1
|
Delmore KE, DaCosta JM, Winker K. Thrushes in Love: Extensive Gene Flow, With Differential Resistance and Selection, Obscures and Reveals the Evolutionary History of a Songbird Clade. Mol Ecol 2025:e17635. [PMID: 39748539 DOI: 10.1111/mec.17635] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2024] [Revised: 12/06/2024] [Accepted: 12/16/2024] [Indexed: 01/04/2025]
Abstract
The application of high-throughput sequencing to phylogenetic analyses is allowing authors to reconstruct the true evolutionary history of species. This work can illuminate specific mechanisms underlying divergence when combined with analyses of gene flow, recombination and selection. We conducted a phylogenomic analysis of Catharus, a songbird genus with considerable potential for gene flow, variation in migratory behaviour and genomic resources. We documented discordance among trees constructed for mitochondrial, autosomal and sex (Z) chromosome partitions. Two trees were recovered on the Z. Both trees differed from the autosomes, one matched the mitochondria, and the other was unique to the Z. Gene flow with one species likely generated much of this discordance; substantial admixture between ustulatus and the remaining species was documented and linked to at least two historic events. The tree unique to the Z likely reflects the true history of Catharus; local genomic analyses recovered the same tree in autosomal regions with reduced admixture and recombination. Genes previously connected to migration were enriched in these regions suggesting transitions between migratory and non-migratory states helped generate divergence. Migratory (vs. nonmigratory) Catharus formed a monophyletic clade in a subset of genomic regions. Gene flow was elevated in some of these regions suggesting adaptive introgression may have occurred, but the dominant pattern was of balancing selection maintaining ancestral polymorphisms important for olfaction and perhaps, by extension, adaptation to temperate climates. This work illuminates the evolutionary history of an important model in speciation and demonstrates how differential resistance to gene flow can affect local genomic patterns.
Collapse
Affiliation(s)
- Kira E Delmore
- Department of Biology, Texas A&M University, College Station, Texas, USA
| | - Jeffrey M DaCosta
- Biology Department, Boston College, Chestnut Hill, Massachusetts, USA
| | - Kevin Winker
- Department of Biology and Wildlife, University of Alaska Museum, Fairbanks, Alaska, USA
| |
Collapse
|
2
|
Lin X, Yan C, Wang Y, Huang S, Yu H, Shih C, Jiang J, Xie F. The Genetic Architecture of Local Adaptation and Reproductive Character Displacement in Scutiger boulengeri Complex (Anura: Megophryidae). Mol Ecol 2025; 34:e17611. [PMID: 39681833 DOI: 10.1111/mec.17611] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2024] [Revised: 11/05/2024] [Accepted: 11/26/2024] [Indexed: 12/18/2024]
Abstract
Speciation is a continuous process driven by barriers to gene flow. Based on genome-wide SNPs (single nucleotide polymorphisms) of 190 toads from 31 sampling sites of Scutiger boulengeri complex, we found evidence for monophyly which represented a continuous speciation process of at least six lineages in S. boulengeri, which radiated and exhibited varying degrees of divergence and gene flow. The SNP-based phylogenetic tree was largely discordant with the multilocus mitochondrial tree (i.e., S. mammatus and S. glandulatus nested in the lineages of S. boulengeri) published before. The Min Mountains (MM) and Qinghai-Tibet Plateau (QTP) lineages differ fundamentally in habitat (i.e., elevation) and morphology (i.e., SVL), we detected signatures of potential high-altitude and cold adaptation genes in QTP (vs. MM). We found the evidence of reproductive trait disparity (i.e., SVL and nuptial pads) is key to promoting sympatric rather than allopatric species pairs. In addition, we identified selection signals for genes related to sympatric character displacement, genes linked to obesity-related traits, nuptial spines morphology and enlarged chest nuptial pads in S. mammatus (vs. QTP group of S. boulengeri). Our study provided new insight and paradigm for a varied speciation pattern from local adaptation of allopatry to sympatric character displacement in the S. boulengeri complex.
Collapse
Affiliation(s)
- Xiuqin Lin
- CAS Key Laboratory of Mountain Ecological Restoration and Bioresource Utilization and Ecological Restoration Biodiversity Conservation Key Laboratory of Sichuan Province, Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu, China
| | - Chaochao Yan
- CAS Key Laboratory of Mountain Ecological Restoration and Bioresource Utilization and Ecological Restoration Biodiversity Conservation Key Laboratory of Sichuan Province, Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Yuanfei Wang
- CAS Key Laboratory of Mountain Ecological Restoration and Bioresource Utilization and Ecological Restoration Biodiversity Conservation Key Laboratory of Sichuan Province, Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Sining Huang
- CAS Key Laboratory of Mountain Ecological Restoration and Bioresource Utilization and Ecological Restoration Biodiversity Conservation Key Laboratory of Sichuan Province, Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Haoqi Yu
- CAS Key Laboratory of Mountain Ecological Restoration and Bioresource Utilization and Ecological Restoration Biodiversity Conservation Key Laboratory of Sichuan Province, Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Chungkun Shih
- College of Life Sciences, Capital Normal University, Beijing, China
- Department of Paleobiology, National Museum of Natural History, Smithsonian Institution, Washington, DC, USA
| | - Jianping Jiang
- CAS Key Laboratory of Mountain Ecological Restoration and Bioresource Utilization and Ecological Restoration Biodiversity Conservation Key Laboratory of Sichuan Province, Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu, China
- University of Chinese Academy of Sciences, Beijing, China
- Mangkang Ecological Station, Tibet Ecological Safety Monitor Network, Changdu, China
| | - Feng Xie
- CAS Key Laboratory of Mountain Ecological Restoration and Bioresource Utilization and Ecological Restoration Biodiversity Conservation Key Laboratory of Sichuan Province, Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu, China
- University of Chinese Academy of Sciences, Beijing, China
| |
Collapse
|
3
|
Searle JB, Pardo-Manuel de Villena F. Meiotic Drive and Speciation. Annu Rev Genet 2024; 58:341-363. [PMID: 39585909 DOI: 10.1146/annurev-genet-111523-102603] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2024]
Abstract
Meiotic drive is the biased transmission of alleles from heterozygotes, contrary to Mendel's laws, and reflects intragenomic conflict rather than organism-level Darwinian selection. Theory has been developed as to how centromeric properties can promote female meiotic drive and how conflict between the X and Y chromosomes in males can promote male meiotic drive. There are empirical data that fit both the centromere drive and sex chromosome drive models. Sex chromosome drive may have relevance to speciation through the buildup of Dobzhansky-Muller incompatibilities involving drive and suppressor systems, studied particularly in Drosophila. Centromere drive may promote fixation of chromosomal rearrangements involving the centromere, and those fixed rearrangements may contribute to reproductive isolation, studied particularly in the house mouse. Genome-wide tests suggest that meiotic drive promotes allele fixation with regularity, and those studying the genomics of speciation need to be aware of the potential impact of such fixations on reproductive isolation. New species can originate in many different ways (including multiple factors acting together), and a substantial body of work on meiotic drive point to it being one of the processes involved.
Collapse
Affiliation(s)
- Jeremy B Searle
- Department of Ecology and Evolutionary Biology, Cornell University, Ithaca, New York, USA;
| | | |
Collapse
|
4
|
Blankers T, Shaw KL. The biogeographic and evolutionary processes shaping population divergence in Laupala. Mol Ecol 2024; 33:e17444. [PMID: 38984705 DOI: 10.1111/mec.17444] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2022] [Revised: 05/21/2024] [Accepted: 06/14/2024] [Indexed: 07/11/2024]
Abstract
Speciation generates biodiversity and the mechanisms involved are thought to vary across the tree of life and across environments. For example, well-studied adaptive radiations are thought to be fuelled by divergent ecological selection, but additionally are influenced heavily by biogeographic, genomic and demographic factors. Mechanisms of non-adaptive radiations, producing ecologically cryptic taxa, have been less well-studied but should likewise be influenced by these latter factors. Comparing among contexts can help pinpoint universal mechanisms and outcomes, especially if we integrate biogeographic, ecological and evolutionary processes. We investigate population divergence in the swordtail cricket Laupala cerasina, a wide-spread endemic on Hawai'i Island and one of 38 ecologically cryptic Laupala species. The nine sampled populations show striking population genetic structure at small spatio-temporal scales. The rapid differentiation among populations and species of Laupala shows that neither a specific geographical context nor ecological opportunity are pre-requisites for rapid divergence. Spatio-temporal patterns in population divergence, population size change, and gene flow are aligned with the chronosequence of the four volcanoes on which L. cerasina occurs and reveal the composite effects of geological dynamics and Quaternary climate change on population dynamics. Spatio-temporal patterns in genetic variation along the genome reveal the interplay of genetic and genomic architecture in shaping population divergence. In early phases of divergence, we find elevated differentiation in genomic regions harbouring mating song loci. In later stages of divergence, we find a signature of linked selection that interacts with recombination rate variation. Comparing our findings with recent work on complementary systems supports the conclusion that mostly universal factors influence the speciation process.
Collapse
Affiliation(s)
- Thomas Blankers
- Department of Neurobiology and Behavior, Cornell University, Ithaca, New York, USA
- Institute for Biodiversity and Ecosystem Dynamics, University of Amsterdam, Amsterdam, The Netherlands
| | - Kerry L Shaw
- Department of Neurobiology and Behavior, Cornell University, Ithaca, New York, USA
| |
Collapse
|
5
|
Xu WQ, Ren CQ, Zhang XY, Comes HP, Liu XH, Li YG, Kettle CJ, Jalonen R, Gaisberger H, Ma YZ, Qiu YX. Genome sequences and population genomics reveal climatic adaptation and genomic divergence between two closely related sweetgum species. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2024; 118:1372-1387. [PMID: 38343032 DOI: 10.1111/tpj.16675] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/24/2023] [Revised: 01/24/2024] [Accepted: 01/29/2024] [Indexed: 05/31/2024]
Abstract
Understanding the genetic basis of population divergence and adaptation is an important goal in population genetics and evolutionary biology. However, the relative roles of demographic history, gene flow, and/or selective regime in driving genomic divergence, climatic adaptation, and speciation in non-model tree species are not yet fully understood. To address this issue, we generated whole-genome resequencing data of Liquidambar formosana and L. acalycina, which are broadly sympatric but altitudinally segregated in the Tertiary relict forests of subtropical China. We integrated genomic and environmental data to investigate the demographic history, genomic divergence, and climatic adaptation of these two sister species. We inferred a scenario of allopatric species divergence during the late Miocene, followed by secondary contact during the Holocene. We identified multiple genomic islands of elevated divergence that mainly evolved through divergence hitchhiking and recombination rate variation, likely fostered by long-term refugial isolation and recent differential introgression in low-recombination genomic regions. We also found some candidate genes with divergent selection signatures potentially involved in climatic adaptation and reproductive isolation. Our results contribute to a better understanding of how late Tertiary/Quaternary climatic change influenced speciation, genomic divergence, climatic adaptation, and introgressive hybridization in East Asia's Tertiary relict flora. In addition, they should facilitate future evolutionary, conservation genomics, and molecular breeding studies in Liquidambar, a genus of important medicinal and ornamental values.
Collapse
Affiliation(s)
- Wu-Qin Xu
- Systematic & Evolutionary Botany and Biodiversity Group, College of Life Sciences, Zhejiang University, Hangzhou, Zhejiang, China
- Zhejiang Lab, Hangzhou, Zhejiang, China
| | - Chao-Qian Ren
- Systematic & Evolutionary Botany and Biodiversity Group, College of Life Sciences, Zhejiang University, Hangzhou, Zhejiang, China
- CAS Key Laboratory of Plant Germplasm Enhancement and Specialty Agriculture, Wuhan Botanical Garden, Chinese Academy of Sciences, Wuhan, Hubei, 430074, China
| | - Xin-Yi Zhang
- Systematic & Evolutionary Botany and Biodiversity Group, College of Life Sciences, Zhejiang University, Hangzhou, Zhejiang, China
- CAS Key Laboratory of Plant Germplasm Enhancement and Specialty Agriculture, Wuhan Botanical Garden, Chinese Academy of Sciences, Wuhan, Hubei, 430074, China
| | - Hans-Peter Comes
- Department of Environment & Biodiversity, Salzburg University, Salzburg, Austria
| | - Xin-Hong Liu
- Zhejiang Academy of Forestry, Hangzhou, 310023, China
| | - Yin-Gang Li
- Zhejiang Academy of Forestry, Hangzhou, 310023, China
| | | | - Riina Jalonen
- Bioversity International, Regional Office for Asia, Penang, Malaysia
| | | | - Ya-Zhen Ma
- CAS Key Laboratory of Plant Germplasm Enhancement and Specialty Agriculture, Wuhan Botanical Garden, Chinese Academy of Sciences, Wuhan, Hubei, 430074, China
| | - Ying-Xiong Qiu
- CAS Key Laboratory of Plant Germplasm Enhancement and Specialty Agriculture, Wuhan Botanical Garden, Chinese Academy of Sciences, Wuhan, Hubei, 430074, China
| |
Collapse
|
6
|
Maier PA, Vandergast AG, Bohonak AJ. Yosemite toad (Anaxyrus canorus) transcriptome reveals interplay between speciation genes and adaptive introgression. Mol Ecol 2024; 33:e17317. [PMID: 38488670 DOI: 10.1111/mec.17317] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2023] [Revised: 02/15/2024] [Accepted: 02/23/2024] [Indexed: 04/09/2024]
Abstract
Genomes are heterogeneous during the early stages of speciation, with small 'islands' of DNA appearing to reflect strong adaptive differences, surrounded by vast seas of relative homogeneity. As species diverge, secondary contact zones between them can act as an interface and selectively filter through advantageous alleles of hybrid origin. Such introgression is another important adaptive process, one that allows beneficial mosaics of recombinant DNA ('rivers') to flow from one species into another. Although genomic islands of divergence appear to be associated with reproductive isolation, and genomic rivers form by adaptive introgression, it is unknown whether islands and rivers tend to be the same or different loci. We examined three replicate secondary contact zones for the Yosemite toad (Anaxyrus canorus) using two genomic data sets and a morphometric data set to answer the questions: (1) How predictably different are islands and rivers, both in terms of genomic location and gene function? (2) Are the adaptive genetic trait loci underlying tadpole growth and development reliably islands, rivers or neither? We found that island and river loci have significant overlap within a contact zone, suggesting that some loci are first islands, and later are predictably converted into rivers. However, gene ontology enrichment analysis showed strong overlap in gene function unique to all island loci, suggesting predictability in overall gene pathways for islands. Genome-wide association study outliers for tadpole development included LPIN3, a lipid metabolism gene potentially involved in climate change adaptation, that is island-like for all three contact zones, but also appears to be introgressing (as a river) across one zone. Taken together, our results suggest that adaptive divergence and introgression may be more complementary forces than currently appreciated.
