1
|
Salehi Moghaddam A, Bahrami M, Sarikhani E, Tutar R, Ertas YN, Tamimi F, Hedayatnia A, Jugie C, Savoji H, Qureshi AT, Rizwan M, Maduka CV, Ashammakhi N. Engineering the Immune Response to Biomaterials. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2025; 12:e2414724. [PMID: 40232044 PMCID: PMC12097135 DOI: 10.1002/advs.202414724] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/13/2024] [Revised: 01/29/2025] [Indexed: 04/16/2025]
Abstract
Biomaterials are increasingly used as implants in the body, but they often elicit tissue reactions due to the immune system recognizing them as foreign bodies. These reactions typically involve the activation of innate immunity and the initiation of an inflammatory response, which can persist as chronic inflammation, causing implant failure. To reduce these risks, various strategies have been developed to modify the material composition, surface characteristics, or mechanical properties of biomaterials. Moreover, bioactive materials have emerged as a new class of biomaterials that can induce desirable tissue responses and form a strong bond between the implant and the host tissue. In recent years, different immunomodulatory strategies have been incorporated into biomaterials as drug delivery systems. Furthermore, more advanced molecule and cell-based immunomodulators have been developed and integrated with biomaterials. These emerging strategies will enable better control of the immune response to biomaterials and improve the function and longevity of implants and, ultimately, the outcome of biomaterial-based therapies.
Collapse
Affiliation(s)
- Abolfazl Salehi Moghaddam
- Department of BioengineeringP.C. Rossin College of Engineering & Applied ScienceLehigh UniversityBethlehemPA18015USA
| | - Mehran Bahrami
- Department of Mechanical Engineering & MechanicsLehigh UniversityBethlehemPA18015USA
| | - Einollah Sarikhani
- Department of Nano and Chemical EngineeringUniversity of California San DiegoLa JollaCA92093USA
| | - Rumeysa Tutar
- Department of ChemistryFaculty of Engineering, Istanbul University‐CerrahpaşaIstanbul, Avcılar34320Turkey
| | - Yavuz Nuri Ertas
- Department of Biomedical EngineeringErciyes UniversityKayseri38039Turkey
- ERNAM – Nanotechnology Research and Application CenterErciyes UniversityKayseri38039Turkey
| | - Faleh Tamimi
- College of Dental MedicineQatar University HealthQatar UniversityP.O. Box 2713DohaQatar
| | - Ali Hedayatnia
- Azrieli Research CenterCentre Hospitalier Universitaire Sainte‐JustineMontrealQCH3T 1C5Canada
- Institute of Biomedical Engineering, Department of Pharmacology and PhysiologyFaculty of MedicineMontrealQuebecH3T 1J4Canada
- Montreal TransMedTech InstituteiTMTMontrealQuebecH3T 1J4Canada
| | - Clotilde Jugie
- Azrieli Research CenterCentre Hospitalier Universitaire Sainte‐JustineMontrealQCH3T 1C5Canada
- Montreal TransMedTech InstituteiTMTMontrealQuebecH3T 1J4Canada
| | - Houman Savoji
- Azrieli Research CenterCentre Hospitalier Universitaire Sainte‐JustineMontrealQCH3T 1C5Canada
- Institute of Biomedical Engineering, Department of Pharmacology and PhysiologyFaculty of MedicineMontrealQuebecH3T 1J4Canada
- Montreal TransMedTech InstituteiTMTMontrealQuebecH3T 1J4Canada
| | - Asma Talib Qureshi
- Department of Biomedical EngineeringMichigan Technological UniversityHoughtonMI49931USA
| | - Muhammad Rizwan
- Department of Biomedical EngineeringMichigan Technological UniversityHoughtonMI49931USA
- Health Research InstituteMichigan Technological UniversityHoughtonMI49931USA
| | - Chima V. Maduka
- BioFrontiers InstituteUniversity of ColoradoBoulderCO80303USA
| | - Nureddin Ashammakhi
- Institute for Quantitative Health Science and Engineering (IQ) and Department of Biomedical Engineering (BME)Colleges of Engineering and Human MedicineMichigan State UniversityEast LansingMI48824USA
- Department of BioengineeringSamueli School of EngineeringUniversity of California Los AngelesLos AngelesCA90095USA
| |
Collapse
|
2
|
Carrascal-Hernández DC, Martínez-Cano JP, Rodríguez Macías JD, Grande-Tovar CD. Evolution in Bone Tissue Regeneration: From Grafts to Innovative Biomaterials. Int J Mol Sci 2025; 26:4242. [PMID: 40362478 PMCID: PMC12072198 DOI: 10.3390/ijms26094242] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2025] [Revised: 04/24/2025] [Accepted: 04/27/2025] [Indexed: 05/15/2025] Open
Abstract
Bone defects caused by various traumas and diseases such as osteoporosis, which affects bone density, and osteosarcoma, which affects the integrity of bone structure, are now well known. Given this situation, several innovative research projects have been reported to improve orthopedic methods and technologies that positively contribute to the regeneration of affected bone tissue, representing a significant advance in regenerative medicine. This review article comprehensively analyzes the transition from existing methods and technologies for implants and bone tissue regeneration to innovative biomaterials. These biomaterials have been of great interest in the last decade due to their physicochemical characteristics, which allow them to overcome the most common limitations of traditional grafting methods, such as the availability of biomaterials and the risk of rejection after their application in regenerative medicine. This could be achieved through an exhaustive study of the applications and properties of various materials with potential applications in regenerative medicine, such as using magnetic nanoparticles and hydrogels sensitive to external stimuli, including pH and temperature. In this regard, this review article describes the most relevant compounds used in bone tissue regeneration, promoting the integration of these biomaterials with the affected area's bone structure, thereby allowing for regeneration and preventing amputation. Additionally, the types of interactions between biomaterials and mesenchymal stem cells and their effects on bone tissue are discussed, which is critical for developing biomaterials with optimal regenerative properties. Furthermore, the mechanisms of action of the various biomaterials that enhance osteoconduction and osteoinduction, ensuring the success of orthopedic therapies, are analyzed. This enables the treatment of bone defects tailored to each patient's condition, thereby avoiding limb amputation. Consequently, a promising future for regenerative medicine is emerging, with various therapies that could revolutionize the management of bone defects, offering more efficient and safer solutions.
Collapse
Affiliation(s)
| | - Juan Pablo Martínez-Cano
- Ortopedia y Traumatología, Epidemiología Clínica, Fundación Valle del Lili, Universidad ICESI, Cali 760031, Colombia;
| | | | - Carlos David Grande-Tovar
- Grupo de Investigación en Fotoquímica y Fotobiología, Programa de Química, Universidad del Atlántico, Puerto Colombia 081007, Colombia
| |
Collapse
|
3
|
Ding Y, Huang M, Cai P, Yu X, Cui J, Sun B, Mo X, Lu C, Chen J, Wu J. Inflammation-modulating elastic decellularized extracellular matrix scaffold promotes meniscus regeneration. Acta Biomater 2025; 196:93-108. [PMID: 39988032 DOI: 10.1016/j.actbio.2025.02.043] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2024] [Revised: 01/31/2025] [Accepted: 02/20/2025] [Indexed: 02/25/2025]
Abstract
Scaffold-guided meniscus repair and regeneration show promise for meniscus injuries. Desirable scaffold properties are key to promoting proper tissue remodeling and effective regeneration. Herein, we report an inflammation-modulating elastic decellularized extracellular matrix (ECM) scaffold and evaluate its biological performance on meniscus repair in a rabbit model. An elastic scaffold of decellularized meniscus ECM (dmECM) was first prepared and functionalized with chitosan (CS) and ibuprofen (IBU) to obtain dmECM/CS-IBU scaffold. Our results show that CS and IBU grafting did not affect the overall properties of the dmECM/CS-IBU scaffold, including porous structure, good mechanical strength and elasticity. It promoted chondrocyte proliferation and preserved chondrogenic properties. In addition, both in vitro and in vivo assessments indicate that the dmECM/CS-IBU scaffold showed good anti-inflammatory properties and promoted pro-healing polarization of macrophages. In a partial rabbit meniscus defect model, the dmECM/CS-IBU scaffold showed promotive effects on in situ meniscus repair and preserved cartilage tissue. Therefore, our study provides a feasible strategy for fabricating scaffolds with tissue-specific bioactivity and inflammation-modulating abilities that synergistically promote meniscus repair and regeneration. STATEMENT OF SIGNIFICANCE: Desirable scaffold properties are key to promoting proper tissue remodeling and effective regeneration of meniscus injuries. Herein, elastic decellularized scaffolds were prepared using natural meniscus and successfully grafted with chitosan and the anti-inflammatory drug ibuprofen (dmECM/CS-IBU). The dmECM/CS-IBU scaffold showed a pro-proliferative and phenotype- preserving effect on chondrocytes. In both in vitro and in vivo models, dmECM/CS-IBU scaffolds exhibited wonderful anti-inflammatory activity. In a meniscus white zone defect model, the dmECM/CS-IBU scaffold demonstrated in situ repair of tissue and protection of cartilage tissue. Therefore, we provides a feasible strategy for fabricating scaffolds with tissue-specific bioactivity and inflammation-modulating abilities that synergistically promote meniscus repair and regeneration.
Collapse
Affiliation(s)
- Yangfan Ding
- Shanghai Engineering Research Center of Nano-Biomaterials and Regenerative Medicine, College of Biological Science and Medical Engineering, Department of Biomedical Engineering, Donghua University, Shanghai 201620, China
| | - Moran Huang
- Department of Sports Medicine, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200080, China
| | - Pengfei Cai
- Shanghai Engineering Research Center of Nano-Biomaterials and Regenerative Medicine, College of Biological Science and Medical Engineering, Department of Biomedical Engineering, Donghua University, Shanghai 201620, China; G.E.R.N. Research Center for Tissue Replacement, Regeneration & Neogenesis, Department of Orthopedics and Trauma Surgery, Faculty of Medicine, Medical Center-Albert-Ludwigs-University of Freiburg, 79085 Freiburg im Breisgau, Germany
| | - Xiao Yu
- Shanghai Engineering Research Center of Nano-Biomaterials and Regenerative Medicine, College of Biological Science and Medical Engineering, Department of Biomedical Engineering, Donghua University, Shanghai 201620, China
| | - Jie Cui
- Shanghai Engineering Research Center of Nano-Biomaterials and Regenerative Medicine, College of Biological Science and Medical Engineering, Department of Biomedical Engineering, Donghua University, Shanghai 201620, China
| | - Binbin Sun
- Shanghai Engineering Research Center of Nano-Biomaterials and Regenerative Medicine, College of Biological Science and Medical Engineering, Department of Biomedical Engineering, Donghua University, Shanghai 201620, China
| | - Xiumei Mo
- Shanghai Engineering Research Center of Nano-Biomaterials and Regenerative Medicine, College of Biological Science and Medical Engineering, Department of Biomedical Engineering, Donghua University, Shanghai 201620, China
| | - Changrui Lu
- Shanghai Engineering Research Center of Nano-Biomaterials and Regenerative Medicine, College of Biological Science and Medical Engineering, Department of Biomedical Engineering, Donghua University, Shanghai 201620, China.
| | - Jiwu Chen
- Department of Sports Medicine, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200080, China.
| | - Jinglei Wu
- Shanghai Engineering Research Center of Nano-Biomaterials and Regenerative Medicine, College of Biological Science and Medical Engineering, Department of Biomedical Engineering, Donghua University, Shanghai 201620, China.
| |
Collapse
|
4
|
Cheng W, Huang Y, Dai J, Zhao M, Wang Y, Turner N, Zhang J. Endotoxin, not DNA, determines the host response and tissue regeneration behavior of acellular biologic scaffolds. Acta Biomater 2025; 195:157-168. [PMID: 39921179 DOI: 10.1016/j.actbio.2025.02.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2024] [Revised: 01/26/2025] [Accepted: 02/04/2025] [Indexed: 02/10/2025]
Abstract
Established quantitative standards for assessing decellularization of biologic scaffolds based on residual DNA levels have been well-documented and widely acknowledged. However, post-implantation complications, such as fever and seroma, are commonly observed which negatively impact clinical outcomes. The presence of cellular debris following decellularization or using source tissues that are naturally high in endotoxin may contribute to the host response to a biologic scaffold. In the study, several multi-step decellularization methods were used to decellularize small intestinal submucosa (SIS) to obtain materials with three distinct levels of residual DNA, lipid residues, and endogenous endotoxin. The potential influence of these residual components on macrophage and lymphocyte polarization in vitro, as well as on the host inflammatory response in vivo post intra-abdominal implantation or abdominal wall defect repair in rats, was assessed. Urinary bladder matrix (UBM) meeting established decellularization criteria and naturally devoid of endotoxin was utilized as a control. The presence of endogenous endotoxin in SIS-ECM resulted in notable changes in macrophage phenotype. SIS-ECM samples with endotoxin levels below FDA limits still upregulated pro-inflammatory factors in vitro. Conversely, SIS with minimal endotoxin content and UBM controls prompted a shift towards a pro-remodeling M2 phenotype, fostering constructive tissue remodeling in a rodent model of abdominal wall defects, irrespective of DNA content. These findings suggest that endotoxin may be a crucial factor influencing biologic scaffolds that are not fully accounted by current decellularization standards. STATEMENT OF SIGNIFICANCE: Clinically utilized decellularized biologic scaffolds that meet the established quantitative standards still suffer problems in high incidence of inflammatory complications, including fever and seroma. In this study, we confirmed that endotoxin, rather than residual DNA, is the crucial factor influencing host responses and regenerative outcomes. Tissue sources and decellularization processes are critical for reducing endotoxin levels and attenuating immuno-inflammatory complications. These findings enhance the evaluation of ECM scaffold performance for clinical application, thereby facilitating improved preparation and utilization for tissue defect repairs.
Collapse
Affiliation(s)
- Wenyue Cheng
- Department of Colorectal Surgery, Changzheng Hospital, Naval Medical University, Shanghai 200003, China
| | - Yonggang Huang
- Department of General surgery, School of Medicine, Affiliated Hangzhou First People's Hospital, Westlake University, Hangzhou 310030, China
| | - Jing Dai
- Department of Colorectal Surgery, Changzheng Hospital, Naval Medical University, Shanghai 200003, China
| | - Meibiao Zhao
- ZhuoRuan Medical Technology (Suzhou) Co., Ltd, Suzhou 215400, China
| | - Yulu Wang
- Department of Colorectal Surgery, Changzheng Hospital, Naval Medical University, Shanghai 200003, China
| | - Neill Turner
- McGowan Institute for Regenerative Medicine, University of Pittsburgh, Pittsburgh, PA, USA.
| | - Jian Zhang
- Department of Colorectal Surgery, Changzheng Hospital, Naval Medical University, Shanghai 200003, China.
| |
Collapse
|
5
|
Zhang J, Xie L, She Y, Luo H, Zhu S, Jiang N. Microstructural and Micromechanical Properties of Decellularized Fibrocartilaginous Scaffold. ACS Biomater Sci Eng 2025; 11:1562-1570. [PMID: 39988764 DOI: 10.1021/acsbiomaterials.4c01195] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/25/2025]
Abstract
Fibrocartilage decellularized extracellular matrix (dECM) is a promising alternative material for damaged fibrocartilage repair and replacement due to its biomimetic gross morphology and internal microstructure. However, the alterations in the microstructure and micromechanical properties of fibrocartilage after decellularization interfere with the macroscopic functional application of the scaffold. Therefore, this study aims to present an analytical atlas of the microstructure and micromechanics of the fibrocartilaginous dECM scaffold to elucidate the effect of decellularization treatment on the macroscopic function of the scaffold. The fibrocartilage dECM was prepared using the temporomandibular joint (TMJ) disc as the model, and its durability was evaluated under three functional states (physiological, physiological limit, and beyond the limit). The macroscopic function of different fibrocartilage dECM exhibits notable differences, which are attributed to the destruction of the multilevel collagen structure. This process involves unwinding triple-helix tropocollagen molecules, destroying collagen fibril D-periodicity, expanding collagen fiber bundle curling, and loosening of the collagen fiber network. The impairment of multiscale collagen structures degrades the cross-scale mechanical modulus and energy dissipation of dECM from the triple helix molecules to the fibril level to the fiber bundle that extends to the fiber network. This study provides important data for further optimizing decellularized fibrocartilage scaffolds and evaluating their translational potential.
Collapse
Affiliation(s)
- Jie Zhang
- State Key Laboratory of Oral Diseases & National Center for Stomatology & National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu , Sichuan 610041, China
| | - Liang Xie
- State Key Laboratory of Oral Diseases & National Center for Stomatology & National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu , Sichuan 610041, China
| | - Yilin She
- State Key Laboratory of Oral Diseases & National Center for Stomatology & National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu , Sichuan 610041, China
| | - Han Luo
- School of Software Engineering, Chengdu University of Information Technology, Chengdu , Sichuan 610225, China
| | - Songsong Zhu
- State Key Laboratory of Oral Diseases & National Center for Stomatology & National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu , Sichuan 610041, China
| | - Nan Jiang
- State Key Laboratory of Oral Diseases & National Center for Stomatology & National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu , Sichuan 610041, China
| |
Collapse
|
6
|
Nugroho AN, Soetrisno S, Mudigdo A, Yarso KY, Indarto D, Wahyudi AZ, Budiono EA, Yasyfin AY. Innovative strategies in bile duct repair: Assessing efficacy and safety across varied graft techniques - A systematic review. Surg Open Sci 2025; 24:5-15. [PMID: 39974154 PMCID: PMC11833395 DOI: 10.1016/j.sopen.2025.01.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2024] [Revised: 01/14/2025] [Accepted: 01/16/2025] [Indexed: 02/21/2025] Open
Abstract
Bile duct injuries (BDI) from surgical procedures pose significant clinical challenges, requiring precise interventions for optimal outcomes. This systematic review explores the utilization of grafts in the repair of bile duct injuries, aiming to gain insights from existing literature. Graft-based techniques show promise in improving postoperative outcomes, but their efficacy varies. A systematic search was conducted across PubMed, Science Direct, and Scopus following the PRISMA 2020 Checklist, focusing on studies published until February 19, 2024. The inclusion criteria involved research using grafts to treat bile duct injuries in pig, swine, or mini-pig models. Out of 2231 studies identified, eleven met the inclusion criteria. These studies evaluated various graft techniques, including autologous tissue with biodegradable stents, decellularized grafts, patches, prosthetic grafts, bacterial cellulose film, and heterogeneous materials. Each method had distinct advantages and limitations, particularly regarding postoperative outcomes and histological findings. This review highlights the need for further research to determine the most effective graft-based strategies for BDI repair and improve patient care.
