly lies in controlling its complex reaction pathways. One such strategy exploits bimetallic cooperativity, which relies on the synergistic interaction between two metal centers to activate and convert the CO2 substrate. While this approach has seen an important trend in heterogeneous catalysis as a handle to control stabilities of surface intermediates, it has not often been utilized in molecular and heterogenized molecular catalytic systems. In this review, we gather general principles on how natural CO2 activating enzymes take advantage of bimetallic strategy and how phosphines, cyclams, polypyridyls, porphyrins, and cryptates-based homo- and hetero-bimetallic molecular catalysts can help understand the synergistic effect of two metal centers.
Collapse
Affiliation(s)
- Philipp Gotico
- Université Paris Saclay, CEA, CNRS, Institute for Integrative Biology of the Cell, 91198, Gif Sur Yvette, France
| | - Zakaria Halime
- Université Paris Saclay, CNRS, Institut de Chimie Moléculaire et des Matériaux d'Orsay, 91405, Orsay, France
| | - Winfried Leibl
- Université Paris Saclay, CEA, CNRS, Institute for Integrative Biology of the Cell, 91198, Gif Sur Yvette, France
| | - Ally Aukauloo
- Université Paris Saclay, CEA, CNRS, Institute for Integrative Biology of the Cell, 91198, Gif Sur Yvette, France
- Université Paris Saclay, CNRS, Institut de Chimie Moléculaire et des Matériaux d'Orsay, 91405, Orsay, France
| |
Collapse
|
15
|
Ren X, Zhao J, Li X, Shao J, Pan B, Salamé A, Boutin E, Groizard T, Wang S, Ding J, Zhang X, Huang WY, Zeng WJ, Liu C, Li Y, Hung SF, Huang Y, Robert M, Liu B. In-situ spectroscopic probe of the intrinsic structure feature of single-atom center in electrochemical CO/CO 2 reduction to methanol. Nat Commun 2023; 14:3401. [PMID: 37296132 DOI: 10.1038/s41467-023-39153-6] [Citation(s) in RCA: 42] [Impact Index Per Article: 21.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2023] [Accepted: 06/01/2023] [Indexed: 06/12/2023] Open
Abstract
While exploring the process of CO/CO2 electroreduction (COxRR) is of great significance to achieve carbon recycling, deciphering reaction mechanisms so as to further design catalytic systems able to overcome sluggish kinetics remains challenging. In this work, a model single-Co-atom catalyst with well-defined coordination structure is developed and employed as a platform to unravel the underlying reaction mechanism of COxRR. The as-prepared single-Co-atom catalyst exhibits a maximum methanol Faradaic efficiency as high as 65% at 30 mA/cm2 in a membrane electrode assembly electrolyzer, while on the contrary, the reduction pathway of CO2 to methanol is strongly decreased in CO2RR. In-situ X-ray absorption and Fourier-transform infrared spectroscopies point to a different adsorption configuration of *CO intermediate in CORR as compared to that in CO2RR, with a weaker stretching vibration of the C-O bond in the former case. Theoretical calculations further evidence the low energy barrier for the formation of a H-CoPc-CO- species, which is a critical factor in promoting the electrochemical reduction of CO to methanol.
Collapse
Affiliation(s)
- Xinyi Ren
- CAS Key Laboratory of Science and Technology on Applied Catalysis, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, 116023, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Jian Zhao
- CAS Key Laboratory of Science and Technology on Applied Catalysis, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, 116023, China
| | - Xuning Li
- CAS Key Laboratory of Science and Technology on Applied Catalysis, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, 116023, China.
| | - Junming Shao
- Université Paris Cité, Laboratoire d'Electrochimie Moléculaire, CNRS, F-75006, Paris, France
| | - Binbin Pan
- Institute of Functional Nano & Soft Materials (FUNSOM), Soochow University, Suzhou, 215123, China
- Jiangsu Key Laboratory for Advanced Negative Carbon Technologies, Soochow University, Suzhou, 215123, China
| | - Aude Salamé
- Université Paris Cité, Laboratoire d'Electrochimie Moléculaire, CNRS, F-75006, Paris, France
| | - Etienne Boutin
- Université Paris Cité, Laboratoire d'Electrochimie Moléculaire, CNRS, F-75006, Paris, France
| | - Thomas Groizard
- Université Paris Cité, Laboratoire d'Electrochimie Moléculaire, CNRS, F-75006, Paris, France
| | - Shifu Wang
- CAS Key Laboratory of Science and Technology on Applied Catalysis, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, 116023, China
- Department of Chemical Physics, University of Science and Technology of China, Hefei, 230026, China
| | - Jie Ding
- Department of Materials Science and Engineering, City University of Hong Kong, Hong Kong SAR, 999077, China
| | - Xiong Zhang
- CAS Key Laboratory of Science and Technology on Applied Catalysis, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, 116023, China
| | - Wen-Yang Huang
- Department of Applied Chemistry, National Yang Ming Chiao Tung University, Hsinchu, 300, Taiwan
| | - Wen-Jing Zeng
- Department of Applied Chemistry, National Yang Ming Chiao Tung University, Hsinchu, 300, Taiwan
| | - Chengyu Liu
- Université Paris Cité, Laboratoire d'Electrochimie Moléculaire, CNRS, F-75006, Paris, France
| | - Yanguang Li
- Institute of Functional Nano & Soft Materials (FUNSOM), Soochow University, Suzhou, 215123, China
- Jiangsu Key Laboratory for Advanced Negative Carbon Technologies, Soochow University, Suzhou, 215123, China
| | - Sung-Fu Hung
- Department of Applied Chemistry, National Yang Ming Chiao Tung University, Hsinchu, 300, Taiwan.
| | - Yanqiang Huang
- CAS Key Laboratory of Science and Technology on Applied Catalysis, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, 116023, China
| | - Marc Robert
- Université Paris Cité, Laboratoire d'Electrochimie Moléculaire, CNRS, F-75006, Paris, France.
- Institut Universitaire de France (IUF), F-75005, Paris, France.
| | - Bin Liu
- Department of Materials Science and Engineering, City University of Hong Kong, Hong Kong SAR, 999077, China.
| |
Collapse
|
16
|
Mathison R, Ramos Figueroa AL, Bloomquist C, Modestino MA. Electrochemical Manufacturing Routes for Organic Chemical Commodities. Annu Rev Chem Biomol Eng 2023; 14:85-108. [PMID: 36930876 DOI: 10.1146/annurev-chembioeng-101121-090840] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/19/2023]
Abstract
Electrochemical synthesis of organic chemical commodities provides an alternative to conventional thermochemical manufacturing and enables the direct use of renewable electricity to reduce greenhouse gas emissions from the chemical industry. We discuss electrochemical synthesis approaches that use abundant carbon feedstocks for the production of the largest petrochemical precursors and basic organic chemical products: light olefins, olefin oxidation derivatives, aromatics, and methanol. First, we identify feasible routes for the electrochemical production of each commodity while considering the reaction thermodynamics, available feedstocks, and competing thermochemical processes. Next, we summarize successful catalysis and reaction engineering approaches to overcome technological challenges that prevent electrochemical routes from operating at high production rates, selectivity, stability, and energy conversion efficiency. Finally, we provide an outlook on the strategies that must be implemented to achieve large-scale electrochemical manufacturing of major organic chemical commodities.