Collapse
Affiliation(s)
- Paul A Maier
- Department of Biology, San Diego State University, San Diego, California, USA
- Family TreeDNA, Gene by Gene, Houston, Texas, USA
| | - Amy G Vandergast
- Western Ecological Research Center, San Diego Field Station, U.S. Geological Survey, San Diego, California, USA
| | - Andrew J Bohonak
- Department of Biology, San Diego State University, San Diego, California, USA
| |
Collapse
|
7
|
Dietz L, Mayer C, Stolle E, Eberle J, Misof B, Podsiadlowski L, Niehuis O, Ahrens D. Metazoa-level USCOs as markers in species delimitation and classification. Mol Ecol Resour 2024; 24:e13921. [PMID: 38146909 DOI: 10.1111/1755-0998.13921] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2023] [Revised: 12/06/2023] [Accepted: 12/13/2023] [Indexed: 12/27/2023]
Abstract
Metazoa-level universal single-copy orthologs (mzl-USCOs) are universally applicable markers for DNA taxonomy in animals that can replace or supplement single-gene barcodes. Previously, mzl-USCOs from target enrichment data were shown to reliably distinguish species. Here, we tested whether USCOs are an evenly distributed, representative sample of a given metazoan genome and therefore able to cope with past hybridization events and incomplete lineage sorting. This is relevant for coalescent-based species delimitation approaches, which critically depend on the assumption that the investigated loci do not exhibit autocorrelation due to physical linkage. Based on 239 chromosome-level assembled genomes, we confirmed that mzl-USCOs are genetically unlinked for practical purposes and a representative sample of a genome in terms of reciprocal distances between USCOs on a chromosome and of distribution across chromosomes. We tested the suitability of mzl-USCOs extracted from genomes for species delimitation and phylogeny in four case studies: Anopheles mosquitos, Drosophila fruit flies, Heliconius butterflies and Darwin's finches. In almost all instances, USCOs allowed delineating species and yielded phylogenies that corresponded to those generated from whole genome data. Our phylogenetic analyses demonstrate that USCOs may complement single-gene DNA barcodes and provide more accurate taxonomic inferences. Combining USCOs from sources that used different versions of ortholog reference libraries to infer marker orthology may be challenging and, at times, impact taxonomic conclusions. However, we expect this problem to become less severe as the rapidly growing number of reference genomes provides a better representation of the number and diversity of organismal lineages.
Collapse
Affiliation(s)
- Lars Dietz
- Museum A. Koenig, Leibniz Institute for the Analysis of Biodiversity Change, Bonn, Germany
| | - Christoph Mayer
- Museum A. Koenig, Leibniz Institute for the Analysis of Biodiversity Change, Bonn, Germany
| | - Eckart Stolle
- Museum A. Koenig, Leibniz Institute for the Analysis of Biodiversity Change, Bonn, Germany
| | - Jonas Eberle
- Museum A. Koenig, Leibniz Institute for the Analysis of Biodiversity Change, Bonn, Germany
- Paris-Lodron-University, Salzburg, Austria
| | - Bernhard Misof
- Museum A. Koenig, Leibniz Institute for the Analysis of Biodiversity Change, Bonn, Germany
- Rheinische Friedrich-Wilhelms-Universität Bonn, Bonn, Germany
| | - Lars Podsiadlowski
- Museum A. Koenig, Leibniz Institute for the Analysis of Biodiversity Change, Bonn, Germany
| | - Oliver Niehuis
- Abt. Evolutionsbiologie und Ökologie, Institut für Biologie I, Albert-Ludwigs-Universität Freiburg, Freiburg, Germany
| | - Dirk Ahrens
- Museum A. Koenig, Leibniz Institute for the Analysis of Biodiversity Change, Bonn, Germany
| |
Collapse
|
8
|
Louder MIM, Justen H, Kimmitt AA, Lawley KS, Turner LM, Dickman JD, Delmore KE. Gene regulation and speciation in a migratory divide between songbirds. Nat Commun 2024; 15:98. [PMID: 38167733 PMCID: PMC10761872 DOI: 10.1038/s41467-023-44352-2] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2023] [Accepted: 12/11/2023] [Indexed: 01/05/2024] Open
Abstract
Behavioral variation abounds in nature. This variation is important for adaptation and speciation, but its molecular basis remains elusive. Here, we use a hybrid zone between two subspecies of songbirds that differ in migration - an ecologically important and taxonomically widespread behavior---to gain insight into this topic. We measure gene expression in five brain regions. Differential expression between migratory states was dominated by circadian genes in all brain regions. The remaining patterns were largely brain-region specific. For example, expression differences between the subspecies that interact with migratory state likely help maintain reproductive isolation in this system and were documented in only three brain regions. Contrary to existing work on regulatory mechanisms underlying species-specific traits, two lines of evidence suggest that trans- (vs. cis) regulatory changes underlie these patterns - no evidence for allele-specific expression in hybrids and minimal associations between genomic differentiation and expression differences. Additional work with hybrids shows expression levels were often distinct (transgressive) from parental forms. Behavioral contrasts and functional enrichment analyses allowed us to connect these patterns to mitonuclear incompatibilities and compensatory responses to stress that could exacerbate selection on hybrids and contribute to speciation.
Collapse
Affiliation(s)
| | - Hannah Justen
- Biology Department, Texas A&M University, College Station, TX, USA
| | | | - Koedi S Lawley
- Department of Veterinary Integrative Biosciences, School of Veterinary Medicine and Biomedical Sciences, Texas A&M University, College Station, TX, USA
| | - Leslie M Turner
- Milner Centre for Evolution, Department of Biology & Biochemistry, University of Bath, Bath, UK
| | - J David Dickman
- Department of Neuroscience, Baylor College of Medicine, Houston, TX, USA
| | - Kira E Delmore
- Biology Department, Texas A&M University, College Station, TX, USA.
| |
Collapse
|
9
|
Firneno TJ, Semenov G, Dopman EB, Taylor SA, Larson EL, Gompert Z. Quantitative Analyses of Coupling in Hybrid Zones. Cold Spring Harb Perspect Biol 2023; 15:a041434. [PMID: 37739809 PMCID: PMC10691479 DOI: 10.1101/cshperspect.a041434] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/24/2023]
Abstract
In hybrid zones, whether barrier loci experience selection mostly independently or as a unit depends on the ratio of selection to recombination as captured by the coupling coefficient. Theory predicts a sharper transition between an uncoupled and coupled system when more loci affect hybrid fitness. However, the extent of coupling in hybrid zones has rarely been quantified. Here, we use simulations to characterize the relationship between the coupling coefficient and variance in clines across genetic loci. We then reanalyze 25 hybrid zone data sets and find that cline variances and estimated coupling coefficients form a smooth continuum from high variance and weak coupling to low variance and strong coupling. Our results are consistent with low rates of hybridization and a strong genome-wide barrier to gene flow when the coupling coefficient is much greater than 1, but also suggest that this boundary might be approached gradually and at a near constant rate over time.
Collapse
Affiliation(s)
- Thomas J Firneno
- Department of Biology, University of Denver, Denver, Colorado 80208, USA
| | - Georgy Semenov
- Department of Ecology and Evolutionary Biology, University of Colorado Boulder, Boulder, Colorado 80211, USA
| | - Erik B Dopman
- Department of Biology, Tufts University, Medford, Massachusetts 02155, USA
| | - Scott A Taylor
- Department of Ecology and Evolutionary Biology, University of Colorado Boulder, Boulder, Colorado 80211, USA
| | - Erica L Larson
- Department of Biology, University of Denver, Denver, Colorado 80208, USA
| | - Zachariah Gompert
- Department of Biology, Utah State University, Logan, Utah 84321, USA
| |
Collapse
|
10
|
Wang C, Wang J, Lu J, Xiong Y, Zhao Z, Yu X, Zheng X, Li J, Lin Q, Ren Y, Hu Y, He X, Li C, Zeng Y, Miao R, Guo M, Zhang B, Zhu Y, Zhang Y, Tang W, Wang Y, Hao B, Wang Q, Cheng S, He X, Yao B, Gao J, Zhu X, Yu H, Wang Y, Sun Y, Zhou C, Dong H, Ma X, Guo X, Liu X, Tian Y, Liu S, Wang C, Cheng Z, Jiang L, Zhou J, Guo H, Jiang L, Tao D, Chai J, Zhang W, Wang H, Wu C, Wan J. A natural gene drive system confers reproductive isolation in rice. Cell 2023; 186:3577-3592.e18. [PMID: 37499659 DOI: 10.1016/j.cell.2023.06.023] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2022] [Revised: 02/02/2023] [Accepted: 06/28/2023] [Indexed: 07/29/2023]
Abstract
Hybrid sterility restricts the utilization of superior heterosis of indica-japonica inter-subspecific hybrids. In this study, we report the identification of RHS12, a major locus controlling male gamete sterility in indica-japonica hybrid rice. We show that RHS12 consists of two genes (iORF3/DUYAO and iORF4/JIEYAO) that confer preferential transmission of the RHS12-i type male gamete into the progeny, thereby forming a natural gene drive. DUYAO encodes a mitochondrion-targeted protein that interacts with OsCOX11 to trigger cytotoxicity and cell death, whereas JIEYAO encodes a protein that reroutes DUYAO to the autophagosome for degradation via direct physical interaction, thereby detoxifying DUYAO. Evolutionary trajectory analysis reveals that this system likely formed de novo in the AA genome Oryza clade and contributed to reproductive isolation (RI) between different lineages of rice. Our combined results provide mechanistic insights into the genetic basis of RI as well as insights for strategic designs of hybrid rice breeding.
Collapse
Affiliation(s)
- Chaolong Wang
- State Key Laboratory of Crop Genetics & Germplasm Enhancement and Utilization, Nanjing Agricultural University, Nanjing 210095, China; State Key Laboratory of Crop Gene Resources and Breeding, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Jian Wang
- State Key Laboratory of Crop Gene Resources and Breeding, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Jiayu Lu
- State Key Laboratory of Crop Genetics & Germplasm Enhancement and Utilization, Nanjing Agricultural University, Nanjing 210095, China
| | - Yehui Xiong
- State Key Laboratory of Crop Gene Resources and Breeding, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing 100081, China; Beijing Advanced Innovation Center for Structural Biology, Tsinghua-Peking Joint Center for Life Sciences, School of Life Sciences, Tsinghua University, Beijing 100084, China
| | - Zhigang Zhao
- State Key Laboratory of Crop Genetics & Germplasm Enhancement and Utilization, Nanjing Agricultural University, Nanjing 210095, China
| | - Xiaowen Yu
- State Key Laboratory of Crop Genetics & Germplasm Enhancement and Utilization, Nanjing Agricultural University, Nanjing 210095, China
| | - Xiaoming Zheng
- State Key Laboratory of Crop Gene Resources and Breeding, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Jing Li
- Food Crops Research Institute, Yunnan Academy of Agricultural Sciences, Kunming 650200, China
| | - Qibing Lin
- State Key Laboratory of Crop Gene Resources and Breeding, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Yulong Ren
- State Key Laboratory of Crop Gene Resources and Breeding, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Yang Hu
- State Key Laboratory of Crop Genetics & Germplasm Enhancement and Utilization, Nanjing Agricultural University, Nanjing 210095, China
| | - Xiaodong He
- State Key Laboratory of Crop Genetics & Germplasm Enhancement and Utilization, Nanjing Agricultural University, Nanjing 210095, China
| | - Chao Li
- State Key Laboratory of Crop Genetics & Germplasm Enhancement and Utilization, Nanjing Agricultural University, Nanjing 210095, China
| | - Yonglun Zeng
- Centre for Cell & Developmental Biology and State Key Laboratory of Agrobiotechnology, School of Life Sciences, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong, China
| | - Rong Miao
- State Key Laboratory of Crop Genetics & Germplasm Enhancement and Utilization, Nanjing Agricultural University, Nanjing 210095, China
| | - Mali Guo
- College of Animal Science and Technology, Nanjing Agricultural University, Nanjing 210095, China
| | - Bosen Zhang
- State Key Laboratory of Plant Genomics, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China
| | - Ying Zhu
- Centre for Cell & Developmental Biology and State Key Laboratory of Agrobiotechnology, School of Life Sciences, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong, China
| | - Yunhui Zhang
- State Key Laboratory of Crop Genetics & Germplasm Enhancement and Utilization, Nanjing Agricultural University, Nanjing 210095, China
| | - Weijie Tang
- State Key Laboratory of Crop Genetics & Germplasm Enhancement and Utilization, Nanjing Agricultural University, Nanjing 210095, China
| | - Yunlong Wang
- State Key Laboratory of Crop Genetics & Germplasm Enhancement and Utilization, Nanjing Agricultural University, Nanjing 210095, China
| | - Benyuan Hao
- State Key Laboratory of Crop Genetics & Germplasm Enhancement and Utilization, Nanjing Agricultural University, Nanjing 210095, China
| | - Qiming Wang
- State Key Laboratory of Crop Genetics & Germplasm Enhancement and Utilization, Nanjing Agricultural University, Nanjing 210095, China
| | - Siqi Cheng
- State Key Laboratory of Crop Genetics & Germplasm Enhancement and Utilization, Nanjing Agricultural University, Nanjing 210095, China
| | - Xiaojuan He
- State Key Laboratory of Crop Genetics & Germplasm Enhancement and Utilization, Nanjing Agricultural University, Nanjing 210095, China
| | - Bowen Yao
- State Key Laboratory of Crop Genetics & Germplasm Enhancement and Utilization, Nanjing Agricultural University, Nanjing 210095, China
| | - Junwen Gao
- State Key Laboratory of Crop Genetics & Germplasm Enhancement and Utilization, Nanjing Agricultural University, Nanjing 210095, China
| | - Xufei Zhu
- State Key Laboratory of Crop Genetics & Germplasm Enhancement and Utilization, Nanjing Agricultural University, Nanjing 210095, China
| | - Hao Yu
- State Key Laboratory of Crop Genetics & Germplasm Enhancement and Utilization, Nanjing Agricultural University, Nanjing 210095, China
| | - Yong Wang
- State Key Laboratory of Crop Genetics & Germplasm Enhancement and Utilization, Nanjing Agricultural University, Nanjing 210095, China
| | - Yan Sun
- State Key Laboratory of Crop Genetics & Germplasm Enhancement and Utilization, Nanjing Agricultural University, Nanjing 210095, China
| | - Chunlei Zhou
- State Key Laboratory of Crop Genetics & Germplasm Enhancement and Utilization, Nanjing Agricultural University, Nanjing 210095, China
| | - Hui Dong
- State Key Laboratory of Crop Genetics & Germplasm Enhancement and Utilization, Nanjing Agricultural University, Nanjing 210095, China
| | - Xiaoding Ma
- State Key Laboratory of Crop Gene Resources and Breeding, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Xiuping Guo
- State Key Laboratory of Crop Gene Resources and Breeding, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Xi Liu
- State Key Laboratory of Crop Genetics & Germplasm Enhancement and Utilization, Nanjing Agricultural University, Nanjing 210095, China
| | - Yunlu Tian
- State Key Laboratory of Crop Genetics & Germplasm Enhancement and Utilization, Nanjing Agricultural University, Nanjing 210095, China
| | - Shijia Liu
- State Key Laboratory of Crop Genetics & Germplasm Enhancement and Utilization, Nanjing Agricultural University, Nanjing 210095, China
| | - Chunming Wang
- State Key Laboratory of Crop Genetics & Germplasm Enhancement and Utilization, Nanjing Agricultural University, Nanjing 210095, China
| | - Zhijun Cheng
- State Key Laboratory of Crop Gene Resources and Breeding, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Ling Jiang
- State Key Laboratory of Crop Genetics & Germplasm Enhancement and Utilization, Nanjing Agricultural University, Nanjing 210095, China
| | - Jiawu Zhou
- Food Crops Research Institute, Yunnan Academy of Agricultural Sciences, Kunming 650200, China
| | - Huishan Guo
- State Key Laboratory of Plant Genomics, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China
| | - Liwen Jiang
- Centre for Cell & Developmental Biology and State Key Laboratory of Agrobiotechnology, School of Life Sciences, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong, China
| | - Dayun Tao
- Food Crops Research Institute, Yunnan Academy of Agricultural Sciences, Kunming 650200, China
| | - Jijie Chai
- Beijing Advanced Innovation Center for Structural Biology, Tsinghua-Peking Joint Center for Life Sciences, School of Life Sciences, Tsinghua University, Beijing 100084, China
| | - Wei Zhang
- College of Animal Science and Technology, Nanjing Agricultural University, Nanjing 210095, China
| | - Haiyang Wang
- State Key Laboratory of Crop Gene Resources and Breeding, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing 100081, China.