Collapse
Affiliation(s)
- Anung Noto Nugroho
- Doctoral Program of Medical Sciences, Faculty of Medicine, Sebelas Maret University, Surakarta 57126, Jawa Tengah, Indonesia
| | - Soetrisno Soetrisno
- Obstetrics and Gynecology Department, Dr. Moewardi Hospital/Faculty of Medicine, Sebelas Maret University, Surakarta 57161, Jawa Tengah, Indonesia
| | - Ambar Mudigdo
- Department of Anatomical Pathology, Dr. Moewardi Hospital/Faculty of Medicine, Sebelas Maret University, Surakarta 57126, Jawa Tengah, Indonesia
| | - Kristanto Yuli Yarso
- Oncology Division, Surgery Department, Sebelas Maret University, Surakarta 57126, Jawa Tengah, Indonesia
| | - Dono Indarto
- Department of Physiology and Biomedical Laboratory, Sebelas Maret University, Surakarta, Jawa Tengah, Indonesia
| | - Akmal Zhahir Wahyudi
- Faculty of Medicine, Sebelas Maret University, Surakarta 57126, Jawa Tengah, Indonesia
| | - Enrico Ananda Budiono
- Faculty of Medicine, Sebelas Maret University, Surakarta 57126, Jawa Tengah, Indonesia
| | - Auliya Yudia Yasyfin
- Faculty of Medicine, Sebelas Maret University, Surakarta 57126, Jawa Tengah, Indonesia
| |
Collapse
|
7
|
Galvez P, Ahmed Omar N, Siadous R, Durand M, Comperat L, Lafarge X, Gindraux F, Sentilhes L, Fricain JC, L'Heureux N, Fenelon M. In vitro and in vivo assessment of a new acellular human amnion/chorion membrane device for guided bone regeneration. Sci Rep 2025; 15:5483. [PMID: 39952961 PMCID: PMC11829051 DOI: 10.1038/s41598-025-88814-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2024] [Accepted: 01/31/2025] [Indexed: 02/17/2025] Open
Abstract
Thanks to its unique biological properties, the human amniotic membrane (AM) has shown promising results for guided bone regeneration (GBR), but displays some limitations such as poor space-maintaining ability. This study thus aimed to develop a new amnion/chorion membrane (ACM), with better mechanical properties as well as comparable or improved biological properties for GBR. We first developed a new decellularization method of ACM (DL-ACM) which was validated by DNA staining and quantification, and its cytocompatibility was established in vitro. The thickness of DL-ACM was significantly increased over thirty-fivefold, and its tearing strength and compression strength significantly increased more than tenfold compared to the decellularized AM (DL-AM). In vivo, DL-ACM demonstrated its biocompatibility subcutaneously, and its osteogenic properties were compared to DL-AM and a gold standard membrane in a GBR defect model in rats. Micro-CT and histomorphometric analysis showed that DL-ACM significantly promoted early bone regeneration after 1 week and significantly increased bone regeneration compared to the empty defect and the gold standard membrane over time. In this study, we developed a simple and reproducible method to produce an acellular, non-cytotoxic, and biocompatible DL-ACM. This new membrane is as effective as AM to promote early bone regeneration while demonstrating better biomechanical properties.
Collapse
Affiliation(s)
- Paul Galvez
- Univ. Bordeaux, INSERM, BioTis, U1026, 146 rue Léo Saignat, 33000, Bordeaux, France.
- CHU Bordeaux, Service de Chirurgie Orale, Place Amélie Raba Léon, 33076, Bordeaux, France.
| | - Naïma Ahmed Omar
- Univ. Bordeaux, INSERM, BioTis, U1026, 146 rue Léo Saignat, 33000, Bordeaux, France
| | - Robin Siadous
- Univ. Bordeaux, INSERM, BioTis, U1026, 146 rue Léo Saignat, 33000, Bordeaux, France
| | - Marlène Durand
- Univ. Bordeaux, INSERM, BioTis, U1026, 146 rue Léo Saignat, 33000, Bordeaux, France
- CHU de Bordeaux, CIC 1401, Place Amélie Raba Léon, 33000, Bordeaux, France
- Univ. Bordeaux, INSERM, Institut Bergonié, CIC 1401, 146 rue Léo Saignat, 33000, Bordeaux, France
| | - Léo Comperat
- Univ. Bordeaux, INSERM, BioTis, U1026, 146 rue Léo Saignat, 33000, Bordeaux, France
| | - Xavier Lafarge
- Etablissement Français du Sang Nouvelle-Aquitaine, Laboratoire d'ingénierie Tissulaire et Cellulaire, Place Amélie Raba Léon, 33000, Bordeaux, France
- Univ. Bordeaux, INSERM, U1211, « Maladies Rares : Génétique et Métabolisme », 146 rue Léo Saignat, 33000, Bordeaux, France
| | - Florelle Gindraux
- CHU Besançon, Service de Chirurgie Maxillo-Faciale, Stomatologie et Odontologie Hospitalière, 3 boulevard Alexandre Fleming, 25000, Besançon, France
- Univ. Marie & Louis Pasteur, SINERGIES, 16 route de Gray, 25000, Besançon, France
| | - Loïc Sentilhes
- CHU Bordeaux, Service de Gynécologie-Obstétrique, Place Amélie Raba Léon, 33076, Bordeaux, France
| | - Jean-Christophe Fricain
- Univ. Bordeaux, INSERM, BioTis, U1026, 146 rue Léo Saignat, 33000, Bordeaux, France
- CHU Bordeaux, Service de Chirurgie Orale, Place Amélie Raba Léon, 33076, Bordeaux, France
- CHU Bordeaux, Centre de Compétence des Maladies Rares Orales et Dentaires, O-RARES, Pôle d'odontologie et Santé Buccale, Place Amélie Raba Léon, 33076, Bordeaux, France
| | - Nicolas L'Heureux
- Univ. Bordeaux, INSERM, BioTis, U1026, 146 rue Léo Saignat, 33000, Bordeaux, France
| | - Mathilde Fenelon
- Univ. Bordeaux, INSERM, BioTis, U1026, 146 rue Léo Saignat, 33000, Bordeaux, France
- CHU Bordeaux, Service de Chirurgie Orale, Place Amélie Raba Léon, 33076, Bordeaux, France
- CHU Bordeaux, Centre de Compétence des Maladies Rares Orales et Dentaires, O-RARES, Pôle d'odontologie et Santé Buccale, Place Amélie Raba Léon, 33076, Bordeaux, France
| |
Collapse
|
8
|
Liu J, Song Q, Yin W, Li C, An N, Le Y, Wang Q, Feng Y, Hu Y, Wang Y. Bioactive scaffolds for tissue engineering: A review of decellularized extracellular matrix applications and innovations. EXPLORATION (BEIJING, CHINA) 2025; 5:20230078. [PMID: 40040827 PMCID: PMC11875452 DOI: 10.1002/exp.20230078] [Citation(s) in RCA: 13] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/04/2024] [Accepted: 03/12/2024] [Indexed: 03/06/2025]
Abstract
Decellularized extracellular matrix (dECM) offers a three-dimensional, non-immunogenic scaffold, enriched with bioactive components, making it a suitable candidate for tissue regeneration. Although dECM-based scaffolds have been successfully implemented in preclinical and clinical settings within tissue engineering and regenerative medicine, the mechanisms of tissue remodeling and functional restoration are not fully understood. This review critically assesses the state-of-the-art in dECM scaffolds, including decellularization techniques for various tissues, quality control and cross-linking. It highlights the functional properties of dECM components and their latest applications in multiorgan tissue engineering and biomedicine. Additionally, the review addresses current challenges and limitations of decellularized scaffolds and offers perspectives on future directions in the field.
Collapse
Affiliation(s)
- Juan Liu
- Hepato‐Pancreato‐Biliary CenterBeijing Tsinghua Changgung HospitalSchool of Clinical MedicineTsinghua UniversityBeijingChina
- Key Laboratory of Digital Intelligence HepatologyMinistry of EducationSchool of Clinical MedicineTsinghua UniversityBeijingChina
| | - Qingru Song
- Clinical Translational Science CenterBeijing Tsinghua Changgung HospitalTsinghua UniversityBeijingChina
| | - Wenzhen Yin
- Clinical Translational Science CenterBeijing Tsinghua Changgung HospitalTsinghua UniversityBeijingChina
| | - Chen Li
- Hepato‐Pancreato‐Biliary CenterBeijing Tsinghua Changgung HospitalSchool of Clinical MedicineTsinghua UniversityBeijingChina
- College of Chemistry and Life SciencesBeijing University of TechnologyBeijingChina
| | - Ni An
- Clinical Translational Science CenterBeijing Tsinghua Changgung HospitalTsinghua UniversityBeijingChina
| | - Yinpeng Le
- Hepato‐Pancreato‐Biliary CenterBeijing Tsinghua Changgung HospitalSchool of Clinical MedicineTsinghua UniversityBeijingChina
- Institute of Smart Biomedical MaterialsSchool of Materials Science and EngineeringZhejiang Sci‐Tech UniversityHangzhouPeople's Republic of China
| | - Qi Wang
- Hepato‐Pancreato‐Biliary CenterBeijing Tsinghua Changgung HospitalSchool of Clinical MedicineTsinghua UniversityBeijingChina
- Department of Hepatobiliary and Pancreatic SurgeryThe First Hospital of Jilin UniversityJilin UniversityChangchunChina
| | - Yutian Feng
- Hepato‐Pancreato‐Biliary CenterBeijing Tsinghua Changgung HospitalSchool of Clinical MedicineTsinghua UniversityBeijingChina
| | - Yuelei Hu
- Hepato‐Pancreato‐Biliary CenterBeijing Tsinghua Changgung HospitalSchool of Clinical MedicineTsinghua UniversityBeijingChina
- Department of Hepatobiliary and Pancreatic SurgeryThe First Hospital of Jilin UniversityJilin UniversityChangchunChina
| | - Yunfang Wang
- Hepato‐Pancreato‐Biliary CenterBeijing Tsinghua Changgung HospitalSchool of Clinical MedicineTsinghua UniversityBeijingChina
- Key Laboratory of Digital Intelligence HepatologyMinistry of EducationSchool of Clinical MedicineTsinghua UniversityBeijingChina
- Clinical Translational Science CenterBeijing Tsinghua Changgung HospitalTsinghua UniversityBeijingChina
| |
Collapse
|
9
|
Quah AMF, Ng MJM, Zhang L, Chan YM, Neo S, Mak M, Hong Q, Tan G, Pan Y, Yong E. Early experience on injectable micronized putty type human-derived acellular dermal matrix (ADM) in management of diabetic foot wounds in Singapore. Int Wound J 2025; 22:e70127. [PMID: 39800362 PMCID: PMC11725370 DOI: 10.1111/iwj.70127] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2024] [Accepted: 10/20/2024] [Indexed: 01/16/2025] Open
Abstract
Diabetic foot wounds (DFW) are notoriously difficult to treat owing to poor vascularity, delayed healing and higher rates of infection. Human-derived acellular dermal matrices (ADM) have been used in DFW treatment, utilizing a matrix scaffold for new tissue generation. We investigate the efficacy of a micronized injectable human-derived ADM in the treatment of DFW. We retrospectively recruited 13 patients with diabetic foot wounds. Wounds were adequately debrided, and a micronized injectable ADM was applied. Wound sizes were recorded prior to treatment, at 2 and 4 weeks post-treatment. The mean defect of wounds treated was 19.21 cm3. Our results showed a statistically significant reduction in wound size of 45% and 59% at 2 and 4 weeks post-treatment, respectively (p < 0.01). ADM was also effective in infected DFW as 84% of our wounds had positive tissue cultures at the time of application. Micronized injectable ADM has proven to be an effective treatment for DFW. Advantages include a ready-to-use injectable, single-stage treatment, minimal pain, mouldable matrix to fit any wound shape, allows for outpatient treatment and simple wound dressings.
Collapse
Affiliation(s)
- Alison Mei Fern Quah
- Vascular Surgery Unit, Department of General SurgeryTan Tock Seng HospitalSingaporeSingapore
| | - Marcus Jia Ming Ng
- Vascular Surgery Unit, Department of General SurgeryTan Tock Seng HospitalSingaporeSingapore
| | - Li Zhang
- Vascular Surgery Unit, Department of General SurgeryTan Tock Seng HospitalSingaporeSingapore
| | - Yam Meng Chan
- Vascular Surgery Unit, Department of General SurgeryTan Tock Seng HospitalSingaporeSingapore
| | - Shufen Neo
- Vascular Surgery Unit, Department of General SurgeryTan Tock Seng HospitalSingaporeSingapore
| | - Malcolm Mak
- Vascular Surgery Unit, Department of General SurgeryTan Tock Seng HospitalSingaporeSingapore
| | - Qiantai Hong
- Vascular Surgery Unit, Department of General SurgeryTan Tock Seng HospitalSingaporeSingapore
- Skin Research Institute of Singapore, Agency for ScienceTechnology and Research (A*STAR)SingaporeSingapore
| | - Glenn Tan
- Vascular Surgery Unit, Department of General SurgeryTan Tock Seng HospitalSingaporeSingapore
- Skin Research Institute of Singapore, Agency for ScienceTechnology and Research (A*STAR)SingaporeSingapore
| | - Ying Pan
- Vascular Surgery Unit, Department of General SurgeryTan Tock Seng HospitalSingaporeSingapore
- Skin Research Institute of Singapore, Agency for ScienceTechnology and Research (A*STAR)SingaporeSingapore
| | - Enming Yong
- Vascular Surgery Unit, Department of General SurgeryTan Tock Seng HospitalSingaporeSingapore
| |
Collapse
|
10
|
Gurdal M, Zeugolis DI. Macromolecular crowding agent dependent extracellular matrix deposition and growth factor retention in human corneal fibroblast cultures. Exp Eye Res 2025; 250:110162. [PMID: 39571777 DOI: 10.1016/j.exer.2024.110162] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2024] [Revised: 11/04/2024] [Accepted: 11/18/2024] [Indexed: 11/27/2024]
Abstract
The major obstacle in the commercialisation and clinical translation of tissue engineered medicines is the required for the development of implantable tissue surrogates prolonged in vitro culture. Macromolecular crowding (MMC) enhances and accelerates extracellular matrix (ECM) deposition, thus offering an opportunity to bridge the gap between research and development in tissue engineered substitutes. However, the optimal MMC agent is still elusive. Herein, we first assessed the biophysical properties of the most widely used MMC agents [κλ carrageenan (κλ CR), λ carrageenan (λ CR) and Ficoll™ cocktail (FC)] and then assessed their effect in basic cell function, ECM deposition and growth factor retention in human corneal fibroblast (hCF) cultures. Dynamic light scattering analysis revealed that both CR macromolecules had significantly lower and higher zeta potential and hydrodynamic radius, respectively, than the FC. None of the MMC agents affected hCF morphology and all induced similar hCF viability, proliferation and metabolic activity. Electrophoresis and immunofluorescence analyses made apparent that at day 10 (longest time point assessed), the FC brought about the highest fibronectin and collagen types I, III, IV, V and VI deposition. Deposited ECM pattern analysis showed that at day 10, the FC induced the lowest lacunarity and normalised end points and the highest fractal dimension and % high density matrix. Further immunofluorescence analysis revealed no significant differences between the groups in vimentin, aldehyde dehydrogenase 3 family member A1, keratocan, paired box protein 6 and α-smooth muscle actin. Importantly, at day 10, the FC resulted in the highest growth factor retention (20 molecules). Our data clearly illustrate a MMC agent dependent cell response, with the FC having the highest positive effect in hCF cultures.
Collapse
Affiliation(s)
- Mehmet Gurdal
- Regenerative, Modular & Developmental Engineering Laboratory (REMODEL), Charles Institute of Dermatology, Conway Institute of Biomolecular & Biomedical Research and School of Mechanical & Materials Engineering, University College Dublin (UCD), Dublin, Ireland
| | - Dimitrios I Zeugolis
- Regenerative, Modular & Developmental Engineering Laboratory (REMODEL), Charles Institute of Dermatology, Conway Institute of Biomolecular & Biomedical Research and School of Mechanical & Materials Engineering, University College Dublin (UCD), Dublin, Ireland.
| |
Collapse
|
11
|
Chen Z, Wang J, Kankala RK, Jiang M, Long L, Li W, Zou L, Chen A, Liu Y. Decellularized extracellular matrix-based disease models for drug screening. Mater Today Bio 2024; 29:101280. [PMID: 39399243 PMCID: PMC11470555 DOI: 10.1016/j.mtbio.2024.101280] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2024] [Revised: 09/12/2024] [Accepted: 09/26/2024] [Indexed: 10/15/2024] Open
Abstract
In vitro drug screening endeavors to replicate cellular states closely resembling those encountered in vivo, thereby maximizing the fidelity of drug effects and responses within the body. Decellularized extracellular matrix (dECM)-based materials offer a more authentic milieu for crafting disease models, faithfully emulating the extracellular components and structural complexities encountered by cells in vivo. This review discusses recent advancements in leveraging dECM-based materials as biomaterials for crafting cell models tailored for drug screening. Initially, we delineate the biological functionalities of diverse ECM components, shedding light on their potential influences on disease model construction. Further, we elucidate the decellularization techniques and methodologies for fabricating cell models utilizing dECM substrates. Then, the article delves into the research strides made in employing dECM-based models for drug screening across a spectrum of ailments, including tumors, as well as heart, liver, lung, and bone diseases. Finally, the review summarizes the bottlenecks, hurdles, and promising research trajectories associated with the dECM materials for drug screening, alongside their prospective applications in personalized medicine. Together, by encapsulating the contemporary research landscape surrounding dECM materials in cell model construction and drug screening, this review underscores the vast potential of dECM materials in drug assessment and personalized therapy.
Collapse
Affiliation(s)
- Zhoujiang Chen
- Institute for Advanced Study, Chengdu University, Chengdu, 610106, Sichuan, PR China
| | - Ji Wang
- Affiliated Hospital & Clinical Medical College of Chengdu University, Chengdu University, Chengdu, 610106, Sichuan, PR China
| | - Ranjith Kumar Kankala
- Institute of Biomaterials and Tissue Engineering, Huaqiao University, Xiamen, 361021, Fujian, PR China
| | - Mingli Jiang
- School of Pharmacy, Zunyi Medical University, Zunyi, 563099, Guizhou, PR China
| | - Lianlin Long
- School of Pharmacy, Zunyi Medical University, Zunyi, 563099, Guizhou, PR China
| | - Wei Li
- Affiliated Hospital & Clinical Medical College of Chengdu University, Chengdu University, Chengdu, 610106, Sichuan, PR China
| | - Liang Zou
- Institute for Advanced Study, Chengdu University, Chengdu, 610106, Sichuan, PR China
| | - Aizheng Chen
- Institute of Biomaterials and Tissue Engineering, Huaqiao University, Xiamen, 361021, Fujian, PR China
| | - Ya Liu
- Affiliated Hospital & Clinical Medical College of Chengdu University, Chengdu University, Chengdu, 610106, Sichuan, PR China
| |
Collapse
|
12
|
Yang P, Xie F, Zhu L, Selvaraj JN, Zhang D, Cai J. Fabrication of chitin-fibrin hydrogels to construct the 3D artificial extracellular matrix scaffold for vascular regeneration and cardiac tissue engineering. J Biomed Mater Res A 2024; 112:2257-2272. [PMID: 39007419 DOI: 10.1002/jbm.a.37774] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2024] [Revised: 05/07/2024] [Accepted: 06/26/2024] [Indexed: 07/16/2024]
Abstract
As the cornerstone of tissue engineering and regeneration medicine research, developing a cost-effective and bionic extracellular matrix (ECM) that can precisely modulate cellular behavior and form functional tissue remains challenging. An artificial ECM combining polysaccharides and fibrillar proteins to mimic the structure and composition of natural ECM provides a promising solution for cardiac tissue regeneration. In this study, we developed a bionic hydrogel scaffold by combining a quaternized β-chitin derivative (QC) and fibrin-matrigel (FM) in different ratios to mimic a natural ECM. We evaluated the stiffness of those composite hydrogels with different mixing ratios and their effects on the growth of human umbilical vein endothelial cells (HUVECs). The optimal hydrogels, QCFM1 hydrogels were further applied to load HUVECs into nude mice for in vivo angiogenesis. Besides, we encapsulated human pluripotent stem cell-derived cardiomyocytes (hPSC-CMs) into QCFM hydrogels and employed 3D bioprinting to achieve batch fabrication of human-engineered heart tissue (hEHT). Finally, the myocardial structure and electrophysiological function of hEHT were evaluated by immunofluorescence and optical mapping. Designed artificial ECM has a tunable modulus (220-1380 Pa), which determines the different cellular behavior of HUVECs when encapsulated in these. QCFM1 composite hydrogels with optimal stiffness (800 Pa) and porous architecture were finally identified, which could adapt for in vitro cell spreading and in vivo angiogenesis of HUVECs. Moreover, QCFM1 hydrogels were applied in 3D bioprinting successfully to achieve batch fabrication of both ring-shaped and patch-shaped hEHT. These QCFM1 hydrogels-based hEHTs possess organized sarcomeres and advanced function characteristics comparable to reported hEHTs. The chitin-derived hydrogels are first used for cardiac tissue engineering and achieve the batch fabrication of functionalized artificial myocardium. Specifically, these novel QCFM1 hydrogels provided a reliable and economical choice serving as ideal ECM for application in tissue engineering and regeneration medicine.
