1
|
Black SAG, Stepanchuk AA, Templeton GW, Hernandez Y, Ota T, Roychoudhury S, Smith EE, Barber PA, Ismail Z, Fischer K, Zwiers A, Poulin MJ, Blennow K, Zetterberg H, Stys PK, Tsutsui S. Diagnosing Alzheimer's Disease from Circulating Blood Leukocytes Using a Fluorescent Amyloid Probe. J Alzheimers Dis 2021; 85:1721-1734. [PMID: 34958041 DOI: 10.3233/jad-215402] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
BACKGROUND Toxic amyloid-β (Aβ) peptides aggregate into higher molecular weight assemblies and accumulate not only in the extracellular space, but also in the walls of blood vessels in the brain, increasing their permeability, and promoting immune cell migration and activation. Given the prominent role of the immune system, phagocytic blood cells may contact pathological brain materials. OBJECTIVE To develop a novel method for early Alzheimer's disease (AD) detection, we used blood leukocytes, that could act as "sentinels" after trafficking through the brain microvasculature, to detect pathological amyloid by labelling with a conformationally-sensitive fluorescent amyloid probe and imaging with confocal spectral microscopy. METHODS Formalin-fixed peripheral blood mononuclear cells (PBMCs) from cognitively healthy control (HC) subjects, mild cognitive impairment (MCI) and AD patients were stained with the fluorescent amyloid probe K114, and imaged. Results were validated against cerebrospinal fluid (CSF) biomarkers and clinical diagnosis. RESULTS K114-labeled leukocytes exhibited distinctive fluorescent spectral signatures in MCI/AD subjects. Comparing subjects with single CSF biomarker-positive AD/MCI to negative controls, our technique yielded modest AUCs, which improved to the 0.90 range when only MCI subjects were included in order to measure performance in an early disease state. Combining CSF Aβ 42 and t-Tau metrics further improved the AUC to 0.93. CONCLUSION Our method holds promise for sensitive detection of AD-related protein misfolding in circulating leukocytes, particularly in the early stages of disease.
Collapse
Affiliation(s)
- Stefanie A G Black
- Hotchkiss Brain Institute, Department of Clinical Neurosciences, Cumming School of Medicine, University of Calgary, Calgary AB, Canada.,Amira Medical Technologies Inc., Calgary, AB, Canada
| | - Anastasiia A Stepanchuk
- Hotchkiss Brain Institute, Department of Clinical Neurosciences, Cumming School of Medicine, University of Calgary, Calgary AB, Canada
| | | | - Yda Hernandez
- Department of Physiology and Pharmacology, Libin Cardiovascular Institute of Alberta, Faculty of Kinesiology, University of Calgary, Calgary AB, Canada
| | - Tomoko Ota
- Hotchkiss Brain Institute, Department of Clinical Neurosciences, Cumming School of Medicine, University of Calgary, Calgary AB, Canada
| | - Shyamosree Roychoudhury
- Hotchkiss Brain Institute, Department of Clinical Neurosciences, Cumming School of Medicine, University of Calgary, Calgary AB, Canada
| | - Eric E Smith
- Hotchkiss Brain Institute, Department of Clinical Neurosciences, Cumming School of Medicine, University of Calgary, Calgary AB, Canada
| | - Philip A Barber
- Hotchkiss Brain Institute, Department of Clinical Neurosciences, Cumming School of Medicine, University of Calgary, Calgary AB, Canada.,Calgary Stroke Program, Seaman Family MR Center, Departments of Clinical Neurosciences and Radiology, Foothills Medical Centre, Calgary AB, Canada.,Department of Community Health Sciences, University of Calgary, Calgary AB, Canada
| | - Zahinoor Ismail
- Hotchkiss Brain Institute, Department of Clinical Neurosciences, Cumming School of Medicine, University of Calgary, Calgary AB, Canada.,Department of Psychiatry, and the Mathison Centre for Mental Health Research & Education, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada.,Department of Community Health Sciences, University of Calgary, Calgary AB, Canada.,O'Brien Institute of Public Health, University of Calgary, Calgary AB, Canada
| | - Karyn Fischer
- Hotchkiss Brain Institute, Department of Clinical Neurosciences, Cumming School of Medicine, University of Calgary, Calgary AB, Canada
| | - Angela Zwiers
- Hotchkiss Brain Institute, Department of Clinical Neurosciences, Cumming School of Medicine, University of Calgary, Calgary AB, Canada
| | - Marc J Poulin
- Hotchkiss Brain Institute, Department of Clinical Neurosciences, Cumming School of Medicine, University of Calgary, Calgary AB, Canada.,O'Brien Institute of Public Health, University of Calgary, Calgary AB, Canada.,Department of Physiology and Pharmacology, Libin Cardiovascular Institute of Alberta, Faculty of Kinesiology, University of Calgary, Calgary AB, Canada
| | - Kaj Blennow
- Clinical Neurochemistry Laboratory, Sahlgrenska University Hospital, Gothenburg, Sweden.,Department of Psychiatry and Neurochemistry, Institute of Neuroscience and Physiology, Sahlgrenska Academy at University of Gothenburg, Gothenburg, Sweden
| | - Henrik Zetterberg
- Clinical Neurochemistry Laboratory, Sahlgrenska University Hospital, Gothenburg, Sweden.,Department of Psychiatry and Neurochemistry, Institute of Neuroscience and Physiology, Sahlgrenska Academy at University of Gothenburg, Gothenburg, Sweden.,Department of Neurodegenerative Disease, University College London Queen Square Institute of Neurology, London, UK.,UK Dementia Research Institute, University College London, London, UK
| | - Peter K Stys
- Hotchkiss Brain Institute, Department of Clinical Neurosciences, Cumming School of Medicine, University of Calgary, Calgary AB, Canada
| | - Shigeki Tsutsui
- Hotchkiss Brain Institute, Department of Clinical Neurosciences, Cumming School of Medicine, University of Calgary, Calgary AB, Canada.,Amira Medical Technologies Inc., Calgary, AB, Canada
| |
Collapse
|
2
|
Reed J, Reichelt M, Wetzel SA. Lymphocytes and Trogocytosis-Mediated Signaling. Cells 2021; 10:1478. [PMID: 34204661 PMCID: PMC8231098 DOI: 10.3390/cells10061478] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2021] [Revised: 06/07/2021] [Accepted: 06/10/2021] [Indexed: 12/21/2022] Open
Abstract
Trogocytosis is the intercellular transfer of membrane and membrane-associated molecules. This underappreciated process has been described in a variety of biological settings including neuronal remodeling, fertilization, viral and bacterial spread, and cancer, but has been most widely studied in cells of the immune system. Trogocytosis is performed by multiple immune cell types, including basophils, macrophages, dendritic cells, neutrophils, natural killer cells, B cells, γδ T cells, and CD4+ and CD8+ αβ T cells. Although not expressed endogenously, the presence of trogocytosed molecules on cells has the potential to significantly impact an immune response and the biology of the individual trogocytosis-positive cell. Many studies have focused on the ability of the trogocytosis-positive cells to interact with other immune cells and modulate the function of responders. Less understood and arguably equally important is the impact of these molecules on the individual trogocytosis-positive cell. Molecules that have been reported to be trogocytosed by cells include cognate ligands for receptors on the individual cell, such as activating NK cell ligands and MHC:peptide. These trogocytosed molecules have been shown to interact with receptors on the trogocytosis-positive cell and mediate intracellular signaling. In this review, we discuss the impact of this trogocytosis-mediated signaling on the biology of the individual trogocytosis-positive cell by focusing on natural killer cells and CD4+ T lymphocytes.
Collapse
Affiliation(s)
- Jim Reed
- Division of Biological Sciences, University of Montana, Missoula, MT 59812, USA; (J.R.); (M.R.)
| | - Madison Reichelt
- Division of Biological Sciences, University of Montana, Missoula, MT 59812, USA; (J.R.); (M.R.)
| | - Scott A. Wetzel
- Division of Biological Sciences, University of Montana, Missoula, MT 59812, USA; (J.R.); (M.R.)
- Center for Environmental Health Sciences, University of Montana, Missoula, MT 59812, USA
| |
Collapse
|
3
|
Cwykiel J, Madajka-Niemeyer M, Siemionow M. Development of Donor Recipient Chimeric Cells of bone marrow origin as a novel approach for tolerance induction in transplantation. Stem Cell Investig 2021; 8:8. [PMID: 33969113 DOI: 10.21037/sci-2020-044] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2020] [Accepted: 03/03/2021] [Indexed: 12/14/2022]
Abstract
Background Cell therapies and chimerism-based strategies are currently the most successful approach for tolerance induction in transplantation. This study aimed to establish and characterize novel Donor Recipient Chimeric Ccell (DRCC) therapy of bone marrow (BM) origin presenting donor-recipient phenotype to support tolerance induction. Methods Ex vivo fusions of fully MHC-mismatched BM cells from ACI (RT1a) and Lewis (RT1l) rats were performed using polyethylene-glycol (PEG). The creation of rat DRCC was tested by flow cytometry (FC), confocal microscopy and PCR. FC characterized DRCC's phenotype (CD3, CD4, CD8, CD45, CD90, CD11b/c, CD45RA, OX-82, or CD4/CD25) and apoptosis, while mixed lymphocyte reaction assessed DRCC's immunogenicity and colony forming unit assay tested DRCC's differentiation and proliferation. DRCC's polyploidy was evaluated using Hoechst33342 staining and COMET assay tested genotoxicity of fusion procedure. ELISA analyzed the secretion of IL-2, IL-4, IL-10, TGFß1, IFNγ and TNFα by DRCC at day 1, 5 and 14 post-fusion. The DRCC's phenotype after long-term culturing was assessed by reverse-transcription PCR. Results The chimeric state of DRCC was confirmed. Fusion did not change the expression of hematopoietic markers compared to BM controls. Although an increased number of early and late apoptotic (Annexin V+/Sytox blue- and Annexin V+/Sytox blue+, respectively) DRCC was detected at 24h post-fusion, the number significantly decreased at day 5 (38.4%±3.1% and 22.6%±2.5%, vs. 28.3%±2.5% and 13.9%±2.6%, respectively, P<0.05). DRCC presented decreased immunogenicity, increased expression of IL-10 and TGFβ1 and proliferative potential comparable to BM controls. The average percentage of tetraploid DRCC was 3.1%±0.2% compared to 0.96%±0.1% in BM controls. The lack of damage to the DRCC's DNA content supported the DRCC's safety. In culture, DRCC maintained proliferation for up to 28 days while preserving hematopoietic profile. Conclusions This study confirmed feasibility of DRCC creation via ex vivo PEG mediated fusion. The created DRCC revealed pro-tolerogenic properties indicating potential immunomodulatory effect of DRCC therapy when applied in vivo to support tolerance induction in solid organ and vascularized composite allograft transplantation.