| | - Chuanyin Wu
- State Key Laboratory of Crop Gene Resources and Breeding, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing 100081, China.
| | - Jianmin Wan
- State Key Laboratory of Crop Genetics & Germplasm Enhancement and Utilization, Nanjing Agricultural University, Nanjing 210095, China; State Key Laboratory of Crop Gene Resources and Breeding, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing 100081, China.
| |
Collapse
|
11
|
Lavretsky P, Mohl JE, Söderquist P, Kraus RHS, Schummer ML, Brown JI. The meaning of wild: Genetic and adaptive consequences from large-scale releases of domestic mallards. Commun Biol 2023; 6:819. [PMID: 37543640 PMCID: PMC10404241 DOI: 10.1038/s42003-023-05170-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2022] [Accepted: 07/24/2023] [Indexed: 08/07/2023] Open
Abstract
The translocation of individuals around the world is leading to rising incidences of anthropogenic hybridization, particularly between domestic and wild congeners. We apply a landscape genomics approach for thousands of mallard (Anas platyrhynchos) samples across continental and island populations to determine the result of over a century of supplementation practices. We establish that a single domestic game-farm mallard breed is the source for contemporary release programs in Eurasia and North America, as well as for established feral populations in New Zealand and Hawaii. In particular, we identify central Europe and eastern North America as epicenters of ongoing anthropogenic hybridization, and conclude that the release of game-farm mallards continues to affect the genetic integrity of wild mallards. Conversely, self-sustaining feral populations in New Zealand and Hawaii not only show strong differentiation from their original stock, but also signatures of local adaptation occurring in less than a half-century since game-farm mallard releases have ceased. We conclude that 'wild' is not singular, and that even feral populations are capable of responding to natural processes. Although considered paradoxical to biological conservation, understanding the capacity for wildness among feral and feral admixed populations in human landscapes is critical as such interactions increase in the Anthropocene.
Collapse
Affiliation(s)
- Philip Lavretsky
- Department of Biological Sciences, University of Texas at El Paso, El Paso, TX, 79668, USA.
| | - Jonathon E Mohl
- Department of Mathematical Sciences, University of Texas at El Paso, El Paso, TX, 79668, USA
| | - Pär Söderquist
- Faculty of Natural Sciences, Kristianstad University, SE- 291 88, Kristianstad, Sweden
| | - Robert H S Kraus
- Department of Migration, Max Planck Institute of Animal Behavior, 78315, Radolfzell, Germany
| | - Michael L Schummer
- Department of Environmental Biology, State University of New York College of Environmental Science and Forestry, Syracuse, NY, 13210, USA
| | - Joshua I Brown
- Department of Biological Sciences, University of Texas at El Paso, El Paso, TX, 79668, USA
| |
Collapse
|
12
|
Borowsky R. Selection Maintains the Phenotypic Divergence of Cave and Surface Fish. Am Nat 2023; 202:55-63. [PMID: 37384766 DOI: 10.1086/724661] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2023]
Abstract
AbstractGenetic divergence in the presence of gene flow has been well documented, but there is little information on the specific factors maintaining divergence. The present study investigates this in the Mexican tetra (Astyanax mexicanus), an excellent model for studying this question because surface and cave populations differ markedly in phenotype and genotype but are interfertile. Previous population studies documented significant gene flow among cave and surface populations, but they focused on analyses of neutral markers whose evolutionary dynamics likely differ from those of genes involved in cave adaptation. The present study advances our understanding of this question by focusing specifically on the genetics responsible for eye and pigmentation reduction, signature traits of cave populations. Direct observations of two cave populations over the course of 63 years verify that surface fish frequently move into the caves and even hybridize with the cave fish. Importantly, however, historical records show that surface alleles for pigmentation and eye size do not persist but are rapidly eliminated from the cave gene pool. It has been argued that regression of eyes and pigmentation was driven by drift, but the results of this study suggest that strong selection actively eliminates surface alleles from the cave populations.
Collapse
|
13
|
Cutter AD. Speciation and development. Evol Dev 2023; 25:289-327. [PMID: 37545126 DOI: 10.1111/ede.12454] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2023] [Revised: 06/13/2023] [Accepted: 07/20/2023] [Indexed: 08/08/2023]
Abstract
Understanding general principles about the origin of species remains one of the foundational challenges in evolutionary biology. The genomic divergence between groups of individuals can spawn hybrid inviability and hybrid sterility, which presents a tantalizing developmental problem. Divergent developmental programs may yield either conserved or divergent phenotypes relative to ancestral traits, both of which can be responsible for reproductive isolation during the speciation process. The genetic mechanisms of developmental evolution involve cis- and trans-acting gene regulatory change, protein-protein interactions, genetic network structures, dosage, and epigenetic regulation, all of which also have roots in population genetic and molecular evolutionary processes. Toward the goal of demystifying Darwin's "mystery of mysteries," this review integrates microevolutionary concepts of genetic change with principles of organismal development, establishing explicit links between population genetic process and developmental mechanisms in the production of macroevolutionary pattern. This integration aims to establish a more unified view of speciation that binds process and mechanism.
Collapse
Affiliation(s)
- Asher D Cutter
- Department of Ecology & Evolutionary Biology, University of Toronto, Toronto, Ontario, Canada
| |
Collapse
|
14
|
Taylor KL, Wade EJ, Wells MM, Henry CS. Genomic regions underlying the species-specific mating songs of green lacewings. INSECT MOLECULAR BIOLOGY 2023; 32:79-85. [PMID: 36281633 DOI: 10.1111/imb.12815] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/30/2022] [Accepted: 10/21/2022] [Indexed: 06/16/2023]
Abstract
Rapid species radiations provide insight into the process of speciation and diversification. The radiation of Chrysoperla carnea-group lacewings seems to be driven, at least in part, by their species-specific pre-mating vibrational duets. We associated genetic markers from across the genome with courtship song period in the offspring of a laboratory cross between Chrysoperla plorabunda and Chrysoperla adamsi, two species primarily differentiated by their mating songs. Two genomic regions were strongly associated with the song period phenotype. Large regions of chromosomes one and two were associated with song phenotype, as fewer recombination events occurred on these chromosomes relative to the other autosomes. Candidate genes were identified by functional annotation of proteins from the C. carnea reference genome. The majority of genes that are associated with vibrational courtship signals in other insects were found within QTL for lacewing song phenotype. Together these findings suggest that decreased recombination may be acting to keep together loci important to reproductive isolation between these species. Using wild-caught individuals from both species, we identified signals of genomic divergence across the genome. We identified several candidate genes both in song-associated regions and near divergence outliers including nonA, fruitless, paralytic, period, and doublesex. Together these findings bring us one step closer to identifying the genomic basis of a mating song trait critical to the maintenance of species boundaries in green lacewings.
Collapse
Affiliation(s)
- Katherine L Taylor
- Department of Ecology and Evolutionary Biology, University of Connecticut, Storrs, Connecticut, USA
- Department of Entomology, University of Maryland, College Park, Maryland, USA
| | - Elizabeth J Wade
- Department of Natural Sciences and Mathematics, Curry College, Milton, Massachusetts, USA
| | - Marta M Wells
- Department of Ecology and Evolutionary Biology, Yale University, New Haven, Connecticut, USA
| | - Charles S Henry
- Department of Ecology and Evolutionary Biology, University of Connecticut, Storrs, Connecticut, USA
| |
Collapse
|
15
|
Fuhrmann N, Prakash C, Kaiser TS. Polygenic adaptation from standing genetic variation allows rapid ecotype formation. eLife 2023; 12:e82824. [PMID: 36852484 PMCID: PMC9977305 DOI: 10.7554/elife.82824] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2022] [Accepted: 02/07/2023] [Indexed: 03/01/2023] Open
Abstract
Adaptive ecotype formation can be the first step to speciation, but the genetic underpinnings of this process are poorly understood. Marine midges of the genus Clunio (Diptera) have recolonized Northern European shore areas after the last glaciation. In response to local tide conditions they have formed different ecotypes with respect to timing of adult emergence, oviposition behavior and larval habitat. Genomic analysis confirms the recent establishment of these ecotypes, reflected in massive haplotype sharing between ecotypes, irrespective of whether there is ongoing gene flow or geographic isolation. QTL mapping and genome screens reveal patterns of polygenic adaptation from standing genetic variation. Ecotype-associated loci prominently include circadian clock genes, as well as genes affecting sensory perception and nervous system development, hinting to a central role of these processes in ecotype formation. Our data show that adaptive ecotype formation can occur rapidly, with ongoing gene flow and largely based on a re-assortment of existing alleles.
Collapse
Affiliation(s)
- Nico Fuhrmann
- Max Planck Institute for Evolutionary BiologyPlönGermany
| | - Celine Prakash
- Max Planck Institute for Evolutionary BiologyPlönGermany
| | | |
Collapse
|
16
|
Wang X, He Z, Guo Z, Yang M, Xu S, Chen Q, Shao S, Li S, Zhong C, Duke NC, Shi S. Extensive gene flow in secondary sympatry after allopatric speciation. Natl Sci Rev 2022; 9:nwac280. [PMID: 36694801 PMCID: PMC9869077 DOI: 10.1093/nsr/nwac280] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2022] [Revised: 12/04/2022] [Accepted: 12/10/2022] [Indexed: 12/15/2022] Open
Abstract
In the conventional view, species are separate gene pools delineated by reproductive isolation (RI). In an alternative view, species may also be delineated by a small set of 'speciation genes' without full RI, a view that has gained broad acceptance. A recent survey, however, suggested that the extensive literature on 'speciation with gene flow' is mostly (if not all) about exchanges in the early stages of speciation. There is no definitive evidence that the observed gene flow actually happened after speciation is completed. Here, we wish to know whether 'good species' (defined by the 'secondary sympatry' test) do continue to exchange genes and, importantly, under what conditions such exchanges can be observed. De novo whole-genome assembly and re-sequencing of individuals across the range of two closely related mangrove species (Rhizophora mucronata and R. stylosa) reveal the genomes to be well delineated in allopatry. They became sympatric in northeastern Australia but remain distinct species. Nevertheless, their genomes harbor ∼4000-10 000 introgression blocks averaging only about 3-4 Kb. These fine-grained introgressions indicate continual gene flow long after speciation as non-introgressable 'genomic islets,' ∼1.4 Kb in size, often harbor diverging genes of flower or gamete development. The fine-grained introgression in secondary sympatry may help settle the debate about sympatric vs. micro-allopatric speciation. In conclusion, true 'good species' may often continue to exchange genes but the opportunity for detection is highly constrained.
Collapse
Affiliation(s)
| | | | | | - Ming Yang
- Department of Laboratory Medicine & Pathology, University of Washington, Seattle, WA98195, USA
| | - Shaohua Xu
- State Key Laboratory of Biocontrol, Guangdong Key Laboratory of Plant Resources, School of Life Sciences, Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Sun Yat-sen University, Guangzhou510275, China
| | - Qipian Chen
- State Key Laboratory of Biocontrol, Guangdong Key Laboratory of Plant Resources, School of Life Sciences, Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Sun Yat-sen University, Guangzhou510275, China
| | - Shao Shao
- State Key Laboratory of Biocontrol, Guangdong Key Laboratory of Plant Resources, School of Life Sciences, Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Sun Yat-sen University, Guangzhou510275, China
| | - Sen Li
- State Key Laboratory of Biocontrol, Guangdong Key Laboratory of Plant Resources, School of Life Sciences, Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Sun Yat-sen University, Guangzhou510275, China
| | - Cairong Zhong
- Hainan Academy of Forestry (Hainan Academy of Mangrove), Haikou571100, China
| | - Norman C Duke
- Centre for Tropical Water and Aquatic Ecosystem Research, James Cook University, Townsville, QLD 4811, Australia
| | | |
Collapse
|
17
|
Vogan AA, Svedberg J, Grudzinska‐Sterno M, Johannesson H. Meiotic drive is associated with sexual incompatibility in Neurospora. Evolution 2022; 76:2687-2696. [PMID: 36148939 PMCID: PMC9828778 DOI: 10.1111/evo.14630] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2020] [Revised: 12/12/1912] [Accepted: 08/14/2022] [Indexed: 01/22/2023]
Abstract
Evolution of Bateson-Dobzhansky-Muller (BDM) incompatibilities is thought to represent a key step in the formation of separate species. They are incompatible alleles that have evolved in separate populations and are exposed in hybrid offspring as hybrid sterility or lethality. In this study, we reveal a previously unconsidered mechanism promoting the formation of BDM incompatibilities, meiotic drive. Theoretical studies have evaluated the role that meiotic drive, the phenomenon whereby selfish elements bias their transmission to progeny at ratios above 50:50, plays in speciation, and have mostly concluded that drive could not result in speciation on its own. Using the model fungus Neurospora, we demonstrate that the large meiotic drive haplotypes, Sk-2 and Sk-3, contain putative sexual incompatibilities. Our experiments revealed that although crosses between Neurospora intermedia and Neurospora metzenbergii produce viable progeny at appreciable rates, when strains of N. intermedia carry Sk-2 or Sk-3 the proportion of viable progeny drops substantially. Additionally, it appears that Sk-2 and Sk-3 have accumulated different incompatibility phenotypes, consistent with their independent evolutionary history. This research illustrates how meiotic drive can contribute to reproductive isolation between populations, and thereby speciation.