Collapse
Affiliation(s)
- Pengcheng Yang
- State Key Laboratory of Biocatalysis and Enzyme Engineering, National & Local Joint Engineering Research Center of High-throughput Drug Screening Technology, School of Life Science, Hubei University, Wuhan, China
| | - Fang Xie
- Hubei Engineering Center of Natural Polymers-based Medical Materials, College of Chemistry and Molecular Sciences, Wuhan University, Wuhan, China
- Institute of Hepatobiliary Diseases, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Lihang Zhu
- State Key Laboratory of Biocatalysis and Enzyme Engineering, National & Local Joint Engineering Research Center of High-throughput Drug Screening Technology, School of Life Science, Hubei University, Wuhan, China
| | - Jonathan Nimal Selvaraj
- State Key Laboratory of Biocatalysis and Enzyme Engineering, National & Local Joint Engineering Research Center of High-throughput Drug Screening Technology, School of Life Science, Hubei University, Wuhan, China
| | - Donghui Zhang
- State Key Laboratory of Biocatalysis and Enzyme Engineering, National & Local Joint Engineering Research Center of High-throughput Drug Screening Technology, School of Life Science, Hubei University, Wuhan, China
| | - Jie Cai
- Hubei Engineering Center of Natural Polymers-based Medical Materials, College of Chemistry and Molecular Sciences, Wuhan University, Wuhan, China
- Institute of Hepatobiliary Diseases, Zhongnan Hospital of Wuhan University, Wuhan, China
| |
Collapse
|
13
|
Rajoo A, Siva SP, Sia CS, Chan ES, Tey BT, Low LE. Transitioning from Pickering emulsions to Pickering emulsion hydrogels: A potential advancement in cosmeceuticals. Eur J Pharm Biopharm 2024; 205:114572. [PMID: 39486631 DOI: 10.1016/j.ejpb.2024.114572] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2024] [Revised: 10/13/2024] [Accepted: 10/27/2024] [Indexed: 11/04/2024]
Abstract
Cosmeceuticals, focusing on enhancing skin health and appearance, heavily rely on emulsions as one of the common mediums. These emulsions pose a challenge due to their dependence on surfactants which are essential for stability but are causing concerns about environmental impact as well as evolving consumer preferences. This has led to research focused on Pickering emulsions (PEs), which are colloidal particle-based emulsion alternatives. Compared to conventional emulsions, PEs offer enhanced stability and functionality in addition to serving as a sustainable alternative but still pose challenges such as rheological control and requiring further improvement in long-term stability, whereby the limitations could be addressed through the introduction of a hydrogel network. In this review, we first highlight the strategies and considerations to optimize active ingredient (AI) absorption and penetration in a PE-based formulation. We then delve into a comprehensive overview of the potential of Pickering-based cosmeceutical emulsions including their attractive features, the various Pickering particles that can be employed, past studies and their limitations. Further, PE hydrogels (PEHs), which combines the features between PE and hydrogel as an innovative solution to address challenges posed by both conventional emulsions and PEs in the cosmeceutical industry is explored. Moreover, concerns related to toxicity and biocompatibility are critically examined, alongside considerations of scalability and commercial viability, providing a forward-looking perspective on potential future research directions centered on the application of PEHs in the cosmeceutical field.
Collapse
Affiliation(s)
- Akashni Rajoo
- Department of Chemical Engineering, School of Engineering, Monash University Malaysia, Jalan Lagoon Selatan, 47500 Bandar Sunway, Selangor Darul Ehsan, Malaysia
| | - Sangeetaprivya P Siva
- Centre for Sustainable Design, Modelling and Simulation, Faculty of Engineering, Built Environment and IT, SEGi University, 47810 Petaling Jaya, Malaysia
| | - Chin Siew Sia
- Department of Chemical Engineering, School of Engineering, Monash University Malaysia, Jalan Lagoon Selatan, 47500 Bandar Sunway, Selangor Darul Ehsan, Malaysia
| | - Eng-Seng Chan
- Department of Chemical Engineering, School of Engineering, Monash University Malaysia, Jalan Lagoon Selatan, 47500 Bandar Sunway, Selangor Darul Ehsan, Malaysia; Monash-Industry Plant Oils Research Laboratory (MIPO), Monash University Malaysia, Jalan Lagoon Selatan, 47500 Bandar Sunway, Selangor Darul Ehsan, Malaysia
| | - Beng Ti Tey
- Department of Chemical Engineering, School of Engineering, Monash University Malaysia, Jalan Lagoon Selatan, 47500 Bandar Sunway, Selangor Darul Ehsan, Malaysia
| | - Liang Ee Low
- Department of Chemical Engineering, School of Engineering, Monash University Malaysia, Jalan Lagoon Selatan, 47500 Bandar Sunway, Selangor Darul Ehsan, Malaysia; Monash-Industry Plant Oils Research Laboratory (MIPO), Monash University Malaysia, Jalan Lagoon Selatan, 47500 Bandar Sunway, Selangor Darul Ehsan, Malaysia; Medical Engineering and Technology (MET) Hub, Monash University Malaysia, Jalan Lagoon Selatan, 47500 Bandar Sunway, Selangor Darul Ehsan, Malaysia.
| |
Collapse
|
14
|
Sharma Y, Ghatak S, Sen CK, Mohanty S. Emerging technologies in regenerative medicine: The future of wound care and therapy. J Mol Med (Berl) 2024; 102:1425-1450. [PMID: 39358606 DOI: 10.1007/s00109-024-02493-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2024] [Revised: 09/10/2024] [Accepted: 09/23/2024] [Indexed: 10/04/2024]
Abstract
Wound healing, an intricate biological process, comprises orderly phases of simple biological processed including hemostasis, inflammation, angiogenesis, cell proliferation, and ECM remodeling. The regulation of the shift in these phases can be influenced by systemic or environmental conditions. Any untimely transitions between these phases can lead to chronic wounds and scarring, imposing a significant socio-economic burden on patients. Current treatment modalities are largely supportive in nature and primarily involve the prevention of infection and controlling inflammation. This often results in delayed healing and wound complications. Recent strides in regenerative medicine and tissue engineering offer innovative and patient-specific solutions. Mesenchymal stem cells (MSCs) and their secretome have gained specific prominence in this regard. Additionally, technologies like tissue nano-transfection enable in situ gene editing, a need-specific approach without the requirement of complex laboratory procedures. Innovating approaches like 3D bioprinting and ECM bioscaffolds also hold the potential to address wounds at the molecular and cellular levels. These regenerative approaches target common healing obstacles, such as hyper-inflammation thereby promoting self-recovery through crucial signaling pathway stimulation. The rationale of this review is to examine the benefits and limitations of both current and emerging technologies in wound care and to offer insights into potential advancements in the field. The shift towards such patient-centric therapies reflects a paradigmatic change in wound care strategies.
Collapse
Affiliation(s)
- Yashvi Sharma
- Stem Cell Facility (DBT-Centre of Excellence for Stem Cell Research), All India Institute of Medical Sciences, New Delhi, Delhi, 110029, India
| | - Subhadip Ghatak
- Indiana Center for Regenerative Medicine and Engineering, Indiana University Health Comprehensive Wound Center, Department of Surgery, Indiana University School of Medicine, Indianapolis, IN, 46202, USA
- McGowan Institute of Regenerative Medicine, Department of Surgery, University of Pittsburgh, 419 Bridgeside Point II, 450 Technology Drive, Pittsburgh, PA, 15219, USA
| | - Chandan K Sen
- Indiana Center for Regenerative Medicine and Engineering, Indiana University Health Comprehensive Wound Center, Department of Surgery, Indiana University School of Medicine, Indianapolis, IN, 46202, USA.
- McGowan Institute of Regenerative Medicine, Department of Surgery, University of Pittsburgh, 419 Bridgeside Point II, 450 Technology Drive, Pittsburgh, PA, 15219, USA.
| | - Sujata Mohanty
- Stem Cell Facility (DBT-Centre of Excellence for Stem Cell Research), All India Institute of Medical Sciences, New Delhi, Delhi, 110029, India.
| |
Collapse
|
15
|
Arcuri S, Pennarossa G, Prasadani M, Gandolfi F, Brevini TAL. Use of Decellularized Bio-Scaffolds for the Generation of a Porcine Artificial Intestine. Methods Protoc 2024; 7:76. [PMID: 39452790 PMCID: PMC11510128 DOI: 10.3390/mps7050076] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2024] [Revised: 09/25/2024] [Accepted: 09/26/2024] [Indexed: 10/26/2024] Open
Abstract
In recent years, great interest has been focused on the development of highly reproducible 3D in vitro models that are able to mimic the physiological architecture and functionality of native tissues. To date, a wide range of techniques have been proposed to recreate an intestinal barrier in vitro, including synthetic scaffolds and hydrogels, as well as complex on-a-chip systems and organoids. Here, we describe a novel protocol for the generation of an artificial intestine based on the creation of decellularized bio-scaffolds and their repopulation with intestinal stromal and epithelial cells. Organs collected at the local slaughterhouse are subjected to a decellularization protocol that includes a freezing/thawing step, followed by sequential incubation in 1% SDS for 12 h, 1% Triton X-100 for 12 h, and 2% deoxycholate for 12 h. At the end of the procedure, the generated bio-scaffolds are repopulated with intestinal fibroblasts and then with epithelial cells. The protocol described here represents a promising and novel strategy to generate an in vitro bioengineered intestine platform able to mimic some of the complex functions of the intestinal barrier, thus constituting a promising 3D strategy for nutritional, pharmaceutical, and toxicological studies.
Collapse
Affiliation(s)
- Sharon Arcuri
- Department of Veterinary Medicine, Università degli Studi di Sassari, Via Vienna, 07100 Sassari, Italy;
- Laboratory of Biomedical Embryology and Tissue Engineering, Department of Veterinary Medicine and Animal Sciences, Università degli Studi di Milano, Via dell’Università 6, 26900 Lodi, Italy;
| | - Georgia Pennarossa
- Laboratory of Biomedical Embryology and Tissue Engineering, Department of Veterinary Medicine and Animal Sciences, Università degli Studi di Milano, Via dell’Università 6, 26900 Lodi, Italy;
| | - Madhusha Prasadani
- Institute of Veterinary Medicine and Animal Sciences, Estonian University of Life Sciences, 50411 Tartu, Estonia;
| | - Fulvio Gandolfi
- Department of Agricultural and Environmental Sciences—Production, Landscape, Agroenergy, Università degli Studi di Milano, Via Celoria 2, 20133 Milan, Italy;
| | - Tiziana A. L. Brevini
- Laboratory of Biomedical Embryology and Tissue Engineering, Department of Veterinary Medicine and Animal Sciences, Università degli Studi di Milano, Via dell’Università 6, 26900 Lodi, Italy;
| |
Collapse
|
16
|
Ma H, Xu J, Fang H, Su Y, Lu Y, Shu Y, Liu W, Li B, Cheng YY, Nie Y, Zhong Y, Song K. A capsule-based scaffold incorporating decellularized extracellular matrix and curcumin for islet beta cell therapy in type 1 diabetes mellitus. Biofabrication 2024; 16:045038. [PMID: 39255833 DOI: 10.1088/1758-5090/ad7907] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2023] [Accepted: 09/10/2024] [Indexed: 09/12/2024]
Abstract
The transplantation of islet beta cells offers an alternative to heterotopic islet transplantation for treating type 1 diabetes mellitus (T1DM). However, the use of systemic immunosuppressive drugs in islet transplantation poses significant risks to the body. To address this issue, we constructed an encapsulated hybrid scaffold loaded with islet beta cells. This article focuses on the preparation of the encapsulated structure using 3D printing, which incorporates porcine pancreas decellularized extracellular matrix (dECM) to the core scaffold. The improved decellularization method successfully preserved a substantial proportion of protein (such as Collagen I and Laminins) architecture and glycosaminoglycans in the dECM hydrogel, while effectively removing most of the DNA. The inclusion of dECM enhanced the physical and chemical properties of the scaffold, resulting in a porosity of 83.62% ± 1.09% and a tensile stress of 1.85 ± 0.16 MPa. In teams of biological activity, dECM demonstrated enhanced proliferation, differentiation, and expression of transcription factors such as Ki67, PDX1, and NKX6.1, leading to improved insulin secretion function in MIN-6 pancreatic beta cells. In the glucose-stimulated insulin secretion experiment on day 21, the maximum insulin secretion from the encapsulated structure reached 1.96 ± 0.08 mIU ml-1, representing a 44% increase compared to the control group. Furthermore, conventional capsule scaffolds leaverage the compatibility of natural biomaterials with macrophages to mitigate immune rejection. Here, incorporating curcumin into the capsule scaffold significantly reduced the secretion of pro-inflammatory cytokine (IL-1β, IL-6, TNF-α, IFN-γ) secretion by RAW264.7 macrophages and T cells in T1DM mice. This approach protected pancreatic islet cells against immune cell infiltration mediated by inflammatory factors and prevented insulitis. Overall, the encapsulated scaffold developed in this study shows promise as a natural platform for clinical treatment of T1DM.
Collapse
Affiliation(s)
- Hailin Ma
- State Key Laboratory of Fine Chemicals, Dalian R&D Center for Stem Cell and Tissue Engineering, Dalian University of Technology, Dalian 116024, People's Republic of China
- Zhengzhou Institute of Emerging Industrial Technology, Zhengzhou 450000, People's Republic of China
| | - Jie Xu
- State Key Laboratory of Fine Chemicals, Dalian R&D Center for Stem Cell and Tissue Engineering, Dalian University of Technology, Dalian 116024, People's Republic of China
- Zhengzhou Institute of Emerging Industrial Technology, Zhengzhou 450000, People's Republic of China
| | - Huan Fang
- State Key Laboratory of Fine Chemicals, Dalian R&D Center for Stem Cell and Tissue Engineering, Dalian University of Technology, Dalian 116024, People's Republic of China
- Zhengzhou Institute of Emerging Industrial Technology, Zhengzhou 450000, People's Republic of China
| | - Ya Su
- State Key Laboratory of Fine Chemicals, Dalian R&D Center for Stem Cell and Tissue Engineering, Dalian University of Technology, Dalian 116024, People's Republic of China
| | - Yueqi Lu
- State Key Laboratory of Fine Chemicals, Dalian R&D Center for Stem Cell and Tissue Engineering, Dalian University of Technology, Dalian 116024, People's Republic of China
- Zhengzhou Institute of Emerging Industrial Technology, Zhengzhou 450000, People's Republic of China
| | - Yan Shu
- State Key Laboratory of Fine Chemicals, Dalian R&D Center for Stem Cell and Tissue Engineering, Dalian University of Technology, Dalian 116024, People's Republic of China
| | - Wang Liu
- State Key Laboratory of Fine Chemicals, Dalian R&D Center for Stem Cell and Tissue Engineering, Dalian University of Technology, Dalian 116024, People's Republic of China
| | - Bing Li
- State Key Laboratory of Fine Chemicals, Dalian R&D Center for Stem Cell and Tissue Engineering, Dalian University of Technology, Dalian 116024, People's Republic of China
| | - Yuen Yee Cheng
- Institute for Biomedical Materials and Devices, Faculty of Science, University of Technology, Sydney, NSW 2007, Australia
| | - Yi Nie
- Zhengzhou Institute of Emerging Industrial Technology, Zhengzhou 450000, People's Republic of China
| | - Yiming Zhong
- Department of Hand and Foot Microsurgery, Dalian Municipal Central Hospital Affiliated of Dalian University of Technology, Dalian 116033, People's Republic of China
| | - Kedong Song
- State Key Laboratory of Fine Chemicals, Dalian R&D Center for Stem Cell and Tissue Engineering, Dalian University of Technology, Dalian 116024, People's Republic of China
- Zhengzhou Institute of Emerging Industrial Technology, Zhengzhou 450000, People's Republic of China
| |
Collapse
|
17
|
Parasuraman G, Amirtham SM, Francis DV, Livingston A, Ramasamy B, Sathishkumar S, Vinod E. Evaluation of Chondral Defect Repair Using Human Fibronectin Adhesion Assay-Derived Chondroprogenitors Suspended in Lyophilized Fetal Collagen Scaffold: An Ex Vivo Osteochondral Unit Model Study. Indian J Orthop 2024; 58:991-1000. [PMID: 39087036 PMCID: PMC11286923 DOI: 10.1007/s43465-024-01192-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/26/2024] [Accepted: 05/22/2024] [Indexed: 08/02/2024]
Abstract
Introduction Chondral defect repair is challenging due to a scarcity of reparative cells and the need to fill a large surface area, compounded by the absence of self-healing mechanisms. Fibronectin adhesion assay-derived chondroprogenitors (FAA-CPs) have emerged as a promising alternative with enhanced chondrogenic ability and reduced hypertrophy. De-cellularized bio-scaffolds are reported to act as extracellular matrix, mimicking the structural and functional characteristics of native tissue, thereby facilitating cell attachment and differentiation. This study primarily assessed the synergistic effect of FAA-CPs suspended in fetal cartilage-derived collagen-containing scaffolds in repairing chondral defects. Methodology The de-cellularized and lyophilized fetal collagen was prepared from the tibio-femoral joint of a 36 + 4-week gestational age fetus. FAA-CPs were isolated from osteoarthritic cartilage samples (n = 3) and characterized. In ex vivo analysis, FAA-CPs at a density of 1 × 106 cells were suspended in the lyophilized scaffold and placed into the chondral defects created in the Osteochondral Units and harvested on the 35th day for histological examination. Results The lyophilized scaffold of de-cellularized fetal cartilage with FAA-CPs demonstrated effective healing of the critical size chondral defect. This was evidenced by a uniform distribution of cells, a well-organized collagen-fibrillar network, complete filling of the defect with alignment to the surface, and favorable integration with the adjacent cartilage. However, these effects were less pronounced in the plain scaffold control group and no demonstrable repair observed in the empty defect group. Conclusion This study suggests the synergistic potential of FAA-CPs and collagen scaffold for chondral repair which needs to be further explored for clinical therapy. Supplementary Information The online version contains supplementary material available at 10.1007/s43465-024-01192-6.