Collapse
Affiliation(s)
- Joanna Cwykiel
- Department of Orthopaedics, University of Illinois at Chicago, Chicago, IL, USA.,Department of Plastic Surgery, Cleveland Clinic, Cleveland, Ohio, USA
| | | | - Maria Siemionow
- Department of Orthopaedics, University of Illinois at Chicago, Chicago, IL, USA.,Department of Plastic Surgery, Cleveland Clinic, Cleveland, Ohio, USA.,Department of Surgery, Poznan University of Medical Sciences, Poznan, Poland
| |
Collapse
|
4
|
Yao X, Matosevic S. Chemokine networks modulating natural killer cell trafficking to solid tumors. Cytokine Growth Factor Rev 2021; 59:36-45. [PMID: 33495094 DOI: 10.1016/j.cytogfr.2020.12.003] [Citation(s) in RCA: 49] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2020] [Revised: 12/17/2020] [Accepted: 12/24/2020] [Indexed: 01/02/2023]
Abstract
Natural killer (NK) cell-based cell therapy has been emerging as a powerful weapon in the treatment of multiple malignancies. However, the inadequate infiltration of the therapeutic NK cells into solid tumors remains a big challenge to their clinical utility. Chemokine networks, which play essential roles in the migration of lymphocytes, have been recognized as critical in driving the intratumoral infiltration of NK cells via interactions between soluble chemokines and their receptors. Often, such interactions are complex and disease-specific. In the context of NK cells, chemokine receptors of note have included CCR2, CCR5, CCR7, CXCR3, and CX3CR1. The immunobiology of chemokine-receptor interactions has fueled the development of approaches that hope to improve the infiltration of NK cells into the microenvironment of solid tumors. Stimulation of NK cells ex vivo in the presence of various cytokines (such as IL-2, IL-15, and IL-21) and genetic engineering of NK cells have been utilized to alter the chemokine receptor profile and generate NK cells with higher infiltrating capacity. Additionally, the immune-suppressive tumor microenvironment has also been targeted, by introducing, either directly or indirectly, chemokine ligands which NK cells are able to respond to, ultimately creating a more hospitable niche for NK cell trafficking. Such strategies have promoted the infiltration and activity of infused NK cells into multiple solid tumors. In this review, we discuss how chemokine receptors and their ligands coordinate and how they can be manipulated to regulate the trafficking, distribution, and residence of NK cells in solid tumors.
Collapse
Affiliation(s)
- Xue Yao
- Department of Industrial and Physical Pharmacy, Purdue University, West Lafayette, IN, 47907, USA
| | - Sandro Matosevic
- Department of Industrial and Physical Pharmacy, Purdue University, West Lafayette, IN, 47907, USA; Center for Cancer Research, Purdue University, West Lafayette, IN, 47907 USA.
| |
Collapse
|
5
|
Wu M, Wong HY, Lin JL, Moliner A, Schwarz H. Induction of CD137 expression by viral genes reduces T cell costimulation. J Cell Physiol 2019; 234:21076-21088. [DOI: 10.1002/jcp.28710] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2019] [Revised: 03/26/2019] [Accepted: 04/10/2019] [Indexed: 12/28/2022]
Affiliation(s)
- Meihui Wu
- Department of Physiology Yong Loo Lin School of Medicine, National University of Singapore Singapore
- Immunology Programme Life Sciences Institute, National University of Singapore Singapore
| | - Hiu Yi Wong
- Department of Physiology Yong Loo Lin School of Medicine, National University of Singapore Singapore
- Immunology Programme Life Sciences Institute, National University of Singapore Singapore
| | - Jia Le Lin
- Department of Physiology Yong Loo Lin School of Medicine, National University of Singapore Singapore
- Immunology Programme Life Sciences Institute, National University of Singapore Singapore
| | - Annalena Moliner
- Immunology Programme Life Sciences Institute, National University of Singapore Singapore
| | - Herbert Schwarz
- Department of Physiology Yong Loo Lin School of Medicine, National University of Singapore Singapore
- Immunology Programme Life Sciences Institute, National University of Singapore Singapore
| |
Collapse
|
6
|
Abstract
Trogocytosis is a rapid contact-dependent process by which lymphocytes acquire membrane patches from the target cells ('donor' cells) with which they interact and this phenomenon has been shown to occur in various immune cells. The surface molecules acquired through trogocytosis are functionally incorporated in the 'acceptor' cells transiently. We had previously demonstrated that trogocytosis can be utilized in place of gene transfer to engineer surface receptor expression on NK cells for adoptive immunotherapy applications. In this chapter, we describe detailed protocol for trogocytosis-co-culture of NK cell with the donor cell line, phenotypic assessment of receptor uptake and persistence, and assessment of NK cell function (migration) following receptor acquisition.
Collapse
|
7
|
Liu Q, Rojas-Canales DM, Divito SJ, Shufesky WJ, Stolz DB, Erdos G, Sullivan MLG, Gibson GA, Watkins SC, Larregina AT, Morelli AE. Donor dendritic cell-derived exosomes promote allograft-targeting immune response. J Clin Invest 2016; 126:2805-20. [PMID: 27348586 DOI: 10.1172/jci84577] [Citation(s) in RCA: 243] [Impact Index Per Article: 27.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2015] [Accepted: 05/04/2016] [Indexed: 12/11/2022] Open
Abstract
The immune response against transplanted allografts is one of the most potent reactions mounted by the immune system. The acute rejection response has been attributed to donor dendritic cells (DCs), which migrate to recipient lymphoid tissues and directly activate alloreactive T cells against donor MHC molecules. Here, using a murine heart transplant model, we determined that only a small number of donor DCs reach lymphoid tissues and investigated how this limited population of donor DCs efficiently initiates the alloreactive T cell response that causes acute rejection. In our mouse model, efficient passage of donor MHC molecules to recipient conventional DCs (cDCs) was dependent on the transfer of extracellular vesicles (EVs) from donor DCs that migrated from the graft to lymphoid tissues. These EVs shared characteristics with exosomes and were internalized or remained attached to the recipient cDCs. Recipient cDCs that acquired exosomes became activated and triggered full activation of alloreactive T cells. Depletion of recipient cDCs after cardiac transplantation drastically decreased presentation of donor MHC molecules to directly alloreactive T cells and delayed graft rejection in mice. These findings support a key role for transfer of donor EVs in the generation of allograft-targeting immune responses and suggest that interrupting this process has potential to dampen the immune response to allografts.
Collapse
|
8
|
Li KJ, Wu CH, Shen CY, Kuo YM, Yu CL, Hsieh SC. Membrane Transfer from Mononuclear Cells to Polymorphonuclear Neutrophils Transduces Cell Survival and Activation Signals in the Recipient Cells via Anti-Extrinsic Apoptotic and MAP Kinase Signaling Pathways. PLoS One 2016; 11:e0156262. [PMID: 27258015 PMCID: PMC4892539 DOI: 10.1371/journal.pone.0156262] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2015] [Accepted: 05/11/2016] [Indexed: 12/11/2022] Open
Abstract
The biological significance of membrane transfer (trogocytosis) between polymorphonuclear neutrophils (PMNs) and mononuclear cells (MNCs) remains unclear. We investigated the biological/immunological effects and molecular basis of trogocytosis among various immune cells in healthy individuals and patients with active systemic lupus erythematosus (SLE). By flow cytometry, we determined that molecules in the immunological synapse, including HLA class-I and-II, CD11b and LFA-1, along with CXCR1, are exchanged among autologous PMNs, CD4+ T cells, and U937 cells (monocytes) after cell-cell contact. Small interfering RNA knockdown of the integrin adhesion molecule CD11a in U937 unexpectedly enhanced the level of total membrane transfer from U937 to PMN cells. Functionally, phagocytosis and IL-8 production by PMNs were enhanced after co-culture with T cells. Total membrane transfer from CD4+ T to PMNs delayed PMN apoptosis by suppressing the extrinsic apoptotic molecules, BAX, MYC and caspase 8. This enhancement of activities of PMNs by T cells was found to be mediated via p38- and P44/42-Akt-MAP kinase pathways and inhibited by the actin-polymerization inhibitor, latrunculin B, the clathrin inhibitor, Pitstop-2, and human immunoglobulin G, but not by the caveolin inhibitor, methyl-β-cyclodextrin. In addition, membrane transfer from PMNs enhanced IL-2 production by recipient anti-CD3/anti-CD28 activated MNCs, and this was suppressed by inhibitors of mitogen-activated protein kinase (PD98059) and protein kinase C (Rottlerin). Of clinical significance, decreased total membrane transfer from PMNs to MNCs in patients with active SLE suppressed mononuclear IL-2 production. In conclusion, membrane transfer from MNCs to PMNs, mainly at the immunological synapse, transduces survival and activation signals to enhance PMN functions and is dependent on actin polymerization, clathrin activation, and Fcγ receptors, while membrane transfer from PMNs to MNCs depends on MAP kinase and PKC signaling. Defective membrane transfer from PMNs to MNCs in patients with active systemic lupus erythematous suppressed activated mononuclear IL-2 production.