Collapse
Affiliation(s)
- Aaron A. Vogan
- Department of Organismal BiologyUppsala UniversityUppsalaSE‐75236Sweden
| | - Jesper Svedberg
- Department of Organismal BiologyUppsala UniversityUppsalaSE‐75236Sweden,Department of Biomolecular Engineering, Genomics InstituteUC Santa CruzSanta CruzCalifornia95064
| | | | - Hanna Johannesson
- Department of Organismal BiologyUppsala UniversityUppsalaSE‐75236Sweden,The Royal Swedish Academy of Sciences and Department of EcologyEnvironment and Plant Sciences, Stockholm UniversityStockholmSE‐106 91, CaliforniaSweden
| |
Collapse
|
18
|
Provost K, Shue SY, Forcellati M, Smith BT. The Genomic Landscapes of Desert Birds Form over Multiple Time Scales. Mol Biol Evol 2022; 39:6711078. [PMID: 36134537 PMCID: PMC9577548 DOI: 10.1093/molbev/msac200] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Spatial models show that genetic differentiation between populations can be explained by factors ranging from geographic distance to environmental resistance across the landscape. However, genomes exhibit a landscape of differentiation, indicating that multiple processes may mediate divergence in different portions of the genome. We tested this idea by comparing alternative geographic predctors of differentiation in ten bird species that co-occur in Sonoran and Chihuahuan Deserts of North America. Using population-level genomic data, we described the genomic landscapes across species and modeled conditions that represented historical and contemporary mechanisms. The characteristics of genomic landscapes differed across species, influenced by varying levels of population structuring and admixture between deserts, and the best-fit models contrasted between the whole genome and partitions along the genome. Both historical and contemporary mechanisms were important in explaining genetic distance, but particularly past and current environments, suggesting that genomic evolution was modulated by climate and habitat There were also different best-ftit models across genomic partitions of the data, indicating that these regions capture different evolutionary histories. These results show that the genomic landscape of differentiation can be associated with alternative geographic factors operating on different portions of the genome, which reflect how heterogeneous patterns of genetic differentiation can evolve across species and genomes.
Collapse
Affiliation(s)
| | - Stephanie Yun Shue
- Bergen County Academies, Hackensack, NJ, USA,Biological Sciences, University of California Berkeley, Berkeley, CA, USA
| | - Meghan Forcellati
- Bergen County Academies, Hackensack, NJ, USA,Ecology, Evolution, and Environmental Biology, Columbia University, New York, NY, USA
| | - Brian Tilston Smith
- Department of Ornithology, American Museum of Natural History, New York, NY, USA
| |
Collapse
|
19
|
Kvistad L, Falk S, Austin L. Widespread genomic signatures of reproductive isolation and sex-specific selection in the Eastern Yellow Robin, Eopsaltria australis. G3 GENES|GENOMES|GENETICS 2022; 12:6605223. [PMID: 35686912 PMCID: PMC9438485 DOI: 10.1093/g3journal/jkac145] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/10/2021] [Accepted: 05/31/2022] [Indexed: 11/16/2022]
Abstract
How new species evolve is one of the most fundamental questions in biology. Population divergence, which may lead to speciation, may be occurring in the Eastern Yellow Robin, a common passerine that lives along the eastern coast of Australia. This species is composed of 2 parapatric lineages that have highly divergent mitochondrial DNA; however, similar levels of divergence have not been observed in the nuclear genome. Here we re-examine the nuclear genomes of these mitolineages to test potential mechanisms underlying the discordance between nuclear and mitochondrial divergence. We find that nuclear admixture occurs in a narrow hybrid zone, although the majority of markers across the genome show evidence of reproductive isolation between populations of opposing mitolineages. There is an 8 MB section of a previously identified putative neo-sex chromosome that is highly diverged between allopatric but not parapatric populations, which may be the result of a chromosomal inversion. The neo-sex chromosomal nature of this region, as well as the geographic patterns in which it exhibits divergence, suggest it is unlikely to be contributing to reproductive isolation through mitonuclear incompatibilities as reported in earlier studies. In addition, there are sex differences in the number of markers that are differentiated between populations of opposite mitolineages, with greater differentiation occurring in females, which are heterozygous, than males. These results suggest that, despite the absence of previously observed assortative mating, mitolineages of Eastern Yellow Robin experience at least some postzygotic isolation from each other, in a pattern consistent with Haldane’s Rule.
Collapse
Affiliation(s)
- Lynna Kvistad
- Biological Sciences, Monash University , Clayton, VIC 3800, Australia
| | - Stephanie Falk
- Biological Sciences, Monash University , Clayton, VIC 3800, Australia
- Deep Sequencing Facility, Max Planck Institute of Immunobiology and Epigenetics , Freiburg D-79108, Germany
| | - Lana Austin
- Biological Sciences, Monash University , Clayton, VIC 3800, Australia
| |
Collapse
|
20
|
Collins AM, Watson CT, Breden F. Immunoglobulin genes, reproductive isolation and vertebrate speciation. Immunol Cell Biol 2022; 100:497-506. [PMID: 35781330 PMCID: PMC9545137 DOI: 10.1111/imcb.12567] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2022] [Revised: 06/19/2022] [Accepted: 06/21/2022] [Indexed: 12/15/2022]
Abstract
Reproductive isolation drives the formation of new species, and many genes contribute to this through Dobzhansky–Muller incompatibilities (DMIs). These incompatibilities occur when gene divergence affects loci encoding interacting products such as receptors and their ligands. We suggest here that the nature of vertebrate immunoglobulin (IG) genes must make them prone to DMIs. The genes of these complex loci form functional genes through the process of recombination, giving rise to a repertoire of heterodimeric receptors of incredible diversity. This repertoire, within individuals and within species, must defend against pathogens but must also avoid pathogenic self‐reactivity. We suggest that this avoidance of autoimmunity is only achieved through a coordination of evolution between heavy‐ and light‐chain genes, and between these genes and the rest of the genome. Without coordinated evolution, the hybrid offspring of two diverging populations will carry a heavy burden of DMIs, resulting in a loss of fitness. Critical incompatibilities could manifest as incompatibilities between a mother and her divergent offspring. During fetal development, biochemical differences between the parents of hybrid offspring could make their offspring a target of the maternal immune system. This hypothesis was conceived in the light of recent insights into the population genetics of IG genes. This has suggested that antibody genes are probably as susceptible to evolutionary forces as other parts of the genome. Further repertoire studies in human and nonhuman species should now help determine whether antibody genes have been part of the evolutionary forces that drive the development of species.
Collapse
Affiliation(s)
- Andrew M Collins
- School of Biotechnology and Biomolecular Sciences University of New South Wales Sydney NSW Australia
| | - Corey T Watson
- Department of Biochemistry and Molecular Genetics University of Louisville School of Medicine Louisville KY USA
| | - Felix Breden
- Department of Biological Sciences Simon Fraser University Burnaby BC Canada
| |
Collapse
|
21
|
Swaegers J, Sánchez-Guillén RA, Chauhan P, Wellenreuther M, Hansson B. Restricted X chromosome introgression and support for Haldane's rule in hybridizing damselflies. Proc Biol Sci 2022; 289:20220968. [PMID: 35855603 PMCID: PMC9297008 DOI: 10.1098/rspb.2022.0968] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
Contemporary hybrid zones act as natural laboratories for the investigation of species boundaries and may shed light on the little understood roles of sex chromosomes in species divergence. Sex chromosomes are considered to function as a hotspot of genetic divergence between species; indicated by less genomic introgression compared to autosomes during hybridization. Moreover, they are thought to contribute to Haldane's rule, which states that hybrids of the heterogametic sex are more likely to be inviable or sterile. To test these hypotheses, we used contemporary hybrid zones of Ischnura elegans, a damselfly species that has been expanding its range into the northern and western regions of Spain, leading to chronic hybridization with its sister species Ischnura graellsii. We analysed genome-wide SNPs in the Spanish I. elegans and I. graellsii hybrid zone and found (i) that the X chromosome shows less genomic introgression compared to autosomes, and (ii) that males are underrepresented among admixed individuals, as predicted by Haldane's rule. This is the first study in Odonata that suggests a role of the X chromosome in reproductive isolation. Moreover, our data add to the few studies on species with X0 sex determination system and contradict the hypothesis that the absence of a Y chromosome causes exceptions to Haldane's rule.
Collapse
Affiliation(s)
- Janne Swaegers
- Department of Biology, Lund University, Ecology Building, Lund 22362, Sweden,Evolutionary Stress Ecology and Ecotoxicology, KU Leuven, Leuven, Belgium
| | | | - Pallavi Chauhan
- Department of Biology, Lund University, Ecology Building, Lund 22362, Sweden
| | - Maren Wellenreuther
- The New Zealand Institute for Plant and Food Research Ltd, Nelson, New Zealand,School of Biological Sciences, University of Auckland, Auckland, New Zealand
| | - Bengt Hansson
- Department of Biology, Lund University, Ecology Building, Lund 22362, Sweden
| |
Collapse
|
22
|
Roberts EK, Tardif S, Wright EA, Platt RN, Bradley RD, Hardy DM. Rapid divergence of a gamete recognition gene promoted macroevolution of Eutheria. Genome Biol 2022; 23:155. [PMID: 35821049 PMCID: PMC9275260 DOI: 10.1186/s13059-022-02721-y] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2021] [Accepted: 06/29/2022] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Speciation genes contribute disproportionately to species divergence, but few examples exist, especially in vertebrates. Here we test whether Zan, which encodes the sperm acrosomal protein zonadhesin that mediates species-specific adhesion to the egg's zona pellucida, is a speciation gene in placental mammals. RESULTS Genomic ontogeny reveals that Zan arose by repurposing of a stem vertebrate gene that was lost in multiple lineages but retained in Eutheria on acquiring a function in egg recognition. A 112-species Zan sequence phylogeny, representing 17 of 19 placental Orders, resolves all species into monophyletic groups corresponding to recognized Orders and Suborders, with <5% unsupported nodes. Three other rapidly evolving germ cell genes (Adam2, Zp2, and Prm1), a paralogous somatic cell gene (TectA), and a mitochondrial gene commonly used for phylogenetic analyses (Cytb) all yield trees with poorer resolution than the Zan tree and inferior topologies relative to a widely accepted mammalian supertree. Zan divergence by intense positive selection produces dramatic species differences in the protein's properties, with ordinal divergence rates generally reflecting species richness of placental Orders consistent with expectations for a speciation gene that acts across a wide range of taxa. Furthermore, Zan's combined phylogenetic utility and divergence exceeds those of all other genes known to have evolved in Eutheria by positive selection, including the only other mammalian speciation gene, Prdm9. CONCLUSIONS Species-specific egg recognition conferred by Zan's functional divergence served as a mode of prezygotic reproductive isolation that promoted the extraordinary adaptive radiation and success of Eutheria.
Collapse
Affiliation(s)
- Emma K. Roberts
- Department of Biological Sciences, Texas Tech University, Lubbock, TX USA
- Department of Cell Biology and Biochemistry, Texas Tech University Health Sciences Center, Lubbock, TX USA
| | - Steve Tardif
- Department of Cell Biology and Biochemistry, Texas Tech University Health Sciences Center, Lubbock, TX USA
- Reproductive Biology Division, JangoBio, Fitchburg, WI USA
| | - Emily A. Wright
- Department of Biological Sciences, Texas Tech University, Lubbock, TX USA
| | - Roy N. Platt
- Host-Pathogen Interaction Program, Texas Biomedical Research Institute, San Antonio, TX USA
| | - Robert D. Bradley
- Department of Biological Sciences, Texas Tech University, Lubbock, TX USA
- Natural Science Research Laboratory, Museum of Texas Tech University, Lubbock, TX USA
| | - Daniel M. Hardy
- Department of Cell Biology and Biochemistry, Texas Tech University Health Sciences Center, Lubbock, TX USA
| |
Collapse
|
23
|
Kitano J, Ishikawa A, Ravinet M, Courtier-Orgogozo V. Genetic basis of speciation and adaptation: from loci to causative mutations. Philos Trans R Soc Lond B Biol Sci 2022; 377:20200503. [PMID: 35634921 PMCID: PMC9149796 DOI: 10.1098/rstb.2020.0503] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Does evolution proceed in small steps or large leaps? How repeatable is evolution? How constrained is the evolutionary process? Answering these long-standing questions in evolutionary biology is indispensable for both understanding how extant biodiversity has evolved and predicting how organisms and ecosystems will respond to changing environments in the future. Understanding the genetic basis of phenotypic diversification and speciation in natural populations is key to properly answering these questions. The leap forward in genome sequencing technologies has made it increasingly easier to not only investigate the genetic architecture but also identify the variant sites underlying adaptation and speciation in natural populations. Furthermore, recent advances in genome editing technologies are making it possible to investigate the functions of each candidate gene in organisms from natural populations. In this article, we discuss how these recent technological advances enable the analysis of causative genes and mutations and how such analysis can help answer long-standing evolutionary biology questions. This article is part of the theme issue ‘Genetic basis of adaptation and speciation: from loci to causative mutations’.