Collapse
Affiliation(s)
- Ricardo Mathison
- Department of Chemical and Biomolecular Engineering, New York University, Brooklyn, New York, USA; , , ,
| | - Alexandra L Ramos Figueroa
- Department of Chemical and Biomolecular Engineering, New York University, Brooklyn, New York, USA; , , ,
| | - Casey Bloomquist
- Department of Chemical and Biomolecular Engineering, New York University, Brooklyn, New York, USA; , , ,
| | - Miguel A Modestino
- Department of Chemical and Biomolecular Engineering, New York University, Brooklyn, New York, USA; , , ,
| |
Collapse
|
17
|
Chen JY, Li M, Liao RZ. Mechanistic Insights into Photochemical CO 2 Reduction to CH 4 by a Molecular Iron-Porphyrin Catalyst. Inorg Chem 2023. [PMID: 37279181 DOI: 10.1021/acs.inorgchem.3c00402] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
Iron tetraphenylporphyrin complex modified with four trimethylammonium groups (Fe-p-TMA) is found to be capable of catalyzing the eight-electron eight-proton reduction of CO2 to CH4 photochemically in acetonitrile. In the present work, density functional theory (DFT) calculations have been performed to investigate the reaction mechanism and to rationalize the product selectivity. Our results revealed that the initial catalyst Fe-p-TMA ([Cl-Fe(III)-LR4]4+, where L = tetraphenylporphyrin ligand with a total charge of -2, and R4 = four trimethylammonium groups with a total charge of +4) undergoes three reduction steps, accompanied by the dissociation of the chloride ion to form [Fe(II)-L••2-R4]2+. [Fe(II)-L••2-R4]2+, bearing a Fe(II) center ferromagnetically coupled with a tetraphenylporphyrin diradical, performs a nucleophilic attack on CO2 to produce the 1η-CO2 adduct [CO2•--Fe(II)-L•-R4]2+. Two intermolecular proton transfer steps then take place at the CO2 moiety of [CO2•--Fe(II)-L•-R4]2+, resulting in the cleavage of the C-O bond and the formation of the critical intermediate [Fe(II)-CO]4+ after releasing a water molecule. Subsequently, [Fe(II)-CO]4+ accepts three electrons and one proton to generate [CHO-Fe(II)-L•-R4]2+, which finally undergoes a successive four-electron-five-proton reduction to produce methane without forming formaldehyde, methanol, or formate. Notably, the redox non-innocent tetraphenylporphyrin ligand was found to play an important role in CO2 reduction since it could accept and transfer electron(s) during catalysis, thus keeping the ferrous ion at a relatively high oxidation state. Hydrogen evolution reaction via the formation of Fe-hydride ([Fe(II)-H]3+) turns out to endure a higher total barrier than the CO2 reduction reaction, therefore providing a reasonable explanation for the origin of the product selectivity.
Collapse
Affiliation(s)
- Jia-Yi Chen
- Key Laboratory of Material Chemistry for Energy Conversion and Storage, Ministry of Education, Hubei Key Laboratory of Bioinorganic Chemistry and Materia Medica, Hubei Key Laboratory of Materials Chemistry and Service Failure, School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology, Wuhan 430074, China
| | - Man Li
- Key Laboratory of Material Chemistry for Energy Conversion and Storage, Ministry of Education, Hubei Key Laboratory of Bioinorganic Chemistry and Materia Medica, Hubei Key Laboratory of Materials Chemistry and Service Failure, School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology, Wuhan 430074, China
| | - Rong-Zhen Liao
- Key Laboratory of Material Chemistry for Energy Conversion and Storage, Ministry of Education, Hubei Key Laboratory of Bioinorganic Chemistry and Materia Medica, Hubei Key Laboratory of Materials Chemistry and Service Failure, School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology, Wuhan 430074, China
| |
Collapse
|
18
|
Wang JW, Li Z, Luo ZM, Huang Y, Ma F, Kupfer S, Ouyang G. Boosting CO 2 photoreduction by π-π-induced preassembly between a Cu(I) sensitizer and a pyrene-appended Co(II) catalyst. Proc Natl Acad Sci U S A 2023; 120:e2221219120. [PMID: 36943881 PMCID: PMC10068849 DOI: 10.1073/pnas.2221219120] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2022] [Accepted: 01/26/2023] [Indexed: 03/23/2023] Open
Abstract
The design of a highly efficient system for CO2 photoreduction fully based on earth-abundant elements presents a challenge, which may be overcome by installing suitable interactions between photosensitizer and catalyst to expedite the intermolecular electron transfer. Herein, we have designed a pyrene-decorated Cu(I) complex with a rare dual emission behavior, aiming at additional π-interaction with a pyrene-appended Co(II) catalyst for visible light-driven CO2-to-CO conversion. The results of 1H NMR titration, time-resolved fluorescence/absorption spectroscopies, quantum chemical simulations, and photocatalytic experiments clearly demonstrate that the dynamic π-π interaction between sensitizer and catalyst is highly advantageous in photocatalysis by accelerating the intermolecular electron transfer rate up to 6.9 × 105 s-1, thus achieving a notable apparent quantum yield of 19% at 425 nm with near-unity selectivity. While comparable to most earth-abundant molecular systems, this value is over three times of the pyrene-free system (6.0%) and far surpassing the benchmarking Ru(II) tris(bipyridine) (0.3%) and Ir(III) tris(2-phenylpyridine) (1.4%) photosensitizers under parallel conditions.
Collapse
Affiliation(s)
- Jia-Wei Wang
- School of Chemistry, Sun Yat-sen University, Guangzhou510275, China
- Institute of Chemical Research of Catalonia, Barcelona Institute of Science and Technology, Tarragona43007, Spain
| | - Zizi Li
- School of Chemistry, Sun Yat-sen University, Guangzhou510275, China
| | - Zhi-Mei Luo
- Institute of Chemical Research of Catalonia, Barcelona Institute of Science and Technology, Tarragona43007, Spain
| | - Yanjun Huang
- School of Chemistry, Sun Yat-sen University, Guangzhou510275, China
| | - Fan Ma
- School of Chemistry, Sun Yat-sen University, Guangzhou510275, China
| | - Stephan Kupfer
- Institute of Physical Chemistry, Friedrich Schiller University Jena, Jena07743, Germany
| | - Gangfeng Ouyang
- School of Chemistry, Sun Yat-sen University, Guangzhou510275, China
- Chemistry College, Center of Advanced Analysis and Gene Sequencing, Zhengzhou University, Zhengzhou450001, China
- Guangdong Provincial Key Laboratory of Emergency Test for Dangerous Chemicals, Guangdong Institute of Analysis (China National Analytical Center Guangzhou), Guangzhou510070, China
| |
Collapse
|
19
|
Nie W, Heim GP, Watkins NB, Agapie T, Peters JC. Organic Additive-derived Films on Cu Electrodes Promote Electrochemical CO 2 Reduction to C 2+ Products Under Strongly Acidic Conditions. Angew Chem Int Ed Engl 2023; 62:e202216102. [PMID: 36656130 DOI: 10.1002/anie.202216102] [Citation(s) in RCA: 42] [Impact Index Per Article: 21.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2022] [Revised: 12/19/2022] [Accepted: 01/17/2023] [Indexed: 01/20/2023]
Abstract
Electrochemical CO2 reduction (CO2 R) at low pH is desired for high CO2 utilization; the competing hydrogen evolution reaction (HER) remains a challenge. High alkali cation concentration at a high operating current density has recently been used to promote electrochemical CO2 R at low pH. Herein we report an alternative approach to selective CO2 R (>70 % Faradaic efficiency for C2+ products, FEC2+ ) at low pH (pH 2; H3 PO4 /KH2 PO4 ) and low potassium concentration ([K+ ]=0.1 M) using organic film-modified polycrystalline copper (Modified-Cu). Such an electrode effectively mitigates HER due to attenuated proton transport. Modified-Cu still achieves high FEC2+ (45 % with Cu foil /55 % with Cu GDE) under 1.0 M H3 PO4 (pH≈1) at low [K+ ] (0.1 M), even at low operating current, conditions where HER can otherwise dominate.