Collapse
Affiliation(s)
- Ko-Jen Li
- Institute of Clinical Medicine, National Yang-Ming University College of Medicine, Taipei, Taiwan
- Department of Internal Medicine, National Taiwan University Hospital, Taipei, Taiwan
| | - Cheng-Han Wu
- Institute of Clinical Medicine, National Taiwan University College of Medicine, Taipei, Taiwan
- Department of Internal Medicine, National Taiwan University Hospital, Taipei, Taiwan
| | - Chieh-Yu Shen
- Institute of Clinical Medicine, National Taiwan University College of Medicine, Taipei, Taiwan
- Department of Internal Medicine, National Taiwan University Hospital, Taipei, Taiwan
| | - Yu-Min Kuo
- Institute of Clinical Medicine, National Taiwan University College of Medicine, Taipei, Taiwan
- Department of Internal Medicine, National Taiwan University Hospital, Taipei, Taiwan
| | - Chia-Li Yu
- Institute of Molecular Medicine, National Taiwan University College of Medicine, Taipei, Taiwan
- Department of Internal Medicine, National Taiwan University Hospital, Taipei, Taiwan
| | - Song-Chou Hsieh
- Department of Internal Medicine, National Taiwan University Hospital, Taipei, Taiwan
- * E-mail:
| |
Collapse
|
9
|
Rajendran S, Ho WT, Schwarz H. CD137 signaling in Hodgkin and Reed-Sternberg cell lines induces IL-13 secretion, immune deviation and enhanced growth. Oncoimmunology 2016; 5:e1160188. [PMID: 27471634 PMCID: PMC4938358 DOI: 10.1080/2162402x.2016.1160188] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2015] [Revised: 02/13/2016] [Accepted: 02/25/2016] [Indexed: 01/05/2023] Open
Abstract
CD137 and its ligand, CD137L, are expressed on activated T cells and antigen-presenting cells (APC), respectively, and are powerful inducers of cellular, type 1 immune responses. CD137 is ectopically expressed by Hodgkin and Reed-Sternberg (HRS) cells, the malignant cells in Hodgkin lymphoma (HL). Here we report that CD137 transmits signals into HRS cells, which induce the secretion of IL-13. IL-13 in conditioned supernatants of HRS cell lines inhibits the secretion of IFNγ by peripheral blood mononuclear cells (PBMC). Since IFNγ is essential for the development of a type 1 immune response, CD137-induced IL-13 secretion facilitates escape from immune surveillance. Further, CD137-induced IL-13 enhances the growth of HRS cell lines. CD137, IL-13 double-positive cells could be detected in the majority (58%) of HL patient samples, providing clinical evidence for a role of IL-13 induction by CD137 during HL pathogenesis. This study validates CD137 as a candidate target for immunotherapy of HL.
Collapse
Affiliation(s)
| | | | - Herbert Schwarz
- Department of Physiology
- NUS Immunology Programme, Life Sciences Institute, National University of Singapore, Singapore
| |
Collapse
|
10
|
Gallegos CE, Michelin S, Dubner D, Carosella ED. Immunomodulation of classical and non-classical HLA molecules by ionizing radiation. Cell Immunol 2016; 303:16-23. [PMID: 27113815 DOI: 10.1016/j.cellimm.2016.04.005] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2016] [Revised: 04/13/2016] [Accepted: 04/16/2016] [Indexed: 01/06/2023]
Abstract
Radiotherapy has been employed for the treatment of oncological patients for nearly a century, and together with surgery and chemotherapy, radiation oncology constitutes one of the three pillars of cancer therapy. Ionizing radiation has complex effects on neoplastic cells and on tumor microenvironment: beyond its action as a direct cytotoxic agent, tumor irradiation triggers a series of alterations in tumoral cells, which includes the de novo synthesis of particular proteins and the up/down-regulation of cell surface molecules. Additionally, ionizing radiation may induce the release of "danger signals" which may, in turn lead to cellular and molecular responses by the immune system. This immunomodulatory action of ionizing radiation highlights the importance of the combined use (radiotherapy plus immunotherapy) for cancer healing. Major histocompatibility complex antigens (also called Human Leukocyte Antigens, HLA in humans) are one of those molecules whose expression is modulated after irradiation. This review summarizes the modulatory properties of ionizing radiation on the expression of HLA class I (classical and non-classical) and class II molecules, with special emphasis in non-classical HLA-I molecules.
Collapse
Affiliation(s)
- Cristina E Gallegos
- Radiopathology Laboratory, Nuclear Regulatory Authority (ARN), Buenos Aires, Argentina; Instituto de Ciencias Biológicas y Biomédicas del Sur (INBIOSUR), Universidad Nacional del Sur (UNS), CONICET, Toxicology laboratory, Bahía Blanca, Argentina(2).
| | - Severino Michelin
- Radiopathology Laboratory, Nuclear Regulatory Authority (ARN), Buenos Aires, Argentina
| | - Diana Dubner
- Radiopathology Laboratory, Nuclear Regulatory Authority (ARN), Buenos Aires, Argentina
| | - Edgardo D Carosella
- CEA, Institute of Emerging Diseases and Innovative Therapies (iMETI), Research Division in Hematology and Immunology (SRHI), Paris, France; University Paris Diderot, Sorbonne Paris Cité, UMR E-5 Institut Universitaire d'Hematologie, Saint-Louis Hospital, Paris, France
| |
Collapse
|
11
|
Shao Z, Harfuddin Z, Pang WL, Nickles E, Koh LK, Schwarz H. Trogocytic CD137 transfer causes an internalization of CD137 ligand on murine APCs leading to reduced T cell costimulation. J Leukoc Biol 2015; 97:909-919. [DOI: 10.1189/jlb.3a0213-079rrr] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/30/2023] Open
Abstract
Abstract
CD137 ligand (CD137L) is expressed on APCs and crosslinks CD137, a powerful costimulatory molecule on T cells during cognate interactions, and thereby greatly enhances immune responses. We report that CD137 can be transferred from activated T cells and from tumor cells that express CD137 to other cells via trogocytosis. This trogocytic transfer is independent of CD137L expression by the recipient cell. However, if CD137L is present on the recipient cell, the transferred CD137 binds to CD137L and the CD137-CD137L complex becomes internalized. The removal of CD137L from the surface of APCs lowers their ability to costimulate T cells, as evidenced by a reduced IFN-γ secretion. Removal of CD137L on APCs by trogocytic transfer of CD137 occurs within 1 h and requires cell-cell contact and the continuous presence of CD137-expressing cells. Bidirectional signaling exists for the CD137 receptor/ligand system, because CD137L also signals into APCs. We propose that the trogocytic transfer of CD137 from activated T cells to APCs and the subsequent removal of CD137L from APCs is a physiologic regulatory mechanism that limits immune activity. Furthermore, we hypothesize that the trogocytic transfer of CD137 occurs in cancers and quenches the activity of APCs, contributing to the cancer cells escaping immune surveillance. Taken together, our findings demonstrate that the trogocytic transfer of CD137 leads to an internalization of CD137L on APCs and a reduction in immune activity.