Collapse
Affiliation(s)
- Jun Kitano
- Ecological Genetics Laboratory, National Institute of Genetics, Yata 1111, Mishima, Shizuoka 411-8540, Japan
| | - Asano Ishikawa
- Ecological Genetics Laboratory, National Institute of Genetics, Yata 1111, Mishima, Shizuoka 411-8540, Japan
- Laboratory of Molecular Ecological Genetics, Graduate School of Frontier Sciences, The University of Tokyo, Kashiwanoha 5-1-5, Chiba 277-8562, Japan
| | - Mark Ravinet
- School of Life Sciences, University of Nottingham, Nottingham NG7 2RD, UK
| | | |
Collapse
|
24
|
Ament-Velásquez SL, Vogan AA, Granger-Farbos A, Bastiaans E, Martinossi-Allibert I, Saupe SJ, de Groot S, Lascoux M, Debets AJM, Clavé C, Johannesson H. Allorecognition genes drive reproductive isolation in Podospora anserina. Nat Ecol Evol 2022; 6:910-923. [PMID: 35551248 PMCID: PMC9262711 DOI: 10.1038/s41559-022-01734-x] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2021] [Accepted: 03/15/2022] [Indexed: 11/09/2022]
Abstract
Allorecognition, the capacity to discriminate self from conspecific non-self, is a ubiquitous organismal feature typically governed by genes evolving under balancing selection. Here, we show that in the fungus Podospora anserina, allorecognition loci controlling vegetative incompatibility (het genes), define two reproductively isolated groups through pleiotropic effects on sexual compatibility. These two groups emerge from the antagonistic interactions of the unlinked loci het-r (encoding a NOD-like receptor) and het-v (encoding a methyltransferase and an MLKL/HeLo domain protein). Using a combination of genetic and ecological data, supported by simulations, we provide a concrete and molecularly defined example whereby the origin and coexistence of reproductively isolated groups in sympatry is driven by pleiotropic genes under balancing selection.
Collapse
Affiliation(s)
- S Lorena Ament-Velásquez
- Systematic Biology, Department of Organismal Biology, Uppsala University, Uppsala, Sweden. .,Department of Zoology, Stockholm University, Stockholm, Sweden.
| | - Aaron A Vogan
- Systematic Biology, Department of Organismal Biology, Uppsala University, Uppsala, Sweden
| | - Alexandra Granger-Farbos
- Institut de Biochimie et de Génétique Cellulaires, UMR 5095, CNRS, Université de Bordeaux, Bordeaux, France
| | - Eric Bastiaans
- Systematic Biology, Department of Organismal Biology, Uppsala University, Uppsala, Sweden.,Laboratory of Genetics, Wageningen University & Research, Wageningen, the Netherlands
| | - Ivain Martinossi-Allibert
- Systematic Biology, Department of Organismal Biology, Uppsala University, Uppsala, Sweden.,Department of Biology, Norwegian University of Science and Technology, Trondheim, Norway
| | - Sven J Saupe
- Institut de Biochimie et de Génétique Cellulaires, UMR 5095, CNRS, Université de Bordeaux, Bordeaux, France
| | - Suzette de Groot
- Laboratory of Genetics, Wageningen University & Research, Wageningen, the Netherlands
| | - Martin Lascoux
- Plant Ecology and Evolution, Department of Ecology and Genetics, Uppsala University, Uppsala, Sweden
| | - Alfons J M Debets
- Laboratory of Genetics, Wageningen University & Research, Wageningen, the Netherlands
| | - Corinne Clavé
- Institut de Biochimie et de Génétique Cellulaires, UMR 5095, CNRS, Université de Bordeaux, Bordeaux, France
| | - Hanna Johannesson
- Systematic Biology, Department of Organismal Biology, Uppsala University, Uppsala, Sweden.
| |
Collapse
|
25
|
Sympatric speciation of the spiny mouse from Evolution Canyon in Israel substantiated genomically and methylomically. Proc Natl Acad Sci U S A 2022; 119:e2121822119. [PMID: 35320043 PMCID: PMC9060526 DOI: 10.1073/pnas.2121822119] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
SignificanceWhether sympatric speciation (SS) is rare or common is still debated. Two populations of the spiny mouse, Acomys cahirinus, from Evolution Canyon I (EC I) in Israel have been depicted earlier as speciating sympatrically by molecular markers and transcriptome. Here, we investigated SS both genomically and methylomically, demonstrating that the opposite populations of spiny mice are sister taxa and split from the common ancestor around 20,000 years ago without an allopatric history. Mate choice, olfactory receptors, and speciation genes contributed to prezygotic/postzygotic reproductive isolation. The two populations showed different methylation patterns, facilitating adaptation to their local environment. They cope with abiotic and biotic stresses, due to high solar interslope radiation differences. We conclude that our new genomic and methylomic data substantiated SS.
Collapse
|
26
|
Suvorov A, Kim BY, Wang J, Armstrong EE, Peede D, D'Agostino ERR, Price DK, Waddell P, Lang M, Courtier-Orgogozo V, David JR, Petrov D, Matute DR, Schrider DR, Comeault AA. Widespread introgression across a phylogeny of 155 Drosophila genomes. Curr Biol 2022; 32:111-123.e5. [PMID: 34788634 PMCID: PMC8752469 DOI: 10.1016/j.cub.2021.10.052] [Citation(s) in RCA: 120] [Impact Index Per Article: 40.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2021] [Revised: 09/29/2021] [Accepted: 10/22/2021] [Indexed: 01/12/2023]
Abstract
Genome-scale sequence data have invigorated the study of hybridization and introgression, particularly in animals. However, outside of a few notable cases, we lack systematic tests for introgression at a larger phylogenetic scale across entire clades. Here, we leverage 155 genome assemblies from 149 species to generate a fossil-calibrated phylogeny and conduct multilocus tests for introgression across 9 monophyletic radiations within the genus Drosophila. Using complementary phylogenomic approaches, we identify widespread introgression across the evolutionary history of Drosophila. Mapping gene-tree discordance onto the phylogeny revealed that both ancient and recent introgression has occurred across most of the 9 clades that we examined. Our results provide the first evidence of introgression occurring across the evolutionary history of Drosophila and highlight the need to continue to study the evolutionary consequences of hybridization and introgression in this genus and across the tree of life.
Collapse
Affiliation(s)
- Anton Suvorov
- Department of Genetics, University of North Carolina, Chapel Hill, NC 27599, USA.
| | - Bernard Y Kim
- Department of Biology, Stanford University, Stanford, CA, USA
| | - Jeremy Wang
- Department of Genetics, University of North Carolina, Chapel Hill, NC 27599, USA
| | | | - David Peede
- Department of Biology, University of North Carolina, Chapel Hill, NC 27599, USA
| | | | - Donald K Price
- School of Life Sciences, University of Nevada, Las Vegas, NV 89119, USA
| | - Peter Waddell
- School of Fundamental Sciences, Massey University, Palmerston North 4442, New Zealand
| | - Michael Lang
- CNRS, Institut Jacques Monod, Université de Paris, Paris 75013, France
| | | | - Jean R David
- Laboratoire Evolution, Génomes, Comportement, Ecologie (EGCE) CNRS, IRD, Univ. Paris-sud, Université Paris-Saclay, Gif sur Yvette 91190, France; Institut de Systématique, Evolution, Biodiversité, CNRS, MNHN, UPMC, EPHE, Muséum National d'Histoire Naturelle, Sorbonne Universités, Paris 75005, France
| | - Dmitri Petrov
- Department of Biology, Stanford University, Stanford, CA, USA
| | - Daniel R Matute
- Department of Biology, University of North Carolina, Chapel Hill, NC 27599, USA
| | - Daniel R Schrider
- Department of Genetics, University of North Carolina, Chapel Hill, NC 27599, USA
| | - Aaron A Comeault
- Molecular Ecology & Evolution Group, School of Natural Sciences, Bangor University, Bangor, Gwynedd LL57 2DGA, UK.
| |
Collapse
|
27
|
Yamazaki D, Chiba S. Comparing the genetic diversity and population structure of sister marine snails having contrasting habitat specificity. Mol Biol Rep 2021; 49:393-401. [PMID: 34797494 DOI: 10.1007/s11033-021-06885-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2021] [Accepted: 10/25/2021] [Indexed: 11/25/2022]
Abstract
BACKGROUND To grasp the processes of spatial genetic structuring in open and connectable marine environments is the principal study goal in molecular biological studies. Comparative seascape genetics using multiple species are a powerful approach to understand the physical geographic and oceanographic effects on genetic variation. Besides, species-specific ecological traits such as dispersal abilities and habitat specificity are important factors for spatial genetic structuring. METHODS AND RESULTS We focused on the sister marine snail species Tegula kusairo and T. xanthostigma around the Japanese mainland, which have contrasting habitat specificities for wave strength. Tegula kusairo only inhabits sheltered coastal environments, while T. xanthostigma is found mainly on wave-exposed rocky shores facing the open sea. We estimated their genetic diversity indices and levels of population differentiation based on mtDNA. We found that the genetic diversity of T. kusairo was lower than that of T. xanthostigma, while their level of population genetic differentiation was higher than that of T. xanthostigma. Namely, the species specific to weak wave environments had a higher level of population genetic differentiation than the species specific to strong wave action. CONCLUSION Ecological traits linked not only to dispersal abilities but also to habitat specificity can influence genetic variation in a pair of closely related sister species distributed in the same seascape.
Collapse
Affiliation(s)
- Daishi Yamazaki
- Center for Northeast Asian Studies, Tohoku University, 41 Kawauchi, Aoba-ku, Sendai, Miyagi, 980-8576, Japan.
| | - Satoshi Chiba
- Center for Northeast Asian Studies, Tohoku University, 41 Kawauchi, Aoba-ku, Sendai, Miyagi, 980-8576, Japan
- Graduate School of Life Science, Tohoku University, Aobayama, Aoba-ku, Sendai, Miyagi, 980-8578, Japan
| |
Collapse
|
28
|
Rosser N, Edelman NB, Queste LM, Nelson M, Seixas F, Dasmahapatra KK, Mallet J. Complex basis of hybrid female sterility and Haldane's rule in Heliconius butterflies: Z-linkage and epistasis. Mol Ecol 2021; 31:959-977. [PMID: 34779079 DOI: 10.1111/mec.16272] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2021] [Revised: 09/14/2021] [Accepted: 09/27/2021] [Indexed: 12/19/2022]
Abstract
Hybrids between species are often sterile or inviable. Hybrid unfitness usually evolves first in the heterogametic sex-a pattern known as Haldane's rule. The genetics of Haldane's rule have been extensively studied in species where the male is the heterogametic (XX/XY) sex, but its basis in taxa where the female is heterogametic (ZW/ZZ), such as Lepidoptera and birds, is largely unknown. Here, we analyse a new case of female hybrid sterility between geographic subspecies of Heliconius pardalinus. The two subspecies mate freely in captivity, but female F1 hybrids in both directions of cross are sterile. Sterility is due to arrested development of oocytes after they become differentiated from nurse cells, but before yolk deposition. We backcrossed fertile male F1 hybrids to parental females and mapped quantitative trait loci (QTLs) for female sterility. We also identified genes differentially expressed in the ovary as a function of oocyte development. The Z chromosome has a major effect, similar to the 'large X effect' in Drosophila, with strong epistatic interactions between loci at either end of the Z chromosome, and between the Z chromosome and autosomal loci on chromosomes 8 and 20. By intersecting the list of genes within these QTLs with those differentially expressed in sterile and fertile hybrids, we identified three candidate genes with relevant phenotypes. This study is the first to characterize hybrid sterility using genome mapping in the Lepidoptera and shows that it is produced by multiple complex epistatic interactions often involving the sex chromosome, as predicted by the dominance theory of Haldane's rule.
Collapse
Affiliation(s)
- Neil Rosser
- Department of Organismic and Evolutionary Biology, Harvard University, Cambridge, Massachusetts, USA.,Department of Biology, University of York, York, UK
| | - Nathaniel B Edelman
- Department of Organismic and Evolutionary Biology, Harvard University, Cambridge, Massachusetts, USA.,Yale Institute for Biospheric Studies, Yale University, New Haven, Connecticut, USA.,Yale School for the Environment, Yale University, New Haven, Connecticut, USA
| | | | | | - Fernando Seixas
- Department of Organismic and Evolutionary Biology, Harvard University, Cambridge, Massachusetts, USA
| | | | - James Mallet
- Department of Organismic and Evolutionary Biology, Harvard University, Cambridge, Massachusetts, USA
| |
Collapse
|
29
|
Serrato-Capuchina A, D’Agostino ERR, Peede D, Roy B, Isbell K, Wang J, Matute DR. P-elements strengthen reproductive isolation within the Drosophila simulans species complex. Evolution 2021; 75:2425-2440. [PMID: 34463356 PMCID: PMC8772388 DOI: 10.1111/evo.14319] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2020] [Revised: 04/29/2021] [Accepted: 05/06/2021] [Indexed: 11/28/2022]
Abstract
Determining mechanisms that underlie reproductive isolation (RI) is key to understanding how species boundaries are maintained in nature. Transposable elements (TEs) are ubiquitous across eukaryotic genomes. However, the role of TEs in modulating the strength of RI between species is poorly understood. Several species of Drosophila have been found to harbor P-elements (PEs), yet only D. simulans is known to be currently polymorphic for their presence in wild populations. PEs can cause RI between PE-containing (P) and PE-lacking (M) lineages of the same species. However, it is unclear whether they also contribute to the magnitude of RI between species. Here, we use the simulans species complex to assess whether differences in PE status between D. simulans and its sister species, which do not harbor PEs, contribute to multiple barriers to gene flow between species. We show that crosses involving a P D. simulans father and an M mother from a sister species exhibit lower F1 female fecundity than crosses involving an M D. simulans father and an M sister-species mother. We also find that another TE, I-element, might play a minor role in determining the frequency of dysgenesis between species. Our results suggest that the presence of PEs in a species can strengthen isolation from its sister species, providing evidence that TEs can play a role in RI.