Collapse
Affiliation(s)
- Weixuan Nie
- Division of Chemistry and Chemical Engineering, California Institute of Technology, Pasadena, CA-91125, USA
| | - Gavin P Heim
- Division of Chemistry and Chemical Engineering, California Institute of Technology, Pasadena, CA-91125, USA
| | - Nicholas B Watkins
- Division of Chemistry and Chemical Engineering, California Institute of Technology, Pasadena, CA-91125, USA
| | - Theodor Agapie
- Division of Chemistry and Chemical Engineering, California Institute of Technology, Pasadena, CA-91125, USA
| | - Jonas C Peters
- Division of Chemistry and Chemical Engineering, California Institute of Technology, Pasadena, CA-91125, USA
| |
Collapse
|
20
|
Delmo EP, Wang Y, Zhu S, Li T, Wang Y, Jang J, Zhao Q, Roxas AP, Nambafu GS, Luo Z, Weng LT, Shao M. The Role of Glyoxal as an Intermediate in the Electrochemical CO 2 Reduction Reaction on Copper. THE JOURNAL OF PHYSICAL CHEMISTRY C 2023; 127:4496-4510. [DOI: 10.1021/acs.jpcc.3c00589] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/03/2025]
Affiliation(s)
- Ernest Pahuyo Delmo
- Department of Chemical and Biological Engineering, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, 000000 Hong Kong, China
| | - Yian Wang
- Department of Chemical and Biological Engineering, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, 000000 Hong Kong, China
| | - Shangqian Zhu
- Department of Chemical and Biological Engineering, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, 000000 Hong Kong, China
| | - Tiehuai Li
- Department of Chemical and Biological Engineering, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, 000000 Hong Kong, China
| | - Yinuo Wang
- Department of Chemical and Biological Engineering, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, 000000 Hong Kong, China
| | - Juhee Jang
- Department of Chemical and Biological Engineering, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, 000000 Hong Kong, China
| | - Qinglan Zhao
- Department of Chemical and Biological Engineering, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, 000000 Hong Kong, China
| | - Alexander Perez Roxas
- Department of Chemical and Biological Engineering, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, 000000 Hong Kong, China
| | - Gabriel Sikukuu Nambafu
- Department of Chemical and Biological Engineering, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, 000000 Hong Kong, China
| | - Zhengtang Luo
- Department of Chemical and Biological Engineering, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, 000000 Hong Kong, China
| | - Lu-Tao Weng
- Department of Chemical and Biological Engineering, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, 000000 Hong Kong, China
- Materials Characterization and Preparation Facility (GZ) and Advanced Materials Thrust, The Hong Kong University of Science and Technology (Guangzhou), Nansha, Guangzhou 511400 Guangdong, China
| | - Minhua Shao
- Department of Chemical and Biological Engineering, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, 000000 Hong Kong, China
- Energy Institute, Hong Kong Branch of Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou), and Chinese National Engineering Research Center for Control & Treatment of Heavy Metal Pollution, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, 000000 Hong Kong, China
| |
Collapse
|
21
|
Abdinejad M, Yuan T, Tang K, Duangdangchote S, Farzi A, Iglesias van Montfort HP, Li M, Middelkoop J, Wolff M, Seifitokaldani A, Voznyy O, Burdyny T. Electroreduction of Carbon Dioxide to Acetate using Heterogenized Hydrophilic Manganese Porphyrins. Chemistry 2023; 29:e202203977. [PMID: 36576084 DOI: 10.1002/chem.202203977] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2022] [Accepted: 12/28/2022] [Indexed: 12/29/2022]
Abstract
The electrochemical reduction of carbon dioxide (CO2 ) to value-added chemicals is a promising strategy to mitigate climate change. Metalloporphyrins have been used as a promising class of stable and tunable catalysts for the electrochemical reduction reaction of CO2 (CO2 RR) but have been primarily restricted to single-carbon reduction products. Here, we utilize functionalized earth-abundant manganese tetraphenylporphyrin-based (Mn-TPP) molecular electrocatalysts that have been immobilized via electrografting onto a glassy carbon electrode (GCE) to convert CO2 with overall 94 % Faradaic efficiencies, with 62 % being converted to acetate. Tuning of Mn-TPP with electron-withdrawing sulfonate groups (Mn-TPPS) introduced mechanistic changes arising from the electrostatic interaction between the sulfonate groups and water molecules, resulting in better surface coverage, which facilitated higher conversion rates than the non-functionalized Mn-TPP. For Mn-TPP only carbon monoxide and formate were detected as CO2 reduction products. Density-functional theory (DFT) calculations confirm that the additional sulfonate groups could alter the C-C coupling pathway from *CO→*COH→*COH-CO to *CO→*CO-CO→*COH-CO, reducing the free energy barrier of C-C coupling in the case of Mn-TPPS. This opens a new approach to designing metalloporphyrin catalysts for two carbon products in CO2 RR.