Collapse
Affiliation(s)
- Zhe Shao
- Department of Physiology, National University of Singapore , Singapore , Singapore
- Immunology Programme, National University of Singapore , Singapore , Singapore
| | - Zulkarnain Harfuddin
- Department of Physiology, National University of Singapore , Singapore , Singapore
- Immunology Programme, National University of Singapore , Singapore , Singapore
- NUS Graduate School for Integrative Sciences and Engineering, National University of Singapore , Singapore , Singapore
| | - Wan Lu Pang
- Department of Physiology, National University of Singapore , Singapore , Singapore
- Immunology Programme, National University of Singapore , Singapore , Singapore
| | - Emily Nickles
- Department of Physiology, National University of Singapore , Singapore , Singapore
- Immunology Programme, National University of Singapore , Singapore , Singapore
| | - Liang Kai Koh
- Department of Physiology, National University of Singapore , Singapore , Singapore
- Immunology Programme, National University of Singapore , Singapore , Singapore
| | - Herbert Schwarz
- Department of Physiology, National University of Singapore , Singapore , Singapore
- Immunology Programme, National University of Singapore , Singapore , Singapore
- NUS Graduate School for Integrative Sciences and Engineering, National University of Singapore , Singapore , Singapore
| |
Collapse
|
12
|
Luo X, Fan Y, Park IW, He JJ. Exosomes are unlikely involved in intercellular Nef transfer. PLoS One 2015; 10:e0124436. [PMID: 25919665 PMCID: PMC4412529 DOI: 10.1371/journal.pone.0124436] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2014] [Accepted: 03/13/2015] [Indexed: 11/18/2022] Open
Abstract
HIV-1 Nef is an important pathogenic factor for HIV/AIDS pathogenesis. Several recent studies including ours have demonstrated that Nef can be transferred to neighboring cells and alters the function of these cells. However, how the intercellular Nef transfer occurs is in dispute. In the current study, we attempted to address this important issue using several complementary strategies, a panel of exosomal markers, and human CD4+ T lymphocyte cell line Jurkat and a commonly used cell line 293T. First, we showed that Nef was transferred from Nef-expressing or HIV-infected Jurkat to naïve Jurkat and other non-Jurkat cells and that the transfer required the membrane targeting function of Nef and was cell density-dependent. Then, we showed that Nef transfer was cell-cell contact-dependent, as exposure to culture supernatants or exosomes from HIV-infected Jurkat or Nef-expressing Jurkat and 293T led to little Nef detection in the target cells Jurkat. Thirdly, we demonstrated that Nef was only detected to be associated with HIV virions but not with acetylcholinesterase (AChE+) exosomes from HIV-infected Jurkat and not in the exosomes from Nef-expressing Jurkat. In comparison, when it was over-expressed in 293T, Nef was detected in detergent-insoluble AChE+/CD81low/TSG101low exosomes, but not in detergent-soluble AChE-/CD81high/TSG101high exosomes. Lastly, microscopic imaging showed no significant Nef detection in exosomal vesicle-like structures in and out 293T. Taken together, these results show that exosomes are unlikely involved in intercellular Nef transfer. In addition, this study reveals existence of two types of exosomes: AChE+/CD81low/TSG101low exosomes and AChE-/CD81high/TSG101high exosomes.
Collapse
Affiliation(s)
- Xiaoyu Luo
- Department of Cell Biology and Immunology, Graduate School of Biomedical Sciences, University of North Texas Health Science Center, Fort Worth, Texas, 76107, United States of America
| | - Yan Fan
- Department of Cell Biology and Immunology, Graduate School of Biomedical Sciences, University of North Texas Health Science Center, Fort Worth, Texas, 76107, United States of America
| | - In-Woo Park
- Department of Cell Biology and Immunology, Graduate School of Biomedical Sciences, University of North Texas Health Science Center, Fort Worth, Texas, 76107, United States of America
| | - Johnny J. He
- Department of Cell Biology and Immunology, Graduate School of Biomedical Sciences, University of North Texas Health Science Center, Fort Worth, Texas, 76107, United States of America
- * E-mail:
| |
Collapse
|
13
|
Miner CA, Giri TK, Meyer CE, Shabsovich M, Tripathy SK. Acquisition of activation receptor ligand by trogocytosis renders NK cells hyporesponsive. THE JOURNAL OF IMMUNOLOGY 2015; 194:1945-53. [PMID: 25582853 DOI: 10.4049/jimmunol.1402408] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Because NK cells secrete cytotoxic granules and cytokines that can destroy surrounding cells and help shape the subsequent immune response, they must be kept under tight control. Several mechanisms, at different levels, are in place to control NK cell function. In this study, we describe a novel mechanism regulating NK cell function in which NK cells acquire ligands for activating receptors from target cells by trogocytosis, rendering the NK cells hyporesponsive. In this model, murine NK cells acquire m157, the murine CMV-encoded ligand for the Ly49H-activating receptor, from target cells both in vitro and in vivo. Although acquisition of m157 requires cell-to-cell contact, it does not require the expression of the Ly49H receptor by the NK cell. Acquired m157 protein is expressed on the NK cell surface with a glycosylphosphatidylinisotol linkage and interacts with the Ly49H receptor expressed on the NK cell. This interaction results in blocking the Ly49H receptor that prevents the NK cells from recognizing m157-expressing targets and continuous engagement of the Ly49H-activating receptor, which results in the hyporesponsiveness of the Ly49H(+) NK cell to stimulation through other activating receptors. Thus, NK cell acquisition of a ligand for an activation receptor by trogocytosis renders them hyporesponsive. This mechanism, by which mature NK cell function can be altered, has important implications in regard to how NK cells respond to tumors in specific microenvironments as well as the use of expanded NK cells in treating various malignancies.
Collapse
Affiliation(s)
- Cathrine A Miner
- Gastroenterology Division, Department of Medicine, Washington University School of Medicine, St. Louis, MO 63110
| | - Tusar K Giri
- Gastroenterology Division, Department of Medicine, Washington University School of Medicine, St. Louis, MO 63110
| | - Claire E Meyer
- Gastroenterology Division, Department of Medicine, Washington University School of Medicine, St. Louis, MO 63110
| | - Mark Shabsovich
- Gastroenterology Division, Department of Medicine, Washington University School of Medicine, St. Louis, MO 63110
| | - Sandeep K Tripathy
- Gastroenterology Division, Department of Medicine, Washington University School of Medicine, St. Louis, MO 63110
| |
Collapse
|
14
|
Nagel A, Möbs C, Raifer H, Wiendl H, Hertl M, Eming R. CD3-positive B cells: a storage-dependent phenomenon. PLoS One 2014; 9:e110138. [PMID: 25329048 PMCID: PMC4199681 DOI: 10.1371/journal.pone.0110138] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2014] [Accepted: 09/17/2014] [Indexed: 12/04/2022] Open
Abstract
The majority of clinical studies requires extensive management of human specimen including e.g. overnight shipping of blood samples in order to convey the samples in a central laboratory or to simultaneously analyze large numbers of patients. Storage of blood samples for periods of time before in vitro/ex vivo testing is known to influence the antigen expression on the surface of lymphocytes. In this context, the present results show for the first time that the T cell antigen CD3 can be substantially detected on the surface of human B cells after ex vivo storage and that the degree of this phenomenon critically depends on temperature and duration after blood withdrawal. The appearance of CD3 on the B cell surface seems to be a result of contact-dependent antigen exchange between T and B lymphocytes and is not attributed to endogenous production by B cells. Since cellular subsets are often classified by phenotypic analyses, our results indicate that ex vivo cellular classification in peripheral blood might result in misleading interpretations. Therefore, in order to obtain results reflecting the in vivo situation, it is suggested to minimize times of ex vivo blood storage after isolation of PBMC. Moreover, to enable reproducibility of results between different research groups and multicenter studies, we would emphasize the necessity to specify and standardize the storage conditions, which might be the basis of particular findings.
Collapse
Affiliation(s)
- Angela Nagel
- Department of Dermatology and Allergology, Philipps University Marburg, Marburg, Germany
- Institute of Clinical and Molecular Virology, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany
| | - Christian Möbs
- Department of Dermatology and Allergology, Philipps University Marburg, Marburg, Germany
| | - Hartmann Raifer
- Institute for Medical Microbiology and Hygiene, Philipps University Marburg, Marburg, Germany
| | - Heinz Wiendl
- Department of Neurology, University of Münster, Münster, Germany
| | - Michael Hertl
- Department of Dermatology and Allergology, Philipps University Marburg, Marburg, Germany
| | - Rüdiger Eming
- Department of Dermatology and Allergology, Philipps University Marburg, Marburg, Germany
- * E-mail:
| |
Collapse
|
15
|
Cho FN, Chang TH, Shu CW, Ko MC, Liao SK, Wu KH, Yu MS, Lin SJ, Hong YC, Chen CH, Hung CH, Chang YH. Enhanced cytotoxicity of natural killer cells following the acquisition of chimeric antigen receptors through trogocytosis. PLoS One 2014; 9:e109352. [PMID: 25313995 PMCID: PMC4196898 DOI: 10.1371/journal.pone.0109352] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2014] [Accepted: 09/04/2014] [Indexed: 12/21/2022] Open
Abstract
Natural killer (NK) cells have the capacity to target tumors and are ideal candidates for immunotherapy. Viral vectors have been used to genetically modify in vitro expanded NK cells to express chimeric antigen receptors (CARs), which confer cytotoxicity against tumors. However, use of viral transduction methods raises the safety concern of viral integration into the NK cell genome. In this study, we used trogocytosis as a non-viral method to modify NK cells for immunotherapy. A K562 cell line expressing high levels of anti-CD19 CARs was generated as a donor cell to transfer the anti-CD19 CARs onto NK cells via trogocytosis. Anti-CD19 CAR expression was observed in expanded NK cells after these cells were co-cultured for one hour with freeze/thaw-treated donor cells expressing anti-CD19 CARs. Immunofluorescence analysis confirmed the localization of the anti-CD19 CARs on the NK cell surface. Acquisition of anti-CD19 CARs via trogocytosis enhanced NK cell-mediated cytotoxicity against the B-cell acute lymphoblastic leukemia (B-ALL) cell lines and primary B-ALL cells derived from patients. To our knowledge, this is the first report that describes the increased cytotoxicity of NK cells following the acquisition of CARs via trogocytosis. This novel strategy could be a potential valuable therapeutic approach for the treatment of B-cell tumors.