Collapse
Affiliation(s)
- Antonio Serrato-Capuchina
- Department of Biology, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27514
- Department of Organismic and Evolutionary Biology, Harvard University, Cambridge, Massachusetts 02138
| | - Emmanuel R. R. D’Agostino
- Department of Biology, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27514
| | - David Peede
- Department of Biology, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27514
| | - Baylee Roy
- Department of Biology, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27514
| | - Kristin Isbell
- Department of Biology, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27514
| | - Jeremy Wang
- Department of Genetics, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27514
| | - Daniel R. Matute
- Department of Biology, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27514
| |
Collapse
|
30
|
Burbrink FT, Ruane S. Contemporary Philosophy and Methods for Studying Speciation and Delimiting Species. ICHTHYOLOGY & HERPETOLOGY 2021. [DOI: 10.1643/h2020073] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Affiliation(s)
- Frank T. Burbrink
- Department of Herpetology, American Museum of Natural History, Central Park West at 79th Street, New York, New York 10024; . Send reprint requests to this address
| | - Sara Ruane
- Earth and Environmental Sciences: Ecology and Evolution, Rutgers University–Newark, 195 University Avenue, Newark, New Jersey 07102
| |
Collapse
|
31
|
Stöck M, Dedukh D, Reifová R, Lamatsch DK, Starostová Z, Janko K. Sex chromosomes in meiotic, hemiclonal, clonal and polyploid hybrid vertebrates: along the 'extended speciation continuum'. Philos Trans R Soc Lond B Biol Sci 2021; 376:20200103. [PMID: 34304588 PMCID: PMC8310718 DOI: 10.1098/rstb.2020.0103] [Citation(s) in RCA: 40] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/12/2021] [Indexed: 12/15/2022] Open
Abstract
We review knowledge about the roles of sex chromosomes in vertebrate hybridization and speciation, exploring a gradient of divergences with increasing reproductive isolation (speciation continuum). Under early divergence, well-differentiated sex chromosomes in meiotic hybrids may cause Haldane-effects and introgress less easily than autosomes. Undifferentiated sex chromosomes are more susceptible to introgression and form multiple (or new) sex chromosome systems with hardly predictable dominance hierarchies. Under increased divergence, most vertebrates reach complete intrinsic reproductive isolation. Slightly earlier, some hybrids (linked in 'the extended speciation continuum') exhibit aberrant gametogenesis, leading towards female clonality. This facilitates the evolution of various allodiploid and allopolyploid clonal ('asexual') hybrid vertebrates, where 'asexuality' might be a form of intrinsic reproductive isolation. A comprehensive list of 'asexual' hybrid vertebrates shows that they all evolved from parents with divergences that were greater than at the intraspecific level (K2P-distances of greater than 5-22% based on mtDNA). These 'asexual' taxa inherited genetic sex determination by mostly undifferentiated sex chromosomes. Among the few known sex-determining systems in hybrid 'asexuals', female heterogamety (ZW) occurred about twice as often as male heterogamety (XY). We hypothesize that pre-/meiotic aberrations in all-female ZW-hybrids present Haldane-effects promoting their evolution. Understanding the preconditions to produce various clonal or meiotic allopolyploids appears crucial for insights into the evolution of sex, 'asexuality' and polyploidy. This article is part of the theme issue 'Challenging the paradigm in sex chromosome evolution: empirical and theoretical insights with a focus on vertebrates (Part II)'.
Collapse
Affiliation(s)
- Matthias Stöck
- Leibniz-Institute of Freshwater Ecology and Inland Fisheries - IGB (Forschungsverbund Berlin), Müggelseedamm 301, 12587 Berlin, Germany
- Amphibian Research Center, Hiroshima University, Higashi-Hiroshima 739-8526, Japan
| | - Dmitrij Dedukh
- Institute of Animal Physiology and Genetics, Laboratory of Fish Genetics, The Czech Academy of Sciences, 277 21 Libechov, Czech Republic
| | - Radka Reifová
- Department of Zoology, Faculty of Science, Charles University, Viničná 7, Prague 2, 128 00, Czech Republic
| | - Dunja K. Lamatsch
- Research Department for Limnology, University of Innsbruck, Mondseestrasse 9, A-5310 Mondsee, Austria
| | - Zuzana Starostová
- Department of Zoology, Faculty of Science, Charles University, Viničná 7, Prague 2, 128 00, Czech Republic
| | - Karel Janko
- Institute of Animal Physiology and Genetics, Laboratory of Fish Genetics, The Czech Academy of Sciences, 277 21 Libechov, Czech Republic
- Department of Biology and Ecology, Faculty of Science, University of Ostrava, 701 03 Ostrava, Czech Republic
| |
Collapse
|
32
|
Mass of genes rather than master genes underlie the genomic architecture of amphibian speciation. Proc Natl Acad Sci U S A 2021; 118:2103963118. [PMID: 34465621 DOI: 10.1073/pnas.2103963118] [Citation(s) in RCA: 40] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The genetic architecture of speciation, i.e., how intrinsic genomic incompatibilities promote reproductive isolation (RI) between diverging lineages, is one of the best-kept secrets of evolution. To directly assess whether incompatibilities arise in a limited set of large-effect speciation genes, or in a multitude of loci, we examined the geographic and genomic landscapes of introgression across the hybrid zones of 41 pairs of frog and toad lineages in the Western Palearctic region. As the divergence between lineages increases, phylogeographic transitions progressively become narrower, and larger parts of the genome resist introgression. This suggests that anuran speciation proceeds through a gradual accumulation of multiple barrier loci scattered across the genome, which ultimately deplete hybrid fitness by intrinsic postzygotic isolation, with behavioral isolation being achieved only at later stages. Moreover, these loci were disproportionately sex linked in one group (Hyla) but not in others (Rana and Bufotes), implying that large X-effects are not necessarily a rule of speciation with undifferentiated sex chromosomes. The highly polygenic nature of RI and the lack of hemizygous X/Z chromosomes could explain why the speciation clock ticks slower in amphibians compared to other vertebrates. The clock-like dynamics of speciation combined with the analytical focus on hybrid zones offer perspectives for more standardized practices of species delimitation.
Collapse
|
33
|
Justen H, Kimmitt AA, Delmore KE. Estimating hybridization rates in the wild: Easier said than done? Evolution 2021; 75:2137-2144. [PMID: 32820532 DOI: 10.1111/evo.14082] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2020] [Revised: 08/06/2020] [Accepted: 08/10/2020] [Indexed: 11/30/2022]
Abstract
Hybridization has important effects on the evolutionary trajectories of natural populations but estimates of this process in the wild and at the individual-level are lacking. Justyn et al. attempted to fill this gap using the citizen science database eBird but there are limitations to this approach. Here, we outline and directly test these limitations using literature searches, case studies, and a comparison between eBird and Birds of North America (BNA), a database that documents hybridization using the scientific literature. We use a hybrid zone between Lazuli and Indigo buntings to highlight the importance of considering geographic range when estimating rates of hybridization and two literature searches to show the importance of considering cryptic hybrids (those that cannot be identified using phenotypic traits) when quantifying these rates. We also use BNA and a case study of hybrid White-faced and Glossy Ibises to show that citizen scientists are underreporting hybrids compared with experts. Justyn et al. highlighted an important gap in the literature, but their results likely represent the lower limit of hybridization between birds and a more nuanced interpretation of their results (e.g., considering extrinsic postzygotic selection) is needed.
Collapse
Affiliation(s)
- Hannah Justen
- Department of Biology, Texas A&M University, College Station, Texas
| | | | - Kira E Delmore
- Department of Biology, Texas A&M University, College Station, Texas
| |
Collapse
|
34
|
Wen G, Fu J. Isolation and reconnection: Demographic history and multiple contact zones of the green odorous frog (Odorrana margaretae) around the Sichuan Basin. Mol Ecol 2021; 30:4103-4117. [PMID: 34145663 DOI: 10.1111/mec.16021] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2020] [Revised: 05/27/2021] [Accepted: 06/10/2021] [Indexed: 01/25/2023]
Abstract
The green odorous frog (Odorrana margaretae) displays a circular distribution around the Sichuan Basin of western China and possesses multiple replicate hybrid zones between lineages with high levels of divergence. To gain an understanding of the speciation process, we obtained 1540 SNPs from 29 populations and 227 individuals using ddRAD sequencing. Population structure analysis revealed three groups within the species: the West, North & South, and East groups. Demographic inference showed that they were initially isolated at ~2 million years ago, and subsequent post-glacial expansion produced the current circular distribution with four secondary contact zones. Hybridization in those zones involved lineages with various levels of divergence and produced greatly different patterns of introgression. Contact zones between the East and North & South groups (E-S and E-N) had contrast admixture levels but both showed a general lack of potential barrier loci. Meanwhile, the reconnection of the West and North & South groups produced two contact zones along the rim of the Basin. The S-W zone had extensive admixture while the N-W zone had limited admixture within a narrow geographic distance. Both showed substantial barrier effects, and a large number of potential barrier loci were shared. We also detected strong coupling among these loci. The N-W hybrid zone involved two highly-diverged lineages (FST = 0.704) and many loci have reached fixation around the hybrid zone. This study system offers a unique opportunity to understand the dynamics of introgression in contact zones and the architecture of reproductive isolation at different stages of speciation.
Collapse
Affiliation(s)
- Guannan Wen
- Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu, China.,University of Chinese Academy of Sciences, Beijing, China
| | - Jinzhong Fu
- Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu, China.,Department of Integrative Biology, University of Guelph, Guelph, ON, Canada
| |
Collapse
|
35
|
Chabot AA, Lougheed SC. Integrative assessment of intraspecific diversification in Loggerhead Shrike ( Lanius ludovicianus) provides insight on the geographic pattern of phenotypic divergence and process of speciation. CAN J ZOOL 2021. [DOI: 10.1139/cjz-2020-0006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Integrated studies of the geographical, ecological, and historical factors that shape intraspecific phenotypic and genetic variation can help us to decipher the processes leading to geographic patterns of population divergence and speciation. We quantify and compare morphological and genetic variation in the Loggerhead Shrike (Lanius ludovicianus Linnaeus, 1766), a broadly distributed passerine in North America with both migratory and non-migratory populations that occupy a diversity of habitats and topographies. The geographic distributions and patterns of differentiation among subspecies suggest that migration has strongly impacted population divergence, including the habit of migrating itself, but also dispersal. Patterns of mitochondrial and nuclear genetic differentiation can be attributed to female-biased dispersal and to increased dispersal rates and distances in migratory populations. Weak phenotypic differentiation among migratory versus migratory and non-migratory populations suggest that migration may more strongly affect morphology than adaptation to local habitats. Our results generally support previous subspecific designations with two notable exceptions. We found little genetic differentiation between two subspecies (Lanius ludovicianus gambeli Ridgway, 1887 and Lanius ludovicianus mexicanus C.L. Brehm, 1854), but identify a new, distinct subspecies, which we refer to as Lanius ludovicianus centralis ssp. nov.
Collapse
Affiliation(s)
- Amy A. Chabot
- Department of Biology, Queen’s University, Kingston, ON K7L 3N6, Canada
- African Lion Safari, Cambridge, ON N1R 5S2, Canada
| | | |
Collapse
|
36
|
Baquero F, Coque TM, Galán JC, Martinez JL. The Origin of Niches and Species in the Bacterial World. Front Microbiol 2021; 12:657986. [PMID: 33815348 PMCID: PMC8010147 DOI: 10.3389/fmicb.2021.657986] [Citation(s) in RCA: 52] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2021] [Accepted: 02/23/2021] [Indexed: 12/15/2022] Open
Abstract
Niches are spaces for the biological units of selection, from cells to complex communities. In a broad sense, "species" are biological units of individuation. Niches do not exist without individual organisms, and every organism has a niche. We use "niche" in the Hutchinsonian sense as an abstraction of a multidimensional environmental space characterized by a variety of conditions, both biotic and abiotic, whose quantitative ranges determine the positive or negative growth rates of the microbial individual, typically a species, but also parts of the communities of species contained in this space. Microbial organisms ("species") constantly diversify, and such diversification (radiation) depends on the possibility of opening up unexploited or insufficiently exploited niches. Niche exploitation frequently implies "niche construction," as the colonized niche evolves with time, giving rise to new potential subniches, thereby influencing the selection of a series of new variants in the progeny. The evolution of niches and organisms is the result of reciprocal interacting processes that form a single unified process. Centrifugal microbial diversification expands the limits of the species' niches while a centripetal or cohesive process occurs simultaneously, mediated by horizontal gene transfers and recombinatorial events, condensing all of the information recovered during the diversifying specialization into "novel organisms" (possible future species), thereby creating a more complex niche, where the selfishness of the new organism(s) establishes a "homeostatic power" limiting the niche's variation. Once the niche's full carrying capacity has been reached, reproductive isolation occurs, as no foreign organisms can outcompete the established population/community, thereby facilitating speciation. In the case of individualization-speciation of the microbiota, its contribution to the animal' gut structure is a type of "niche construction," the result of crosstalk between the niche (host) and microorganism(s). Lastly, there is a parallelism between the hierarchy of niches and that of microbial individuals. The increasing anthropogenic effects on the biosphere (such as globalization) might reduce the diversity of niches and bacterial individuals, with the potential emergence of highly transmissible multispecialists (which are eventually deleterious) resulting from the homogenization of the microbiosphere, a possibility that should be explored and prevented.
Collapse
Affiliation(s)
- Fernando Baquero
- Division of Biology and Evolution of Microorganisms, Department of Microbiology, Ramón y Cajal Institute for Health Research (IRYCIS), Ramón y Cajal University Hospital, Madrid, Spain
| | - Teresa M Coque
- Division of Biology and Evolution of Microorganisms, Department of Microbiology, Ramón y Cajal Institute for Health Research (IRYCIS), Ramón y Cajal University Hospital, Madrid, Spain
| | - Juan Carlos Galán
- Division of Biology and Evolution of Microorganisms, Department of Microbiology, Ramón y Cajal Institute for Health Research (IRYCIS), Ramón y Cajal University Hospital, Madrid, Spain
| | | |
Collapse
|
37
|
Kirschel ANG, Nwankwo EC, Pierce DK, Lukhele SM, Moysi M, Ogolowa BO, Hayes SC, Monadjem A, Brelsford A. CYP2J19 mediates carotenoid colour introgression across a natural avian hybrid zone. Mol Ecol 2020; 29:4970-4984. [PMID: 33058329 DOI: 10.1111/mec.15691] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2020] [Revised: 10/02/2020] [Accepted: 10/05/2020] [Indexed: 02/06/2023]
Abstract
It has long been of interest to identify the phenotypic traits that mediate reproductive isolation between related species, and more recently, the genes that underpin them. Much work has focused on identifying genes associated with animal colour, with the candidate gene CYP2J19 identified in laboratory studies as the ketolase converting yellow dietary carotenoids to red ketocarotenoids in birds with red pigments. However, evidence that CYP2J19 explains variation between red and yellow feather coloration in wild populations of birds is lacking. Hybrid zones provide the opportunity to identify genes associated with specific traits. Here we investigate genomic regions associated with colour in red-fronted and yellow-fronted tinkerbirds across a hybrid zone in southern Africa. We sampled 85 individuals, measuring spectral reflectance of forecrown feathers and scoring colours from photographs, while testing for carotenoid presence with Raman spectroscopy. We performed a genome-wide association study to identify associations with carotenoid-based coloration, using double-digest RAD sequencing aligned to a short-read whole genome of a Pogoniulus tinkerbird. Admixture mapping using 104,933 single nucleotide polymorphisms (SNPs) identified a region of chromosome 8 that includes CYP2J19 as the only locus with more than two SNPs significantly associated with both crown hue and crown score, while Raman spectra provided evidence of ketocarotenoids in red feathers. Asymmetric backcrossing in the hybrid zone suggests that yellow-fronted females mate more often with red-fronted males than vice versa. Female red-fronted tinkerbirds mating assortatively with red-crowned males is consistent with the hypothesis that converted carotenoids are an honest signal of quality.