Collapse
Affiliation(s)
- Maryam Abdinejad
- Department of Chemical Engineering, Delft University of Technology, Van der Maasweg 9, 2629 HZ, Delft (the, Netherlands
| | - Tiange Yuan
- Department of Physical and Environmental Sciences, University of Toronto, 1265 Military Trail, Toronto, ON M1 C 1 A4, Canada
| | - Keith Tang
- Department of Physical and Environmental Sciences, University of Toronto, 1265 Military Trail, Toronto, ON M1 C 1 A4, Canada
| | - Salatan Duangdangchote
- Department of Physical and Environmental Sciences, University of Toronto, 1265 Military Trail, Toronto, ON M1 C 1 A4, Canada
| | - Amirhossein Farzi
- Department of Chemical Engineering, McGill University, 3610 University Street, Montréal, H3 A 0 C5 QC, Canada
| | | | - Mengran Li
- Department of Chemical Engineering, Delft University of Technology, Van der Maasweg 9, 2629 HZ, Delft (the, Netherlands
| | - Joost Middelkoop
- Department of Chemical Engineering, Delft University of Technology, Van der Maasweg 9, 2629 HZ, Delft (the, Netherlands
| | - Mädchen Wolff
- Department of Chemical Engineering, Delft University of Technology, Van der Maasweg 9, 2629 HZ, Delft (the, Netherlands
| | - Ali Seifitokaldani
- Department of Chemical Engineering, McGill University, 3610 University Street, Montréal, H3 A 0 C5 QC, Canada
| | - Oleksandr Voznyy
- Department of Physical and Environmental Sciences, University of Toronto, 1265 Military Trail, Toronto, ON M1 C 1 A4, Canada
| | - Thomas Burdyny
- Department of Chemical Engineering, Delft University of Technology, Van der Maasweg 9, 2629 HZ, Delft (the, Netherlands
| |
Collapse
|
22
|
Du J, Cheng B, Yuan H, Tao Y, Chen Y, Ming M, Han Z, Eisenberg R. Molecular Nickel Thiolate Complexes for Electrochemical Reduction of CO 2 to C 1-3 Hydrocarbons. Angew Chem Int Ed Engl 2023; 62:e202211804. [PMID: 36599806 DOI: 10.1002/anie.202211804] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2022] [Revised: 12/14/2022] [Accepted: 01/04/2023] [Indexed: 01/06/2023]
Abstract
We report the unprecedented electrocatalytic activity of a series of molecular nickel thiolate complexes (1-5) in reducing CO2 to C1-3 hydrocarbons on carbon paper in pH-neutral aqueous solutions. Ni(mpo)2 (3, mpo=2-mercaptopyridyl-N-oxide), Ni(pyS)3 - (4, pyS=2-mercaptopyridine), and Ni(mp)2 - (5, mp=2-mercaptophenolate) were found to generate C3 products from CO2 for the first time in molecular complex. Compound 5 exhibits Faradaic efficiencies (FEs) of 10.6 %, 7.2 %, 8.2 % for C1 , C2 , C3 hydrocarbons respectively at -1.0 V versus the reversible hydrogen electrode. Addition of CO to the system significantly promotes the FEC1-C3 to 41.1 %, suggesting that a key Ni-CO intermediate is associated with catalysis. A variety of spectroscopies have been performed to show that the structures of nickel complexes remain intact during CO2 reduction.
Collapse
Affiliation(s)
- Jiehao Du
- MOE Key Laboratory of Bioinorganic and Synthetic Chemistry, School of Chemistry, Sun Yat-sen University, 510275, Guangzhou, China
| | - Banggui Cheng
- MOE Key Laboratory of Bioinorganic and Synthetic Chemistry, School of Chemistry, Sun Yat-sen University, 510275, Guangzhou, China
| | - Huiqing Yuan
- MOE Key Laboratory of Bioinorganic and Synthetic Chemistry, School of Chemistry, Sun Yat-sen University, 510275, Guangzhou, China
| | - Yuan Tao
- MOE Key Laboratory of Bioinorganic and Synthetic Chemistry, School of Chemistry, Sun Yat-sen University, 510275, Guangzhou, China
| | - Ya Chen
- MOE Key Laboratory of Bioinorganic and Synthetic Chemistry, School of Chemistry, Sun Yat-sen University, 510275, Guangzhou, China
| | - Mei Ming
- MOE Key Laboratory of Bioinorganic and Synthetic Chemistry, School of Chemistry, Sun Yat-sen University, 510275, Guangzhou, China
| | - Zhiji Han
- MOE Key Laboratory of Bioinorganic and Synthetic Chemistry, School of Chemistry, Sun Yat-sen University, 510275, Guangzhou, China
| | - Richard Eisenberg
- Department of Chemistry, University of Rochester, 14627, Rochester, NY, USA
| |
Collapse
|
23
|
Pattanayak S, Loewen ND, Berben LA. Using Substituted [Fe 4N(CO) 12] - as a Platform To Probe the Effect of Cation and Lewis Acid Location on Redox Potential. Inorg Chem 2023; 62:1919-1925. [PMID: 36006454 DOI: 10.1021/acs.inorgchem.2c01556] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
The impact of cationic and Lewis acidic functional groups installed in the primary or secondary coordination sphere (PCS or SCS) of an (electro)catalyst is known to vary depending on the precise positioning of those groups. However, it is difficult to systematically probe the effect of that position. In this report, we probe the effect of the functional group position and identity on the observed reduction potentials (Ep,c) using substituted iron clusters, [Fe4N(CO)11R]n, where R = NO+, PPh2-CH2CH2-9BBN, (MePTA+)2, (MePTA+)4, and H+ and n = 0, -1, +1, or +3 (9-BBN is 9-borabicyclo(3.3.1)nonane; MePTA+ is 1-methyl-1-azonia-3,5-diaza-7-phosphaadamantane). The cationic NO+ and H+ ligands cause anodic shifts of 700 and 320 mV, respectively, in Ep,c relative to unsubstituted [Fe4N(CO)12]-. Infrared absorption band data, νCO, suggests that some of the 700 mV shift by NO+ results from electronic changes to the cluster core. This contrasts with the effects of cationic MePTA+ and H+ which cause primarily electrostatic effects on Ep,c. Lewis acidic 9-BBN in the SCS had almost no effect on Ep,c.
Collapse
Affiliation(s)
- Santanu Pattanayak
- Department of Chemistry, University of California, Davis, California 95616, United States
| | - Natalia D Loewen
- Department of Chemistry, University of California, Davis, California 95616, United States
| | - Louise A Berben
- Department of Chemistry, University of California, Davis, California 95616, United States
| |
Collapse
|
24
|
Group 6 (Cr, Mo, W) and Group 7 (Mn, Re) bipyridyl tetracarbonyl complex for electrochemical CO2 conversion: DFT and DLPNO-CCSD(T) study for effects of the central metal on redox potential, thermodynamics, and kinetics. Chem Phys 2022. [DOI: 10.1016/j.chemphys.2022.111758] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
|
25
|
Molecular Engineering of Metal Complexes for Electrocatalytic Carbon Dioxide Reduction: From Adjustment of Intrinsic Activity to Molecular Immobilization. Angew Chem Int Ed Engl 2022; 61:e202205301. [DOI: 10.1002/anie.202205301] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2022] [Indexed: 01/03/2023]
|
26
|
Chen Y, De Silva A, Yeh C.