Collapse
MESH Headings
- Antigens, CD19/genetics
- Antigens, CD19/metabolism
- Cells, Cultured
- Coculture Techniques
- Cytotoxicity, Immunologic
- Humans
- Immunophenotyping
- K562 Cells
- Killer Cells, Natural/cytology
- Killer Cells, Natural/immunology
- Killer Cells, Natural/metabolism
- Lymphoma, B-Cell/metabolism
- Lymphoma, B-Cell/pathology
- Receptors, Antigen/genetics
- Receptors, Antigen/metabolism
Collapse
Affiliation(s)
- Fu-Nan Cho
- Department of Obstetrics and Gynecology, Kaohsiung Veterans General Hospital, Kaohsiung, Taiwan
| | - Tsung-Hsien Chang
- Department of Medical Education and Research, Kaohsiung Veterans General Hospital, Kaohsiung, Taiwan
| | - Chih-Wen Shu
- Department of Medical Education and Research, Kaohsiung Veterans General Hospital, Kaohsiung, Taiwan
| | - Ming-Chin Ko
- Department of Pediatrics, Kaohsiung Veterans General Hospital, Kaohsiung, Taiwan
| | - Shuen-Kuei Liao
- Graduate Institute of Cancer Biology and Drug Discovery and Center of Excellence for Cancer Research, Taipei Medical University, Taipei, Taiwan
| | - Kang-Hsi Wu
- Department of Pediatrics, Children's Hospital and School of Chinese Medicine, China Medical University Hospitals, Taichung, Taiwan
| | - Ming-Sun Yu
- Haematology-Oncology Section, Department of Medicine, Kaohsiung Veterans General Hospital, Kaohsiung, Taiwan
| | - Shyh-Jer Lin
- Haematology-Oncology Section, Department of Medicine, Kaohsiung Veterans General Hospital, Kaohsiung, Taiwan
| | - Ying-Chung Hong
- Haematology-Oncology Section, Department of Medicine, Kaohsiung Veterans General Hospital, Kaohsiung, Taiwan
| | - Chien-Hsun Chen
- Department of Radiation Oncology, Kaohsiung Veterans General Hospital, Kaohsiung, Taiwan
| | - Chien-Hui Hung
- Department of Pediatrics, Kaohsiung Veterans General Hospital, Kaohsiung, Taiwan
| | - Yu-Hsiang Chang
- Department of Pediatrics, Kaohsiung Veterans General Hospital, Kaohsiung, Taiwan
- Faculty of Medicine, National Yang-Ming University, Taipei, Taiwan
- Department of Nursing, Tajen University, Yanpu Township, Pingtung County, Taiwan
- * E-mail:
| |
Collapse
|
16
|
Rossi EA, Chang CH, Goldenberg DM. Anti-CD22/CD20 Bispecific antibody with enhanced trogocytosis for treatment of Lupus. PLoS One 2014; 9:e98315. [PMID: 24841238 PMCID: PMC4026529 DOI: 10.1371/journal.pone.0098315] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2014] [Accepted: 03/26/2014] [Indexed: 12/31/2022] Open
Abstract
The humanized anti-CD22 antibody, epratuzumab, has demonstrated therapeutic activity in clinical trials of lymphoma, leukemia and autoimmune diseases, treating currently over 1500 cases of non-Hodgkin lymphoma, acute lymphoblastic leukemias, Waldenström's macroglobulinemia, Sjögren's syndrome, and systemic lupus erythematosus. Because epratuzumab reduces on average only 35% of circulating B cells in patients, and has minimal antibody-dependent cellular cytotoxicity and negligible complement-dependent cytotoxicity when evaluated in vitro, its therapeutic activity may not result completely from B-cell depletion. We reported recently that epratuzumab mediates Fc/FcR-dependent membrane transfer from B cells to effector cells via trogocytosis, resulting in a substantial reduction of multiple BCR modulators, including CD22, CD19, CD21, and CD79b, as well as key cell adhesion molecules, including CD44, CD62L, and β7 integrin, on the surface of B cells in peripheral blood mononuclear cells obtained from normal donors or SLE patients. Rituximab has clinical activity in lupus, but failed to achieve primary endpoints in a Phase III trial. This is the first study of trogocytosis mediated by bispecific antibodies targeting neighboring cell-surface proteins, CD22, CD20, and CD19, as demonstrated by flow cytometry and immunofluorescence microscopy. We show that, compared to epratuzumab, a bispecific hexavalent antibody comprising epratuzumab and veltuzumab (humanized anti-CD20 mAb) exhibits enhanced trogocytosis resulting in major reductions in B-cell surface levels of CD19, CD20, CD21, CD22, CD79b, CD44, CD62L and β7-integrin, and with considerably less immunocompromising B-cell depletion that would result with anti-CD20 mAbs such as veltuzumab or rituximab, given either alone or in combination with epratuzumab. A CD22/CD19 bispecific hexavalent antibody, which exhibited enhanced trogocytosis of some antigens and minimal B-cell depletion, may also be therapeutically useful. The bispecific antibody is a candidate for improved treatment of lupus and other autoimmune diseases, offering advantages over administration of the two parental antibodies in combination.
Collapse
MESH Headings
- Antibodies, Bispecific/immunology
- Antibodies, Bispecific/pharmacology
- Antibodies, Monoclonal, Humanized/immunology
- Antibodies, Monoclonal, Humanized/pharmacology
- Antibodies, Monoclonal, Murine-Derived/immunology
- Antibodies, Monoclonal, Murine-Derived/pharmacology
- B-Lymphocytes/drug effects
- B-Lymphocytes/immunology
- Flow Cytometry
- Humans
- Immunological Synapses/metabolism
- Lupus Erythematosus, Systemic/drug therapy
- Microscopy, Fluorescence
- Receptors, Antigen, B-Cell/metabolism
- Rituximab
Collapse
Affiliation(s)
- Edmund A. Rossi
- Immunomedics, Inc., Morris Plains, New Jersey, United States of America
- IBC Pharmaceuticals, Inc., Morris Plains, New Jersey, United States of America
| | - Chien-Hsing Chang
- Immunomedics, Inc., Morris Plains, New Jersey, United States of America
- IBC Pharmaceuticals, Inc., Morris Plains, New Jersey, United States of America
| | - David M. Goldenberg
- Immunomedics, Inc., Morris Plains, New Jersey, United States of America
- IBC Pharmaceuticals, Inc., Morris Plains, New Jersey, United States of America
- Center for Molecular Medicine and Immunology, Morris Plains, New Jersey, United States of America
- * E-mail:
| |
Collapse
|
17
|
Sant AJ, Chaves FA, Leddon SA, Tung J. The control of the specificity of CD4 T cell responses: thresholds, breakpoints, and ceilings. Front Immunol 2013; 4:340. [PMID: 24167504 PMCID: PMC3805957 DOI: 10.3389/fimmu.2013.00340] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2013] [Accepted: 10/04/2013] [Indexed: 12/31/2022] Open
Abstract
It has been known for over 25 years that CD4 T cell responses are restricted to a finite number of peptide epitopes within pathogens or protein vaccines. These selected peptide epitopes are termed "immunodominant." Other peptides within the antigen that can bind to host MHC molecules and recruit CD4 T cells as single peptides are termed "cryptic" because they fail to induce responses when expressed in complex proteins or when in competition with other peptides during the immune response. In the last decade, our laboratory has evaluated the mechanisms that underlie the preferential specificity of CD4 T cells and have discovered that both intracellular events within antigen presenting cells, particular selective DM editing, and intercellular regulatory pathways, involving IFN-γ, indoleamine 2,3-dioxygenase, and regulatory T cells, play a role in selecting the final peptide specificity of CD4 T cells. In this review, we summarize our findings, discuss the implications of this work on responses to pathogens and vaccines and speculate on the logic of these regulatory events.
Collapse
Affiliation(s)
- Andrea J. Sant
- Department of Microbiology and Immunology, David H. Smith Center for Vaccine Biology and Immunology, University of Rochester Medical Center, Rochester, NY, USA
| | - Francisco A. Chaves
- Department of Microbiology and Immunology, David H. Smith Center for Vaccine Biology and Immunology, University of Rochester Medical Center, Rochester, NY, USA
| | - Scott A. Leddon
- Department of Microbiology and Immunology, David H. Smith Center for Vaccine Biology and Immunology, University of Rochester Medical Center, Rochester, NY, USA
| | - Jacqueline Tung
- Department of Microbiology and Immunology, David H. Smith Center for Vaccine Biology and Immunology, University of Rochester Medical Center, Rochester, NY, USA
| |
Collapse
|
18
|
Kochan G, Escors D, Breckpot K, Guerrero-Setas D. Role of non-classical MHC class I molecules in cancer immunosuppression. Oncoimmunology 2013; 2:e26491. [PMID: 24482746 PMCID: PMC3894240 DOI: 10.4161/onci.26491] [Citation(s) in RCA: 106] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2013] [Revised: 09/10/2013] [Accepted: 09/14/2013] [Indexed: 01/14/2023] Open
Abstract
Growing neoplasms employ various mechanisms to evade immunosurveillance. The expression of non-classical MHC class I molecules by both immune and malignant cells in the tumor microenvironment constitute of the strategies used by tumors to circumvent the cytotoxic activity of effector cells of the immune system. The overexpression of HLA-G, -E, and -F is a common finding across a variety of malignancies. However, while the presence of HLA-G and HLA-E has been recently correlated with poor clinical outcome, information on the clinicopathological significance of HLA-F is limited. In the present review, we summarize studies on non-classical MHC class I molecules with special emphasis on their role in the modulation of anticancer immune responses.