Collapse
Affiliation(s)
- Ganesh Parasuraman
- Centre for Stem Cell Research, (A Unit of InStem, Bengaluru), Christian Medical College, Vellore, India
| | - Soosai Manickam Amirtham
- Department of Physiology/Centre for Stem Cell Research, Christian Medical College, Vellore, India
| | | | - Abel Livingston
- Department of Orthopaedics, Christian Medical College, Vellore, India
| | - Boopalan Ramasamy
- Faculty of Health and Medical Sciences, The University of Adelaide, Adelaide, Australia
- Department of Orthopaedics and Trauma, Royal Adelaide Hospital, Adelaide, Australia
| | - Solomon Sathishkumar
- Department of Physiology/Centre for Stem Cell Research, Christian Medical College, Vellore, India
| | - Elizabeth Vinod
- Centre for Stem Cell Research, (A Unit of InStem, Bengaluru), Christian Medical College, Vellore, India
- Department of Physiology/Centre for Stem Cell Research, Christian Medical College, Vellore, India
| |
Collapse
|
18
|
Capella-Monsonís H, Crum RJ, Hussey GS, Badylak SF. Advances, challenges, and future directions in the clinical translation of ECM biomaterials for regenerative medicine applications. Adv Drug Deliv Rev 2024; 211:115347. [PMID: 38844005 DOI: 10.1016/j.addr.2024.115347] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2024] [Revised: 05/29/2024] [Accepted: 06/03/2024] [Indexed: 06/11/2024]
Abstract
Extracellular Matrix (ECM) scaffolds and biomaterials have been widely used for decades across a variety of diverse clinical applications and have been implanted in millions of patients worldwide. ECM-based biomaterials have been especially successful in soft tissue repair applications but their utility in other clinical applications such as for regeneration of bone or neural tissue is less well understood. The beneficial healing outcome with the use of ECM biomaterials is the result of their biocompatibility, their biophysical properties and their ability to modify cell behavior after injury. As a consequence of successful clinical outcomes, there has been motivation for the development of next-generation formulations of ECM materials ranging from hydrogels, bioinks, powders, to whole organ or tissue scaffolds. The continued development of novel ECM formulations as well as active research interest in these materials ensures a wealth of possibilities for future clinical translation and innovation in regenerative medicine. The clinical translation of next generation formulations ECM scaffolds faces predictable challenges such as manufacturing, manageable regulatory pathways, surgical implantation, and the cost required to address these challenges. The current status of ECM-based biomaterials, including clinical translation, novel formulations and therapies currently under development, and the challenges that limit clinical translation of ECM biomaterials are reviewed herein.
Collapse
Affiliation(s)
- Héctor Capella-Monsonís
- McGowan Institute for Regenerative Medicine, University of Pittsburgh, 450 Technology Drive, Pittsburgh, PA 15219, USA; Department of Surgery, School of Medicine, University of Pittsburgh, 200 Lothrop Street, Pittsburgh, PA 15213, USA; Viscus Biologics LLC, 2603 Miles Road, Cleveland, OH 44128, USA
| | - Raphael J Crum
- McGowan Institute for Regenerative Medicine, University of Pittsburgh, 450 Technology Drive, Pittsburgh, PA 15219, USA; Department of Surgery, School of Medicine, University of Pittsburgh, 200 Lothrop Street, Pittsburgh, PA 15213, USA
| | - George S Hussey
- McGowan Institute for Regenerative Medicine, University of Pittsburgh, 450 Technology Drive, Pittsburgh, PA 15219, USA; Department of Pathology, School of Medicine, University of Pittsburgh, 200 Lothrop Street, Pittsburgh, PA 15213, USA
| | - Stephen F Badylak
- McGowan Institute for Regenerative Medicine, University of Pittsburgh, 450 Technology Drive, Pittsburgh, PA 15219, USA; Department of Surgery, School of Medicine, University of Pittsburgh, 200 Lothrop Street, Pittsburgh, PA 15213, USA; Department of Bioengineering, University of Pittsburgh, 3700 O'Hara Street, Pittsburgh, PA 15261, USA.
| |
Collapse
|
19
|
Arumugam P, Kaarthikeyan G, Eswaramoorthy R. Comparative Evaluation of Three Different Demineralisation Protocols on the Physicochemical Properties and Biocompatibility of Decellularised Extracellular Matrix for Bone Tissue Engineering Applications. Cureus 2024; 16:e64813. [PMID: 39156262 PMCID: PMC11330088 DOI: 10.7759/cureus.64813] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2024] [Accepted: 07/17/2024] [Indexed: 08/20/2024] Open
Abstract
Background With three-dimensional (3D) bioprinting emerging as the ultimate pinnacle of personalised treatment for achieving predictable regenerative outcomes, the search for tissue-specific bioinks is on. Decellularised extracellular matrix (DECM), which provides the inherent biomimetic cues, has gained considerable attention. The objective of the present study was to compare the efficacy of three different demineralisation protocols to obtain DECM for bone tissue engineering applications. Methodology Goat femurs were treated using three demineralisation protocols to obtain DECM. Group A was treated with demineralisation solution at 40 rpm for 14 days, Group B with freeze-thaw cycles and 0.05M hydrochloric acid (HCl) and 2.4 mM ethylenediamine tetra-acetic acid (EDTA) at 40 rpm for 60 days, and Group C with 0.1M HCl at 40 rpm for three days. After washing, neutralization, 0.05% trypsin-EDTA treatment for 24 hours, and lyophilisation, DECM was obtained. Assessments included scanning electron microscope (SEM) analysis, energy dispersive X-ray (EDX) analysis, hematoxylin and eosin (H&E) staining, and biocompatibility analysis. Results On comparative analysis, the protocol followed by Group C revealed good surface properties with patent and well interconnected pores with an average pore size of 218.87µm. Group C also revealed carbon and oxygen as predominant components with trace amounts of calcium, proving adequate demineralisation. Group C further revealed optimal demineralisation and decellularisation under histological analysis while maintaining biocompatibility. DECM obtained in Group C should be further processed for bioprinting applications. Conclusion The three protocols explored in this study hold potential, with Group C's protocol demonstrating the most promise for DECM-based bioink applications. Further research is needed to evaluate the suitability of the obtained DECM for preparing tissue-specific bioinks for 3D bioprinting.
Collapse
Affiliation(s)
- Parkavi Arumugam
- Periodontics, Saveetha Dental College and Hospitals, Saveetha Institute of Medical and Technical Sciences, Saveetha University, Chennai, IND
| | - G Kaarthikeyan
- Periodontics, Saveetha Dental College and Hospitals, Saveetha Institute of Medical and Technical Sciences, Saveetha University, Chennai, IND
| | - Rajalakshmanan Eswaramoorthy
- Biochemistry, Center of Molecular Medicine and Diagnostics (COMManD), Saveetha Dental College and Hospitals, Saveetha Institute of Medical and Technical Sciences, Saveetha University, Chennai, IND
| |
Collapse
|
20
|
Fujita N, Sugiyama F, Tsuboi M, Nakamura HK, Nishimura R, Nakayama Y, Fujita A. Bladder Reconstruction in Cats Using In-Body Tissue Architecture (iBTA)-Induced Biosheet. Bioengineering (Basel) 2024; 11:615. [PMID: 38927851 PMCID: PMC11200650 DOI: 10.3390/bioengineering11060615] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2024] [Revised: 05/29/2024] [Accepted: 06/13/2024] [Indexed: 06/28/2024] Open
Abstract
Urinary tract diseases are common in cats, and often require surgical reconstruction. Here, to explore the possibility of urinary tract reconstruction in cats using in-body tissue architecture (iBTA), biosheets fabricated using iBTA technology were implanted into the feline bladder and the regeneration process was histologically evaluated. The biosheets were prepared by embedding molds into the dorsal subcutaneous pouches of six cats for 2 months. A section of the bladder wall was removed, and the biosheets were sutured to the excision site. After 1 and 3 months of implantation, the biosheets were harvested and evaluated histologically. Implantable biosheets were formed with a success rate of 67%. There were no major complications following implantation, including tissue rejection, severe inflammation, or infection. Urinary incontinence was also not observed. Histological evaluation revealed the bladder lumen was almost entirely covered by urothelium after 1 month, with myofibroblast infiltration into the biosheets. After 3 months, the urothelium became multilayered, and mature myocytes and nerve fibers were observed at the implantation site. In conclusion, this study showed that tissue reconstruction using iBTA can be applied to cats, and that biosheets have the potential to be useful in both the structural and functional regeneration of the feline urinary tract.
Collapse
Affiliation(s)
- Naoki Fujita
- Laboratory of Veterinary Surgery, Graduate School of Agriculture and Life Sciences, The University of Tokyo, Tokyo 113-0032, Japan
| | - Fumi Sugiyama
- Laboratory of Veterinary Surgery, Graduate School of Agriculture and Life Sciences, The University of Tokyo, Tokyo 113-0032, Japan
| | - Masaya Tsuboi
- Laboratory of Veterinary Pathology, Graduate School of Agriculture and Life Sciences, The University of Tokyo, Tokyo 113-0032, Japan
| | - Hazel Kay Nakamura
- Laboratory of Veterinary Surgery, Graduate School of Agriculture and Life Sciences, The University of Tokyo, Tokyo 113-0032, Japan
| | - Ryohei Nishimura
- Laboratory of Veterinary Surgery, Graduate School of Agriculture and Life Sciences, The University of Tokyo, Tokyo 113-0032, Japan
| | | | - Atsushi Fujita
- Laboratory of Veterinary Surgery, Graduate School of Agriculture and Life Sciences, The University of Tokyo, Tokyo 113-0032, Japan
| |
Collapse
|
21
|
Shen J, Ye D, Jin H, Wu Y, Peng L, Liang Y. Porcine nasal septum cartilage-derived decellularized matrix promotes chondrogenic differentiation of human umbilical mesenchymal stem cells without exogenous growth factors. J Mater Chem B 2024; 12:5513-5524. [PMID: 38745541 DOI: 10.1039/d3tb03077f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/16/2024]
Abstract
BACKGROUND In the domain of plastic surgery, nasal cartilage regeneration is of significant importance. The extracellular matrix (ECM) from porcine nasal septum cartilage has shown potential for promoting human cartilage regeneration. Nonetheless, the specific biological inductive factors and their pathways in cartilage tissue engineering remain undefined. METHODS The decellularized matrix derived from porcine nasal septum cartilage (PN-DCM) was prepared using a grinding method. Human umbilical cord mesenchymal stem cells (HuMSCs) were cultured on these PN-DCM scaffolds for 4 weeks without exogenous growth factors to evaluate their chondroinductive potential. Subsequently, proteomic analysis was employed to identify potential biological inductive factors within the PN-DCM scaffolds. RESULTS Compared to the TGF-β3-cultured pellet model serving as a positive control, the PN-DCM scaffolds promoted significant deposition of a Safranin-O positive matrix and Type II collagen by HuMSCs. Gene expression profiling revealed upregulation of ACAN, COL2A1, and SOX9. Proteomic analysis identified potential chondroinductive factors in the PN-DCM scaffolds, including CYTL1, CTGF, MGP, ITGB1, BMP7, and GDF5, which influence HuMSC differentiation. CONCLUSION Our findings have demonstrated that the PN-DCM scaffolds promoted HuMSC differentiation towards a nasal chondrocyte phenotype without the supplementation of exogenous growth factors. This outcome is associated with the chondroinductive factors present within the PN-DCM scaffolds.
Collapse
Affiliation(s)
- Jinpeng Shen
- Department of Burns and Plastic Surgery, Affiliated Hospital of Zunyi Medical University, Guizhou, P. R. China.
- Department of Plastic Surgery and Burn Center, Second Affiliated Hospital, Shantou University Medical College, Shantou, P. R. China.
- Department of Plastic Surgery, Taizhou Enze Medical Center, Zhejiang, P. R. China
| | - Danyan Ye
- Research Center for Translational Medicine, Second Affiliated Hospital of Shantou University Medical College, Shantou, Guangdong, P. R. China
| | - Hao Jin
- Department of Cardiology, Second Affiliated Hospital of Dalian Medical University, Dalian, Liaoning, P. R. China
| | - Yongxuan Wu
- Department of Plastic Surgery and Burn Center, Second Affiliated Hospital, Shantou University Medical College, Shantou, P. R. China.
| | - Lihong Peng
- Department of Plastic Surgery and Burn Center, Second Affiliated Hospital, Shantou University Medical College, Shantou, P. R. China.
| | - Yan Liang
- Department of Burns and Plastic Surgery, Affiliated Hospital of Zunyi Medical University, Guizhou, P. R. China.
| |
Collapse
|
22
|
Lee J, Lee SG, Kim BS, Park S, Sundaram MN, Kim BG, Kim CY, Hwang NS. Paintable Decellularized-ECM Hydrogel for Preventing Cardiac Tissue Damage. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2307353. [PMID: 38502886 DOI: 10.1002/advs.202307353] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/20/2023] [Revised: 02/07/2024] [Indexed: 03/21/2024]
Abstract
The tissue-specific heart decellularized extracellular matrix (hdECM) demonstrates a variety of therapeutic advantages, including fibrosis reduction and angiogenesis. Consequently, recent research for myocardial infarction (MI) therapy has utilized hdECM with various delivery techniques, such as injection or patch implantation. In this study, a novel approach for hdECM delivery using a wet adhesive paintable hydrogel is proposed. The hdECM-containing paintable hydrogel (pdHA_t) is simply applied, with no theoretical limit to the size or shape, making it highly beneficial for scale-up. Additionally, pdHA_t exhibits robust adhesion to the epicardium, with a minimal swelling ratio and sufficient adhesion strength for MI treatment when applied to the rat MI model. Moreover, the adhesiveness of pdHA_t can be easily washed off to prevent undesired adhesion with nearby organs, such as the rib cages and lungs, which can result in stenosis. During the 28 days of in vivo analysis, the pdHA_t not only facilitates functional regeneration by reducing ventricular wall thinning but also promotes neo-vascularization in the MI region. In conclusion, the pdHA_t presents a promising strategy for MI treatment and cardiac tissue regeneration, offering the potential for improved patient outcomes and enhanced cardiac function post-MI.
Collapse
Affiliation(s)
- Jaewoo Lee
- School of Chemical and Biological Engineering, Institute of Chemical Processes, Seoul National University, Seoul, 151-742, Republic of Korea
| | - Seul-Gi Lee
- Department of Stem Cell Biology, School of Medicine, Konkuk University, Seoul, 143-701, Republic of Korea
| | - Beom-Seok Kim
- Interdisciplinary Program in Bioengineering, Seoul National University, Seoul, 151-742, Republic of Korea
- Research Division, EGC Therapeutics, Seoul, 08790, Republic of Korea
| | - Shinhye Park
- Department of Stem Cell Biology, School of Medicine, Konkuk University, Seoul, 143-701, Republic of Korea
| | - M Nivedhitha Sundaram
- School of Chemical and Biological Engineering, Institute of Chemical Processes, Seoul National University, Seoul, 151-742, Republic of Korea
| | - Byung-Gee Kim
- Research Division, EGC Therapeutics, Seoul, 08790, Republic of Korea
- Institute of Molecular Biology and Genetics, Institute for Sustainable Development (ISD), Seoul National University, Seoul, 08826, Republic of Korea
- Bio-MAX/N-Bio, Institute of BioEngineering, Seoul National University, Seoul, 08826, Republic of Korea
| | - C-Yoon Kim
- College of Veterinary Medicine, Konkuk University, Seoul, 05029, Republic of Korea
| | - Nathaniel S Hwang
- School of Chemical and Biological Engineering, Institute of Chemical Processes, Seoul National University, Seoul, 151-742, Republic of Korea
- Interdisciplinary Program in Bioengineering, Seoul National University, Seoul, 151-742, Republic of Korea
- Bio-MAX/N-Bio, Institute of BioEngineering, Seoul National University, Seoul, 08826, Republic of Korea
| |
Collapse
|
23
|
Elnawam H, Abdallah A, Nouh S, Khalil NM, Elbackly R. Influence of extracellular matrix scaffolds on histological outcomes of regenerative endodontics in experimental animal models: a systematic review. BMC Oral Health 2024; 24:511. [PMID: 38689279 PMCID: PMC11061952 DOI: 10.1186/s12903-024-04266-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2024] [Accepted: 04/16/2024] [Indexed: 05/02/2024] Open
Abstract
BACKGROUND Decellularized extracellular matrix (dECM) from several tissue sources has been proposed as a promising alternative to conventional scaffolds used in regenerative endodontic procedures (REPs). This systematic review aimed to evaluate the histological outcomes of studies utilizing dECM-derived scaffolds for REPs and to analyse the contributing factors that might influence the nature of regenerated tissues. METHODS The PRISMA 2020 guidelines were used. A search of articles published until April 2024 was conducted in Google Scholar, Scopus, PubMed and Web of Science databases. Additional records were manually searched in major endodontic journals. Original articles including histological results of dECM in REPs and in-vivo studies were included while reviews, in-vitro studies and clinical trials were excluded. The quality assessment of the included studies was analysed using the ARRIVE guidelines. Risk of Bias assessment was done using the (SYRCLE) risk of bias tool. RESULTS Out of the 387 studies obtained, 17 studies were included for analysis. In most studies, when used as scaffolds with or without exogenous cells, dECM showed the potential to enhance angiogenesis, dentinogenesis and to regenerate pulp-like and dentin-like tissues. However, the included studies showed heterogeneity of decellularization methods, animal models, scaffold source, form and delivery, as well as high risk of bias and average quality of evidence. DISCUSSION Decellularized ECM-derived scaffolds could offer a potential off-the-shelf scaffold for dentin-pulp regeneration in REPs. However, due to the methodological heterogeneity and the average quality of the studies included in this review, the overall effectiveness of decellularized ECM-derived scaffolds is still unclear. More standardized preclinical research is needed as well as well-constructed clinical trials to prove the efficacy of these scaffolds for clinical translation. OTHER The protocol was registered in PROSPERO database #CRD42023433026. This review was funded by the Science, Technology and Innovation Funding Authority (STDF) under grant number (44426).
Collapse
Affiliation(s)
- Hisham Elnawam
- Endodontics, Conservative Dentistry Department, Faculty of Dentistry, Alexandria University, Champollion Street, Azarita, Alexandria, Egypt.