CO
2
reduction by electropolymerized catalyst of triphenylamine‐substituted iron porphyrin. J CHIN CHEM SOC-TAIP 2022. [DOI: 10.1002/jccs.202200189] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/16/2022]
Affiliation(s)
- Yu‐Hsuan Chen
- Department of Chemistry National Chung Hsing University Taichung Taiwan
| | - Akshitha De Silva
- Department of Chemistry National Chung Hsing University Taichung Taiwan
| | - Chen‐Yu Yeh
- Department of Chemistry National Chung Hsing University Taichung Taiwan
| |
Collapse
|
27
|
Kornienko VL, Kolyagin GA, Taran OP. Electrocatalytic Reduction of Carbon Dioxide to Formic Acid on Sn- and Bi-Based Gas-Diffusion Electrodes in Aqueous Media (a Review). RUSS J ELECTROCHEM+ 2022. [DOI: 10.1134/s1023193522080079] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
28
|
Yang ZW, Chen JM, Qiu LQ, Xie WJ, He LN. Molecular Engineering of Metal Complexes for Electrocatalytic Carbon Dioxide Reduction: From Adjustment of Intrinsic Activity to Molecular Immobilization. Angew Chem Int Ed Engl 2022. [DOI: 10.1002/ange.202205301] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Zhi-Wen Yang
- Nankai University College of Chemistry Inst. Elemento-Org. Chem. CHINA
| | - Jin-Mei Chen
- Nankai University College of Chemistry Inst. Elemento-Org. Chem. CHINA
| | - Li-Qi Qiu
- Nankai University College of Chemistry Inst. Elemento-Org. Chem. CHINA
| | - Wen-Jun Xie
- Nankai University College of Chemistry Inst. Elemento-Org. Chem. CHINA
| | - Liang-Nian He
- Nankai University College of Chemistry Institute of Elemento-Organic Chemistry Weijin Rd. 94 300071 Tianjin CHINA
| |
Collapse
|
29
|
Lei K, Yu Xia B. Electrocatalytic CO
2
Reduction: from Discrete Molecular Catalysts to Their Integrated Catalytic Materials. Chemistry 2022; 28:e202200141. [DOI: 10.1002/chem.202200141] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2022] [Indexed: 11/12/2022]
Affiliation(s)
- Kai Lei
- Key Laboratory of Material Chemistry for Energy Conversion and Storage (Ministry of Education) Hubei Key Laboratory of Material Chemistry and Service Failure School of Chemistry and Chemical Engineering Huazhong University of Science and Technology Wuhan 430074 P. R. China
| | - Bao Yu Xia
- Key Laboratory of Material Chemistry for Energy Conversion and Storage (Ministry of Education) Hubei Key Laboratory of Material Chemistry and Service Failure School of Chemistry and Chemical Engineering Huazhong University of Science and Technology Wuhan 430074 P. R. China
| |
Collapse
|
30
|
Boutin E, Salamé A, Merakeb L, Chatterjee T, Robert M. On the Existence and Role of Formaldehyde During Aqueous Electrochemical Reduction of Carbon Monoxide to Methanol by Cobalt Phthalocyanine. Chemistry 2022; 28:e202200697. [DOI: 10.1002/chem.202200697] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2022] [Indexed: 11/10/2022]
Affiliation(s)
- Etienne Boutin
- Laboratoire d'Electrochimie Moléculaire Université de Paris CNRS F-75006 Paris France
| | - Aude Salamé
- Laboratoire d'Electrochimie Moléculaire Université de Paris CNRS F-75006 Paris France
| | - Lydia Merakeb
- Laboratoire d'Electrochimie Moléculaire Université de Paris CNRS F-75006 Paris France
| | - Tamal Chatterjee
- Laboratoire d'Electrochimie Moléculaire Université de Paris CNRS F-75006 Paris France
| | - Marc Robert
- Laboratoire d'Electrochimie Moléculaire Université de Paris CNRS F-75006 Paris France
- Institut Universitaire de France (IUF) F-75005 Paris France
| |
Collapse
|
31
|
Liang H, Beweries T, Francke R, Beller M. Molecular Catalysts for the Reductive Homocoupling of CO 2 towards C 2+ Compounds. Angew Chem Int Ed Engl 2022; 61:e202200723. [PMID: 35187799 PMCID: PMC9311439 DOI: 10.1002/anie.202200723] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2022] [Indexed: 11/06/2022]
Abstract
The conversion of CO2 into multicarbon (C2+ ) compounds by reductive homocoupling offers the possibility to transform renewable energy into chemical energy carriers and thereby create "carbon-neutral" fuels or other valuable products. Most available studies have employed heterogeneous metallic catalysts, but the use of molecular catalysts is still underexplored. However, several studies have already demonstrated the great potential of the molecular approach, namely, the possibility to gain a deep mechanistic understanding and a more precise control of the product selectivity. This Minireview summarizes recent progress in both the thermo- and electrochemical reductive homocoupling of CO2 toward C2+ products mediated by molecular catalysts. In addition, reductive CO homocoupling is discussed as a model for the further conversion of intermediates obtained from CO2 reduction, which may serve as a source of inspiration for developing novel molecular catalysts in the future.
Collapse
Affiliation(s)
- Hong‐Qing Liang
- Leibniz-Institute for CatalysisAlbert-Einstein-Strasse 29a18059RostockGermany
| | - Torsten Beweries
- Leibniz-Institute for CatalysisAlbert-Einstein-Strasse 29a18059RostockGermany
| | - Robert Francke
- Leibniz-Institute for CatalysisAlbert-Einstein-Strasse 29a18059RostockGermany
| | - Matthias Beller
- Leibniz-Institute for CatalysisAlbert-Einstein-Strasse 29a18059RostockGermany
| |
Collapse
|
32
|
Juthathan M, Chantarojsiri T, Tuntulani T, Leeladee P. Atomic- and Molecular-Level Modulation of Dispersed Active Sites for Electrocatalytic CO2 Reduction. Chem Asian J 2022; 17:e202200237. [PMID: 35417092 DOI: 10.1002/asia.202200237] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2022] [Revised: 04/12/2022] [Indexed: 11/06/2022]
Abstract
Global climate changes have been impacted by the excessive CO 2 emission, which exacerbates the environmental problems. Electrochemical CO 2 reduction (CO 2 RR) offers the solution for utilizing CO 2 as feedstocks for value-added products while potentially mitigating the negative effects. Owing to the extreme stability of CO 2 , selectivity and efficiency are crucial factors in the development of CO 2 RR electrocatalysts. Recently, single-atom catalysts have emerged as potential electrocatalysts for CO 2 reduction. They generally comprise of atomically- and molecularly dispersed active sites over conductive supports, which enable atomic-level and molecular-level modulations. In this minireview, catalyst preparations, principle of modulations, and reaction mechanisms are summarised together with related recent advances. The atomic-level modulations are first discussed, followed by the molecular-level modulations. Finally, the current challenges and future opportunities are provided as guidance for further developments regarding the discussed topics.