Collapse
Affiliation(s)
| | - David Escors
- Navarrabiomed-Fundacion Miguel Servet; Navarra, Spain ; Rayne Institute; University College London; London, UK
| | | | | |
Collapse
|
19
|
Abstract
Epratuzumab, a humanized anti-CD22 antibody, is currently in clinical trials of B-cell lymphomas and autoimmune diseases, demonstrating therapeutic activity in non-Hodgkin lymphoma (NHL) and systemic lupus erythematosus (SLE). Thus, epratuzumab offers a promising option for CD22-targeted immunotherapy, yet its mechanism of action remains poorly understood. Here we report for the first time that epratuzumab promptly induces a marked decrease of CD22 (>80%), CD19 (>50%), CD21 (>50%), and CD79b (>30%) on the surface of B cells in peripheral blood mononuclear cells (PBMCs) obtained from normal donors or SLE patients, and of NHL cells (Daudi and Raji) spiked into normal PBMCs. Although some Fc-independent loss of CD22 is expected from internalization by epratuzumab, the concurrent and prominent reduction of CD19, CD21, and CD79b is Fc dependent and results from their transfer from epratuzumab-opsonized B cells to FcγR-expressing monocytes, natural killer cells, and granulocytes via trogocytosis. The findings of reduced levels of CD19 are implicative for the efficacy of epratuzumab in autoimmune diseases because elevated CD19 has been correlated with susceptibility to SLE in animal models as well as in patients. This was confirmed herein by the finding that SLE patients receiving epratuzumab immunotherapy had significantly reduced CD19 compared with treatment-naïve patients.
Collapse
|
20
|
Tung J, Sant AJ. Orchestration of CD4 T cell epitope preferences after multipeptide immunization. THE JOURNAL OF IMMUNOLOGY 2013; 191:764-72. [PMID: 23772029 DOI: 10.4049/jimmunol.1300312] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
A detailed understanding of the molecular and cellular mechanisms that underlie epitope preferences in T cell priming is important for vaccines designed to elicit a broad T cell response. Protein vaccinations generally elicit CD4 T cell responses that are skewed toward a small fraction of epitopes, a phenomenon known as immunodominance. This characteristic of T cell responses, which limits the diversity of CD4 T cell recognition, is generally attributed to intracellular Ag processing. However, we recently discovered that immunodominance hierarchies persist even after vaccination with synthetic peptides. In this study, we probed the regulatory mechanisms that cause diminished CD4 T cell responses to subdominant peptides after such multipeptide immunization in mice. We have found that the delivery of subdominant and dominant epitopes on separate dendritic cells rescues expansion of less favored CD4 T cells. Furthermore, through the use of genetic models and inhibitors, we have found that selective losses in CD4 T cell responses are mediated by an IFN-γ-induced pathway, involving IDO, and that regulatory T cell activities may also regulate preferences in CD4 T cell specificity. We propose that after multipeptide immunization, the expansion and differentiation of dominant T cells initiate complex regulatory events that determine the final peptide specificity of the elicited CD4 T cell response.
Collapse
Affiliation(s)
- Jacqueline Tung
- David H Smith Center for Vaccine Biology and Immunology, Department of Microbiology and Immunology, University of Rochester Medical Center, Rochester, NY 14642, USA
| | | |
Collapse
|
21
|
Ho WT, Pang WL, Chong SM, Castella A, Al-Salam S, Tan TE, Moh MC, Koh LK, Gan SU, Cheng CK, Schwarz H. Expression of CD137 on Hodgkin and Reed–Sternberg Cells Inhibits T-cell Activation by Eliminating CD137 Ligand Expression. Cancer Res 2012. [DOI: 10.1158/0008-5472.can-12-3849] [Citation(s) in RCA: 55] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
22
|
Smyth LA, Hervouet C, Hayday T, Becker PD, Ellis R, Lechler RI, Lombardi G, Klavinskis LS. Acquisition of MHC:peptide complexes by dendritic cells contributes to the generation of antiviral CD8+ T cell immunity in vivo. THE JOURNAL OF IMMUNOLOGY 2012; 189:2274-82. [PMID: 22821960 DOI: 10.4049/jimmunol.1200664] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Abstract
There is an increasing body of evidence suggesting that the transfer of preformed MHC class I:peptide complexes between a virus-infected cell and an uninfected APC, termed cross-dressing, represents an important mechanism of Ag presentation to CD8+ T cells in host defense. However, although it has been shown that memory CD8+ T cells can be activated by uninfected dendritic cells (DCs) cross-dressed by Ag from virus-infected parenchymal cells, it is unknown whether conditions exist during virus infection in which naive CD8+ T cells are primed and differentiate to cytolytic effectors through cross-dressing, and indeed which DC subset would be responsible. In this study, we determine whether the transfer of MHC class I:peptide complexes between infected and uninfected murine DC plays a role in CD8+ T cell priming to viral Ags in vivo. We show that MHC class I:peptide complexes from peptide-pulsed or virus-infected DCs are indeed acquired by splenic CD8α⁻ DCs in vivo. Furthermore, the acquired MHC class I:peptide complexes are functional in that they induced Ag-specific CD8+ T cell effectors with cytolytic function. As CD8α⁻ DCs are poor cross-presenters, this may represent the main mechanism by which CD8α⁻ DCs present exogenously encountered Ag to CD8+ T cells. The sharing of Ag as preformed MHC class I:peptide complexes between infected and uninfected DCs without the restraints of Ag processing may have evolved to accurately amplify the response and also engage multiple DC subsets critical in the generation of strong antiviral immunity.
Collapse
Affiliation(s)
- Lesley A Smyth
- Medical Research Council Centre for Transplantation, King's College London, London SE1 9RT, United Kingdom.
| | | | | | | | | | | | | | | |
Collapse
|
23
|
Engineering lymph node homing of ex vivo-expanded human natural killer cells via trogocytosis of the chemokine receptor CCR7. Blood 2012; 119:5164-72. [PMID: 22498742 DOI: 10.1182/blood-2011-11-389924] [Citation(s) in RCA: 95] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023] Open
Abstract
Natural killer (NK) cells have gained significant attention in adoptive immunotherapy for cancer. Consequently, novel methods of clinical-grade expansion of NK cells have emerged. Subsets of NK cells express a variety of chemokine receptors. However, to expand the scope of adoptively transferred NK cell homing to various malignancies, expression of corresponding chemokine receptors on NK cells is essential. Here, we have explored the use of trogocytosis as a tool to transiently express the chemokine receptor CCR7 on expanded human NK cells with the aim to enhance their homing to lymph nodes. We generated a K562-based "donor" cell line expressing CCR7, Clone9.CCR7, to transfer CCR7 onto NK cells via trogocytosis. CCR7 expression occurred in 80% of expanded NK cells within 1 hour after coculture with Clone9.CCR7. After removal of the donor cells from the coculture, the CCR7 expression on NK cells steadily declined to baseline levels by 72 hours. The acquired CCR7 receptors mediated in vitro migration of NK cells toward CCL19 and CCL21 and increased the lymph node homing by 144% in athymic nude mice. This is the first report on exploiting trogocytosis to rapidly and transiently modify lymphocytes, without direct genetic intervention, for adoptive transfer.
Collapse
|
24
|
Ryan SO, Cobb BA. Roles for major histocompatibility complex glycosylation in immune function. Semin Immunopathol 2012; 34:425-41. [PMID: 22461020 DOI: 10.1007/s00281-012-0309-9] [Citation(s) in RCA: 55] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2011] [Accepted: 03/05/2012] [Indexed: 12/22/2022]
Abstract
The major histocompatibility complex (MHC) glycoprotein family, also referred to as human leukocyte antigens, present endogenous and exogenous antigens to T lymphocytes for recognition and response. These molecules play a central role in enabling the immune system to distinguish self from non-self, which is the basis for protective immunity against pathogenic infections and disease while at the same time representing a serious obstacle for tissue transplantation. All known MHC family members, like the majority of secreted, cell surface, and other immune-related molecules, carry asparagine (N)-linked glycans. The immune system has evolved increasing complexity in higher-order organisms along with a more complex pattern of protein glycosylation, a relationship that may contribute to immune function beyond the early protein quality control events in the endoplasmic reticulum that are commonly known. The broad MHC family maintains peptide sequence motifs for glycosylation at sites that are highly conserved across evolution, suggesting importance, yet functional roles for these glycans remain largely elusive. In this review, we will summarize what is known about MHC glycosylation and provide new insight for additional functional roles for this glycoprotein modification in mediating immune responses.