Collapse
Affiliation(s)
| | - Emmanuel C Nwankwo
- Department of Biological Sciences, University of Cyprus, Nicosia, Cyprus
| | - Daniel K Pierce
- Department of Evolution, Ecology, and Organismal Biology, University of California Riverside, Riverside, CA, USA
| | - Sifiso M Lukhele
- Department of Biological Sciences, University of Cyprus, Nicosia, Cyprus
| | - Michaella Moysi
- Department of Biological Sciences, University of Cyprus, Nicosia, Cyprus
| | - Bridget O Ogolowa
- Department of Biological Sciences, University of Cyprus, Nicosia, Cyprus
| | - Sophia C Hayes
- Department of Chemistry, University of Cyprus, Nicosia, Cyprus
| | - Ara Monadjem
- Department of Biological Sciences, University of Eswatini, Kwaluseni, Eswatini.,Department of Zoology & Entomology, Mammal Research Institute, University of Pretoria, Hatfield, South Africa
| | - Alan Brelsford
- Department of Evolution, Ecology, and Organismal Biology, University of California Riverside, Riverside, CA, USA
| |
Collapse
|
38
|
Balfour VL, Black D, Shuker DM. A single pleiotropic locus influences the rate of hybridization between two sibling species of Lygaeus bugs. Ecol Evol 2020; 10:12224-12232. [PMID: 33209283 PMCID: PMC7663077 DOI: 10.1002/ece3.6853] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2020] [Accepted: 09/08/2020] [Indexed: 11/21/2022] Open
Abstract
The evolution of reproductive isolation lies at the heart of understanding the process of speciation. Of particular interest is the relationship between pre- and postzygotic reproductive isolation, and the genetic architecture of traits that contribute to one or both forms of reproductive isolation. The sibling species of seed bug Lygaeus equestris and L. simulans show a classic pattern of asymmetric prezygotic reproductive isolation, with female L. equestris hybridizing with male L. simulans, but with no hybridization in the reciprocal direction. We have recently described a mutant pale color form of L. simulans, that inherits as a single Mendelian locus and is pleiotropic for a number of other life history and behavioral traits. Here, we tested whether this locus also influences pre- and postzygotic reproductive isolation. Two sets of experimental crosses revealed that behavioral isolation varied with mutant versus wild-type phenotype for male L. simulans, with the pale form less successful at mating with female L. equestris. In terms of trying to assess postzygotic isolation, levels of hybrid offspring production were uniformly low across the experiments. However, we did obtain, for the first time, hybrid offspring from a pairing between a female L. simulans and a male L. equestris. In this instance, the female was of the pale mutant genotype. Together with evidence for heterozygote advantage in terms of nymph survival, we consider our results in terms of possible mechanisms of reproductive isolation between this species pair, the role of the pale mutation, and the possible genetic architectures underlying the mutation, from a single gene to a supergene.
Collapse
|
39
|
Waters J, Emerson B, Arribas P, McCulloch G. Dispersal Reduction: Causes, Genomic Mechanisms, and Evolutionary Consequences. Trends Ecol Evol 2020; 35:512-522. [DOI: 10.1016/j.tree.2020.01.012] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2019] [Revised: 01/23/2020] [Accepted: 01/29/2020] [Indexed: 12/23/2022]
|
40
|
Affiliation(s)
- Andrius J Dagilis
- Department of Biology, University of North Carolina, Chapel Hill, NC 27514, USA.
| | - Daniel R Matute
- Department of Biology, University of North Carolina, Chapel Hill, NC 27514, USA.
| |
Collapse
|
41
|
Liberles DA, Chang B, Geiler-Samerotte K, Goldman A, Hey J, Kaçar B, Meyer M, Murphy W, Posada D, Storfer A. Emerging Frontiers in the Study of Molecular Evolution. J Mol Evol 2020; 88:211-226. [PMID: 32060574 PMCID: PMC7386396 DOI: 10.1007/s00239-020-09932-6] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
A collection of the editors of Journal of Molecular Evolution have gotten together to pose a set of key challenges and future directions for the field of molecular evolution. Topics include challenges and new directions in prebiotic chemistry and the RNA world, reconstruction of early cellular genomes and proteins, macromolecular and functional evolution, evolutionary cell biology, genome evolution, molecular evolutionary ecology, viral phylodynamics, theoretical population genomics, somatic cell molecular evolution, and directed evolution. While our effort is not meant to be exhaustive, it reflects research questions and problems in the field of molecular evolution that are exciting to our editors.
Collapse
Affiliation(s)
- David A Liberles
- Department of Biology and Center for Computational Genetics and Genomics, Temple University, Philadelphia, PA, 19122, USA.
| | - Belinda Chang
- Department of Ecology and Evolutionary Biology and Department of Cell and Systems Biology, University of Toronto, 25 Harbord Street, Toronto, ON, M5S 3G5, Canada
| | - Kerry Geiler-Samerotte
- Center for Mechanisms of Evolution, School of Life Sciences, Arizona State University, Tempe, AZ, 85287, USA
| | - Aaron Goldman
- Department of Biology, Oberlin College and Conservatory, K123 Science Center, 119 Woodland Street, Oberlin, OH, 44074, USA
| | - Jody Hey
- Department of Biology and Center for Computational Genetics and Genomics, Temple University, Philadelphia, PA, 19122, USA
| | - Betül Kaçar
- Department of Molecular and Cell Biology, University of Arizona, Tucson, AZ, 85721, USA
| | - Michelle Meyer
- Department of Biology, Boston College, Chestnut Hill, MA, 02467, USA
| | - William Murphy
- Department of Veterinary Integrative Biosciences, Texas A&M University, College Station, TX, 77843, USA
| | - David Posada
- Biomedical Research Center (CINBIO), University of Vigo, Vigo, Spain
| | - Andrew Storfer
- School of Biological Sciences, Washington State University, Pullman, WA, 99164, USA
| |
Collapse
|
42
|
Costa D, Sotelo G, Kaliontzopoulou A, Carvalho J, Butlin R, Hollander J, Faria R. Hybridization patterns between two marine snails, Littorina fabalis and L. obtusata. Ecol Evol 2020; 10:1158-1179. [PMID: 32076505 PMCID: PMC7029087 DOI: 10.1002/ece3.5943] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2019] [Revised: 11/21/2019] [Accepted: 11/27/2019] [Indexed: 01/22/2023] Open
Abstract
Characterizing the patterns of hybridization between closely related species is crucial to understand the role of gene flow in speciation. In particular, systems comprising multiple contacts between sister species offer an outstanding opportunity to investigate how reproductive isolation varies with environmental conditions, demography and geographic contexts of divergence. The flat periwinkles, Littorina obtusata and L. fabalis (Gastropoda), are two intertidal sister species with marked ecological differences compatible with late stages of speciation. Although hybridization between the two was previously suggested, its extent across the Atlantic shores of Europe remained largely unknown. Here, we combined genetic (microsatellites and mtDNA) and morphological data (shell and male genital morphology) from multiple populations of flat periwinkles in north-western Iberia to assess the extent of current and past hybridization between L. obtusata and L. fabalis under two contrasting geographic settings of divergence (sympatry and allopatry). Hybridization signatures based on both mtDNA and microsatellites were stronger in sympatric sites, although evidence for recent extensive admixture was found in a single location. Misidentification of individuals into species based on shell morphology was higher in sympatric than in allopatric sites. However, despite hybridization, species distinctiveness based on this phenotypic trait together with male genital morphology remained relatively high. The observed variation in the extent of hybridization among locations provides a rare opportunity for future studies on the consequences of different levels of gene flow for reinforcement, thus informing about the mechanisms underlying the completion of speciation.
Collapse
Affiliation(s)
- Diana Costa
- CIBIO‐InBIOCentro de Investigação em Biodiversidade e Recursos GenéticosUniversidade do PortoVairãoPortugal
- Department of BiologyFaculty of SciencesUniversity of PortoPortoPortugal
- CIIMARInterdisciplinary Centre of Marine and Environmental ResearchUniversity of PortoPortoPortugal
| | - Graciela Sotelo
- CIBIO‐InBIOCentro de Investigação em Biodiversidade e Recursos GenéticosUniversidade do PortoVairãoPortugal
| | - Antigoni Kaliontzopoulou
- CIBIO‐InBIOCentro de Investigação em Biodiversidade e Recursos GenéticosUniversidade do PortoVairãoPortugal
| | - João Carvalho
- CIBIO‐InBIOCentro de Investigação em Biodiversidade e Recursos GenéticosUniversidade do PortoVairãoPortugal
- cE3cCentre for Ecology, Evolution and Environmental ChangesDepartamento de Biologia AnimalFaculdade de Ciências da Universidade de LisboaLisbonPortugal
| | - Roger Butlin
- Department of Animal and Plant SciencesUniversity of SheffieldSheffieldUK
- Department of Marine SciencesUniversity of GothenburgGothenburgSweden
| | - Johan Hollander
- Department of BiologyAquatic Ecology UnitLund UniversityLundSweden
- Global Ocean InstituteWorld Maritime UniversityMalmöSweden
| | - Rui Faria
- CIBIO‐InBIOCentro de Investigação em Biodiversidade e Recursos GenéticosUniversidade do PortoVairãoPortugal
- CIIMARInterdisciplinary Centre of Marine and Environmental ResearchUniversity of PortoPortoPortugal
- Department of Animal and Plant SciencesUniversity of SheffieldSheffieldUK
| |
Collapse
|
43
|
Lavretsky P, McInerney NR, Mohl JE, Brown JI, James HF, McCracken KG, Fleischer RC. Assessing changes in genomic divergence following a century of human-mediated secondary contact among wild and captive-bred ducks. Mol Ecol 2020; 29:578-595. [PMID: 31872482 DOI: 10.1111/mec.15343] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2019] [Revised: 12/09/2019] [Accepted: 12/16/2019] [Indexed: 12/21/2022]
Abstract
Along with manipulating habitat, the direct release of domesticated individuals into the wild is a practice used worldwide to augment wildlife populations. We test between possible outcomes of human-mediated secondary contact using genomic techniques at both historical and contemporary timescales for two iconic duck species. First, we sequence several thousand ddRAD-seq loci for contemporary mallards (Anas platyrhynchos) throughout North America and two domestic mallard types (i.e., known game-farm mallards and feral Khaki Campbell's). We show that North American mallards may well be becoming a hybrid swarm due to interbreeding with domesticated game-farm mallards released for hunting. Next, to attain a historical perspective, we applied a bait-capture array targeting thousands of loci in century-old (1842-1915) and contemporary (2009-2010) mallard and American black duck (Anas rubripes) specimens. We conclude that American black ducks and mallards have always been closely related, with a divergence time of ~600,000 years before present, and likely evolved through prolonged isolation followed by limited bouts of gene flow (i.e., secondary contact). They continue to maintain genetic separation, a finding that overturns decades of prior research and speculation suggesting the genetic extinction of the American black duck due to contemporary interbreeding with mallards. Thus, despite having high rates of hybridization, actual gene flow is limited between mallards and American black ducks. Conversely, our historical and contemporary data confirm that the intensive stocking of game-farm mallards during the last ~100 years has fundamentally changed the genetic integrity of North America's wild mallard population, especially in the east. It thus becomes of great interest to ask whether the iconic North American mallard is declining in the wild due to introgression of maladaptive traits from domesticated forms. Moreover, we hypothesize that differential gene flow from domestic game-farm mallards into the wild mallard population may explain the overall temporal increase in differentiation between wild black ducks and mallards, as well as the uncoupling of genetic diversity and effective population size estimates across time in our results. Finally, our findings highlight how genomic methods can recover complex population histories by capturing DNA preserved in traditional museum specimens.
Collapse
Affiliation(s)
- Philip Lavretsky
- Department of Biological Sciences, The University of Texas at El Paso, El Paso, TX, USA
| | - Nancy Rotzel McInerney
- Center for Conservation Genomics, Smithsonian Conservation Biology Institute, Smithsonian Institution, Washington, DC, USA
| | - Jonathon E Mohl
- Border Biomedical Research Center, The University of Texas at El Paso, El Paso, TX, USA
| | - Joshua I Brown
- Department of Biological Sciences, The University of Texas at El Paso, El Paso, TX, USA
| | - Helen F James
- Department of Vertebrate Zoology, National Museum of Natural History, Smithsonian Institution, Washington, DC, USA
| | - Kevin G McCracken
- Department of Biology, University of Miami, Coral Gables, FL, USA.,Department of Marine Biology and Ecology, Rosenstiel School of Marine and Atmospheric Sciences, University of Miami, Miami, FL, USA.,Human Genetics and Genomics, Hussman Institute for Human Genomics, University of Miami Miller School of Medicine, Miami, FL, USA.,Institute of Arctic Biology, University of Alaska Museum, University of Alaska Fairbanks, Fairbanks, AK, USA
| | - Robert C Fleischer
- Center for Conservation Genomics, Smithsonian Conservation Biology Institute, Smithsonian Institution, Washington, DC, USA
| |
Collapse
|
44
|
Currey MC, Bassham SL, Cresko WA. Genetic divergence outpaces phenotypic evolution among threespine stickleback populations in old freshwater habitats. Biol J Linn Soc Lond 2019; 128:415-434. [PMID: 36846094 PMCID: PMC9957565 DOI: 10.1093/biolinnean/blz106] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022]
Abstract
Species such as threespine stickleback (Gasterosteus aculeatus) that inhabit divergent selective environments and that have diversified on different time scales can be of value for understanding evolutionary processes. Here we synthesize high-resolution genotypic and phenotypic data to explore a largely unstudied distribution of threespine stickleback populations living in oceanic and freshwater habitats along coastal and inland regions of Oregon. Many inland aquatic habitats of Oregon remained unglaciated during the last ice age, meaning that some extant Oregon lake and river stickleback may have descended from freshwater populations established long before more well-studied, post-glacial freshwater populations. To address the degree of congruence between genetic and phenotypic divergence, we directly compared Oregon stickleback to much younger (post-glacial) Alaskan populations. We found phenotypic variation in Oregon stickleback to be primarily partitioned between oceanic and freshwater habitats, as has been documented in other stickleback systems. However, the main axis of genetic divergence was between coastal and inland regions regardless of habitat type. Furthermore, when comparing patterns between Oregon and Alaska we found similar levels of phenotypic divergence, but much greater genetic divergence among Oregon's populations. The Oregon stickleback system therefore appears well suited for future studies linking genotypic and phenotypic change, further extending the utility of this small fish to provide general insights into evolutionary processes.