Collapse
Affiliation(s)
| | | | | | - Pannee Leeladee
- Chulalongkorn University, Chemistry, 254 Phayathai Road, 10330, Bangkok, THAILAND
| |
Collapse
|
33
|
Liang H, Beweries T, Francke R, Beller M. Molecular Catalysts for the Reductive Homocoupling of CO
2
towards C
2+
Compounds. Angew Chem Int Ed Engl 2022. [DOI: 10.1002/ange.202200723] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Hong‐Qing Liang
- Leibniz-Institute for Catalysis Albert-Einstein-Strasse 29a 18059 Rostock Germany
| | - Torsten Beweries
- Leibniz-Institute for Catalysis Albert-Einstein-Strasse 29a 18059 Rostock Germany
| | - Robert Francke
- Leibniz-Institute for Catalysis Albert-Einstein-Strasse 29a 18059 Rostock Germany
| | - Matthias Beller
- Leibniz-Institute for Catalysis Albert-Einstein-Strasse 29a 18059 Rostock Germany
| |
Collapse
|
34
|
Hoffmann M, Hermesmann M, Leven M, Leitner W, Müller TE. Semi-Crystalline Polyoxymethylene- co-Polyoxyalkylene Multi-Block Telechels as Building Blocks for Polyurethane Applications. Polymers (Basel) 2022; 14:882. [PMID: 35267705 PMCID: PMC8912848 DOI: 10.3390/polym14050882] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2022] [Revised: 02/13/2022] [Accepted: 02/16/2022] [Indexed: 11/21/2022] Open
Abstract
Hydroxy-terminated polyoxymethylene-co-polyoxyalkylene multi-block telechels were obtained by a new methodology that allows for the formal substituting of ether units in polyether polyols with oxymethylene moieties. An interesting feature is that, unlike carbonate groups in polycarbonate and polyethercarbonate polyols, homopolymer blocks of polyoxymethylene moieties can be formed. The regular nature of polyoxymethylene blocks imparts a certain crystallinity to the polymer that can give rise to new properties of polyurethanes derived from such telechels. The synthesis, reaction sequence and kinetics of the formation of oligomeric hydroxy-terminated multi-block telechel polyoxymethylene moieties are discussed in this paper and the preparation of a polyurethane material is demonstrated.
Collapse
Affiliation(s)
- Matthias Hoffmann
- CAT Catalytic Center, RWTH Aachen University, Worringerweg 2, 52074 Aachen, Germany; (M.H.); (M.L.); (W.L.)
| | - Matthias Hermesmann
- Carbon Sources and Conversion, Ruhr-Universität Bochum, Universitätsstraße 150, 44801 Bochum, Germany;
| | - Matthias Leven
- CAT Catalytic Center, RWTH Aachen University, Worringerweg 2, 52074 Aachen, Germany; (M.H.); (M.L.); (W.L.)
- Covestro Deutschland AG, COV-CCO-PUR-R&D-EMEA-DRDII, B108, 51365 Leverkusen, Germany
| | - Walter Leitner
- CAT Catalytic Center, RWTH Aachen University, Worringerweg 2, 52074 Aachen, Germany; (M.H.); (M.L.); (W.L.)
- Max Planck Institute for Chemical Energy Conversion, Stiftstrasse 34–36, 45470 Mulheim an der Ruhr, Germany
| | - Thomas Ernst Müller
- CAT Catalytic Center, RWTH Aachen University, Worringerweg 2, 52074 Aachen, Germany; (M.H.); (M.L.); (W.L.)
- Carbon Sources and Conversion, Ruhr-Universität Bochum, Universitätsstraße 150, 44801 Bochum, Germany;
| |
Collapse
|
35
|
Sun C, Hou Y, Lüdi N, Hu H, de Jesús Gálvez-Vázquez M, Liechti M, Kong Y, Liu M, Erni R, Rudnev AV, Broekmann P. Improving the lifetime of hybrid CoPc@MWCNT catalysts for selective electrochemical CO2-to-CO conversion. J Catal 2022. [DOI: 10.1016/j.jcat.2022.02.001] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
36
|
Abstract
The electrocatalytic CO2 reduction reaction (CO2RR) to generate fixed forms of carbons that have commercial value is a lucrative avenue to ameliorate the growing concerns about the detrimental effect of CO2 emissions as well as to generate carbon-based feed chemicals, which are generally obtained from the petrochemical industry. The area of electrochemical CO2RR has seen substantial activity in the past decade, and several good catalysts have been reported. While the focus was initially on the rate and overpotential of electrocatalysis, it is gradually shifting toward the more chemically challenging issue of selectivity. CO2 can be partially reduced to produce several C1 products like CO, HCOOH, CH3OH, etc. before its complete 8e-/8H+ reduction to CH4. In addition to that, the low-valent electron-rich metal centers deployed to activate CO2, a Lewis acid, are prone to reduce protons, which are a substrate for CO2RR, leading to competing hydrogen evolution reaction (HER). Similarly, the low-valent metal is prone to oxidation by atmospheric O2 (i.e., it can catalyze the oxygen reduction reaction, ORR), necessitating strictly anaerobic conditions for CO2RR. Not only is the requirement of O2-free reaction conditions impractical, but it also leads to the release of partially reduced O2 species such as O2-, H2O2, etc., which are reactive and result in oxidative degradation of the catalyst.In this Account, mechanistic investigations of CO2RR by detecting and, often, chemically trapping and characterizing reaction intermediates are used to understand the factors that determine the selectivity in CO2RR. The spectroscopic data obtained from different intermediates have been identified in different CO2RR catalysts to develop an electronic structure selectivity relationship that is deemed to be important for deciding the selectivity of 2e-/2H+ CO2RR. The roles played by the spin state, hydrogen bonding, and heterogenization in determining the rate and selectivity of CO2RR (producing only CO, only HCOOH, or only CH4) are discussed using examples of both iron porphyrin and non-heme bioinspired artificial mimics. In addition, strategies are demonstrated where the competition between CO2RR and HER as well as CO2RR and ORR could be skewed overwhelmingly in favor of CO2RR in both cases.