Collapse
Affiliation(s)
- Sean O Ryan
- Department of Pathology, Case Western Reserve University School of Medicine, Cleveland, OH 44106, USA
| | | |
Collapse
|
25
|
Canonico B, Luchetti F, Arcangeletti M, Guescini M, Degli Esposti M, Papa S. Flow cytometric analyses disclose intercellular communications in FasL-stimulated T cells: results and trouble shooting. Cytometry A 2011; 81:5-8. [PMID: 21990135 DOI: 10.1002/cyto.a.21151] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2011] [Revised: 09/10/2011] [Accepted: 09/15/2011] [Indexed: 12/19/2022]
Affiliation(s)
- B Canonico
- DiSTeVA (Department of Earth, Life and Environmental Sciences), University of Urbino Carlo Bo, Urbino, Italy.
| | | | | | | | | | | |
Collapse
|
26
|
Abstract
PURPOSE OF REVIEW The bidirectional exchange of cells, both mature and progenitor types, at the maternal-fetal interface is a common feature of mammalian reproduction. The presence of semiallogeneic cells in a host can have significant immunological effects on transplantation tolerance and rejection. Here, we review recent advances in this area. RECENT FINDINGS Maternal microchimerism (MMc) in blood and various organs was found to be directly correlated with noninherited maternal antigen (NIMA)-specific CD4(+) regulatory T cells (Tregs), in F(1) backcross mice. In humans, MMc induced NIMA-specific FoxP3(+) CD4 Tregs in lymph nodes and spleen of fetuses. Tolerance to NIMA(+) allografts could be predicted in mice by measuring levels of the NIMA-specific Tregs in offspring before transplantation. On the contrary, fetal microchimerism (FMc) in multiparous female mice was largely confined to CD34(+) hematopoietic stem cells (HSCs) and was associated with sensitization rather than Treg induction. The recent discovery of a 'layered' T-cell development in humans whereby fetal HSCs are more likely to produce Tregs than adult HSCs, which may explain why MMc often induces tolerance, whereas FMc tends to induce sensitization. SUMMARY Microchimerism may cause tolerance resulting in acceptance of an allograft bearing antigens shared by the microchimeric cells. However, microchimerism may also cause sensitization resulting in rejection. Distinguishing these effects prior to the transplant may revolutionize the field of living-related renal transplantation wherein MMc and FMc can exert a powerful influence on graft outcome.
Collapse
Affiliation(s)
- Partha Dutta
- Department of Surgery, University of Wisconsin, Madison, Wisconsin
- Center for Systems Biology, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | | |
Collapse
|
27
|
Monsiváis-Urenda AE, Baranda L, Alvarez-Quiroga C, Abud-Mendoza C, González-Amaro R. Expression and functional role of HLA-G in immune cells from patients with systemic lupus erythematosus. J Clin Immunol 2011; 31:369-78. [PMID: 21188486 DOI: 10.1007/s10875-010-9496-0] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2010] [Accepted: 12/07/2010] [Indexed: 10/18/2022]
Abstract
Human leukocyte antigen (HLA)-G is a class I non-classical HLA molecule with an important regulatory role on the immune response. The possible role of this molecule in the pathogenesis of SLE has not been explored. In this work, we evaluated the expression and function of HLA-G in SLE patients. We studied 37 SLE patients as well as 25 healthy donors. Peripheral blood monocytes and in vitro-generated dendritic cells (DCs) were analyzed for HLA-G expression by flow cytometry. We found that monocytes from SLE patients as well as mature CD83+ DCs showed a diminished expression of HLA-G compared with healthy controls. In addition, monocytes from SLE patients showed a diminished induction of HLA-G expression in response to stimulation with IL-10. Furthermore, functional assays showed that these monocytes pre-treated with IFN-γ exhibited a diminished capability to inhibit the proliferation of autologous lymphocytes. Finally, lymphocytes from SLE patients tended to display a lower acquisition of HLA-G (by trogocytosis) from autologous monocytes compared to controls. Our results might have implications for the immune abnormalities observed in patients with SLE.
Collapse
|
28
|
Microvesicles as mediators of intercellular communication in cancer--the emerging science of cellular 'debris'. Semin Immunopathol 2011; 33:455-67. [PMID: 21318413 DOI: 10.1007/s00281-011-0250-3] [Citation(s) in RCA: 399] [Impact Index Per Article: 28.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2011] [Accepted: 01/13/2011] [Indexed: 01/01/2023]
Abstract
Cancer cells emit a heterogeneous mixture of vesicular, organelle-like structures (microvesicles, MVs) into their surroundings including blood and body fluids. MVs are generated via diverse biological mechanisms triggered by pathways involved in oncogenic transformation, microenvironmental stimulation, cellular activation, stress, or death. Vesiculation events occur either at the plasma membrane (ectosomes, shed vesicles) or within endosomal structures (exosomes). MVs are increasingly recognized as mediators of intercellular communication due to their capacity to merge with and transfer a repertoire of bioactive molecular content (cargo) to recipient cells. Such processes may occur both locally and systemically, contributing to the formation of microenvironmental fields and niches. The bioactive cargo of MVs may include growth factors and their receptors, proteases, adhesion molecules, signalling molecules, as well as DNA, mRNA, and microRNA (miRs) sequences. Tumour cells emit large quantities of MVs containing procoagulant, growth regulatory and oncogenic cargo (oncosomes), which can be transferred throughout the cancer cell population and to non-transformed stromal cells, endothelial cells and possibly to the inflammatory infiltrates (oncogenic field effect). These events likely impact tumour invasion, angiogenesis, metastasis, drug resistance, and cancer stem cell hierarchy. Ongoing studies explore the molecular mechanisms and mediators of MV-based intercellular communication (cancer vesiculome) with the hope of using this information as a possible source of therapeutic targets and disease biomarkers in cancer.
Collapse
|
29
|
Guseva NV, Fullenkamp CA, Naumann PW, Shey MR, Ballas ZK, Houtman JC, Forbes CA, Scalzo AA, Heusel JW. Glycosylation contributes to variability in expression of murine cytomegalovirus m157 and enhances stability of interaction with the NK-cell receptor Ly49H. Eur J Immunol 2010; 40:2618-31. [PMID: 20662096 PMCID: PMC3070389 DOI: 10.1002/eji.200940134] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
NK cell-mediated resistance to murine cytomegalovirus (MCMV) is controlled by allelic Ly49 receptors, including activating Ly49H (C57BL/6 strain) and inhibitory Ly49I (129 strain), which specifically recognize MCMV m157, a glycosylphosphatidylinositol-linked protein with homology to MHC class I. Although the Ly49 receptors retain significant homology to classic carbohydrate-binding lectins, the role of glycosylation in ligand binding is unclear. Herein, we show that m157 is expressed in multiple, differentially N-glycosylated isoforms in m157-transduced or MCMV-infected cells. We used site-directed mutagenesis to express single and combinatorial asparagine (N)-to-glutamine (Q) mutations at N178, N187, N213, and N267 in myeloid and fibroblast cell lines. Progressive loss of N-linked glycans led to a significant reduction of total cellular m157 abundance, although all variably glycosylated m157 isoforms were expressed at the cell surface and retained the capacity to activate Ly49H(B6) and Ly49I(129) reporter cells and Ly49H(+) NK cells. However, the complete lack of N-linked glycans on m157 destabilized the m157-Ly49H interaction and prevented physical transfer of m157 to Ly49H-expressing cells. Thus, glycosylation on m157 enhances expression and binding to Ly49H, factors that may impact the interaction between NK cells and MCMV in vivo where receptor-ligand interactions are more limiting.
Collapse
Affiliation(s)
- Natalya V. Guseva
- Department of Pathology, Roy J. and Lucille A. Carver College of Medicine, Iowa City, Iowa 52242
| | - Colleen A. Fullenkamp
- Department of Pathology, Roy J. and Lucille A. Carver College of Medicine, Iowa City, Iowa 52242
| | - Paul W. Naumann
- Department of Pathology, Roy J. and Lucille A. Carver College of Medicine, Iowa City, Iowa 52242
| | - Michael R. Shey
- Iowa City VA Medical Center, Roy J. and Lucille A. Carver College of Medicine, Iowa City, Iowa 52242
| | - Zuhair K. Ballas
- Iowa City VA Medical Center, Roy J. and Lucille A. Carver College of Medicine, Iowa City, Iowa 52242
- Department of Internal Medicine, Roy J. and Lucille A. Carver College of Medicine, Iowa City, Iowa 52242
| | - Jon C.D. Houtman
- Department of Microbiology, Roy J. and Lucille A. Carver College of Medicine, Iowa City, Iowa 52242
| | - Catherine A. Forbes
- Centre for Ophthalmology and Vision Science, M517, University of Western Australia, 35 Stirling Hwy, Crawley, WA 6009, Australia
- Centre for Experimental Immunology, Lions Eye Institute, 2 Verdun St, Nedlands, WA 6009, Australia
| | - Anthony A. Scalzo
- Centre for Ophthalmology and Vision Science, M517, University of Western Australia, 35 Stirling Hwy, Crawley, WA 6009, Australia
- Centre for Experimental Immunology, Lions Eye Institute, 2 Verdun St, Nedlands, WA 6009, Australia
| | - Jonathan W. Heusel
- Department of Pathology, Roy J. and Lucille A. Carver College of Medicine, Iowa City, Iowa 52242
| |
Collapse
|
30
|
Abstract
In a multicellular system, cellular communication is a must for orchestration and coordination of cellular events. Advent of the latest analytical and imaging tools has allowed us to enhance our understanding of the intercellular communication. An intercellular exchange of proteins or intact membrane patches is a ubiquitous phenomenon, and has been the subject of renewed interest, particularly in the context of immune cells. Recent evidence implicates that intercellular protein transfers, including trogocytosis is an important mechanism of the immune system to modulate immune responses and transferred proteins can also contribute to pathology. It has been demonstrated that intercellular protein transfer can be through the internalization/pathway, dissociation-associated pathway, uptake of exosomes and membrane nanotube formations. Exchange of membrane molecules/antigens between immune cells has been observed for a long time, but the mechanisms and functional consequences of these transfers remain unclear. In this review, we will discuss the important findings concerning intercellular protein transfers, possible mechanisms and highlight their physiological relevance to the immune system, with special reference to T cells such as the stimulatory or suppressive immune responses derived from T cells with acquired dendritic cell membrane molecules.