- Tissue Engineering Laboratories, Faculty of Dentistry, Alexandria University, Alexandria, Egypt.
| | - Amr Abdallah
- Endodontics, Conservative Dentistry Department, Faculty of Dentistry, Alexandria University, Champollion Street, Azarita, Alexandria, Egypt
| | - Samir Nouh
- Tissue Engineering Laboratories, Faculty of Dentistry, Alexandria University, Alexandria, Egypt
- Surgery Department, Faculty of Veterinary Medicine, Alexandria University, Alexandria, Egypt
| | - Nesma Mohamed Khalil
- Oral Biology Department, Faculty of Dentistry, Alexandria University, Alexandria, Egypt
| | - Rania Elbackly
- Endodontics, Conservative Dentistry Department, Faculty of Dentistry, Alexandria University, Champollion Street, Azarita, Alexandria, Egypt
- Tissue Engineering Laboratories, Faculty of Dentistry, Alexandria University, Alexandria, Egypt
| |
Collapse
|
24
|
Koç-Demir A, Elçin AE, Elçin YM. Magnetic biocomposite scaffold based on decellularized tendon ECM and MNP-deposited halloysite nanotubes: physicochemical, thermal, rheological, mechanical and in vitrobiological evaluations. Biomed Mater 2024; 19:035027. [PMID: 38537375 DOI: 10.1088/1748-605x/ad38ab] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2023] [Accepted: 03/26/2024] [Indexed: 04/06/2024]
Abstract
The development of new three-dimensional biomaterials with advanced versatile properties is critical to the success of tissue engineering (TE) applications. Here, (a) bioactive decellularized tendon extracellular matrix (dECM) with a sol-gel transition feature at physiological temperature, (b) halloysite nanotubes (HNT) with known mechanical properties and bioactivity, and (c) magnetic nanoparticles (MNP) with superparamagnetic and osteogenic properties were combined to develop a new scaffold that could be used in prospective bone TE applications. Deposition of MNPs on HNTs resulted in magnetic nanostructures without agglomeration of MNPs. A completely cell-free, collagen- and glycosaminoglycan- rich dECM was obtained and characterized. dECM-based scaffolds incorporated with 1%, 2% and 4% MNP-HNT were analysed for their physical, chemical, andin vitrobiological properties. Fourier-transform infrared spectroscopy, x-ray powder diffractometry and vibrating sample magnetometry analyses confirmed the presence of dECM, HNT and MNP in all scaffold types. The capacity to form apatite layer upon incubation in simulated body fluid revealed that dECM-MNP-HNT is a bioactive material. Combining dECM with MNP-HNT improved the thermal stability and compressive strength of the macroporous scaffolds upto 2% MNP-HNT.In vitrocytotoxicity and hemolysis experiments showed that the scaffolds were essentially biocompatible. Human bone marrow mesenchymal stem cells adhered and proliferated well on the macroporous constructs containing 1% and 2% MNP-HNT; and remained metabolically active for at least 21 din vitro. Collectively, the findings support the idea that magnetic nanocomposite dECM scaffolds containing MNP-HNT could be a potential template for TE applications.
Collapse
Affiliation(s)
- Aysel Koç-Demir
- Tissue Engineering, Biomaterials and Nanobiotechnology Laboratory, Ankara University Faculty of Science, and Ankara University Stem Cell Institute, Ankara, Turkey
| | - Ayşe Eser Elçin
- Tissue Engineering, Biomaterials and Nanobiotechnology Laboratory, Ankara University Faculty of Science, and Ankara University Stem Cell Institute, Ankara, Turkey
| | - Yaşar Murat Elçin
- Tissue Engineering, Biomaterials and Nanobiotechnology Laboratory, Ankara University Faculty of Science, and Ankara University Stem Cell Institute, Ankara, Turkey
- Biovalda Health Technologies, Inc., Ankara, Turkey
| |
Collapse
|
25
|
Zanrè E, Dalla Valle E, D’Angelo E, Sensi F, Agostini M, Cimetta E. Recent Advancements in Hydrogel Biomedical Research in Italy. Gels 2024; 10:248. [PMID: 38667667 PMCID: PMC11048829 DOI: 10.3390/gels10040248] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2024] [Revised: 03/24/2024] [Accepted: 04/03/2024] [Indexed: 04/28/2024] Open
Abstract
Hydrogels have emerged as versatile biomaterials with remarkable applications in biomedicine and tissue engineering. Here, we present an overview of recent and ongoing research in Italy, focusing on extracellular matrix-derived, natural, and synthetic hydrogels specifically applied to biomedicine and tissue engineering. The analyzed studies highlight the versatile nature and wide range of applicability of hydrogel-based studies. Attention is also given to the integration of hydrogels within bioreactor systems, specialized devices used in biological studies to culture cells under controlled conditions, enhancing their potential for regenerative medicine, drug discovery, and drug delivery. Despite the abundance of literature on this subject, a comprehensive overview of Italian contributions to the field of hydrogels-based biomedical research is still missing and is thus our focus for this review. Consolidating a diverse range of studies, the Italian scientific community presents a complete landscape for hydrogel use, shaping the future directions of biomaterials research. This review aspires to serve as a guide and map for Italian researchers interested in the development and use of hydrogels in biomedicine.
Collapse
Affiliation(s)
- Eleonora Zanrè
- Department of Industrial Engineering (DII), University of Padova, 35131 Padova, Italy; (E.Z.); (E.D.V.)
- Fondazione Istituto di Ricerca Pediatrica Città della Speranza (IRP), 35127 Padova, Italy; (E.D.); (F.S.); (M.A.)
| | - Eva Dalla Valle
- Department of Industrial Engineering (DII), University of Padova, 35131 Padova, Italy; (E.Z.); (E.D.V.)
- Fondazione Istituto di Ricerca Pediatrica Città della Speranza (IRP), 35127 Padova, Italy; (E.D.); (F.S.); (M.A.)
| | - Edoardo D’Angelo
- Fondazione Istituto di Ricerca Pediatrica Città della Speranza (IRP), 35127 Padova, Italy; (E.D.); (F.S.); (M.A.)
- General Surgery 3, Department of Surgery, Oncology and Gastroenterology, University of Padova, 35122 Padova, Italy
| | - Francesca Sensi
- Fondazione Istituto di Ricerca Pediatrica Città della Speranza (IRP), 35127 Padova, Italy; (E.D.); (F.S.); (M.A.)
| | - Marco Agostini
- Fondazione Istituto di Ricerca Pediatrica Città della Speranza (IRP), 35127 Padova, Italy; (E.D.); (F.S.); (M.A.)
- General Surgery 3, Department of Surgery, Oncology and Gastroenterology, University of Padova, 35122 Padova, Italy
| | - Elisa Cimetta
- Department of Industrial Engineering (DII), University of Padova, 35131 Padova, Italy; (E.Z.); (E.D.V.)
- Fondazione Istituto di Ricerca Pediatrica Città della Speranza (IRP), 35127 Padova, Italy; (E.D.); (F.S.); (M.A.)
| |
Collapse
|
26
|
Yang X, Jin L, Xu M, Liu X, Tan Z, Liu L. Adipose tissue reconstruction facilitated with low immunogenicity decellularized adipose tissue scaffolds. Biomed Mater 2024; 19:035023. [PMID: 38518362 DOI: 10.1088/1748-605x/ad3705] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2023] [Accepted: 03/22/2024] [Indexed: 03/24/2024]
Abstract
There is currently an urgent need to develop engineered scaffolds to support new adipose tissue formation and facilitate long-term maintenance of function and defect repair to further generate prospective bioactive filler materials capable of fulfilling surgical needs. Herein, adipose regeneration methods were optimized and decellularized adipose tissue (DAT) scaffolds with good biocompatibility were fabricated. Adipose-like tissues were reconstructed using the DAT and 3T3-L1 preadipocytes, which have certain differentiation potential, and the regenerative effects of the engineered adipose tissuesin vitroandin vivowere explored. The method improved the efficiency of adipose removal from tissues, and significantly shortened the time for degreasing. Thus, the DAT not only provided a suitable space for cell growth but also promoted the proliferation, migration, and differentiation of preadipocytes within it. Following implantation of the constructed adipose tissuesin vivo, the DAT showed gradual degradation and integration with surrounding tissues, accompanied by the generation of new adipose tissue analogs. Overall, the combination of adipose-derived extracellular matrix and preadipocytes for adipose tissue reconstruction will be of benefit in the artificial construction of biomimetic implant structures for adipose tissue reconstruction, providing a practical guideline for the initial integration of adipose tissue engineering into clinical medicine.
Collapse
Affiliation(s)
- Xun Yang
- Department of Traumatic Orthopedics, Shenzhen Second People's Hospital, The First Affiliated Hospital, Shenzhen University, Shenzhen 518028, People's Republic of China
- Guangdong Key Laboratory for Biomedical Measurements and Ultrasound Imaging, National-Regional Key Technology Engineering Laboratory for Medical Ultrasound, School of Biomedical Engineering, Shenzhen University Medical School, Shenzhen 518060, People's Republic of China
| | - Lijuan Jin
- Institute of Shenzhen, Hunan University, Shenzhen 518000, People's Republic of China
- Greater Bay Area Institute for Innovation, Hunan University, Guangzhou 511300, People's Republic of China
| | - Miaomiao Xu
- College of Biology, Hunan University, Changsha 410082, People's Republic of China
| | - Xiao Liu
- Greater Bay Area Institute for Innovation, Hunan University, Guangzhou 511300, People's Republic of China
| | - Zhikai Tan
- Institute of Shenzhen, Hunan University, Shenzhen 518000, People's Republic of China
- Greater Bay Area Institute for Innovation, Hunan University, Guangzhou 511300, People's Republic of China
- College of Biology, Hunan University, Changsha 410082, People's Republic of China
| | - Lijun Liu
- Department of Traumatic Orthopedics, Shenzhen Second People's Hospital, The First Affiliated Hospital, Shenzhen University, Shenzhen 518028, People's Republic of China
| |
Collapse
|
27
|
Angolkar M, Paramshetti S, Gahtani RM, Al Shahrani M, Hani U, Talath S, Osmani RAM, Spandana A, Gangadharappa HV, Gundawar R. Pioneering a paradigm shift in tissue engineering and regeneration with polysaccharides and proteins-based scaffolds: A comprehensive review. Int J Biol Macromol 2024; 265:130643. [PMID: 38467225 DOI: 10.1016/j.ijbiomac.2024.130643] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2023] [Revised: 02/16/2024] [Accepted: 03/03/2024] [Indexed: 03/13/2024]
Abstract
In the realm of modern medicine, tissue engineering and regeneration stands as a beacon of hope, offering the promise of restoring form and function to damaged or diseased organs and tissues. Central to this revolutionary field are biological macromolecules-nature's own blueprints for regeneration. The growing interest in bio-derived macromolecules and their composites is driven by their environmentally friendly qualities, renewable nature, minimal carbon footprint, and widespread availability in our ecosystem. Capitalizing on these unique attributes, specific composites can be tailored and enhanced for potential utilization in the realm of tissue engineering (TE). This review predominantly concentrates on the present research trends involving TE scaffolds constructed from polysaccharides, proteins and glycosaminoglycans. It provides an overview of the prerequisites, production methods, and TE applications associated with a range of biological macromolecules. Furthermore, it tackles the challenges and opportunities arising from the adoption of these biomaterials in the field of TE. This review also presents a novel perspective on the development of functional biomaterials with broad applicability across various biomedical applications.
Collapse
Affiliation(s)
- Mohit Angolkar
- Department of Pharmaceutics, JSS College of Pharmacy, JSS Academy of Higher Education and Research (JSSAHER), Mysuru 570015, Karnataka, India
| | - Sharanya Paramshetti
- Department of Pharmaceutics, JSS College of Pharmacy, JSS Academy of Higher Education and Research (JSSAHER), Mysuru 570015, Karnataka, India
| | - Reem M Gahtani
- Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, King Khalid University, Abha 61421, Saudi Arabia.
| | - Mesfer Al Shahrani
- Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, King Khalid University, Abha 61421, Saudi Arabia.
| | - Umme Hani
- Department of Pharmaceutics, College of Pharmacy, King Khalid University, Abha 61421, Saudi Arabia.
| | - Sirajunisa Talath
- Department of Pharmaceutical Chemistry, RAK College of Pharmaceutical Sciences, RAK Medical and Health Sciences University, Ras Al Khaimah 11172, United Arab Emirates.
| | - Riyaz Ali M Osmani
- Department of Pharmaceutics, JSS College of Pharmacy, JSS Academy of Higher Education and Research (JSSAHER), Mysuru 570015, Karnataka, India.
| | - Asha Spandana
- Department of Pharmaceutics, JSS College of Pharmacy, JSS Academy of Higher Education and Research (JSSAHER), Mysuru 570015, Karnataka, India.
| | | | - Ravi Gundawar
- Department of Pharmaceutical Quality Assurance, Manipal College of Pharmaceutical Sciences, Manipal Academy of Higher Education (MAHE), Manipal 576104, Karnataka, India.
| |
Collapse
|
28
|
Korani S, Khalesi N, Korani M, Jamialahmadi T, Sahebkar A. Applications of honeybee-derived products in bone tissue engineering. Bone Rep 2024; 20:101740. [PMID: 38304620 PMCID: PMC10831168 DOI: 10.1016/j.bonr.2024.101740] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/08/2023] [Revised: 12/05/2023] [Accepted: 01/17/2024] [Indexed: 02/03/2024] Open
Abstract
Nowadays, there is an increasing prevalence of bone diseases and defects caused by trauma, cancers, infections, and degenerative and inflammatory conditions. The restoration of bone tissue lost due to trauma, fractures, or surgical removal resulting from locally invasive pathologies requires bone regeneration. As an alternative to conventional treatments, sustainable materials based on natural products, such as honeybee-derived products (honey, propolis, royal jelly, bee pollen, beeswax, and bee venom), could be considered. Honeybee-derived products, particularly honey, have long been recognized for their healing properties. There are a mixture of phytochemicals that offer bone protection through their antimicrobial, antioxidant, and anti-inflammatory properties. This review aims to summarize the current evidence regarding the effects of honeybee-derived products on bone regeneration. In conclusion, honey, propolis, royal jelly, beeswax, and bee venom can potentially serve as natural products for promoting bone health.
Collapse
Affiliation(s)
- Shahla Korani
- Research Center of Oils and Fats, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Naeemeh Khalesi
- Biotechnology Department, School of Advanced Technologies in Medicine, Shahid Beheshti University of Medical Science, Tehran, Iran
| | - Mitra Korani
- Research Center of Oils and Fats, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Tannaz Jamialahmadi
- Medical Toxicology Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Amirhossein Sahebkar
- Applied Biomedical Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
- Biotechnology Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran
| |
Collapse
|
29
|
Dehghani S, Aghaee Z, Soleymani S, Tafazoli M, Ghabool Y, Tavassoli A. An overview of the production of tissue extracellular matrix and decellularization process. Cell Tissue Bank 2024; 25:369-387. [PMID: 37812368 DOI: 10.1007/s10561-023-10112-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2023] [Accepted: 09/09/2023] [Indexed: 10/10/2023]
Abstract
Thousands of patients need an organ transplant yearly, while only a tiny percentage have this chance to receive a tissue/organ transplant. Nowadays, decellularized animal tissue is one of the most widely used methods to produce engineered scaffolds for transplantation. Decellularization is defined as physically or chemically removing cellular components from tissues while retaining structural and functional extracellular matrix (ECM) components and creating an ECM-derived scaffold. Then, decellularized scaffolds could be reseeded with different cells to fabricate an autologous graft. Effective decellularization methods preserve ECM structure and bioactivity through the application of the agents and techniques used throughout the process. The most valuable agents for the decellularization process depend on biological properties, cellular density, and the thickness of the desired tissue. ECM-derived scaffolds from various mammalian tissues have been recently used in research and preclinical applications in tissue engineering. Many studies have shown that decellularized ECM-derived scaffolds could be obtained from tissues and organs such as the liver, cartilage, bone, kidney, lung, and skin. This review addresses the significance of ECM in organisms and various decellularization agents utilized to prepare the ECM. Also, we describe the current knowledge of the decellularization of different tissues and their applications.
Collapse
Affiliation(s)
- Shima Dehghani
- Department of Biology, Kavian Institute of Higher Education, Mashhad, Iran
| | - Zahra Aghaee
- Department of Biology, Kavian Institute of Higher Education, Mashhad, Iran
| | - Safoura Soleymani
- Division of Biotechnology, Faculty of Veterinary Medicine, Ferdowsi University of Mashhad, Azadi Square, Mashhad, 9177948974, Iran
| | - Maryam Tafazoli
- Division of Biotechnology, Faculty of Veterinary Medicine, Ferdowsi University of Mashhad, Azadi Square, Mashhad, 9177948974, Iran
| | - Yasin Ghabool
- Department of Biology, Faculty of Sciences, Mashhad Branch, Islamic Azad University, Mashhad, Iran
| | - Amin Tavassoli
- Division of Biotechnology, Faculty of Veterinary Medicine, Ferdowsi University of Mashhad, Azadi Square, Mashhad, 9177948974, Iran.
| |
Collapse
|
30
|
Gadre M, Kasturi M, Agarwal P, Vasanthan KS. Decellularization and Their Significance for Tissue Regeneration in the Era of 3D Bioprinting. ACS OMEGA 2024; 9:7375-7392. [PMID: 38405516 PMCID: PMC10883024 DOI: 10.1021/acsomega.3c08930] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/09/2023] [Revised: 12/19/2023] [Accepted: 01/10/2024] [Indexed: 02/27/2024]
Abstract
Three-dimensional bioprinting is an emerging technology that has high potential application in tissue engineering and regenerative medicine. Increasing advancement and improvement in the decellularization process have led to an increase in the demand for using a decellularized extracellular matrix (dECM) to fabricate tissue engineered products. Decellularization is the process of retaining the extracellular matrix (ECM) while the cellular components are completely removed to harvest the ECM for the regeneration of various tissues and across different sources. Post decellularization of tissues and organs, they act as natural biomaterials to provide the biochemical and structural support to establish cell communication. Selection of an effective method for decellularization is crucial, and various factors like tissue density, geometric organization, and ECM composition affect the regenerative potential which has an impact on the end product. The dECM is a versatile material which is added as an important ingredient to formulate the bioink component for constructing tissue and organs for various significant studies. Bioink consisting of dECM from various sources is used to generate tissue-specific bioink that is unique and to mimic different biometric microenvironments. At present, there are many different techniques applied for decellularization, and the process is not standardized and regulated due to broad application. This review aims to provide an overview of different decellularization procedures, and we also emphasize the different dECM-derived bioinks present in the current global market and the major clinical outcomes. We have also highlighted an overview of benefits and limitations of different decellularization methods and various characteristic validations of decellularization and dECM-derived bioinks.
Collapse
Affiliation(s)
- Mrunmayi Gadre
- Manipal
Centre for Biotherapeutics Research, Manipal
Academy of Higher Education, Manipal 576104, Karnataka, India
| | - Meghana Kasturi
- Department
of Mechanical Engineering, University of
Michigan, Dearborn, Michigan 48128, United States
| | - Prachi Agarwal
- Manipal
Centre for Biotherapeutics Research, Manipal
Academy of Higher Education, Manipal 576104, Karnataka, India
| | - Kirthanashri S. Vasanthan
- Manipal
Centre for Biotherapeutics Research, Manipal
Academy of Higher Education, Manipal 576104, Karnataka, India
| |
Collapse
|
31
|
Perreault LR, Daley MC, Watson MC, Rastogi S, Jaiganesh A, Porter EC, Duffy BM, Black LD. Characterization of cardiac fibroblast-extracellular matrix crosstalk across developmental ages provides insight into age-related changes in cardiac repair. Front Cell Dev Biol 2024; 12:1279932. [PMID: 38434619 PMCID: PMC10904575 DOI: 10.3389/fcell.2024.1279932] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2023] [Accepted: 01/22/2024] [Indexed: 03/05/2024] Open
Abstract
Heart failure afflicts an estimated 6.5 million people in the United States, driven largely by incidents of coronary heart disease (CHD). CHD leads to heart failure due to the inability of adult myocardial tissue to regenerate after myocardial infarction (MI). Instead, immune cells and resident cardiac fibroblasts (CFs), the cells responsible for the maintenance of the cardiac extracellular matrix (cECM), drive an inflammatory wound healing response, which leads to fibrotic scar tissue. However, fibrosis is reduced in fetal and early (<1-week-old) neonatal mammals, which exhibit a transient capability for regenerative tissue remodeling. Recent work by our laboratory and others suggests this is in part due to compositional differences in the cECM and functional differences in CFs with respect to developmental age. Specifically, fetal cECM and CFs appear to mitigate functional loss in MI models and engineered cardiac tissues, compared to adult CFs and cECM. We conducted 2D studies of CFs on solubilized fetal and adult cECM to investigate whether these age-specific functional differences are synergistic with respect to their impact on CF phenotype and, therefore, cardiac wound healing. We found that the CF migration rate and stiffness vary with respect to cell and cECM developmental age and that CF transition to a fibrotic phenotype can be partially attenuated in the fetal cECM. However, this effect was not observed when cells were treated with cytokine TGF-β1, suggesting that inflammatory signaling factors are the dominant driver of the fibroblast phenotype. This information may be valuable for targeted therapies aimed at modifying the CF wound healing response and is broadly applicable to age-related studies of cardiac remodeling.