Collapse
Affiliation(s)
- Paramita Saha
- School of Chemical Sciences, Indian Association for the Cultivation of Science, 2A & 2B Raja SC Mullick Road, Kolkata 700032, India
| | - Sk Amanullah
- School of Chemical Sciences, Indian Association for the Cultivation of Science, 2A & 2B Raja SC Mullick Road, Kolkata 700032, India
| | - Abhishek Dey
- School of Chemical Sciences, Indian Association for the Cultivation of Science, 2A & 2B Raja SC Mullick Road, Kolkata 700032, India
| |
Collapse
|
37
|
Fernández S, Cañellas S, Franco F, Luis JM, Pericàs MÀ, Lloret‐Fillol J. The Dual Effect of Coordinating −NH Groups and Light in the Electrochemical CO
2
Reduction with Pyridylamino Co Complexes. ChemElectroChem 2021. [DOI: 10.1002/celc.202100859] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Affiliation(s)
- Sergio Fernández
- Institute of Chemical Research of Catalonia (ICIQ) The Barcelona Institute of Science and Technology (BIST) Av. Països Catalans 16 43007 Tarragona Spain
- Department de Química Física i Inorgànica Universitat Rovira i Virgili 43007 Tarragona Spain
| | - Santiago Cañellas
- Institute of Chemical Research of Catalonia (ICIQ) The Barcelona Institute of Science and Technology (BIST) Av. Països Catalans 16 43007 Tarragona Spain
| | - Federico Franco
- Institute of Chemical Research of Catalonia (ICIQ) The Barcelona Institute of Science and Technology (BIST) Av. Països Catalans 16 43007 Tarragona Spain
| | - Josep M. Luis
- Institut de Química Computacional i Catàlisi (IQCC) and Departament de Química Universitat de Girona Campus Montilivi 17003 Girona Spain
| | - Miquel À. Pericàs
- Institute of Chemical Research of Catalonia (ICIQ) The Barcelona Institute of Science and Technology (BIST) Av. Països Catalans 16 43007 Tarragona Spain
- Departament de Química Inorgànica i Orgànica Universitat de Barcelona 08080 Barcelona Spain
| | - Julio Lloret‐Fillol
- Institute of Chemical Research of Catalonia (ICIQ) The Barcelona Institute of Science and Technology (BIST) Av. Països Catalans 16 43007 Tarragona Spain
- Catalan Institution for Research and Advanced Studies (ICREA) Passeig Lluís Companys 23 08010 Barcelona Spain
| |
Collapse
|
38
|
Arcudi F, Đorđević L, Nagasing B, Stupp SI, Weiss EA. Quantum Dot-Sensitized Photoreduction of CO 2 in Water with Turnover Number > 80,000. J Am Chem Soc 2021; 143:18131-18138. [PMID: 34664969 DOI: 10.1021/jacs.1c06961] [Citation(s) in RCA: 58] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Climate change and global energy demands motivate the search for sustainable transformations of carbon dioxide (CO2) to storable liquid fuels. Photocatalysis is a pathway for direct conversion of CO2 to CO, one step within light-powered reaction networks that could, if efficient enough, transform the solar energy conversion landscape. To date, the best performing photocatalytic CO2 reduction systems operate in nonaqueous solvents, but technologically viable solar fuels networks will likely operate in water. Here we demonstrate catalytic photoreduction of CO2 to CO in pure water at pH 6-7 with an unprecedented combination of performance parameters: turnover number (TON(CO)) = 72,484-84,101, quantum yield (QY) = 0.96-3.39%, and selectivity (SCO) > 99%, using CuInS2 colloidal quantum dots (QDs) as photosensitizers and a Co-porphyrin catalyst. At higher catalyst concentration, the system reaches QY = 3.53-5.23%. The performance of the QD-driven system greatly exceeds that of the benchmark aqueous system (926 turnovers with a quantum yield of 0.81% and selectivity of 82%), due primarily to (i) electrostatic attraction of the QD to the catalyst, which promotes fast multielectron delivery and colocalization of protons, CO2, and catalyst at the source of photoelectrons, and (ii) termination of the QD's ligand shell with free amines, which capture CO2 as carbamic acid that serves as a reservoir for CO2, effectively increasing its solubility in water, and lowers the onset potential for catalytic CO2 reduction by the Co-porphyrin. The breakthrough efficiency achieved in this work represents a nonincremental step in the realization of reaction networks for direct solar-to-fuel conversion.
Collapse
Affiliation(s)
- Francesca Arcudi
- Department of Chemistry, Northwestern University, Evanston, Illinois 60208, United States.,Center for Bio-Inspired Energy Science, Northwestern University, Chicago, Illinois 60611, United States
| | - Luka Đorđević
- Department of Chemistry, Northwestern University, Evanston, Illinois 60208, United States.,Center for Bio-Inspired Energy Science, Northwestern University, Chicago, Illinois 60611, United States
| | - Benjamin Nagasing
- Department of Chemistry, Northwestern University, Evanston, Illinois 60208, United States
| | - Samuel I Stupp
- Department of Chemistry, Northwestern University, Evanston, Illinois 60208, United States.,Center for Bio-Inspired Energy Science, Northwestern University, Chicago, Illinois 60611, United States.,Department of Materials Science and Engineering, Northwestern University, Evanston, Illinois 60208, United States.,Department of Biomedical Engineering, Northwestern University, Evanston, Illinois 60208, United States.,Department of Medicine, Northwestern University, Chicago, Illinois 60611, United States.,Simpson Querrey Institute, Northwestern University, Chicago, Illinois 60611, United States
| | - Emily A Weiss
- Department of Chemistry, Northwestern University, Evanston, Illinois 60208, United States.,Center for Bio-Inspired Energy Science, Northwestern University, Chicago, Illinois 60611, United States.,Department of Materials Science and Engineering, Northwestern University, Evanston, Illinois 60208, United States
| |
Collapse
|
39
|
Friães S, Realista S, Gomes CSB, Martinho PN, Royo B. Click-Derived Triazoles and Triazolylidenes of Manganese for Electrocatalytic Reduction of CO 2. Molecules 2021; 26:molecules26216325. [PMID: 34770734 PMCID: PMC8588546 DOI: 10.3390/molecules26216325] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2021] [Revised: 10/14/2021] [Accepted: 10/16/2021] [Indexed: 11/16/2022] Open
Abstract
A series of new fac-[Mn(L)(CO)3Br] complexes where L is a bidentate chelating ligand containing mixed mesoionic triazolylidene-pyridine (MIC^py, 1), triazolylidene-triazole (MIC^trz, 2), and triazole-pyridine (trz^py, 3) ligands have been prepared and fully characterized, including the single crystal X-ray diffraction studies of 1 and 2. The abilities of 1–3 and complex fac-[Mn(MIC^MIC)(CO)3Br] (4) to catalyze the electroreduction of CO2 has been assessed for the first time. It was found that all complexes displayed a current increase under CO2 atmosphere, being 3 and 4 the most active complexes. Complex 3, bearing a N^N-based ligand exhibited a good efficiency and an excellent selectivity for reducing CO2 to CO in the presence of 1.0 M of water, at low overpotential. Interestingly, complex 4 containing the strongly electron donating di-imidazolylidene ligand exhibited comparable activity to 3, when the experiments were performed in neat acetonitrile at slightly higher overpotential (−1.86 vs. −2.14 V).
Collapse
Affiliation(s)
- Sofia Friães
- ITQB NOVA, Instituto de Tecnologia Química e Biológica António Xavier, Av. da República, 2780-157 Oeiras, Portugal; (S.F.); (S.R.)
| | - Sara Realista
- ITQB NOVA, Instituto de Tecnologia Química e Biológica António Xavier, Av. da República, 2780-157 Oeiras, Portugal; (S.F.); (S.R.)
| | - Clara S. B. Gomes
- LAQV-REQUIMTE, Department of Chemistry, Campus de Caparica, NOVA School of Science and Technology, NOVA University Lisbon, 2829-516 Caparica, Portugal;
- Associated Laboratory i4HB-Institute for Health and Bioeconomy, School of Science and Technology, NOVA University Lisbon, 2829-516 Caparica, Portugal
- UCIBIO-Applied Molecular Biosciences Unit, Department of Chemistry, School of Science and Technology, NOVA University Lisbon, 2829-516 Caparica, Portugal
| | - Paulo N. Martinho
- Biosystems and Integrative Sciences Institute (BioISI), Faculdade de Ciências, Campo Grande, Universidade de Lisboa, 1749-016 Lisboa, Portugal;
- Centro de Química Estrutural, Campo Grande, Faculdade de Ciências Universidade de Lisboa, 1749-016 Lisboa, Portugal
| | - Beatriz Royo
- ITQB NOVA, Instituto de Tecnologia Química e Biológica António Xavier, Av. da República, 2780-157 Oeiras, Portugal; (S.F.); (S.R.)