Collapse
Affiliation(s)
- Khawaja Ashfaque Ahmed
- Research Unit, Saskatchewan Cancer Agency, Departments of Oncology, Microbiology and Immunology, College of Medicine, University of Saskatchewan, Saskatoon, SK, Canada
| | | |
Collapse
|
31
|
Venkatachari NJ, Alber S, Watkins SC, Ayyavoo V. HIV-1 infection of DC: evidence for the acquisition of virus particles from infected T cells by antigen uptake mechanism. PLoS One 2009; 4:e7470. [PMID: 19829715 PMCID: PMC2759578 DOI: 10.1371/journal.pone.0007470] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2009] [Accepted: 09/22/2009] [Indexed: 01/18/2023] Open
Abstract
Dendritic cells (DC) play a pivotal role in transmission and dissemination of HIV-1. Earlier studies reported that DC present at the site of infection trap virus particles via DC-SIGN and transfer the virus to the interacting naïve T cells. This prompted us to ask the question whether DC could acquire virus from infected T cells during DC-T cell interaction. To address this, we investigated the likely transfer of virus from HIV-1 infected T cells to DC and the underlying mechanisms involved. Results indicate that DC acquire virus from infected T cells via antigen uptake mechanism and this results in infection of DC with expression of proteins directed by viral DNA. Further studies with HIV-1 lacking the Env protein also resulted in infection of DC. The use of antibodies against DC-SIGN and DC-SIGN-R ruled out a role for receptor in the infection of DC. Additional data show that DC infection is directly correlated with the ability of DC to take up antigen from infected T cells. Overall, these studies provide evidence to suggest that HIV-1, besides infecting immune cells, also utilizes immunological mechanism(s) to acquire and disseminate virus.
Collapse
Affiliation(s)
- Narasimhan J. Venkatachari
- Department of Infectious Diseases and Microbiology, Graduate School of Public Health, University of Pittsburgh, Pittsburgh, Pennsylvania, United States of America
| | - Sean Alber
- Department of Cell Biology and Physiology, School of Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania, United States of America
| | - Simon C. Watkins
- Department of Cell Biology and Physiology, School of Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania, United States of America
| | - Velpandi Ayyavoo
- Department of Infectious Diseases and Microbiology, Graduate School of Public Health, University of Pittsburgh, Pittsburgh, Pennsylvania, United States of America
- * E-mail:
| |
Collapse
|
32
|
Abstract
PURPOSE OF REVIEW Exposure to noninherited maternal antigens (NIMAs) in fetal and neonatal life has life-long immunological consequences. Although there is a plethora of evidence of effects of mother on the immune responses of her offspring, there is very little knowledge available on how exposure to NIMA can result in either tolerance or sensitization. Understanding the mechanism of NIMA effects will impact different fields of immunology including transplantation, autoimmunity, and tumor immunotherapy. RECENT FINDINGS Following the discoveries of beneficial effects of NIMA exposure on clinical outcomes in solid organ and bone marrow transplantation, it has now been shown that the exposure to NIMA induces various types of T regulatory (T(R)) cells in fetus and adult, which may partially account for tolerance to allografts bearing the NIMA. Although all offspring are exposed to the maternal antigens, they exhibit a great variability in the NIMA effects, which can be explained by the variability in the extent of maternal microchimerism (MMc). SUMMARY Exposure to NIMA can have tolerogenic or sensitizing effects on the offspring, resulting in acceptance or rejection of allografts expressing the NIMA. This variability may be partly explained by the level and distribution of maternal cells persisting in the offspring.
Collapse
Affiliation(s)
- Partha Dutta
- Department of Surgery, University of Wisconsin, Madison, WI 53792, USA
- Departments of Pathobiological Sciences and Comparative Biological Sciences, School of Veterinary Medicine, University of Wisconsin, Madison, WI 53792
| | | |
Collapse
|
33
|
Waschbisch A, Meuth SG, Herrmann AM, Wrobel B, Schwab N, Lochmüller H, Wiendl H. Intercellular exchanges of membrane fragments (trogocytosis) between human muscle cells and immune cells: A potential mechanism for the modulation of muscular immune responses. J Neuroimmunol 2009; 209:131-8. [DOI: 10.1016/j.jneuroim.2009.02.005] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2008] [Revised: 02/01/2009] [Accepted: 02/03/2009] [Indexed: 11/28/2022]
|
34
|
Daubeuf S, Aucher A, Sampathkumar SG, Preville X, Yarema KJ, Hudrisier D. Chemical labels metabolically installed into the glycoconjugates of the target cell surface can be used to track lymphocyte/target cell interplay via trogocytosis: comparisons with lipophilic dyes and biotin. Immunol Invest 2008; 36:687-712. [PMID: 18161525 DOI: 10.1080/08820130701674596] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
Trogocytosis, the process whereby lymphocytes capture membrane components from the cells they interact with, is classically evidenced by the transfer of fluorescent lipophilic compounds or biotinylated proteins from target cells to T or B cells. A particular class of molecules, not studied explicitly so far in the context of trogocytosis is glycoconjugates. Here, we used a method to metabolically install chemical labels in target cell glycoconjugates. Working with those target cells, we describe the conditions allowing CTL to be detected based on glycoconjugate trogocytosis triggered by antigen or stimulatory antibodies. Accordingly, we used this method to monitor the CTL response triggered in mice after vaccination. In addition, we documented the applicability of this approach to the detection of CD4(+) T and B cells. Overall, glycoconjugates were transferred between target cells and lymphocytes during trogocytosis with efficiencies comparable or higher than measured for biotinylated proteins or lipophilic dyes incorporated into general membrane lipids. From a technological point of view, our approach can be employed to detect reactive lymphocytes via glycoconjugate trogocytosis. More generally, we believe that the ever-growing ability to employ chemistry in living systems to label particular compounds will be powerful in unraveling the contributions of glycosylation to various aspects of T and B cells biology.
Collapse
|
35
|
Jolly C, Sattentau QJ. Regulated secretion from CD4+ T cells. Trends Immunol 2007; 28:474-81. [PMID: 17962070 DOI: 10.1016/j.it.2007.08.008] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2007] [Revised: 08/16/2007] [Accepted: 08/16/2007] [Indexed: 10/22/2022]
Abstract
The regulated secretion of cellular proteins is central to the correct function of many cell types, including immune cells. Lymphocyte control of the storage, transport and exocytosis of immunomodulatory molecules is a highly specialised task triggered by T cell receptor engagement. The regulated secretory pathway in CD8+ T and NK cells has been the focus of much research, and recent advances have provided insight into the molecular mechanisms governing secretory organelle biogenesis, trafficking and killing. By contrast, regulated secretory pathways in CD4+ T cells have not been studied extensively. Aside from their physiological function in normal T cells, components of CD4+ T cell secretory pathways might be implicated in the assembly of HIV-1. Here, we review findings that shed light on CD4+ T cell secretion in health and disease.
Collapse
MESH Headings
- Animals
- Antigens, CD/immunology
- Antigens, CD/metabolism
- Antigens, Differentiation/immunology
- Antigens, Differentiation/metabolism
- CD4-Positive T-Lymphocytes/immunology
- CD4-Positive T-Lymphocytes/metabolism
- CTLA-4 Antigen
- Cytokines/immunology
- Cytokines/metabolism
- Fas Ligand Protein/immunology
- Fas Ligand Protein/metabolism
- HIV-1/immunology
- HIV-1/metabolism
- Human Immunodeficiency Virus Proteins/metabolism
- Humans
- Killer Cells, Natural/immunology
- Killer Cells, Natural/metabolism
- Lysosomes/immunology
- Lysosomes/metabolism
- Protein Transport
- Receptors, Antigen, T-Cell/immunology
- T-Lymphocytes, Cytotoxic/immunology
- T-Lymphocytes, Cytotoxic/metabolism
Collapse
Affiliation(s)
- Clare Jolly
- The Sir William Dunn School of Pathology, The University of Oxford, OX1 3RE UK.
| | | |
Collapse
|
36
|
Muratori C, Sistigu A, Ruggiero E, Falchi M, Bacigalupo I, Palladino C, Toschi E, Federico M. Macrophages transmit human immunodeficiency virus type 1 products to CD4-negative cells: involvement of matrix metalloproteinase 9. J Virol 2007; 81:9078-87. [PMID: 17581988 PMCID: PMC1951421 DOI: 10.1128/jvi.00675-07] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023] Open
Abstract
It was previously reported that human immunodeficiency virus type 1 (HIV-1) spreads in CD4 lymphocytes through cell-to-cell transmission. Here we report that HIV-1-infected macrophages, but not lymphocytes, transmit HIV-1 products to CD4-negative cells of either epithelial, neuronal, or endothelial origin in the absence of overt HIV-1 infection. This phenomenon was detectable as early as 1 h after the start of cocultivation and depended on cell-to-cell contact but not on the release of viral particles from donor cells. Transfer of HIV-1 products occurred upon their polarization and colocalization within zones of cell-to-cell contact similar to virological synapses. Neither HIV-1 Env nor Nef expression was required but, interestingly, we found that an HIV-1-dependent increase in matrix metalloproteinase 9 production from donor cells significantly contributed to the cell-to-cell transmission of the viral products. The macrophage-driven transfer of HIV-1 products to diverse CD4-negative cell types may have a significant role in AIDS pathogenesis.
Collapse
Affiliation(s)
- Claudia Muratori
- Division of Pathogenesis of Retroviruses, National AIDS Center, Istituto Superiore di Sanità, Viale Regina Elena, 299, 00161 Rome, Italy
| | | | | | | | | | | | | | | |
Collapse
|