Collapse
Affiliation(s)
- Mark C Currey
- Institute of Ecology and Evolution, University of Oregon, Eugene, OR 97403-1254, USA
| | - Susan L Bassham
- Institute of Ecology and Evolution, University of Oregon, Eugene, OR 97403-1254, USA
| | - William A Cresko
- Institute of Ecology and Evolution, University of Oregon, Eugene, OR 97403-1254, USA
| |
Collapse
|
45
|
Kess T, Boulding EG. Genome-wide association analyses reveal polygenic genomic architecture underlying divergent shell morphology in Spanish Littorina saxatilis ecotypes. Ecol Evol 2019; 9:9427-9441. [PMID: 31534666 PMCID: PMC6745682 DOI: 10.1002/ece3.5378] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2019] [Accepted: 05/24/2019] [Indexed: 12/18/2022] Open
Abstract
Gene flow between diverging populations experiencing dissimilar ecological conditions can theoretically constrain adaptive evolution. To minimize the effect of gene flow, alleles underlying traits essential for local adaptation are predicted to be located in linked genome regions with reduced recombination. Local reduction in gene flow caused by selection is expected to produce elevated divergence in these regions. The highly divergent crab-adapted and wave-adapted ecotypes of the marine snail Littorina saxatilis present a model system to test these predictions. We used genome-wide association (GWA) analysis of geometric morphometric shell traits associated with microgeographic divergence between the two L. saxatilis ecotypes within three separate sampling sites. A total of 477 snails that had individual geometric morphometric data and individual genotypes at 4,066 single nucleotide polymorphisms (SNPs) were analyzed using GWA methods that corrected for population structure among the three sites. This approach allowed dissection of the genomic architecture of shell shape divergence between ecotypes across a wide geographic range, spanning two glacial lineages. GWA revealed 216 quantitative trait loci (QTL) with shell size or shape differences between ecotypes, with most loci explaining a small proportion of phenotypic variation. We found that QTL were evenly distributed across 17 linkage groups, and exhibited elevated interchromosomal linkage, suggesting a genome-wide response to divergent selection on shell shape between the two ecotypes. Shell shape trait-associated loci showed partial overlap with previously identified outlier loci under divergent selection between the two ecotypes, supporting the hypothesis of diversifying selection on these genomic regions. These results suggest that divergence in shell shape between the crab-adapted and wave-adapted ecotypes is produced predominantly by a polygenic genomic architecture with positive linkage disequilibrium among loci of small effect.
Collapse
Affiliation(s)
- Tony Kess
- Department of Integrative BiologyUniversity of GuelphGuelphONCanada
- Present address:
Fisheries and Oceans CanadaSt. John'sNLCanada
| | | |
Collapse
|
46
|
Callaway TD, Singh-Cundy A. HD-AGPs as Speciation Genes: Positive Selection on a Proline-Rich Domain in Non-Hybridizing Species of Petunia, Solanum, and Nicotiana. PLANTS (BASEL, SWITZERLAND) 2019; 8:E211. [PMID: 31288469 PMCID: PMC6681252 DOI: 10.3390/plants8070211] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/01/2019] [Revised: 06/18/2019] [Accepted: 07/04/2019] [Indexed: 11/16/2022]
Abstract
Transmitting tissue-specific proteins (TTS proteins) are abundant in the extracellular matrix of Nicotiana pistils, and vital for optimal pollen tube growth and seed set. We have identified orthologs from several species in the Solanaceae, including Petunia axillaris axillaris and Petunia integrifolia. We refer to TTS proteins and their orthologs as histidine domain-arabinogalactan proteins (HD-AGPs). HD-AGPs have distinctive domains, including a small histidine-rich region and a C-terminal PAC domain. Pairwise comparisons between HD-AGPs of 15 species belonging to Petunia, Nicotiana, and Solanum show that the his-domain and PAC domain are under purifying selection. In contrast, a proline-rich domain (HV2) is conserved among cross-hybridizing species, but variant in species-pairs that are reproductively isolated by post-pollination pre-fertilization reproductive barriers. In particular, variation in a tetrapeptide motif (XKPP) is systematically correlated with the presence of an interspecific reproductive barrier. Ka/Ks ratios are not informative at the infrageneric level, but the ratios reveal a clear signature of positive selection on two hypervariable domains (HV1 and HV2) when HD-AGPs from five solanaceous genera are compared. We propose that sequence divergence in the hypervariable domains of HD-AGPs reinforces sympatric speciation in incipient species that may have first diverged as a consequence of pollinator preferences or other ecological factors.
Collapse
Affiliation(s)
- Tara D Callaway
- Biology Department, Western Washington University, Bellingham, WA 98225, USA
| | - Anu Singh-Cundy
- Biology Department, Western Washington University, Bellingham, WA 98225, USA.
| |
Collapse
|
47
|
Richards EJ, Servedio MR, Martin CH. Searching for Sympatric Speciation in the Genomic Era. Bioessays 2019; 41:e1900047. [PMID: 31245871 PMCID: PMC8175013 DOI: 10.1002/bies.201900047] [Citation(s) in RCA: 42] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2019] [Revised: 04/22/2019] [Indexed: 12/25/2022]
Abstract
Sympatric speciation illustrates how natural and sexual selection may create new species in isolation without geographic barriers. However, recent genomic reanalyses of classic examples of sympatric speciation reveal complex histories of secondary gene flow from outgroups into the radiation. In contrast, the rich theoretical literature on this process distinguishes among a diverse range of models based on simple genetic histories and different types of reproductive isolating barriers. Thus, there is a need to revisit how to connect theoretical models of sympatric speciation and their predictions to empirical case studies in the face of widespread gene flow. Here, theoretical differences among different types of sympatric speciation and speciation-with-gene-flow models are reviewed and summarized, and genomic analyses are proposed for distinguishing which models apply to case studies based on the timing and function of adaptive introgression. Investigating whether secondary gene flow contributed to reproductive isolation is necessary to test whether predictions of theory are ultimately borne out in nature.
Collapse
Affiliation(s)
- Emilie J. Richards
- Department of Biology, University of North Carolina at Chapel Hill, Chapel Hill NC
| | - Maria R. Servedio
- Department of Biology, University of North Carolina at Chapel Hill, Chapel Hill NC
| | - Christopher H. Martin
- Department of Biology, University of North Carolina at Chapel Hill, Chapel Hill NC
- Integrative Biology and Museum of Vertebrate Zoology, University of California, Berkeley, CA
| |
Collapse
|
48
|
Wang X, Que P, Heckel G, Hu J, Zhang X, Chiang CY, Zhang N, Huang Q, Liu S, Martinez J, Pagani-Núñez E, Dingle C, Leung YY, Székely T, Zhang Z, Liu Y. Genetic, phenotypic and ecological differentiation suggests incipient speciation in two Charadrius plovers along the Chinese coast. BMC Evol Biol 2019; 19:135. [PMID: 31248363 PMCID: PMC6598359 DOI: 10.1186/s12862-019-1449-5] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2018] [Accepted: 05/29/2019] [Indexed: 02/01/2023] Open
Abstract
Background Speciation with gene flow is an alternative to the nascence of new taxa in strict allopatric separation. Indeed, many taxa have parapatric distributions at present. It is often unclear if these are secondary contacts, e.g. caused by past glaciation cycles or the manifestation of speciation with gene flow, which hampers our understanding of how different forces drive diversification. Here we studied genetic, phenotypic and ecological aspects of divergence in a pair of incipient shorebird species, the Kentish (Charadrius alexandrinus) and the White-faced Plovers (C. dealbatus), shorebirds with parapatric breeding ranges along the Chinese coast. We assessed divergence based on molecular markers with different modes of inheritance and quantified phenotypic and ecological divergence in aspects of morphometric, dietary and climatic niches. Results Our integrative analyses revealed small to moderate levels of genetic and phenotypic distinctiveness with symmetric gene flow across the contact area at the Chinese coast. The two species diverged approximately half a million years ago in dynamic isolation with secondary contact occurring due to cycling sea level changes between the Eastern and Southern China Sea in the mid-late Pleistocene. We found evidence of character displacement and ecological niche differentiation between the two species, invoking the role of selection in facilitating divergence despite gene flow. Conclusion These findings imply that ecology can indeed counter gene flow through divergent selection and thus contributes to incipient speciation in these plovers. Furthermore, our study highlights the importance of using integrative datasets to reveal the evolutionary history and assist the inference of mechanisms of speciation. Electronic supplementary material The online version of this article (10.1186/s12862-019-1449-5) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Xuejing Wang
- State Key Laboratory of Biocontrol, Department of Ecology, School of Life Sciences, Sun Yat-sen University, Guangzhou, 510275, China.,Institute of Ecology and Evolution, University of Bern, Baltzerstrasse 6, 3012, Bern, Switzerland
| | - Pinjia Que
- Ministry of Education Key Laboratory for Biodiversity and Ecological Engineering, College of Life Sciences, Beijing Normal University, Beijing, 100875, China
| | - Gerald Heckel
- Institute of Ecology and Evolution, University of Bern, Baltzerstrasse 6, 3012, Bern, Switzerland.,Swiss Institute of Bioinformatics, Genopode, 1015, Lausanne, Switzerland
| | - Junhua Hu
- Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu, 610041, China
| | - Xuecong Zhang
- State Key Laboratory of Biocontrol, Department of Ecology, School of Life Sciences, Sun Yat-sen University, Guangzhou, 510275, China
| | - Chung-Yu Chiang
- Department of Environmental Science, Tunhai University, Taichun, Taiwan
| | - Nan Zhang
- State Key Laboratory of Biocontrol, Department of Ecology, School of Life Sciences, Sun Yat-sen University, Guangzhou, 510275, China
| | - Qin Huang
- State Key Laboratory of Biocontrol, Department of Ecology, School of Life Sciences, Sun Yat-sen University, Guangzhou, 510275, China
| | - Simin Liu
- State Key Laboratory of Biocontrol, Department of Ecology, School of Life Sciences, Sun Yat-sen University, Guangzhou, 510275, China
| | | | - Emilio Pagani-Núñez
- State Key Laboratory of Biocontrol, Department of Ecology, School of Life Sciences, Sun Yat-sen University, Guangzhou, 510275, China
| | - Caroline Dingle
- School of Biological Sciences, The University of Hong Kong, Hong Kong, SAR, China
| | - Yu Yan Leung
- School of Biological Sciences, The University of Hong Kong, Hong Kong, SAR, China
| | - Tamás Székely
- State Key Laboratory of Biocontrol, Department of Ecology, School of Life Sciences, Sun Yat-sen University, Guangzhou, 510275, China.,Milner Center for Evolution, Department of Biology and Biochemistry, University of Bath, Bath, BA1 7AY, UK
| | - Zhengwang Zhang
- Ministry of Education Key Laboratory for Biodiversity and Ecological Engineering, College of Life Sciences, Beijing Normal University, Beijing, 100875, China
| | - Yang Liu
- State Key Laboratory of Biocontrol, Department of Ecology, School of Life Sciences, Sun Yat-sen University, Guangzhou, 510275, China.
| |
Collapse
|
49
|
An asymmetric allelic interaction drives allele transmission bias in interspecific rice hybrids. Nat Commun 2019; 10:2501. [PMID: 31175302 PMCID: PMC6555797 DOI: 10.1038/s41467-019-10488-3] [Citation(s) in RCA: 37] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2018] [Accepted: 05/15/2019] [Indexed: 12/30/2022] Open
Abstract
Hybrid sterility (HS) between Oryza sativa (Asian rice) and O. glaberrima (African rice) is mainly controlled by the S1 locus. However, our limited understanding of the HS mechanism hampers utilization of the strong interspecific heterosis. Here, we show that three closely linked genes (S1A4, S1TPR, and S1A6) in the African S1 allele (S1-g) constitute a killer-protector system that eliminates gametes carrying the Asian allele (S1-s). In Asian–African rice hybrids (S1-gS1-s), the S1TPR-S1A4-S1A6 interaction in sporophytic tissues generates an abortion signal to male and female gametes. However, S1TPR can rescue S1-g gametes, while the S1-s gametes selectively abort for lacking S1TPR. Knockout of any of the S1-g genes eliminates the HS. Evolutionary analysis suggests that S1 may have arisen from newly evolved genes, multi-step recombination, and nucleotide variations. Our findings will help to overcome the interspecific reproductive barrier and use Asian–African hybrids for increasing rice production. Our limited understanding of the hybrid sterility (HS) mechanism in Asian–African rice hybrids hampers utilization of the interspecific heterosis for rice production. Here, the authors identify S1-mediated HS-related tripartite gamete killer-protector system, and explore their evolutionary relationship.
Collapse
|
50
|
Lavretsky P, DaCosta JM, Sorenson MD, McCracken KG, Peters JL. ddRAD‐seq data reveal significant genome‐wide population structure and divergent genomic regions that distinguish the mallard and close relatives in North America. Mol Ecol 2019; 28:2594-2609. [DOI: 10.1111/mec.15091] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2018] [Revised: 03/05/2019] [Accepted: 03/29/2019] [Indexed: 01/03/2023]
Affiliation(s)
- Philip Lavretsky
- Department of Biological Sciences University of Texas at El Paso El Paso Texas
- Department of Biological Sciences Wright State University Dayton Ohio
- Department of Biology University of Miami Miami Florida
| | - Jeffrey M. DaCosta
- Biology Department Boston College Chestnut Hill Massachusetts
- Biology Department Boston College Boston Massachusetts
| | | | - Kevin G. McCracken
- Department of Biology University of Miami Miami Florida
- Department of Marine Biology and Ecology, Rosenstiel School of Marine and Atmospheric Sciences University of Miami Miami Florida
- Human Genetics and Genomics Hussman Institute for Human Genomics, University of Miami Miller School of Medicine Miami Florida
- Institute of Arctic Biology and University of Alaska Museum University of Alaska Fairbanks Fairbanks Alaska
| | - Jeffrey L. Peters
- Department of Biological Sciences Wright State University Dayton Ohio
| |
Collapse
|