Collapse
Affiliation(s)
- Luke R. Perreault
- Department of Biomedical Engineering, Tufts University, Medford, MA, United States
| | - Mark C. Daley
- Department of Biomedical Engineering, Tufts University, Medford, MA, United States
| | - Matthew C. Watson
- Department of Biomedical Engineering, Tufts University, Medford, MA, United States
| | - Sagar Rastogi
- Department of Biomedical Engineering, Tufts University, Medford, MA, United States
| | - Ajith Jaiganesh
- Department of Biomedical Engineering, Tufts University, Medford, MA, United States
| | - Elizabeth C. Porter
- Cellular, Molecular and Developmental Biology Program, Graduate School for Biomedical Sciences, Tufts University School of Medicine, Boston, MA, United States
| | - Breanna M. Duffy
- Department of Biomedical Engineering, Tufts University, Medford, MA, United States
| | - Lauren D. Black
- Department of Biomedical Engineering, Tufts University, Medford, MA, United States
- Cellular, Molecular and Developmental Biology Program, Graduate School for Biomedical Sciences, Tufts University School of Medicine, Boston, MA, United States
| |
Collapse
|
32
|
Seo JW, Jo SH, Kim SH, Choi BH, Cho H, Yoo JJ, Park SH. Application of Cartilage Extracellular Matrix to Enhance Therapeutic Efficacy of Methotrexate. Tissue Eng Regen Med 2024; 21:209-221. [PMID: 37837499 PMCID: PMC10825102 DOI: 10.1007/s13770-023-00587-0] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2023] [Revised: 08/01/2023] [Accepted: 08/08/2023] [Indexed: 10/16/2023] Open
Abstract
BACKGROUND Rheumatoid arthritis (RA) is characterized by chronic inflammation and joint damage. Methotrexate (MTX), a commonly used disease-modifying anti-rheumatic drug (DMARD) used in RA treatment. However, the continued use of DMARDs can cause adverse effects and result in limited therapeutic efficacy. Cartilage extracellular matrix (CECM) has anti-inflammatory and anti-vascular effects and promotes stem cell migration, adhesion, and differentiation into cartilage cells. METHODS CECM was assessed the dsDNA, glycosaminoglycan, collagen contents and FT-IR spectrum of CECM. Furthermore, we determined the effects of CECM and MTX on cytocompatibility in the SW 982 cells and RAW 264.7 cells. The anti-inflammatory effects of CECM and MTX were assessed using macrophage cells. Finally, we examined the in vivo effects of CECM in combination with MTX on anti-inflammation control and cartilage degradation in collagen-induced arthritis model. Anti-inflammation control and cartilage degradation were assessed by measuring the serum levels of RA-related cytokines and histology. RESULTS CECM in combination with MTX had no effect on SW 982, effectively suppressing only RAW 264.7 activity. Moreover, anti-inflammatory effects were enhanced when low-dose MTX was combined with CECM. In a collagen-induced arthritis model, low-dose MTX combined with CECM remarkably reduced RA-related and pro-inflammatory cytokine levels in the blood. Additionally, low-dose MTX combined with CECM exerted the best cartilage-preservation effects compared to those observed in the other therapy groups. CONCLUSION Using CECM as an adjuvant in RA treatment can augment the therapeutic effects of MTX, reduce existing drug adverse effects, and promote joint tissue regeneration.
Collapse
Affiliation(s)
- Jeong-Woo Seo
- Department of Industry 4.0 Convergence Bionics Engineering, Pukyong National University, Busan, Republic of Korea
| | - Sung-Han Jo
- Department of Industry 4.0 Convergence Bionics Engineering, Pukyong National University, Busan, Republic of Korea
| | - Seon-Hwa Kim
- Department of Industry 4.0 Convergence Bionics Engineering, Pukyong National University, Busan, Republic of Korea
| | - Byeong-Hoon Choi
- Department of Industry 4.0 Convergence Bionics Engineering, Pukyong National University, Busan, Republic of Korea
| | - Hongsik Cho
- Department of Orthopedic Surgery and Biomedical Engineering, University of Tennessee Health Science Center-Campbell Clinic, Memphis, TN, USA
- Research 151, Veterans Affairs Medical Center, Memphis, TN, USA
| | - James J Yoo
- Wake Forest Institute for Regenerative Medicine, Wake Forest University School of Medicine, Winston-Salem, NC, USA
| | - Sang-Hyug Park
- Department of Industry 4.0 Convergence Bionics Engineering, Pukyong National University, Busan, Republic of Korea.
- Major of Biomedical Engineering, Division of Smart Healthcare, College of Information Technology and Convergence, Pukyong National University, 45 Yongso-ro, Nam-gu, Busan, 48513, Republic of Korea.
| |
Collapse
|
33
|
Xu Q, Fa H, Yang P, Wang Q, Xing Q. Progress of biodegradable polymer application in cardiac occluders. J Biomed Mater Res B Appl Biomater 2024; 112:e35351. [PMID: 37974558 DOI: 10.1002/jbm.b.35351] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2023] [Revised: 09/08/2023] [Accepted: 10/30/2023] [Indexed: 11/19/2023]
Abstract
Cardiac septal defect is the most prevalent congenital heart disease and is typically treated with open-heart surgery under cardiopulmonary bypass. Since the 1990s, with the advancement of interventional techniques and minimally invasive transthoracic closure techniques, cardiac occluder implantation represented by the Amplazter products has been the preferred treatment option. Currently, most occlusion devices used in clinical settings are primarily composed of Nitinol as the skeleton. Nevertheless, long-term follow-up studies have revealed various complications related to metal skeletons, including hemolysis, thrombus, metal allergy, cardiac erosion, and even severe atrioventricular block. Thus, occlusion devices made of biodegradable materials have become the focus of research. Over the past two decades, several bioabsorbable cardiac occluders for ventricular septal defect and atrial septal defect have been designed and trialed on animals or humans. This review summarizes the research progress of bioabsorbable cardiac occluders, the advantages and disadvantages of different biodegradable polymers used to fabricate occluders, and discusses future research directions concerning the structures and materials of bioabsorbable cardiac occluders.
Collapse
Affiliation(s)
- Qiteng Xu
- Medical College, Qingdao University, Qingdao, China
| | - Hongge Fa
- Qingdao Women and Children's Hospital, QingdaoUniversity, Qingdao, China
| | - Ping Yang
- Medical College, Qingdao University, Qingdao, China
| | | | - Quansheng Xing
- Qingdao Women and Children's Hospital, QingdaoUniversity, Qingdao, China
| |
Collapse
|
34
|
Sun L, Jiang Y, Tan H, Liang R. Collagen and derivatives-based materials as substrates for the establishment of glioblastoma organoids. Int J Biol Macromol 2024; 254:128018. [PMID: 37967599 DOI: 10.1016/j.ijbiomac.2023.128018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2023] [Revised: 10/31/2023] [Accepted: 11/09/2023] [Indexed: 11/17/2023]
Abstract
Glioblastoma (GBM) is a common primary brain malignancy known for its ability to invade the brain, resistance to chemotherapy and radiotherapy, tendency to recur frequently, and unfavorable prognosis. Attempts have been undertaken to create 2D and 3D models, such as glioblastoma organoids (GBOs), to recapitulate the glioma microenvironment, explore tumor biology, and develop efficient therapies. However, these models have limitations and are unable to fully recapitulate the complex networks formed by the glioma microenvironment that promote tumor cell growth, invasion, treatment resistance, and immune escape. Therefore, it is necessary to develop advanced experimental models that could better simulate clinical physiology. Here, we review recent advances in natural biomaterials (mainly focus on collagen and its derivatives)-based GBO models, as in vitro experimental platforms to simulate GBM tumor biology and response to tested drugs. Special attention will be given to 3D models that use collagen, gelatin, further modified derivatives, and composite biomaterials (e.g., with other natural or synthetic polymers) as substrates. Application of these collagen/derivatives-constructed GBOs incorporate the physical as well as chemical characteristics of the GBM microenvironment. A perspective on future research is given in terms of current issues. Generally, natural materials based on collagen/derivatives (monomers or composites) are expected to enrich the toolbox of GBO modeling substrates and potentially help to overcome the limitations of existing models.
Collapse
Affiliation(s)
- Lu Sun
- Department of Targeting Therapy & Immunology; Department of Radiation Oncology, Cancer Center, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Yuelin Jiang
- West China Hospital, Sichuan University, Chengdu 610041, China.
| | - Hong Tan
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu 610065, China.
| | - Ruichao Liang
- Department of Neurosurgery, West China Hospital, Sichuan University, Chengdu 610041, China.
| |
Collapse
|
35
|
Yadav S, Khan J, Yadav A. Applications of Scaffolds in Tissue Engineering: Current Utilization and Future Prospective. Curr Gene Ther 2024; 24:94-109. [PMID: 37921144 DOI: 10.2174/0115665232262167231012102837] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2023] [Revised: 07/29/2023] [Accepted: 08/23/2023] [Indexed: 11/04/2023]
Abstract
Current regenerative medicine tactics focus on regenerating tissue structures pathologically modified by cell transplantation in combination with supporting scaffolds and biomolecules. Natural and synthetic polymers, bioresorbable inorganic and hybrid materials, and tissue decellularized were deemed biomaterials scaffolding because of their improved structural, mechanical, and biological abilities.Various biomaterials, existing treatment methodologies and emerging technologies in the field of Three-dimensional (3D) and hydrogel processing, and the unique fabric concerns for tissue engineering. A scaffold that acts as a transient matrix for cell proliferation and extracellular matrix deposition, with subsequent expansion, is needed to restore or regenerate the tissue. Diverse technologies are combined to produce porous tissue regenerative and tailored release of bioactive substances in applications of tissue engineering. Tissue engineering scaffolds are crucial ingredients. This paper discusses an overview of the various scaffold kinds and their material features and applications. Tabulation of the manufacturing technologies for fabric engineering and equipment, encompassing the latest fundamental and standard procedures.
Collapse
Affiliation(s)
- Shikha Yadav
- Department of Pharmacy, School of Medical and Allied Sciences, Galgotias University, Greater Noida, Uttar Pradesh, India
| | - Javed Khan
- Department of Pharmacy, School of Medical and Allied Sciences, Galgotias University, Greater Noida, Uttar Pradesh, India
| | - Agrima Yadav
- Department of Pharmacy, School of Medical and Allied Sciences, Galgotias University, Greater Noida, Uttar Pradesh, India
| |
Collapse
|
36
|
Zhong Y, Ma H, Lu Y, Cao L, Cheng YY, Tang X, Sun H, Song K. Investigation on repairing diabetic foot ulcer based on 3D bio-printing Gel/dECM/Qcs composite scaffolds. Tissue Cell 2023; 85:102213. [PMID: 37666183 DOI: 10.1016/j.tice.2023.102213] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2023] [Revised: 08/14/2023] [Accepted: 08/30/2023] [Indexed: 09/06/2023]
Abstract
Diabetic foot ulcers are one of the most serious of the numerous complications of diabetes mellitus, causing great physical trauma and financial stress to patients, and accelerating wound healing in diabetic patients remains one of the major clinical challenges. Exosomes from adipose-derived stem cells can directly and indirectly promote wound healing. However, due to the low retention rate of exosomes in the wound, exosome treatment is difficult to achieve the expected effect. Therefore, it is of great significance to synthesize a composite scaffold that can stably load exosomes and has antibacterial properties. In this study, fresh pig skin was decellularized to obtain decellularized matrix (dECM). Secondly, quaternized chitosan (Qcs) was modified with quaternary ammonium salt to make it soluble in water after quaternization. Finally, Gel-dECM-Qcs (GDQ) bioink was prepared by adding acellular matrix and quaternized chitosan with temperature sensitive gelatin (Gel) as carrier. Tissue engineered composite scaffolds were then prepared by extrusion 3D printing technology. Subsequently, the physicochemical properties, biocompatibility and antimicrobial capacity of the composite scaffolds were determined, and the data showed that the composite scaffolds had good mechanical properties, biocompatibility and antimicrobial capacity, and the maximum stress of the composite scaffolds was 1.16 ± 0.05 MPa, the composite scaffolds were able to proliferate and adhered to the L929 cells, and the kill rates of composite scaffolds against E. coli and S. aureus after incubation for 24 h were 93.24 ± 1.22 % and 97.34 ± 0.23 %, respectively. Overall, the GDQ composite scaffolds have good mechanical properties adapted to skin bending, its good biocompatibility can promote the growth and migration of fibroblasts, reshape injured tissues, accelerate the wound healing, and excellent antimicrobial ability can inhibit the growth of E. coli and S. aureus, reducing the impact of bacterial infections on wounds. Moreover, the composite scaffolds have the potential to be used as exosom-loaded hydrogel dressings, which provides a basis for the subsequent research on the repair of diabetic foot ulcers.
Collapse
Affiliation(s)
- Yiming Zhong
- Dalian Medical University, Dalian, Liaoning, 116011, China; Department of Hand and Foot Microsurgery, Dalian Municipal Central Hospital Affiliated of Dalian University of Technology, Dalian 116033, China
| | - Hailin Ma
- State Key Laboratory of Fine Chemicals, Dalian R&D Center for Stem Cell and Tissue Engineering, Dalian University of Technology, Dalian 116024, China
| | - Yueqi Lu
- State Key Laboratory of Fine Chemicals, Dalian R&D Center for Stem Cell and Tissue Engineering, Dalian University of Technology, Dalian 116024, China
| | - Liuyuan Cao
- State Key Laboratory of Fine Chemicals, Dalian R&D Center for Stem Cell and Tissue Engineering, Dalian University of Technology, Dalian 116024, China
| | - Yuen Yee Cheng
- Institute for Biomedical Materials and Devices, Faculty of Science, University of Technology Sydney, NSW 2007, Australia
| | - Xin Tang
- Dalian Medical University, Dalian, Liaoning, 116011, China; Department of Orthopedics, First Affiliated Hospital of Dalian Medical University, Dalian, Liaoning, 116011, China.
| | - Huanwei Sun
- Department of Hand and Foot Microsurgery, Dalian Municipal Central Hospital Affiliated of Dalian University of Technology, Dalian 116033, China.
| | - Kedong Song
- State Key Laboratory of Fine Chemicals, Dalian R&D Center for Stem Cell and Tissue Engineering, Dalian University of Technology, Dalian 116024, China.
| |
Collapse
|
37
|
Mineta S, Endo S, Ueno T. Optimization of decellularization methods using human small intestinal submucosa for scaffold generation in regenerative medicine. Int J Exp Pathol 2023; 104:313-320. [PMID: 37622735 PMCID: PMC10652692 DOI: 10.1111/iep.12492] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2023] [Revised: 06/28/2023] [Accepted: 08/06/2023] [Indexed: 08/26/2023] Open
Abstract
Porcine small intestinal submucosa, despite its successful use as a scaffold in regenerative medicine, has innate biomechanical heterogeneity. In this study, we hypothesized that human small intestinal submucosa could be a viable alternative bio-scaffold. For the first time, we characterize submucosal extraction from human small intestine and examine appropriate decellularization methods. In total, 16 human small intestinal submucosal samples were obtained and decellularized using three reported methods of porcine decellularization: Abraham, Badylak, and Luo. For each method, four specimens were decellularized. The remaining four specimens were designated as non-decellularized. We measured the amount of residual DNA and growth factors in decellularized human intestinal samples. Additionally, decellularized human small intestinal submucosa was co-cultured with mouse bone marrow-derived mesenchymal stem cells to examine mesenchymal stem cell survival and proliferation. The reference value for the amount of residual DNA deemed appropriate in decellularized tissue was established as 50 ng/mg of extracellular matrix dry weight or less. Abraham's method most successfully met this criterion. Measurement of residual growth factors revealed low levels observed in samples decellularized using the Abraham and Badylak methods. Co-culture of each small intestinal submucosal sample with mouse bone marrow-derived mesenchymal stem cells confirmed viable cell survival and proliferation in samples derived using protocols by Abraham and Badylak. Abraham's method most successfully met the criteria for efficient tissue decellularization and cell viability and proliferation. Thus, we consider this method most suitable for decellularization of human small intestinal submucosa.
Collapse
Affiliation(s)
- Shumei Mineta
- Department of Digestive SurgeryKawasaki Medical SchoolKurashikiJapan
| | - Shunji Endo
- Department of Digestive SurgeryKawasaki Medical SchoolKurashikiJapan
| | - Tomio Ueno
- Department of Digestive SurgeryKawasaki Medical SchoolKurashikiJapan
| |
Collapse
|
38
|
Dhandapani V, Vermette P. Decellularized bladder as scaffold to support proliferation and functionality of insulin-secreting pancreatic cells. J Biomed Mater Res B Appl Biomater 2023; 111:1890-1902. [PMID: 37306142 DOI: 10.1002/jbm.b.35292] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2023] [Revised: 05/07/2023] [Accepted: 05/31/2023] [Indexed: 06/13/2023]
Abstract
Loss in the number or function of insulin-producing β-cells in pancreatic islets has been associated with diabetes mellitus. Although islet transplantation can be an alternative treatment, complications such as apoptosis, ischaemia and loss of viability have been reported. The use of decellularized organs as scaffolds in tissue engineering is of interest owing to the unique ultrastructure and composition of the extracellular matrix (ECM) believed to act on tissue regeneration. In this study, a cell culture system has been designed to study the effect of decellularized porcine bladder pieces on INS-1 cells, a cell line secreting insulin in response to glucose stimulation. Porcine bladders were decellularized using two techniques: a detergent-containing and a detergent-free methods. The resulting ECMs were characterized for the removal of both cells and dsDNA. INS-1 cells were not viable on ECM produced using detergent (i.e., sodium dodecyl sulfate). INS-1 cells were visualized following 7 days of culture on detergent-free decellularized bladders using a cell viability and metabolism assay (MTT) and cell proliferation quantified (CyQUANT™ NF Cell Proliferation Assay). Further, glucose-stimulated insulin secretion and immunostaining confirmed that cells were functional in response to glucose stimulation, as well as they expressed insulin and interacted with the detergent-free produced ECM, respectively.