- Correspondence:
| |
Collapse
|
40
|
Usman M, Humayun M, Garba MD, Ullah L, Zeb Z, Helal A, Suliman MH, Alfaifi BY, Iqbal N, Abdinejad M, Tahir AA, Ullah H. Electrochemical Reduction of CO 2: A Review of Cobalt Based Catalysts for Carbon Dioxide Conversion to Fuels. NANOMATERIALS (BASEL, SWITZERLAND) 2021; 11:2029. [PMID: 34443860 PMCID: PMC8400998 DOI: 10.3390/nano11082029] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/05/2021] [Revised: 07/29/2021] [Accepted: 08/05/2021] [Indexed: 12/15/2022]
Abstract
Electrochemical CO2 reduction reaction (CO2RR) provides a promising approach to curbing harmful emissions contributing to global warming. However, several challenges hinder the commercialization of this technology, including high overpotentials, electrode instability, and low Faradic efficiencies of desirable products. Several materials have been developed to overcome these challenges. This mini-review discusses the recent performance of various cobalt (Co) electrocatalysts, including Co-single atom, Co-multi metals, Co-complexes, Co-based metal-organic frameworks (MOFs), Co-based covalent organic frameworks (COFs), Co-nitrides, and Co-oxides. These materials are reviewed with respect to their stability of facilitating CO2 conversion to valuable products, and a summary of the current literature is highlighted, along with future perspectives for the development of efficient CO2RR.
Collapse
Affiliation(s)
- Muhammad Usman
- Center of Research Excellence in Nanotechnology, King Fahd University of Petroleum and Minerals (KFUPM), Dhahran 31261, Saudi Arabia; (A.H.); (M.H.S.); (B.Y.A.)
| | - Muhammad Humayun
- Wuhan National Laboratory for Optoelectronics, Huazhong University of Science and Technology, Wuhan 430074, China;
| | - Mustapha D. Garba
- Department of Chemistry, University of Glasgow, Glasgow G12 8QQ, UK;
| | - Latif Ullah
- College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, China;
| | - Zonish Zeb
- Key Laboratory of Organic Optoelectronics & Molecular Engineering of Ministry of Education, Department of Chemistry, Tsinghua University, Beijing 100084, China;
| | - Aasif Helal
- Center of Research Excellence in Nanotechnology, King Fahd University of Petroleum and Minerals (KFUPM), Dhahran 31261, Saudi Arabia; (A.H.); (M.H.S.); (B.Y.A.)
| | - Munzir H. Suliman
- Center of Research Excellence in Nanotechnology, King Fahd University of Petroleum and Minerals (KFUPM), Dhahran 31261, Saudi Arabia; (A.H.); (M.H.S.); (B.Y.A.)
| | - Bandar Y. Alfaifi
- Center of Research Excellence in Nanotechnology, King Fahd University of Petroleum and Minerals (KFUPM), Dhahran 31261, Saudi Arabia; (A.H.); (M.H.S.); (B.Y.A.)
| | - Naseem Iqbal
- US-Pakistan Centre for Advanced Studies in Energy (USPCAS-E), National University of Sciences and Technology (NUST), Islamabad 44000, Pakistan;
| | - Maryam Abdinejad
- Department of Physical and Environmental Sciences, University of Toronto Scarborough, 1265 Military Trail, Toronto, ON M1C 1A4, Canada;
| | - Asif Ali Tahir
- Environment and Sustainability Institute, University of Exeter, Penryn, Cornwall TR10 9FE, UK;
| | - Habib Ullah
- Environment and Sustainability Institute, University of Exeter, Penryn, Cornwall TR10 9FE, UK;
| |
Collapse
|
41
|
Chen H, Chen L, Chen G, Robert M, Lau TC. Electrocatalytic and Photocatalytic Reduction of Carbon Dioxide by Earth-abundant Bimetallic Molecular Catalysts. Chemphyschem 2021; 22:1835-1843. [PMID: 34145708 DOI: 10.1002/cphc.202100330] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2021] [Revised: 06/17/2021] [Indexed: 11/08/2022]
Abstract
Converting CO2 into useful resources by electrocatalysis and photocatalysis is a promising strategy for recycling of the gas and electrification of industries. Numerous studies have shown that multinuclear metal catalysts have higher selectivity and catalytic activity than monometallic catalysts due to the synergistic effects between the metal sites. In this review, we summarize some of the recent progress on the electrocatalytic and photocatalytic reduction of CO2 by earth-abundant bimetallic molecular catalysts.
Collapse
Affiliation(s)
- Huan Chen
- Dongguan Cleaner Production Technology Center, School of Environment and Civil Engineering, Dongguan University of Technology, Dongguan, Guangdong, 523808, China
| | - Lingjing Chen
- Dongguan Cleaner Production Technology Center, School of Environment and Civil Engineering, Dongguan University of Technology, Dongguan, Guangdong, 523808, China
| | - Gui Chen
- Dongguan Cleaner Production Technology Center, School of Environment and Civil Engineering, Dongguan University of Technology, Dongguan, Guangdong, 523808, China
| | - Marc Robert
- Laboratoire d'Electrochimie Moléculaire, CNRS, Université de Paris, 75006, Paris, France.,Institut Universitaire de France (IUF), 75005, Paris, France
| | - Tai-Chu Lau
- Department of Chemistry, City University of Hong Kong, Tat Chee Avenue, Hong Kong, China
| |
Collapse
|
42
|
A Review: Scanning Electrochemical Microscopy (SECM) for Visualizing the Real-Time Local Catalytic Activity. Catalysts 2021. [DOI: 10.3390/catal11050594] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023] Open
Abstract
Scanning electrochemical microscopy (SECM) is a powerful scanning probe technique for measuring the in situ electrochemical reactions occurring at various sample interfaces, such as the liquid-liquid, solid-liquid, and liquid-gas. The tip/probe of SECM is usually an ultramicroelectrode (UME) or a nanoelectrode that can move towards or over the sample of interest controlled by a precise motor positioning system. Remarkably, electrocatalysts play a crucial role in addressing the surge in global energy consumption by providing sustainable alternative energy sources. Therefore, the precise measurement of catalytic reactions offers profound insights for designing novel catalysts as well as for enhancing their performance. SECM proves to be an excellent tool for characterization and screening catalysts as the probe can rapidly scan along one direction over the sample array containing a large number of different compositions. These features make SECM more appealing than other conventional methodologies for assessing bulk solutions. SECM can be employed for investigating numerous catalytic reactions including the oxygen reduction reaction (ORR), oxygen evolution reaction (OER), hydrogen evolution reaction (HER), water oxidation, glucose oxidation reaction (GOR), and CO2 reduction reaction (CO2RR) with high spatial resolution. Moreover, for improving the catalyst design, several SECM modes can be applied based on the catalytic reactions under evaluation. This review aims to present a brief overview of the recent applications of electrocatalysts and their kinetics as well as catalytic sites in electrochemical reactions, such as oxygen reduction, water oxidation, and methanol oxidation.
Collapse
|