Collapse
Affiliation(s)
- Vignesh Dhandapani
- Laboratoire de bio-ingénierie et de biophysique de l'Université de Sherbrooke, Department of Chemical and Biotechnological Engineering, Université de Sherbrooke, Sherbrooke, Canada
- Centre de recherche du CHUS, Faculté de médecine et des sciences de la santé, Sherbrooke, Canada
| | - Patrick Vermette
- Laboratoire de bio-ingénierie et de biophysique de l'Université de Sherbrooke, Department of Chemical and Biotechnological Engineering, Université de Sherbrooke, Sherbrooke, Canada
- Centre de recherche du CHUS, Faculté de médecine et des sciences de la santé, Sherbrooke, Canada
| |
Collapse
|
39
|
Monteiro RF, Bakht SM, Gomez-Florit M, Stievani FC, Alves ALG, Reis RL, Gomes ME, Domingues RMA. Writing 3D In Vitro Models of Human Tendon within a Biomimetic Fibrillar Support Platform. ACS APPLIED MATERIALS & INTERFACES 2023. [PMID: 36952613 DOI: 10.1021/acsami.2c22371] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/18/2023]
Abstract
Tendinopathies are poorly understood diseases for which treatment remains challenging. Relevant in vitro models to study human tendon physiology and pathophysiology are therefore highly needed. Here we propose the automated 3D writing of tendon microphysiological systems (MPSs) embedded in a biomimetic fibrillar support platform based on cellulose nanocrystals (CNCs) self-assembly. Tendon decellularized extracellular matrix (dECM) was used to formulate bioinks that closely recapitulate the biochemical signature of tendon niche. A monoculture system recreating the cellular patterns and phenotype of the tendon core was first developed and characterized. This system was then incorporated with a vascular compartment to study the crosstalk between the two cell populations. The combined biophysical and biochemical cues of the printed pattern and dECM hydrogel were revealed to be effective in inducing human-adipose-derived stem cells (hASCs) differentiation toward the tenogenic lineage. In the multicellular system, chemotactic effects promoted endothelial cells migration toward the direction of the tendon core compartment, while the established cellular crosstalk boosted hASCs tenogenesis, emulating the tendon development stages. Overall, the proposed concept is a promising strategy for the automated fabrication of humanized organotypic tendon-on-chip models that will be a valuable new tool for the study of tendon physiology and pathogenesis mechanisms and for testing new tendinopathy treatments.
Collapse
Affiliation(s)
- Rosa F Monteiro
- 3B's Research Group, I3Bs─Research Institute on Biomaterials, Biodegradables and Biomimetics, University of Minho, Headquarters of the European Institute of Excellence on Tissue Engineering and Regenerative Medicine, AvePark, Parque de Ciência e Tecnologia, Zona Industrial da Gandra, 4805-017 Barco, Guimarães, Portugal
- ICVS/3B's─PT Government Associate Laboratory, 4800 Braga/Guimarães, Portugal
| | - Syeda M Bakht
- 3B's Research Group, I3Bs─Research Institute on Biomaterials, Biodegradables and Biomimetics, University of Minho, Headquarters of the European Institute of Excellence on Tissue Engineering and Regenerative Medicine, AvePark, Parque de Ciência e Tecnologia, Zona Industrial da Gandra, 4805-017 Barco, Guimarães, Portugal
- ICVS/3B's─PT Government Associate Laboratory, 4800 Braga/Guimarães, Portugal
| | - Manuel Gomez-Florit
- 3B's Research Group, I3Bs─Research Institute on Biomaterials, Biodegradables and Biomimetics, University of Minho, Headquarters of the European Institute of Excellence on Tissue Engineering and Regenerative Medicine, AvePark, Parque de Ciência e Tecnologia, Zona Industrial da Gandra, 4805-017 Barco, Guimarães, Portugal
- ICVS/3B's─PT Government Associate Laboratory, 4800 Braga/Guimarães, Portugal
| | - Fernanda C Stievani
- Department of Veterinary Surgery and Animal Reproduction, Regenerative Medicine Laboratory, School of Veterinary Medicine and Animal Science, São Paulo State University (UNESP), 18607-400 Botucatu, Brazil
| | - Ana L G Alves
- Department of Veterinary Surgery and Animal Reproduction, Regenerative Medicine Laboratory, School of Veterinary Medicine and Animal Science, São Paulo State University (UNESP), 18607-400 Botucatu, Brazil
| | - Rui L Reis
- 3B's Research Group, I3Bs─Research Institute on Biomaterials, Biodegradables and Biomimetics, University of Minho, Headquarters of the European Institute of Excellence on Tissue Engineering and Regenerative Medicine, AvePark, Parque de Ciência e Tecnologia, Zona Industrial da Gandra, 4805-017 Barco, Guimarães, Portugal
- ICVS/3B's─PT Government Associate Laboratory, 4800 Braga/Guimarães, Portugal
| | - Manuela E Gomes
- 3B's Research Group, I3Bs─Research Institute on Biomaterials, Biodegradables and Biomimetics, University of Minho, Headquarters of the European Institute of Excellence on Tissue Engineering and Regenerative Medicine, AvePark, Parque de Ciência e Tecnologia, Zona Industrial da Gandra, 4805-017 Barco, Guimarães, Portugal
- ICVS/3B's─PT Government Associate Laboratory, 4800 Braga/Guimarães, Portugal
| | - Rui M A Domingues
- 3B's Research Group, I3Bs─Research Institute on Biomaterials, Biodegradables and Biomimetics, University of Minho, Headquarters of the European Institute of Excellence on Tissue Engineering and Regenerative Medicine, AvePark, Parque de Ciência e Tecnologia, Zona Industrial da Gandra, 4805-017 Barco, Guimarães, Portugal
- ICVS/3B's─PT Government Associate Laboratory, 4800 Braga/Guimarães, Portugal
| |
Collapse
|
40
|
Effect of Electrospun PLGA/Collagen Scaffolds on Cell Adhesion, Viability, and Collagen Release: Potential Applications in Tissue Engineering. Polymers (Basel) 2023; 15:polym15051079. [PMID: 36904322 PMCID: PMC10006987 DOI: 10.3390/polym15051079] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2022] [Revised: 01/30/2023] [Accepted: 02/07/2023] [Indexed: 02/24/2023] Open
Abstract
The development of scaffolding obtained by electrospinning is widely used in tissue engineering due to porous and fibrous structures that can mimic the extracellular matrix. In this study, poly (lactic-co-glycolic acid) (PLGA)/collagen fibers were fabricated by electrospinning method and then evaluated in the cell adhesion and viability of human cervical carcinoma HeLa and NIH-3T3 fibroblast for potential application in tissue regeneration. Additionally, collagen release was assessed in NIH-3T3 fibroblasts. The fibrillar morphology of PLGA/collagen fibers was verified by scanning electron microscopy. The fiber diameter decreased in the fibers (PLGA/collagen) up to 0.6 µm. FT-IR spectroscopy and thermal analysis confirmed that both the electrospinning process and the blend with PLGA give structural stability to collagen. Incorporating collagen in the PLGA matrix promotes an increase in the material's rigidity, showing an increase in the elastic modulus (38%) and tensile strength (70%) compared to pure PLGA. PLGA and PLGA/collagen fibers were found to provide a suitable environment for the adhesion and growth of HeLa and NIH-3T3 cell lines as well as stimulate collagen release. We conclude that these scaffolds could be very effective as biocompatible materials for extracellular matrix regeneration, suggesting their potential applications in tissue bioengineering.
Collapse
|
41
|
Wei Z, Zhang J, Guo Z, Wu Z, Sun Y, Wang K, Duan R. Study on the preparation and properties of acellular matrix from the skin of silver carp (Hypophthalmichthys molitrix). J Biomed Mater Res B Appl Biomater 2023; 111:1328-1335. [PMID: 36811266 DOI: 10.1002/jbm.b.35236] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2022] [Revised: 12/29/2022] [Accepted: 01/30/2023] [Indexed: 02/24/2023]
Abstract
Acellular matrices are mainly composed of mammalian tissues, and aquatic tissues with lower biological risks and less religious restrictions are considered alternatives to mammalian tissues. The acellular fish skin matrix (AFSM) has been commercially available. Silver carp has the advantages of farmability, high yield and low price, but there are few studies on the silver carp acellular fish skin matrix (SC-AFSM). In this study, an acellular matrix with low DNA and endotoxin was prepared from the skin of silver carp. After treatment with trypsin/sodium dodecyl sulfate and Triton X-100 solutions, the DNA content in SC-AFSM reached 11.03 ± 0.85 ng/mg, and the endotoxin removal rate was 96.8%. The porosity of SC-AFSM was 79.64% ± 0.17%, which is favorable for cell infiltration and proliferation. The relative cell proliferation rate of SC-AFSM extract was 117.79% ± 15.26%. The wound healing experiment showed that SC-AFSM had no adverse acute pro-inflammatory response, which had a similar effect as commercial products in promoting tissue repair. Therefore, SC-AFSM has great application potential in biomaterials.
Collapse
Affiliation(s)
- Zeyu Wei
- Jiangsu Key Laboratory of Marine Bioresources and Environment, Jiangsu Ocean University, Lianyungang, China.,School of Food Science and Engineering, Jiangsu Ocean University, Lianyungang, China
| | - Junjie Zhang
- School of Food Science and Engineering, Jiangsu Ocean University, Lianyungang, China.,Co-Innovation Center of Jiangsu Marine Bio-Industry Technology, Jiangsu Ocean University, Lianyungang, China.,Jiangsu Institute of Marine Resources Development, Jiangsu Ocean University, Lianyungang, China
| | - Zhiwen Guo
- Jiangsu Key Laboratory of Marine Bioresources and Environment, Jiangsu Ocean University, Lianyungang, China.,Co-Innovation Center of Jiangsu Marine Bio-Industry Technology, Jiangsu Ocean University, Lianyungang, China.,College of Marine Science and Fisheries, Jiangsu Ocean University, Lianyungang, China
| | - Zhiming Wu
- School of Food Science and Engineering, Jiangsu Ocean University, Lianyungang, China
| | - Yaru Sun
- School of Food Science and Engineering, Jiangsu Ocean University, Lianyungang, China
| | - Ke Wang
- School of Food Science and Engineering, Jiangsu Ocean University, Lianyungang, China
| | - Rui Duan
- Jiangsu Key Laboratory of Marine Bioresources and Environment, Jiangsu Ocean University, Lianyungang, China.,Co-Innovation Center of Jiangsu Marine Bio-Industry Technology, Jiangsu Ocean University, Lianyungang, China.,College of Marine Science and Fisheries, Jiangsu Ocean University, Lianyungang, China
| |
Collapse
|
42
|
Wang B, Qinglai T, Yang Q, Li M, Zeng S, Yang X, Xiao Z, Tong X, Lei L, Li S. Functional acellular matrix for tissue repair. Mater Today Bio 2023; 18:100530. [PMID: 36601535 PMCID: PMC9806685 DOI: 10.1016/j.mtbio.2022.100530] [Citation(s) in RCA: 25] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2022] [Revised: 12/23/2022] [Accepted: 12/26/2022] [Indexed: 12/29/2022] Open
Abstract
In view of their low immunogenicity, biomimetic internal environment, tissue- and organ-like physicochemical properties, and functionalization potential, decellularized extracellular matrix (dECM) materials attract considerable attention and are widely used in tissue engineering. This review describes the composition of extracellular matrices and their role in stem-cell differentiation, discusses the advantages and disadvantages of existing decellularization techniques, and presents methods for the functionalization and characterization of decellularized scaffolds. In addition, we discuss progress in the use of dECMs for cartilage, skin, nerve, and muscle repair and the transplantation or regeneration of different whole organs (e.g., kidneys, liver, uterus, lungs, and heart), summarize the shortcomings of using dECMs for tissue and organ repair after refunctionalization, and examine the corresponding future prospects. Thus, the present review helps to further systematize the application of functionalized dECMs in tissue/organ transplantation and keep researchers up to date on recent progress in dECM usage.
Collapse
Affiliation(s)
- Bin Wang
- Department of Otorhinolaryngology Head and Neck Surgery, The Second Xiangya Hospital, Central South University, Changsha 410011, China
| | - Tang Qinglai
- Department of Otorhinolaryngology Head and Neck Surgery, The Second Xiangya Hospital, Central South University, Changsha 410011, China
| | - Qian Yang
- Department of Otorhinolaryngology Head and Neck Surgery, The Second Xiangya Hospital, Central South University, Changsha 410011, China
| | - Mengmeng Li
- Department of Otorhinolaryngology Head and Neck Surgery, The Second Xiangya Hospital, Central South University, Changsha 410011, China
| | - Shiying Zeng
- Department of Otorhinolaryngology Head and Neck Surgery, The Second Xiangya Hospital, Central South University, Changsha 410011, China
| | - Xinming Yang
- Department of Otorhinolaryngology Head and Neck Surgery, The Second Xiangya Hospital, Central South University, Changsha 410011, China
| | - Zian Xiao
- Department of Otorhinolaryngology Head and Neck Surgery, The Second Xiangya Hospital, Central South University, Changsha 410011, China
| | - Xinying Tong
- Department of Hemodialysis, The Second Xiangya Hospital, Central South University, Changsha 410011, Hunan, China
| | - Lanjie Lei
- State Key Laboratory of Bioelectronics, School of Biological Science and Medical Engineering, Southeast University, Nanjing 210096, China
| | - Shisheng Li
- Department of Otorhinolaryngology Head and Neck Surgery, The Second Xiangya Hospital, Central South University, Changsha 410011, China
| |
Collapse
|
43
|
Jiao W, Yu W, Wang Y, Zhang J, Wang Y, He H, Shi G. Fibrinogen/poly(l-lactide-co-caprolactone) copolymer scaffold: A potent adhesive material for urethral tissue regeneration in urethral injury treatment. Regen Ther 2023; 22:136-147. [PMID: 36793307 PMCID: PMC9923042 DOI: 10.1016/j.reth.2022.12.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2022] [Revised: 10/02/2022] [Accepted: 12/13/2022] [Indexed: 01/30/2023] Open
Abstract
Since a scarcity of sufficient grafting materials, several complications can arise after urothelial defect reconstruction surgery, including severe hypospadias. Accordingly, developing alternative therapies, such as urethral restoration via tissue engineering are needed. In the present study, we developed a potent adhesive and repairing material using fibrinogen-poly(l-lactide-co-caprolactone) copolymer (Fib-PLCL) nanofiber scaffold to achieve effective urethral tissue regeneration after seeding with epithelial cells on the surface. The in vitro result found the Fib-PLCL scaffold promoted the attachment and viability of epithelial cells on their surface. The increased expression levels of cytokeratin and actin filaments were observed in Fib-PLCL scaffold than PLCL scaffold. The in vivo urethral injury repairing potential of Fib-PLCL scaffold was evaluated using a rabbit urethral replacement model. In this study, a urethral defect was surgically excised and replaced with the Fib-PLCL and PLCL scaffolds or autograft. As expected, the animals healed well after surgery in the Fib-PLCL scaffold group, and no significant strictures were identified. As expected, the cellularized Fib/PLCL grafts have induced the luminal epithelialization, urethral smooth muscle cell remodelling, and capillary development all at the same time. Histological analysis revealed that the urothelial integrity in the Fib-PLCL group had progressed to that of a normal urothelium, with enhanced urethral tissue development. Based on the results, the present study suggests that the prepared fibrinogen-PLCL scaffold is more appropriate for urethral defect reconstruction.
Collapse
Affiliation(s)
- Wei Jiao
- Department of Urology, Shanghai Fifth People's Hospital, Fudan University, No. 801 Heqing Road, Minhang District, Shanghai 200240, China
| | - Wandong Yu
- Department of Urology, Shanghai Fifth People's Hospital, Fudan University, No. 801 Heqing Road, Minhang District, Shanghai 200240, China
| | - Yangyun Wang
- Department of Urology, Shanghai Fifth People's Hospital, Fudan University, No. 801 Heqing Road, Minhang District, Shanghai 200240, China
| | - Jun Zhang
- Department of Urology, Shanghai Fifth People's Hospital, Fudan University, No. 801 Heqing Road, Minhang District, Shanghai 200240, China
| | - Yang Wang
- Department of Urology, Shanghai Fifth People's Hospital, Fudan University, No. 801 Heqing Road, Minhang District, Shanghai 200240, China
| | - Hongbing He
- Shanghai Songli Biotechnology Co., Ltd, Shanghai 201206, China
| | - Guowei Shi
- Department of Urology, Shanghai Fifth People's Hospital, Fudan University, No. 801 Heqing Road, Minhang District, Shanghai 200240, China
- Corresponding author.
| |
Collapse
|
44
|
Kato A, Go T, Otsuki Y, Yokota N, Soo CS, Misaki N, Yajima T, Yokomise H. Perpendicular implantation of porcine trachea extracellular matrix for enhanced xenogeneic scaffold surface epithelialization in a canine model. Front Surg 2023; 9:1089403. [PMID: 36713663 PMCID: PMC9877415 DOI: 10.3389/fsurg.2022.1089403] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2022] [Accepted: 12/26/2022] [Indexed: 01/13/2023] Open
Abstract
Objective The availability of clinically applied medical materials in thoracic surgery remains insufficient, especially materials for treating tracheal defects. Herein, the potential of porcine extracellular matrix (P-ECM) as a new airway reconstruction material was explored by xenotransplanting it into a canine trachea. Methods P-ECM was first transplanted into the buttocks of Narc Beagle dogs (n = 3) and its overall immuno-induced effects were evaluated. Subsequently, nine dogs underwent surgery to create a tracheal defect that was 1 × 2 cm. In group A, the P-ECM was implanted parallel to the tracheal axis (n = 3), whereas in group B the P-ECM was implanted perpendicular to the tracheal axis (n = 6). The grafts were periodically observed by bronchoscopy and evaluated postoperatively at 1 and 3 months through macroscopic and microscopic examinations. Immunosuppressants were not administered. Statistical evaluation was performed for Bronchoscopic stenosis rate, graft epithelialization rate, shrinkage rate and ECM live-implantation rate. Results No sign of P-ECM rejection was observed after its implantation in the buttocks. Bronchoscopic findings showed no improvement concerning stenosis in group A until 3 months after surgery; epithelialization of the graft site was not evident, and the ECM site appeared scarred and faded. In contrast, stenosis gradually improved in group B, with continuous epithelium within the host tissues and P-ECM. Histologically, the graft site contracted longitudinally and no epithelialization was observed in group A, whereas full epithelialization was observed on the P-ECM in group B. No sign of cartilage regeneration was confirmed in both groups. No statistically significant differences were found in bronchoscopic stenosis rate, shrinkage rate and ECM live-implantation rate, but graft epithelialization rate showed a statistically significant difference (G-A; sporadic (25%) 3, vs. G-B; full covered (100%) 3; p = 0.047). Conclusions P-ECM can support full re-epithelialization without chondrocyte regeneration, with perpendicular implantation facilitating epithelialization of the ECM. Our results showed that our decellularized tracheal matrix holds clinical potential as a biological xenogeneic material for airway defect repair.
Collapse
|
45
|
Crum RJ, Capella-Monsonís H, Chang J, Dewey MJ, Kolich BD, Hall KT, El-Mossier SO, Nascari DG, Hussey GS, Badylak SF. Biocompatibility and biodistribution of matrix-bound nanovesicles in vitro and in vivo. Acta Biomater 2023; 155:113-122. [PMID: 36423817 DOI: 10.1016/j.actbio.2022.11.026] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2022] [Revised: 11/11/2022] [Accepted: 11/15/2022] [Indexed: 11/23/2022]
Abstract
Matrix-bound nanovesicles (MBV) are a distinct subtype of extracellular vesicles that are firmly embedded within biomaterials composed of extracellular matrix (ECM). MBV both store and transport a diverse, tissue specific portfolio of signaling molecules including proteins, miRNAs, and bioactive lipids. MBV function as a key mediator in ECM-mediated control of the local tissue microenvironment. One of the most important mechanisms by which MBV in ECM bioscaffolds support constructive tissue remodeling following injury is immunomodulation and, specifically, the promotion of an anti-inflammatory, pro-remodeling immune cell activation state. Recent in vivo studies have shown that isolated MBV have therapeutic efficacy in rodent models of both retinal damage and rheumatoid arthritis through the targeted immunomodulation of pro-inflammatory macrophages towards an anti-inflammatory activation state. While these results show the therapeutic potential of MBV administered independent of the rest of the ECM, the in vitro and in vivo safety and biodistribution profile of MBV remain uncharacterized. The purpose of the present study was to thoroughly characterize the pre-clinical safety profile of MBV through a combination of in vitro cytotoxicity and MBV uptake studies and in vivo toxicity, immunotoxicity, and imaging studies. The results showed that MBV isolated from porcine urinary bladder are well-tolerated and are not cytotoxic in cell culture, are non-toxic to the whole organism, and are not immunosuppressive compared to the potent immunosuppressive drug cyclophosphamide. Furthermore, this safety profile was sustained across a wide range of MBV doses. STATEMENT OF SIGNIFICANCE: Matrix-bound nanovesicles (MBV) are a distinct subtype of bioactive extracellular vesicles that are embedded within biomaterials composed of extracellular matrix (ECM). Recent studies have shown therapeutic efficacy of MBV in models of both retinal damage and rheumatoid arthritis through the targeted immunomodulation of pro-inflammatory macrophages towards an anti-inflammatory activation state. While these results show the therapeutic potential of MBV, the in vitro and in vivo biocompatibility and biodistribution profile of MBV remain uncharacterized. The results of the present study showed that MBV are a well-tolerated ECM-derived therapy that are not cytotoxic in cell culture, are non-toxic to the whole organism, and are not immunosuppressive. Collectively, these data highlight the translational feasibility of MBV therapeutics across a wide variety of clinical applications.
Collapse
Affiliation(s)
- Raphael J Crum
- McGowan Institute for Regenerative Medicine, University of Pittsburgh, Pittsburgh, USA
| | - Héctor Capella-Monsonís
- McGowan Institute for Regenerative Medicine, University of Pittsburgh, Pittsburgh, USA; Department of Surgery, School of Medicine, University of Pittsburgh, Pittsburgh, USA
| | - Jordan Chang
- McGowan Institute for Regenerative Medicine, University of Pittsburgh, Pittsburgh, USA
| | - Marley J Dewey
- McGowan Institute for Regenerative Medicine, University of Pittsburgh, Pittsburgh, USA; Department of Surgery, School of Medicine, University of Pittsburgh, Pittsburgh, USA
| | - Brian D Kolich
- McGowan Institute for Regenerative Medicine, University of Pittsburgh, Pittsburgh, USA
| | - Kelsey T Hall
- McGowan Institute for Regenerative Medicine, University of Pittsburgh, Pittsburgh, USA; Department of Surgery, School of Medicine, University of Pittsburgh, Pittsburgh, USA
| | - Salma O El-Mossier
- McGowan Institute for Regenerative Medicine, University of Pittsburgh, Pittsburgh, USA; Department of Surgery, School of Medicine, University of Pittsburgh, Pittsburgh, USA
| | - David G Nascari
- McGowan Institute for Regenerative Medicine, University of Pittsburgh, Pittsburgh, USA
| | - George S Hussey
- McGowan Institute for Regenerative Medicine, University of Pittsburgh, Pittsburgh, USA; Department of Pathology, School of Medicine, University of Pittsburgh, Pittsburgh, USA
| | - Stephen F Badylak
- McGowan Institute for Regenerative Medicine, University of Pittsburgh, Pittsburgh, USA; Department of Surgery, School of Medicine, University of Pittsburgh, Pittsburgh, USA; Department of Pathology, School of Medicine, University of Pittsburgh, Pittsburgh, USA; Department of Bioengineering, University of Pittsburgh, Pittsburgh, USA.
| |
Collapse
|
46
|
Chauhan A, Alam MA, Kaur A, Malviya R. Advancements and Utilizations of Scaffolds in Tissue Engineering and Drug Delivery. Curr Drug Targets 2023; 24:13-40. [PMID: 36221880 DOI: 10.2174/1389450123666221011100235] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2022] [Revised: 03/02/2022] [Accepted: 03/09/2022] [Indexed: 11/22/2022]
Abstract
The drug development process requires a thorough understanding of the scaffold and its three-dimensional structure. Scaffolding is a technique for tissue engineering and the formation of contemporary functioning tissues. Tissue engineering is sometimes referred to as regenerative medicine. They also ensure that drugs are delivered with precision. Information regarding scaffolding techniques, scaffolding kinds, and other relevant facts, such as 3D nanostructuring, are discussed in depth in this literature. They are specific and demonstrate localized action for a specific reason. Scaffold's acquisition nature and flexibility make it a new drug delivery technology with good availability and structural parameter management.
Collapse
Affiliation(s)
- Akash Chauhan
- Department of Pharmacy, School of Medical and Allied Sciences, Galgotias University, Greater Noida, Uttar Pradesh, India
| | - Md Aftab Alam
- Department of Pharmacy, School of Medical and Allied Sciences, Galgotias University, Greater Noida, Uttar Pradesh, India
| | - Awaneet Kaur
- Department of Pharmacy, School of Medical and Allied Sciences, Galgotias University, Greater Noida, Uttar Pradesh, India
| | - Rishabha Malviya
- Department of Pharmacy, School of Medical and Allied Sciences, Galgotias University, Greater Noida, Uttar Pradesh, India
| |
Collapse
|
47
|
Kamaraj M, Giri PS, Mahapatra S, Pati F, Rath SN. Bioengineering strategies for 3D bioprinting of tubular construct using tissue-specific decellularized extracellular matrix. Int J Biol Macromol 2022; 223:1405-1419. [PMID: 36375675 DOI: 10.1016/j.ijbiomac.2022.11.064] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2022] [Revised: 11/02/2022] [Accepted: 11/07/2022] [Indexed: 11/13/2022]
Abstract
The goal of the current study is to develop an extracellular matrix bioink that could mimic the biochemical components present in natural blood vessels. Here, we have used an innovative approach to recycle the discarded varicose vein for isolation of endothelial cells and decellularization of the same sample to formulate the decellularized extracellular matrix (dECM) bioink. The shift towards dECM bioink observed as varicose vein dECM provides the tissue-specific biochemical factors that will enhance the regeneration capability. Interestingly, the encapsulated umbilical cord mesenchymal stem cells expressed the markers of vascular smooth muscle cells because of the cues present in the vein dECM. Further, in vitro immunological investigation of dECM revealed a predominant M2 polarization which could further aid in tissue remodeling. A novel approach was used to fabricate vascular construct using 3D bioprinting without secondary support. The outcomes suggest that this could be a potential approach for patient- and tissue-specific blood vessel regeneration.
Collapse
Affiliation(s)
- Meenakshi Kamaraj
- Regenerative Medicine and Stem cell (RMS) Laboratory, Department of Biomedical Engineering, Indian Institute of Technology Hyderabad, Telangana, India
| | - Pravin Shankar Giri
- Regenerative Medicine and Stem cell (RMS) Laboratory, Department of Biomedical Engineering, Indian Institute of Technology Hyderabad, Telangana, India
| | - Sandeep Mahapatra
- Vascular & Endovascular Surgery, Nizam's Institute of Medical Sciences, Hyderabad, Telangana, India
| | - Falguni Pati
- BioFabTE Lab, Department of Biomedical Engineering, Indian Institute of Technology Hyderabad, Telangana, India
| | - Subha Narayan Rath
- Regenerative Medicine and Stem cell (RMS) Laboratory, Department of Biomedical Engineering, Indian Institute of Technology Hyderabad, Telangana, India.
| |
Collapse
|
48
|
Geevarghese R, Sajjadi SS, Hudecki A, Sajjadi S, Jalal NR, Madrakian T, Ahmadi M, Włodarczyk-Biegun MK, Ghavami S, Likus W, Siemianowicz K, Łos MJ. Biodegradable and Non-Biodegradable Biomaterials and Their Effect on Cell Differentiation. Int J Mol Sci 2022; 23:ijms232416185. [PMID: 36555829 PMCID: PMC9785373 DOI: 10.3390/ijms232416185] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2022] [Revised: 12/05/2022] [Accepted: 12/09/2022] [Indexed: 12/23/2022] Open
Abstract
Biomaterials for tissue scaffolds are key components in modern tissue engineering and regenerative medicine. Targeted reconstructive therapies require a proper choice of biomaterial and an adequate choice of cells to be seeded on it. The introduction of stem cells, and the transdifferentiation procedures, into regenerative medicine opened a new era and created new challenges for modern biomaterials. They must not only fulfill the mechanical functions of a scaffold for implanted cells and represent the expected mechanical strength of the artificial tissue, but furthermore, they should also assure their survival and, if possible, affect their desired way of differentiation. This paper aims to review how modern biomaterials, including synthetic (i.e., polylactic acid, polyurethane, polyvinyl alcohol, polyethylene terephthalate, ceramics) and natural (i.e., silk fibroin, decellularized scaffolds), both non-biodegradable and biodegradable, could influence (tissue) stem cells fate, regulate and direct their differentiation into desired target somatic cells.
Collapse
Affiliation(s)
- Rency Geevarghese
- Biotechnology Center, Silesian University of Technology, 44-100 Gliwice, Poland
| | - Seyedeh Sara Sajjadi
- School of Allied Medical Sciences, Shahid Beheshti University of Medical Sciences, Tehran 1971653313, Iran
| | - Andrzej Hudecki
- Łukasiewicz Network-Institute of Non-Ferrous Metals, 44-121 Gliwice, Poland
| | - Samad Sajjadi
- School of Allied Medical Sciences, Shahid Beheshti University of Medical Sciences, Tehran 1971653313, Iran
| | | | - Tayyebeh Madrakian
- Faculty of Chemistry, Bu-Ali Sina University, Hamedan 6516738695, Iran
- Autophagy Research Center, Shiraz University of Medical Sciences, Shiraz 7134845794, Iran
| | - Mazaher Ahmadi
- Faculty of Chemistry, Bu-Ali Sina University, Hamedan 6516738695, Iran
- Autophagy Research Center, Shiraz University of Medical Sciences, Shiraz 7134845794, Iran
| | - Małgorzata K. Włodarczyk-Biegun
- Biotechnology Center, Silesian University of Technology, 44-100 Gliwice, Poland
- Polymer Science, Zernike Institute for Advanced Materials, University of Groningen, Nijenborgh 4, 9747 AG Groningen, The Netherlands
| | - Saeid Ghavami
- Autophagy Research Center, Shiraz University of Medical Sciences, Shiraz 7134845794, Iran
- Department of Human Anatomy and Cell Science, University of Manitoba College of Medicine, Winnipeg, MB R3E 0V9, Canada
- Research Institutes of Oncology and Hematology, Cancer Care Manitoba-University of Manitoba, Winnipeg, MB R3E 0V9, Canada
- Biology of Breathing Theme, Children Hospital Research Institute of Manitoba, University of Manitoba, Winnipeg, MB R3E 0V9, Canada
- Faculty of Medicine in Zabrze, University of Technology in Katowice, 41-800 Zabrze, Poland
| | - Wirginia Likus
- Department of Anatomy, Faculty of Health Sciences in Katowice, Medical University of Silesia, 40-752 Katowice, Poland
| | - Krzysztof Siemianowicz
- Department of Biochemistry, Faculty of Medicine in Katowice, Medical University of Silesia, 40-752 Katowice, Poland
- Correspondence: (K.S.); (M.J.Ł.); Tel.: +48-32-237-2913 (M.J.Ł.)
| | - Marek J. Łos
- Biotechnology Center, Silesian University of Technology, 44-100 Gliwice, Poland
- Autophagy Research Center, Shiraz University of Medical Sciences, Shiraz 7134845794, Iran
- Correspondence: (K.S.); (M.J.Ł.); Tel.: +48-32-237-2913 (M.J.Ł.)
| |
Collapse
|
49
|
Palmosi T, Tolomeo AM, Cirillo C, Sandrin D, Sciro M, Negrisolo S, Todesco M, Caicci F, Santoro M, Dal Lago E, Marchesan M, Modesti M, Bagno A, Romanato F, Grumati P, Fabozzo A, Gerosa G. Small intestinal submucosa-derived extracellular matrix as a heterotopic scaffold for cardiovascular applications. Front Bioeng Biotechnol 2022; 10:1042434. [PMID: 36578513 PMCID: PMC9792098 DOI: 10.3389/fbioe.2022.1042434] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2022] [Accepted: 11/22/2022] [Indexed: 12/14/2022] Open
Abstract
Structural cardiac lesions are often surgically repaired using prosthetic patches, which can be biological or synthetic. In the current clinical scenario, biological patches derived from the decellularization of a xenogeneic scaffold are gaining more interest as they maintain the natural architecture of the extracellular matrix (ECM) after the removal of the native cells and remnants. Once implanted in the host, these patches can induce tissue regeneration and repair, encouraging angiogenesis, migration, proliferation, and host cell differentiation. Lastly, decellularized xenogeneic patches undergo cell repopulation, thus reducing host immuno-mediated response against the graft and preventing device failure. Porcine small intestinal submucosa (pSIS) showed such properties in alternative clinical scenarios. Specifically, the US FDA approved its use in humans for urogenital procedures such as hernia repair, cystoplasties, ureteral reconstructions, stress incontinence, Peyronie's disease, penile chordee, and even urethral reconstruction for hypospadias and strictures. In addition, it has also been successfully used for skeletal muscle tissue reconstruction in young patients. However, for cardiovascular applications, the results are controversial. In this study, we aimed to validate our decellularization protocol for SIS, which is based on the use of Tergitol 15 S 9, by comparing it to our previous and efficient method (Triton X 100), which is not more available in the market. For both treatments, we evaluated the preservation of the ECM ultrastructure, biomechanical features, biocompatibility, and final bioinductive capabilities. The overall analysis shows that the SIS tissue is macroscopically distinguishable into two regions, one smooth and one wrinkle, equivalent to the ultrastructure and biochemical and proteomic profile. Furthermore, Tergitol 15 S 9 treatment does not modify tissue biomechanics, resulting in comparable to the native one and confirming the superior preservation of the collagen fibers. In summary, the present study showed that the SIS decellularized with Tergitol 15 S 9 guarantees higher performances, compared to the Triton X 100 method, in all the explored fields and for both SIS regions: smooth and wrinkle.
Collapse
Affiliation(s)
- Tiziana Palmosi
- Laboratory of Cardiovascular Medicine, Department of Cardiac, Thoracic, Vascular Sciences and Public Health, University of Padova, Padua, Italy,L.i.f.e.L.a.b. Program, Consorzio per la Ricerca Sanitaria (CORIS), Veneto Region Padua, Italy
| | - Anna Maria Tolomeo
- Laboratory of Cardiovascular Medicine, Department of Cardiac, Thoracic, Vascular Sciences and Public Health, University of Padova, Padua, Italy,L.i.f.e.L.a.b. Program, Consorzio per la Ricerca Sanitaria (CORIS), Veneto Region Padua, Italy
| | - Carmine Cirillo
- Telethon Institute of Genetics and Medicine (TIGEM), Pozzuoli, Italy
| | - Debora Sandrin
- L.i.f.e.L.a.b. Program, Consorzio per la Ricerca Sanitaria (CORIS), Veneto Region Padua, Italy,Optics and Bioimaging Lab, Department of Physics and Astronomy, Fondazione Istituto di Ricerca Pediatrica Città della Speranza, University of Padova, Padua, Italy
| | | | - Susanna Negrisolo
- Laboratory of Immunopathology and Molecular Biology of the Kidney, Department of Women’s and Children’s Health, University of Padova, Padua, Italy
| | - Martina Todesco
- L.i.f.e.L.a.b. Program, Consorzio per la Ricerca Sanitaria (CORIS), Veneto Region Padua, Italy,Department of Industrial Engineering, University of Padova, Padua, Italy
| | | | - Michele Santoro
- Telethon Institute of Genetics and Medicine (TIGEM), Pozzuoli, Italy
| | - Eleonora Dal Lago
- Department of Industrial Engineering, University of Padova, Padua, Italy
| | | | - Michele Modesti
- Department of Industrial Engineering, University of Padova, Padua, Italy
| | - Andrea Bagno
- L.i.f.e.L.a.b. Program, Consorzio per la Ricerca Sanitaria (CORIS), Veneto Region Padua, Italy,Department of Industrial Engineering, University of Padova, Padua, Italy
| | - Filippo Romanato
- L.i.f.e.L.a.b. Program, Consorzio per la Ricerca Sanitaria (CORIS), Veneto Region Padua, Italy,Department of Physics and Astronomy “G. Galilei”, University of Padova, Padua, Italy
| | - Paolo Grumati
- Telethon Institute of Genetics and Medicine (TIGEM), Pozzuoli, Italy,Department of Clinical Medicine and Surgery, University of Napoli Federico II, Naples, Italy
| | - Assunta Fabozzo
- L.i.f.e.L.a.b. Program, Consorzio per la Ricerca Sanitaria (CORIS), Veneto Region Padua, Italy,Cardiac Surgery Unit, Hospital University of Padova, Padua, Italy,*Correspondence: Assunta Fabozzo,
| | - Gino Gerosa
- Laboratory of Cardiovascular Medicine, Department of Cardiac, Thoracic, Vascular Sciences and Public Health, University of Padova, Padua, Italy,L.i.f.e.L.a.b. Program, Consorzio per la Ricerca Sanitaria (CORIS), Veneto Region Padua, Italy,Cardiac Surgery Unit, Hospital University of Padova, Padua, Italy
| |
Collapse
|
50
|
Nishiguchi A, Taguchi T. Engineering thixotropic supramolecular gelatin-based hydrogel as an injectable scaffold for cell transplantation. Biomed Mater 2022; 18. [PMID: 36541468 DOI: 10.1088/1748-605x/aca501] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2022] [Accepted: 11/22/2022] [Indexed: 11/23/2022]
Abstract
Despite many efforts focusing on regenerative medicine, there are few clinically-available cell-delivery carriers to improve the efficacy of cell transplantation due to the lack of adequate scaffolds. Herein, we report an injectable scaffold composed of functionalized gelatin for application in cell transplantation. Injectable functionalized gelatin-based hydrogels crosslinked with reversible hydrogen bonding based on supramolecular chemistry were designed. The hydrogel exhibited thixotropy, enabling single syringe injection of cell-encapsulating hydrogels. Highly biocompatible and cell-adhesive hydrogels provide cellular scaffolds that promote cellular adhesion, spreading, and migration. Thein vivodegradation study revealed that the hydrogel gradually degraded for seven days, which may lead to prolonged retention of transplanted cells and efficient integration into host tissues. In volumetric muscle loss models of mice, cells were transplanted using hydrogels and proliferated in injured muscle tissues. Thixotropic and injectable hydrogels may serve as cell delivery scaffolds to improve graft survival in regenerative medicine.
Collapse
Affiliation(s)
- Akihiro Nishiguchi
- Polymers and Biomaterials Field, Research Center for Functional Materials, National Institute for Materials Science, 1-1 Namiki, Tsukuba, Ibaraki 305-0044, Japan
| | - Tetsushi Taguchi
- Polymers and Biomaterials Field, Research Center for Functional Materials, National Institute for Materials Science, 1-1 Namiki, Tsukuba, Ibaraki 305-0044, Japan
| |
Collapse
|